
Lejla Batina
Stjepan Picek
Mainack Mondal (Eds.)

LN
CS

 1
31

62 Security, Privacy, and
Applied Cryptography
Engineering
11th International Conference, SPACE 2021
Kolkata, India, December 10–13, 2021
Proceedings

Lecture Notes in Computer Science 13162

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873

More information about this subseries at https://link.springer.com/bookseries/7410

https://springerlink.bibliotecabuap.elogim.com/bookseries/7410

Lejla Batina • Stjepan Picek •

Mainack Mondal (Eds.)

Security, Privacy, and
Applied Cryptography
Engineering
11th International Conference, SPACE 2021
Kolkata, India, December 10–13, 2021
Proceedings

123

Editors
Lejla Batina
Radboud University
Nijmegen, The Netherlands

Stjepan Picek
Radboud University
Nijmegen, The Netherlands

TU Delft
Delft, The Netherlands

Mainack Mondal
Indian Institute of Technology Kharagpur
Kharagpur, India

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-95084-2 ISBN 978-3-030-95085-9 (eBook)
https://doi.org/10.1007/978-3-030-95085-9

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-0727-3573
https://orcid.org/0000-0001-7509-4337
https://orcid.org/0000-0003-4317-0184
https://doi.org/10.1007/978-3-030-95085-9

Preface

The 11th International Conference on Security, Privacy, and Applied Cryptography
Engineering 2021 (SPACE 2021) was held during December 10–13, 2021. This annual
event is devoted to various aspects of security, privacy, applied cryptography, and
cryptographic engineering. This is a challenging field, requiring expertise from diverse
domains ranging from mathematics and computer science to circuit design. It was first
planned to host SPACE 2021 at IIT Kharagpur, India, but it took place online due to
the worldwide COVID-19 crisis.

This year we received 42 submissions from authors in many different countries,
mainly from Asia and Europe. The submissions were evaluated based on their sig-
nificance, novelty, technical quality, and relevance to the SPACE conference. The
submissions were reviewed in a double-blind mode by at least three members of the
Program Committee, which consisted of 51 members from all over the world. After an
extensive review process, 13 papers were accepted for presentation at the conference,
leading to an acceptance rate of 30.95%.

The program also included two invited talks and three tutorials on various aspects of
applied cryptology, security, and privacy, delivered by world-renowned researchers:
Christof Paar, Ahmad-Reza Sadeghi, Nele Mentens, Peter Schwabe, and Blase Ur. We
sincerely thank the invited speakers for accepting our invitations in spite of their busy
schedules. As in previous editions, SPACE 2021 was organized in cooperation with the
International Association for Cryptologic Research (IACR). We are grateful to the
general chair, Debdeep Mukhopadhyay, for his willingness to host it physically at IIT
Kharagpur and his assistance with turning it into an online event.

There is a long list of volunteers who invested their time and energy to put together
the conference. We are grateful to all the members of the Program Committee and their
sub-reviewers for all their hard work in the evaluation of the submitted papers. We
thank our publisher, Springer, for agreeing to continue to publish the SPACE pro-
ceedings as a volume in the Lecture Notes in Computer Science (LNCS) series. We are
grateful to the local Organizing Committee, especially to the general chair, Debdeep
Mukhopadhyay, who invested a lot of time and effort in order for the conference to run
smoothly.

Last but not least, our sincere thanks go to all the authors who submitted papers to
SPACE 2021, and to all of you who attended it virtually. At least due to the COVID-19
crisis we were able to have so many of you attending the conference online and
registering for free. We sincerely hope to meet some of you in person next year.

December 2021 Lejla Batina
Stjepan Picek

Mainack Mondal

Organization

General Chair

Debdeep Mukhopadhyay Indian Institute of Technology, Kharagpur, India

Program Committee Chairs

Lejla Batina Radboud University, The Netherlands
Stjepan Picek Radboud University and TU Delft, The Netherlands
Mainack Mondal Indian Institute of Technology, Kharagpur, India

Program Committee

Amr Youssef Concordia University, Canada
Aniket Kate Purdue University, USA
Anupam Chattopadhyay Nanyang Technological University, Singapore
Bodhisatwa Mazumdar Indian Institute of Technology, Indore, India
Bohan Yang Tsinghua University, China
Chester Rebeiro Indian Institute of Technology, Madras, India
Chitchanok

Chuengsatiansup
University of Adelaide, Australia

Claude Carlet University of Bergen, Norway, and University of Paris
8, France

Daniel Moghimi University of California, San Diego, USA
Diego Aranha Aarhus University, Denmark
Dirmanto Jap Nanyang Technological University, Singapore
Domenic Forte University of Florida, USA
Eran Toch Tel Aviv University, Israel
Fan Zhang Zhejiang University, China
Fatemeh Ganji Worcester Polytechnic Institute, USA
Guilherme Perin TU Delft, The Netherlands
Ilia Polian Stuttgart University, Germany
Ileana Buhan Radboud University, The Netherlands
Jakub Breier Silicon Austria Labs, Austria
Jean-Luc Danger Télécom Paris, France
Johanna Sepulveda Airbus, Germany
Kazuo Sakiyama University of Electro-Communications, Japan
Kerstin Lemke-Rust Bonn-Rhein-Sieg University of Applied Sciences,

Germany
Kostas Papagiannopoulos University of Amsterdam, The Netherlands
Luca Mariot TU Delft, The Netherlands
Lukasz Chmielewski Radboud University, The Netherlands

Marc Stoettinger Hessen3C, Germany
Marc Manzano Sandbox@Alphabet, Spain
Martin Henze Fraunhofer FKIE, Germany
Md Masoom Rabbani KU Leuven, Belgium
Naofumi Homma Tohoku University, Japan
Oğuzhan Ersoy TU Delft, The Netherlands
Olga Gadyatskaya Leiden University, The Netherlands
Pedro Maat C. Massolino PQShield, Oxford, UK
Peter Schwabe MPI-SP, Germany, and Radboud University,

The Netherlands
Rajat Subhra Chakraborty Indian Institute of Technology, Kharagpur, India
Ruben Niederhagen University of Southern Denmark, Denmark
Sandeep Shukla Indian Institute of Technology, Kanpur, India
Sandip Chakraborty Indian Institute of Technology, Kharagpur, India
Shahram Rasoolzadeh Radboud University, The Netherlands
Shivam Bhasin Nanyang Technological University, Singapore
Sikhar Patranabis Visa Research, USA
Silvia Mella STMicroelectronics, Italy
Somitra Sanadhya Indian Institute of Technology, Jodhpur, India
Soumyajit Dey Indian Institute of Technology, Kharagpur, India
Sk Subidh Ali Indian Institute of Technology, Bhilai, India
Vishal Saraswat Bosch Engineering and Business Solutions, Bengaluru,

India

Additional Reviewers

Anirban Chakraborty
Soumyadyuti Ghosh
Arnab Bag
Ipsita Koley
Arpan Jati
Manaar Alam

Nikhilesh Kumar Singh
Sayandeep Saha
Vikas Maurya
Reetwik Das
Aneet Kumar Dutta

viii Organization

Contents

Symmetric Cryptography

Computing the Distribution of Differentials over
the Non-linear Mapping v . 3

Joan Daemen, Alireza Mehrdad, and Silvia Mella

Light-OCB: Parallel Lightweight Authenticated Cipher with Full Security . . . 22
Avik Chakraborti, Nilanjan Datta, Ashwin Jha,
Cuauhtemoc Mancillas-López, and Mridul Nandi

MILP Based Differential Attack on Round Reduced WARP. 42
Manoj Kumar and Tarun Yadav

Post-Quantum Cryptography and Homomorphic Encryption

SHELBRS: Location-Based Recommendation Services Using Switchable
Homomorphic Encryption . 63

Mishel Jain, Priyanka Singh, and Balasubramanian Raman

On Threat of Hardware Trojan to Post-Quantum Lattice-Based Schemes:
A Key Recovery Attack on SABER and Beyond . 81

Prasanna Ravi, Suman Deb, Anubhab Baksi, Anupam Chattopadhyay,
Shivam Bhasin, and Avi Mendelson

Safe-Error Attacks on SIKE and CSIDH . 104
Fabio Campos, Juliane Krämer, and Marcel Müller

Hardware Security and Side-Channel Attacks

Network Data Remanence Side Channel Attack on SPREAD, H-SPREAD
and Reverse AODV . 129

Pushpraj Naik and Urbi Chatterjee

Parasite: Mitigating Physical Side-Channel Attacks Against
Neural Networks . 148

Hervé Chabanne, Jean-Luc Danger, Linda Guiga, and Ulrich Kühne

Reinforcement Learning-Based Design of Side-Channel Countermeasures . . . 168
Jorai Rijsdijk, Lichao Wu, and Guilherme Perin

Deep Freezing Attacks on Capacitors and Electronic Circuits 188
Jalil Morris, Obi Nnorom Jr., Anisul Abedin, Ferhat Erata,
and Jakub Szefer

AI and Cloud Security

Encrypted SQL Arithmetic Functions Processing for Secure
Cloud Database. 207

Tanusree Parbat and Ayantika Chatterjee

Robustness Against Adversarial Attacks Using Dimensionality 226
Nandish Chattopadhyay, Subhrojyoti Chatterjee,
and Anupam Chattopadhyay

SoK - Network Intrusion Detection on FPGA. 242
Laurens Le Jeune, Arish Sateesan, Md Masoom Rabbani,
Toon Goedemé, Jo Vliegen, and Nele Mentens

Author Index . 263

x Contents

Symmetric Cryptography

Computing the Distribution
of Differentials over the Non-linear

Mapping χ

Joan Daemen1, Alireza Mehrdad1, and Silvia Mella1,2(B)

1 Radboud University, Nijmegen, The Netherlands
silvia.mella@ru.nl

2 STMicroelectronics, Agrate Brianza, Italy

Abstract. When choosing the non-linear layer in a symmetric design,
the number of differentials with given differential probability (DP) gives
information about how such non-linear layer may perform in the wide
trail strategy. Namely, less differentials with high DP means less oppor-
tunity to form trails with high DP over multiple rounds. Multiple cryp-
tographic primitives use the χ mapping as basis of their non-linear layer.
Among them, Keccak-f , Ascon, Xoodoo, and Subterranean. In the
first three, the χ mapping operates on groups of few bits (5 in Keccak-f
and Ascon, and 3 in Xoodoo), while in Subterranean it operates on the
full state, that is on 257 bits. In the former case, determining the number
of differentials with given differential probability is an easy task, while
the latter case is more involved. In this paper, we present a method to
determine the number of differentials with given DP over χ operating on
any number of bits.

Keywords: Differentials · Differential probability · χ mapping

1 Introduction

Many block ciphers and cryptographic permutations are iterative: they consist
of the repeated application of a round function alternated by the application of
round keys or constants. An important class of round functions for block ciphers
and permutations is the one indicated with the term Substitition-Permutation
network (SPN). A round in an SPN treats the bits of the intermediate result
(often called state) in a uniform way and consists of a non-linear layer and a
linear layer. The non-linear layer typically splits the state in a sequence of 4-bit
or 8-bit chunks and applies a non-linear permutation to each of these chunks.
This non-linear permutation is called an S-box. The S-boxes are the source of
non-linearity in the round function, often denoted by the term confusion and the
linear layer takes care of the mixing of different parts of the state, often denoted
by the term diffusion.

Modern linear layers often consist of two steps: a mixing step that makes
output bits dependent on multiple neighbouring input bits and a shuffle step
c© Springer Nature Switzerland AG 2022
L. Batina et al. (Eds.): SPACE 2021, LNCS 13162, pp. 3–21, 2022.
https://doi.org/10.1007/978-3-030-95085-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95085-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-95085-9_1

4 J. Daemen et al.

that moves neighbouring bits to remote positions and vice versa. In many cases
the mixing step and the shuffle is specified in terms of nibbles or bytes rather
than bits and we speak of an aligned round function.

The best known example of a primitive with an aligned round function is the
AES [DR02]. AES is specified fully on bytes: the S-boxes operate on individual
bytes, the mixing layer operates on column vectors containing 4 statebytes by
the multiplication with a so-called maximum-distance separable (MDS) matrix
and the shuffle moves bytes in a column to 4 different columns.

There exist also unaligned round functions, where the systematic grouping
of bits in bytes or nibbles is avoided. The grouping is still present in each step,
but these groupings are different. The best known example of a primitive with
an unaligned round function is the Keccak-f permutation [BDPA11] used in
SHA-3 [NIS15]. It has a 3-dimensional state with horizontal 5-bit rows, vertical
5-bit columns and, orthogonal to these two, 64-bit lanes. The non-linear layer
groups the bits in rows and applies a 5-bit S-box to them. The mixing layer does
not split the state at all but tends to follow the column partition and the shuffle
operates at lane-level.

The design of both AES and Keccak-f is motivated by the wide trail strat-
egy, that underlies the design of round functions to have good resistance against
differential and linear cryptanalysis. In a nutshell, it aims at the absence of
high-probability differential propagation patterns, called differential trails, and
high-correlation propagation patterns, called linear trails, by having relatively
lightweight S-boxes but a strong diffusion.

When reasoning about and identifying differential trails, the differential prop-
agation properties of the S-boxes play an important role. In particular, one needs
the probabilities of the propagation of a difference b at the input of the S-box to
a difference a at its output. An ordered pair of an input difference b and an out-
put difference a is called a differential and denoted as (b, a). The probability that
b propagates to a is called its differential probability and denoted as DP(b, a).
An n-bit S-box has 22n differentials (b, a). The DP values of all differentials are
usually arranged in a 2n by 2n array, called the difference distribution table
(DDT). For usual dimensions of S-boxes the DDT has manageable size: n = 4
gives a DDT of 28 = 256 entries and n = 8 a DDT of 216 = 65536 entries.

However, not all round functions have a non-linear layer consisting of small
S-boxes. A predecessor of Keccak-f , RadioGatún [BDPA06], makes use of an S-
box that operates on 19 bits. The corresponding DDT has 238 entries, something
that is non-trivial to manage. This S-box is an instance of so-called χ mapping,
that is defined by a local map and can operate on a number of bits arranged
in a circle of any circumference (length). If the length is odd, the mapping is
invertible. The χ mapping lies as the basis of the non-linear layer of multiple
cryptographic primitives including Keccak-f [BDPA13], Xoodoo [DHAK18],
and Ascon [DEMS21]. In these three, the length of the circles is either 5 or
3 and the DDT approach works fine. However, in the cryptographic primitives
Subterranean [Dae95] and Cellhash [Dae95] that were proposed in the 90’s of
the previous century, the length of the circle is 257 and the DDT approach

Computing the Distribution of Differentials over χ 5

completely breaks down. These primitives are still relevant as Subterranean was
slightly adapted to Subterranean 2.0 [DMMR20] and turned out to be the can-
didate in the NIST lightweight cryptography competition with the lowest energy
consumption per processed bit in dedicated hardware implementation.

The difference propagation properties of χ lend themselves to an analytical
approach. Given a differential (b, a), it is easy to determine whether DP(b, a) > 0,
in other words, whether they are compatible through χ. And given a differential
(b, a) with b and a compatible, it is straightforward to determine DP(b, a). Addi-
tionally, it is easy to describe the space of possible output differences a that an
input difference can propagate to as they form an affine space [Dae95]. Given an
output difference a, it is feasible to determine its compatible input differences b
at the cost of some more effort. So analysis of differential trails is manageable in
round functions that for their non-linear layer make use of χ with large circles.

However, there is one aspect that is easy to compute for S-box layers and
that is not solved yet for big-circle χ. This is determining the number of differen-
tials with given DP. The number of differentials with given DP gives information
about how a non-linear layer may perform in the wide trail strategy: less differ-
entials with high DP means less opportunity to form trails with high DP over
multiple rounds. This is especially relevant in non-aligned round functions where
the absence of high DP trails cannot be systematically avoided but one relies
on the absence of accidents. Namely, high-DP round differentials that happen
to be chainable to high-DP differential trails. The more high-DP differentials
there are over the non-linear layer, the higher the probability of such accidents.
Therefore, when making a choice of a non-linear layer in a non-aligned design,
it is useful to have the histograms with the number of high-DP differentials for
the alternatives. In this paper, we provide a method for the computation of such
histograms for big-circle χ.

Organization of the Paper. In Sect. 2, we recall concepts related to differential
cryptanalysis and the χ function. In Sect. 3 we introduce a method to compute
the number of differentials with given weight for χ operating on circles of any
length. Finally, in Sect. 4 we present histograms for some well-known ciphers and
compare the case of parallel instances of χ on small circles with the case of a
single instance of χ on a big circle.

2 Preliminary

In this section, we start by defining circular strings and presenting our notations.
Then we recall differential probability and the concept of restriction weight.
Finally, we specify the χ transformation and recall the formula to compute
restriction weight over χ as introduced in [Dae95, Sect. 6.9.1].

2.1 Circular Strings

We denote binary strings by lowercase letters s and the i-th bit of s as si, where
we start indexing from 0. We denote the length of a string by |s|. Hence we have
s = s0s1s2 . . . s|s|−1.

6 J. Daemen et al.

We allow indexing of bits in a string outside the range [0, |s|−1] by reducing
the index modulo |s|. Hence the strings we consider are circular : the first bit s0
and last bit s|s|−1 are neighbors.

We say s′ is a sub-string of s if |s′| ≤ |s| and there exists an offset i such that
s′

j = sj+i for all j ∈ [0, |s′|−1]. As an example, we say s′ = 11000 is a sub-string
of s = 00110011100 since s′

j = sj+7.
We write s‖s′ for the concatenation of two strings s and s′. Given a string s,

we denote by (s)m the string s‖s‖ . . . ‖s. We use the notation 1� for an all-one
string of length �. We call such string a 1-run.

2.2 Differential Probability and Restriction Weight

Let B,B∗ ∈ F
n
2 be two inputs of a function α over F

n
2 , and A,A∗ ∈ F

n
2 be their

corresponding outputs, respectively. We call b = B −B∗ an input difference to α
and a = A − A∗ an output difference. A differential over α consists of a couple
(b, a).

We now introduce some terminology used in the rest of the paper.

Definition 1 (Active/Passive bit). Let si ∈ F2 be a bit of difference s, then
we say si is an active bit if si = 1 and is a passive bit otherwise.

Definition 2 (Hamming weight). The Hamming weight of a difference s ∈
F

n
2 denoted by Hw(s) is the number of active bits in s.

Definition 3 (Differential Probability (DP)). The differential probability of
a differential (b, a) for a function α over F

n
2 , denoted as DP(b, a), is defined as

DP(b, a) = 2−n · |{B ∈ F
n
2 | α(B − b) − α(B) = a}| .

Definition 4 (Restriction weight). The restriction weight of a differential
(b, a) for a function α over F

n
2 , denoted as wr(b, a) is defined as

wr(b, a) = − log2 DP(b, a) .

2.3 χ Mappings

We use the symbol χ to denote non-linear layers that can be seen as the appli-
cation of parallel instances of the mapping χ� to a n-bit state partitioned in
n
� circles of length �. We refer to such non-linear mapping as a composite χ
mapping. We speak of a single-circle χ mapping if the size of the state that χ�

operates on is n. Namely, if � = n.

Definition 5 (χ�). The map χ� is a transformation of F�
2 with local map

Ai = Bi + (Bi+1 + 1) · Bi+2 , (1)

where B denotes the input of χ�, A = χ�(B) its output and all indices are taken
modulo �.

Computing the Distribution of Differentials over χ 7

B0 B1 B2 B3 B4 B5 B6 B7
. . . B −2 B −1

.
◦ ◦

A0 A1 A2 A3 A4 A5 A6 A7
. . . A −2 A −1

Fig. 1. χ� transformation.

An illustration of χ� is given in Fig. 1.
As shown in [Dae95, Sect. 6.9], since the algebraic degree of χ� is two, the

restriction weight of any differential (b, a) over χ� is fully determined by b, and
it can be computed using Proposition 1 and 2.

Proposition 1. The restriction weight of a non-fully active input difference
b ∈ F

�
2\{1�} equals the Hamming weight of b plus the number of sub-strings 001

in it, denoted by #001(b):

wr(b) = Hw(b) + #001(b). (2)

If b is known from the context, we simply write Hw and #001 instead of Hw(b)
and #001(b), respectively.

Proposition 2. For a fully active input difference b = 1� the restriction weight
is � − 1.

3 Number of Differentials in χ� with Given Weight

In this section, we provide a method to compute the number of �-bit differences
with given restriction weight w. Our analysis is simplified by the fact that χ�

has algebraic degree two and that we can apply Proposition 1.
We denote the number of �-bit differences with weight w by N(�, w). The

number of differentials with restriction weight w is then simply 2wN(�, w).
We denote the number of strings of length � with Hamming weight h and

containing r 001 sub-strings by N3(�, h, r).
Due to Proposition 1, the number of �-bit strings with weight w for w < �−1

can be written as

N(�, w) =
�w/2�∑

r=0

N3(�, w − r, r). (3)

For w = � − 1 we have

N(�, w) = 2� + 1.

These are the all-1 string, the � strings with a single zero and the � strings with
two zeroes, that are consecutive.

8 J. Daemen et al.

3.1 Computing N3(�, h, r)

In general N3(�, h, r) is not easy to compute. It is non-zero for a limited range
of parameters. In particular N3(�, h, r) = 0 if

– h + 2r > �: as any active bit consumes one bit position and every 001 con-
sumes two bit positions out of �.

– r > h: as there cannot be more 001 sub-strings than active bits. This is also
why r is bounded by �w/2� in Eq. 3.

– r = 0 and 2h < �: as it is not possible to position less than �/2 active bits
without leaving a gap of two zeroes.

For the other cases, we can compute N3(�, h, r) by partitioning the set into
subsets characterized by two more properties:

– If a string exhibits a sub-string 101, shortening it by removing the zero in the
middle leaves the weight intact as it leaves the Hamming weight and #001

invariant. We call the zero in 101 a hole and we denote the number of holes
by #101.

– If a string exhibits a sub-string 000, shortening it by removing the leading zero
leaves the weight intact as it leaves the Hamming weight and #001 invariant.
We call the leading zero in 000 a pause and denote the number of pauses by
#000.

Definition 6 (minimal string). A string without pauses and holes is called a
minimal string, i.e., it satisfies #101 = 0 and #000 = 0.

A minimal string can be written as a sequence of 1-runs interleaved with
sub-strings 00.

Any string s is associated to a unique minimal string, that we call its parent
minimal string. The parent string of a string s can be obtained by removing
holes and pauses from s.

We specify an algorithm to find the parent minimal string of a string in Algo-
rithm 1. First, s is transformed by removing holes with the recursive procedure
removeHoles. This procedure scans s and removes the middle 0 from the first
101 sub-string that is encountered. This procedure stops when the string does
not contain any more 101 sub-string. Then, s is transformed by removing pauses
by applying the recursive procedure removePauses. This procedure scans s and
removes the leading 0 from the first sub-string 000 it encounters. This procedure
stops when the string does not contain any 000 sub-string.

Example 1. Let s = 010010101000001000. First, holes are removed.
Since s4s5s6 = 101, then s5 is removed obtaining s = 01001101000001000. Sim-
ilarly, since s5s6s7 = 101, then s6 is removed obtaining s = 0100111000001000.
Since no more 101 sub-strings are contained in s, pauses are removed from s.
Since s7s8s9 = 000, then s7 is removed obtaining s = 010011100001000.
Since s7s8s9 = 000 again, then s7 is removed obtaining s = 01001110001000.
Since s7s8s9 = 000 again, then s7 is removed obtaining s = 0100111001000.

Computing the Distribution of Differentials over χ 9

Algorithm 1. Computing the parent minimal string of a string s

procedure removeHoles(s)
� ← |s|
for i ← 0 to � − 1 do

if si−1sisi+1 = 101 then
s ← s0 . . . si−1‖si+1 . . . s�−1 � remove hole in position i
return removeHoles(s)

return
end procedure

procedure removePauses(s)
� ← |s|
for i ← 0 to � − 1 do

if sisi+1si+2 = 000 then
s ← s0 . . . si−1‖si+1 . . . s�−1 � remove pause in position i
return removePauses(s)

return
end procedure

Then, since s10s11s12 = 000, then s10 is removed obtaining s = 010011100100.
Finally, since s10s11s0 = 000 again, then s10 is removed obtaining s =
01001110010. Since s does not contain any 000 sub-string, s is a minimal string.

Lemma 1. For a string of length �, Hamming weight h, number of 001 sub-
strings r, number of holes #101 and number of pauses #000 we have:

� = h + #000 + #101 + 2r.

Proof. The length of a string � is the sum of the number of active bits and the
number of passive bits. The former is simply the Hamming weight h of the string.
The latter is the number of passive bits in each 001 sub-string (i.e. 2) plus the
number of passive bits that are removed from the string when reducing it to its
parent minimal string. Namely, the middle bit of each 101 sub-string and the
leading bit of each 000 sub-string. This gives � = h + #000 + #101 + 2r.

Example 2. Let s = 010010101000001000 with � = 18 as in Example 1. The
Hamming weight of s is h = 5 and the number of passive bits is 13. The number
of 101 sub-strings is 2 and thus the number of holes is 2. The number of 001 sub-
strings is 3 and thus the number of passive bits in 001 sub-strings is 6. Finally,
the number of 000 sub-strings is 5 and thus the number of pauses is 5. The sum
of such bits gives 13.

We denote the number of strings of length � with Hamming weight h and
containing r 001 strings, y pauses and x holes by N5(�, h, r, y, x). Lemma 1
implies that

N3(�, h, r) =
�−h−2r∑

x=0

N5(�, h, r, � − (h + x + 2r), x). (4)

10 J. Daemen et al.

3.2 Computing N5(�, h, r, y, x)

Since each string can be associated to a unique minimal string, it follows that
the set of strings can be partitioned in classes, where strings in the same class
have the same associated minimal strings. Strings in the same class can be built
by adding holes and pauses to the corresponding minimal string in all possible
ways.

Specifically, the set of strings of length �, Hamming weight h and number r
of 001 sub-strings with y pauses and x holes can be built by first generating the
strings of length � − x − y, Hamming weight h and number of 001 sub-strings
r with x = y = 0 and then adding for each state x holes and y pauses in all
possible ways.

The number of ways to add x holes and y pauses to a minimal string depends
on its Hamming weight and its number of 001 sub-strings, but also on the value
of its leading and trailing bits. Namely, it depends on whether the minimal string
has a 11 sub-string or a 001 sub-string that spans the boundaries.

Example 3. Let s = 1100111001 be a minimal string of length � = 10 and x = 1.
The hole can be place between any pair of adjacent active bits. But if we consider
the pair at indexes (�−1, 0), then the hole can be placed either at the end of the
string or at its beginning. In the former case we obtain the string 11001110010
and in the latter case the string 01100111001.

Example 4. Let s = 011100110 be a minimal string of length � = 9 and y = 1.
The unique pause can be place before any 001 sub-string. If we consider the 001
sub-string at indexes (� − 1, 0, 1), then the pause can be placed only between
positions � − 2 and � − 1 giving the string 0111001100.

Similarly, let s = 111001100 be a minimal string of length � = 9 and y = 1.
If we consider the 001 sub-string at indexes (� − 2, � − 1, 0), then the pause can
be placed only between positions � − 3 and � − 2 giving the string 1110011000.

Example 5. Now, let s = 0011111 be a minimal string of length � = 7 and y = 1.
If we consider the 001 sub-string at indexes (0, 1, 2), then the pause can be placed
between positions � − 1 and 0 in two different ways, giving the strings 00011111
and 00111110. Similarly, for the same string if y = 2, we can build the strings
000011111, 000111110, 001111100.

We denote the pair (s0, s�−1) formed by the leading bit and the trailing bit
of a minimal string s by S. Of course, S is in {(0, 0), (0, 1), (1, 0), (1, 1)}.

Since s is minimal, S = (0, 0) and S = (1, 0) imply that there is a 001 sub-
string that crosses the boundaries as in Example 4, while S = (0, 1) implies
that the string starts with a 001 sub-string as in Example 5. Finally, S = (1, 1)
implies that there is a 11 sub-string that crosses the boundary as in Example 3.

We denote the number of minimal strings with Hamming weight h, r 001
sub-strings and given S by Nmin(h, r, S).

It holds that:

N5(�, h, r, y, x) =
∑

S

α(h, r, x, S) × β(h, r, y, S) × Nmin(h, r, S) , (5)

Computing the Distribution of Differentials over χ 11

Table 1. Combinatorial expressions to compute the number of minimal states of length
�, Hamming weight h and leading and trailing bits specified by S, and the number of
ways to add x holes and y pauses to them.

S Nmin(h, r, S) α(h, r, x, S) β(h, r, y, S)

(0, 1)
(

h−1
r−1

) (
h−r

x

) (
y+r

y

)

(0, 0), (1, 0)
(

h−1
r−1

) (
h−r

x

) (
y+r−1

y

)

(1, 1)
(

h−1
r

) (
h−r−1

x

)
+ 2 · (

h−r−1
x−1

) (
y+r−1

y

)

where α(h, r, x, S) denotes the number of ways to add x holes and β(h, r, y, S)
the number of ways to add y pauses to a minimal state of length �, Hamming
weight h and leading and trailing bits specified by S.

The factors in the right hand side of (5) are summarized in Table 1 and we
show how we derived them in the remaining part of this section.

Case: S = (0, 1).

– Nmin(h, r, S) =
(
h−1
r−1

)
, that is the number of ways of putting r − 1 pairs of

passive bits between the h − 1 pairs of active bits. The position of one 001
sub-string is in fact specified by S.

– α(h, r, x, S) =
(
h−r

x

)
, which is the number of ways to distribute x holes over

h − r positions, where each position can have at most one hole.
– β(h, r, y, S) is the number of ways to distribute y pauses over r positions,

where there are no restrictions on the number of pauses per position. Since
S = (0, 1) implies that the minimal string starts with a 001 sub-string, then
the pauses that are put before it can be placed either at the beginning of the
string or at its end, as shown in Example 5. It means that there are actually
r + 1 positions to place the y pauses. It follows that β(h, r, y, S) =

(
y+r

y

)
.

Case: S ∈ {(0, 0), (1, 0)}.
– Nmin(h, r, S) =

(
h−1
r−1

)
as in the previous case.

– α(h, r, x, S) =
(
h−r

x

)
, as in the previous case.

– β(h, r, y, S) =
(
y+r−1

y

)
, which is the number of ways to distribute y pauses

over r positions, where there are no restrictions on the number of pauses per
position.

Case: S = (1, 1).

– Nmin(h, r, S) =
(
h−1

r

)
, that is the number of way of putting r pairs of passive

bits between the h − 1 pairs of active bits remaining after excluding the pair
at the boundaries.

– α(h, r, x, S) is the number of ways to distribute x holes over h − r positions,
where each position can have at most one hole. Since the minimal state starts
with a 1 and ends with a 1 then the hole that is placed between these two

12 J. Daemen et al.

ones can be placed either at the beginning of the state or at its end, as shown
in Example 3. For any other pair of active bits, there is a unique way to put
the hole. The total count is thus

α(h, r, x, S) =
(

h − r − 1
x

)
+ 2 ·

(
h − r − 1

x − 1

)

where
(
h−r−1
x−K

)
for K ∈ {0, 1} is the number of ways to distribute x−K holes

between the h − r − 1 pairs of ones remaining after excluding the pair across
the boundary.

– β(h, r, y, S) =
(
y+r−1

y

)
, as in the previous case.

4 Experimental Results

We experimentally verified the correctness of our formula for � ∈ [3, 32] by
applying two checks.

The first check consists in exhaustively generating all �-bit states, compute
their weight and check that the number of states with given weight corresponds
to the number obtained by applying our formula.

The second check is based on the following observation. Since χ� is a
translation-invariant transformation, a state that is obtained by rotational shift
of another state will have the same weight. It follows that the set of �-bit states
can be partitioned in equivalence classes where the states in each class have the
same weight and are one the translated-version of another. When � is prime each
equivalence class has cardinality �, except for the class that contains only 1�. It
follows that the number of states with a given weight w should be divisible by �
for any 0 < w < � − 1.

In the remaining part of this section, we discuss some well-known primitives
where χ� is used.

4.1 257-Bit State as in Subterranean

We applied the method introduced in this paper to compute the number of
differentials with given weight for Subterranean, where χ� operates on the full
state of 257 bits. In Fig. 2a we report the obtained histogram, while in Fig. 2b
we report the number of differentials with weight up to a given target.

Computing the Distribution of Differentials over χ 13

2 20 40 60 80 100 120 140 160 180 200 220 240
1

250

2100

2150

2200

2250

2300

2350

2400

2450

w

#
di

ffe
re

nt
ia

ls
w

it
h

w
ei

gh
t

w

(a) Number of differentials with weight w.

2 20 40 60 80 100 120 140 160 180 200 220 240
1

250

2100

2150

2200

2250

2300

2350

2400

2450

w

#
di

ffe
re

nt
ia

ls
up

to
w

ei
gh

t
w

(b) Number of differentials up to weight w.

Fig. 2. Number of differentials for single-circle χ257 (as in Subterranean).

4.2 384-Bit State as in Xoodoo

In the permutation Xoodoo, the state is composed by 384 bits arranged in an
array of shape 4 × 3 × 32. The non-linear layer is a composite χ mapping of
128 circles of length � = 3. We denote the number of differences in this non-
linear layer with weight w as N(128× 3, w). In general, if we have a composite χ
mapping of q circles of length �, we denote the number of input differences with
weight w by N(q × �, w). Clearly if q = 1 the mapping is not composite and we
have N(1 × �, w) = N(�, w).

In the case of Xoodoo, the number of differences in the composite χ mapping
with weight w is easy to compute. Since the weight of any 3-bit circle is 2, there
are no differences with odd weight. Therefore, N(128 × 3, w) = 0 for w odd. For
w even,

14 J. Daemen et al.

N(128 × 3, w) = 7
w
2 ·

(
128
w
2

)

that is the number of ways to choose w/2 active columns among the 128 in
the state, multiplied by the possible values of such columns. The number of
differentials with restriction weight w is then 2w · 7

w
2 · (

128
w
2

)
.

We can compare such number with the number of differentials we would have
if the non-linear layer of Xoodoo is instantiated with χ384. We use the formulas
introduced in this paper to compute the latter and report the obtained results
in Fig. 3a. Of course, as Xoodoo has 128 columns, there cannot be differentials
with weight bigger than 256 in case of 128 parallel χ3. We can notice that the
number of differentials with high probability is always smaller for the single-
circle case. To better show it, we depict the number of differentials with weight
up to 30 in Fig. 3b.

Figure 4a and Fig. 4b depict the cumulative versions of the histograms in
Fig. 3a and 3b. Namely, the number of differentials with weight smaller than
a given weight w. Since there are no differentials with odd weight for the case
of 128 parallel χ3, the number of differentials with weight smaller than 2k and
2k + 1 is the same for all k ∈ {0, 1, . . . 127}. Since there are no differentials
with weight bigger than 256 in Xoodoo, the histogram for parallel χ3 becomes
flat after w = 256. The histogram corresponding to the case of single-circle χ384

appears flat toward the end because the curve of the number of differentials with
given weight is monotonically decreasing after w = 288 and their contribution
is negligible. We can observe that for weight 30, the number of differentials for
Xoodoo is ≈ 2135.636, while for the case of single-circle χ384 it is ≈ 2123.793.
Namely, around 4,000 times smaller.

Figure 5b depicts the ratio between the cumulative histogram in Fig. 4b (up to
weight 30). Namely, the ratio between the number of differentials up to a given
weight for the case of 128 parallel χ3 over the case of single-circle χ384. Since
there are no differentials with odd weight for the case of 128 parallel χ3, and
thus for all k ∈ {0, 1, . . . 127} the number of differentials with weight smaller
than 2k and 2k + 1 is the same, the curve presents a zigzag trend.

Figure 5a depicts the full ratio between the cumulative histogram in Fig. 4a.

4.3 400-Bit State as in Keccak-f [400]

In Keccak-f [400], the state is organized as an array of 5 × 5 × 16 bits. The
non-linear layer is a composite χ mapping of 80 circles of length 5. Therefore,
we denote the number of differences in this non-linear layer with weight w as
N(80 × 5, w).

In general, if we have a composite χ mapping of q > 1 circles of length �,
we can efficiently compute the number of differences with weight w by q-fold
convolution using the following recursion:

N(q × �, w) =
∑

0≤x≤w

N((q − 1) × �, x)N(�, w − x) .

Computing the Distribution of Differentials over χ 15

2 50 100 150 200 250 300 350
1

250

2100

2150

2200

2250

2300

2350

2400

2450

2500

2550

2600

2650

w

#
di

ffe
re

nt
ia

ls
w

it
h

w
ei

gh
t

w

single-circle χ384

128 parallel χ3

(a) Number of differentials with weight w.

2 6 10 14 18 22 26 30
1

210
220
230
240
250
260
270
280
290

2100
2110
2120
2130
2140

w

#
di

ffe
re

nt
ia

ls
w

it
h

w
ei

gh
t

w

single-circle χ384

128 parallel χ3

(b) Number of differentials with weight w ≤ 30.

Fig. 3. Number of differentials with given weight for the case of 128 parallel χ3 (as in
Xoodoo) and the case of single-circle χ384.

16 J. Daemen et al.

2 50 100 150 200 250 300 350
1

250

2100

2150

2200

2250

2300

2350

2400

2450

2500

2550

2600

2650

w

#
di

ffe
re

nt
ia

ls
up

to
w

ei
gh

t
w

single-circle χ384

128 parallel χ3

(a) Number of differentials up to a given weight w.

2 6 10 14 18 22 26 30
1

210
220
230
240
250
260
270
280
290

2100
2110
2120
2130
2140

w

#
di

ffe
re

nt
ia

ls
up

to
w

ei
gh

t
w

single-circle χ384

128 parallel χ3

(b) Number of differentials up to a given weight w ≤ 30.

Fig. 4. Number of differentials up to a given weight for the case of 128 parallel χ3 (as
in Xoodoo) and the case of single-circle χ384.

Computing the Distribution of Differentials over χ 17

2 50 100 150 200 250 300 350
10−7

10−6

10−5

10−4

10−3

10−2

10−1

1
10

102

103

104

105

106

107

w

R
at

io
of

th
e

nu
m

be
r

of
di

ffe
re

nt
ia

ls
up

to
w

ei
gh

t
w

(a) Ratio between the number of differentials up to weight w.

2 6 10 14 18 22 26 30

1

10

102

103

104

w

R
at

io
of

th
e

nu
m

be
r

of
di

ffe
re

nt
ia

ls
up

to
w

ei
gh

t
w

(b) Ratio between the number of differentials up to weight w ≤ 30.

Fig. 5. Ratio between the number of differentials up to weight w for the case of 128
parallel χ3 (as in Xoodoo) over the case of single-circle χ384.

18 J. Daemen et al.

1 50 100 150 200 250 300 350 400
1

250

2100

2150

2200

2250

2300

2350

2400

2450

2500

2550

2600

2650

2700

w

#
di

ffe
re

nt
ia

ls
w

it
h

w
ei

gh
t

w

single-circle χ400

80 parallel χ5

(a) Number of differentials with weight w.

1 5 10 15 20 25 30
1

210

220

230

240

250

260

270

280

290

2100

2110

2120

2130

w

#
di

ffe
re

nt
ia

ls
w

it
h

w
ei

gh
t

w

single-circle χ400

80 parallel χ5

(b) Number of differentials with weight w ≤ 30.

Fig. 6. Number of differentials with given weight for the case of 80 parallel χ5 (as in
Keccak-f [400]) and the case of single-circle χ400.

Computing the Distribution of Differentials over χ 19

2 50 100 150 200 250 300 350 400
1

250
2100
2150
2200
2250
2300
2350
2400
2450
2500
2550
2600
2650

w

#
di

ffe
re

nt
ia

ls
up

to
w

ei
gh

t
w

single-circle χ400

80 parallel χ5

(a) Number of differentials up to a given weight w.

2 6 10 14 18 22 26 30
1

210
220
230
240
250
260
270
280
290

2100
2110
2120
2130
2140

w

#
di

ffe
re

nt
ia

ls
up

to
w

ei
gh

t
w

single-circle χ400

80 parallel χ5

(b) Number of differentials up to a given weight w ≤ 30.

Fig. 7. Number of differentials up to a given weight for the case of 80 parallel χ5 (as
in Keccak-f [400]) and the case of single-circle χ400.

20 J. Daemen et al.

1 50 100 150 200 250 300 350 400
10−2

10−1

1
10

w

R
at

io

(a) Ratio between the number of differentials up to weight w.

1 5 10 15 20 25 30

1

2
3

w

R
at

io

(b) Ratio between the number of differentials up to weight w ≤ 30.

Fig. 8. Ratio between the number of differentials up to weight w for the case of 80
parallel χ5 (as in Keccak-f [400]) and the case of single-circle χ400.

We can compare figures for Keccak-f [400] with the figures obtained by
replacing the composite χ with a single-circle χ = χ400. We report the number
of differentials for both cases in Fig. 6a. Since Keccak-f [400] has 80 rows and
each row can have weight at most 4, there cannot be differentials with weight
bigger than 320 in case of 80 parallel χ5. Compared to the case of χ3, we can
observe that the two curves are closer to each other, with the curve for the case
of 80 parallel χ5 slightly above the other. This can be better noticed in Fig. 6b,
where we report the number of differentials with weight up to 30.

In Fig. 7a we report the number of differentials with weight smaller than a
given weight w and in Fig. 7b we report such numbers up to weight 30. The ratio
between the two cases is depicted in Fig. 8a. We can observe that the number of
differentials with weight smaller than 30 for the case of 80 parallel χ5 is only 2.3
times larger than the case of single-circle χ400 (Fig. 8b).

5 Conclusions

We introduced a method to compute the number of differentials with given DP
over the non-linear map χ� for any size of �. This is a useful tool to evaluate and
compare the alternatives available to instantiate a non-linear layer based on χ�.
One can for instance choose to use parallel instances of χ� operating on small
circles or to use a single-circle χ� operating on the whole state.

We used our method to compute the number of differentials with given DP
over the non-linear layer of Subterranean, which consists of a single-circle χ�

with � = 257.
Then we used our method to compare the non-linear layers of Xoodoo and

Keccak-f [400], which can be seen as the application of parallel instances of

Computing the Distribution of Differentials over χ 21

χ� on small circles, with non-linear layers instantiated with single-circle χ�. We
observed that in the case of Xoodoo, where � = 3, the use of single-circle χ�

seems more advantageous, as the number of differentials up to a given weight
is smaller compared to the parallel χ� case. Instead, for � = 5 this difference is
significantly reduced and almost disappears.

Acknowledgements. Joan Daemen and Alireza Mehrdad are supported by the Euro-
pean Research Council under the ERC advanced grant agreement under grant ERC-
2017-ADG Nr. 788980 ESCADA.

Silvia Mella is supported by the Cryptography Research Center of the Technol-
ogy Innovation Institute (TII), Abu Dhabi (UAE), under the TII-Radboud project
with title Evaluation and Implementation of Lightweight Cryptographic Primitives and
Protocols.

References

[BDPA06] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: RadioGatún, a
belt-and-mill hash function. Cryptology ePrint Archive, Report 2006/369
(2006). Presented at the Second Cryptographic Hash Workshop, Santa
Barbara, 24–25 August 2006

[BDPA11] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The keccak reference
(2011)

[BDPA13] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Johans-
son, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
313–314. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38348-9 19

[Dae95] Daemen, J.: Cipher and hash function design, strategies based on linear
and differential cryptanalysis. Ph.D. thesis. K.U. Leuven (1995). http://
jda.noekeon.org/

[DEMS21] Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2:
lightweight authenticated encryption and hashing. J. Cryptol. 34(3), 33
(2021)

[DHAK18] Daemen, J., Hoffert, S., Van Assche, G., Van Keer, R.: The design of
Xoodoo and Xoofff. IACR Trans. Symmetric Cryptol. 2018(4), 1–38
(2018)

[DMMR20] Daemen, J., Massolino, P.M.C., Mehrdad, A., Rotella, Y.: The subter-
ranean 2.0 cipher suite. IACR Trans. Symmetric Cryptol. 2020(S1), 262–
294 (2020)

[DR02] Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced
Encryption Standard. Information Security and Cryptography, Springer,
Heidelberg (2002). https://doi.org/10.1007/978-3-662-04722-4

[NIS15] NIST. SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions (2015). https://www.nist.gov/publications/sha-3-
standard-permutation-based-hash-and-extendable-output-functions

https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/978-3-642-38348-9_19
http://jda.noekeon.org/
http://jda.noekeon.org/
https://doi.org/10.1007/978-3-662-04722-4
https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-output-functions
https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-output-functions

Light-OCB: Parallel Lightweight
Authenticated Cipher with Full Security

Avik Chakraborti1(B), Nilanjan Datta2, Ashwin Jha3,
Cuauhtemoc Mancillas-López4, and Mridul Nandi5

1 University of Exeter, Exeter, UK
2 Institute for Advancing Intelligence, TCG CREST, Kolkata, India

nilanjan.datta@tcgcrest.org
3 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

ashwin.jha@cispa.de
4 Computer Science Department, CINVESTAV-IPN, Mexico City, Mexico

cuauhtemoc.mancillas@cinvestav.mx
5 Indian Statistical Institute, Kolkata, India

Abstract. This paper proposes a lightweight authenticated encryption
(AE) scheme, called Light-OCB, which can be viewed as a lighter vari-
ant of the CAESAR winner OCB as well as a faster variant of the high
profile NIST LWC competition submission LOCUS-AEAD. Light-OCB is
structurally similar to LOCUS-AEAD and uses a nonce-based derived
key that provides optimal security, and short-tweak tweakable block-
cipher (tBC) for efficient domain separation. Light-OCB improves over
LOCUS-AEAD by reducing the number of primitive calls, and thereby sig-
nificantly optimizing the throughput. To establish our claim, we provide
FPGA hardware implementation details and benchmark for Light-OCB
against LOCUS-AEAD and several other well-known AEs. The implemen-
tation results depict that, when instantiated with the tBC TweGIFT64,
Light-OCB achieves an extremely low hardware footprint - consuming
only around 1128 LUTs and 307 slices (significantly lower than that for
LOCUS-AEAD) while maintaining a throughput of 880 Mbps, which is
almost twice that of LOCUS-AEAD. To the best of our knowledge, this
figure is significantly better than all the known implementation results
of other lightweight ciphers with parallel structures.

Keywords: Authenticated encryption · Lightweight · tBC ·
Light-OCB, Parallel

1 Introduction

From the recent past, lightweight cryptography is enjoying high popularity
due to an increase in the demands of security for lightweight IoT applications
such as healthcare applications, sensor-based applications, banking applications,
etc., where resource-constrained devices communicate and need to be imple-
mented with a low resource. Lightweight cryptography involves providing secu-
rity in these resource-constrained environments. The importance of this research
c© Springer Nature Switzerland AG 2022
L. Batina et al. (Eds.): SPACE 2021, LNCS 13162, pp. 22–41, 2022.
https://doi.org/10.1007/978-3-030-95085-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95085-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-95085-9_2

Light-OCB: Parallel Lightweight Authenticated Cipher with Full Security 23

domain has been addressed by the ongoing NIST Lightweight Standardization
Competition (LWC) [17] followed by the CAESAR [8]. Hence, in recent years, the
cryptographic research community has seen a surge in new lightweight authen-
ticated encryption proposals.

One popular design approach for lightweight AE schemes is to use a block-
cipher based parallel structure as it can be efficient for both lightweight and
faster implementations. Blockcipher (BC) based parallel AE schemes popularly
use XEX structure. It processes all the inputs in parallel and finally integrates
them. Thus, blockcipher-based parallel AE schemes can be well described by
the underlying blockcipher, and the final integration function. Consequently, the
efficiency and the hardware footprint of the AE scheme also largely depend on
these two components. In the following part, we assume that the underlying
blockcipher is ultra-lightweight and efficient to instantiate the AE scheme. The
efficiency of a construction is primarily dependent upon the rate, the number
of data blocks processed per primitive call where the upper bound on the rate
value is one. Here, we only concentrate on rate-1 authenticated encryptions with
a small hardware footprint such that we can achieve a lightweight construction
as well as a high throughput construction.

1.1 Parallel Authenticated Encryption

Parallel AE modes, such as OCB [21], OTR [15], COPA [1], ELmD [7] have
mainly been designed to exploit the advantage of parallel computations needed
for several high performance computing environments. These constructions
mainly concentrate on efficiency in software as well as on faster implementations
in hardware. Among them, OCB and OTR are efficient, achieve rate one, and
COPA and ELmD achieve rate half. One of the disadvantages of such schemes
are large state size. For example, OCB has 3n + k and OTR, COPA and ELmD
require 4n + k-bit state size where n and k are the block size and the key size
respectively. Furthermore, both of them are only birthday bound secure in the
block size n. This means they need at least an 128-bit block cipher to satisfy
the NIST criteria (which says that when the key size is 128 bits, any cryptana-
lytic attack should need at least 2112 computations in a single key setting). This
large state size makes these designs inefficient for lightweight applications. One
possible way out is to improve the security, and thereby instantiate with 64-
bit primitives such as PRESENT [6], SKINNY [4], or GIFT [3] that have ultra
lightweight implementation with decent throughputs. In [16], Naito proposed a
variant of OCB, called ΘCB+, which offers beyond the birthday bound security
but does not meet NIST’s security criteria if instantiated with 64-bit primitive.
This raises the important question of whether it is possible to design AE schemes
using 64-bit primitives that satisfies the NIST criteria.

1.2 LOCUS-AEAD

Chakraborti et al. answers the above question in a positive direction by proposing
LOCUS-AEAD [10] that employs OCB style encryption with nonce-based derived

24 A. Chakraborti et al.

key that boosts the design by providing full security, and hence realizable by 64-
bit primitives. Additionally, the novel use of short-tweak tweakable block ciphers
handles all the domain separation, and makes the design simple and compact.
To achieve RUP security, the construction uses two primitives in a sequential
manner to process each message block, which degrades the throught, and hence
the speed of the cipher, which is the primary focus for parallel constructions. So,
we ask the question

“Can we design a rate-1 parallel authenticated cipher with full security?”

1.3 Our Contribution

We answer the above question in an affirmative way by presenting a new rate
one parallel, nonce based authenticated encryption mode of operation with full
security named Light-OCB. As the name suggests, Light-OCB follows the general
design paradigms of popular NAEAD modes OCB [12,13]. However, we update
Light-OCB introduces several key changes (see Sect. 3.1 for more details) in order
to add new features. Some of the important changes include nonce-based rekeying
and short-tweak based domain separation similarly as used in [10].

Light-OCB achieves higher NAEAD security bounds with lighter primitives.
It allows close to 264 data and 2128 time limit when instantiated by a block
cipher with 64-bit block and 128-bit key. Light-OCB is a single pass, online, fully
parallelizable, rate-1 authenticated encryption mode. This mode is extremely
versatile, in the sense that, it is equally suitable for lightweight memory con-
strained environments, as well as high-performance applications. We provide
concrete AE security proof for Light-OCB in the ideal-cipher model.

We instantiate Light-OCB with TweGIFT-64 [9,10], a tweakable variant of
the GIFT-64-128 [3] block cipher. TweGIFT-64 is a dedicated design, built upon
the original GIFT-64-128 block cipher, for efficient processing of small tweak
values of size 4-bit. TweGIFT-64 provides sufficient security while maintaining
the lightweight features of GIFT-64-128. We propose Light-OCB [TweGIFT-64],
the TweGIFT-64 based instantiation of Light-OCB.

Finally, we also provide our own hardware implementation results for Light-
OCB on FPGA. The implementation result depicts Light-OCB is significantly
better than LOCUS-AEAD in throughput (twice the value for LOCUS-AEAD). In
fact, Light-OCB also improves the hardware area over LOCUS-AEAD.

1.4 Applications and Use Cases

The most important feature of Light-OCB is its scope of applicability. At one
end of the spectrum, the parallelizability of Light-OCB make them a perfect
candidate for applications in high-performance infrastructures. On the other
end, there overall state size is competitively small with respect to many exist-
ing lightweight candidates, which makes them suitable for low-area hardware
implementations. We would like to emphasize that Light-OCB is inherently par-
allel and can be implemented in a fully pipelined manner keeping a comparable

Light-OCB: Parallel Lightweight Authenticated Cipher with Full Security 25

area-efficient implementation. Hence, it is well-suited for protocols that require
both lightweight and high-performance implementations e.g., lightweight clients
interacting with high performance servers (e.g., LwM2M protocols [19]). Some
real life applications, where our proposed mode would best fit includes vehicular
applications and memory encryptions.

1.5 Light-OCB in DSCI Light-Weight Competition

In 2020, National CoE, the joint initiative of the Data security council of India
and the Ministry of Electronics and IT (MeitY), announced a lightweight cryp-
tography competition named “Lightweight Cipher Design Challenge 2020” [18].
One of the primary objectives of the challenge is to design new lightweight
authenticated ciphers, and the best designs will be considered for developing
the prototype for ready industry implementation. The algorithm Light-OCB has
been nominated as one of the top three candidates in the challenge and has been
selected for the final round. Interestingly, this is the only construction that sup-
ports full pipelined implementation alongside a very hardware footprint, making
it to be the most versatile design in the competition.

2 Preliminaries

2.1 Notations and Conventions

For n ∈ N, we write {0, 1}∗ and {0, 1}n to denote the set of all binary strings
including the empty string λ, and the set of all n-bit binary strings, respectively.
For A ∈ {0, 1}∗, |A| denotes the length (number of the bits) of A, where |λ| = 0
by convention. For all practical purposes, we use the little-endian format for
representing binary strings, i.e., the least significant bit is the rightmost bit. For
any non-empty binary string X, (Xk−1, . . . , X0)

n← x denotes the n-bit block
parsing of X, where |Xi| = n for 0 ≤ i ≤ k − 2, and 1 ≤ |Xk−1| ≤ n. For
A,B ∈ {0, 1}∗ and |A| = |B|, we write A ⊕ B to denote the bitwise XOR of A
and B.

We use the notation ˜E to denote a tweakable block cipher. For K ∈ {0, 1}κ,
T ∈ {0, 1}τ , and M ∈ {0, 1}n, we use ˜EK,T (M) := ˜E(K,T,M) to denote invo-
cation of the encryption function of ˜E on input K, T , and M . The decryption
function is analogously defined as ˜DK,T (M). We fix positive even integers n, τ ,
κ, r, and t to denote the block size, tweak size, key size, nonce size, and tag
size, respectively, in bits. Throughout this document, we fix n = 64, τ = 4, and
κ = 128, r = κ, and t = n.

We sometimes use the terms (complete) blocks for n-bit strings, and partial
blocks for m-bit strings, where m < n. Throughout, we use the function ozs,
defined by the mapping

26 A. Chakraborti et al.

∀X ∈
n
⋃

m=1

{0, 1}m, X �→
{

0n−|X|−1‖1‖X if |X| < n,

X otherwise,

as the padding rule to map partial blocks to complete blocks. Note that the
mapping is injective over partial blocks. For any X ∈ {0, 1}+ and 0 ≤ i ≤ |X|−1,
xi denotes the i-th bit of X. The function chop takes a string X and an integer
i ≤ |X|, and returns the least significant i bits of X, i.e., xi−1 · · · x0.

The set {0, 1}κ can be viewed as the finite field F2κ consisting of 2κ elements.
Addition in F2κ is just bitwise XOR of two κ-bit strings, and hence denoted by
⊕. P (x) denotes the primitive polynomial used to represent the field F2κ , and
α denotes the primitive element in this representation. The multiplication of
A,B ∈ F2κ is defined as A
 B := A(x) · B(x) (mod P (x)), i.e., polynomial
multiplication modulo P (x) in F2. For κ = 128, we fix the primitive polynomial

P (x) = x128 + x7 + x2 + x + 1.

2.2 (Ideal) Tweakable Blockcipher

The notion of tweakable blockciphers was first formalized by Liskov et al. [14].
Additional to a plaintext X and a key K, it takes a third input - a tweak T ,
which is generally public. An ideal tweakable blockcipher provides an indepen-
dent permutation for each new key and tweak pair (K,T). More formally,

˜E : K × T × {0, 1}n → {0, 1}n.

Here, K and T are called the keyspace and the tweak space respectively. To ease
the notation, for a fix K and T we denote ˜E (K,T, ·) by ˜E T

K (·). Hence, according
to the definition ˜E T

K is a permutation (for K and T).

2.3 Authenticated Encryption in the Ideal Cipher Model

Authenticated encryption (AE) is a cryptographic scheme that provides both
privacy of the message and authenticity of both the message, the nonce, and the
associated data. It takes as input, a plaintext M ∈ {0, 1}∗, a nonce N ∈ {0, 1}n

(typically one block data) and an associated data A ∈ {0, 1}∗, such that the
encryption function of AE, EK , outputs a ciphertext-tag pair (C, T) such that
|C| = |M | and |T | = t (t is called the tag length). Throughout the paper, we
assume that t is fixed and n = t. There is a corresponding decryption func-
tion, DK , that takes (N,A,C, T) as the inputs and outputs the corresponding
ciphertext M if (N,A,C, T) is successfully verified, otherwise DK rejects the
(N,A,C, T) tuple denoted by the symbol ⊥.

Light-OCB: Parallel Lightweight Authenticated Cipher with Full Security 27

Privacy in the Ideal Cipher Model. Given an adversary A, we define the
privacy-advantage of A against AE in the ideal cipher model as

Advpriv

AE[˜E]
(A) = |Pr[AAEK , ˜E ±

= 1] − Pr[A$, ˜E ±
= 1]|,

where $ returns a random string of the same length as the output length of AEK .
Where the maximum is taken over all adversaries running in time t and making
qe many queries to the encryption oracle with an aggregate of σe blocks and qp

many the primitive queries.

INT-CTXT Security in the Ideal Cipher Model. We say that an adver-
sary A forges an AE scheme (AE ,AD) in the INT-CTXT security settings in
the ideal cipher model if A is able to compute a tuple (N,A,C, T) satisfying
ADK(N,A,C, T) �= ⊥, without querying (N,A,M) for some M to AEK and
receiving (C, T), i.e., (N,A,C, T) is a non-trivial forgery. The forging advantage
for an adversary A is written as

Advint-ctxt
AE (A) = Pr[AAEK ,ADK , ˜E ±

forges],

and the maximum forging advantage for all adversaries running in time t, making
qe encryption queries with an aggregate of σe blocks, qp ideal cipher oracle queries
and qv forgery attempts with an aggregate of σv blocks is denoted by

Advint-ctxt
AE ((qe, qv, qp), (σe, σv), t) = max

A
Advint-ctxt

AE (A).

2.4 Coefficients-H Technique

We briefly describe the Coefficients-H technique proposed by Patarin [20]. This
technique is used to find the upper bound of the statistical distance between
the outputs of two interactive systems. This is traditionally used to prove the
information theoretic pseudo randomness of constructions. Here, we assume a
computationally unbounded adversary (hence deterministic) A that interacts
with either the real oracle, i.e., the construction of our interest, or the ideal oracle
which is usually considered to be a uniform random function or permutation.
The tple of all the interactive queries and responses that A made and received
to and from the oracle, is called a transcript of A, which is typically denoted
by ω. We often let the oracle release additional information A only if A is done
with all its queries and replies but before it outputs its decision bit.

Let Λ1 and Λ0 denote the probability distributions of the transcript ω induced
by the real oracle and the ideal oracle respectively. The probability of realizing
a transcript ω in the ideal oracle (i.e., Pr[Λ0 = ω]) is called the ideal interpo-
lation probability. Similarly, one can define the real interpolation probability. A
transcript ω is said to be attainable with respect to A if the ideal interpolation
probability is non-zero (i.e., Pr[Λ1 = ω] > 0). We denote the set of all attain-
able transcripts by Ω. Following these notations, we state the main lemma of
H-Coefficient Technique as follows:

28 A. Chakraborti et al.

Lemma 1. Suppose we have a set of transcripts, Ωbad ⊆ Ω, which we call bad
transcripts, and the following conditions hold:

1. The probability of getting a transcript in Ωbad the ideal oracle O0 is at most
ε1,

2. For any transcript ω ∈ Ω\Ωbad, we have Pr[Λ1 = ω)] ≥ (1 − ε2) · Pr[Λ0 = ω].

Then, we have
|Pr[AO0 = 1] − Pr[AO1 = 1]| ≤ ε1 + ε2. (1)

Proof of this lemma can be found in [22].

3 Specification

We propose a short-tweak tweakable block cipher based authenticated encryption
algorithm Light-OCB instantiated with the underlying tweakable block cipher
TweGIFT-64. The instantiation is denoted by Light-OCB [TweGIFT-64].

3.1 Light-OCB Mode

During the encryption phase, Light-OCB mode receives an encryption key K ∈
{0, 1}κ, an associated data A ∈ {0, 1}∗, a nonce N ∈ {0, 1}κ, and a message
M ∈ {0, 1}∗ as inputs and generates a ciphertext C ∈ {0, 1}|M |, and a tag
T ∈ {0, 1}n pair. The corresponding decryption function receives a key K ∈
{0, 1}κ, an associated data A ∈ {0, 1}∗, a nonce N ∈ {0, 1}κ, a ciphertext
C ∈ {0, 1}∗, and a tag T ∈ {0, 1}n pair as inputs, and returns the corresponding
plaintext M ∈ {0, 1}|C|, if T is matched. Light-OCB is tweakable block cipher
based with an underlying primitive ˜E. The tweaks are very short with 4-bit
length, and are mainly used for domain separation. The 4-bit tweaks vary from
0 to 13. Light-OCB can process data with a maximum 264 −1 block message and
a maximum 264 − 1 block AD.

Initialization. In the initialization phase, a κ-bit nonce N is added to the κ-bit
master secret key K to output a κ-bit nonce-based encryption key denoted by
KN . Next, ΔN , a nonce dependent masking key is generated by double encrypt-
ing a constant 0n with K and KN successively with ˜E.

Associated Data Processing. In this phase, we divide the data into n-bit
blocks and the blocks are processed following the hash layer of PMAC [5]. For
each of the associated data blocks, we first update the current key value by field
multiplying it by 2. Next, we add this block with ΔN and encrypt it with ˜E
under the fixed tweak 0010 (also denoted by 2 in integer representation) and
KN . The encrypted output is finally accumulated by adding it to the previous
checksum value. For domain separation, if the final block is partial the tweak
0011 is used (also denoted by 3) to process it. Output of this associated data
processing phase is denoted as AD checksum. This phase is described in Fig. 1
and Algorithm 1.

Light-OCB: Parallel Lightweight Authenticated Cipher with Full Security 29

Plaintext Processing. In this phase, we divide the message into n-bit blocks
and the blocks are processed following OCB’s [21] message processing. Each
message block is first masked and then encrypted with the tBC. Next, it is again
masked to compute the ciphertext block. The ΔN masking along a query is done
following OCB and plaintext checksum is computed by adding all the message
blocks. For the last plaintext block, we first apply XEX on the block length
(instead of applying it on the last plaintext block) and add the output with the
last plaintext block. This ensures a similar process technique of the complete or
incomplete last blocks. Note the, we also update the key by multiplying it by 2
before each block processing. It is described in Fig. 2.

Tag Generation. In this phase, tweak 0100 and 0101 (4 and 5 respectively)
are used for non final and final blocks respectively. Here, XEX transformation
is applied on the sum of the plaintext checksum and AD checksum. Algorithm
1 describes this phase in detail.

A1

ΔN

⊕

˜E2
KN ,1

U1

V1

A2

ΔN

⊕

˜E2
KN ,2

U2

V2

⊕ · · ·

Aa

ΔN

⊕

˜E2/3
KN ,a

Ua

Va

⊕
V⊕

Fig. 1. Associated data processing for Light-OCB. Here ˜Et
KN ,i denotes invocation of ˜E

with key 2i+1 �KN and tweak i. For the final associated data block, the use of ˜E
2/3
KN ,a

indicates invocation of ˜E with key 2a � KN and tweak 2 or 3 depending on whether
the final block is full or partial.

3.2 Features

Here we discuss the salient features of our proposal and possible applications:

1. High Security: Light-OCB provides beyond the birthday bound security as
it uses nonce-based encryption key and masking key. Actually, Light-OCB
provides the optimal security with the level DT = O(2n+κ), such that D and
T are the data and time complexity, respectively. We assume, D < 2n, and
T < 2κ.

2. Lightweight: Light-OCB satisfies all the lightweight requirements of the
NIST lightweight standardization process. In fact, Light-OCB uses a 64-bit
block cipher and optimizes the state size. TweGIFT-64 can perfectly fit with
Light-OCB.

3. Parallel: Light-OCB has a parallel structure and hence the implementation of
Light-OCB can be fully pipelined. This can help to achieve high throughput.

30 A. Chakraborti et al.

M1

ΔN ⊕

˜E4
KN ,1

X1

ΔN ⊕

C1

Y1

Mm−1

ΔN ⊕

˜E4
KN ,m−1

Xm−1

ΔN ⊕

Cm−1

Ym−1

〈M〉

ΔN ⊕

˜E5
KN ,m

Xm

ΔN Mm⊕

Cm

· · ·

V⊕ ⊕ M⊕ ⊕ Mm

˜E6
KN ,m+1

⊕ ΔN

T

⊕ ΔN

Fig. 2. Processing of an m block message M and tag generation for Light-OCB. 〈len〉n
denotes the n bit representation of the size of the final block in bits. M⊕ denotes the
plaintext checksum value and V⊕ denotes the AD checksum value. ˜Et

KN ,i is defined in
a similar manner as in Fig. 1.

4. Single Pass: Light-OCB makes only one pass through the data while main-
taining both confidentiality and authenticity. This, in turn reduces the com-
putational cost by a factor of two as compared to two-pass schemes.

5. Rate-1: The rate of an AEAD is defined as the number of blocks of the
message (plaintext) processed per non-linear (block-cipher, field multiplica-
tion, etc.) operation. Constructions with higher rates have shorter latency
and achieve high speed. The maximum rate that a secure AEAD construc-
tion can achieve is 1, and our mode Light-OCB achieves the rate. This signifies
extremely high speed and low latency which is ideal for high-speed applica-
tions.

6. Optimal: An authenticated encryption scheme is called optimal if the num-
ber of non-linear operations it uses is the minimum possible. For nonce based
AEAD, the minimum number of non-linear operations required to process
a data with a block associated data and m block plaintext is (a + m + 1)
[11]. Light-OCB is an optimal construction, and hence it performs excellent
especially for short messages.

7. Versatility: As mentioned already, the parallelizability and small state size
together makes the design extremely versatile.

3.3 Recommended Instantiation

We instantiate Light-OCB with the short-tweak tweakable block cipher
TweGIFT-64. Here, the key size is 128 bits, nonce size is 128 bits, and tag size is
64 bits. Here we briefly describe the tBC TweGIFT-64 or more formally TweGIFT-
64/4/128 [9]. It is a 64-bit tweakable block cipher with 4-bit tweak and 128-bit
key. As the name suggests, it is a tweakable variant of GIFT-64-128 [3] block
cipher. TweGIFT-64 is composed of 28 rounds and each round consists following
operations:

SubCells: TweGIFT-64 uses a 4-bit S-box as GIFT-64-128 and parallelly applies
it to each nibble of the cipher state. Table 1 below defines the S-box.

Light-OCB: Parallel Lightweight Authenticated Cipher with Full Security 31

Fig. 3. The encryption and verification-decryption algorithms of Light-OCB.

Table 1. The GIFT S-Box GS. Each value is a hexadecimal number.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

GS(x) 1 A 4 C 6 F 3 9 2 D B 7 5 0 8 E

32 A. Chakraborti et al.

PermBits: PermBits also uses the same permutation as used in GIFT-64-128. It
maps the ith of the cipher state to the GP (i)th bit, where

GP (i) = 4�i/16
⌋

+ 16
(

(

3�(i mod 16)/4� + (i mod 4)
)

mod 4
)

+ (i mod 4).

AddRoundKey: Here a 32-bit round key is extracted from the master key and
added to the cipher state. This also follows the same as used in GIFT.

AddRoundConstant: A single bit “1” and the bits of a 6-bit round constant are
added to the cipher state at the 63rd, 23rd, 19th, 15th, 11th, 7th and 3rd-bit
respectively. The 6-bit constants are generated using a 6-bit affine LFSR (same
as that of SKINNY [4] and GIFT-64-128 [3]).

AddTweak: The 4-bit tweak is first expanded to a 16-bit expanded tweak by the
linear code Exp and then XOR this expanded tweak to the state at an interval of
4 rounds (starting from the 4th round) at bit positions 4i + 3, for i = 0, ..., 15. Exp
takes as input a 4-bit tweak t = t1‖t2‖t3‖t4 and outputs a 16-bit expanded tweak
te = t‖t′‖t‖t′, such that t′ = s ⊕ t1‖s ⊕ t2‖s ⊕ t3‖s ⊕ t4 and s = t1 ⊕ t2 ⊕ t3 ⊕ t4.

3.4 Design Rationale

In this section, we briefly describe the various design choices and rationale for
our proposals.

Choice of the Mode Light-OCB. We mainly target to design a lightweight
AEAD that should be efficient as well as provides high-performance capability.
The AEAD can be efficient by incorporating one-pass data process. It can be
parallelizable to provide high-performance capability.

We take the approach to start with the well-known mode OCB. OCB is online,
one-pass as well as fully parallelizable. OCB also provides birthday bound secu-
rity, and thus we need 128-bit blocks that satisfy the NIST criteria. This in turn,
increases the state size while keeping the main features intact.

The associated data is processed following the hash layer of PMAC, and the
computation is fully parallel in order to maximize the performance in parallel
computing environments.

Light-OCB mainly updates the use of nonce and position dependent keys.
OCB achieves only the birthday bound security level. This is due to the fact
that collision probability at any two distinct block cipher calls (as two calls share
the same encryption key). Light-OCB overcomes this by changing the key and
tweak tuple for each block cipher invocation. Hence, even if there is a collision the
security remains intact as the key, tweak tuples are distinct. Actually, Light-OCB
achieve full security up to a data complexity 2n, and time complexity 2κ, and
combined data-time complexity up to 2n+κ (see the security analysis in Sect. 4).
This helps us to design a secure aead using a ultra lightweight block cipher
TweGIFT-64.

Light-OCB: Parallel Lightweight Authenticated Cipher with Full Security 33

Choice of Short Tweakable Block Cipher: TweGIFT-64. We choose a
tweakable block cipher TweGIFT-64, that can handle short tweaks. This is essen-
tial for instantiating our mode Light-OCB. There are several efficient tweakable
ciphers like SKINNY [4] but they are designed to handle general purpose tweaks
and are optimized for handling short tweaks. On the other hand, TweGIFT-64 is
designed over GIFT-64-128 to handle such short tweaks.

Tweak expansion is done using a simple (only 7 XORs are needed) high
distance linear code (distance 4) to convert a 4-bit tweak value into a 16-bit
codeword. This high distance code ensures strong differential characteristics for
TweGIFT-64.

The expanded codeword is XORed to the block cipher state to the third
bit of each nibble. The choice of this position has been made due to the fact
that the other three positions are already masked by the round key and round
constant bits. In addition, tweak addition after 4 rounds ensures low differential
probability for TweGIFT-64.

3.5 Light-OCB vs LOCUS-AEAD

In this section, we briefly discuss how Light-OCB differs from LOCUS-AEAD. We
first discuss on the difference between the two modes from specification point of
view, and then demonstrate the advantages of Light-OCB over LOCUS-AEAD.

Structurally, both the modes are very similar in the sense that they both are
parallel authenticated encryption schemes following the XEX paradigm, both
use nonce based derived key, and short tweak tweakable block cipher. However,
the modes have the following subtle differences:

1. While processing the message, Light-OCB uses one primitive call per message
block, while LOCUS-AEAD requires two primitive calls per message block.

2. Light-OCB computes plain text (or message) checksum for generating the tag,
while LOCUS-AEAD uses an intermediate checksum to generate the tag.

Due to the above two structural modification, Light-OCB achieves the follow-
ing advantages over LOCUS-AEAD:

High Throughput : In LOCUS-AEAD, processing each message block requires 2
block-cipher invocations. On the contrary, Light-OCB requires only 1 block-cipher
invocation per message. Hence, to process a message block of 64-bits Light-OCB
requires only 1 clock-cycle as compared to 2 clock cycles required for LOCUS-
AEAD. This gives a double speed-up, and improves the overall throughput by a
factor of 2.

Efficient Short-Message Processing : Another notable advantage of Light-OCB as
compared to LOCUS-AEAD is efficiency in short message processing. Light-OCB
requires only (a+m+1) primitive invocations to process a message of m blocks
with a block associated data, and this is the optimal number of non-linear invo-
cations for any nonce based authenticated encryption scheme. The optimality
ensures that the construction achieves extremely high throughput even for very
short messages.

34 A. Chakraborti et al.

We would like to point out that these advantages are obtained at the cost
of RUP security. However, we emphasize the fact that the RUP security is only
required in some unconventional settings, and practical applications where RUP
setting is necessary are limited. On the other hand, these modification allows the
design to boost the speed and throughput up to a factor of 2, which is critical,
specially for high-speed applications such as memory encryption, and vehicular
security applications.

4 Security Analysis of Light-OCB

4.1 Privacy Security of Light-OCB

Theorem 1. Let A be a non-trivial nonce-respecting adversary against
Light-OCB[˜E] that makes qe many encryption queries (with an aggregate of σe

many blocks) to the construction and qp many queries to the primitive. The
privacy advantage of A in the ideal cipher model satisfies

Advpriv

Light-OCB[˜E]
(A) ≤ qp

2k
+

4qpqe

2n+k
+

4qpσe

2n+k
.

Proof. We employ the coefficient-H technique to prove Theorem 1. In the same
spirit, we assume that A is deterministic. As per convention, A makes qe many
encryption queries to the construction oracle, with an aggregate of total νe many
associated data blocks and μe many message blocks. We write σe = μe + νe.
In addition, A makes qf many forward queries and qb many backward queries
to the underlying primitive oracle, i.e. the tweakable ideal cipher ˜E . We write
qp = qf + qb to denote the total number of primitive queries. The proof is given
in the rest of this subsection.

Oracle Description. The two oracles at hand are: O1 := (Light-OCB[˜E], ˜E ±),
the real oracle, and O0 := ($, ˜E ±), the ideal oracle. We consider a stronger ver-
sion of these oracles, the one in which they release some additional information.

Description of the real oracle, O1: The real oracle O1 has access to
Light-OCB[˜E] and ˜E ±. We denote the transcript random variable generated by
A’s interaction with O1 by the usual notation Λ1, which is a collection of con-
struction and primitive query-response tuples. For i ∈ [qe], initially, the i-th con-
struction query-response tuple is of the form (Ni,Ai,Mi,Ci,Ti), where Ni is the
i-th nonce, Ai is the i-th associated data consisting of ai many blocks, Mi is the
i-th message consisting of i many blocks, Ci is the i-th ciphertext consisting of
i many blocks and Ti is the i-th tag value. Clearly, Light-OCB[˜E](Ni,Ai,Mi) =
(Ci,Ti) for all i ∈ [qe]. For i ∈ [qp], the i-th primitive query-response tuple
is of the form (K̂i, T̂i, X̂i, Ŷi), where K̂i: the i-th key, T̂i: the i-th tweak, X̂i:
the i-th input of ˜E and Ŷi: the i-th output of ˜E . Clearly, ˜E (Ki,Ti,Xi) = (Yi)
for all i ∈ [qp]. Once the query-response phase is over O1 releases the secret key
K, and the internal variables, (Ui,Vi,Xi,Wi,Yi,Vi

⊕,Wi
⊕,Ki

N,Δi
N)i∈[qe], which are

Light-OCB: Parallel Lightweight Authenticated Cipher with Full Security 35

defined analogously as in Fig. 3. Additionally it also releases Δ0 = ˜E (K, (0, 0), 0).
Finally, we have

Λ1 =
{

(Ni
, Ai

, Mi
, Ci

, Ti
, Ui

, Vi
, Xi

, Yi
, Vi

⊕, Mi
⊕, Ki

N, Δi
N, Δ0, K)i∈[qe], (K̂

i
, T̂i

, X̂i
, Ŷi

)i∈[qp]

}

.

Description of the ideal oracle, O0: The ideal oracle O0 has access to
$ and ˜E ±. The ideal transcript random variable Λ0, is also a collection of con-
struction and primitive query-response tuples. For i ∈ [qe], initially, the i-th
construction query-response tuple is of the form (Ni,Ai,Mi,Ci,Ti), where Ni

is the i-th nonce, Ai is the i-th associated data consisting of ai many blocks,
Mi is the i-th message consisting of i many blocks, Ci ←$ {0, 1}n�i is the i-th
ciphertext consisting of i many blocks and Ti ←$ {0, 1}n is the i-th tag value.
For i ∈ [qp], the i-th primitive query-response tuple is of the form (K̂i, T̂i, X̂i, Ŷi),
defined analogously as in the real world. Once the query-response phase is over
O0 defines the internal variables in the following order

1. K ←$ {0, 1}k and Δ0 ←$ {0, 1}n.
2. Ki

N = K ⊕ Ni.
3. Δi

N ←$ {0, 1}n.
4. ∀i ∈ [qe], j ∈ [ai], Ui

j = Ai
j ⊕ Δi

N, and Vi
j ←$ {0, 1}n.

5. ∀i ∈ [qe], j ∈ [i − 1], Xi
j = Mi

j ⊕ Δi
N, Yi

j = Ci
j ⊕ Δi

N.
6. ∀i ∈ [qe], Xi

�i
= 〈i〉 ⊕ Δi

N, Yi
�i

= Ci
j ⊕ Δi

N ⊕ Mi
�i

.
7. ∀i ∈ [qe], V⊕ =

⊕

j∈[ai]
Vi

j , M⊕ =
⊕

j∈[�i]
Mi

j , and CSi = Mi
⊕ ⊕ Vi

⊕.

At this point, we have the complete ideal transcript random variable, i.e.,

Λ0 =
{

(Ni
, Ai

, Mi
, Ci

, Ti
, Ui

, Vi
, Xi

, Yi
, Vi

⊕, Mi
⊕, Ki

N, Δi
N, Δ0, K)i∈[qe], (K̂

i
, T̂i

, X̂i
, Ŷi

)i∈[qp]

}

.

Note that, for brevity we used identical notations to describe the real and ideal
random variables. Since we never consider the joint probability of Θ1 and Θ0,
this abuse of notation should not cause any confusion.

Bad Transcripts: Definition and Analysis. Let Ω be the set of all attainable
transcripts. We say that a transcript

ω =
{

(N
i
, A

i
, M

i
, C

i
, T

i
, U

i
, V

i
, X

i
, Y

i
, V

i
⊕, M

i
⊕, K

i
N , Δ

i
N , Δ0, K)i∈[qe], (K̂

i
, T̂

i
, X̂

i
, Ŷ

i
)i∈[qp]

}

,

is bad, denoted as ω ∈ Ωbad, if one of the following three cases occurs.

Case 1: Key-guessing primitive query: We say that a primitive query-
response tuple is key guessing if the following condition is true:

∃ i ∈ [qp], such that K̂i = K.

Case 2: Inconsistent primitive-construction queries: We say that the
primitive and construction query-response tuple is inconsistent if one of the
following conditions is true for some i ∈ [qe] and i′ ∈ [qp]:

• P1 : ∃ j ∈ [ai], such that (K̂i′
, T̂ i′

, X̂i′
) = (Ki

N , (0, j), U i
j).

36 A. Chakraborti et al.

• P2 : ∃ j ∈ [i], such that (K̂i′
, T̂ i′

, X̂i′
) = (Ki

N , (1, j),Xi
j).

• P3 : (K̂i′
, T̂ i′

, X̂i′
) = (Ki

N , (0, 0), CSi).
• P4 : (K̂i′

, T̂ i′
, Ŷ i′

) = (Ki
N , (1, 0),Δ0).

• P5 : ∃ j ∈ [ai], such that (K̂i′
, T̂ i′

, Ŷ i′
) = (Ki

N , (0, j), V i
j).

• P6 : ∃ j ∈ [i], such that (K̂i′
, T̂ i′

, Ŷ i′
) = (Ki

N , (1, j), Y i
j).

• P7 : (K̂i′
, T̂ i′

, Ŷ i′
) = (Ki

N , (0, 0), T i ⊕ Δi
N).

• P8 : (K̂i′
, T̂ i′

, Ŷ i′
) = (Ki

N , (1, 0),Δi
N).

Let B1, and B2 denote the event that cases 1, and 2, respectively, are satisfied
for Λ0. Therefore, the probability that Λ0 ∈ Ωbad, is given by

Pr[Λ0 ∈ Ωbad] = Pr[B1 ∨ B2] ≤ Pr[B1] + Pr[B2] (2)

Upper bound on Pr[B1]: For a fixed i, K̂i = K, happens with at most 2−k

probability (K is uniform and independent of K̂i). There are at most qp many
choices for i. So, we get Pr[B1] ≤ qp2−k.

Upper bound on Pr[B2]: By the definition of B2, we have

Pr[B2] ≤
8

∑

i=1

Pr[Pi] ≤ 4qpqe

2n+k
+

4qpσe

2n+k
(3)

The proof of Eq. (3) is given in Appendix A of the full version at eprint.

Pr[Λ0 ∈ Ωbad] ≤ qp

2k
+

4qpqe

2n+k
+

4qpσe

2n+k
. (4)

Good Transcript Analysis. Let us fix a transcript ω ∈ Ω\Ωbad, where ω
has the usual form. In Eq. (5), we claim that the ratio of real to ideal world
interpolation probabilities is at least 1. The proof of this claim is available in
Appendix B of the full version at eprint.

Pr[Λ1 = ω]
Pr[Λ0 = ω]

≥ 1. (5)

Theorem 1 follows by using Eq. (4) and (5) in Eq. (1) of the coefficient-H tech-
nique. ��

4.2 INT-CTXT Security of Light-OCB

Theorem 2. Let A be a non-trivial nonce-respecting forger against Light-OCB
[˜E] that makes qe and qd many encryption and decryption, respectively, queries
(with an aggregate of σe many encryption query blocks) to the construction and
qp many queries to the primitive. The INT-CTXT advantage of A in the ideal
cipher model satisfies

Advint-ctxt
Light-OCB[˜E]

(A) ≤ 2
2n

+
qp

2k
+

16qp

2n+k
+

4qpqe

2n+k
+

4qpσe

2n+k
.

Light-OCB: Parallel Lightweight Authenticated Cipher with Full Security 37

Proof. As per convention, A that makes at most qe many encryption queries
and at most qd many RUP queries to Light-OCB[˜E]. In addition A also makes qf

many forward queries and qb many backward queries to ˜E . We write qp = qf +qb

to denote the total number of primitive queries. We will reuse the notations used
in Sect. 4.1. In particular, the i-th encryption query-response tuple is denoted
by (Ni,Ai,Mi,Ci,Ti), and the i-th primitive query-response tuple is denoted by
(K̂i, T̂i, X̂i, Ŷi). The intermediate variables are also analogously defined. In addi-
tion the i-th decryption query-response tuple is denoted by (N′i,A′i,M′i,C′i),
where A′i, and M′i contains a′

i, and ′
i many blocks, respectively. Note that,

(Ni, Ai,Mi,Ci) �= (N′j ,A′j ,M′j ,C′j) for all i ∈ [qe] and j ∈ [qd].
Finally, A tries to forge with (N�,A�,C�,T�) �= (Ni,Ai,Mi,Ci) for i ∈ [qe]. Let

Forge denotes the event that A submits valid forgery. We define the transcript
random variable corresponding to A’s interaction with Light-OCB[˜E] as

Λ1 :=
{

(Ni
, Ai

, Mi
, Ci

)i∈[qe], (N
′i

, A′i
, M′i

, C′i
)i∈[qd], (K̂

i
, T̂i

, X̂i
, Ŷi

)i∈[qp], (N
�
, A�

, C�
, T�

)
}

.

Let multi(x) denote the number of i ∈ [qp] such that K̂i = x. Let Bad denote the
event that Λ1 satisfies one of the following properties:

• G1 : ∃i ∈ [qp], such that K̂i = K.
• G2 : ∃i ∈ [qp], such that (K̂i, X̂i) = (K�

N, ˜EK(0)).
• G3 : multi(K�

N) ≥ 2n−1.
• G4 : ∃i ∈ [qp], such that (K̂i, Ŷi) = (K�

N,T� ⊕ Δ�
N).

• G5 : ∃i ∈ [qp], such that (K̂i, X̂i) = (K�
N,U�

a�
).

• G6 : ∃i ∈ [qp], such that (K̂i, Ŷi) = (K�
N,Y�

��
).

• G7 : ∃i ∈ [qe], i′ ∈ [qp], such that (K̂i′
, X̂i′

) = (Ki
N, ˜EK(0)).

• G8 : ∃i ∈ [qe], such that multi(Ki) ≥ 2n−1.
• G9 : ∃i ∈ [qe], j ∈ [ai], i′ ∈ [qp], such that (K̂i′

, X̂i′
) = (Ki

N,Ui
j).

• G10 : ∃i ∈ [qe], j ∈ [i], i′ ∈ [qp], such that (K̂i′
, Ŷi′

) = (Ki
N,Yi

j).

Observe that if Bad is satisfied, then A can forge with very high probability.
On the other hand, we will show that given that Bad is not satisfied, A cannot
succeed with significant probability. Formally, we have

Pr[Forge] ≤ Pr[Bad] + Pr[Forge|¬Bad]. (6)

We make two claims, given as follows

Pr[Bad] ≤ qp

2k
+

16qp

2n+k
+

4qpqe

2n+k
+

4qpσe

2n+k
(7)

Pr[Forge|¬Bad] ≤ 2
2n

. (8)

The proof for claims in Eq. (7) and (8) are is given in Appendix C and D
respectively of the full version at eprint. The result follows from Eq. (6), (7),
and (8). ��

38 A. Chakraborti et al.

5 Hardware Implementation

In this section, we describe a lightweight implementation of Light-OCB. Light-
OCB is structurally simple with tweakable blockcipher and a few XORs. In this
section we provide hardware implementation details of Light-OCB instantiated
with the TweGIFT64 blockcipher.

5.1 Clock Cycle Analysis

We provide a conventional way for speed estimation, i.e., the number of clock
cycles per byte (cpb). This is a theoretical way to estimate the speed of the
architecture. We consider round-based architecture with 64 bit datapath. To
process a data block of d = a + m blocks (a is the number of associated data
blocks and m is the number of message blocks), we need 29d clock cycles. We
use one TweGIFT64 call to process one data block. Our block cipher is optimized
to process a bulk data, and the reset is required only to indicate that the stream
processing starts. We observe that the cpb values for different sized data are
constant as there is no initialization overhead and the overhead for the tag
generation (constant small number of clock cycles) is negligible for long messages.
Our design accept 64-bit or 8-byte data blocks and hence the cpb is 29d/8d =
3.625.

5.2 Hardware Architecture

Light-OCB is based on E-t-M paradigm and the message blocks are processed
in parallel to generate the ciphertext blocks and the tag. Here, the blockcipher
tweak values for the three types of input data (N , A and M) are required to
distinguish. Below, we provide brief hardware architecture details. For simplicity,
we omit the control unit from Fig. 4. The main components in the hardware
circuit are as follows.

State Registers. The architecture for Light-OCB contains four registers.

• A 64-bit state register to store the encryption state,
• an 128-bit register to store the blockcipher master secret key,
• a 64-bit register to store the checksum and
• the 64-bit Δ register to store ΔN .

Module TweGIFT. The TweGIFT module computes one round of the underly-
ing tweakable blockcipher. This module internally uses a 64-bit register for the
blockcipher internal state and an 128-bit register fr the master key. In addition,
TweGIFT also uses internally a control unit. We are omitting this for the sake of
simplicity.

Accumulator Module. The accumulator module ACC is used to compute the
checksum of the ECB layer and the last block for computing the tag.

Light-OCB: Parallel Lightweight Authenticated Cipher with Full Security 39

Remark 1 (Combined Encryption and Decryption). In this implementation, we
mainly focus on a combined encryption-decryption circuit. We observe that we
can also implement encryption-only circuits even with a small decrease in hard-
ware area and with the same throughput.

064

064

N
Ai, Mi, Ci, <l>

M
UXL

M
UXA

M
UXIn

ACC

TweGIFT

Ci, Mi, T

Fig. 4. Hardware architecture diagram

5.3 Implementation Results

We implement Light-OCB on Virtex 7 (xc7v585tffg1761-3), using VHDL and the
VIVADO tool. We use exactly the same implementation for TweGIFT64 as used
in the implementation of LOCUS-AEAD [10]. The results are presented in Table 2.
The implementation follows the RTL approach and a basic iterative type archi-
tecture with 64-bit datapath. The areas are reported in the number of flipflops,
LUTs and slices. We also report the Frequency (MHz), Throughput (Gbps),
and throughput-area efficiencies. The mapped hardware results are reported in
Table 2. For the sake of comparison, we also provide the implementation results
for LOCUS-AEAD taken from [10].

Table 2. FPGA implementation comparison between Light-OCB and LOCUS-AEAD

Design

(platform)

Slice

registers

LUTs Slices Frequency

(MHz)

Throughput

(Gbps)

Mbps/LUT Mbps/Slice

Light-OCB

(Virtex 7)

428 1128 307 400 0.88 0.780 2.866

LOCUS-AEAD

(Virtex 7)

430 1154 439 392.20 0.44 0.38 1. 002

40 A. Chakraborti et al.

5.4 Benchmarking

We benchmark our implemented results using the existing FPGA results on
Virtex 7. We provide comparisons with the implementation results of the well
known designs in Table 3 below. Note that, all the candidates for benchmarking
in Table 3 either parallel in structure or can have almost parallel implementation.
We did not consider the blockcipher based feedback designs or sponge based
feedback designs.

Table 3. Comparison of parallel AEAD on Virtex 7 [2].

Scheme # LUTs # Slices Gbps Mbps/LUT Mbps/Slice

LIGHT-OCB 1128 307 0.88 0.780 2.866
LOCUS-AEAD [10] 1154 439 0.44 0.38 1.00
LOTUS-AEAD [10] 865 317 0.48 0.55 1.50
CLOC-TWINE [2] 1552 439 0.432 0.278 0.984
SILC-AES [2] 3040 910 4.365 1.436 4.796
SILC-LED [2] 1682 524 0.267 0.159 0.510
SILC-PRESENT [2] 1514 484 0.479 0.316 0.990
JAMBU-SIMON [2] 1200 419 0.368 0.307 0.878
AES-OTR [2] 4263 1204 3.187 0.748 2.647
OCB [2] 4269 1228 3.608 0.845 2.889
AES-COPA [2] 7795 2221 2.770 0.355 1.247
AES-GCM [2] 3478 949 3.837 1.103 4.043
CLOC-AES [2] 3552 1087 3.252 0.478 1.561
ELmD [2] 4490 1306 4.025 0.896 3.082

References

1. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K.: Parallelizable and authenticated online ciphers. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013. LNCS, vol. 8269, pp. 424–443. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-42033-7 22

2. Authenticated Encryption FPGA Ranking. https://cryptography.gmu.edu/
athenadb/fpga auth cipher/rankings view

3. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Yu., Sim, S.M., Todo, Y.: GIFT: a
small present - towards reaching the limit of lightweight encryption. In: Fischer,
W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 321–345. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66787-4 16

https://doi.org/10.1007/978-3-642-42033-7_22
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view
https://doi.org/10.1007/978-3-319-66787-4_16

Light-OCB: Parallel Lightweight Authenticated Cipher with Full Security 41

4. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol.
9815, pp. 123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53008-5 5

5. Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message
authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
384–397. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 25

6. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

7. Bossuet, L., Datta, N., Mancillas-López, C., Nandi, M.: ELmD: a pipelineable
authenticated encryption and its hardware implementation. IEEE Trans. Comput.
65(11), 3318–3331 (2016)

8. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness. http://competitions.cr.yp.to/caesar.html

9. Chakraborti, A., Datta, N., Jha, A., Mancillas-López, C., Nandi, M., Yu, S.:
Elastic-tweak: a framework for short tweak tweakable block cipher. IACR Cryp-
tology ePrint Archive, 2019:440 (2019)

10. Chakraborti, A., Datta, N., Jha, A., Mancillas-López, C., Nandi, M., Sasaki, Yu.:
INT-RUP secure lightweight parallel AE modes. IACR Trans. Symmetric Cryptol.
2019(4), 81–118 (2019)

11. Chakraborti, A., Datta, N., Nandi, M.: On the optimality of non-linear computa-
tions for symmetric key primitives. J. Math. Cryptol. 12(4), 241–259 (2018)

12. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9 18

13. Krovetz, T., Rogaway, P.: OCB(v1.1). Submission to CAESAR (2016). https://
competitions.cr.yp.to/round3/ocbv11.pdf

14. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45708-9 3

15. Minematsu, K.: AES-OTR v3.1. Submission to CAESAR (2016). https://
competitions.cr.yp.to/round3/aesotrv31.pdf

16. Naito, Y.: Tweakable blockciphers for efficient authenticated encryptions with
beyond the birthday-bound security. IACR Trans. Symmetric Cryptol. 2017(2),
1–26 (2017)

17. NIST. Lightweight cryptography. https://csrc.nist.gov/Projects/Lightweight-
Cryptography

18. National Centre of Excellence. Light-weight Cipher Design Challenge. https://
www.dsci.in/ncoe-light-weight-cipher-design-challenge-2020/

19. OMA-SpecWorks. Lightweight-M2M (2019). https://www.omaspecworks.org/
what-is-oma-specworks/iot/lightweight-m2m-lwm2m/

20. Patarin, J.: The “coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04159-4 21

21. Rogaway, P., Bellare, M., Black, J.: OCB: a block-cipher mode of operation for
efficient authenticated encryption. ACM Trans. Inf. Syst. Secur. 6(3), 365–403
(2003)

22. Vaudenay, S.: Decorrelation: a theory for block cipher security. J. Cryptol. 16(4),
249–286 (2003). https://doi.org/10.1007/s00145-003-0220-6

https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/3-540-46035-7_25
https://doi.org/10.1007/978-3-540-74735-2_31
http://competitions.cr.yp.to/caesar.html
https://doi.org/10.1007/978-3-642-21702-9_18
https://competitions.cr.yp.to/round3/ocbv11.pdf
https://competitions.cr.yp.to/round3/ocbv11.pdf
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-45708-9_3
https://competitions.cr.yp.to/round3/aesotrv31.pdf
https://competitions.cr.yp.to/round3/aesotrv31.pdf
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://www.dsci.in/ncoe-light-weight-cipher-design-challenge-2020/
https://www.dsci.in/ncoe-light-weight-cipher-design-challenge-2020/
https://www.omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m/
https://www.omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m/
https://doi.org/10.1007/978-3-642-04159-4_21
https://doi.org/10.1007/s00145-003-0220-6

MILP Based Differential Attack
on Round Reduced WARP

Manoj Kumar and Tarun Yadav(B)

Scientific Analysis Group, DRDO, Metcalfe House Complex, Delhi 110054, India
{manojkumar,tarunyadav}@sag.drdo.in

Abstract. WARP is a 128-bit lightweight block cipher presented by S.
Banik et al. at SAC 2020. It is based on 32-nibble type-2 Generalised
Feistel Network (GFN) structure and uses a permutation over nibbles
to optimize the security and efficiency. The designers provided a lower
bound on the number of active S-boxes but they did not provide the
differential characteristics against these bounds. In this paper, we model
the MILP problem for WARP and present the 18-round and 19-round
differential characteristics with the probability of 2−122 and 2−132 respec-
tively. We also present a key recovery attack on 21 rounds with the data
complexity of 2113 chosen plaintexts. To the best of our knowledge, this
is the first key recovery attack against 21-round WARP using differential
cryptanalysis.

Keywords: Block cipher · Differential cryptanalysis · Lightweight
cryptography · MILP

1 Introduction

Lightweight cryptography is used for encryption and authentication on small
computing devices e.g. RFID tags, sensor networks and smart cards [9]. The
block cipher PRESENT is the first notable lightweight design which was pub-
lished in 2007 [4]. There are numerous lightweight block ciphers which were
designed in the past two decades. Initially, the 64-bit block with a key size of 80
or 128 bits was used for designing the lightweight version of block ciphers. Nowa-
days, the block size of 64 or 128 bits with a 128-bit key is preferred to design
the lightweight block ciphers. The 128-bit lightweight block ciphers can serve as
good candidates to replace the AES [6] in resource constrained scenarios. NIST
has started a competition in 2018 to standardise the lightweight cryptographic
algorithms due to increased importance of lightweight cryptography [14]. There-
fore, security analysis of the new lightweight block ciphers is required to assess
their strength against the basic cryptanalytic attacks.

The differential attack is a basic cryptanalytic technique proposed by E.
Biham and A. Shamir in 1990 [3]. This exploits the non-uniform relations
between the input and output differences. The probability of the best differ-
ential characteristic is used to provide a bound on the security of block cipher
c© Springer Nature Switzerland AG 2022
L. Batina et al. (Eds.): SPACE 2021, LNCS 13162, pp. 42–59, 2022.
https://doi.org/10.1007/978-3-030-95085-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95085-9_3&domain=pdf
http://orcid.org/0000-0001-6900-4075
http://orcid.org/0000-0002-5462-8253
https://doi.org/10.1007/978-3-030-95085-9_3

MILP Based Differential Attack on Round Reduced WARP 43

against the differential attack. High probability differential characteristics are
essential for a successful key recovery attack on a block cipher. The automatic
techniques based on branch-and-bound [12], MILP [13] and machine learning
[7,20] are used to construct these differential characteristics. M. Matsui pro-
posed the branch-and-bound based technique to search the high probability dif-
ferential characteristics in 1993 [12]. There are limitations in this technique to
search differential characteristics for large block sizes. In 2012, N. Mohua et al.
proposed a new technique using mixed integer linear programming (MILP) to
search differential characteristics for block ciphers [13].

MILP deals with the optimization problems with an objective function sub-
ject to the constraints. These constraints are represented as linear equations.
There are various commercial linear programming problem (LPP) solvers e.g.
Gurobi [8] and CPLEX [5]. These solvers provide the solution for an LPP prob-
lem very efficiently. Mouha et al. proposed a framework to convert the differential
characteristic search problem into an MILP problem and used these MILP solvers
to minimize the number of active S-boxes in the differential characteristics. At
Asiacrypt 2014, Sun et al. presented the MILP based attack on the bit oriented
block ciphers using the H-Representation of convex hull for all differential pat-
terns of the S-box to find the differential characteristics [16,17]. The differential
characteristic search problem can be divided into two modules. In first mod-
ule, a lower bound on the number of differentially active S-boxes is computed.
While, the differential characteristics with high probability are constructed in
the second module. At CT-RSA 2019, Zhu et al. optimized the probability of
differential characteristics for lightweight block cipher GIFT using the MILP
model consisting of the probability of each possible propagation [21].

The designers of WARP [2] provided a security bound against the differen-
tial attack. They used the MILP-aided search to compute a lower bound for
the number of differentially active S-boxes. However, they did not search for the
differential characteristics containing these bounds. According to the designers
analysis, there are at least 61 active S-boxes in any 18-round differential char-
acteristics of WARP. Similar bound for the 19-round differential characteristic
is given as 66 active S-boxes which requires 2132 chosen plain text pairs. In this
paper, we construct the differential characteristics for the 18-round WARP using
the MILP-aided search. Firstly, we compute a lower bound on the number of dif-
ferentially active S-boxes which is equal to the designers bound. Secondly, we
construct the differential characteristics for the 18 and 19 rounds with the prob-
ability of 2−122 and 2−132 respectively. We also present a key recovery attack on
21 rounds which is the best differential attack against WARP till date.

We organise the remaining paper in the following manner. In Sect. 2, we pro-
vide a brief introduction to the lightweight block cipher WARP. In Sect. 3, we
model the MILP problem for WARP to compute a lower bound on the number
of differentially active S-boxes. We also construct the 18-round and 19-round dif-
ferential characteristics using the MILP-aided search in this section. We present
a key recovery attack on the 21-round WARP in Sect. 4. The paper is concluded
in Sect. 5.

44 M. Kumar and T. Yadav

2 Description of WARP

The base structure of the lightweight block cipher WARP is a type-2 Generalised
Feistel Network (GFN) structure. There are many 64-bit block ciphers, with 16
branches, designed using the type-2 GFN structure. The slow diffusion in 64-
bit block with 16 branches is a security challenge. The GFN was revisited by
S. Banik et al. [2] and 128-bit block size with 32-branches is considered more
suitable to design a 128-bit lightweight block cipher.

2.1 Encryption Algorithm

WARP encrypts the 128-bit plaintext block using a 128-bit key and generates a
128-bit ciphertext block. There are total 41 rounds and round function can be
explained in various equivalent forms [2]. We discuss the LBlock like equivalent
form of WARP to describe its encryption process. The encryption algorithm
encrypts 128-bit input X using a 128-bit key K (Algorithm 1). The key expansion
algorithm is not required for WARP. The Key K is divided into two 64-bit keys
and it is expressed as K = (K0,K1). In the odd rounds, the left part K0 is used
and even rounds use the right part K1. We express the 128-bit input X using
32 nibbles x1

31, x
1
30, · · · , x1

0, where x1
0 is the least significant nibble and size of

each nibble is 4-bit. The initial permutation (IP) is applied on X to get two
64-bit words X1

0 and X1
1 . In each round (1 ≤ r ≤ 41), the constants (Table 1)

are XORed with the first two nibbles of Xr
1 . The S-box layer (Table 2) is applied

on each 4-bit nibble in Xr
0 and output of the S-box layer is XORed with the

round key and nibble permutation (NP) (Table 3) is applied thereafter to get a
64-bit output U . The cyclic rotation by 24 bits is applied on Xr

1 to get a 64-bit
output V . To get Xr+1

0 , U and V are XORed while Xr
0 becomes Xr+1

1 due to
the Feistel structure. This process is applied 40 times iteratively and the last
round is performed without the rotation and permutation operations.

Algorithm 1: Encryption Algorithm
1 Input: X = (x1

31, x
1
30, · · · , x1

0) and K = (K0,K1)
2 Output: X42 = (x42

31, x
42
30, · · · , x42

0)
3 IP: X1

0 = (x1
0, x

1
2, · · · , x1

30), X1
1 = (x1

1, x
1
3, · · · , x1

31)
4 for r=1 to 40 do
5 xr

1 = xr
1 ⊕ RCr

0 , xr
3 = xr

3 ⊕ RCr
1

6 Y = S(Xr
0)

7 U = NP (Y ⊕ K(r−1)mod2)
8 V = Xr

1 ≪ 24
9 Xr+1

0 = U ⊕ V

10 Xr+1
1 = Xr

0

11 end
12 x41

1 = x41
1 ⊕ RC41

0 , x41
3 = x41

3 ⊕ RC41
1

13 X42
0 = X41

0

14 X42
1 = S(X41

0) ⊕ K0 ⊕ X41
1

MILP Based Differential Attack on Round Reduced WARP 45

Round Constant: In each round, the 4-bit constants given in Table 1 are used.

Table 1. Round constants

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

RCr
0 0 0 1 3 7 f f f e d a 5 a 5 b 6 c 9 3 6 d

RCr
1 4 c c c c c 8 4 8 4 8 4 c 8 0 4 c 8 4 c c

r 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

RCr
0 b 7 e d b 6 d a 4 9 2 4 9 3 7 e c 8 1 2

RCr
1 8 4 c 8 4 8 0 4 8 0 4 c c 8 0 0 4 8 4 c

S-box: The 4-bit S-box (Table 2) is applied in the S-box layer of WARP.

Table 2. S-box

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

Nibble Permutation: The output from the S-box layer is divided into 16
nibbles. The nibble permutation (NP) is applied on these 16 nibbles (Table 3).

Table 3. Permutation

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

NP (i) 3 7 6 4 1 0 2 5 11 15 14 12 9 8 10 13

3 Differential Characteristics Search in WARP

3.1 Differential Cryptanalysis

In differential attack, the propagation of input differences is studied to find
the highly probable output differences. These non-uniform relations between
the input and output differences are used to recover the round subkeys and we
need a high probability (p) differential characteristic for the target cipher. The
data requirement is inversely proportional to the probability p of the differential
characteristic. Therefore, we need p−1 chosen plaintext pairs to distinguish the
r rounds of an n-bit block cipher. In general, a differential characteristic can be
extended to more rounds, till the bound p−1 � 2n, where n is the block size
[10].

To cover more rounds, additional rounds are added on the head and tail of the
high probability differential characteristic. For a key recovery attack, plaintext
pairs with a chosen input difference are generated and corresponding ciphertext

46 M. Kumar and T. Yadav

pairs are obtained under a fixed key. The round subkeys involved in these addi-
tional rounds are guessed and the counter of each key is incremented after a
match with the expected input or output difference. The correct subkey guesses
are expected to have higher counter value while wrong key guesses are expected
to have lower counter value. The subkey guess with highest counter value is
considered as the right subkey used for the encryption.

3.2 MILP Modeling to Search the Differential Characteristics

A high probability differential characteristic is the first and foremost require-
ment to launch the key recovery attack on a block cipher. There exists sev-
eral automatic tools to search the optimal differential characteristics for block
ciphers. The technique based on MILP converts the differential characteristic
search problem into a linear programming problem and solves it using the opti-
mization problem solvers [13]. In MILP model, round function of a block cipher
is represented with linear inequalities. The linear components of the round func-
tion, viz. nibble permutation and XOR operations, can be easily represented by
linear inequalities. The non-linear part of the block cipher, viz. S-box, can not be
easily represented by linear inequalities. There are two approaches to build such
a system of linear inequalities that represent the solution space of the S-box viz.
H-representation of convex hull and logical computation model [19]. In both the
approaches, linear inequalities are generated to define the solution space. We use
SageMath tool [15] to generate the linear inequalities based on H-representation
of convex hull of the S-box.

3.2.1 Difference Distribution Table
The S-box is the only non-linear function used in a block cipher. To generate
a system of linear inequalities, we construct the difference distribution table
(DDT) of the 4-bit S-box used in WARP (Table 4). The DDT represents the
propagation of input and output differences of S-box (Δi,Δo). Each non-zero
entry in the table corresponds to a probable propagation and zero entries (sub-
space R) provide a list of impossible patterns.

3.2.2 Linear Inequalities for Minimizing the Number of Active
S-Boxes

In this module of MILP problem, we minimize the number of differentially active
S-boxes. For a given subspace, R ⊂ F

4
2, a system of linear inequalities is required

so that F4
2 − R covers the solution space. For 4-bit S-boxes, SageMath generates

linear inequalities and MILP problem with large set of inequalities can not be
solved efficiently. Therefore, it is necessary to minimize the number of linear
inequalities to reduce the time complexity of the MILP problem. There are three
approaches which can help in the minimization process. In the first approach, the
greedy search algorithm [16] is used to minimize the number of linear inequalities
obtained from SageMath tool while impossible patterns in the DDT are used
to reduce the number of inequalities in the second approach [18,19]. In the

MILP Based Differential Attack on Round Reduced WARP 47

Table 4. DDT of WARP S-box

(Δi, Δo) 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 2 4 0 2 2 2 0 2 0 0 0 0 0 2 0

2 0 4 0 0 4 0 0 0 0 4 0 0 4 0 0 0

3 0 0 0 0 2 0 4 2 2 2 0 0 0 2 0 2

4 0 2 4 2 2 2 0 0 2 0 0 2 0 0 0 0

5 0 2 0 0 2 0 0 4 0 2 4 0 2 0 0 0

6 0 2 0 4 0 0 0 2 2 0 0 0 2 2 0 2

7 0 0 0 2 0 4 2 0 0 0 0 2 0 4 2 0

8 0 2 0 2 2 0 2 0 0 2 0 2 2 0 2 0

9 0 0 4 2 0 2 0 0 2 2 0 2 2 0 0 0

a 0 0 0 0 0 4 0 0 0 0 4 0 0 4 0 4

b 0 0 0 0 2 0 0 2 2 2 0 4 0 2 0 2

c 0 0 4 0 0 2 2 0 2 2 0 0 2 0 2 0

d 0 0 0 2 0 0 2 4 0 0 4 2 0 0 2 0

e 0 2 0 0 0 0 0 2 2 0 0 0 2 2 4 2

f 0 0 0 2 0 0 2 0 0 0 4 2 0 0 2 4

third approach, the Logic Friday tool [11] is used to minimize the number of
inequalities which minimizes the product of sum of boolean functions [1]. We
follow the second approach to minimize the number of linear inequalities for
WARP S-box.

We use SageMath to construct the linear inequalities to represent the DDT of
WARP S-box. The DDT of WARP S-box is represented by 239 linear inequalities
zj(0 ≤ j ≤ 238). The input and output patterns in the DDT can be represented
with 8 variables (x0, x1, x2, x3, y0, y1, y2, y3). The total number of such patterns
is 28(= 256) while the number of possible and impossible patterns are 97 and 159
(R0, R2, · · · , R158) respectively. To minimize the number of linear inequalities,
we construct a solution space to remove the impossible patterns corresponding
to the zero entries in the DDT1.

The inequalities which exclude the pattern Ri from the solution space are
selected and pattern Ri(0 ≤ i ≤ 158) is excluded by adding a constraint. Then,
the number of inequalities are minimized subject to these constraints. We assign
a variable zj(0 ≤ j ≤ 238) corresponding to each inequality obtained from
SageMath. We generate a set corresponding to each Ri(0 ≤ i ≤ 158) with ‘0’
and ‘1’ entries, where ‘0’ is assigned corresponding to an inequality satisfying
the pattern and ‘1’ otherwise (Table 5).

We write a new system of linear inequalities corresponding to each Ri, (0 ≤
i ≤ 158). For example, the pattern R158 = (0, 0, 0, 0, 1, 0, 0, 0, 0, 1, · · · , 0, 0, 0, 0, 0)

1 Source code is available at https://github.com/tarunyadav/WARP-MILP.

https://github.com/tarunyadav/WARP-MILP

48 M. Kumar and T. Yadav

Table 5. Reduction of inequalities using impossible patterns

Impossible
patterns

z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 · · · z234 z235 z236 z237 z238

R0 0 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0

R1 0 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0

R2 0 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0

R3 0 0 0 0 0 0 0 0 0 0 · · · 0 1 0 0 0

R4 0 0 0 0 0 0 0 0 0 0 · · · 0 1 0 0 0

R5 0 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0

R6 0 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0

R7 0 0 0 0 0 0 0 0 0 0 · · · 0 1 0 0 0

· · · · · ·
R151 0 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0

R152 0 0 0 0 1 0 0 0 0 1 · · · 0 0 0 0 0

R153 0 0 0 0 1 0 0 0 0 1 · · · 0 0 0 0 0

R154 0 0 0 0 0 0 0 0 0 1 · · · 0 0 0 0 1

R155 0 0 0 0 1 0 0 0 0 0 · · · 0 0 0 0 0

R156 0 0 0 0 1 0 0 0 0 0 · · · 0 0 0 0 0

R157 0 0 0 0 1 0 0 0 0 0 · · · 0 0 0 0 0

R158 0 0 0 0 1 0 0 0 0 1 · · · 0 0 0 0 0

corresponds to an inequality z5 + z9 ≥ 1. The objective function of new MILP is
minimization of

∑
zj subject to these constraints. We use Gurobi solver [8] to

solve this MILP problem and it provides the 21 linear inequalities by removing
the redundant inequalities. The set of 21 linear inequalities (Table 6) is used in
the first module of MILP problem to minimize the number of active S-boxes.

3.2.3 Linear Inequalities for Optimizing the Probability
of Differential Characteristic

We optimize the probability of differential characteristics in this module of MILP
problem. This module utilizes the position of active S-boxes obtained in the first
module. In the DDT of WARP S-box, the possible difference propagations are
obtained with three different probabilities i.e. 1, 2−2, 2−3. Therefore, we use
two extra variables (p0,p1) to encode these possible differential patterns. These
patterns, with two extra bits, need to satisfy the Eq. 1.

(p0, p1) = (0, 0), if Pr[(x0, x1, x2, x3) → (y0, y1, y2, y3)] = 1 = 2−0

(p0, p1) = (0, 1), if Pr[(x0, x1, x2, x3) → (y0, y1, y2, y3)] = 4/16 = 2−2 (1)
(p0, p1) = (1, 0), if Pr[(x0, x1, x2, x3) → (y0, y1, y2, y3)] = 2/16 = 2−3

Further, by using the differential distribution probabilities of the S-box, 1304
inequalities are generated using the SageMath tool. We apply the similar proce-

MILP Based Differential Attack on Round Reduced WARP 49

Table 6. Linear inequalities for minimizing number of active S-boxes

No. Linear inequalities

1 −1 ∗ x3 − 1 ∗ x2 + 0 ∗ x1 − 1 ∗ x0 + 0 ∗ y3 + 0 ∗ y2 + 1 ∗ y1 + 0 ∗ y0 ≥ −2

2 −2 ∗ x3 − 1 ∗ x2 − 1 ∗ x1 − 1 ∗ x0 + 1 ∗ y3 − 1 ∗ y2 + 1 ∗ y1 − 1 ∗ y0 ≥ −5

3 0 ∗ x3 + 0 ∗ x2 + 1 ∗ x1 + 0 ∗ x0 − 1 ∗ y3 − 1 ∗ y2 + 0 ∗ y1 − 1 ∗ y0 ≥ −2

4 0 ∗ x3 − 1 ∗ x2 − 2 ∗ x1 + 2 ∗ x0 − 2 ∗ y3 + 2 ∗ y2 − 1 ∗ y1 − 1 ∗ y0 ≥ −5

5 −2 ∗ x3 − 2 ∗ x2 − 1 ∗ x1 + 3 ∗ x0 − 1 ∗ y3 + 3 ∗ y2 − 2 ∗ y1 − 1 ∗ y0 ≥ −6

6 0 ∗ x3 + 1 ∗ x2 + 1 ∗ x1 + 1 ∗ x0 + 1 ∗ y3 − 2 ∗ y2 − 1 ∗ y1 − 2 ∗ y0 ≥ −3

7 0 ∗ x3 − 1 ∗ x2 + 1 ∗ x1 − 1 ∗ x0 + 0 ∗ y3 − 1 ∗ y2 + 1 ∗ y1 − 1 ∗ y0 ≥ −3

8 1 ∗ x3 + 1 ∗ x2 − 1 ∗ x1 − 2 ∗ x0 − 2 ∗ y3 − 2 ∗ y2 + 1 ∗ y1 + 2 ∗ y0 ≥ −5

9 0 ∗ x3 + 1 ∗ x2 − 2 ∗ x1 − 2 ∗ x0 + 2 ∗ y3 + 1 ∗ y2 + 1 ∗ y1 − 1 ∗ y0 ≥ −3

10 −1 ∗ x3 + 1 ∗ x2 − 2 ∗ x1 + 1 ∗ x0 + 3 ∗ y3 + 1 ∗ y2 − 1 ∗ y1 + 1 ∗ y0 ≥ −1

11 −2 ∗ x3 + 3 ∗ x2 − 1 ∗ x1 − 2 ∗ x0 − 1 ∗ y3 − 1 ∗ y2 − 2 ∗ y1 + 3 ∗ y0 ≥ −6

12 0 ∗ x3 − 2 ∗ x2 − 2 ∗ x1 + 1 ∗ x0 + 2 ∗ y3 − 1 ∗ y2 + 1 ∗ y1 + 1 ∗ y0 ≥ −3

13 3 ∗ x3 + 3 ∗ x2 + 1 ∗ x1 + 2 ∗ x0 − 2 ∗ y3 + 2 ∗ y2 − 2 ∗ y1 + 1 ∗ y0 ≥ 0

14 3 ∗ x3 − 2 ∗ x2 + 2 ∗ x1 + 1 ∗ x0 − 1 ∗ y3 − 2 ∗ y2 − 2 ∗ y1 + 1 ∗ y0 ≥ −4

15 1 ∗ x3 − 2 ∗ x2 − 1 ∗ x1 + 1 ∗ x0 − 2 ∗ y3 + 2 ∗ y2 + 1 ∗ y1 − 2 ∗ y0 ≥ −5

16 1 ∗ x3 + 2 ∗ x2 + 1 ∗ x1 + 2 ∗ x0 + 0 ∗ y3 − 1 ∗ y2 + 0 ∗ y1 − 1 ∗ y0 ≥ 0

17 1 ∗ x3 − 2 ∗ x2 − 1 ∗ x1 − 2 ∗ x0 + 2 ∗ y3 + 3 ∗ y2 + 1 ∗ y1 + 3 ∗ y0 ≥ −1

18 3 ∗ x3 + 1 ∗ x2 + 2 ∗ x1 − 2 ∗ x0 − 1 ∗ y3 + 1 ∗ y2 − 2 ∗ y1 − 2 ∗ y0 ≥ −4

19 −2 ∗ x3 − 1 ∗ x2 + 1 ∗ x1 − 1 ∗ x0 + 3 ∗ y3 + 2 ∗ y2 + 3 ∗ y1 + 2 ∗ y0 ≥ 0

20 −1 ∗ x3 + 2 ∗ x2 − 1 ∗ x1 + 2 ∗ x0 + 0 ∗ y3 + 1 ∗ y2 + 2 ∗ y1 + 1 ∗ y0 ≥ 0

21 1 ∗ x3 − 1 ∗ x2 − 1 ∗ x1 − 1 ∗ x0 + 0 ∗ y3 − 1 ∗ y2 − 1 ∗ y1 − 1 ∗ y0 ≥ −5

Table 7. Linear inequalities for optimizing the probability

No Linear inequalities

1 0 ∗ x3 + 0 ∗ x2 + 0 ∗ x1 + 0 ∗ x0 + 0 ∗ y3 + 0 ∗ y2 + 0 ∗ y1 + 0 ∗ y0 − 1 ∗ p0 − 1 ∗ p1 ≥ −1

2 0 ∗ x3 − 1 ∗ x2 + 0 ∗ x1 − 1 ∗ x0 + 0 ∗ y3 − 1 ∗ y2 + 0 ∗ y1 − 1 ∗ y0 + 4 ∗ p0 + 3 ∗ p1 ≥ 0

3 0 ∗ x3 + 0 ∗ x2 + 0 ∗ x1 + 0 ∗ x0 + 0 ∗ y3 + 1 ∗ y2 − 1 ∗ y1 + 1 ∗ y0 + 1 ∗ p0 + 0 ∗ p1 ≥ 0

4 −1 ∗ x3 − 1 ∗ x2 + 1 ∗ x1 + 2 ∗ x0 + 0 ∗ y3 + 0 ∗ y2 − 1 ∗ y1 − 2 ∗ y0 + 3 ∗ p0 + 4 ∗ p1 ≥ 0

5 0 ∗ x3 − 3 ∗ x2 − 2 ∗ x1 − 3 ∗ x0 + 0 ∗ y3 + 1 ∗ y2 + 2 ∗ y1 + 1 ∗ y0 + 6 ∗ p0 + 5 ∗ p1 ≥ 0

6 0 ∗ x3 + 2 ∗ x2 − 2 ∗ x1 − 2 ∗ x0 − 3 ∗ y3 − 1 ∗ y2 − 1 ∗ y1 + 2 ∗ y0 + 6 ∗ p0 + 7 ∗ p1 ≥ 0

7 7 ∗ x3 + 4 ∗ x2 + 2 ∗ x1 − 2 ∗ x0 − 1 ∗ y3 + 4 ∗ y2 − 5 ∗ y1 − 8 ∗ y0 + 7 ∗ p0 + 10 ∗ p1 ≥ 0

8 −4 ∗ x3 + 3 ∗ x2 − 1 ∗ x1 − 2 ∗ x0 − 1 ∗ y3 − 3 ∗ y2 − 2 ∗ y1 + 3 ∗ y0 + 8 ∗ p0 + 10 ∗ p1 ≥ 0

9 1 ∗ x3 + 5 ∗ x2 + 2 ∗ x1 + 0 ∗ x0 + 2 ∗ y3 − 1 ∗ y2 − 2 ∗ y1 − 4 ∗ y0 + 2 ∗ p0 + 5 ∗ p1 ≥ 0

10 0 ∗ x3 + 1 ∗ x2 − 3 ∗ x1 + 2 ∗ x0 + 1 ∗ y3 + 0 ∗ y2 − 1 ∗ y1 + 2 ∗ y0 + 3 ∗ p0 + 1 ∗ p1 ≥ 0

11 −4 ∗ x3 − 2 ∗ x2 + 1 ∗ x1 − 2 ∗ x0 + 2 ∗ y3 + 1 ∗ y2 + 5 ∗ y1 + 1 ∗ y0 + 1 ∗ p0 + 4 ∗ p1 ≥ 0

12 0 ∗ x3 + 2 ∗ x2 + 3 ∗ x1 − 1 ∗ x0 − 2 ∗ y3 − 1 ∗ y2 + 0 ∗ y1 − 1 ∗ y0 + 1 ∗ p0 + 4 ∗ p1 ≥ 0

13 0 ∗ x3 + 1 ∗ x2 − 1 ∗ x1 + 1 ∗ x0 + 1 ∗ y3 − 1 ∗ y2 + 1 ∗ y1 − 1 ∗ y0 + 3 ∗ p0 + 1 ∗ p1 ≥ 0

14 7 ∗ x3 − 2 ∗ x2 + 2 ∗ x1 + 4 ∗ x0 − 1 ∗ y3 − 8 ∗ y2 − 5 ∗ y1 + 4 ∗ y0 + 7 ∗ p0 + 10 ∗ p1 ≥ 0

15 2 ∗ x3 + 1 ∗ x2 + 5 ∗ x1 + 1 ∗ x0 − 4 ∗ y3 − 2 ∗ y2 + 1 ∗ y1 − 2 ∗ y0 + 1 ∗ p0 + 4 ∗ p1 ≥ 0

16 1 ∗ x3 + 2 ∗ x2 + 0 ∗ x1 + 2 ∗ x0 + 1 ∗ y3 + 2 ∗ y2 + 0 ∗ y1 + 2 ∗ y0 − 2 ∗ p0 − 3 ∗ p1 ≥ 0

17 −2 ∗ x3 + 2 ∗ x2 − 4 ∗ x1 − 4 ∗ x0 + 5 ∗ y3 + 2 ∗ y2 + 1 ∗ y1 − 1 ∗ y0 + 5 ∗ p0 + 8 ∗ p1 ≥ 0

18 0 ∗ x3 + 1 ∗ x2 − 3 ∗ x1 + 2 ∗ x0 − 1 ∗ y3 + 2 ∗ y2 − 1 ∗ y1 − 1 ∗ y0 + 5 ∗ p0 + 3 ∗ p1 ≥ 0

19 −2 ∗ x3 − 4 ∗ x2 − 1 ∗ x1 + 2 ∗ x0 − 1 ∗ y3 + 2 ∗ y2 + 3 ∗ y1 − 1 ∗ y0 + 3 ∗ p0 + 8 ∗ p1 ≥ 0

20 2 ∗ x3 − 4 ∗ x2 − 2 ∗ x1 − 1 ∗ x0 + 1 ∗ y3 − 1 ∗ y2 − 2 ∗ y1 + 2 ∗ y0 + 6 ∗ p0 + 10 ∗ p1 ≥ 0

50 M. Kumar and T. Yadav

dure as in previous section to reduce the number of inequalities and get a set of
20 linear inequalities (Table 7) to represent the DDT of S-box.

3.2.4 Modeling Linear Layers
In the round function, nibble-permutation and XOR are the linear operations.
The permutation operation can be easily represented by renaming the variables
only. To convert the XOR operation into linear inequalities, for each bit of U
and V (Algorithm 1), we follow the conditions on bit variables to exclude the
impossible patterns (Eq. 2). Here, u and v refer to the input bits and bit variable
w is used to refer the output of XOR operation i.e. w = u ⊕ v.

u + v − w ≥ 0
u − v + w ≥ 0

−u + v + w ≥ 0
u + v + w ≤ 2

(2)

3.2.5 MILP Model
The linear inequalities for substitution and permutation layers are used to model
an MILP problem and this MILP problem is solved to optimize the probability
of differential characteristic. In this process, we first minimize the number of
S-boxes and then by minimizing the probabilities, we get the desired differen-
tial characteristics. The objective function is the optimization of probability of
differential characteristics as given in Eq. 3. The source code for MILP model of
WARP is available on the GitHub2.

Min
∑

(3 × p0 + 2 × p1) (3)

We use Gurobi to solve this MILP problem for WARP and construct the
18-round and 19-round differential characteristics with optimal probability. The
differential characteristics for the 18-round and 19-round of WARP are presented
in Sects. 3.3 and 3.4. We have also constructed 108 differential characteristics for
18-round WARP with the probability of 2−122 (Appendix A).

3.3 Differential Characteristics for 18-Round WARP

We solve the MILP problems for 17 and 18 rounds of WARP using Gurobi solver.
The optimal solution for the 17-round problem is obtained with 57 active S-boxes
and 2−114 probability. To extend the 17-round characteristic, one round MILP
problem is modelled by fixing its output difference equal to the input difference of
the 17-round characteristic. This one round MILP problem is solved to construct
the 18-round characteristic by adding one round at the head of the 17-round
characteristic. The extended 18-round differential characteristic is constructed
with 61 active S-boxes and 2−122 probability as described in Table 8.
2 https://github.com/tarunyadav/WARP-MILP.

https://github.com/tarunyadav/WARP-MILP

MILP Based Differential Attack on Round Reduced WARP 51

Table 8. 18-round differential characteristics (extended from 17-round)

Round

(r)

Input difference

Δr = (xr
31, xr

30, · · · , xr
0)

Probability

(p)

1 0007a000fa7000000a000000d5f000d0 1

2 00700d00a0000000aa00000050000000 2−8

3 0000d50000000000a000000000000a00 2−12

4 000050000000000a000000000000aa00 2−16

5 00000000000000a0000000000000a000 2−20

6 000000000a00000000000000000a0000 2−20

7 0000000aa0000000000a000000a00000 2−24

8 000000aa00000a0000a00a00000a0000 2−28

9 0a0000a00000af000000a00000a00000 2−36

10 a0000f0a0000f000000a00000a000000 2−40

11 0000f0a00000000a00a0000aaf0f0000 2−48

12 00000a000a0000a00f0500aaf0f00a0a 2−56

13 000aaf0aa000000afa500aa00500ada0 2−70

14 00aaf0a000000aaaa000a00a5000df00 2−86

15 00a00500000fa0aa000a00a0000af000 2−96

16 000050000af000a000a500000aa00000 2−106

17 00000000a000000005500000a000000a 2−112

18 00000a0000000000500000000a0000a5 2−116

19 0000a000000a000f0000000fa7000550 2−122

Table 9. 18-round differential characteristics

Round

(r)

Input difference

Δr = (xr
31, xr

30, · · · , xr
0)

Probability

(p)

1 000af000faf000000a0000005f500050 1

2 00a00500a0000000af000000f0000000 2−8

3 00005f0000000000f000000000000a00 2−12

4 0000f0000000000a000000000000af00 2−16

5 00000000000000a0000000000000f000 2−20

6 000000000f00000000000000000a0000 2−20

7 0000000ff0000000000a000000a00000 2−24

8 000000fa00000a0000a00f00000a0000 2−28

9 0a0000a00000aa000000f00000a00000 2−36

10 a0000f0a0000a000000a00000a000000 2−40

11 0000f0a00000000a00a0000aaa050000 2−48

12 00000a000f0000a00f0d00aaa0500a0a 2−56

13 000aaa0af000000affd00aa00d00ada0 2−70

14 00aaa0a0000005aaf000a00ad000df00 2−86

15 00a00d00000a50aa000a00a0000af000 2−96

16 0000d0000aa000a000ad000005a00000 2−106

17 00000000a00000000dd000005000000a 2−112

18 0000050000000000d00000000a0000ad 2−116

19 00005000000a00070000000da7000dd0 2−122

52 M. Kumar and T. Yadav

We solve the MILP problem for 18-round WARP and construct 18-round
differential characteristics without extending a lower round characteristic.
Although, the patterns of active S-boxes and differential probabilities are similar
to the characteristics described in Table 8. This 18-round differential character-
istic with 61 active S-boxes and 2−122 probability is described in Table 9.

3.4 Differential Characteristics for 19-Round WARP

We solve the MILP problem for 19-round WARP and construct the differential
characteristics with the least number of active S-boxes. We present the 19-round
characteristic by extending the 18-round differential characteristics (Table 10).

We did not find any 19-round differential characteristics consisting of 65
or less active S-boxes. The best differential characteristic for 19-round WARP
consists of 66 active S-boxes with the probability of 2−132.

Table 10. 19-round differential characteristics

Round
(r)

Input difference
Δr = (xr

31, x
r
30, · · · , xr

0)
Probability
(p)

1 0007a000fa7000000a000000d5f000d0 1

2 00700d00a0000000aa00000050000000 2−8

3 0000d50000000000a000000000000a00 2−12

4 000050000000000a000000000000aa00 2−16

5 00000000000000a0000000000000a000 2−20

6 000000000a00000000000000000a0000 2−20

7 0000000aa0000000000a000000a00000 2−24

8 000000aa00000a0000a00a00000a0000 2−28

9 0a0000a00000af000000a00000a00000 2−36

10 a0000f0a0000f000000a00000a000000 2−40

11 0000f0a00000000a00a0000aaf0f0000 2−48

12 00000a000a0000a00f0500aaf0f00a0a 2−56

13 000aaf0aa000000afa500aa00500ada0 2−70

14 00aaf0a000000aaaa000a00a5000df00 2−86

15 00a00500000fa0aa000a00a0000af000 2−96

16 000050000af000a000a500000aa00000 2−106

17 00000000a000000005500000a000000a 2−112

18 00000a0000000000500000000a0000a5 2−116

19 0000a000000a000f0000000fa7000550 2−122

20 000f0a000aa500f00d0000fd70005a00 2−132

MILP Based Differential Attack on Round Reduced WARP 53

4 Key Recovery Attack on 21-Round WARP

We select the 16-round differential characteristic (Δ2 → Δ18) from the 18-round
differential characteristic (Table 9). The probability of the 16-round differential
characteristic is 2−108. We add two rounds at the beginning and three rounds
at the end of the 16-round differential characteristic as shown in Table 12. Using
the 16-round differential characteristic, we can launch a key recovery attack on
the 21-round WARP. The 16-round characteristic is chosen in particular because
the number of active bits in the head and tail of this characteristic are lesser.
In each round, 64-bit round key is required and it is extracted directly from the
128-bit key K = (K0,K1). The key K0 is used for the odd numbered rounds
while the even numbered rounds use the key K1 (Table 11). We need to guess
the round keys which correspond to the actives S-boxes. The round keys used in
1st, 19th and 21st rounds are (K0

0 ,K1
0 ,K2

0 ,K3
0 ,K4

0 ,K7
0 ,K10

0 ,K11
0 ,K13

0 ,K14
0) and

the keys (K1
1 ,K3

1 ,K4
1 ,K7

1 ,K8
1 ,K10

1 ,K11
1 ,K14

1) are used in 2nd and 20th rounds.
In total, 72 bits (18 nibbles) of the round keys are used in these rounds.

Table 11. Round keys used in differential attack on WARP

Round Subkeys

1 K0
0 ,K

1
0 ,K

2
0 ,K

3
0 ,K

4
0 ,K

5
0 ,K

6
0 ,K

7
0 ,K

8
0 ,K

9
0 ,K

10
0 ,K11

0 ,K12
0 ,K13

0 ,K14
0 ,K15

0

2 K0
1 ,K

1
1 ,K

2
1 ,K

3
1 ,K

4
1 ,K

5
1 ,K

6
1 ,K

7
1 ,K

8
1 ,K

9
1 ,K

10
1 ,K11

1 ,K12
1 ,K13

1 ,K14
1 ,K15

1

19 K0
0 ,K

1
0 ,K

2
0 ,K

3
0 ,K

4
0 ,K

5
0 ,K

6
0 ,K

7
0 ,K

8
0 ,K

9
0 ,K

10
0 ,K11

0 ,K12
0 ,K13

0 ,K14
0 ,K15

0

20 K0
1 ,K

1
1 ,K

2
1 ,K

3
1 ,K

4
1 ,K

5
1 ,K

6
1 ,K

7
1 ,K

8
1 ,K

9
1 ,K

10
1 ,K11

1 ,K12
1 ,K13

1 ,K14
1 ,K15

1

21 K0
0 ,K

1
0 ,K

2
0 ,K

3
0 ,K

4
0 ,K

5
0 ,K

6
0 ,K

7
0 ,K

8
0 ,K

9
0 ,K

10
0 ,K11

0 ,K12
0 ,K13

0 ,K14
0 ,K15

0

Table 12. Differential attack on 21-round WARP

Round
(r)

Input difference
Δr = (xr

31, x
r
30, · · · , xr

0)

1 00?0af?00????000000000?005??a00?

2 000af000?a?000000a0000005f?000?0

3 00a00500a0000000af000000f0000000

· ·
· ·
· ·
19 0000050000000000d00000000a0000ad

20 00005000000a000?0000000?a?000dd0

21 000?0a000?ad00?00?0000???000d?00

22 00??a?0??dd?000???000??a000???00

54 M. Kumar and T. Yadav

4.1 Data Collection

We can build 2n(n ≤ 88) structures corresponding to fixed bits in the input
difference (Δ1). The objective is to minimize the value of n such that sufficient
number of right pairs are left for key guessing phase. Each structure traverses
the 40 undetermined (?) bits in Δ1 (Table 12). Thus, each structure generates
240∗2−1(= 279) pairs3 satisfying the differential. Therefore, the total number of
pairs generated by the 2n structures are 2n+79. Such a pair will meet the third
round differential in Table 12 with an average probability of 2−40. The probability
of obeying the differential after 19th round for the pair encrypted with the right
key is 2−108. Therefore, the number of pairs satisfying the differential with a
right key guess after 19th round will be 2n+79 × 2−40 × 2−108(= 2n−69). Hence,
we choose n = 73 so that we could get at least 24(= 16) right pairs under the
correct key guessing.

4.2 Key Recovery

In this phase, we guess the key bits corresponding to the 4-bit key nibbles.
This guess includes K0

0 ,K2
0 ,K3

0 ,K10
0 ,K11

0 ,K13
0 in 1st round, K3

1 ,K7
1 , K11

1 ,K14
1

in 2nd round, K0
0 ,K3

0 ,K13
0 in 19th round, K1

1 ,K3
1 ,K4

1 ,K8
1 ,K10

1 in 20th round
and K1

0 ,K4
0 ,K7

0 ,K10
0 ,K11

0 ,K13
0 ,K14

0 in 21st round.
Since K0

0 ,K3
0 are involved in 1st and 19th round, K3

1 is involved in 2nd and
20th round, K10

0 ,K11
0 are involved in 1st and 21st round, and K13

0 is involved
in 1st, 19th and 21st round. Therefore, total 18(=25-7) unique 4-bit nibbles are
involved in the key recovery phase. Hence, we construct 218∗4(= 272) counters
for the possible values of the 72 key bits.

With n = 73, we repeat the key guessing procedure for each of the 273+79

pairs. We are left with 273+79−72(= 280) pairs after filtered by 72 fixed bits in Δ22.
Therefore, the expected counter value for a wrong key guess is 273+79−72−40−56(=
2−16) after filtered by undetermined bits in Δ1 and Δ22. As discussed in Sub-
sect. 4.1, there are at least 16 right pairs remaining after 19th round. The right
pairs will be used for key guessing and a key with the highest counter value will
be the correct key.

4.3 Complexity

There are 2n structures and 240 pairs can be generated in each structure. With n
= 73, the data complexity of the 21-round differential attack on WARP becomes
273+40(= 2113). We need to store the counter corresponding to 72 bits of the key,
so the memory complexity of the attack becomes 272. In the first round, for each
of the 280 pairs, we need to guess the 24 key bits corresponding to the six active
S-boxes. Therefore, time complexity of the first round becomes 280+24(= 2104).
Similarly the time complexities for 2nd, 21st, 20th and 19th rounds are 256+16(=
272), 280+16(= 296), 256+16(= 272) and 236+0(= 236) respectively. There is no

3 In this calculation, we consider a pair (a, b) same as (b, a).

MILP Based Differential Attack on Round Reduced WARP 55

need to guess the key bits for 19th round because these have been already guessed
in the first round. Hence, the time complexity of the whole attack is bounded
by the 2113 chosen plaintexts.

5 Conclusion

In this paper, we presented a 21-round key recovery attack and detailed differ-
ential characteristics for 18-round and 19-round WARP. We used MILP aided
search to construct the differential characteristic for 18 rounds with the proba-
bility of 2−122 and the best differential characteristic for 19 rounds exists with a
probability of 2−132. We used the 16-round differential characteristic to mount
a key recovery attack on 21 rounds by adding two rounds on the head and three
rounds on the tail of this differential characteristic. The data complexity of the
21-round key recovery differential attack is 2113. This paper presented the first
key recovery attack on 21-round WARP. However, the attack does not pose any
threat to the security of full round WARP against differential attack.

Appendix

A Differential Characteristics (108) of 18-Round WARP
with Probability of 2−122

No. Input difference Output difference

1 0x000af000faf000000a0000005f500050 0x00005000000a00070000000da7000dd0

2 0x00055000a75000000a000000aad00070 0x0000a000000f00050000000afd000aa0

3 0x000da000a5a000000a000000a5a00070 0x0000a000000f000f0000000fad0005a0

4 0x0005a000a5a0000005000000aa7000a0 0x00005000000a000a0000000a55000aa0

5 0x000aa000aa50000005000000aaa00050 0x00005000000a000a0000000aaf000ff0

6 0x000aa000aa5000000a000000daf00050 0x0000a000000a000500000005a5000da0

7 0x000ad000fa5000000a0000005ad000a0 0x0000a000000f000a0000000af7000a50

8 0x000aa000a5d000000a000000faa000d0 0x0000a000000f00050000000ff5000da0

9 0x0005a000aa70000005000000a55000a0 0x0000a0000005000a0000000faf000af0

10 0x000da000a5f00000050000007aa00070 0x0000a0000005000a000000057a000ff0

11 0x000da000a5a000000a000000a5a00070 0x0000a000000500050000000daf0005a0

12 0x0005a0005fa000000a000000adf000a0 0x0000a000000500050000000d750005a0

13 0x0005d000faa000000a000000aad00070 0x0000a000000a00050000000da5000aa0

14 0x0005a000ad50000005000000aa7000a0 0x0000a000000a000d0000000aaf000af0

15 0x000da000f5d000000a000000aaa00070 0x00005000000a00070000000dad000da0

16 0x0005f0007ad000000d000000aa5000a0 0x0000d000000a00070000000aa5000aa0

17 0x0005a000757000000d000000a57000a0 0x0000a000000a00050000000faf000da0

18 0x000aa000aaa000000a0000005a5000f0 0x0000a0000005000500000005aa000da0

19 0x0007d000a7a000000a000000dad00050 0x0000a000000a000a00000007da000aa0

20 0x000aa0005a5000000a000000aa5000f0 0x0000a000000a000500000005ad0005a0

(continued)

56 M. Kumar and T. Yadav

(continued)

No. Input difference Output difference

21 0x000da000a5a000000d000000aaa000a0 0x0000a000000f00050000000ffa000ad0

22 0x000aa000a57000000d000000a5a000f0 0x0000a000000f000a00000005aa000da0

23 0x0005a000ad7000000d000000ad7000a0 0x000070000005000d0000000faa000da0

24 0x000aa000555000000a000000daa000a0 0x0000a000000d000500000005aa000ad0

25 0x000da000a5a000000a000000ada000a0 0x0000a000000f000500000005a5000aa0

26 0x000aa000aa7000000a000000dd500050 0x0000a000000d00050000000fad000aa0

27 0x000aa0007d70000005000000a5a00050 0x0000a000000a000f0000000da5000aa0

28 0x0005a000757000000d000000a5a000a0 0x0000a000000a000a00000005ad000aa0

29 0x000aa000aa70000005000000ad5000a0 0x0000f000000a000f00000007dd0005a0

30 0x0005a000daa000000a000000a55000a0 0x0000a000000f000d0000000daf000af0

31 0x000aa000dda000000a000000aa700050 0x0000a000000d000a0000000d7f000af0

32 0x000aa000a5a000000a000000daa000f0 0x0000a000000f00050000000fff000af0

33 0x000af0005aa000000a0000005a500050 0x0000a000000d000500000005a7000a50

34 0x000da000755000000d0000007aa00070 0x0000a0000005000f0000000aad000aa0

35 0x000aa000ada0000005000000aa700050 0x0000a000000a00050000000dad000aa0

36 0x0005a000ad50000005000000aaa000a0 0x0000a0000005000d0000000aaf000ff0

37 0x0005a0007da000000d000000ad7000a0 0x0000a000000f000a0000000aad000da0

38 0x000aa000aa70000005000000add00050 0x0000a0000005000500000005aa000aa0

39 0x000aa0007df0000005000000af7000a0 0x0000f000000f000a00000005aa000aa0

40 0x000aa000adf000000a0000005a700050 0x0000a000000a00050000000a5a000aa0

41 0x000aa000aaa000000a0000005f500050 0x0000a000000a000f00000005a50005a0

42 0x0007a000d5a00000070000005a700050 0x000050000007000a00000007dd000aa0

43 0x000aa000fa7000000a000000ddd00050 0x0000a000000a000500000005aa0005a0

44 0x000da0005aa000000a000000aa500070 0x0000a000000f000500000005aa000aa0

45 0x000a5000da5000000a000000aa500050 0x0000a0000005000d0000000fa7000ad0

46 0x000aa0005a7000000a0000005d500050 0x0000700000050005000000057f000af0

47 0x000aa000d5f000000a0000005aa00050 0x0000a000000f000500000005af000aa0

48 0x000aa000ada000000f000000f5a00050 0x0000f000000f000a0000000afd000aa0

49 0x000aa0005aa000000a000000a5a00050 0x0000a0000005000a0000000d7f000aa0

50 0x0005a000a5a000000d000000ada000a0 0x0000a0000005000d0000000d7d000d70

51 0x0005a000aa5000000f000000aad000a0 0x0000a000000a000a0000000daa000a50

52 0x000ad000da5000000a0000005aa00050 0x0000a000000a000a0000000af7000ad0

53 0x000da000a5f00000050000007a700070 0x0000a000000f000a00000005af000af0

54 0x000aa00055a000000a0000005a700050 0x0000a000000f000d0000000ff5000da0

55 0x000aa000aa5000000f000000fad000a0 0x0000f000000a000f0000000a55000aa0

56 0x000fa000a570000005000000ad7000f0 0x0000d000000a00070000000a57000a50

57 0x0005a000aff000000a000000aaa000a0 0x0000a000000d000f0000000d75000aa0

58 0x000aa000a550000005000000aaa000d0 0x0000a000000a000d0000000ad50005a0

59 0x0005a000a57000000a000000ad7000a0 0x0000a0000005000f0000000d77000ad0

60 0x0005a0005aa000000a000000aa5000a0 0x0000a000000d000a0000000d77000ad0

61 0x0005a000a5a000000f000000afa000a0 0x0000a0000005000d0000000daa000fd0

62 0x0005a00075a000000d000000aaa000a0 0x0000a000000500050000000fa70005d0

63 0x000aa000a5d000000a0000005aa00050 0x0000a000000d000d0000000d7a000a50

64 0x000aa000d5d0000007000000daa00050 0x0000f000000a000a0000000aaa000a50

(continued)

MILP Based Differential Attack on Round Reduced WARP 57

(continued)

No. Input difference Output difference

65 0x000fa000aa7000000d000000ada000f0 0x0000a0000005000d00000005ad0005a0

66 0x000aa000f57000000a0000005da00050 0x0000d000000a00070000000755000fa0

67 0x000dd000aaa000000a000000aaa000a0 0x0000a000000f000d0000000daa000a50

68 0x000a5000a7a000000d000000aad000f0 0x00005000000a000a0000000aaa000a50

69 0x0005a000a570000005000000ada000a0 0x0000a000000500050000000faf000aa0

70 0x000aa000ffa000000a000000d5f00050 0x00005000000a000a0000000a5a000a50

71 0x000a5000aa5000000a000000da500050 0x0000f000000f000a0000000da7000ad0

72 0x0005a000f5a000000a000000a5a000a0 0x0000a000000a00050000000a5a000a50

73 0x0005a000ad5000000a000000aa7000a0 0x0000a000000f000d00000005aa000aa0

74 0x000aa00055a000000a000000dda00050 0x00005000000a00070000000add000aa0

75 0x000aa000a57000000a0000005da00050 0x0000a0000005000f00000005af000af0

76 0x000aa000d57000000a000000a5a000a0 0x0000a000000a000f00000005a7000f50

77 0x0005f000afa0000005000000aff000a0 0x00005000000a000a00000005aa000ad0

78 0x000aa000aaa000000a000000d5a00050 0x0000a00000050005000000057a000aa0

79 0x000aa000aa5000000f000000fa500050 0x0000a0000005000d0000000faf000af0

80 0x000aa00055a000000a0000005da00050 0x0000f000000f000a0000000daa0005d0

81 0x000aa000ad7000000d000000ad700050 0x000070000005000d0000000d7a0005a0

82 0x000aa0007aa0000005000000a5500050 0x0000a000000f000f00000005aa000da0

83 0x000aa000aaa000000a0000005a500050 0x0000a000000a000a0000000daa000ad0

84 0x000aa000d5a000000a000000daa000f0 0x0000d000000a00070000000ad7000a50

85 0x000aa0005aa000000a000000d5500050 0x0000a0000005000500000005ad000fa0

86 0x000aa0005aa000000a000000d5500050 0x0000a000000f000a0000000aaf0005a0

87 0x0005a000aaa0000005000000a55000a0 0x0000a0000005000a00000005af000aa0

88 0x000aa000ada000000d000000a57000d0 0x0000a0000005000f00000005aa000da0

89 0x0005a000aaa0000005000000a5d000a0 0x0000a000000a00050000000a5a000aa0

90 0x000aa000dd5000000a000000daa000d0 0x0000f000000a000a00000005ad000aa0

91 0x000aa000a5a000000a000000aaa00050 0x0000a000000a000f00000007d5000aa0

92 0x000aa0005f7000000a00000055a00050 0x0000a000000500050000000d77000fd0

93 0x0007a000dff000000a000000daa000d0 0x0000a0000005000d0000000aa7000a50

94 0x000aa000dda000000a000000fa700050 0x0000a000000a000a0000000fa5000da0

95 0x000ad000aa50000005000000aa500050 0x0000a000000a00050000000a5d0005a0

96 0x0005a0007d700000050000007d7000a0 0x0000a0000005000a00000005a50005a0

97 0x000aa000ad5000000a0000005aa00050 0x0000a000000a000a0000000a5a000aa0

98 0x000df000aaf000000d000000afd00070 0x0000a000000500050000000d75000aa0

99 0x000aa000a57000000a000000dda00050 0x0000a000000a000a0000000ada000af0

100 0x0005a000a57000000d000000a5a00070 0x00005000000a000a0000000a5a000aa0

101 0x000da000a5a000000a000000afa000a0 0x0000a0000005000f00000005ad000aa0

102 0x000a500057a000000a000000aad000a0 0x0000a000000a000f0000000aa5000aa0

103 0x00055000aaa000000d0000007af000a0 0x0000a000000a00050000000a55000fa0

104 0x0005f000aaf000000a000000af5000a0 0x0000a0000005000d0000000faa000aa0

105 0x0005a000a5f000000a000000afa000a0 0x00005000000a000a00000007da000aa0

106 0x000aa000aaa000000a00000055500050 0x0000a000000a000a0000000a55000aa0

107 0x0005a00075a000000d000000ada000a0 0x0000a000000f00050000000af5000aa0

108 0x000aa000a5a000000a0000005aa00050 0x0000a000000a00050000000755000aa0

58 M. Kumar and T. Yadav

References

1. Abdelkhalek, A., Sasaki, Y., Todo, Y., Tolba, M., Youssef, A.M.: MILP modeling
for (large) S-boxes to optimize probability of differential characteristics. IACR
Trans. Symmetr. Cryptol. 2017(4), 99–129 (2017). https://doi.org/10.13154/tosc.
v2017.i4.99-129. ISSN 2519-173X

2. Banik, S., et al.: WARP: revisiting GFN for lightweight 128-bit block cipher. In:
Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.) SAC 2020. LNCS, vol.
12804, pp. 535–564. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
81652-0 21

3. Biham, E., Shamir, A.: Differential cryptanalysis of the full 16-round DES. In:
Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 487–496. Springer, Hei-
delberg (1993). https://doi.org/10.1007/3-540-48071-4 34

4. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

5. CPLEX. https://www.ibm.com/analytics/cplex-optimizer
6. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2002).

https://doi.org/10.1007/978-3-662-04722-4
7. Gohr, A.: Improving attacks on round-reduced Speck32/64 using deep learning.

In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp.
150–179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 6

8. Gurobi Optimizer. http://www.gurobi.com
9. Knudsen, L., Robshaw, M.J.B.: Block Cipher Companion. Springer, Heidelberg

(2011). https://doi.org/10.1007/978-3-642-17342-4. ISBN 978-3-642-17341-7
10. Kumar, M., Suresh, T.S., Pal, S.K., Panigrahi, A.: Optimal Differential Trails in

Lightweight Block Ciphers ANU and PICO. Cryptologia 44(1), 68–78 (2020)
11. Logic Friday. http://sontrak.com/
12. Matsui, M.: On correlation between the order of S-boxes and the strength of DES.

In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366–375. Springer,
Heidelberg (1995). https://doi.org/10.1007/BFb0053451

13. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34704-7 5

14. National Institute of Standards and Technology: Lightweight Cryptography, Final-
ists, NIST (2021)

15. SAGE. http://www.sagemath.org/index.html
16. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-

uation and (related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 158–178. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 9

17. Sun, S., et al.: Towards finding the best characteristics of some bit-oriented block
ciphers and automatic enumeration of (related-key) differential and linear charac-
teristics with predefined properties. Cryptology ePrint Archive, Report 2014/747
(2014)

18. Sasaki, Yu., Todo, Y.: New impossible differential search tool from design and
cryptanalysis aspects. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part III. LNCS, vol. 10212, pp. 185–215. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-56617-7 7

https://doi.org/10.13154/tosc.v2017.i4.99-129
https://doi.org/10.13154/tosc.v2017.i4.99-129
https://doi.org/10.1007/978-3-030-81652-0_21
https://doi.org/10.1007/978-3-030-81652-0_21
https://doi.org/10.1007/3-540-48071-4_34
https://doi.org/10.1007/978-3-540-74735-2_31
https://www.ibm.com/analytics/cplex-optimizer
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-030-26951-7_6
http://www.gurobi.com
https://doi.org/10.1007/978-3-642-17342-4
http://sontrak.com/
https://doi.org/10.1007/BFb0053451
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
http://www.sagemath.org/index.html
https://doi.org/10.1007/978-3-662-45611-8_9
https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.1007/978-3-319-56617-7_7

MILP Based Differential Attack on Round Reduced WARP 59

19. Sasaki, Yu., Todo, Y.: New algorithm for modeling S-box in MILP based differential
and division trail search. In: Farshim, P., Simion, E. (eds.) SecITC 2017. LNCS,
vol. 10543, pp. 150–165. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-69284-5 11

20. Yadav, T., Kumar, M.: Differential-ML distinguisher: machine learning based
generic extension for differential cryptanalysis. In: Longa, P., Ràfols, C. (eds.) LAT-
INCRYPT 2021. LNCS, vol. 12912, pp. 191–212. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-88238-9 10

21. Zhu, B., Dong, X., Yu, H.: MILP-based differential attack on round-reduced GIFT.
In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 372–390. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-12612-4 19

https://doi.org/10.1007/978-3-319-69284-5_11
https://doi.org/10.1007/978-3-319-69284-5_11
https://doi.org/10.1007/978-3-030-88238-9_10
https://doi.org/10.1007/978-3-030-88238-9_10
https://doi.org/10.1007/978-3-030-12612-4_19

Post-Quantum Cryptography and
Homomorphic Encryption

SHELBRS: Location-Based
Recommendation Services Using

Switchable Homomorphic Encryption

Mishel Jain1(B), Priyanka Singh1(B), and Balasubramanian Raman2(B)

1 Dhirubhai Ambani Institute of Information and Communication Technology,
Gandhinagar, Gujarat, India

{201911052,priyanka singh}@daiict.ac.in
2 Indian Institute of Technology, Roorkee, Roorkee, Utharakhand, India

bala@cs.iitr.ac.in

Abstract. Location-Based Recommendation Services (LBRS) has seen
an unprecedented rise in its usage in recent years. LBRS facilitates a user
by recommending services based on his location and past preferences.
However, leveraging such services comes at a cost of compromising one’s
sensitive information like their shopping preferences, lodging places, food
habits, recently visited places, etc. to the third-party servers. Losing such
information could be crucial and threatens one’s privacy. Nowadays, the
privacy-aware society seeks solutions that can provide such services, with
minimized risks. Recently, a few privacy-preserving recommendation ser-
vices have been proposed that exploit the fully homomorphic encryp-
tion (FHE) properties to address the issue. Though, it reduced privacy
risks but suffered from heavy computational overheads that ruled out
their commercial applications. Here, we propose SHELBRS, a lightweight
LBRS that is based on switchable homomorphic encryption (SHE), which
will benefit the users as well as the service providers. A SHE exploits
both the additive as well as the multiplicative homomorphic properties
but with comparatively much lesser processing time as it’s FHE coun-
terpart. We evaluate the performance of our proposed scheme with the
other state-of-the-art approaches without compromising security.

Keywords: Homomorphic encryption · Location-Based
Recommendation Services (LBRS) · Co-occurrence Matrix (CM)

1 Introduction

Location-Based Recommendation Services (LBRS) grant users access to relevant
information about their surroundings based on their location and history. For
instance, a person searching for a coffee shop nearby his/her location. The ser-
vice providers would provide the best search results considering his/her present
location and previous history. However, availing of such services risks the user’s
privacy as the shared sensitive information could be misused by these third-
party servers to their advantage, causing serious losses to the user [15]. This fact
c© Springer Nature Switzerland AG 2022
L. Batina et al. (Eds.): SPACE 2021, LNCS 13162, pp. 63–80, 2022.
https://doi.org/10.1007/978-3-030-95085-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95085-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-95085-9_4

64 M. Jain et al.

kind of delimits the privacy-aware society rushing to leverage such services and
creates an urgent need for privacy-preserving recommendation services.

The real-time location information of the user is handled by location based
services (LBS). It also provides recommendation over encrypted history prefer-
ences which ensures the user’s privacy. Lyu et al. proposed one such state-of-the-
art protocol. They adopt the Hilbert curve [16] as a mapping tool, collaborative
filtering recommender based on the co-occurrence matrix as a recommendation
technique [11,17], and Brakerski-Gentry-Vaikuntanathan (BGV) fully homomor-
phic encryption (FHE) as an encryption scheme [2]. However, it is still infeasible
for the use of commercial recommendation services due to the high processing
time.

In this paper, we propose SHELBRS, a lightweight LBRS that will benefit
the users as well as the service providers. Instead of FHE, we employ switchable
homomorphic encryption (SHE) that securely switches between partially homo-
morphic encryption (PHE) schemes. Specifically, Paillier Homomorphic Encryp-
tion and ElGamal Homomorphic Encryption for performing additions and mul-
tiplications on the encrypted data. PHE evaluates arithmetic operations more
efficiently at least 2–3 order of magnitude compared to FHE. SHE supports an
arbitrary number of additions and multiplications over encrypted data and serves
the principle of FHE with better efficiency. The overall computation and commu-
nication cost required in switching between the PHE’s is reasonable for real-life
applications. It overall reduces the processing time without compromising the
security.

The remainder of this paper is structured as follows: Sect. 2 discusses some of
the related works. Section 3 gives an overview of the Hilbert curve, collaborative
filtering based on Co-occurrence Matrix (CM), PHE, and the SHE schemes.
Section 4 presents the LBRS using FHE [9] while Sect. 5 details the proposed
SHELBRS scheme. Section 6 discusses the experimental results and the security
analysis of the proposed scheme. Section 7 concludes the work along with some
future directions.

2 Related Work

Lattice-based FHE scheme introduced by Craig Gentry in 2009, is a milestone
research that opened doors for proposing possible solutions for encrypted data. It
was made possible as this scheme supported computation of arbitrary functions
and operations on the ciphertext, without the need of actually decrypting it [3].

Many LBS were proposed in the literature to search nearest Point of Inter-
ests (POI)’s to the user’s private location. In 2003, K-anonymous based tech-
nique was introduced which adopts temporal and spatial cloaking [4]. It acquires
accuracy but requires a trusted third party to hide the user’s location. Private
Information Retrieval (PIR) [10], Private Circular Query Protocol (PCQP) [6]
and Lightweight Private Circular Query Protocol (LPCQP) [19] are the LBS
based on the cryptography methods. In PIR scheme, the user receives POI from
the server’s database based on Quadratic Residuosity Assumption (QRA) with-
out server’s knowledge of which POI a user is interested in. It provides security

SHELBRS 65

but takes high execution time for searching POIs. PCQP proposed by Lien et
al. is an effective k-NN search algorithm based on Paillier cryptosystem and
Hilbert curve. It secretly shifts the POI-info circularly which is stored on the
server. LPCQP, proposed by Utsunomiya et al. is a lightweight protocol that
removes unnecessary POI information from the requesting user to reduce com-
putational cost. PIR, PCQP, and LPCQP are secure against single point failures
and Denial of Service (DOS) attacks. In 2012, Pingley et al. proposed a context-
aware scheme for privacy-preserving LBS [13]. It projects the user’s location on
various-grid-length Hilbert curve and uses location perturbation technique to
prevent user’s privacy from the LBS server. Gang et al. proposed location-based
social network (LBSN) towards privacy preservation for “check-in” services in
2019 [18]. It designs the framework using k-anonymity based algorithms with-
out using a trusted third-party server. It guarantees secure access and preserves
user’s location privacy.

The detail of recommender systems and discussion about different recom-
mendation algorithms based on traditional and network approaches was studied
by Lu et al. in 2012 [8]. It compares the performance of different recommen-
dation algorithms. Badsha et al. introduced an Elgamal cryptosystem based
privacy-preserving item-based Collaborative Filtering (CF) in 2016 [1]. It pro-
vides recommendations based on the user’s average ratings and the similarities
between the items. Zhang et al. proposed Factorization Machines (FM) based
recommendation algorithm for Rural Tourism in 2018 [20]. It provides recom-
mendations based on geographical distribution and seasonal features such as the
user’s best suitable season for traveling, how many kilometers is the traveling
spot away from the city, and other user’s reviews or comments for the particular
location. In 2018, Horowitz et al. proposed a mobile recommender system named
“EventAware” for the events [5]. It provides recommendations on the basis of
both context-aware and tag-based algorithms. In 2019, Qi et al. proposed a time-
aware and privacy-preserving distributed recommendation service based on a
locality-sensitive hashing (LSH) to provide most accurate recommended results
[14]. Papakyriakopoulos et al. analyzed the political networks based on hybrid
collaborative filtering and deep learning recommender algorithms in 2020 [12].
It shows how hyperactive users influence recommendations. It also compares
the results based on likes and comments with and without the inclusion of the
hyperactive users along with the rest of the users in the datasets.

Combining both location privacy and privacy-preserving recommendations,
Lyu et al. proposed privacy-preserving recommendations for LBS in 2019 [9].
It provides suggestions over encrypted previous histories considering user’s live
location data. This protocol uses one trusted third party server where sensitive
data such as crypto keys are stored and one honest but curious server where all
the computations are performed. Compared to Lyu et al. protocol, the proposed
SHELBRS protocol requires less computation cost as it uses SHE instead of FHE
and maintains security while sharing sensitive data between the servers.

66 M. Jain et al.

3 Preliminaries

3.1 Hilbert Curve

Hilbert curve is a mapping tool that is used to transform 2-D space into 1-D
space. It preserves the adjacency of the neighboring points and has best clus-
tering properties. In order to preserve the adjacency property, the orientation is
not retained [11,16]. As we increase the order of a pseudo-Hilbert curve, a given
point on the line converges to a specific point. The two data points which are
close to each other in 2-D space are also close to each other after mapping into
1-D space.

Fig. 1. The combination of continuous Hilbert space-filling curve and location-based
services

Figure 1 shows a Hilbert curve over the landscape, storing the POI look-up
table at the user end and the POI information table at the server end. The user
p3 is located on cell 7 and he/she is requesting POIs from the server. At the
user’s side, p3 is located at Index-3 and after sending index information to the
server, the server sends nearby POIs i.e. p2, p3, p4 corresponding to the current
index back to the user. This is how the nearest POIs to the user’s location is
suggested when the landscape is mapped on the Hilbert curve. However, sending
such information in plaintext does not ensure the user’s privacy.

3.2 Collaborative Filtering (CF) Recommender Based
on Co-occurrence Matrix (CM)

CF Recommender consists of two well-known algorithms: user-based CF and
item-based CF. We used an item-based CF recommender as similarities between
items are more stable than that of users. It finds the similarity between items and
provides the best recommendation. Some E-commerce websites such as Amazon

SHELBRS 67

provide recommendations such as “A person that bought product A also bought
product B” or “A person that liked the cafe A also liked cafe B”.

CM contains the visited POIs information. It computes the number of times
each pair of items occurs together in the user-item inversion list. To generate
CM, the first step is to generate a user-item inversion list and the second step
is to traverse the list and follow the algorithm as described:

– CM [i][j](i! = j) is increased by 1 if item i and the item j are in the same
user’s inversion list.

– CM [i][j](i == j) is increased by 1 for every item i.

Fig. 2. Formation of the final CM [9]

Figure 2 shows the formation of CM based on the user-item inversion
list. According to the user-item inversion list, User1 has the preference for
indices 2, 3, 5, 6. The value at all possible pairs of indices in CM such
as CM [2][3], CM [2][5], CM [2][6], CM [3][2], CM [3][5], CM [3][6], CM [5][2],
CM [5][3], CM [5][6], CM [6][2], CM [6][3], CM [6][5] is incremented by 1. Every
time an item occurs in the list, the value in CM such as CM [2][2], CM [3][3],
CM [5][5], and CM [6][6] is incremented by 1. Likewise for all the users, the above
algorithm is performed to get the final CM .

3.3 Partially Homomorphic Encryption (PHE)

PHE schemes are a kind of encryption schemes that allow only certain types of
operations on the encrypted data. If we decrypt the processed encrypted data,
the results would be the same as if calculated over the corresponding plaintext
values. Based on the type of operations supported, it can be categorized as
additive PHE or multiplicative PHE. For instance, Paillier is an example of
additive PHE and ElGamal, an example of multiplicative PHE. We will briefly
describe each of them along with their homomorphic properties.

68 M. Jain et al.

Paillier Encryption as Additive PHE

– KeyGen(1n,+): On input a security parameter 1n, the algorithm chooses
(N, p, q) where N = p ∗ q, p and q are n bit primes, and φ(N) = (p − 1) ∗
(q − 1). The Paillier ADD scheme public-private key pair:

〈
pk+, sk+

〉
= 〈N, (N,φ(N))〉 (1)

– Enc(pk+,m): The algorithm takes a plaintext m and a public key N as input.
It chooses a random r ∈ Z∗

N and outputs the ciphertext:

c+ = (1 + N)m.(r)N mod N2 (2)

– Dec(sk+, c+): The algorithm takes a ciphertext c+ and a private key
(N,φ(N)) as input and outputs the message:

m =
((c+)φ(N) mod N2) − 1

N
.φ(N)−1 mod N (3)

– Paillier homomorphic properties:
1. Addition: The product of two encrypted ciphertexts results in the sum

or addition of their corresponding plaintexts:

Dec(E+(m1) ∗ E+(m2) mod N2) = (m1 + m2) mod N (4)

2. Scalar Multiplication: Raising a scalar to the power of encrypted
ciphertext results in the product of the scalar and the corresponding
plaintext:

Dec(E+(m1)k) mod N2) = (k ∗ m1) mod N (5)

ElGamal Encryption as multiplicative PHE

– KeyGen(1n, ∗): On input a security parameter 1n, the algorithm chooses
(N, p, q) where N = p ∗ q, p and q are n bit primes, considers g as square
value and sets g = 16. It also chooses a random odd number x, and sets
h = gx mod N . The ElGamal MUL scheme public-private key pair:

〈pk∗, sk∗〉 = 〈(N, g, h), (N, g, x)〉 (6)

– Enc(pk∗,m): The algorithm takes a plaintext m and a public key (N, g, h)
as input. It chooses a random r ∈ Z∗

N and outputs the ciphertext:

c∗ = 〈c∗
1, c

∗
2〉 = 〈mhr, gr mod N〉 (7)

– Dec(sk∗, c∗): The algorithm takes a ciphertext c∗ and a private key (N, g, x)
as input and outputs the message:

m =
c∗
1

(c∗
2)x

mod N (8)

– ElGamal homomorphic properties:
1. Multiplication: The product of two encrypted ciphertexts results in the

multiplication of their corresponding plaintexts:

Dec(E∗(m1) ∗ E∗(m2) mod N2) = (m1 ∗ m2) mod N (9)

SHELBRS 69

3.4 Switchable Homomorphic Encryption (SHE)

We work with a variant of ElGamal MUL scheme E∗ and Paillier ADD scheme
E+. ElGamal MUL scheme uses a large composite modulus i.e., N = p ∗ q,
where p and q are large primes. Both the partially homomorphic schemes share
the same modulus. We consider two servers, say a server and a proxy. The
algorithms used in the SHE scheme are described as follows:

– KeyGen(1n): On input a security parameter 1n, the algorithm outputs
(N, p, q), where N = p ∗ q, p and q are n bit primes, and φ(N) = (p − 1)(q − 1).
The Paillier ADD scheme public-private key pair:

〈
pk+, sk+

〉
= 〈N, (N,φ(N), p, q)〉 (10)

It also chooses the generator g = 16, two random odd numbers x0, x1 ∈ Z∗
N

where |x0| ≈ |x1| < 1/2 |N |. It sets x = x0x1 and h = gx. The ElGamal MUL
scheme public-private key pair:

〈pk∗, sk∗〉 = 〈(N, g, h), (N, g, x0, x1)〉 (11)
– Enc(pko, m): The algorithm runs E+ encryption scheme if o is ‘+’ else runs

E∗ encryption scheme.
– Dec(sko, co): The algorithm runs E+ decryption scheme if o is ‘+’ else runs

E∗ decryption scheme.
– KeyShaGen(sk+): The algorithm sets both the secret key shares k+

0 (proxy)
and k+

1 (server) to NULL.
– KeyShaGen(sk∗): The algorithm sets both the secret key shares k∗

0 (proxy)
and k∗

1 (server) to x0 and x1 respectively.
– AddToMul(c+, pk∗): The algorithm is run locally by the server. Given an

ADD ciphertext of the form:

E+(m) = (1 + N)m.(r′)N mod N2 (12)
and the MUL public key pk∗ = (N, g, h), the algorithm chooses a random r
∈ Z∗

N and outputs the encrypted MUL ciphertext:

E+(E∗(m)) =
〈
(1 + N)mhr

.(r′)Nhr

mod N2, gr
〉

(13)

– MulToAdd(c+, k∗
0 , k

∗
1): The algorithm is jointly run by a server and a proxy.

On input an encrypted MUL ciphertext of the form (13) the server chooses a
random s ∈ Z∗

N , computes

c′ = (gr+s)k∗
1 , R = gs (14)

and forwards (13) and (14) to the proxy.
The proxy then using its key shares k∗

0 , computes (c′)k∗
0 = hr+s and finds its

inverse (hr+s)−1. It also computes and returns

c′′ = ((1 + N)mhr

.(r′)Nhr

)hr+s−1

mod N2

= (1 + N)mh−s

.(r′)Nh−s

mod N2 (15)

= E+(mh−s)

70 M. Jain et al.

and R′ := Rk∗
0 to the server.

Finally, the server computes (R′)k∗
1 = hs and recovers the corresponding ADD

ciphertext E+(m) by homomorphically removing h−s from c′′.

4 Lyu et al.’s Protocol

In this section, we give an overview of Lyu et al. protocol which was meant
to recommend services based on the current location of a user and his past
behavior without compromising his privacy [9]. It solved the problems existing
in the state-of-the-art privacy-preserving algorithms that were based on k-NN
technique for searching POI’s [6]. The major bottleneck was that the recommen-
dation service didn’t consider the user’s past behavior while recommending any
services that ultimately resulted in failing to attract the user’s usage of the rec-
ommendation system. Another major demerit was it lacked any benefits for the
service providers facilitating such services as the private keys were available only
to the user and hence, the service providers could not extract any information
from the user’s data towards making their profits.

Lyu et al. resolved the aforementioned issues using collaborative filtering
technique that works on top of database encrypted using FHE, besides encrypt-
ing the user’s location and preferences. Also, it allowed the service providers to
extract some aggregate information based on the user’s data via an introduction
of a Privacy Service Provider (PSP) that generates and holds the private keys.
This increased the commercial value of the recommendation service but still the
need of heavy computational resources required for FHE restricts the usage.

4.1 System Model

An overview of the protocol is shown in Fig. 3. It involves three main components:

– Privacy-Preserving Recommendation Server (PPRS): PPRS is a
semi-trusted i.e. honest but curious entity that is responsible for finding the
nearest POIs to the user, by considering the similarity between the POIs near
the user and his current location. It performs two main tasks: The first task
is to calculate the recommendation list based on preference vector PV and
co-occurrence matrix CM . Here, PV provides a rating of a user for a partic-
ular item and CM describes the similarities between the items. The second
task is to calculate the aggregated user behavior over the encrypted database
(ED).

– Privacy Service Provider (PSP): PSP is a trusted third party which
makes a profit from user’s behavior statistics. It holds and generates the pri-
vate and public key pairs. It is responsible for providing public keys to users,
ED and PPRS whenever the requests arrive. It generates partial recommen-
dation list based on user’s location information.

– Encrypted Database (ED): It stores CM encrypted by FHE.

SHELBRS 71

Fig. 3. An overview of Lyu et al.’s protocol

4.2 Description of Lyu et al.’s Protocol

This section describes Lyu et al.’s protocol. First, we describe briefly the three
main phases of the protocol and then go for a detailed step-by-step description.
The three main phases are as follows:

Initialization Phase: Personal co-occurrence matrix (CMu), which contains
the information of visited POIs, is generated by the user on the basis of his/her
preferences. Each user sends his/her encrypted CMu to the PPRS. PPRS con-
structs the final CM by combining these CM ′

us. The operation performed here is
exploiting the homomorphic addition property of FHE operation. This combined
matrix CM is stored in the ED.

Recommendation Phase: For computing full recommendation list for the
user, each item’s prediction value is computed by performing homomorphic addi-
tion and multiplication property of FHE. Prediction value is derived as

Pu.i =
∑

j∈N(u)

(wij ∗ ruj) (16)

where,
N(u) denotes all the items, wij is the similarity item i and j, and ruj is the

rating of user u for item j.

72 M. Jain et al.

ED Updation Phase: ED stores the CM and it needs to be updated according
to the user’s new behaviors. The updation occurs as follows:

– After receiving recommendation results from PSP in plain text, the target
user selects any POI of his/her choice.

– He/She then sends the encrypted results to the ED for further updated rec-
ommendation.

– Instead of sending the whole CM , each user sends only the difference from
its original CM to update the matrix with the latest information. It protects
the privacy of the user from PPRS by sending the matrix in an encrypted
FHE domain.

The detailed step-by-step description of the Lyu et al.’s protocol is as follows:

Step 1: Initially, the public key (pk) is distributed by the PSP to a user and
PPRS. The target user sends her/his encrypted location to PSP.
Step 2: The target user also sends encrypted preference vector to PPRS at
the same time.
Step 3: PPRS generates and sends the encrypted full recommendation list
to PSP.
Step 4: After PSP decrypts both the target user’s location and the full
recommendation list, it scans the whole list and generates the partial recom-
mendation list according to the user’s location information. It ensures user’s
privacy by sending it through an encrypted channel to the target user.
Step 5: The target user selects the POI from the partial recommendation
list.
Step 6: She/he sends the encrypted result to the PPRS.
Step 7: PPRS then updates the ED for providing the best recommendation.

5 Proposed SHELBRS Protocol

In our proposed framework, we replace the FHE component with SHE to mini-
mize the overall computational complexity and also, speed up the entire process
so that it could be better suited for real-life scenarios. The security of the pro-
posed protocol is kept at par with the corresponding FHE based protocol. Our
protocol does not make use of any trusted third party server to store crypto keys.
It simply sends the secret key shares between the servers so that an individual
server cannot leak any user’s sensitive information.

The details of each stage of SHELBRS protocol is discussed as follows:

5.1 Setup Stage

The setup of SHELBRS is based on a client-server architecture. We consider two
servers, say server X and server Y , and the interaction between the servers or
a server and a client is shown in Fig. 4. Security holds as long as at least one
of the servers is honest i.e. they do not collude by sharing cryptographic keys.

SHELBRS 73

Fig. 4. Secure computation via two servers

Let us assume that the landscape I is mapped on a Hilbert curve and divided
into indices I1, I2, . . . In. Based on a client-server model, a client is located on
one of the indices and has its own preference vector. The encrypted database of
CM is already stored at server Y . A client generates a public-private key pairs
using (10) (11) and sends public keys pk+ and pk∗ to both the servers. Clients
uses KeyShaGen(sk∗) and KeyShaGen(sk+) algorithms as described in Sect. 3.4
and sends k∗

0 and k+
0 to server X and k∗

1 and k+
1 to server Y . The POIs nearby

user’s location is recommended by the computations which are being performed
on the servers.

5.2 Initialization Stage

This stage describes the steps which needs to be computed before the client
starts executing his/her role.

– Personal co-occurrence matrix (CMu) contains the information of visited
POIs. During the initialization stage, each user generates his/her personal
CMu based on initial users’ preference.

– An user u sends CMu, which is encrypted by the public key pk+, to the server
Y .

– The end task is to merge all CMu to generate the final CM . This requires
paillier homomorphic Addition property as described in (4) and AddToMul
algorithm as discussed in Sect. 3.4.

74 M. Jain et al.

Fig. 5. SHELBRS: proposed recommendation

– The encrypted CM is stored at server Y.

The computation of CM is considered as the initial setup required before client’s
experiment. So, the computation cost of CM is not considered in the total
computation cost taken by the client.

5.3 Protocol Operation Stage

The detailed process of how the recommendation is being generated is shown in
Fig. 5. The client and the servers interact in the following manner:

Step 1: The client encrypts history preference vector PV using Enc(pk∗, PV)
and location info using Enc(pk∗, Location info) and sends it to server Y .
Step 2: The client computes each item’s prediction value P using (16) to gen-
erate a recommendation list. The prediction is generated using Algorithm 1.

SHELBRS 75

Algorithm 1. Recommendation
INPUT: CM∗, PV ∗, Item Index set I∗

OUTPUT: Recommendation list RL for all items
Define: 1. CM∗ is ElGamal encrypted co occurrence matrix

2. PV ∗ is ElGamal encrypted history preference vector
3. RL[i] is item i′s recommendation score

1: procedure recommend(CM∗ , PV ∗ , I∗, size)
2: Assign RL+[1 · · · size] = 0
3: for i = 1; i <= size; i = i + 1 do
4: for j = 1; j <= size; j = j + 1 do

ctotal = ElGamalMultiplication(CM [i][j]∗, PV [j]∗)

c1 = PallierEncryption(pkadd, ctotal[0])

temp = MulToAdd([c1, ctotal[1]], k∗
1 , k

∗
0)

RL[i]+ = PaillierAddition(RL[i]+, temp)

5: end for
6: end for
7: return RL+

8: end procedure

To calculate each index’s recommendation score, ElGamal encrypted CM∗

and PV ∗ are elementwise multiplied using the multiplicative property
of ElGamal Encryption. The corresponding result is transformed into
encrypted ElGamal ciphertext using Paillier Encryption scheme in
Sect. 3.3.
Step 3: It is further converted into Paillier encrypted ciphertext using Mul-
ToAdd algorithm in Sect. 3.4. The corresponding result is finally added using
additive property of Paillier Encryption to generate the corresponding rec-
ommendation score.
Likewise, the above steps 2 and 3 are executed for each index to generate the
final recommendation list.
Step 4: According to the target user’s location, the final recommendation
list is filtered out.
The server Y performs Paillier homomorphic subtraction property corre-
sponding to the indices stored in the recommendation list and user’s location.
It appends the result to the recommendation list and the updated list is sent
to the client.
Step 5: The client then decrypts it using Paillier decryption algorithm and
filters out the records corresponding to the value ‘0’. The client chooses one
of the locations (indices) from the recommendation list according to his/her
choice and update his/her behavior in the inversion list. Each client sends
only his/her new paillier encrypted CMu to server Y which is the difference
between the current CMu and the client’s original CMu before the recom-
mendations.

76 M. Jain et al.

6 Experimental Results

To validate the proposed protocol based on SHE, the experiment is executed on
Ubuntu 20.04.2 LTS powered by Intel R© CoreTM i5-6200U CPU @ 2.30 GHz ×
4 processor and RAM 8 GB. We have considered a client and two servers on
the same machine. In this experiment, we considered the artificial dataset with
POIs in range {10, 20, 40, 80, 100, 1000}.

The CM is already stored on the server Y and then, the client starts execut-
ing his/her behavior. So, the execution time taken for the computations during
initialization phase to generate CM is not considered in the total computation
cost taken by the client. The time taken to generate public-private keypair is
constant. The updation of ED can be performed even when a user is offline, so
it does not affect the efficiency of the system.

Table 1. Computation cost

Total elements Encryption
time [s]

Recommendation
time [s]

Decryption
time [s]

10 0.001 0.022 0.001

20 0.001 0.081 0.001

40 0.001 0.299 0.002

80 0.003 1.142 0.004

100 0.004 1.923 0.006

1000 0.04 197.99 0.058

The total computation cost involves encryption of a client’s preference vector,
computation of recommendation list and decryption of recommendation list.
In Table 1, we measured encryption time, recommendation time,and decryption
time for the indices in an encrypted domain. We have run the experiment five
times for each index and taken an average of it.

The experiment uses encryption which adds extra computation cost over
plaintext. So, we calculated and compared the total computation cost for the
plaintext and encrypted domain up to 1000 indices as shown in Table 2.

We also plotted the graph comparing the total execution time taken by SHEL-
BRS scheme and Lyu et al. protocol in Fig. 6 and Table 3.

6.1 Security Analysis

Our protocol aims to provide data confidentiality. It does not leak any meaningful
information throughout the protocol. The security of the scheme is based on the
following assumptions:

– The ElGamal and Paillier schemes are secure.

SHELBRS 77

Table 2. Comparison of total execution time in plaintext domain and encrypted
domain

Total elements Plaintext domain Encrypted domain

10 0.001 0.024

20 0.001 0.083

40 0.002 0.302

80 0.005 1.149

100 0.007 1.933

1000 1.32 198.088

Table 3. Comparison of total execution time taken by proposed SHELBRS scheme
and Lyu et al. [9]

Total elements Proposed
SHELBRS
scheme

Lyu et al. [9]

10 0.024 2.79

20 0.083 5.48

40 0.302 11.13

80 1.149 22.32

100 1.933 28.03

1000 198.088 269.47

– At least one of the servers is honest i.e. if one of the servers is malicious, the
other server remains honest.

– None of the servers collude.

Let us assume an Adversary A plays the role of either a malicious server Y or
a malicious server X. Initially, A is given the public keys and private key shares
to perform Paillier encryption E+, ElGamal encryption E∗, AddToMul and
MulToAdd algorithms. A is also given access to choose any arbitrary plaintext
and can perform encryption to get the corresponding ciphertext. A user sends
E∗(m0) to the server Y where m0 is an integer except a value 0. Now, A’s goal
is to find a challenge m′

0 such that m′
0 = m0. If A’s goal is achieved, the security

is broken. To prove m′
0s security, below mentioned lemmas are as follows.

Lemma 1: If Server Y is a malicious server and A chooses to attack AddToMul
algorithm, it has access to E∗(m0), E+(m0) and E+(E∗(m0)). Paillier encrypted
E+(m0) and E+(E∗(m0)) terms are semantically secure and no decryption key
sk+ is associated with any server, so, no information regarding m0 is leaked
through these terms. Server Y has key share k∗

1 = x1 and E∗(m0) = (m0h
r, gr)

where r is randomly chosen from the group Z∗
N . The security of E∗(m0) based

78 M. Jain et al.

Fig. 6. Comparison of total execution time taken by proposed SHELBRS scheme and
Lyu et al. [9]

on SHE security proof [7] is perfectly secure. So, A cannot learn anything about
m0 in the protocol.

Lemma 2: If Server Y is a malicious server and A chooses to attack MulToAdd
algorithm, it has access to k∗

1 = x1. E∗(m0), E+(E∗(m0)), R′ = gsx0 and c′′ =
E+(m0h

−s). E∗(m0), E+(E∗(m0)) and c′′ are secure according to Lemma 1. A
cannot learn about secret key share x0 from R′ as s is randomly chosen from
the group Z∗

N . Therefore, the proposed scheme is secure against the malicious
activity performed by server Y itself.

Likewise, we can prove the data confidentiality using Lemma 1 and Lemma
2 when Server X acts as an adversary A.

Now, we will handle the case when the client performs elGamal encryption on
a message m0 where m0 = 0. The ElGamal Encryption of m0 plaintext results
into one of the ciphertexts as “zero”. This is not secure as it leaks information
regarding plaintext data. To handle such problems, we can represent “zero” in
the form

MulToAdd(E+(E∗(n1))) ∗ MulToAdd(E+(E∗(n1)))
−1 = E+(0) (17)

7 Conclusions and Future Work

A lightweight privacy-preserving recommendation protocol for LBS was proposed
in this paper. It incorporated Hilbert curve, collaborative filtering recommender
based on co-occurrence matrix and SHE to recommend the services. Based on
the simulation and experiments, we found that the computation cost for 1000

SHELBRS 79

POIs is 198.088 s. Compared with the state-of-the-art protocol, the proposed
protocol takes less computation time and reduces complexity, providing at par
security. As the future direction of the work, we would like to extend our protocol
for the larger geographical area as we focused herein only on item-based filtering
on a single geographical area.

References

1. Badsha, S., Yi, X., Khalil, I.: A practical privacy-preserving recommender system.
Data Sci. Eng. 1(3), 161–177 (2016)

2. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. ACM Trans. Comput. Theory (TOCT) 6(3),
1–36 (2014)

3. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the Forty-First Annual ACM Symposium on Theory of Computing, pp. 169–178
(2009)

4. Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through
spatial and temporal cloaking. In: Proceedings of the 1st International Conference
on Mobile Systems, Applications and Services, pp. 31–42 (2003)

5. Horowitz, D., Contreras, D., Salamó, M.: EventAware: a mobile recommender sys-
tem for events. Pattern Recogn. Lett. 105, 121–134 (2018)

6. Lien, I.-T., Lin, Y.-H., Shieh, J.-R., Wu, J.-L.: A novel privacy preserving location-
based service protocol with secret circular shift for k-NN search. IEEE Trans. Inf.
Forensics Secur. 8(6), 863–873 (2013)

7. Lim, H.W., Tople, S., Saxena, P., Chang, E.-C.: Faster secure arithmetic com-
putation using switchable homomorphic encryption. IACR Cryptol. ePrint Arch.,
2014:539 (2014)

8. Lü, L., Medo, M., Yeung, C.H., Zhang, Y.-C., Zhang, Z.-K., Zhou, T.: Recom-
mender systems. Phys. Rep. 519(1), 1–49 (2012)

9. Lyu, Q., Ishimaki, Y., Yamana, H.: Privacy-preserving recommendation for
location-based services. In: 2019 IEEE 4th International Conference on Big Data
Analytics (ICBDA), pp. 98–105. IEEE (2019)

10. Melchor, C.A., Gaborit, P.: A fast private information retrieval protocol. In: 2008
IEEE International Symposium on Information Theory, pp. 1848–1852. IEEE
(2008)

11. Moon, B., Jagadish, H.V., Faloutsos, C., Saltz, J.H.: Analysis of the clustering
properties of the Hilbert space-filling curve. IEEE Trans. Knowl. Data Eng. 13(1),
124–141 (2001)

12. Papakyriakopoulos, O., Serrano, J.C.M., Hegelich, S.: Political communication on
social media: a tale of hyperactive users and bias in recommender systems. Online
Soc. Netw. Media 15, 100058 (2020)

13. Pingley, A., Wei, Yu., Zhang, N., Xinwen, F., Zhao, W.: A context-aware scheme
for privacy-preserving location-based services. Comput. Netw. 56(11), 2551–2568
(2012)

14. Qi, L., Wang, R., Chunhua, H., Li, S., He, Q., Xiaolong, X.: Time-aware distributed
service recommendation with privacy-preservation. Inf. Sci. 480, 354–364 (2019)

15. Fenwick, M.I.R., Hittle, M., White, O.: Fitness app strava lights up staff at mili-
tary bases. BBC Journal Archive (2018). https://www.bbc.com/news/technology-
42853072

https://www.bbc.com/news/technology-42853072
https://www.bbc.com/news/technology-42853072

80 M. Jain et al.

16. Sagan, H.: Space-Filling Curves. Springer, Heidelberg (2012)
17. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering

recommendation algorithms. In: Proceedings of the 10th International Conference
on World Wide Web, pp. 285–295 (2001)

18. Sun, G., Song, L., Liao, D., Hongfang, Yu., Chang, V.: Towards privacy preserva-
tion for “check-in” services in location-based social networks. Inf. Sci. 481, 616–634
(2019)

19. Utsunomiya, Y., Toyoda, K., Sasase, I.: LPCQP: lightweight private circular query
protocol for privacy-preserving k-NN search. In 2015 12th Annual IEEE Consumer
Communications and Networking Conference (CCNC), pp. 59–64. IEEE (2015)

20. Zhang, X., Yu, L., Wang, M., Gao, W.: FM-based: algorithm research on rural
tourism recommendation combining seasonal and distribution features. Pattern
Recogn. Lett. (2018)

On Threat of Hardware Trojan
to Post-Quantum Lattice-Based Schemes:

A Key Recovery Attack on SABER
and Beyond

Prasanna Ravi1,2,3(B), Suman Deb1,3, Anubhab Baksi1,2,3,
Anupam Chattopadhyay1,2,3, Shivam Bhasin1,3, and Avi Mendelson1,2,3

1 Temasek Laboratories, Nanyang Technological University, Singapore, Singapore
{prasanna.ravi,sumandeb,anubhab.baksi,anupam,sbhasin}@ntu.edu.sg

2 School of Computer Science and Engineering, Nanyang Technological University,
Singapore, Singapore

3 Technion-Israel Institute of Technology, Haifa, Israel
mendlson@technion.ac.il

Abstract. Our work conducts the first study on analyzing the threat
of Hardware Trojans (HT) for Post-Quantum Cryptographic (PQC)
schemes in a 3rd Party IP setting. We propose novel HT-assisted chosen-
ciphertext attacks for Key Encapsulation Mechanisms (KEM) based on
the well known Learning With Error/Rounding (LWE/LWR) problem.
Our proposed HT enables covert realization of a Plaintext-Checking ora-
cle for attacker’s carefully crafted ciphertexts, which leaks information
about the long-term secret key through the corresponding session keys.
We experimentally validate our attacks on Saber and Kyber (NIST final-
ist candidates for KEMs) and our attacks can recover the long-term secret
key in a few hundred-thousand chosen-ciphertext queries (depending on
the attack scenario). We also implemented different variants of the HT
within open-source implementation of Saber (a NIST finalist candidate)
for the Xilinx UltraScale+ FPGA, which incurs negligible area overhead
of upto 0.98% more FFs and upto 0.03% more LUTs. Our proposed HT
for Saber is carefully designed to increase its anti-detection capability,
so as to pose a significant challenge to the state-of-the-art HT-detection
techniques.

1 Introduction

The impending threat of large scale quantum computers to traditional RSA and
ECC-based public-key cryptography prompted NIST to initiate a global level
standardization process for quantum-attack resistant Public Key Encryption
(PKE), Key Encapsulation Mechanisms (KEM) and Digital Signature Schemes
(DSS). The Post-Quantum Cryptography (PQC) standardization process is cur-
rently in its third and final round with fifteen (15) candidates. The PQC research

c© Springer Nature Switzerland AG 2022
L. Batina et al. (Eds.): SPACE 2021, LNCS 13162, pp. 81–103, 2022.
https://doi.org/10.1007/978-3-030-95085-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95085-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-95085-9_5

82 P. Ravi et al.

community anticipate first draft standards for PQC in 2022 and a subset of the
finalists will be standardized for wide-scale adoption.

NIST initially considered theoretical post-quantum security and implemen-
tation performance as key selection criteria for the standardization process [13].
However, several finalist candidates share very similar performance and secu-
rity guarantees which prompted NIST to also consider other selection criteria.
Among them, security of real-world implementations against attacks such as
Side-Channel Analysis (SCA) and Fault Injection Analysis (FIA) emerged as an
important factor in the standardization process [1]. This resulted in a large body
of work on novel attack techniques [15,18] and efficient countermeasures [14,17]
for SCA and FIA on practical implementations of PQC schemes.

Given the urgent need toward transitioning existing systems to PQC, we
expect prominent and wide-spread use of 3rd Party IP (3PIP) cores for imple-
menting PQC in real-world systems. Thus, apart from SCA and FIA, Hardware
Trojans (HT) also form a very potent attack vector for practical PQC imple-
mentations, especially in a 3PIP setting. However to the best of our knowledge,
there exists no work that has studied the possibility of HTs for PQC schemes.

In this respect, we perform the first study on susceptibility of post-quantum
Key Encapsulation Mechanisms (KEMs) to Hardware Trojans. We focus on
3PIP cores implementing schemes based on the well-known Learning With
Error/Rounding (LWE/LWR) problem. These schemes are provably secure in
the Indistinguishability Under Chosen-Ciphertext Attack (IND-CCA) model,
thereby resistant to Chosen-Ciphertext Attacks (CCAs) [1]. However, we iden-
tify vulnerable operations in LWE/LWR-based KEMs, which when minimially
modified through Hardware Trojans (HTs) can subvert IND-CCA security in a
chosen-ciphertext setting. The proposed HTs when activated through attacker’s
maliciously crafted ciphertexts, leak the long-term secret key, through the cor-
responding session keys. Our work highlights the ease of subverting IND-CCA
security using a minuscule HT in 3PIP cores for LWE/LWR-based schemes for
key recovery.

Contributions: The contributions of our work are summarized as follows

1. To the best of our knowledge, we propose the first Hardware Trojans for 3PIP
cores implementing post-quantum KEMs and demonstrate novel HT-assisted
CCAs for IND-CCA secure LWE/LWR-based KEMs.

2. Our proposed attacks build upon well-established Plaintext-Checking (PC)
oracle-based CCAs for LWE/LWR-based schemes [7,18]. We propose a
generic adaptation to parallelize the PC oracle-based CCA in a configurable
manner for efficient key recovery in much fewer chosen-ciphertext queries1.

3. Our proposed attacks rely on a trigger-based HT which exploits the inherent
ciphertext malleability of LWE/LWR-based PKE schemes, to trigger under
extremely rare conditions and recover full long-term secret key leaked through
several session keys.

1 As we show later in Sect. 4, the applicability of our parallelized PC oracle-based
CCA depends on the utilization of KEM for key exchange within the protocol.

On Threat of Hardware Trojan to Post-Quantum Lattice-Based Schemes 83

4. We validate our attack on two IND-CCA secure schemes, Saber [6] and
Kyber [3], which are finalist candidates for KEMs in the ongoing NIST stan-
dardization process. We can fully recover the secret key in a few hundred to
few thousand queries (depending on the setting) with a 100% success rate.

5. We implemented the HT on an open-source hardware implementation of
Saber by Roy and Basso [19] for the Xilinx UltraScale+ FPGA, which incurs
a negligible area overhead of upto 0.98% more FFs and upto 0.03% LUTs.

6. Our proposed HT has a few favourable charactersitics such as unified trig-
ger and payload circuit and low-area footprint which argue well for its anti-
detection capabilities. We therefore include an elaborate discussion on the
applicability of well-known HT-detection techniques for 3PIP cores.

Availability of software. All softwares utilized for this work is placed into
public domain. They are available at https://github.com/PRASANNA-RAVI/
Hardware Trojan PQC.

2 Preliminaries

2.1 Notation

We denote the ring of integers modulo q ∈ Z
+ as Zq and Z

�×n
q denotes matrices of

size (�×n) with elements in Zq. An element x ∈ Zq rounded to a lower modulus p
as �p/q·x� ∈ Zp is denoted as �x�q→p. We denote the polynomial ring Zq(x)/φ(x)
as Rq where all computations are performed modulo φ(x). If degree of φ(x) is
n, then all elements in Rq are polynomials with degree n − 1 (n coefficients). A
matrix of polynomials in Rq is denoted as module (i.e.) Rk×�

q . Elements in Rq

and Rk×�
q are denoted in bold lower case letters. The ith coefficient of a ∈ Rq is

denoted as a[i] and the ith polynomial of module x as xi.

2.2 Generic Framework for LWE/LWR-Based PKE

The generic framework to build LWE/LWR-based PKE schemes proposed by
Lyubashevskey, Peikert and Regev [11] serves as the foundation for several
NIST PQC candidates including the main finalists Saber (Module-LWR) and
Kyber (Module-LWE), alternate finalist Frodo (Standard-LWE) and semi final-
ists NewHope (Ring-LWE), Round5 (Generalized-LWR) and LAC (Ring-LWE).
The key differences between the schemes lie in aspects such as choice between
LWE/LWR, polynomial ring Rq, span of secrets/errors etc. Without loss of
generality, we describe the key-generation (KeyGen), encryption (Encrypt) and
decryption (Decrypt) procedures of the PKE framework of Saber in Algorithm1,
which is based on the Module-LWR problem.

https://github.com/PRASANNA-RAVI/Hardware_Trojan_PQC
https://github.com/PRASANNA-RAVI/Hardware_Trojan_PQC

84 P. Ravi et al.

2.2.1 CCAs on LWE/LWR-Based PKE
The aforementioned PKE scheme is only secure in the Indistinguishability under
Chosen-Plaintext Attack model (IND-CPA security), and thus susceptible to
CCAs [7,18]. Their modus operandi is given as follows: The attacker queries the
decryption device with malicious handcrafted ciphertexts (catt). These cipher-
texts are built such that their corresponding decrypted messages (m′) contain
information about the secret key sk. When the PKE is used within protocols
such as TLS, an attacker can guess m′ for his/her chosen-ciphertexts, based on
information about protocol success/failure. This is referred to as a Plaintext-
Checking (PC) oracle which can be exploited by an attacker for key recovery.
Thus, the decrypted message is a sensitive variable which needs to be concealed
from an attacker to prevent key recovery.

2.2.2 Security Against CCAs
Most LWE/LWR-based schemes, including the NIST candidates, utilize the well
known Fujisaki-Okamoto (FO) transform [8] to achieve security in the Indis-
tinguishability under Chosen-Ciphertext Attack model (IND-CCA security). It

Algorithm 1: Generic framework of LWE/LWR based PKE schemes
1 Procedure PKE.KeyGen()
2 publicseed ← U(B32)

3 a = gen(publicseed) ∈ Rk×k
q

4 s ← χs(R
k
q)

5 t = �aT × s�q→p ∈ Rk
p

6 return (pk = PackPK(t, publicseed), sk = PackSK(s))

7

1 Procedure PKE.Encrypt(pk, m ∈ B32, r ∈ B32)

2 (t, publicseed) = UnpackPK(pk)
3 a ← gen(publicseed)

4 s′ ← χs′(Rk
q)

5 tr = �t�q→p ∈ Rk
p

6 u = �aT × s′�q→p ∈ Rk
p

7 v = �tTr s′ + Encode(m)�q→t ∈ Rt

8 return ct = PackCT(u,v)

9

1 Procedure PKE.Decrypt(ct, sk)
2 u,v = UnpackCT(ct)
3 s = UnpackSK(sk)
4 u′ = �u�p→q

5 v′ = �v�t→q

6 r = (v′ − (u′)T s) ∈ Rq

7 m′ = Decode(r)
8 return m′

On Threat of Hardware Trojan to Post-Quantum Lattice-Based Schemes 85

forms a wrapper around the encryption and decryption procedures and uses
multiple instantiations of one-way functions H and G resulting in Encapsulation
(KEM.Encaps) and Decapsulation KEM.Decaps procedures, which are shown in
Algorithm 2.

The encapsulation procedure instantiates the encryption procedure to gener-
ate a ciphertext ct for a message m (Line 5) and also generates a key K (Line 6).
The decapsulation procedure instantiates the decryption procedure to retrieve
the message m′ from ct (Line 2). Subsequently, m′ is re-encrypted (Line 4) to
compute ct′, which is then compared with the received cipherext (Line 5). The
comparison succeeds for valid ciphertexts (verify = 1) and a valid session key
K = KDF(m′, pk, ct) is generated (Line 7) which is dependent on m′ and also
matches with the session key generated by the encapsulator. But, the compari-
son fails for invalid ciphertexts and a pseudo-random key is generated (Line 10)
which neither matches with the key of the encapsulator, nor depends on m′.

Thus, the IND-CCA secure decapsulation procedure has the ability to detect
the validity of a ciphertext. An attacker cannot obtain any information about
the decrypted message m′ for malicious ciphertexts, concretely removing the
presence of the PC oracle. This provides strong theoretical security guarantees
against CCAs. Within a protocol such as TLS, IND-CCA secure KEMs are used
for secure key-exchange where the long-term secret key sk (used by Alice) can
be used to generate multiple session keys K for several TLS handshakes.

Algorithm 2: FO transform of a IND-CPA secure PKE into a IND-CCA
secure KEM
1 Procedure KEM.Encaps(pk)
2 ρ ← U(B32)
3 m = H(ρ)
4 r = G(m, pk)
5 ct = PKE.Encrypt(pk, m, r)
6 K = H(r, ct)
7 return ct, K

8

1 Procedure KEM.Decaps(sk, pk, ct)
2 m′ = PKE.Decrypt(sk, ct)
3 r′ = G(m′, pk)
4 ct′ = PKE.Encrypt(pk, m′, r′)
5 verify = Compare(ct, ct′)
6 if verify = 1 then
7 return K = H(r′, ct′)

8 else
9 return K = H(z, ct′)

/* z ∈ B32 is pseudo-random */

86 P. Ravi et al.

2.3 Practical CCAs on IND-CCA Secure KEMs

Though IND-CCA security provides theoretical security guarantees against
CCAs, several works have shown that side-channel leakage from attack vectors
such as timing, power consumption and Electromagnetic Emanation (EM) can
be used to realize an artificial PC oracle for key recovery [7,18]. D’Anvers et al. [7]
exploited variable run-time of error correcting codes in the decryption procedure
to recover binary information about the decrypted message (i.e.) (m′ = m0/m1)
for chosen-ciphertexts, leading to full key recovery in a few thousand queries.
Ravi et al. [18] then generalized the attack to constant-time implementations
using the EM side-channel to multiple LWE/LWR-based PKE/KEMs.

More recently, Amiet et al. [2], Sim et al. [21] and Ravi et al. [16] identified
deeper side-channel leakage in LWE/LWR-based schemes which simultaneously
leak the complete decrypted message. Xu et al. [24] showed that these vulnerabili-
ties can be exploited to recover the full decrypted message for chosen-ciphertexts.
Their improved attack could recover the full secret key in just 8 chosen-ciphertext
queries in the Kyber512 variant of Kyber KEM. Ngo et al. [12] subsequently
extended the same attack to Saber KEM. The aforementioned attacks exploit
varying amount of side-channel information about the decrypted message m′

from practical implementations of LWE/LWR-based schemes for key recovery.
However, these attacks assume the presence of a side-channel adversary who has
direct physical access to the device and can obtain side-channel measurements
with a reasonably high SNR [12,16].

In this work, we analyze the feasibility of mounting key recovery attacks on
practical implementations of LWE/LWR-based schemes using Hardware Trojans
(HTs). We propose novel HTs within the decapsulation procedure which enables
realization of a stealthy PC oracle, that leaks information about the decrypted
message for attacker’s chosen-ciphertexts through the session keys. While known
implementation attacks rely on side-channels, we propose the first HT-assisted
key recovery attack for LWE/LWR-based schemes. Thus, our attacks do not rely
on side-channels and hence, can be carried out by a remote attacker without any
physical access to the target device.

3 PC Oracle-Based CCA on LWE/LWR-Based KEMs

Our HT-assisted key recovery attacks build upon PC oracle-based CCA on
LWE/LWR-based KEMs. We validate our proposed attacks on two schemes -
Saber KEM [6] based on Module-LWR (MLWR) and Kyber KEM [3] based on
the Module-LWE (MLWE) problem. Our choice is motivated by two reasons:
1) They are finalists of the NIST process. 2) The MLWE/MLWR problem is
a generalization of the standard LWE/LWR and the RLWE/RLWR problem.
Thus, our attacks on the MLWR-based scheme can be adapted to other variants
of the LWE/LWR problem. We primarily use Saber to describe our attack and
the same analysis easily extends to Kyber.

On Threat of Hardware Trojan to Post-Quantum Lattice-Based Schemes 87

3.1 PC Oracle-Based CCA

We utilize the PC oracle-based CCA proposed by Ravi et al. [18] and adapt it to
Saber. Refer to the decryption procedure of Saber in Algorithm1, the ciphertext
consists of two components: u ∈ Rk

q (k polynomials in Rq) and v ∈ Rq and the
secret key is the module s ∈ Rk

q with Rq = Zq(x)/(xn +1). The attack works by
recovering one coefficient at a time, and we thus describe recovery of the first
secret coefficient s0[0] and extend the same technique for full key recovery. For
brevity, we denote the first secret polynomial s0 as s. The attacker chooses the
ciphertext (u,v) as follows:

ui =

{
U · x0 if i = 0,

0 if 1 ≤ i ≤ k − 1
(1)

v = V · x0 (2)

where (U, V) ∈ Z
+. For this chosen-ciphertext, each bit of the decrypted message

m′ (i.e.) m′
i for i ∈ [0, n − 1] is given as:

m′
i =

{
Decode(V − U · s[0]), if i = 0
Decode(−U · s[i]), for 1 ≤ i ≤ n − 1

(3)

Thus, every bit m′
i is only dependent on the corresponding secret coefficient s[i].

For a given tuple (U, V), the decrypted message m′ is given as:

m′
i =

{
F(s[0]), if i = 0
0, for 1 ≤ i ≤ n − 1

(4)

Thus, m′ can only take two possible values (i.e.) m′ = 0 (all bits zero - Class O)
or m′ = 1 (all bits except LSB have a value of 0 - Class X) and its value solely
depends upon the coefficient s[0]. We choose values for (U, V) such that m′ (O/X)
can act as a binary distinguisher for every candidate of s[0]. If an attacker has
access to a binary PC oracle that responds if a given ciphertext decrypts to O/X,
he/she can uniquely recover s[0]. For the recommended parameters of Saber, the
secret coefficients lie in the range [−4, 4]. Refer to Fig. 1 for the binary tree whose
traversal based on the binary PC oracle’s response can uniquely identify s[0] in
not more than 5 queries. The same approach can also be adapted to Kyber KEM
and refer to Fig. 5 in AppendixA for the corresponding binary tree of Kyber768
(recommended parameters).

3.1.1 Recovering Other Secret Coefficients
Similar to recovery of s[0], other secret coefficients can be recovered by exploiting
the property of polynomial multiplication in the ring Rq = Zq[x]/(xn + 1). The
product of a polynomial r ∈ Rq with xp rotates the polynomial by p positions
in an anti-cyclic fashion (i.e.) r · xp ∈ Rq = AntiRotr(r, p) where

AntiRotr(s, p) =

{
−r[n − p + i], for 0 ≤ i < p

r[i − p], for p ≤ i ≤ n − 1
(5)

88 P. Ravi et al.

(985,12)

(984,3)

Coeff = 0

O

(1003,3)

Coeff = 1

O

(1008,3)

Coeff = 2

O

(1012,3)

Coeff = 3

O

Coeff = 4
X

X

X

X

O

(1000,12)

Coeff = -1

O

(991,13)

Coeff = -2

O

(985,14)

Coeff = -3

O

Coeff = -4
X

X

X

X

Fig. 1. Binary decision tree based on the decrypted message m′ (m′ = 0 - Class O vs
m′ = 1 - Class X) to uniquely distinguish every candidate for secret coefficient of Saber
(recommended parameters). Each node corresponds to the tuple (U, V) and each edge
denotes the PC oracle’s response (O/X)

Thus, for u0 = U · xp and v = V , the first message bit m′
0 is given as:

m′
0 =

{
V − U · s[0], if p = 0
V − U · (−s[n − p]), for 1 ≤ p ≤ n − 1

(6)

Thus, changing the rotation constant p between 0 to n − 1 ensures that m′
0

depends upon different secret coefficients, which can be recovered in a similar
manner as s[0]. While the first secret polynomial s0 is recovered using the first
polynomial of u (i.e.) u0, other secret polynomials (i.e.) si for i ∈ [1, k − 1] can
be similarly recovered using the corresponding polynomial ui. We refer to the
attacker’s chosen-ciphertexts as ctattack throughout the paper.

We successfully validated the binary PC oracle-based CCA through simu-
lations on the recommended parameter set of Saber KEM and Kyber KEM
(768 secret coefficients). We assumed the presence of a binary oracle which pro-
vides information about whether m′ = O/X. For Saber, we could recover the full
secret key in approximately 2.09k chosen-ciphertext queries over 1000 trials with
a 100% success rate. For Kyber, full key recovery was possible in approximately
1.76k chosen-ciphertext queries with a 100% success rate.

3.2 Parallelized PC Oracle-Based CCA

A close observation of the binary PC oracle-based attack shows that m′ for the
chosen-ciphertexts only contains a single bit information about the secret key,
since all but one bit of m′ are fixed to 0. We propose a parallelized version of the

On Threat of Hardware Trojan to Post-Quantum Lattice-Based Schemes 89

PC oracle-based CCA such that m′ carries information about multiple secret
coefficients. We demonstrate our approach with simultaneous recovery of two
secret coefficients (s[0], s[1]) while the same can be extended to any number of
coefficients. We choose u = U · x0 and v = V · (1 + x). Thus, the decrypted
message m′ is given as:

m′
i =

{
Decode(V − U · s[i]), if i = {0, 1}
Decode(−U · s[i]), for 2 ≤ i ≤ n − 1

(7)

For the same choice of tuples (U, V) used for the binary distinguisher for the
binary PC oracle attack (Fig. 1), each message bit is given as:

m′
i =

{
D(s[i]), if i = {0, 1}
0, for 2 ≤ i ≤ n − 1

(8)

Thus, m′ now depends on two secret coefficients (s[0], s[1]) in two correspond-
ing message bits (m′

0,m
′
1), while all other bits are fixed to 0. In fact, the number

of secret dependent message bits in m′ denoted as bsec can be chosen by the
attacker based on the chosen ciphertexts (u,v). More concretely, bsec is equal to
the number of non-zero coefficients of the ciphertext polynomial v.

For the binary PC oracle-based CCA (bsec = 1), 8 chosen-ciphertexts are
required in total for unique distinguishability in Saber (Refer Fig. 1). If there
exists a more informative oracle which provides information about a generic bsec

bits of m′, then full key recovery is possible in (768 × 8)/bsec = (6144/bsec)
queries using our parallelized attack approach. For Kyber768, full key recovery
is possible in (768 × 4)/bsec = 3072/bsec queries (Refer Fig. 5 in Appendix A).

Recently, Xu et al.[24] and Ngo et al. [12] also proposed parallelized PC
oracle-based CCA on Kyber and Saber KEMs respectively. However, our attack
approach is subtly different from the aforementioned attacks in the following
manner. The chosen-ciphertexts used in [24] and [12] ensure that all bits of
the decrypted message m′ depend upon the corresponding secret coefficients.
However, our approach is more generic which allows the attacker to configure
the number of secret dependent bits (bsec) in m′, while the remaining message
bits are fixed to 0. Though it might appear to be inefficient to not utilize all
the message bits for key recovery, we will later show that the unused 0 bits of
the decrypted message can be efficiently used to embed the trigger activation
pattern for the HT. This is however not possible using the approach of [24] and
[12].

While the PC oracle facilitates key recovery, it is clearly non-existent in IND-
CCA secure KEMs due to the use of FO transform. In the following, we show
that a minicule HT within the decapsulation procedure can be used to realize
an artificial PC oracle which facilitates key recovery using the proposed binary
and parallelized CCAs for LWE/LWR-based schemes.

90 P. Ravi et al.

4 HT-Assisted Key Recovery Attack

4.1 Adversary Model

Our attacker is an IP developer who distributes malicious hardware designs of
Saber as either soft (RTL-level), firm (netlist-level) or hard (GDSII-level) IP
cores to potential SoC vendors (Alice). The attacker only inserts HT in the
decapsulation procedure while the key generation and encapsulation procedures
are HT-free. The Saber IP uses a long-term secret key sk to generate multiple
session keys K. The secret key sk used by the target device could either be
generated at a secure offline facility or generated online directly on the target
device. The long-term secret key is periodically refreshed and the lifetime of the
secret key depends upon the application use-case, ranging from a few hours to
a few days/months.

The attacker’s motive is to recover the long-term secret key sk, since it can
be used to recover all the corresponding session keys K used for encrypted com-
munication. The HT-infested IP does not contain any additional I/O ports apart
from the valid I/O ports. The attacker does not require any physical access to
the target, but only requires to communicate with the target (i.e.) attacker is an
encapsulator in a TLS session with the target device prompting decapsulation
of chosen ciphertexts using the secret key sk.

4.2 Intuition

Referring to the IND-CCA secure decapsulation procedure in Algorithm 2, a
given ciphertext ct is labelled valid or invalid by the verify signal, the output
of ciphertext comparison (Line 5 of KEM.Decaps). While verify = 1 denotes a
valid ciphertext, verify = 0 denotes an invalid ciphertext. Thus, decapsulation
of ctattack results in verify = 0, which generates a pseudo-random key. Lets say,
we design a HT which always sets verify = 1 irrespective of the validity of the
ciphertext (i.e.) all ciphertexts (valid/invalid) are labelled valid.

If we query the HT-infested decapsulation procedure with chosen-ciphertexts
of the binary PC oracle-based CCA, then the session key K generated for ctattack
is not pseudo-random, but dependent upon the decrypted message m′ where
K = F(m′, pk, ct). It can only assume two values (i.e.) K0 = F(0, pk, ct) or
K1 = F(1, pk, ct) where (pk, ct) is public. Thus, the session key K serves as
the PC oracle’s responses which can be used for key recovery. In essence, the
HT downgrades the security from being IND-CCA secure to IND-CPA secure
thereby allowing CCAs.

However, this HT is easy to detect since invalid ciphertexts always return a
wrong key, thereby allowing trivial detection of the inserted HT during functional
testing. Thus, we propose to design a stealthier HT which only downgrades the
security for attacker’s chosen-ciphertexts ctattack, while demonstrating normal
behaviour for all other ciphertexts (valid/invalid). This ensures that the session
key K leaks the long-term secret key only for ctattack.

On Threat of Hardware Trojan to Post-Quantum Lattice-Based Schemes 91

4.3 Applicability of Binary/Parallel Oracle-Based CCA

When Saber is used in a protocol such as TLS 1.3, the protocol mandates the
encapsulator to first send data encrypted using the session key K (typically cer-
tificates and other protocol associated data). However, the attacker does not
know the value of K (K0/K1). Thus, he/she generates encrypted data for a ran-
dom choice of K = K0/K1 based on the success/failure of the protocol, deduces
the value of K and thereby m′. Here, the target device only provides binary
information (success/failure) and thus, there is no advantage for an attacker in
utilizing the parallelized PC oracle-based CCA compared to its binary counter-
part for key recovery.

However, it is possible that other protocols (custom) mandate the decapsu-
lator (target) to first generate encrypted data using the key K. In this case, the
attacker can use the encrypted data to recover the the session key K containing
bsec number of secret dependent bits in a single query, thereby realizing a paral-
lelized PC oracle. But, for each query the attacker needs to perform 2bsec offline
computations to recover the correct value of m′. For Saber, bsec = 32 results in
only 192 queries and 232 · 192 ≈ 239 offline computations for full key recovery.
Similarly for Kyber (Kyber768), only 96 online queries and 238 offline computa-
tions are required for full key recovery. Thus, there exists a well defined trade-off
between the number of chosen-ciphertext queries (online) and offline computa-
tional complexity for key recovery. The number of secret dependent bits used for
message recovery can be chosen based on the attack setting (if parallel PC oracle
is present) as well as the attacker’s ability to perform offline computations.

5 HT Design Methodology

A typical HT is composed of two parts: 1) Trigger and 2) Payload. The trig-
ger circuit activates the HT upon satisfaction of a special activation condition.
Upon activation, the payload circuit modifies the targeted signal/s which elicits
malicious behaviour, exploitable by an attacker.

5.1 Design of HT Trigger Mechanism

Our proposed HT should be activated only for the attacker’s chosen-ciphertexts,
while it should remain dormant for other ciphertexts (valid/invalid). Typical HT
for crypto IP cores use an attacker defined input pattern for HT activation [4].
However, the malicious ciphertexts (Sect. 3) used for the PC oracle-based CCA
have a very low entropy with many 0 coefficients. Thus, triggering based on the
input could lead to easy detection during functional testing.

We therefore propose to use the decrypted message m′ to activate the HT.
However, m′ for the attacker’s chosen ciphertexts also have a very low entropy
since most of their bits are 0. These 0 bits are unused by an attacker and thus
do not contain any sensitive information. We show that ciphertext malleability
property of LWE/LWR-based schemes can be used to embed a trigger activation
pattern within these unused bits of m′, which can be used for HT activation.

92 P. Ravi et al.

5.1.1 Exploiting Ciphertext Malleability for HT Trigger
Ciphertext malleability is a property of cryptographic algorithms which allows
transformation of a ciphertext ct for an unknown message m into another cipher-
text ĉt which decrypts to a variant of the message (i.e.) m̂ = K(m). Ciphertext
malleability for LWE/LWR-based schemes has been used in the context of SCA
for key recovery attacks [16].

Given a ciphertext ct = (u,v) of a message m (Refer to Algorithm 1), adding
�q/2� (center of the integer ring Zq) to a coefficient v[i] (i ∈ [0, n − 1]) flips the
corresponding message bit m′

i (i.e.) (0 → 1)/(1 → 0). We denote m′
i = Flip(m, i)

whose ith bit has been flipped compared to m. More concretely,

PKE.Decrypt(ct = (u,v)) = m

PKE.Decrypt(ĉt = (u,v + 1 · xi)) = Flip(m, i) (9)

Any number of bits of the decrypted message m′ can be simultaneously
flipped by adding �q/2� to the corresponding coefficients of v. We exploit this
property to embed a trigger activation pattern in bact number of these unused
0 bits. We denote the trigger activation pattern as trig pattern whose value lies
in the range [0, 2bact − 1]. We now simply add �q/2� to the appropriate coef-
ficients of v based on the value of trig pattern. Thus, the unused 0 bits in the
decrypted message m now have a value equal to trig pattern. Thus, we are able
to use ciphertext malleability to embed the trigger activation pattern within
the decrypted message, without disturbing the segment containing the secret
dependent message bits (denoted as sec), which are used for key recovery.

The HT trigger is thus a simple comparator which compares the act segment
of the decrypted message to trig pattern and activates the HT if comparison
succeeds. We denote the output of trigger circuit (trigger signal) as trig signal.
Larger the number of bits in act (bact), smaller is the activation probability (i.e.)
pact = 2−bact (e.g.) bact = 128 implies pact = 2−128. Thus, bact is chosen to attain
a negligible activation probability. The trigger activation pattern trig pattern is
only known to the IP vendor/author who implanted the HT. Thus, the HT
can only be activated by ciphertexts constructed by the attacker. For all other
ciphertexts, it activates with a negligible probability of pact.

The decrypted message m′ of the attacker’s chosen-ciphertexts can thus be
partitioned into the following three segments:

m′ = (act|sec|zero) (10)

where act denotes the trigger activation pattern, sec denotes the segment
of secret dependent message bits and zero denotes the segment of the remain-
ing unused 0 bits. The width of each of these segments as well as their order
within the message are free to be chosen by the attacker during design time. The
attacker constructs ciphertexts so that the act segment of the decrypted message
has the value of trig pattern.

On Threat of Hardware Trojan to Post-Quantum Lattice-Based Schemes 93

5.2 Design of HT Payload

Upon activation, the HT payload should tamper the output of ciphertext com-
parator so that the malicious ciphertexts are marked as valid (i.e.) verify = 1
(Line 5 of KEM.Decaps in Algorithm 2). The original output of ciphertext com-
parison is verify, while the tampered output (trojan payload) is denoted as verify′.
The HT payload circuit is thus a simple 2-input multiplexer with trig signal as
its select input. For random valid/invalid ciphertexts (trig signal = 0), the valid
verify signal is simply passed to the output (i.e.) verify′ = verify. However, for
the attacker’s malicious ciphertexts corresponding to the trigger activation pat-
tern (trig signal = 1), verify′ is set to 1 indicating a valid ciphertext. The HT
payload signal verify′ is fed to the final key derivation function (KDF) which
generates the session key K.

The value of session key K for the attacker’s chosen-ciphertexts act as
response of the PC oracle for the attacker’s chosen ciphertexts. This can be
used to retrieve the value of the sec segment of the decrypted message, which
subsequently leads to key recovery. Refer to Fig. 2 for a pictorial illustration of
our HT-assisted CCA on the HT-infested decapsulation procedure where the
signals and blocks associated with our proposed HT are marked in red. We vali-
dated our attack methodology through attack simulations on the recommended
parameter sets of both Saber and Kyber. Our attacks were expectedly able to
recover the full secret key in a few hundred to few thousand queries (depending
on binary/parallelized PC oracle-based CCA) with a 100% success rate. In the
following, we discuss the concrete implementation details of our proposed HT
within the decapsulation hardware of Saber.

Fig. 2. Attack Flow of our HT-assisted CCA targeting Decapsulation procedure of
LWE/LWR-based Schemes

6 Implementation Details

We implemented our HT on the publicly available hardware implementation of
the high-speed instruction set co-processor for Saber by Roy and Basso [19]. Refer
to Fig. 2 of [19] for the top-level schematic of this co-processor which can imple-
ment all the three procedures (i.e.) key generation, encapsulation and decapsu-
lation of Saber. It contains a data memory implemented using Block RAM tiles

94 P. Ravi et al.

and a small program memory implemented in LUTs. There are dedicated com-
putation blocks for polynomial multiplication, binomial sampling, Keccak-based
hash functions and other low-level arithmetic and data handling operations. For
more details, we refer the reader to [19].

6.1 Implementing HT Trigger

We observe that the decrypted message m′ in the Saber hardware is generated
four (4) bits at a time. The complete message (256 bits) is aggregated in an
internal buffer over several clock cycles before being written to the data memory.
Thus, we implement a sequential comparator which compares the act segment of
m′ with the trigger activation pattern trig pattern, 4 bits at a time. The pattern
can either be stored in an internal buffer or in the data memory along with other
constants used for normal operation. For the sequential message comparator, we
implement using a simple 4-bit combinational logic based on a tree of xor and
or gates and a simple sequential control logic.

Refer to Fig. 3(a) for the HT trigger circuit whose output is the trigger activa-
tion signal trig signal (output of D flip-flop DFF1). This signal tracks the output
signal of the 4-bit combinational comparator (out) and stops updating as soon
as a 4-bit comparison fails (i.e.) out = 0 results in trig signal = 0. The use of a
sequential message comparator (instead of a parallel comparator) significantly
reduces area consumption.

6.2 Implementing HT Payload

Refer to Fig. 3(b) for the HT payload circuit which takes as input the original
ciphertext comparison output verify and generates the HT payload verify′ based
on trig signal. It is implemented using a simple 2-input multiplexer and a D
flip-flop DFF2. If trig signal = 0 (random valid/invalid ciphertext), verify′ =
verify (no change). If trig signal = 1 (malicious ciphertext), verify′ = 1 ensures
malicious labelling as a valid ciphertext, which enables key recovery.

trig_signal

D

Q
trig_pattern

clk
Q

Trigger Activation Pattern

4

4
m'

4-bit
Comparator

Decrypted Message

clk

CE

Counter

clk
I0

I1

O

SEL
Q

MSB

0

Control Signal
from FSM

out
DFF1

D

Q
clk

CE

I0

I1

O

SEL

trig_signal

1

verify

Control Signal
from FSM

verify'

DFF2

)b()a(

Fig. 3. Schematic of HT Trigger and Payload

On Threat of Hardware Trojan to Post-Quantum Lattice-Based Schemes 95

6.2.1 Analysing the Operation of HT-infested Target
We classify the ciphertext inputs to the decapsulation procedure into three types:

• Valid Ciphertexts: Ciphertexts generated according to valid encapsulation
procedure (KEM.Decaps in Algorithm 2)

• Invalid Ciphertexts: Randomly generated data or valid ciphertexts with at
least one bit error. The errors in ciphertext could either be generated by the
attacker or due to noise in the communication channel.

• Malicious Ciphertexts: Specially crafted ciphertexts by the attacker.

Table 1. Value of different signals within the HT-infested target for different types
of input ciphertexts. The number in parantheses denotes probability of attaining the
denoted value. pact denotes probability of HT activation.

Type of ciphertext trig signal (prob.) verify verify′ (prob.)

Valid 0 (1 − pact) 1 1 (1)

Invalid 0 (1 − pact) 0 0 (1 − pact)

Malicious 1 (1) 0 1 (1)

Table 1 illustrates operation of the HT-infested target for different types of
input ciphertexts. A close observation reveals that the HT payload signal verify′

takes the same value for both the malicious ciphertexts as well as valid cipher-
texts. Both malicious and valid ciphertexts are labelled as valid (i.e.) verify′ = 1.
Moreover, our HT payload is only a single bit. We will now use these features to
propose an improved HT design which has a unified payload and trigger circuit
and a reduced area footprint, with the goal of increasing the stealthiness of the
HT.

verify'
D

Q
trig_pattern

clk
Q

(Trigger Activation Pattern)

4

4
m'

Decrypted Message
4-bit

Comparator

clk

CE

Counter

clk
I0

I1

O

SEL
Q MSB

0

Control Signal
from FSM

done_verify
verify

out

DFF1
SET

Fig. 4. Improved HT design with unified trigger and payload circuit

96 P. Ravi et al.

Table 2. The HT payload verify′ of our improved HT circuit (Fig. 4) after message
comparison (mcmp) and ciphertext comparison (ctcmp) for different types of input
ciphertexts. We ignore the negligible probabilities of HT activation for valid/invalid
ciphertexts for ease of explanation.

Type of ciphertext Value of verify signal after

mcmp ctcmp

Valid 0 1

Invalid 0 0

Malicious 1 1

6.3 Improved HT Design

Given that the HT payload is the same for both malicious as well as valid
ciphertexts, we propose to activate the HT for valid ciphertexts (i.e.) explicitly
set trig signal to 1 for a valid ciphertext. This also ensures that verify′ = 1 which
is the expected output for a valid ciphertext. To realize this, we use the valid
verify signal (i.e.) output of ciphertext comparison as a feedback to the HT trigger
circuit. This signal is connected to the SET input of the D flip-flop DFF1 of the
HT trigger circuit. With this simple modification, we observe that the trig signal
can be directly used as the HT payload. Thus, our HT has a unified trigger
and payload circuit, which results in a compact design and lower area footprint.
Refer to Fig. 4 for the improved HT design whose output is nothing but the
HT payload verify′. The verify signal is gated using the done verify control signal
(from original design) which indicates completion of the ciphertext comparison
operation.

Let us now analyze the operation of the improved HT. For simplicity, we
assume no accidental HT activation for random valid/invalid ciphertexts. For a
valid ciphertext, verify′ = 0 after message comparison. Subsequently, ciphertext
comparison succeeds ensuring verify to 1 which then sets verify′ to 1 overriding
its previous value of 0. For an invalid ciphertext, verify′ = 0 after message com-
parison. Subsequently, ciphertext comparison fails (i.e.) verify = 1 which ensures
verify′ retains its previous value of 0. For a malicious ciphertext, verify′ = 1 after
message comparison. Since ciphertext comparison fails (i.e.) verify = 0, verify′

retains its previous value of 1. We encapsulate the aforementioned observations
in Table 2 which shows the value of the HT payload signal verify′ after message
comparison and ciphertext comparison for different types of input ciphertexts.

On Threat of Hardware Trojan to Post-Quantum Lattice-Based Schemes 97

6.4 Implementation Results

We implemented the original (HT-free) and HT-infested implementations of
Saber for the Zynq UltraScale xczu9eg-ffvb1156-2-e FPGA using Xilinx Vivado
v.2018.3. We present the post-implementation (place and route) area utilization
results in Table 3 for three different activation probabilities pact (i.e.) number of
bits compared for HT activation (32, 64 and 128 bits). For the different variants,
we only observe a negligible increase of 0.98% more FFs and upto 0.03% more
LUTs. We observe that the 128-bit variant consumes 6 extra LUTRAMs due to
the use of a large 128-bit buffer to store the trigger activation pattern, while the
other variants do not utilize any LUTRAMs. Moreover, there is no increase in
the the numbers of Block RAMs, IOs and global buffers (BUFGs). We expect a
similar area overhead for our proposed HT for other LWE/LWR-based schemes.
We also successfully verified our attack on the HT-infested hardware implemen-
tation of Saber resulting in a 100% success rate in recovering the long-term secret
key.

Our improved HT design has two advantages. Firstly, the unification of the
payload and trigger circuit results in a compact design with a very low area
footprint. Secondly, the unified design is very different compared to most HTs
which have a separate payload and trigger circuit and therefore argues well for its
anti-detection capability. In the following section, we discuss the applicability of
well-known HT-detection techniques for 3PIP cores. In this respect, we identify
a few favourable characteristics which could provide strong resistance against
several detection techniques.

7 On the Applicability of HT Detection Techniques

There are several HT detection techniques applicable in a 3PIP setting and their
applicability depends on several factors such as:

1. Type of IP : Soft-IP/Firm-IP/Hard-IP
2. Access Rights to IP User : Ability to view internals, make modifications, insert

debug probes etc.

Table 3. Area utilization results for variants of the HT-infested hardware of Saber.
The overheads compared to the original design are denoted in %.

Implementation No. (Overhead in %)

FFs LUTs LUTRAMs BRAMs IOs BUFGs

HT-Free 9747 (−) 24103 (−) 0 2 189 7

128-bit HT 9843 (0.98%) 24111 (0.03%) 6 2 189 7

64-bit HT 9797 (0.51%) 24110 (0.03%) 0 2 189 7

32-bit HT 9766 (0.19%) 24096 (−0.03%) 0 2 189 7

98 P. Ravi et al.

We restrict ourselves to techniques for Soft-IPs and Firm IPs, while focussing
on two common scenarios, based on access privilege provided to the IP user: 1)
Black Box IP and 2) White Box IP. We note that only reference-free (golden
model-free) detection techniques are applicable in the 3PIP setting.

In a black box IP setting, the user cannot access any internal nets within
the IP. He/she can only control the primary inputs and observe the primary
outputs. The HT-infested target provably demonstrates normal behaviour with
a very high probability for both valid/invalid ciphertexts (Sect. 5). Thus, faulty
behaviour is not observed during functional verification with a very high proba-
bility, which makes detection of our proposed HT very challenging in a black-box
IP.

7.1 White Box IP

The user has complete access to the internals of the design, either the RTL code
or synthesized gate-level netlist. There are expensive techniques like complete
reverse engineering which can potentially identify the HT. We however highlight
how some commonly used methods stand against our proposed HT. Existing
approaches can be broadly classified into two categories:

7.1.1 Dynamic Detection
These techniques rely on logic simulation and monitor the activity of internal
signals/nets of the IP for the verifier’s chosen inputs. We expect that the follow-
ing properties of our proposed HT (Fig. 4) might offer a significant challenge or
at best resist common dynamic detection methods.

a) High Switching Activity : There are a few well-known techniques such as
UCI [9] (Unused Circuit Identification) and VeriTrust [25] which identify dor-
mant or redundant circuits that do not have any observable effect on the
normal operation of the device. These techniques work on the premise that
HT-related signals are mostly dormant during normal operation or at least
retain the same value for a very long time. We observe that our HT uses a
sequential comparator that compares 4-bits at a time. Thus, its output has a
high switching probability of 1/16. Therefore, all nets in the comparator also
have a reasonably high switching activity. We observe (through simulations)
that all HT-related signals at least have a single transition for any input
ciphertext. Moreover, the Saber hardware is significantly larger compared to
simpler ciphers such as AES and thus employs a complex FSM with a high
number of control signals which also have a low switching activity. This raises
the difficulty in distinguishing valid signals with low switching activity from
HT-related signals.
b) Participation of HT in Normal Operation: Cakır and Malik [5] propose
to check HT-related signals that have weak statistical correlation with the
circuit’s valid functional signals. The switching activity of all internal nets
is used to compute a certain similarity weight for each net. A significant
divergence in the similarity weights is expected for HT-related nets.

On Threat of Hardware Trojan to Post-Quantum Lattice-Based Schemes 99

We observe that the output of 4-bit combinational comparator denoted as
out (within the HT) which carries the trojan value, affects the HT payload verify′

even during normal operation. In fact, verify′ = out for most of the time during
normal operation. Only for valid ciphertexts, its value is overriden by verify much
later, after ciphertext comparison. For invalid ciphertexts, out is directly used
as input to the KDF function (no overriding), thereby participating in normal
operation even without HT activation. This is unlike typical HTs where the
trojan value is carried to the payload only upon HT activation. This poses a
strong challenge for techniques relying on signal correlation analysis. In fact, a
similar approach of combining the HT trigger with the valid blocks was used by
DeTrust [26] to defeat Veritrust [25], a well-known dynamic detection technique.

7.1.2 Static Detection
Unlike dynamic techniques, static techniques do not rely on logic simulation
but analyze the circuit’s structure using well-defined metrics such as testability
(controllability and observability) and statement hardness, for HT detection [20,
23]. The following properties of our proposed HT might offer resistance against
common static techniques.

a) HT-related nets with Similar Controllability and Observability as Valid Sig-
nals: Salmani et al. [20] proposed COTD which utilizes testability of signals
as a metric for HT detection, and flags nets with low controllability or observ-
ability. We argue that HT-related signals have equivalent controllability and
observability as a few other valid signals in the circuit.

In particular, the valid signal verify and the trojan signal out have very simi-
lar characteristics. Both signals are related to sequential comparators, with verify
related to the sequential ciphertext comparator and out being part of the sequen-
tial message comparator. Moreover, the number of bytes compared in the cipher-
text comparator (1088 bytes) is much higher than the message comparator (<
16 bytes). Thus, it is possible that the trojan signal out has better controllability
than the valid signal verify. Secondly, the valid signal verify is fed back to the HT
circuit and is connected to the same D flip-flop DFF1 as out, which is connected
to the KDF block. Thus, we expect both signals to have similar observability
at the primary outputs. This could therefore provide increased resistance to
techniques relying on testability analysis for HT detection.

b) Sequential Arrival of Trigger Vector: Waksman et al. [23] proposed FANCI,
a framework which identifies signals with weakly affecting inputs using static
Boolean function analysis. It relies on the premise that HT trigger input has
a weak impact on the output signals. However, DeTrust [26] defeated FANCI
using trojans whose trigger pattern arrives over several clock cycles. Along the
same lines, our HT also utilizes a sequential comparator since the decrypted
message containing the trigger vector arrives 4-bits at a time. Thus, we expect
our HT to likewise defeat FANCI and similar detection methods.

100 P. Ravi et al.

b) Non-Trivial Leakage of Secret Key: Formal verification techniques have
been demonstrated for successful HT detection in a number of works [10,
22]. The IP vendor and IP user agree upon a set of pre-defined security
properties to be satisfied by the IP. Subsequently, proof-checking tools are
used to verify adherence to agreed-upon security properties as well as detect
unintended functionalities. However, it is difficult to predefine rules to cover
all possible risks. Moreover, existing works have only demonstrated detection
of trivial trojans in ciphers which directly leak the secret key through the
output [10,22]. However, our HT does not involve such trivial leakage of the
secret key, but relies on indirect secret key leakage through a sensitive internal
variable (i.e.) decrypted message for malicious ciphertexts. However, defining
such security properties for LWE/LWR-based schemes is non-trivial and thus
warrants future study.

We clarify that we do not claim/prove concrete resistance against HT detec-
tion techniques, but only show that our proposed HT has a number of interesting
properties which could either pose a strong challenge or at best potentially defeat
existing HT detection techniques.

8 Conclusion

We propose novel HT-assisted CCAs for 3PIP cores implementing IND-CCA
secure KEMs based on the LWE/LWR problem. We experimentally validated
our attack on Saber and Kyber which works with a 100% success rate, and
also practically implemented our HT within the open-source implementation of
Saber, which incurs a negligible area overhead. We also demonstrated that our
proposed HT might pose a significant challenge to state-of-the-art HT-detection
techniques. Similar HTs are also possible for post-quantum schemes based on a
different paradigm but we leave that possibility for future work.

Acknowledgment. The authors would like to acknowledge the financial sup-
port received from the Singapore National Research Foundation under the SoCure
NRF2018NCR-NCR002-0001 grant (www.green-ic.org/socure) for carrying out this
research.

www.green-ic.org/socure

On Threat of Hardware Trojan to Post-Quantum Lattice-Based Schemes 101

A Chosen Ciphertexts for Key Recovery in Kyber

(207,937)

(2,729)

Coeff = 1

O

Coeff = 2
X

O

(106,521)

Coeff = 0

O

(106,-
728)

Coeff = -1

O

Coeff = -2
X

X

X

Fig. 5. Binary decision tree based on the decrypted message m′ (m′ = 0 - Class O vs
m′ = 1 - Class X) to uniquely distinguish every candidate for secret coefficient of Kyber
(recommended parameters). Each node corresponds to the tuple (U, V) and each edge
denotes the PC oracle’s response (O/X)

References

1. Alagic, G., et al.: Status report on the second round of the NIST PQC standard-
ization process. Technical report, July, NIST (2020)

2. Amiet, D., Curiger, A., Leuenberger, L., Zbinden, P.: Defeating NewHope with a
single trace. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp.
189–205. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1 11

3. Avanzi, R., et al.: CRYSTALS-Kyber (version 2.0) - Algorithm Specifications And
Supporting Documentation, 1 April 2019. Submission to the NIST post-quantum
project

4. Bhasin, S., Danger, J.L., Guilley, S., Ngo, X.T., Sauvage, L.: Hardware trojan
horses in cryptographic IP cores. In: 2013 Workshop on Fault Diagnosis and Tol-
erance in Cryptography, pp. 15–29. IEEE (2013)

5. Cakır, B., Malik, S.: Hardware trojan detection for gate-level ICS using signal
correlation based clustering. In: 2015 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), pp. 471–476. IEEE (2015)

6. D’Anvers, J.P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: Algorithm
Specifications And Supporting Documentation (Round 2). Submission to the NIST
post-quantum project

https://doi.org/10.1007/978-3-030-44223-1_11

102 P. Ravi et al.

7. D’Anvers, J.P., Tiepelt, M., Vercauteren, F., Verbauwhede, I.: Timing attacks on
error correcting codes in post-quantum secure schemes. IACR Cryptology ePrint
Archive 2019, 292 (2019)

8. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

9. Hicks, M., Finnicum, M., King, S.T., Martin, M.M., Smith, J.M.: Overcoming an
untrusted computing base: detecting and removing malicious hardware automat-
ically. In: 2010 IEEE Symposium on Security and Privacy, pp. 159–172. IEEE
(2010)

10. Jin, Y., Makris, Y.: Proof carrying-based information flow tracking for data secrecy
protection and hardware trust. In: 2012 IEEE 30th VLSI Test Symposium (VTS),
pp. 252–257. IEEE (2012)

11. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

12. Ngo, K., Dubrova, E., Guo, Q., Johansson, T.: A side-channel attack on a masked
IND-CCA secure Saber KEM. IACR Cryptol. ePrint Arch. 2021, 79 (2021)

13. NIST: Submission requirements and evaluation criteria for the post-quantum
cryptography standardization process (2016). https://csrc.nist.gov/csrc/media/
projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-
2016.pdf

14. Oder, T., Schneider, T., Pöppelmann, T., Güneysu, T.: Practical CCA2-secure and
masked ring-LWE implementation. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems 2018(1), 142–174 (2018)

15. Pessl, P., Primas, R.: More practical single-trace attacks on the number theoretic
transform. In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol.
11774, pp. 130–149. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30530-7 7

16. Ravi, P., Bhasin, S., Roy, S.S., Chattopadhyay, A.: On exploiting message leakage
in (few) NIST PQC candidates for practical message recovery and key recovery
attacks. IACR Cryptology ePrint Archive 2020, 1559 (2020)

17. Ravi, P., Poussier, R., Bhasin, S., Chattopadhyay, A.: On configurable SCA coun-
termeasures against single trace attacks for the NTT. IACR Cryptology ePrint
Archive 2020, 1038

18. Ravi, P., Roy, S.S., Chattopadhyay, A., Bhasin, S.: Generic side-channel attacks on
CCA-secure lattice-based PKE and KEMs. IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 307–335 (2020)

19. Roy, S.S., Basso, A.: High-speed instruction-set coprocessor for lattice-based key
encapsulation mechanism: saber in hardware. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, pp. 443–466 (2020)

20. Salmani, H.: COTD: reference-free hardware trojan detection and recovery based
on controllability and observability in gate-level netlist. IEEE Trans. Inf. Forensics
Secur. 12(2), 338–350 (2016)

21. Sim, B.Y., et al.: Single-trace attacks on message encoding in lattice-based KEMs.
IEEE Access 8, 183175–183191 (2020)

22. Vedula, V., Rajendran, J., Murugadhandayuthapany, A., Karri, R.: Security ver-
ification of 3rd party intellectual property cores for information leakage. In: Pro-
ceedings of the GOMACTECH (2015)

https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-642-13190-5_1
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.1007/978-3-030-30530-7_7
https://doi.org/10.1007/978-3-030-30530-7_7

On Threat of Hardware Trojan to Post-Quantum Lattice-Based Schemes 103

23. Waksman, A., Suozzo, M., Sethumadhavan, S.: FANCI: identification of stealthy
malicious logic using Boolean functional analysis. In: Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security, pp. 697–708 (2013)

24. Xu, Z., Pemberton, O., Roy, S.S., Oswald, D.: Magnifying side-channel leakage
of lattice-based cryptosystems with chosen ciphertexts: the case study of kyber.
Technical report (2020). https://eprint.iacr.org/2020/912

25. Zhang, J., Yuan, F., Wei, L., Liu, Y., Xu, Q.: VeriTrust: verification for hardware
trust. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(7), 1148–1161
(2015)

26. Zhang, J., Yuan, F., Xu, Q.: DeTrust: defeating hardware trust verification with
stealthy implicitly-triggered hardware trojans. In: Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, pp. 153–166
(2014)

https://eprint.iacr.org/2020/912

Safe-Error Attacks on SIKE and CSIDH

Fabio Campos1(B), Juliane Krämer2(B), and Marcel Müller2(B)

1 Max Planck Institute for Security and Privacy, Bochum, Germany
campos@sopmac.de

2 Technische Universität Darmstadt, Darmstadt, Germany
juliane@qpc.tu-darmstadt.de, neikos@neikos.email

Abstract. The isogeny-based post-quantum schemes SIKE (NIST PQC
round 3 alternate candidate) and CSIDH (Asiacrypt 2018) have received
only little attention with respect to their fault attack resilience so far. We
aim to fill this gap and provide a better understanding of their vulnera-
bility by analyzing their resistance towards safe-error attacks. We present
four safe-error attacks, two against SIKE and two against a constant-time
implementation of CSIDH that uses dummy isogenies. The attacks use
targeted bitflips during the respective isogeny-graph traversals. All four
attacks lead to full key recovery. By using voltage and clock glitching,
we physically carried out two of the attacks - one against each scheme -,
thus demonstrate that full key recovery is also possible in practice.

Keywords: Post-quantum cryptography · Isogeny-based
cryptography · Fault attacks

1 Introduction

The youngest field of post-quantum cryptography that is studied within NIST’s
standardization process is isogeny-based cryptography, which was first described
in 2006 [1,2]. Some years later, in 2011, De Feo et al. presented a fast crypto-
graphic scheme based on isogenies, named SIDH (Supersingular Isogeny Diffie-
Hellman) [3]. SIDH was used to create the key encapsulation mechanism SIKE
(Supersingular Isogeny Key Encapsulation) [4], which was submitted to NIST’s
standardization process and selected as round 3 alternate candidate, i.e., SIKE
is considered promising, but needs to be further studied before being considered
for standardization. In 2018, Castryck et al. presented another isogeny-based
system, called CSIDH (Commutative Supersingular Isogeny Diffie-Hellman) [5].
Unlike SIKE, CSIDH is non-interactive, making it a potential drop-in replace-
ment for current Diffie-Hellman schemes. CSIDH has not been submitted to
NIST’s standardization process because it was designed only after the submis-
sion deadline had passed. Although the actual security of the suggested CSIDH
parameters against quantum attacks was recently questioned [6,7], CSIDH is
still a promising and widely discussed isogeny-based scheme. However, the recent

Author list in alphabetical order; see https://www.ams.org/profession/leaders/cult
ure/CultureStatement04.pdf.
c© Springer Nature Switzerland AG 2022
L. Batina et al. (Eds.): SPACE 2021, LNCS 13162, pp. 104–125, 2022.
https://doi.org/10.1007/978-3-030-95085-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95085-9_6&domain=pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://doi.org/10.1007/978-3-030-95085-9_6

Safe-Error Attacks on SIKE and CSIDH 105

quantum attacks show that the young field of isogeny-based cryptography has
not been sufficiently studied with respect to (quantum) cryptanalysis yet. Also,
the physical security of isogeny-based schemes has not been sufficiently studied
yet.

In this work, we analyze the physical security of SIKE and CSIDH. Physical
attacks allow attackers to deduce secret information of an algorithm by observing
or modifying the platform it operates on. In a passive (or side-channel) attack,
the attacker analyzes physical information that they can measure while crypto-
graphic operations are computed. In an active attack, on the other hand, the
attacker directly interacts with the running algorithm, causing a change in its
operations through which information can be extracted. Hence, active attacks
are also called fault attacks.

Analyzing SIKE and CSIDH with respect to a specific fault attack is the focus
of this work. We analyze both schemes regarding their vulnerability towards safe-
error attacks. Safe-error attacks have been first published by Yen and Joye in
2000 [8]. They suggested that by inducing transient faults, an implementation
leaks one bit of information depending on whether the algorithm results in an
error or not. Yen and Joye first described attacks on smart cards using a square-
and-multiply algorithm and later applied safe-error attacks on the Montgomery
ladder, showing that by perturbing memory during computation, one can deduce
one bit of secret information [9]. Safe-error attacks are particularly interesting
because even if the algorithm were to detect a fault in its operation, it will still
leak information. Hence, standard countermeasures, like checking for faults and
outputting a random value in case a fault was detected, still provide the attacker
with information and therefore are not sufficient to protect an implementation
against safe-error attacks.

Safe-error attack mitigations usually do not feature in current implementa-
tions, rendering them vulnerable against these attacks, see, e.g., [10]. Also our
work shows that recent implementations of isogeny-based schemes do not pro-
vide explicit protection against safe-error attacks. This is concerning especially
since some of our attacks are similar to attacks that have long been known in
the ECC community, e.g., [8,9].

Our Contribution. The focus of this work is to analyze SIKE and CSIDH with
respect to safe-error attacks. To the best of our knowledge, SIKE has not been
studied with respect to these attacks before.

We develop attack scenarios for SIKE and CSIDH and demonstrate the fea-
sibility of the presented safe-error attacks by performing practical experiments.
The experiments were performed against C implementations of SIKE and CSIDH
on a ChipWhisperer board with an ARM Cortex-M4 processor as target core.
The implementation of CSIDH that we attacked is a constant-time implementa-
tion based on dummy isogenies. We achieve full key recovery of all n bits of the
secret key within O(n) interactions for two of the four attacks laid out in this
paper. We discuss possible countermeasures and their performance impact. The
code used for this work is available1 in the public domain, which includes the
modified CSIDH and SIKE Cortex-M4 implementation and all attack scripts.
1 https://github.com/Safe-Error-Attacks-on-SIKE-and-CSIDH/SEAoSaC.

https://github.com/Safe-Error-Attacks-on-SIKE-and-CSIDH/SEAoSaC

106 F. Campos et al.

The attack against SIKE that we carried out practically can analogously be
applied to B-SIDH [11].

Related Work. Although isogeny-based cryptography provides promising can-
didates for quantum-resistant public-key schemes, only few results regarding the
physical security of isogeny-based cryptography in general and SIDH [12–15],
SIKE [16], and CSIDH [17–19] in particular exist. Galbraith et al. presented the
first fault attack on SIDH, together with corresponding countermeasures [13]. In
[12], Koziel et al. propose different zero-value attacks on SIDH. Based on loop-
abort fault injection, Gélin and Wesolowski presented side-channel and fault
attacks against isogeny-based primitives [14]. The first published physical attack
on SIKE was a power side-channel attack exploiting differences in calculations
depending on the secret key [16]. Ti proposed in [15] a fault attack on SIDH
by changing the base point to a random point via fault injection. In [20], Tasso
et al. presented the first experimental realization of Ti’s theoretical fault attack
and proposed countermeasures against this attack. Cervantes-Vázquez et al. [18]
analyzed CSIDH for potential attacks by reviewing and improving the constant-
time implementations of [21] and [22]. Furthermore, they proposed a dummy-
free CSIDH algorithm. A recent work [17] presents safe-error and further fault
attacks, together with countermeasures, on a constant-time CSIDH implemen-
tation with dummy isogenies. The attack against CSIDH that we carried out
practically attacks the resulting implementation of [17]. LeGrow and Hutchin-
son [19] suggest to randomize the order of execution of isogenies to increase the
number of attacks required when attacking dummy-based constant-time imple-
mentations of CSIDH.

Concurrently to our work, several PQC schemes have been analyzed with
respect to safe-error attacks [10]. However, isogeny-based schemes are not covered
in this work.

Organization. In Sect. 2, we present necessary background on SIKE, CSIDH,
and safe-error attacks. In Sects. 3 and 4, we present safe-error attacks on SIKE
and CSIDH, respectively. In Sect. 5, we explain how to perform the described
safe-error attacks on a real device and present full key recovery. We discuss
possible countermeasures in Sect. 6 and conclude this work in Sect. 7.

2 Background

We first discuss implementation details of SIKE and CSIDH. For readers not
familiar with isogenies, we refer to [23]. Afterwards, the introduction to safe-
errors shows the pattern common to the attacks and how they work.

2.1 SIKE

SIKE (Supersingular Isogeny Key Encapsulation) is an interactive key encap-
sulation using supersingular elliptic curves [4]. SIKE has passed into the third
round of the NIST process2 as alternate candidate for future standardization.
2 https://doi.org/10.6028/NIST.IR.8309.

https://doi.org/10.6028/NIST.IR.8309

Safe-Error Attacks on SIKE and CSIDH 107

352 // Main loop
353 for (i = 0; i < nbits; i++) {
354 bit = (m[i >> LOG2RADIX] >> (i & (RADIX-1))) & 1;
355 swap = bit ^ prevbit;
356 prevbit = bit;
357 mask = 0 - (digit_t)swap;
358

359 swap_points(R, R2, mask);
360 xDBLADD(R0, R2, R->X, A24);
361 fp2mul_mont(R2->X, R->Z, R2->X);
362 }

Listing 1: LADDER3PT – SIKE

To achieve the goal of becoming standardized it will need to be studied fur-
ther, especially with respect to efficiency improvements and all aspects of misuse
resistance. SIKE uses SIDH internally, and SIDH will be the main target of the
attacks presented in the following section. For a detailed overview of SIDH as
used in SIKE, we refer to [4].

SIDH is constructed as follows: A public prime p “ 2e23e3 ´ 1 such that
2e2 « 3e3 is chosen, as well as two points on the torsion group associated to their
base: P,Q P E0[2e2] or E0[3e3]. These represent the respective public generators.
The rest of the algorithm is computed over Fp2 . At the start of the exchange,
each party agrees on picking a base of either 2 or 3 as long as they differ between
them. Afterwards, each party generates a private key sk P Fp2 . Of note here is
that in the efficient implementation of [4], three points are used. The third point
is R “ P ´ Q and is used to speedup the computation through a three-point
ladder [24](cf. Algorithms 1 and 4, and Listing 1). Using these generators as
well as their private key, each party then computes their public curve E2 or
E3. This curve is calculated through a chain of e2 2-isogenies, or e3 3-isogenies
respectively. Each isogeny uses a generator of the form xP ` [sk]Qy as the kernel.
The projection of the other party basis point and this curve are then sent to the
other party, where the same procedure is repeated to arrive at the curve E2{3
and E3{2. These two curves are isomorphic to each other and thus the parties
have arrived at a shared secret: the j-invariant of E2{3 and E3{2, respectively.

The submitted implementation from round 3 is constant-time and already
includes several countermeasures against fault attacks. The implementation is
secure against the attack presented in Sect. 3.1, but vulnerable to the second
one as presented in Sect. 3.2.

2.2 CSIDH

CSIDH (Commutative Supersingular Isogeny Diffie-Hellman) describes a non-
interactive key exchange using supersingular elliptic curves [5]. For a more
detailed overview of the key exchange, we refer to [5].

CSIDH is constructed as follows: A prime p is chosen of the form p “
4 · �1 · · · �n ´ 1, where the �i are small pairwise distinct odd primes. The rest

108 F. Campos et al.

Algorithm 1: xDBLADD
1 function xDBLADD

Input: (XP : ZP), (XQ, ZQ), (XQ´P : ZQ´P), and (a`
24 : 1) (A ` 2C : 4C)

Output: (X[2]P : Z[2]P), (XP `Q, ZP `Q)
2 t0 Ð XP ` ZP

3 t1 Ð XP ´ ZP

4 X[2]P Ð t20
5 t2 Ð XQ ´ ZQ

6 xP `Q Ð XQ ` ZQ

7 Z[2]P Ð t21
8 t1 Ð t1 · XP `Q

9 t2 Ð X[2]P · ´Z[2]P

10 X[2]P Ð X[2]P · Z[2]P

11 XP `Q Ð a`
24 · t2

12 ZP `Q Ð t0 ´ t1
13 Z[2]P Ð XP `Q ` Z[2]P

14 XP `Q Ð t0 ` t1
15 Z[2]P Ð Z[2]P · t2
16 ZP `Q Ð Z2

P `Q

17 XP `Q Ð X2
P `Q

18 ZP `Q Ð XQ´P · ZP `Q

19 XP `Q Ð ZQ´P · XP `Q

20 return (X[2]P : Z[2]P), (XP `Q, ZP `Q)

of the algorithm is computed in Fp. The algorithm uses elliptic curves in Mont-
gomery form: E0 : y2 “ x3 ` Ax2 ` x. To begin, each party generates a secret
key (e1, . . . , en), where each ei is sampled uniformly random from the interval
[´m,m] with m P N. The key exchange is then prepared by calculating the
elliptic curve associated with the secret key: For each ei a total of abs(ei) �i-
isogenies have to be calculated. The sign of ei represents the direction taken in
the respective �i-isogeny graph. As the composition of isogenies is commutative,
each computed curve will be isomorphic no matter in which order they are cal-
culated. The isognies are then chained to compute the public curve associated
to the secret key: E0

(e1,...,en)´́ ´́ ´́ Ñ EA. Bob does the same to calculate EB . The
parameter of the curves EA and EB correspond to the public keys and are then
exchanged and each party repeats their isogeny calculation using the other’s
public key as the starting curve: Alice calculates EB

(e1,...,en)´́ ´́ ´́ Ñ EBA and Bob
calculates EAB in a similar fashion. The final curves EBA and EAB are the same,
and the shared secret is the A parameter of this curve in Montgomery form.

The straightforward implementation of the algorithm would be highly vari-
able in time, since different amounts of isogenies need to computed, depending
on the secret key. It would be easy for an attacker to trace the amount of isoge-
nies calculated and their degree as isogenies with a larger degree require more
computational effort. In 2019 Meyer et al. have presented a constant-time imple-

Safe-Error Attacks on SIKE and CSIDH 109

mentation of CSIDH [21]. The authors tackle this issue by making the amount
of isogeny evaluations constant, thus only leaking the degree of the isogenies
themselves and not the exact number of them. This follows from the aforemen-
tioned fact that higher degree isogenies take longer to construct and, e.g., could
be recovered through a timing attack. They achieve this by calculating “dummy”
isogenies which serve as extra computational time to thwart timing attacks from
finding the real amount of isogenies of a given degree. Further, they change the
interval from which the secret key parts are sampled from [´m,m] to [0, 2m] so
that an attacker cannot tell apart secret keys with unbalanced positive and neg-
ative parts. Unfortunately, these dummy calculations have added a new attack
vector: loop-abort attacks. Such an attack was first described in passing by
Cervantes-Vázquez et al. in [18]. In [17] the approach using dummy isogenies has
been further refined. Campos et al. analyzed the constant-time implementation
for fault-injection attacks. This resulted, among others, in added safeguards to
the point evaluation and codomain curve algorithm. However, these safeguards
do not protect against the attack described in Sect. 4.1, as the attacker assumed
in this paper has a different threat model.

Following [21] Onuki et al. proposed to speed-up the implementation by
reverting the secret key part interval to [´m,m] and guarding against unbal-
anced keys by using two points instead of one [22]. This change, however, has
introduced a possible new attack vector as described in Sect. 4.2.

2.3 Safe-Error Attacks

In [8], Yen and Joye introduce a new category of active attacks, so called safe-
error attacks. In this kind of attacks, the adversary uses fault injections to per-
turb a specific memory location with the intent of not modifying the final result
of the computation: the algorithm may overwrite or throw away modified values,
making them “safe errors”. The presence or absence of an error then gives insight
into which codepath the algorithm executed. Two kinds of safe-error attacks
exist: in a memory safe-error (M safe-error) attack, the attacker modifies the
memory, i.e., in general these attacks focus on specific implementations [9,25,26].
In a computational safe-error (C safe-error) attack, however, the computation
itself is attacked through, e.g., skipping instructions. Hence, C safe-error attacks
rather target algorithmic vulnerabilities [9,26].

The general construction of a safe-error attack is as follows:
Suppose an algorithm iterates over secret data. It then branches and does

slightly different calculations depending on whether a given bit in the secret data
is equal to 0 or 1. The algorithm presented in Algorithm 3 has been secured
against timing side-channel attacks by consuming the same time in each branch.
Precisely this predictability, enforced to thwart timing attacks, makes safe-
error attacks easier to carry out, as these attacks require timed fault-injections.
When implementing countermeasures, implementers thus have to investigate all
implications that these countermeasures have. However, since some side-channel
attacks, e.g., timing attacks, are generally easier to carry out than other physical
attacks, e.g., safe-error attacks, it can still be the right decision to fix a specific

110 F. Campos et al.

Algorithm 2: CSIDH Algorithm by Onuki et al.
Input: A P Fp, m P N, a list of integers (e1, . . . , en) P [´m, m]n and n distinct

odd primes �1, . . . , �n s.t. p “ 4
∏

i �i ´ 1.
Output: B P Fp, m P N s.t. EB “ (le11 · · · le2n) ∗ EA, where li “ (�i, π ´ 1) for

i “ 1, . . . , n, and π is the p-th power Frobenius endomorphism of EA.
1 Set e′

i “ m ´ |ei| for i “ 1, . . . , n
2 while some ei �“ 0 or e′

i �“ 0 do
3 Set S “ {i|ei �“ 0 or e′

i �“ 0}
4 Set k “ ∏

iPS �i

5 Generate points P0 P EA[π ` 1] and P1 P EA[π ´ 1] by Elligator
6 Let P0 Ð [(p ` 1){k]P0 and P1 Ð [(p ` 1){k]P1

7 for i P S do
8 Set s the sign bit of ei

9 Set Q “ [k{�i]Ps

10 Let P1´s Ð [�i]P1´s.
11 if Q �“ 8 then
12 if ei �“ 0 then
13 Compute an isogeny φ : EA Ñ EB with kerφ “ xQy
14 Let A Ð B, P0 Ð φ(P0), P1 Ð φ(P1), and ei Ð ei ´ 1 ` 2s

15 else
16 Dummy computation
17 Let A Ð A, Ps Ð [�i]Ps, and e′

i Ð e′
i ´ 1.

18 Let k Ð k{�i

19 return A

Algorithm 3: A toy algorithm vulnerable to a variable-access attack
Input: S the n-bit secret key
Output: a public message M

1 M Ð 1
2 K Ð 0
3 P Ð 0
4 for i P 0..n do
5 if Si “ 0 then
6 K Ð calculate(Si, P, K)

7 else
8 P Ð calculate(Si, K, P)

9 M Ð M ` K ∗ P

10 return M

vulnerability by enabling other, practically less relevant attacks. In application-
related implementations, explicit branching on secret data is usually avoided.
However, the different memory access patterns still occur due to the structure
of the respective algorithm. As we show in Sect. 3.1, using a constant time swap

Safe-Error Attacks on SIKE and CSIDH 111

Table 1. Access patterns depending on the i-th bit of the secret key

Condition Read variables Written variables

Si “ 0 P, K K
Si “ 1 P, K P

algorithm instead of condition branching is not sufficient and may even provide
an additional attack vector.

Analyzing the read and write patterns of Algorithm 3 and classing them
according to the state that they occur in allows to look for differences that could
be exploitable. These differences can be rendered in a table, such as Table 1.
This allows for visual inspection of differences.

This representation makes it immediately clear that even though the same
method is being called, it affects different data. This allows an attacker to exploit
the difference between the two branches by modifying one memory location and
checking whether a safe-error occurred.

Example: Let’s assume we try to attack the first branch, when Si “ 0. During
the calculate routine, we modify the memory used by the variable K in such
a way that it does not change the result of the computation. This is done by
perturbing the memory once the given memory location is not read anymore, but
before it is being potentially written to. After the calculate routine has executed,
either K or P has been overwritten. If our guess of Si “ 0 was correct, due to
being overwritten after being perturbed by the fault, K now holds again correct
information in context of the algorithm. Letting the algorithm finish leaks the
information whether our guess was correct: If it finishes normally, Si was indeed
0. If we assume that M is known and verifiable, we can check to see if the
outcome was wrong, or, simpler, an error occurred. If either happened, then Si

was 1, as the faulted K did not get overwritten and subsequently changed the
calculation. This attack needs to be then repeated n times to fully recover the
secret key S.

3 Attacks on SIKE

In this section, we analyze the implementation of SIKE submitted to round 3 of
NIST’s standardization process [4] in the context of safe-error attacks. First, we
describe a memory safe-error attack in Sect. 3.1, then we describe a computa-
tional safe-error attack in Sect. 3.2. For both attacks, we assume that the victim
has a static secret key. Both the encapsulator and the decapsulator can be the
victim of this attack.

3.1 M-Safe Attack on SIKE

We first give a high-level overview on how the attack is constructed. Then, we
give a more detailed analysis of the individual steps of the attack.

112 F. Campos et al.

Algorithm 4: The 3-Point Ladder
1 function LADDER3PT

Input: m “ (ml´1, ...,m0)2 P Z, (xP , xQ, xQ´P), and (A : 1)
Output: (XP `[m]Q : ZP `[m]Q)

2 ((X0 : Z0), (X1 : Z1), (X2 : Z2)) Ð ((xQ : 1), (xP : 1), (xQ´P : 1))
3 a`

24 Ð (A ` 2){4
4 for i “ 0 to l ´ 1 do
5 if mi “ 1 then
6 ((X0 : Z0), (X1 : Z1)) Ð xDBLADD((X0 : Z0), (X1 : Z1), (X2 : Z2), (a

`
24 : 1))

7 else
8 ((X0 : Z0), (X2 : Z2)) Ð xDBLADD((X0 : Z0), (X2 : Z2), (X1 : Z1), (a

`
24 : 1))

9 return (X1, Z1)

Table 2. Access patterns depending on the ith-bit of the secret key

Condition Read variables Written variables

m[i] “ 0 (X0, Z0), (X1, Z1), (X2, Z2) (X0, Z0), (X2, Z2)

m[i] “ 1 (X0, Z0), (X1, Z1), (X2, Z2) (X0, Z0), (X1, Z1)

As shown in Sect. 2.1 each SIKE participant has their own secret key m P Fp2 .
This key is used to calculate the subgroup xP, [m]Qy representing the kernel
of their secret isogeny. The point multiplication [m]Q is performed through a
three-point ladder algorithm as seen in Algorithm 4. Important here is that the
LADDER3PT function is called with the secret key m as the first argument.
The attacker requires the following capabilities: They need to be able to intro-
duce a memory fault during a specific point of execution, as well as be able to
verify the result of a given SIKE run. Both the shared secret as well as any exe-
cution errors need to be known afterwards. The attack proposed in this section
then follows three parts:

With the goal of extracting an n-bit secret key, the attacker

1. initiates a SIKE key agreement,
2. introduces a memory fault of any kind (bit-flip, scrambling,...) during the i-th

iteration of LADDER3PT, and
3. uses the result of the SIKE run to obtain the value of the i-th bit of the secret

key.

Steps 1 to 3 have to be repeated n times to reconstruct the complete secret key.
In detail, this means that the attack on this three-point ladder algorithm

follows the schema as described in Sect. 2.3. Depending on a given bit of the
secret key, different variables are modified. This can be seen in Table 2. In this
case either (X1, Z1) or (X2, Z2) are passed to xDBLADD. Without loss of
generality, let’s assume for the rest of this section that we attack m and that

Safe-Error Attacks on SIKE and CSIDH 113

the guess for the i-th bit is m[i] “ 1. By following the general outlines of a safe-
error attack one needs to modify (X1, Z1) between its last use and the moment
it gets written to. Such a moment exists in Algorithm 4 Line 6 (cf. Sect. 2.1):
(X1, Z1) is passed to the xDBLADD subroutine as the second argument, thus
(XQ, ZQ) = (X1, Z1) in Algorithm 1 (cf. Sect. 2.1). (X1, Z1) is passed as the
third argument in Line 8, this difference is dependent on the secret key. The
xDBLADD method (as seen in Line 6 in Algorithm 1) then returns two values,
one of which is assigned to (X1, Z1) in Algorithm 4. In the xDBLADD routine
from Line 6 onwards, (XQ, ZQ) is no longer read, and thus the value of (X1, Z1)
stays unused until the function returns. This is where the attacker executes the
active attack, by scrambling the values backing (XQ, ZQ), i.e., (X1, Z1). If the
attack on the memory location of (X1, Z1) was successful and our guess was
correct, the algorithm will, upon return, overwrite our modification and finish
without encountering an error. One can thus conclude that m[i] “ 1. Should
our guess of m[i] “ 1 be incorrect, then the algorithm computes a mismatching
shared secret or raises an error. In this case, m[i] “ 0. Either way, a single bit
of information is gained of the secret key. Consequently, all n bits of the static
secret key m can be read by this method and the full key can be recovered
through n runs of this attack. The complete attack thus consists of these steps:

1. The attacker observes a normal SIKE key agreement.
2. As xDBLADD gets called during LADDER3PT, overwrite (X1, Z1) on

the i-th iteration and observe the final result.
3. If the SIKE de/encapsulation fails, we know that (X1, Z1) did not get over-

ridden. Thus m[i] “ 0 otherwise m[i] “ 1.

Repeat steps 1 to 3 n times to recover the complete n-bit secret key.
The SIKE implementation in [4] has several parameter sets, each influencing

the range of possible values of the secret key. For example, SIKEp610 has an
exponent e2 “ 305 with an estimated NIST security level 3 [4]. The private key
m is thus sampled from {0, ..., 2305 ´ 1}, giving the private key 305 bits of total
length. Therefore an attacker, trying to attack a SIKEp610 instantiation, would
need to repeat the attack at least 305 times to achieve full key recovery.

In the latest version of xDBLADD, as published for the third NIST PQC
process round [4], the authors have chosen to use a simultaneous double-and-
add algorithm. This implementation prevents this particular attack as there is
no moment during execution that P or Q is written before it is potientially read.
This is also true during compilation: the order of operations in the assembly stays
the same. Nonetheless, future implementations have to make sure that they are
not vulnerable when using a different algorithm.

3.2 C-Safe Attack on SIKE

Similar to the M safe-error attack on SIKE described in the previous section,
the attack described in this section exploits the difference in memory accesses
depending on a bit of the secret key. Again, each party generates their own pri-
vate key m, used to generate the subgroup xP ` [m]Qy of their private isogeny

114 F. Campos et al.

(cf. Sect. 2.1). This point multiplication P ` [m]Q is done through a three-point
ladder as seen in Algorithm 4 and Listing 1 (cf. Sect. 2.1). In the C implemen-
tation, published in [4], the authors use a constant-time swapping algorithm to
exchange the points R and R2 depending on the i-th bit of the secret key (see
Line 359 of Listing 1). The function is called swap_points and accepts both
points and a mask as input. We denote the i-th bit of the secret key as m[i]. The
mask of the swapping function is calculated as xor(m[i],m[i´1]), with a starting
value of 0 for m[i ´ 1] if i “ 0. If the mask is 1 the points are exchanged, oth-
erwise they are left as is. This behavior can be exploited by meddling with this
function call. It could for example simply be skipped, or the computation of the
mask be perturbed such that on a 0 mask it stays 0, but on a 1 mask the value
is randomized. Assuming xor(m[i],m[i ´ 1]) and an attacker skips this function
call using an active attack on the i-th loop, the end result will be unchanged. If
the value had been xor(m[i],m[i ´ 1]), then the end result would be wrong, as
the wrong point would have been used for the rest of the calculation.3 Since we
know that in the first iteration m[i ´ 1] is forced to 0, the mask is simply set
to the value of xor(m[0], 0) “ m[0]. The second iteration of attack then knows
the value of m[0] and so on. Thus, in general the bit m[i] is leaked through a C
safe-error. As the keyspace for m is equal to [0, ..., 2e2 ´ 1], similar to the attack
in Sect. 3.1, the attack needs to be repeated at least 305 times to achieve full
key recovery when the parameter set SIKEp610 is used.

4 Attacks on CSIDH

In this section, we analyse CSIDH with respect to safe-error attacks. We anal-
yse two recent implementations of CSIDH [17,22]. Both implementations are
constant-time implementations, and both implementations achieve this kind of
timing attack resistance through dummy isogeny computations. The main dif-
ference between both implementations is that in [17], computations are done on
one point only, while in [22], two points are used. The analysis of both implemen-
tations with respect to safe-error attacks is presented in Sect. 4.1 and Sect. 4.2,
respectively. For both of the presented attacks, it is assumed that the victim
uses a static secret key.

4.1 M Safe-Error Attack on an Implementation Using One Point

In [17] Campos et al. have evaluated possible physical attack vectors for CSIDH
implementations using dummy isogenies. One threat model they did not con-
sider, is one that can introduce memory faults. This will be the focus of the
attack in this section. The attacker only needs to be able to change a single bit
in a certain byte range. In [17], during the execution of a dummy isogeny, the
curve parameter A is not modified. If however a non-dummy isogeny is calcu-
lated, then the A parameter is changed corresponding to the newly calculated

3 Wrong shared secret or an error raised from the algorithm.

Safe-Error Attacks on SIKE and CSIDH 115

Table 3. Access pattern depending on the secret key e during the key exchange

Condition Read variables Written variables

ei �“ 0 P0, P1 P0, P1

ei “ 0 Ps where s is the sign bit of ei Ps

curve. This leads to a possible attack vector: assume without loss of generality
that the algorithm is currently calculating isogenies of degree �i. If it is currently
calculating a dummy isogeny, a new parameter A is computed, but directly dis-
carded. If a real isogeny is calculated, that result is then used further. A fault
injected with the intent of modifying the parameter A can now discern if a real
or dummy isogeny is being calculated: if one attacks a real isogeny, the modified
value will be propagated and cause a mismatch of the final shared secret. If it
was a dummy isogeny however, the modified A was discarded and the shared
secret is not impacted. This is now repeated for each possible value of ei, so as
to find out the first time a dummy isogeny is calculated. The value of ei is then
the amount of real isogenies that have been calculated for �i. In the implemen-
tation in [17] ei is sampled from the range [0, 10], therefore one needs on average
5 attacks per ei to recover its value. In CSIDH-512 of [17] the secret key has
74 components, thus on average, an attacker would need to run 5 ˆ 74 “ 370
attacks to recover the full key.

4.2 M Safe-Error Attacks on an Implementation Using Two Points

In [22], Onuki et al. have introduced a new algorithm that uses two points
to calculate the CSIDH action. This version has an issue similar to the one
described in Sect. 4.1, where the parameter A is discarded when calculating a
dummy isogeny. Thus it has also the potential for an M safe-error attack by
attacking the A parameter assignment. Unlike the implementation in [17], in
[22] the range [´5, 5] is used for each ei. Even though an attacker additionally
needs to recover the sign of ei now, this reduces the amount of overall attacks
required to recover a single ei.

Further, the CSIDH action as described in [22] has another M safe-error
attack vector that will be explained in this section. Table 3 shows the access
patterns of two different variables depending on a part of the secret key: only
one point is overwritten when ei equals 0 during the CSIDH action calculation at
Line 17 in Algorithm 2 (cf. Sect. 2.2). This opens up the potential of perturbing
a given P0 or P1 and finding out if this had any effect on the calculation. If
there was no effect, then the sign of ei is equal to the index of the point that
was overwritten: 0 if positive, 1 if negative. This allows the attacker to find the
sign of a specific ei since the dependency between isogenies of degree �i and its
running allows for attacking a specific degree �i [5]. Now let si be the sign of
ei. In total, Algorithm 2 does ei calculations of isogenies of order �i. After each
calculation, it decrements ei to keep track of how many more real isogenies need
to be computed. Once ei “ 0, only dummy operations are executed. The task

116 F. Campos et al.

is thus, to find out how many real isogenies are calculated. One can run the
following procedure to find the value of ei: Start with n “ 0. Modify Psi after
n iterations just before it is potentially overwritten, and check the final result.
If the shared secret is correct or n is larger than the maximal possible value for
ei, we know ei ă n at that point and we can stop the process, otherwise ei ą n,
increment n and retry. Once this procedure terminates, ei equals the amount
of calculated real isogenies. Applying this procedure repeatedly, one can deduce
the whole secret key (e1, . . . , en). As [22] uses an instantiation where the private
key elements can range from ´5 to 5, in total 2.5 ` 1 “ 3.5 attacks are required
per ei, as well as finding si. In that instantiation, 74 elements are used per secret
key, therefore an attacker would need to run 74 ˆ 3.5 “ 259 attacks on average
for the signs and the full key recovery in total. The attack can be summarised
as follows:

1. Reveal which �i is currently being computed from the length of computation.
2. On Line 17 in Algorithm 2 only Psi is being assigned. Thus, perturbing the

memory of Psi while [�i]Psi is being calculated will allow to deduce whether
i “ 0, or i “ 1. From now on, we assume that si is known for each ei.

3. Knowing the sign allows us to now explicitly attack either P0 or P1 and thus
find out whether a real or dummy isogeny is being calculated.

If the final shared secret is correct, it was a real isogeny, otherwise it was a
dummy. The value of ei is equal to the count of real isogenies. Once all ei
and their signs si have been recovered, the full private key (e1, . . . , en) can be
reconstructed.

5 Practical Experiments

In this section, we explain how to perform the described attacks on a Chip-
Whisperer board and present the achieved security impact. In the case of SIKE,
we present full key recovery. In the case of CSIDH, due to the relatively long
runtime on the target architecture («7 s for the reduced version of CSIDH), we
calculated the maximum number of possible runs in advance and determined
further attack parameters accordingly.

All practical attacks were implemented using the ChipWhisperer tool chain4

(version 5.3.0) in Python (version 3.8.2) and performed on a ChipWhisperer-Lite
board with a 32-bit STM32F303 ARM Cortex-M4 processor as target core. Based
on available implementations, we wrote slightly modified ARM implementations
of SIKEp434 and CSIDH512 to make them suitable for our setup. Security-
critical spots remained unchanged. All binaries were build using the GNU Tools
for ARM Embedded Processors 9-2019-q4-major5 (gcc version 9.2.1 20191025
(release) [ARM/arm-9-branch revision 277599]) using the flags: -0s -mthumb
-mcpu=cortex-m4 -mfloat-abi=soft.

4 https://github.com/newaetech/chipwhisperer, commit fa00c1f.
5 https://developer.arm.com/.

https://github.com/newaetech/chipwhisperer
https://developer.arm.com/

Safe-Error Attacks on SIKE and CSIDH 117

In all attack models the adversary aims to attack the calculation of the
shared secret in order to learn parts of the private key. The shared secrets are
calculated without randomness, i.e., points and private keys used were computed
in advance. Both in the case of SIKE and CSIDH, the adversary is able to ran-
domise variables or skip instructions by injecting one fault per run. Furthermore,
we assume that the attacker is able to trigger and attack the computation of the
shared secret multiple times using the same pre-computed private keys. How-
ever, in a real environment the attacker is limited to observe the impact of a
fault injection (whether both shared secrets are equal or not), by noticing possi-
ble unexpected behaviour in the protocol. Although static keys are mostly used
in server environments where such invasive fault attacks are not feasible, Noack
et al. [27] described exemplary environments and challenge-response scenarios
where such static-key attacks can be deployed. Furthermore, CSIDH provides a
non-interactive (static-static) key exchange with full public-key validation.

5.1 Attacks on SIKE

Since the current implementation [4] is immune to the attack described in Sect.
3.1, we focus on the attack explained in Sect. 3.2. As described, the adversary
deploys safe-error analysis to recover the private key during the computation
of the three-point ladder. Since the attacked algorithm runs in constant time,
an attacker can easily locate the critical spot, which in our case represents the
main loop within the ladder computation. Thus, an attacker who can accurately
induce any kind of computational fault inside that spot at the i-th iteration,
may be able to deduce if the i-th bit of the private key is set or not, i.e., ski “ 0
or ski “ 1 according to whether the resulting shared secret is incorrect or not.
Thus, in this model the required number of injections for a full key recovery only
depends on the length of the private key. In this setup, the fault is injected by
suddenly modifying the clock (clock glitching), thus, forcing the target core to
skip an instruction.

The SIKEp434 Cortex-M4 implementation6 from [28] available at the pqm4
project [29] provided the basis for our implementation. However, this attack
can be applied to all available software implementations of SIKE7 including the
round-3 submission [4] to NIST’s standardisation process. More precisely, the
code part that represents this vulnerability remains the same across all available
implementations.

Results. We assume that the attacker knows critical spots within the attacked
loop (cf. Listing 1) which reveal one bit of the private key after a single fault
injection with high accuracy. As shown in this work, such spots and the corre-
sponding suitable parameters for the injection (e.g., width and internal offset
of the clock glitch) can be empirically determined in advance with manageable
effort.

6 https://github.com/mupq/pqm4, commit 20bcf68.
7 https://sike.org/#implementation.

https://github.com/mupq/pqm4
https://sike.org/#implementation

118 F. Campos et al.

Fig. 1. Success rate for full key recovery as a function of the number of fault injections
per bit (SIKE) or isogeny (CSIDH), respectively. Let α be the number of injections
for each bit/isogeny. Since a single faulty shared secret is sufficient to distinguish the
cases, the success rate for full key recovery can be calculated by P (α) “ [(0.5 · (1 ´
B(0, α, p1))) ` (0.5 · B(0, α, p0)))]

λ, where λ equals the number of bits in the case
of SIKE and equals

∑n
i“1�log2(mi)� for all mi of the corresponding bound vector

m “ (m1, m2, . . . , mn) in the case of CSIDH, B(k, n, p) “ (
n
k

) · pk(1 ´ p)n´k, and p0, p1

correspond to the respective probabilities.

In order to determine the success rate for each individual of the 218 bits of
the private key, we performed 21,800 fault injections (100 injections for each bit)
and achieved a relatively high accuracy. More precisely, we obtained on average
over all bits 100% (leading to an error probability p0 “ 0, as denoted in Fig. 1)
accuracy for the case ski “ 0 and an accuracy of over 86% (denoted as p1 in Fig.
1) for the case ski “ 1. As shown in Fig. 1, only 5 fault injections are required
for each bit, thus 1,090 injections in total to achieve a success rate above 99%
for full key recovery. Since in our inexpensive setup a single run takes about 12 s,
full key recovery requires about 4 h.

5.2 Attacks on CSIDH

Since the practical implementation is similar for both attacks, we show without
loss of generality how we realised the attack described in Sect. 4.1. The attacker
aims to distinguish a real from a dummy isogeny. For this, they inject a fault
during the computation of an isogeny and observe if it impacts the resulting
shared secret. In this attacker model the adversary can target isogeny computa-
tions at positions of their choice and is further able to trace the faulty isogeny
computation to determine its degree. Due to non-constant time computation
within the calculation of the isogeny (e.g., a square-and-multiply exponentiation
based on the degree [17,21,22]), the degree of a given isogeny might be recovered
with manageable effort, e.g., using Simple Power Analysis [30].

In our setup, the fault is injected by temporarily under-powering the target
core, i.e., by reducing for some clock cycles the value of the supply voltage of
the attacked device below the minimum value the device is specified for. Such
an attack might lead to an unpredictable state in the target variable during an
assignment and can therefore be applied to attack the vulnerable spot regarding
the co-domain curve A, as defined in Sect. 4.2. For illustration, the attacks occur

Safe-Error Attacks on SIKE and CSIDH 119

Table 4. Results for CSIDH attacking the first isogeny

Key # of trials Faulty shared secret Accuracy

S1 “ (´1, 1) 2500 0.0% 100.0%
S2 “ (0, 1) 2500 92.4% 92.4%

during the calculation of the first isogeny, but the other isogenies can be attacked
similarly. The implemented attacks are based on the implementation from [17].

Results. As suggested in [17], in order to increase the number of attempts
by reducing the time required for a single run, we reduced the key space in
CSIDH512 from 1174 to 32. Further, all required values, e.g. points of corre-
sponding order, were calculated in advance, leading in total to a reduction from
15,721M to 115M clock cycles for a single run. Due to the reduced key space,
private keys are of the form S “ (e0, e1), where ei P [´1, 1]. To obtain results for
both cases (dummy and real), we performed experiments using different private
keys. In the first case, the private key S1 “ (´1, 1) consists of real isogenies
only. Thus, attacks should not impact the computation of the shared secret. As
expected, after 2,500 attempts, there is no faulty shared secret, achieving an
accuracy of 100% (leading to an error probability p0 “ 0, as denoted in Fig.
1). In the second case, however, the selected private key S2 “ (0, 1) implies the
calculation of a dummy isogeny since e0 “ 0. Hence, fault injections should lead
to a faulty shared secret. Here, we achieved an accuracy of over 92% (denoted
as p1 in Fig. 1). Table 4 shows the achieved results of the applied attacks in our
setup. Hence, based on these numbers, we assume an attacker can distinguish
real from dummy isogenies with a single injection with high accuracy.

Since in dummy-based constant-time implementations of CSIDH (e.g.,
Meyer, Campos, and Reith (MCR) [21] or Onuki, Aikawa, Yamazaki, and Tak-
agi (OAYT) [22]), the private key vector (e1, . . . , en) is sampled from an interval
defined by a bound vector m “ (m1,m2, . . . ,mn), the number of fault injections
required to obtain the absolute value of a certain ei strongly depends on the
corresponding bound vector. More precisely, since the computation of a given
degree �i occurs deterministically (real-then-dummy), the attacker performs a
binary search through the corresponding mi to identify the computation of the
first dummy isogeny. Thus, the number of attacks required to obtain the absolute
value of a certain ei depends only on the corresponding bound mi.

The achieved key space reductions are due to the fact that an attacker after
a certain number of attacks knows the absolute values for the private key vec-
tor (e1, . . . , en). In the case of the OAYT implementation of CSIDH512 (where
´mi ď ei ď mi,mi “ 5 for i “ 0, . . . , 73), our approach leads to a private key
space reduction from 2256 to 274 in the worst case (ei �“ 0 for i “ 0, . . . , 73) and
to 267.06 in the average case after at least 222 · 4 “ 888 fault injections for a
success rate over 99%. The remaining key space can be further reduced by a
meet-in-the-middle approach [5] to about 234.5 in the average case. For achiev-
ing a success rate over 99%, when attacking the MCR implementation (where

120 F. Campos et al.

0 ď ei ď mi,mi P [1, 10] for i “ 0, . . . , 73), at least 296 · 4 “ 1184 injections are
required for full key recovery (cf. Fig. 1) since only positive values are allowed
for the private key vector. Considering the running time of the non-optimised
implementation of CSIDH512 of about 5min for a single run in our setup, full
key recovery would require about 98 h in the case of the MCR implementation
and about 74 h to achieve the mentioned key space reduction in the case of the
OAYT version.

Since recent works [6,7] suggests that CSIDH-512 may not reach the post-
quantum security as initially considered [5], some works recommend to increase
the size of the CSIDH prime p [6,7,31]. However, from a classical perspective,
since the classical security only depends on the size of the private key space, the
number of prime factors �i remains unchanged. Thus, apart from the longer run-
ning time due to possibly larger prime factors, increasing the quantum security
has no further influence on the effectiveness of the presented attack.

6 Countermeasures

In this section we discuss general countermeasures against safe-error attacks and
then present concrete countermeasures for SIKE and CSIDH.

In safe-error attacks, a simple check of the final result before transmitting
can still leak one bit. This can be easily seen in the attack on SIKE in Sect. 3.2.
If the attacker successfully executes an attack, even if the result is checked for
correctness, the implementation will leak one bit: either the algorithm fails or
it returns an unusable result, or the induced error is overwritten, both of which
represent a successful attack. This makes efficient generic countermeasures hard
to design, as, for instance, simply repeating a calculation after a fault has been
detected can be detected, too: an algorithm that suddenly takes twice as long
shows that the attack was successful.

Using infective computation [32], a succesfully induced fault directly, i.e.,
without the necessity of checking, modifies the output value such that the faulty
output does not allow to reveal secret values. In case of safe-error attacks, this is
also not a solution, since any faulty output shows that the fault was successful.
This is all an attacker needs to know in case of safe-error attacks.

An effective countermeasure consists in redundant computation with con-
sistency check, i.e., calculating the susceptible operations repeatedly and then
choose the value to be output by majority vote. However, this is costly, since,
assuming that an attacker can realize a fault n times within a single computa-
tion of the algorithm, the susceptible operations have to be computed 2 · n ` 1
times. Since second-order faults, i.e., two faults within one computation, are
practical [33], this would require at least a fivefold repetition of the susceptible
operations.

Another route, which is not in the hands of the implementer, is the selection
of hardware the algorithm executes on. Hardware-based detection of fault attacks
through, for instance, voltage sensing or intrusion detection, are possible ways
of shutting down the execution - independent of the effect of the fault on the
computation - before any information could have been leaked [34].

Safe-Error Attacks on SIKE and CSIDH 121

It is important to note that the attacks presented in this paper exploit secret-
dependent memory access. Implementations and future optimizations should
thus take special care to eliminate any such occurrence and treat them with
the same rigour as secret-depending timings. This also extends to “branch-less”
versions of algorithms, where, for instance, a pointer is swapped depending on
the bit of a secret key; this does not remove the secret dependence of the under-
lying memory.

The discussion shows that to prevent safe-error attacks, the susceptible func-
tions have to be adjusted, as in [8].

6.1 Securing SIKE

As explained in Sect. 3.1, by using a simultaneous double-and-add algorithm
within xDBLADD [4], the particular M safe-error attack on SIKE can be pre-
vented.

A possible countermeasure against the key recovery presented in Sect. 3.2 is
to add an additional check to the LADDER3PT algorithm. The attack relies
on skipping the swap_points method. Hence, a relatively inexpensive way of
detecting an attack is to verify whether the swap actually took place. Thus,
in each loop the implementation would save the current points, run the swap
operation, and eventually check if the calculated mask had the intended effect.

Although the proposed countermeasure to conditional point swaps from [17]
could be adapted to SIKE, the described approach (cf. [17], section VI, paragraph
C, point 1) represents no real countermeasure. An attack in the case where no
swap takes place (decision bit = 0) does not lead to a false result (wrong point
order), while attacking the conditional swap in the case of a swap (decision bit
= 1) the order check of the resulting point should fail.

6.2 Securing CSIDH

Since the current CSIDH action algorithms branch on the secret key, it is a
prime target for exploitation. One possible way of making attacks more difficult
is shown in [19]. Here, LeGrow and Hutchinson show that using a binary decision
vector to interleave the different �i-isogenies, an attacker has to do more than
8x as many attacks to gain the same amount of information.

Another approach is to choose an implementation that is dummy-free. So
far however, dummy-free implementations have come at the cost of being twice
as slow [18]. Further research might be able to close this performance gap and
thereby completely eliminate attacks based on dummy isogenies.

Securing CSIDH against physical attacks is clearly difficult and care has to be
taken to not accidentally enable another attack by fixing a specific vunerability.
One such occurrence are dummy isogenies, introduced as timing attack coun-
termeasures in [21], which allow an attacker to learn secret information through
fault injections. Although in this specific situation using dummy isogenies might

122 F. Campos et al.

be reasonable as timing attacks are in general easier to carry out than fault injec-
tions, all implications a countermeasure can have have always to be considered
so that implementers can consciously reason about trade-offs.

7 Conclusion

This work shows how safe-error attacks can be applied to recent isogeny-based
cryptographic schemes. We presented four different attacks on the SIKE and
CSIDH cryptosystems. It is important to note that the resilience of SIKE against
the attack described in Sect. 3.1 solely depends on the structure of the actual
implementation. As such, any further implemententations need to make sure to
not introduce the possibility of this safe-error attack. We have shown how to
practically realize two of these attacks and how to achieve full key recovery in a
static key context on both SIKE and CSIDH.

We discussed that securing cryptosystems against safe-error attacks is non-
trivial. This also partially explains why some of the attacks that we applied
to isogeny-based cryptographic schemes have similarly been known in the ECC
community for a long time, and yet have not been prevented in current imple-
mentations of SIKE and CSIDH. As safe-errors exploit differences of compu-
tation and memory access depending on the secret key, a simple check is not
sufficient. It is equally important, that countermeasures against certain attacks
do not open ways for further safe-error attacks [25]. This can be the case for
example when implementing a simple consistency check, which might not trig-
ger on all injections, thus inadvertently leaking data. The same holds true for
constant-time implementations, which are designed to thwart timing attacks.
The implementations of CSIDH that we attacked in this work are constant-
time, but based on dummy isogenies, which enable our attack. CTIDH [35], a
recent faster constant-time algorithm for CSIDH, is also vulnerable to safe-error
attacks. In this case, the attacks should occur during the dummy operations
within the MatryoshkaIsogeny (cf. [35], Sect. 5.2.2). Dummy-free implementa-
tions, which do also exist, are probably not vulnerable to the attacks presented
in this paper; however, they are prone to timing attacks. Future research there-
fore needs to find a way to secure CSIDH at the same time against timing and
safe-error attacks.

Acknowledgments. JK acknowledges funding by the Deutsche Forschungsgemein-
schaft (DFG) - SFB 1119 - 236615297, and JK and MM acknowledge funding by the
German Federal Ministry of Education and Research (BMBF) under the project Quan-
tumRISC.

References

1. Couveignes, J.M.: Hard homogeneous spaces. IACR Cryptology ePrint Archive, p.
291 (2006). http://eprint.iacr.org/2006/291

2. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. IACR
Cryptology ePrint Archive, p. 145 (2006). http://eprint.iacr.org/2006/145

http://eprint.iacr.org/2006/291
http://eprint.iacr.org/2006/145

Safe-Error Attacks on SIKE and CSIDH 123

3. Feo, L.D., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014). https://
doi.org/10.1515/jmc-2012-0015

4. Jao, D., et al.: “SIKE,” National Institute of Standards and Technology, Technical
report (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/round-
3-submissions

5. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3_15

6. Peikert, C.: He gives C-sieves on the CSIDH. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 463–492. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45724-2_16

7. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. In: Can-
teaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 493–522.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_17

8. Yen, S.-M., Joye, M.: Checking before output may not be enough against fault-
based cryptanalysis. IEEE Trans. Comput. 49(9), 967–970 (2000). https://doi.org/
10.1109/12.869328

9. Joye, M., Yen, S.-M.: The Montgomery powering ladder. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5_22

10. Bettale, L., Montoya, S., Renault, G.: Safe-error analysis of post-quantum cryp-
tography mechanisms - short paper. In: 18th Workshop on Fault Detection and
Tolerance in Cryptography, FDTC 2021, Milan, Italy, 17 September 2021, pp. 39–
44. IEEE (2021). https://doi.org/10.1109/FDTC53659.2021.00015

11. Costello, C.: B-SIDH: supersingular isogeny Diffie-Hellman using twisted torsion.
In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 440–463.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_15

12. Koziel, B., Azarderakhsh, R., Jao, D.: Side-channel attacks on quantum-resistant
supersingular isogeny Diffie-Hellman. In: Adams, C., Camenisch, J. (eds.) SAC
2017. LNCS, vol. 10719, pp. 64–81. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-72565-9_4

13. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingu-
lar isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53887-6_3

14. Gélin, A., Wesolowski, B.: Loop-abort faults on supersingular isogeny cryptosys-
tems. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp.
93–106. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6_6

15. Ti, Y.B.: Fault attack on supersingular isogeny cryptosystems. In: Lange, T., Tak-
agi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 107–122. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59879-6_7

16. Zhang, F., et al.: Side-channel analysis and countermeasure design on ARM-based
quantum-resistant SIKE. IEEE Trans. Comput. 69(11), 1681–1693 (2020). https://
doi.org/10.1109/TC.2020.3020407

17. Campos, F., Kannwischer, M.J., Meyer, M., Onuki, H., Stöttinger, M.: Trouble
at the CSIDH: protecting CSIDH with dummy-operations against fault injection
attacks. In: 17th Workshop on Fault Detection and Tolerance in Cryptography,
FDTC 2020, Milan, Italy, 13 September 2020, pp. 57–65. IEEE (2020). https://
doi.org/10.1109/FDTC51366.2020.00015

https://doi.org/10.1515/jmc-2012-0015
https://doi.org/10.1515/jmc-2012-0015
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1109/12.869328
https://doi.org/10.1109/12.869328
https://doi.org/10.1007/3-540-36400-5_22
https://doi.org/10.1109/FDTC53659.2021.00015
https://doi.org/10.1007/978-3-030-64834-3_15
https://doi.org/10.1007/978-3-319-72565-9_4
https://doi.org/10.1007/978-3-319-72565-9_4
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-319-59879-6_6
https://doi.org/10.1007/978-3-319-59879-6_7
https://doi.org/10.1109/TC.2020.3020407
https://doi.org/10.1109/TC.2020.3020407
https://doi.org/10.1109/FDTC51366.2020.00015
https://doi.org/10.1109/FDTC51366.2020.00015

124 F. Campos et al.

18. Cervantes-Vázquez, D., Chenu, M., Chi-Domínguez, J.-J., De Feo, L., Rodríguez-
Henríquez, F., Smith, B.: Stronger and faster side-channel protections for CSIDH.
In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol. 11774, pp.
173–193. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30530-7_9

19. LeGrow, J.T., Hutchinson, A.: An analysis of fault attacks on CSIDH. IACR Cryp-
tology ePrint Archive, p. 1006 (2020). https://eprint.iacr.org/2020/1006

20. Tasso, É., De Feo, L., El Mrabet, N., Pontié, S.: Resistance of isogeny-based cryp-
tographic implementations to a fault attack. In: Bhasin, S., De Santis, F. (eds.)
COSADE 2021. LNCS, vol. 12910, pp. 255–276. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-89915-8_12

21. Meyer, M., Campos, F., Reith, S.: On lions and elligators: an efficient constant-
time implementation of CSIDH. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019.
LNCS, vol. 11505, pp. 307–325. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-25510-7_17

22. Onuki, H., Aikawa, Y., Yamazaki, T., Takagi, T.: (Short Paper) A faster constant-
time algorithm of CSIDH keeping two points. In: Attrapadung, N., Yagi, T. (eds.)
IWSEC 2019. LNCS, vol. 11689, pp. 23–33. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26834-3_2

23. Costello, C.: Supersingular isogeny key exchange for beginners. In: Paterson, K.G.,
Stebila, D. (eds.) SAC 2019. LNCS, vol. 11959, pp. 21–50. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-38471-5_2

24. Faz-Hernández, A., López-Hernández, J.C., Ochoa-Jiménez, E., Rodríguez-
Henríquez, F.: A faster software implementation of the supersingular isogeny Diffie-
Hellman key exchange protocol. IEEE Trans. Comput. 67(11), 1622–1636 (2018).
https://doi.org/10.1109/TC.2017.2771535

25. Sung-Ming, Y., Kim, S., Lim, S., Moon, S.: A countermeasure against one physical
cryptanalysis may benefit another attack. In: Kim, K. (ed.) ICISC 2001. LNCS,
vol. 2288, pp. 414–427. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45861-1_31

26. Yen, S.-M., Kim, S., Lim, S., Moon, S.-J.: RSA speedup with Chinese remain-
der theorem immune against hardware fault cryptanalysis. IEEE Trans. Comput.
52(4), 461–472 (2003). https://doi.org/10.1109/TC.2003.1190587

27. Noack, D., et al.: Industrial use cases and requirements for the deployment of post-
quantum cryptography (2020). https://www.quantumrisc.de/results/quantumrisc-
wp1-report.pdf

28. Seo, H., Anastasova, M., Jalali, A., Azarderakhsh, R.: Supersingular Isogeny Key
Encapsulation (SIKE) round 2 on ARM cortex-M4. IEEE Trans. Comput. 70(10),
1705–1718 (2021). https://doi.org/10.1109/TC.2020.3023045

29. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: pqm4: testing and
benchmarking NIST PQC on ARM cortex-M4. IACR Cryptology ePrint Archive,
p. 844 (2019). https://eprint.iacr.org/2019/844

30. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1_25

31. Chávez-Saab, J., Chi-Domínguez, J., Jaques, S., Rodríguez-Henríquez, F.: The
SQALE of CSIDH: square-root vélu quantum-resistant isogeny action with low
exponents. IACR Cryptology ePrint Archive, p. 1520 (2020). https://eprint.iacr.
org/2020/1520

32. Gierlichs, B., Schmidt, J.-M., Tunstall, M.: Infective computation and dummy
rounds: fault protection for block ciphers without check-before-output. In: Hevia,

https://doi.org/10.1007/978-3-030-30530-7_9
https://eprint.iacr.org/2020/1006
https://doi.org/10.1007/978-3-030-89915-8_12
https://doi.org/10.1007/978-3-030-89915-8_12
https://doi.org/10.1007/978-3-030-25510-7_17
https://doi.org/10.1007/978-3-030-25510-7_17
https://doi.org/10.1007/978-3-030-26834-3_2
https://doi.org/10.1007/978-3-030-26834-3_2
https://doi.org/10.1007/978-3-030-38471-5_2
https://doi.org/10.1109/TC.2017.2771535
https://doi.org/10.1007/3-540-45861-1_31
https://doi.org/10.1007/3-540-45861-1_31
https://doi.org/10.1109/TC.2003.1190587
https://www.quantumrisc.de/results/quantumrisc-wp1-report.pdf
https://www.quantumrisc.de/results/quantumrisc-wp1-report.pdf
https://doi.org/10.1109/TC.2020.3023045
https://eprint.iacr.org/2019/844
https://doi.org/10.1007/3-540-48405-1_25
https://eprint.iacr.org/2020/1520
https://eprint.iacr.org/2020/1520

Safe-Error Attacks on SIKE and CSIDH 125

A., Neven, G. (eds.) LATINCRYPT 2012. LNCS, vol. 7533, pp. 305–321. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33481-8_17

33. Blömer, J., da Silva, R.G., Günther, P., Krämer, J., Seifert, J.: A practical second-
order fault attack against a real-world pairing implementation. In: Tria, A., Choi,
D. (eds.) 2014 Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC
2014, Busan, South Korea, 23 September 2014, pp. 123–136. IEEE Computer Soci-
ety (2014). https://doi.org/10.1109/FDTC.2014.22

34. Yuce, B., Ghalaty, N.F., Deshpande, C., Patrick, C., Nazhandali, L., Schaumont, P.:
FAME: fault-attack aware microprocessor extensions for hardware fault detection
and software fault response. In: Proceedings of the Hardware and Architectural
Support for Security and Privacy 2016, HASP@ICSA 2016, Seoul, Republic of
Korea, 18 June 2016, pp. 8:1–8:8. ACM (2016). https://doi.org/10.1145/2948618.
2948626

35. Banegas, G., et al.: CTIDH: faster constant-time CSIDH. IACR Transactions on
Cryptographic Hardware and Embedded Systems, vol. 2021, no. 4, pp. 351–387
(2021). https://doi.org/10.46586/tches.v2021.i4.351-387

https://doi.org/10.1007/978-3-642-33481-8_17
https://doi.org/10.1109/FDTC.2014.22
https://doi.org/10.1145/2948618.2948626
https://doi.org/10.1145/2948618.2948626
https://doi.org/10.46586/tches.v2021.i4.351-387

Hardware Security and Side-Channel
Attacks

Network Data Remanence Side Channel
Attack on SPREAD, H-SPREAD

and Reverse AODV

Pushpraj Naik(B) and Urbi Chatterjee

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur, Kanpur, India

{pushpraj,urbic}@cse.iitk.ac.in

Abstract. Side Channel Attacks (SCAs) was first introduced by Paul
Kocher in 1996 to break the secret key of cryptographic algorithms using
the inherent property of the implementation along with the mathematical
structure of the cipher. These categories of attacks become more robust
as they do not require any mathematical cryptanalysis to retrieve the
key. Instead, they exploit the timing measurements, power consumption,
leaked electromagnetic radiation of the software/hardware platforms to
execute key-dependent operations for the cipher. This, in turn, aids the
adversary to gather some additional information about the computation.
The overall concept of leaking secrets through side channel has been
extended for Wireless Sensor Networks (WSNs) that implements Secret
Sharing (SS) Scheme to exchange secrets between two nodes across mul-
tiple paths. Now in the idealized network model, it is assumed that for
such SS schemes, all the paths between the two communicating nodes
are atomic and have the same propagation delay. However, in the real
implementation of TCP/IP networks, the shares propagate through every
link and switch sequentially. Hence the attacker can probe any num-
ber of paths or switches to get the residual shares from previous mes-
sages that still exist in the network even when a new message is being
sent. This kind of side channel vulnerability is known as Network Data
Remanence (NDR) attacks. In this paper, we specifically target two SS
schemes named Secure Protocol for Reliable Data Delivery (SPREAD)
and Hybrid-Secure Protocol for Reliable Data Delivery (H-SPREAD),
and an on-demand routing protocol named Path Hopping Based on
Reverse AODV (PHR-AODV) to launch NDR based side channel attacks
on the WSNs. We then show two specific categories of NDR attacks; a)
NDR Blind and b) NDR Planned on the schemes mentioned above. We
use an in-house C++ library to simulate our proposed attacks, and the
experimental results reveal that the impact of NDR Blind attacks is
negligible for these schemes, whereas the probability of data recovery for
NDR Planned attacker proportionally increases with the path length.

Keywords: Side channel attack · Network data remanence · Secret
sharing scheme · Wireless sensor networks

c© Springer Nature Switzerland AG 2022
L. Batina et al. (Eds.): SPACE 2021, LNCS 13162, pp. 129–147, 2022.
https://doi.org/10.1007/978-3-030-95085-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95085-9_7&domain=pdf
http://orcid.org/0000-0002-4631-2208
https://doi.org/10.1007/978-3-030-95085-9_7

130 P. Naik and U. Chatterjee

1 Introduction

For more than last two decades, Side Channel Attacks (SCAs) have been rig-
orously analyzed and successfully launched on hardware and embedded systems
to leak the secret key while running the cryptographic algorithms. These chan-
nels bring forth crucial state information about the implementation that is not
generally available to the classical adversaries. To briefly highlight, implemen-
tations of crypto processors often incur variable execution time to process the
data-dependent operations due to performance optimization. Using timing side
channel, an adversary can carefully measure the time required for the secret
key operation of the cipher and derive some additional information about the
secret key that would help the attacker to launch SCA successfully. In [1], it was
shown that the timing information with known ciphertext, the adversary can
extract secret exponent of RSA [2] and Diffie-Hellman [3] key exchange. Simi-
larly, in power side channel [4], the adversary measures the power consumption
of a hardware platform while running the cryptographic algorithms and try to
relate it with either the secret key, typically known as Simple Power attacks
(SPAs) or the differential of an intermediate state in two consecutive rounds
of the cipher depending on the secret key, known as Differential Power Attacks
(DPAs) [4]. The attacker can also collect the electromagnetic radiation (EM)
of an embedded system during the execution of the cipher using an EM probe
and optionally with a low-noise amplifier. Then similar to SPAs and DPAs, the
secret key can be extracted using the EM side channel traces. Finally, an adver-
sary can manipulate a hardware device using abrupt changes in voltage or clock
in order to generate glitches in the circuit. This is otherwise called fault attacks
and would eventually lead to temporary changes in the intermediate states of
the cipher implementation and produce faulty ciphertexts. The pair of correct
and faulty ciphertext then can expose the secret key of the cipher using some
statistical analysis.

In recent years, the concept of side-channel has not been limited to hardware
platforms or even cryptographic algorithms. The very basic idea of leaking side-
channel information during an operation can also be easily extended for wireless
sensor networks (WSNs), where an extensive collection of low-cost sensor nodes
work collectively to carry out some real-time sensing and monitoring tasks within
a designated area, such as military sensing and tracking hostile ground [5]. Since
the sensor nodes are resource-constrained, it is difficult to deploy the traditional
cryptographic algorithms for privacy and security purposes. Hence, several WSN
applications and even software-defined networks (SDN) tend to adapt secret
sharing (SS) schemes to exchange secrets between two communicating nodes.
The SS schemes take advantage of the fact that the sender and the receiver (of
the secret) are connected through multiple paths. It divides the secret S into n
pieces so that S can be reconstructed from any k shares, but even the complete
knowledge of (k − 1) shares can not reveal any information about S. It pro-
vides robust key construction even when (n− k) shares are lost or dropped, and
security breaches expose all but one of the remaining shares. However, the ideal
assumption in SS schemes is that the paths between the sender and the receiver

Network Data Remanence Side Channel Attack 131

are atomic, and all paths have an identical delay; in other words, the attacker
has only one chance of capturing the packets. Unfortunately, these assumptions
are far from reality; in any realistic network, various networking devices such
as routers, switches, hubs, bridges, etc., constitute the paths. Every component
that is added to the path induces some propagation delay while transferring a
network packet, making the idealized assumptions of the SS schemes inaccurate.
Due to this reason, the network has residual shares of a secret for more than
one-time quanta, thus giving the attacker more than one chance to probe the
path and capture the packets. This makes SS schemes vulnerable to a new family
of side channel attacks named Network Data Remanence (NDR).

Based on the attack strategy, we can classify the NDR attacker into two
categories as follows:

1. NDR Blind : This attacker randomly picks a set of nodes out of all the inter-
mediate nodes available between the sender and the receiver and captures the
shares. It can also update the chosen nodes with time.

2. NDR Planned : Here, the attacker is moderately more intelligent than NDR
Blind as in the first tick, it selects a set of intermediate nodes which are at
a distance one from the sender. On the next tick, it listens to the nodes at
a distance of two from the sender to capture the shares it missed during the
first tick. The attacker goes one link away from the sender at every tick until
all the shares of the first message are delivered to the receiver. The attacker
then proceeds to the nodes at a distance one from the sender to capture the
shares of the second message.

In [6], the first SS scheme that was shown to be vulnerable to NDR side-
channel attack was Multipath Switching Secret Sharing (MSSS) scheme [7]. It
was also mentioned in [6], the other SS schemes and routing protocols [5,8–
13] can be also vulnerable against NDR. But it was a challenge to select the
suitable adversarial model and attack methods that were not mentioned in [6].
This motivated us to investigate the impact of NDR attack on SPREAD, H-
SPREAD, and PHR-AODV schemes.

In summary, the major contributions of our work are as follows:

1. We have formed the appropriate adversarial model and attack methodology
for the SPREAD scheme and applied NDR Blind and NDR Planned attack
on it.

2. Extending the concept of SPREAD, we have successfully shown the NDR
attack also in the H-SPARED scheme.

3. Additionally, to show the extensibility of the NDR attack in applications
other than the SS schemes, we have shown how to launch the NDR Blind,
and NDR Planned attacks on PHR-AODV, which is an on-demand routing
protocol.

4. Finally, we have implemented a simulation of NDR attacks using an in-house
C++ library. The experimental results reveal that the probability of data
recovery for NDR Planned attacker proportionally increases with the path
length, hence can be suitably applied to real WSN and SDN scenarios.

132 P. Naik and U. Chatterjee

Paper Organisation. The rest of the paper is arranged as follows. In Sect. 2 we
give the background about the working principle of Secret Sharing (SS) Schemes,
MSSS, NDR side channel, NDR Attack on MSSS. In Sect. 3 we give the working
principle of SPREAD and H-SPREAD. In Sect. 4 we elaborate how NDR attack
is launched in SPREAD and H-SPREAD. In Sect. 5 we describe the working
principle of PHR-AODV. In Sect. 6 we describe how NDR Attacks are launched
in PHR-AODV. In Sect. 7 we give experimental setup, results and plots corre-
sponding to NDR attack on SPREAD, H-SPREAD, and PHR-AODV. In Sect. 8
we conclude our paper.

2 Background

In this section, we provide the basics of SS Schemes, MSSS, NDR side channel,
NDR Attack on MSSS and the working principle of Secure Protocol for Reliable
Data Delivery (SPREAD), Hybrid-Secure Protocol for Reliable Data Delivery(H-
SPREAD) and Path Hopping Based on Reverse AODV (PHR-AODV).

2.1 Working Principle of Secret Sharing (SS) Scheme

First proposed by Shamir [14] and independently by Blakely [15], the secret
sharing scheme is the building block for secure multiparty communication and
distributed storage.

To better understand the scheme, we briefly discuss the threshold SS Scheme
next [16]. Let K, N be positive integers, such that K ≤ N . A (K,N)-threshold
SS Scheme is a method of sharing a secret T among a finite set P of N par-
ticipants, in such a way that any K participants can compute the value of T ,
but no group of K − 1 participants can do so. The value of T is chosen by a
special participant called dealer denoted by D, and it is assumed that D /∈ P .
D gives each participant some partial information called shares. The shares are
distributed in secrecy, so no one knows what each other’s portion is.

We represent Shamir’s scheme, that is based on polynomial interpolation
constructed over a finite field. Let P = {pi : 1 ≤ i ≤ N} be the set of N
participants, S is the set of shares and K = GF (q), where q ≥ N + 1 i.e. q be a
prime number that is greater than the total number of potential shares and the
largest possible secret. Let S = GF (q), implying that each share belongs to the
field.

Next, D picks distinct non-zero value of GF (q) denoted by xi, 1 ≤ i ≤ N in
the initialization phase and gives the value xi to pi. The values xi can be made
public since these are not the actual shares. Now to send a secret T , D performs
the following three steps:

1. First, it independently and randomly chooses (K − 1) elements of GF (q)
denoted as a1, a2, . . . , aK−1.

2. Then it computes yi = a(xi) for 1 ≤ i ≤ N , where

a(x) = T +
K−1∑

j=1

ajx
j .

Network Data Remanence Side Channel Attack 133

3. Finally it distributes the shares yi to pi.

Next we discuss how K participants can figure out the secret. Suppose par-
ticipants p1, p2, . . . , pK want to figure out T . It is known that yi = a(xi) for 1 ≤
i ≤ N where a(x) is the polynomial chosen by D. a(x) can be expressed in the
following way:

a(x) = a0 + a1x + · · · + aK−1x
K−1,

where coefficients a0, . . . , aK−1 are unknown and a0 = T is the secret. K linear
equations with K unknowns can be obtained by participants. There will be a
unique solution if the equations are linearly independent, and a0, i.e. the secret,
will be disclosed.

A simplified version of (K,N)-threshold SS Scheme is (K,K)-threshold
scheme, here N = K. This scheme work for any set Zm with S = Zm. It is
not necessary that m is prime and m ≥ N + 1.

D performs the following steps to send the secret.

1. It independently and randomly chooses K − 1 elements of Zm, let’s denote
them by y1, y2, . . . , yK−1.

2. Then it computes, yK = T − ∑K−1
i=1 yi mod m.

3. And then it distributes yi to pi, where 1 ≤ i ≤ K.

K participants can compute secret T by simply adding their secrets as follows:

T =
K∑

i=1

yi mod m,

It may be demonstrated that less than K participants are incapable of dis-
covering the secret. If we assume that the first (K − 1) participants can sum
their secrets to reveal the secret, they must get T − yi. However, they do not
know the value of yi. Hence the secret remains hidden.

Next we illustrate the MSSS and applicability of this threshold secret sharing
scheme on it.

2.2 Working Principle of MSSS

Secret sharing and multi-path routing are a perfect complement for ensuring
secrecy. These systems employ (K,N) SS Schemes to generate message shares
and send each share over node-disjoint routes. As long as the opponent may
only access (K − 1) routes, secrecy is ensured. Furthermore, as long as K routes
supply the shares, these systems are reliable. In schemes like [8] and [5], there are
N path accessible between the sender and the receiver. The sender chooses a set
of paths to transfer the shares. In systems where a fixed set of routes are utilized,
the adversary can deduce the set of paths chosen by the sender by monitoring
the network.

Another method for maintaining secrecy is path switching. A random route
is selected for each message in the scheme [9]. Because the chosen routes contain
the entire message, they are unreliable.

134 P. Naik and U. Chatterjee

To solve the shortcomings of the previous methods, path switching with
multi-path routing and secret sharing are integrated, in which time is split into
ticks, senders and receivers can switch among a set of paths, and transmit mes-
sage shares on these paths in each tick.

MSSS enables the senders to send messages to the receivers with perfect
information-theoretic security without using secret keys. It is assumed that the
sender and the receiver are connected by N node-disjoint paths, K of which the
adversary can observe at any time. To produce K shares for the message, the
sender utilizes (K,K) secret sharing. It chooses K paths at random from a total
of N paths and sends each share along a different path. The adversary has the
ability to monitor K paths of their choosing. Time is divided into ticks, and
during each tick, the sender and receiver might switch communication channels.

The adversarial model assumed over here is that the adversary is mobile and
can change the paths that they are monitoring in each tick. The adversary’s
goal is to find all the K paths on which data are being transmitted in each tick.
Using the (K,K) secret sharing implies that all the K shares must be captured to
reconstruct the message. While the MSSS system provides information-theoretic
security against adversaries who have access to a quantum computer, it does so at
the expense of increased bandwidth. As a result, when bandwidth optimization
is the primary issue, it is not appropriate.

Next we describe the Network Data Remanence side-channel and threat
model.

2.3 Network Data Remanence Side-Channel

In this subsection, we introduce the side-channel created by the implementation
of MSSS in the real network. We first describe how the data packet propagation
in the network causes side-channel information to leak and then proceed with
the attacks that actually exploit this information. In the design of MSSS, the
network can be abstracted as a set of wires connecting the sender and the receiver
over which all packets travel instantaneously. The security analysis of such an SS
scheme is based on the above network abstraction. In real network, each path
comprises links and switches. Hence the propagation of shares is not atomic;
instead, shares travel through each link and switch sequentially following the
store and forward design. To eavesdrop on a path, the attacker can probe any
number of links and switches on a path depending on their capabilities. Probing
does not always require physical access; it can be done remotely. In the case of
an SDN, probing can be done by installing an appropriate forwarding rule on the
chosen switch, and the attacker can receive a copy of any packet that matches
the IP addresses of the sender and the receiver.

Since the paths are not atomic and each path has a different delay (the major
two assumptions of an ideal network in a secret sharing scheme), the residual
share of previous messages still exists in the network when a new message is
being sent. This behavior is not specific to SDN-based implementation of MSSS;
it can also be seen in real network implementation of MSSS. This is called as
Network Data Remanence (NDR).

Network Data Remanence Side Channel Attack 135

2.4 NDR Attacks on MSSS

Next, we show how MSSS is vulnerable against NDR Blind and NDR Planned
attacks. As discussed earlier, to attack MSSS, the NDR adversary leverages the
residual shares present in the network or devices such as routers, switches, and
hubs, etc. Now, it can be classified into two categories: a) NDR Blind and b)
NDR Planned, based on the way the adversary chooses the number of paths to
probe for retrieving the secret. These two methodologies are described as follows:

Let N be the total number of paths available between the sender and the
receiver. We assume that all the paths have the same length, denoted as L. The
sender breaks the message into K shares K < N and selects K random paths
to deliver the shares at every tick.

– NDR Blind: As mentioned in Sect. 1, NDR Blind adversary picks a set of
nodes from all the intermediate nodes available between the sender and the
receiver at every tick to collect the shares of the secret. Let us assume that
Pbln(m, t) denotes the probability of capturing m shares until tick t. We can
define Pbln(m, 1) as follows:

Pbln(m, 1) =

⎧
⎪⎪⎨

⎪⎪⎩

(Km)∗((L−1)N−K
K−m)

((L−1)N
K) , (L = 2 and 0 < 2K − N ≤ m ≤ K)

or 0 ≤ m ≤ K ≤ N
2

0, otherwise

(1)

Here the term (L − 1)N denote the total number of intermediate nodes. We
have only one tick to select m shares. NDR Blind attack’s goal is to select K
nodes out of all the intermediate nodes (denoted by the denominator). The
first term in numerator, i.e.,

(
K
m

)
selects m nodes out of all the K data-carrying

nodes. The second term selects the remaining (K −m) nodes from the rest of
the non-data-carrying nodes. Suppose L = 2, the probability of data recovery
equals Pbln(K, 1) because the attacker has only one intermediate node (in
other words, only one tick) to capture the shares. In the next tick, the shares
will be delivered to the receiver. But when t > 1, Pbln(m, t) can be computed
as:

Pbln(m, t) =
K∑

x=0

Pbln(m − x, t − 1) ∗ Dbln(m,x) (2)

where Dbln(m,x) denote the probability of capturing x new shares by the
NDR Blind attacker at tick t provided that m − x shares were captured
before tick t. The probability of Dbln(m,x) is given by:

Dbln(m,x) =

(
K−m+x

x

) ∗ (
(L−1)N−K+m−x

K−x

)
(
(L−1)N

K

) (3)

The probability of data recovery by NDR Blind is given by Pbln(K,L − 1).

136 P. Naik and U. Chatterjee

– NDR Planned: On the other hand, NDR Planned attacker selects the
nodes at a distance one from the sender in the first tick and gradually moves
away from the sender to capture the missed shares in the previous ticks. Let
Ppln(m, t) denote the probability that NDR Planned attacker has captured
exactly m shares by tick t. We define Ppln(m, 1) as follows:

Ppln(m, 1) =

⎧
⎪⎪⎨

⎪⎪⎩

(Km)∗(N−K
K−m)

(NK) , 0 ≤ m ≤ K ≤ N
2 or

0 < 2K − N ≤ m ≤ K

0, otherwise

(4)

Here NDR Planned attacker’s goal is to capture K data-carrying paths out
of all the paths available between the sender and the receiver (i.e., N). The
first term in numerator selects m data-carrying paths out of K and second
term selects remaining (K − m) paths from non-data-carrying paths. For
1 < t < L , Ppln(m, t) can be computed using the following formula,

Ppln(m, t) =
f(m)∑

x=0

Ppln(m − x, t − 1) ∗
(
K−m+x

x

) ∗ (
N−K+m−x

K−x

)
(
N
K

) (5)

where

f(m) =

{
min(m − (2K − N),K), 2K > N

min(m,K), 2K ≤ N.
(6)

The probability of message recovery by NDR Planned attacker is given by
Ppln(K,L − 1).

(a) NDR Blind (b) NDR Planned

Fig. 1. NDR Blind and NDR Planned probability of data recovery with seven node
disjoint paths

Figure 1 shows the probability of data recovery when N = 7. First, we see that
for L = 2 and K = 1 (i.e., SS scheme is not used), NDR Blind and NDR Planned

Network Data Remanence Side Channel Attack 137

attacker gives similar probability. First, look at NDR Blind. As the path length,
L increases and the sender uses the SS scheme (i.e., K > 1), the probability of
data recovery decreases. Second, NDR Planned attacker performs significantly
better than NDR Blind. The probability of data recovery approaches one when
the path length is sufficiently large.

3 Working Principle of SPREAD and H-SPREAD

In this section, we describe the working principle of SPREAD and H-SPREAD.
SPREAD is a mechanism that enhances data confidentiality in a mobile ad-hoc
network (MANET). In order to find the optimal path for secure communication,
SPREAD utilizes a pathfinding algorithm that is based on a modified version
of node disjoint shortest pair algorithm [17]. In addition, modified Dijkstra’s
algorithm is also used to allow negative links in the graph. Similar to tradi-
tional secret sharing schemes, SPREAD also splits the messages into multiple
shares and sends them across various channels, requiring the adversary to cap-
ture all the shares from all the paths in order to compromise the message. A
(K,N)-threshold secret sharing mechanism is utilized to partition the messages
in SPREAD. The significant advantage of the N shares is that one cannot learn
anything about the secret from any less than K shares, but one may rebuild the
secret from any K out of N shares using an effective algorithm.

Next, to make it adaptable to MANET applications, it is further assumed
that M node disjoint paths are available from the sender to the receiver in the
network. Let p = [p1, p2, . . . , pM] be the vector to represent the path security,
where pi (i = 1, 2, . . . ,M) is the probability that path i is compromised; pi does
not include the likelihood that source or destination nodes are compromised,
i.e. source and destination nodes are considered to be trustworthy. We presume
that if one node is compromised, all shares passing through that node are also
compromised. As a result, if one or more nodes along a path are compromised,
the path is considered compromised. Since the paths are node disjoint, the prob-
ability of one path being compromised is independent of the probability of other
paths being compromised.

To assign the N shares to the M available paths, a share allocation mecha-
nism is used. Let us denote the share allocation as n = [n1, n2, . . . , nM] where
ni denote the number of shares allocated to path i, ni ≥ 0,

∑M
i=1 ni = N . We

say that a message is compromised when K or more shares are compromised.
Let us denote the probability of message being compromised in terms of share
allocation n as Pmsg(n). We can now formulate the share allocation problem as
constraint optimization problem:

minimize Pmsg(n)

given that:
M∑

i=1

ni = N where ni is an integer, ni ≥ 0

138 P. Naik and U. Chatterjee

The SPREAD scheme can be classified into two categories based on redun-
dancy introduced due to (K,N)-SS schemes. When K ≤ N , we can define
r = 1 − T/N as the redundancy factor. Redundancy is a popular method of
increasing reliability. Less redundancy makes a scheme more secure but less
resistant to link failure, wireless signal fading, etc. On the other hand, a sys-
tem with redundancy is always considered robust against the above-mentioned
issues. We give the analysis of more secure SPREAD (i.e., with no redundancy)
because the less secure SPREAD (i.e., with redundancy) will extrapolate the
attack’s success rate, so as the probability of data recovery.

Non-redundant SPREAD provides maximum security when at least one share
or at most T − 1 are allocated to each path i.e.

1 ≤ ni ≤ T − 1 where i = 1, · · · ,M

and

M∑

i=1

ni = N

This allocation forces the adversary to compromise all the paths. Given the
scenario, the probability that whole secret message is compromised is given by
Pmsg(n).

Pmsg(n) =
M∏

i=1

pi

We can assume that the different paths have different probabilities of being
compromised i.e. p1 ≤ p2 . . . ,≤ pM . So the security depends on the paths that
are selected. The more paths we use to propagate the shares, the lesser the risk
and the more secure the message is. As a result, if γPn

is the needed security
level (in terms of message compromise probability), the SPREAD scheme should
select the first m paths which satisfy

Pmsg(n) =
M∏

i=1

pi ≤ γPn

to deliver the message.
H-SPREAD, on the other hand, is also reliability and security-enhancing

technique but in WSN. It uses distributed N -to-1 multi-path discovery protocol
to find multiple paths between each sensor and the base station (BS). The N -to-
1 multi-path discovery protocol uses techniques based on simple flooding, which
starts at the base station. It also uses two additional mechanisms for discovering
multiple paths between the sensors and the BS. The first method is known as
branch-aware flooding. It makes use of the flooding approach to identify a specific
number of node disjoint routes based on the topology of the network. Multi-path
extension of flooding is the second technique that is employed in H-SPREAD. It
exchanges the node-disjoint paths found in phase one with the nodes on different
branches. This method can enhance the number of routes identified at each node.

Network Data Remanence Side Channel Attack 139

The security analysis of H-SPREAD is similar to that of SPREAD. H-
SPREAD also considers (K,N)-threshold SS scheme. There are N node dis-
joint paths available between sensor and BS, M of which are carrying shares
of the message. Vector q = [q1, q2, . . . , qM] denotes security characteristics of
paths, where qi is probability that ith path might be compromised. Vector
n = [n1, n2, . . . , nM] denote the share allocation, where ni is the number of
packets assigned to ith path, and is positive integer such that

∑M
i=1 ni = N .

Let ψ(i) denote the indicator function on the i-th path. ψ(i) = 1 denotes
that ith path is compromised with probability qi, and ψ(i) = 0 denotes that i-th
path is not compromised with probability (1 − qi). In order to compromise the
message, the adversary needs to capture at least K shares.

The probability that the message might get compromised (PC) is given by

PC(n) = Pr
{ M∑

i=1

ψ(i) · ni ≥ K
}

(7)

where ψ(i) · ni is the number of shares on the i-th path that are compromised.
The calculation of PC can be derived as follows. Without a loss of generality, we
assume that q1 ≤ q2 ≤ . . . ,≤ qm. Let R(j, i) denote probability that minimum
of j packets are compromised from first i paths.

R(j, i) = qiR(j − ni, i − 1) + (1 − qi)R(j, i − 1) (8)

where R(j, i) = 1, for j ≤ 0, i ≥ 0

and R(j, 0) = 0, for j > 0

Now, PC can be simply calculated as:

PC(n) = R(K,M) = qMR(K − nM ,M − 1) + (1 − qM)R(K,M − 1) (9)

To improve data confidentiality, we can reduce the probability PC by sending
more shares on more secure paths. Next, we show how NDR attacks are launched
on the two schemes mentioned above.

4 Proposed NDR Side Channel on SPREAD
and H-SPREAD

This section elaborates on how the NDR attack is launched in the SPREAD and
H-SPREAD schemes. The main intuition of launching NDR attacks on SPREAD
lies in the observation that: Once the sender selects a set of paths to send the
shares of the first messages, the sender does not select new paths for the subse-
quent messages (refer to Sec. VIII of [6]). Instead, the sender uses the same set
of paths for the entire communication, which makes the routing static.

The adversary can use this information while launching NDR attacks on
SPREAD and capture all the remaining packet flows with a probability of 1.
Now, it is assumed in [8] that after applying the pathfinding algorithm, the

140 P. Naik and U. Chatterjee

sender has N node disjoint paths. Each path at least has three hops, i.e., (L ≥ 3).
The sender then uses the (K,N)-SS scheme to transform the message into K
shares.

Now, the adversarial model that we assume here is that the attacker can
monitor the nodes and capture the shares at switches. The attacker can also
redirect a copy of shares flowing through the switches if the nodes/switches are
vulnerable due to the weak password or software fault. We further assume that
it takes one tick to travel from one hop to another. Since there are (L − 1)
hops/intermediate nodes, the shares take a maximum of (L − 1) ticks to reach
the receiver. The adversary also has the same amount of time, i.e., (L − 1) ticks
to capture the shares of a message. Next, we illustrate how this setup can be
exploited by both NDR blind, and NDR planned attackers as mentioned below:

– NDR Blind: In the attack setup, the attacker randomly selects K intermedi-
ate node in every tick expecting to get i shares (where i ≥ 0). The adversary’s
goal is to capture K shares until all the shares of a message are delivered to
the receiver. Let P (m, t) be the probability of capturing m shares until t ticks.
We can derive the probability P (m, t) using the following recursive formula:

P (m, t) =
K∑

i=0

P (m − i, t − 1) ∗
(
K−m+i

i

) ∗ (
(L−1)N−K+m−i

K−i

)
(
(L−1)N

K

) (10)

where (K−m+i
i)∗((L−1)N−K+m−i

K−i)
((L−1)N

K) factor gives the probability of capturing i (i ≥
0) new shares in one tick, given (m − i) shares are already captured before t
ticks and P (m − i, t − 1) gives the probability of capturing (m − i) shares in
(t − 1) ticks.
Equation 11 which is the base condition, occurs when the attacker has to
capture m shares in a single tick.

Pbln(m, 1) =

⎧
⎪⎪⎨

⎪⎪⎩

(Km)∗((L−1)N−K
K−m)

((L−1)N
K) , (L = 2 and 0 < 2K − N ≤ m ≤ K)

or 0 ≤ m ≤ K ≤ N
2

0, otherwise

(11)

– NDR Planned attacker, on the other hand, selects nodes smartly by choos-
ing nodes at a distance of one in the first tick and gradually move away from
the sender to capture the remaining shares.
Let P (m, t) denote the probability of capturing m shares until t ticks. The
probability of recovering one message by NDR Planned is given as

P (m, t) =
K∑

i=0

P (m − i, t − 1) ∗
(
K−m+i

i

) ∗ (
N−K+m−i

K−i

)
(
N
K

) (12)

Here also, the attacker has L−1 ticks to capture the shares. Every tick attacker
probes K nodes at an appropriate distance from the sender to capture i (i ≥ 0)

Network Data Remanence Side Channel Attack 141

shares. The second term in Eq. 12 gives the probability of capturing i new
shares, given (m − i) shares have already been captured before t ticks. The
base condition occurs when the attacker captures m shares at one tick, given
as Eq. 13

P (m, 1) =

⎧
⎪⎪⎨

⎪⎪⎩

(Km)∗(N−K
K−m)

(NK) , 0 ≤ m ≤ K ≤ N
2 or

0 < 2K − N ≤ m ≤ K

0, otherwise

(13)

SPREAD and H-SPREAD schemes differ only in their path-finding algorithm
and their field of applicability. SPREAD uses a modified version of the node
disjoint shortest pair algorithm to find multiple paths between the sender and
the receiver and is used in MANET. On the other hand, H-SPREAD uses N -to-
1 multi-path discovery protocol to find multiple paths used in WSN. The rest
of the mechanism used for message secrecy is identical. Therefore, the attack
analysis and the results of both SPREAD and H-SPREAD are identical.

Equations 10 and 12 are similar to Eq. 2 and 5 respectively because these
equations give the probability of data recovery for one message only. However,
as discussed above, the SPREAD scheme does not change paths used for com-
munication. In the worst case, the attacker can take (L − 1) tick to capture the
shares of the first message, but after the attacker has captured the shares of the
first message, it knows the paths on which the shares of the next message will be
delivered therefore if we consider the total M messages that the sender sends to
the receiver. The adversary can spare (L − 1) messages to capture shares of the
first message with probability P (K,L−1). While other (M −L+1) messages can
be captured with probability one. So, the overall percentage of message recovery
is given by

Pmsg(K,L,M) =
(

1 ∗ P (K,L − 1) + (M − L + 1) ∗ 1
M

)
∗ 100% (14)

Our attack methodology uses Eq. 10 and 12 to show NDR attack on SPREAD
and H-SPREAD. We give the plots related to the attacks in Sect. 7.

5 Working Principle of Path Hopping Based on Reverse
AODV for Security (PHR-AODV)

R-AODV (Reverse-AODV) is a routing protocol with simple multi-path search-
ing. The sender builds multiple partial node-disjoint paths from itself to the
receiver by broadcasting Route Request (RREQ) message and initiating route
discovery procedure. Upon receiving the RREQ message by the sender, the
receiver also broadcasts its reply Reverse Request (R-RREQ). When the sender
receives the R-RREQ message, it stores the path as multiple paths between itself
and the receiver. In this way, the source node creates partial or complete non-
disjoint multi-paths from the source to the destination. Each data packet is sent

142 P. Naik and U. Chatterjee

over a distinct path each time by the sender. This makes it difficult for an eaves-
dropper to obtain all of the data, and it also makes network penetration more
difficult. In [9], the authors have provided an estimation for the total number of
active malicious nodes present in the network and the malicious node intrusion
rate.

Let us assume Np is the number of nodes in the routing path, Nall is the
number of all nodes in the network, M is the number of malicious nodes, S is
the number of paths from source to a destination. Now, if we define ρm as the
probability of active malicious nodes, then it can be represented as below:

ρm = (Np ∗ M)/Nall

whereas, ρi gives the malicious node intrusion rate and be represented as follows:

ρi = ρm/S (15)

Equation 15 shows that if the number of paths increases, the intrusion rate
decreases, given that the total number of malicious nodes is fixed. Keeping the
basic system assumption of the R-AODV scheme, we next proceed to our pro-
posed NDR attack on it.

6 Proposed NDR Side Channel Attack on PHR-AODV

As discussed in Sect. 5, the PHR-AODV scheme does not break the message into
shares. Instead, it sends one complete message in one path and chooses a different
path for the following message. In other words, PHR-AODV uses path hopping
but not an SS scheme. We assume that the source node has already initiated
the Reverse-AODV procedure, and it has N partially node disjoint paths to the
destination. For the security analysis, we assume that L is the path length of
each path discovered by the source node. Source node sends each message on a
different path than the previous one. We further assume that it takes one tick
to cover one hop. Therefore message will reach the destination by (L − 1) ticks.

– NDR Blind: As we know, in PHR-AODV at any time, only one path carries
data. Let P (1, t) be the probability of capturing one data-carrying path out
of all N paths present between the source and the destination by t ticks. It
can be given by the recursive equation as below:

P (1, t) = P (1, t − 1) ∗ (1 − q) + P (0, t − 1) ∗ q (16)

The attacker’s goal is to capture a node carrying the message within t ticks.
The attacker has two options in every tick. First is, the node selected is indeed
carrying the message; the probability of this event is denoted by q. Then the
adversary does not need to find any node, and the term P (0, t−1) equals one.
The second option is that the node in consideration at a particular tick is not
carrying the message; the probability of this event is (1 − q). In the second
option, the adversary’s task is reduced to find a node carrying the message

Network Data Remanence Side Channel Attack 143

in (t − 1) ticks, i.e., P (1, t − 1). Finally, as NDR Blind randomly selects one
node out of all intermediate nodes, the value of q is defined as follows:

q =
1

(L − 1) ∗ N

where the boundary condition of Eq. 16 is P (0, t) = 1.
– NDR Planned: The security analysis of NDR Planned is similar to that of

NDR Blind, as, in PHR-AODV, there is no SS scheme used along with path
hopping. In NDR Planned, the adversary initially chooses a node at a distance
one from the sender and checks if that node is carrying the message or not. If
the node is carrying the message with probability q, then the adversary does
not need to find any node, i.e., P (0, t − 1) equals one, but if the node is not
carrying the message with probability (1 − q), then the adversary needs to
find a node at a distance of two from the sender given by P (1, t − 1). The
adversary gradually moves away from the sender till the message is delivered
to the receiver. Here q is equal to 1

N because, at any time, the adversary can
consider N nodes.

Overall the analysis shows the attacker that systematically exploits the NDR
side-channel given enough path length can reconstruct the message quickly,
whereas the attacker who does not use a systematic approach finds it challenging
to reconstruct the message.

7 Experimental Setup and Results

In this section we describe the experimental set up to launch the NDR attack and
its impact on SPREAD, H-SPREAD and PHR-AODV. We have implemented
the attack methodology using an in-house C++ library and executed it in Intel R©
CoreTM i5-1035G1 CPU @ 1.00 GHz × 8 machine. For the experimental setup,
we have considered seven node disjoint paths between the sender and the receiver,
path lengths in the range of (2–10), and the number of shares in the range of
(1–7).

Let us first discuss the impact of NDR attacks on SPREAD and H-SPREAD.
In Fig. 2(a), we plot the probability of data recovery with respect to path length
for NDR Blind attackers for both SPREAD and H-SPREAD. For path length
of two and without SS scheme (i.e., K = 1), the probability of data recovery is
0.14 for the NDR Blind attackers. Moreover, with the increase in path length and
applied SS scheme, the probability for the data recovery either remains the same
or goes down. As NDR blind attacker chooses the nodes in the path randomly
for message recovery, it misses many shares of the secret. Hence the success rate
of the attack also gets impacted.

On the other hand, the NDR Planned attacker well utilizes the side chan-
nel. The plot in Fig. 2(b) shows that when the path length increases for both
SPREAD and H-SPREAD, the probability of data recovery also increases. With
a sufficiently large path length (i.e., L ≥ 4), the probability reaches one, i.e., with

144 P. Naik and U. Chatterjee

(a) NDR Blind (b) NDR Planned

Fig. 2. Probability of data recovery by NDR Blind and NDR Planned for SPREAD
and H-SPREAD with seven node disjoint paths

a 100% success rate, an attacker can retrieve all shares of the secret. Hence we
can conclude that in comparison to the NDR Blind attacker, the NDR Planned
attacker performs better for both schemes.

(a) NDR Planned

Fig. 3. NDR Planned attacker showing 100% data recovery percentage in SPREAD
and H-SPREAD.

Next, we further elaborate on how NDR Planned attacker can capture all
the messages after knowing the paths used by the sender for communication. We
assume that the NDR attacker captures at least one share of the first message
before all the shares of the first message are delivered to the receiver. Since the
sender does not change the paths for communication in both SPREAD and H-
SPREAD schemes, the adversary can quickly know the paths even if it manages
to capture one share of the first message. We have assumed that path length is
L. Hence there are (L−1) intermediate nodes. So, in the worst case, the attacker
captures only one share of the first message before it is delivered to the receiver.

Network Data Remanence Side Channel Attack 145

When the attacker captures this share, the sender has already sent the rest of
the (L − 2) message shares into the network. So attacker gets the first message
share out of (L − 1) message shares, and after that, the attacker can capture all
the shares because it knows the paths that the sender and the receiver are using.
The same scenario has been shown in Fig. 3. Here irrespective of the path length
and number of shares, the attacker can retrieve all the shares of the message
with 100% probability.

(a) NDR Blind (b) NDR Planned

Fig. 4. Probability of data recovery by NDR Blind and NDR Planned for PHR-AODV
with seven node disjoint paths

Next we present the experimental results of applying NDR Blind and NDR
Planned attack on PHR-AODV. As discussed in Sect. 5, the scheme chooses
different paths to send different messages. But as it does not involve any SS
scheme, the whole message from the sender to the receiver follow the same path.
Figure 4(a) shows the probability of data recovery by NDR Blind and NDR
Planned for the scheme. From the plot given in the figure, it can be seen that it
has only one value of K. We have considered the path length ranging from 2–10
and NDR Blind, as expected, provides the data recovery probability as 0.14.
Therefore, it misses most of the shares of the secret. On the other hand, NDR
Planned gives a significantly better probability of data recovery than the NDR
Blind attacker as shown in Fig. 4(a). The probability of data recovery increases
from 0.14 to 0.75, when path length is increased across 2 to 10.

8 Conclusion

NDR side-channel attack has recently come up as a threat in WSN, MANET, and
SDN applications as it can impact the data confidentiality of the given platform.
In this work, we have considered two SS schemes, SPREAD and H-SPREAD and
an On-demand routing protocol, PHR-AODV, and analyzed their vulnerability
against NDR attacks. All three use cases are vulnerable against NDR Blind

146 P. Naik and U. Chatterjee

and NDR Planned attacks. Although NDR Blind attacker is less effective, NDR
Planned attacker can be a great challenge for the network protocol designers as
this attack methodology can recover the secret shares with the success rate of
75% to 100%. Introducing secret sharing schemes as a lightweight alternative
to encryption schemes was a good starting point for resource-constraint devices.
However, as shown in this work, keeping the ever-increasing size of wired/wireless
networks in mind, this attack can be prevalent with the increased number of
connecting paths between two communicating devices. Thus, designing a coun-
termeasure against such side-channel attack would be equally challenging and
can be considered a potential direction for future work.

References

1. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

2. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signa-
tures and public-key cryptosystems (reprint). Commun. ACM 26(1), 96–99 (1983).
https://doi.org/10.1145/357980.358017

3. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976). https://doi.org/10.1109/TIT.1976.1055638

4. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

5. Lou, W., Kwon, Y.: H-SPREAD: a hybrid multipath scheme for secure and reliable
data collection in wireless sensor networks. IEEE Trans. Veh. Technol. 55(4), 1320–
1330 (2006). https://doi.org/10.1109/TVT.2006.877707

6. Rashidi, L., et al.: More than a fair share: network data remanence attacks against
secret sharing-based schemes. In: 28th Annual Network and Distributed System
Security Symposium, NDSS 2021, virtually, 21–25 February 2021. The Internet
Society (2021). https://www.ndsssymposium.org/ndss-paper/more-than-a-fair-
share-network-data-remanence-attacks-against-secret-sharing-based-schemes/

7. Safavi-Naini, R., Poostindouz, A., Lisý, V.: Path hopping: an MTD strategy for
quantum-safe communication. In: Okhravi, H., Ou, X. (eds.) Proceedings of the
2017 Workshop on Moving Target Defense, MTD@CCS 2017, Dallas, TX, USA,
30 October 2017, pp. 111–114. ACM (2017). https://doi.org/10.1145/3140549.
3140560

8. Lou, W., Liu, W., Fang, Y.: SPREAD: enhancing data confidentiality in mobile
ad hoc networks. In: Proceedings IEEE INFOCOM 2004, The 23rd Annual Joint
Conference of the IEEE Computer and Communications Societies, Hong Kong,
China, 7–11 March 2004, pp. 2404–2413. IEEE (2004). https://doi.org/10.1109/
INFCOM.2004.1354662

9. Talipov, E., Jin, D., Jung, J., Ha, I., Choi, Y.J., Kim, C.: Path hopping based
on reverse AODV for security. In: Kim, Y.-T., Takano, M. (eds.) APNOMS 2006.
LNCS, vol. 4238, pp. 574–577. Springer, Heidelberg (2006). https://doi.org/10.
1007/11876601 69

10. Lou, W., Fang, Y.: A multipath routing approach for secure data delivery. In: 2001
MILCOM Proceedings Communications for Network-Centric Operations: Creating

https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1145/357980.358017
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1109/TVT.2006.877707
https://www.ndsssymposium.org/ndss-paper/more-than-a-fair-share-network-data-remanence-attacks-against-secret-sharing-based-schemes/
https://www.ndsssymposium.org/ndss-paper/more-than-a-fair-share-network-data-remanence-attacks-against-secret-sharing-based-schemes/
https://doi.org/10.1145/3140549.3140560
https://doi.org/10.1145/3140549.3140560
https://doi.org/10.1109/INFCOM.2004.1354662
https://doi.org/10.1109/INFCOM.2004.1354662
https://doi.org/10.1007/11876601_69
https://doi.org/10.1007/11876601_69

Network Data Remanence Side Channel Attack 147

the Information Force (Cat. No.01CH37277), vol. 2, pp. 1467–1473 (2001). https://
doi.org/10.1109/MILCOM.2001.986098

11. Jafarian, J.H., Al-Shaer, E., Duan, Q.: Formal approach for route agility against
persistent attackers. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS
2013. LNCS, vol. 8134, pp. 237–254. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40203-6 14

12. Duan, Q., Al-Shaer, E., Jafarian, H.: Efficient random route mutation considering
flow and network constraints. In: IEEE Conference on Communications and Net-
work Security, CNS 2013, National Harbor, MD, USA, 14–16 October 2013, pp.
260–268. IEEE (2013). https://doi.org/10.1109/CNS.2013.6682715

13. Zhang, L., et al.: Path hopping based SDN network defense technology. In: 12th
International Conference on Natural Computation, Fuzzy Systems and Knowledge
Discovery, ICNC-FSKD 2016, Changsha, China, 13–15 August 2016, pp. 2058–
2063. IEEE (2016). https://doi.org/10.1109/FSKD.2016.7603498

14. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979). https://
doi.org/10.1145/359168.359176

15. Blakley, G.R.: Safeguarding cryptographic keys. In: International Workshop on
Managing Requirements Knowledge, pp. 313–313. IEEE Computer Society (1979)

16. Stinson, D.R.: An explication of secret sharing schemes. Des. Codes Cryptogr. 2(4),
357–390 (1992). https://doi.org/10.1007/BF00125203

17. Bhandari, R.: Survivable Networks: Algorithms for Diverse Routing. Springer, Hei-
delberg (1999)

https://doi.org/10.1109/MILCOM.2001.986098
https://doi.org/10.1109/MILCOM.2001.986098
https://doi.org/10.1007/978-3-642-40203-6_14
https://doi.org/10.1007/978-3-642-40203-6_14
https://doi.org/10.1109/CNS.2013.6682715
https://doi.org/10.1109/FSKD.2016.7603498
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1007/BF00125203

Parasite: Mitigating Physical
Side-Channel Attacks Against Neural

Networks

Hervé Chabanne1,2, Jean-Luc Danger2, Linda Guiga1,2(B), and Ulrich Kühne2

1 Idemia, Courbevoie, France
2 Télécom Paris, Institut polytechnique de Paris, Paris, France

{herve.chabanne,linda.guiga,jean-luc.danger,
ulrich.kuhne}@telecom-paris.fr

Abstract. Neural Networks (NNs) are now the target of various side-
channel attacks whose aim is to recover the model’s parameters and/or
architecture. We focus our work on EM side-channel attacks for param-
eter extraction. We propose a novel approach to countering such side-
channel attacks, based on the method introduced by Chabanne et al. in
2021, where parasitic convolutional models are dynamically applied to
the input of the victim model. We validate this new idea in the side-
channel field by simulation.

Keywords: Neural networks · Model confidentiality · Physical
side-channel attacks · Reverse engineering

1 Introduction

Neural Networks (NNs) now form a major part of our daily lives. Most fields such
as the medical or biometric ones rely on them to carry out a great variety of tasks.
To achieve high accuracy in NNs, a careful selection of the architecture and a long
and computationally intensive training of its parameters is however required. The
architecture and parameters therefore constitute intellectual property.

Moreover, once the architecture and/or parameters of a certain NN are
known, some attacks such as adversarial ones or membership inference ones are
made easier. Unfortunately, several papers describe side-channel attacks (SCAs)
aiming at reverse-engineering the architecture and/or the parameters of such NN
models [1,3,13,16–18,28,32]. So far, few countermeasures have been proposed.

Electromagnetic (EM) and power SCAs are particularly powerful, as the
attacker can extract both the architecture and the weights of the victim
model [1,9,15,28]. Since EM-based attacks can, moreover, be carried out from a
distance [5,29], we focus our work on EM-based SCAs. Even though SCAs are
well-studied topic in the cryptography world, common protections are hard to
apply to NNs, as there are too many parameters to protect [8] (most often over
one million parameters [27]).

c© Springer Nature Switzerland AG 2022
L. Batina et al. (Eds.): SPACE 2021, LNCS 13162, pp. 148–167, 2022.
https://doi.org/10.1007/978-3-030-95085-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95085-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-95085-9_8

Parasite: Mitigating Physical Side-Channel Attacks Against Neural Networks 149

In cryptographic applications, exact outputs are required. This is not the case
in Machine Learning, where the model’s accuracy is the primary gauge. In this
paper, we exploit this fact to introduce a novel approach to mitigating reverse-
engineering attacks against CNNs. The authors of [7] add parasitic CNNs to pro-
tect NNs against equation-based attacks by changing their internal structure. We
consider a novel way of thwarting SCAs using similar parasitic CNNs to hide the
victim model’s input without changing its accuracy. Thus, our contributions are:

– A novel way of countering side-channel based reverse-engineering attacks
against CNNs

– An evaluation of our model by simulation, in terms of security and complexity.

1.1 Threat Scenario

We consider an attacker who:

– knows the target model’s architecture
– knows the model’s input
– aims at recovering the weights of the said model
– can monitor electromagnetic emanations

We mainly discuss EM traces in this paper, as CSI NN [1] manages to recover
both the weights and architecture of NN models through them thanks to a probe.
But even though CSI NN [1] only considers an EM physical attack using a probe,
[5] shows that it is possible to carry out an EM analysis from a distance.

In what follows, we start by presenting related works in Sect. 2 and the nec-
essary background on Neural Networks and SCAs, in Sect. 3. Then we detail our
proposal in Sect. 4. We evaluate our protection in Sect. 5. After discussing the
possible improvements in Sect. 6, we conclude in Sect. 7.

2 Related Works

NNs have been the target of reverse-engineering attacks of various types: some
are based on mathematical aspects and systems of equations [6,19,20,23,26].
Others use Machine Learning to achieve their goal [25]. Several recent papers
have also used SCAs to recover models’ architectures and parameters [1,3,13,16–
18,28,32]. The latter are the ones we focus on in this paper. Few countermeasures
exist [11,12,24,30].

[30] proposes a physical protection through an NN accelerator that mitigates
side-channel attacks. The authors of [24] claim to introduce the first physical side-
channel countermeasure, through hardware masking and hiding. [12] improves on
[24], ensuring that only masking is used. Finally, [24] tackles memory access pat-
tern attacks, using common cryptographic tools to randomize memory accesses.

Contrary to [12,24,30], the countermeasure we propose is not a hardware
one. Moreover, we only need to focus on the first layer of the NN models at
hand to protect it in full, thus drastically limiting the number of parameters to
hide.

150 H. Chabanne et al.

Similarly to [7], we dynamically add parasitic models to counter mathemat-
ical attacks such as [6,23]. Thus, at each run, we select one parasitic model
at random among the available pretrained ones, and add it at the entrance of
the model to protect. However, more complex SCAs such as those of higher
order require a more elaborate protection. The goal of the authors is to change
the structure of NNs through CNNs containing ReLU activation functions that
approximate a noisy identity. One or several such CNNs can be added at differ-
ent locations in the model to achieve the said goal. Similarly, we consider adding
one – or several – small CNNs that approximate a noisy identity function at the
entrance of the model to hide the inputs. Thus, even though the method applied
is similar, our aim is different. We use the same parasitic models to introduce a
novel countermeasure to SCAs against NNs. The novelty of our approach comes
from the fact that we do not wish our protected model to return the same results
as the original one. While we keep the same accuracy for both models, we allow
our protected model’s outputs to deviate from the original ones. This is not pos-
sible in the cryptographic domain where cryptographic algorithms thwart SCAs,
since the latter require exact outputs.

3 Background

3.1 Neural Networks

NNs are algorithms trained to carry out specific tasks. They are comprised of var-
ious layers, each containing several neurons. They can be represented as graphs,
where the nodes are the neurons and the edges are the weights. The weights are
values specifically trained over a dataset to enable the NN to accurately carry
out the task at hand.

The layers that compose NNs can be of different types:

– In Fully connected (FC) layers, a neuron is computed as the sum of the pre-
vious layer’s neurons multiplied by the associated weights. A bias is generally
added to the value. For input X = x1≤i≤m, weights W = w1≤i≤n,1≤j≤m and
biases β = β1≤i≤n, this can therefore be written as:

Oi =
m∑

k=1

wi,k × xk + βi =⇒ O = W · X + β

– In convolutional layers, a convolution is operated between one –or several –
filter(s) and the input. For a given filter F1≤i≤k,1≤j≤k, input X1≤i≤n,1≤j≤n

and a bias β, the layer then computes:

Oi,j =
k∑

l=1

k∑

h=1

Xi+l,j+h × Fl,h + β

If the layer’s stride s – or step size – is different from 1, and there are cin

input and cout output channels, then the operation becomes:

Oi,j,co =
cin∑

c=1

k∑

l=1

k∑

h=1

Xc,s·i+l,s·j+h × Fc,l,h,co + βco

Parasite: Mitigating Physical Side-Channel Attacks Against Neural Networks 151

where βco is the bias for the co output channel.
– In pooling layers, the output is considered by blocks. Only one significant

value is selected per block. The goal of such layers is to reduce the dimen-
sionality of the input. One common pooling layer is the max pooling, where
only the maximum among all block values is kept.

– In Batch Normalization layers, the aim is to normalize the layer’s input. The
output is then computed as follows:

oi,j = γ × xi,j − E√
V + ε

+ β

where ε, γ and β are trained parameters. E and V are the learnt expected
value and variance.

Each layer is followed by a nonlinear activation function. Two common ones are:

– For x ∈ R, ReLU(x) := max(0, x)
– For x ∈ R

n, Softmax(x) := ex
∑n

i=0 exi

An NN model only comprised of FC layers is called Fully Connected (FC),
while a model with mainly convolutional layers is a Convolutional Neural Net-
work (CNN).

Once an NN’s parameters are trained, we define its accuracy over a dataset
D as the percentage of correct predictions over D. In image processing, most
standard NNs reach over 98% accuracy on the MNIST dataset. It is typical for
modern NNs to reach over 90% on the CIFAR one [21]. Finally, the most recent
models also achieve over 90% accuracy over the large ImageNet dataset [10].

3.2 Correlation Electromagnetic Analysis

Correlation Electromagnetic Analysis (CEMA) is a statistical side-channel
attack where the attacker measures the EM emanations of a device during its
operation in order to recover a secret [4]. The attack uses a leakage model, a func-
tion that makes a prediction on the EM radiation depending on a hypothesis on
(parts of) the secret. Typical leakage models for instance for CMOS circuits use
the Hamming distance to approximate the activity induced by a state change in
the circcuit. In order to find the correct hypothesis – corresponding to the actual
value of the secret – Pearson’s correlation coefficient is used. In a nutshell, in
order to extract the secret, the attacker proceeds as follows:

1. First, she establishes the leakage model.
2. She gathers EM traces for various inputs.
3. For each hypothesis on the secret and each known input, she computes the

EM emanations predicted by the leakage model.
4. She computes the Pearson correlation coefficient between the above prediction

and the observed (measured) EM consumption. This can be written as:

ρ(T, T ′) =
cov(T, T ′)
σT · σT ′

152 H. Chabanne et al.

where T and T ′ are the observed and predicted EM traces, respectively, and
σT , σ′

T are their standard deviations.
5. Select the hypothesis that leads to the highest Pearson coefficient ρ.

Gathering EM traces can be achieved by placing a probe against the micro-
processor of the attacked device [1]. If the traces need to be gathered from a
distance, a software-defined radio may be used [5]. New methods relying on
machine learning techniques allow the attacker to carry out side-channel analy-
sis from a further distance (15 m) [29]. On unprotected implementations, CEMA
attacks are very effective and can be carried out with inexpensive equipment [4].

3.3 Side-Channel Attacks on Neural Networks

Originally, CEMA (and its power equivalent, CPA) has been applied to crypto-
graphic implementations of block ciphers such as AES or DES in order to extract
the secret key. While there are no keys to protect within NNs, it has been shown
that EM-based side-channel attacks can also be used to recover the parameters
of Neural Networks. Let us describe one such attack, CSI NNs [1], on an FC
model. The same procedure can also be adapted to CNNs.

The attacker proceeds layer by layer, with no prior knowledge about the
model. The first step is to determine the total number of neurons. This only
requires a Simple Electromagnetic Analysis (SEMA): the potential attacker
observes the EM traces and can directly observe the number of neurons on the
traces. Indeed, each neuron’s multiplications with its associated weights appear
as a block of spikes in the EM traces, as is shown in Fig. 8 of [1].

Then, they target each individual multiplication w · x where w is a weight
and x is a neuron, and apply CEMA to determine w. For such an individual
multiplication, they first identify the associated EM traces. Then, they consider
all possible hypotheses wh for the weight. They compute the theoretical EM
trace – as described in Sect. 3.2 – of that multiplication, given wh and x. They
do so over several inputs, and compare the resulting theoretical and observed
traces. The Pearson coefficient (see Sect. 3.2) of the two traces reveals the correct
hypothesis.

This, however, does not provide the number of layers of the model. To achieve
a full recovery of the model, another guess is required. Multiplications are com-
puted layer by layer. Thus, a given multiplication either belongs to layer l or
to layer l + 1. For each multiplication, the attacker needs to hypothesize the
value for wh as well as whether w belongs to l or to l + 1. Once again, a CEMA
then provides the potential attacker with the correct hypothesis for the layer
and value of w.

Finally, the activation functions are determined through a time analysis that
we will not detail here. As is shown in [28], this step can also be achieved through
an EM-based attack.

Parasite: Mitigating Physical Side-Channel Attacks Against Neural Networks 153

To summarise, the attacker proceeds as follows:

1. For the first layer, the attacker knows the input X = {x1, ..., xn}. Determine
the weights for the connection between the input layer and the first layer.

2. Determine all of the weights as well as the number of neurons in the first layer
through the double hypothesis, SEMA and CEMA described previously.

3. Determine the activation function through a time – or EM-based – analysis
4. Move to the next layer and repeat the extraction process (mix of SEMA,

CEMA with a double hypothesis and time analysis for the activation function)
for each multiplication, until no neuron remains.

As stated in Sect. 1.1, we consider an attacker that already has access to the
model’s architecture. Thus, the layer guessing step can be skipped here: a mix
of SEMA, CEMA and time analysis layer by layer should be enough to carry
out the attack.

This is one example of an attack we could mitigate.

4 Adding Parasitic Layers

In the following section, we explain a novel approach to protecting against SCAs
that target NN parameters.

4.1 Proposal Overview

Common cryptographic methods to tackle SCAs cannot be applied to protect
millions of parameters, as they incur too much overhead [8]. It is therefore nec-
essary to consider a new approach to the problem.

The first observation one can make is that since the attacker in [1] – described
in Sect. 3.3 – proceeds layer by layer, protecting the first layer should be enough
to protect the entire model. Indeed, the deduced weights from the first layer are
used to compute the input to the following layer and proceed with the attack.

A second observation is that the attacker requires the input values to recover
the first layer’s weights. An intuitive countermeasure to this attack would there-
fore consist in hiding the said input values.

Third, contrary to common cryptographic problems, NNs’ layers do not
require exact responses. The output of each layer can be approximated as long
as the model’s accuracy is not affected.

Those three observations show that hiding the input values should mitigate
the attack at hand. Hence, we propose to dynamically apply one or several CNN
models approximating the identity to the entrance of the model. Our aim is to
make sure the modified model’s input is different from the original input, with

154 H. Chabanne et al.

only a slight drop in the accuracy. The extracted weights a potential attacker
would get for the first layer are then only an approximation of the actual weights.
Even if those first weights are still close to the original ones, the error propagates
to the following layers, amplifying the noise and making the extracted model’s
accuracy much lower than the original one.

4.2 Proposal Description

Let us now detail our proposal.
As explained in Sect. 4.1, we aim at hiding a model’s input values without

decreasing its accuracy, by dynamically adding small CNNs approximating a
noisy identity function. Our method is designed to limit the access to the correct
input, which is required by the attacker of Sect. 3.3.

Adding layers dynamically means that at each run – or after a certain number
of runs –, we consider parasitic CNNs with different weights and/or a different
architecture. At each run – or after a certain number of runs –, we also select the
said parasitic model at random among a set of small pretrained CNN models.

To carry out a CEMA, an attacker requires several traces. If the small CNN
we add to the input changes from one run to the other, the attack becomes much
harder. As explained in Sect. 3.3, CSI NN [1] enables an attacker to determine
the architecture of a victim NN along with its parameters. But because in any
case, several traces are required, the randomization in both the weights and
architecture should still mitigate the attack.

Thus, our methodology is as follows:

– Train a set S of small CNNs that approximate a noisy identity. For x in the
input space I and s ∈ S: s(x) = x+Ns(x) where Ns is a Gaussian distribution

– At each run, select s ∈ S. For x ∈ I, run x′ := s(x).
– Feed x′ to the target model.

Figure 1 shows the location where we add the parasitic CNN s ∈ S, to an FC
model with one hidden layer. Here, s is applied to the input x and the result x′

is then fed to the model at hand.
Let us analyse the consequences of adding such CNNs at the entrance of the

model. Let X be the model’s input and X ′ be the noisy input. Let xi,j ∈ X.
To recover the weight w in each multiplication xi,j · w, the attacker requires
several power or EM traces for that operation. She also needs to know xi,j . But
the input of the target model is s(X) = X ′, and the attacker does not have
access to X ′. Furthermore, given she requires several traces and the parasitic
CNN changes from one run to the next, the attack cannot be carried out on
the parasitic layers directly, knowing input X. This is why we believe that our
protection thwarts first-order physical side-channel attacks such as CSI NN [1]
(see Sect. 5 for our results).

Parasite: Mitigating Physical Side-Channel Attacks Against Neural Networks 155

Input #1

Input #2

Input #3

Input #4

Input #5

Input #6

Input #7

Input #8

Parasitic
CNN Output

Hidden
layer

Fig. 1. Fully Connected Neural Network with one hidden layer where a parasitic CNN
approximating the identity has been added to approximate the model’s input.

4.3 Approximating the Identity Function

To prevent the attack, our goal is to add noise to the input without decreasing
the model’s accuracy.

One possible way to achieve this is to add CNNs approximating the identity
to the entrance of the original model. If we denote M such a CNN model, then
M is trained to reach M(x) = x. This yields the advantage of making the
attack in [1] harder in the extended case where the attacker does not know the
architecture.

Since NNs are designed to solve complex tasks, the identity is easily achiev-
able for them. Thus, trying to approximate the identity through a CNN model
M leads to practically no difference between the input x and the model’s out-
put M(x). This is shown in [33], where the authors manage to approximate the
identity function under major constraints.

Because of this, simply adding a CNN approximating the identity does not
have any impact on the attack. Indeed, no noise is added to the input, therefore
keeping the observed values unchanged to the attacker. Therefore, the parasitic
models we add are trained to approximate the identity function to which we add
noise. The goal when training a CNN model M then becomes M(x) = x + N ,
where N is a given noise. We further detail our proposal in Sect. 4.2.

Let us now compute the complexity of adding such CNN models to the
original model. Let us consider a convolutional layer with input shape (n, n, cin),
cout output channels and a filter of shape k × k × cout. Then the output of the
layer has shape (n′ = n−k+1, n′ = n−k+1, cout). Let us denote X the input of
the layer, O its output and W its weights with shape (k, k, cin, cout). Then, as per
Sect. 3.1, we have the following: Oi,j,q =

∑cin
c=1

∑k
l=1

∑k
h=1 Xi+l,j+h,c · Wl,h,c,q.

This implies that for each neuron, k × k × cin multiplications are required.
Therefore, each output channel adds k × k × cin × (n − k + 1) × (n − k + 1)
multiplications. Since we have cout channels, the total number of additional
multiplications for one convolutional layer is cout × k × k × cin × (n − k + 1) ×
(n−k+1) = O(n2). Generally, convolutional layers include some zero-padding to
preserve the input and output sizes. This increases the necessary multiplications
to:

M = cout × k × k × cin × n × n

156 H. Chabanne et al.

To conclude, adding l identical layers leads to an increase in the number of
multiplications of l × k × k × n2 × cin × cout.

In this paper, we decided to apply the model to each channel independently.
Thus, the input number of channels is such that cin = 1 here, but we multiply
the total by the actual number of input channels. The new formula for l layers
is then:

M = c
(1)
in × [

c
(1)
out × k(1) × k(1) × n(1)2

+
l∑

i=2

c
(i)
out × k(i) × k(i) × n(i)2 × c

(i)
in

]

where c
(i)
in is layer i’s number of input channels, c

(i)
out is layer i’s number of

output channels, k(i) is layer i’s filter size and n(i) is the layer’s input size.
The reason why we chose this approach is so that the parasitic CNNs can be

adapted to inputs with any number of input channels. Moreover, this way, we
can keep a low number of channels in the middle layers without fearing any loss
of information.

5 Evaluation

5.1 Simulation

To comfort our idea, we simulate two attacks.
In the first simulation, we consider one fixed parasitic model at the entrance

of the target model. The attacker does not know the parasite’s architecture or
weights, and her aim is to recover the target model’s weights. We proceed layer
by layer, as in CSI NN [1]. We suppose that the attacker knows all the outputs
of intermediary multiplications in the first layer1.

Let X1, W 1 and O1 denote, respectively, the input, the weights and the
output of the model’s first layer. For simplicity, let us only consider the case
where the first layer is a convolutional one. We remind the reader in Sect. 3.1
that: O1

i,j =
∑k

l=0

∑k
h=0 X1

i+l,j+h · W 1
l,h.

Let X ′1 denote the input with added noise. The attacker only knows X ′1 and
the values o1i,j,l,h := X1

i+l,j+h · W 1
l,h. She proceeds as follows:

1. For each output O1
i,j , the attacker computes W ′1

l,h := o1
i,j,l,h

X1
i+l,j+h

if X1
i+l,j+h �= 0.

Otherwise, the attacker finds a nonzero input neuron X1
i′+l,j′+h to compute

W ′1
l,h in a similar fashion.

2. Once the first layer’s weights are recovered, the attacker computes the second
layer’s weights, W 2

i,j . For this, she first computes X ′2 :=
∑k

h=0 X1
i+l,j+h ·W ′1

l,h.
She takes X ′2 as the input of the second layer and extracts the second layer’s
weights as in the first step.

1 This is an unrealistic assumption, but since we aim to demonstrate the effectiveness
of our protection, we assume perfect conditions for the attacker. Real CEMA attacks
are much harder.

Parasite: Mitigating Physical Side-Channel Attacks Against Neural Networks 157

3. The attacker repeats the previous step until all the layers’ weights have been
recovered.

4. If there is a bias, the attacker simply recovers it through: β = X ′2 − O1.

In fact, to make sure we introduce as little noise as possible, we average the
obtained weights over 64 inputs.

In a second simulation, we select a different pretrained parasite at each run.
The attacker can therefore try to approximate the added layers. However, at
each run, the parasitic CNN’s weights – and possibly the architecture – change.
Since, as mentioned in Sect. 4, the attacker requires several traces to recover the
weights, this change of model at each run affects the results. We simulated this
by averaging the various extracted weights over 64 inputs. This second simulated
attack also proceeds one layer at a time, as follows:

1. Start with the first parasitic layer, and compute the weights as in the first
simulation.

2. Repeat the operation over several inputs, and set the layer’s weights to the
average wav of the extracted values.

3. The next layer’s inputs is the output of the first layer with wav as the weights.
4. For each remaining layer in the model at hand (including the parasitic layers),

repeat the previous three steps.

Let us also note that in both simulations, we discard the weights that result
in a division by 0 – meaning that no nonzero input value among the provided
set can be found –, by setting the extracted weights to 0.

5.2 Models Considered

Since we are mostly interested in models that could be used on smartphones
and embedded systems in general, we consider two small models: LeNet [31]
and MobileNetV2 [27], that we trained on the CIFAR-10 dataset [21]. LeNet
is only comprised of two convolutional layers followed by three dense layers.
MobileNetV2’s more complex architecture is detailed in Table 1.

Finally, the parasitic models we add are based on the ones used in [33], with
various layer numbers and in some cases, an additional Batch Normalization
layer after each convolutional one. We mainly focus on models with 1 or two
convolutional layers, described in Fig. 2.

5.3 Results

The set of possible parasitic CNNs should be tailored to the user’s requirements
and tolerance: some tasks do not require as high an accuracy as more sensi-
tive ones. In general, we here consider that a couple of percents drop can be
acceptable. To select the architectures that can be added to the set of possible
architectures, we can determine the accuracy of the protected model depend-
ing on the standard deviation of the noise of the parasitic models at hand.
Figure 3 shows the impact of parasitic layers with various standard deviations

158 H. Chabanne et al.

Table 1. Description of the MobileNetV2 architecture [27]. Each line corresponds to
a group of layers, repeated n times. All layers in a given group have c output channels.
The first layer of the group has stride s while the others have stride 1. t is the expansion
factor: if there are c input channels and c′ output channels in a block, there is an
intermediary operation with t · c channels.

Input Shape Operation Expansion t Channels c Repetition n Stride s

2242 × 3 Convolution (3× 3) – 32 1 2

1122 × 32 Bottleneck 1 16 1 1

1122 × 16 Bottleneck 6 24 2 2

562 × 24 Bottleneck 6 32 3 2

282 × 32 Bottleneck 6 64 4 2

142 × 64 Bottleneck 6 96 3 1

142 × 96 Bottleneck 6 160 3 2

72 × 160 Bottleneck 6 320 1 1

72 × 320 Convolution (1× 1) – 1,280 1 1

72 × 1, 280 Average Pooling (7× 7) – – 1 –

1× 1× 1, 280 Convolution (1× 1) – k – –

on a MobileNetV2 architecture with a 71.44% accuracy on the CIFAR10 testing
set (88.16% on the CIFAR10 training set). We see that the accuracy decreases
with the standard deviation, but also depends on the training. In general, the
drop in accuracy seems acceptable until around σ = 0.2.

We carry out the first simulated attack described in Sect. 5.1 on a LeNet
architecture trained on the CIFAR10 architecture with a 70.69% accuracy on
the testing set. The accuracy of the protected model depends on the parasitic
model(s) added.

We also checked that when no parasite was added to the original model,
our simulated attack did not result in a drop in the accuracy. We then added
a parasitic model described in Sect. 5.2 approximating an identity function to
which we added a Gaussian noise with a standard deviation of 0.2. The training
and evaluation of the model at hand was performed on CIFAR10 images which
have been normalized. Thus, the images with no protection have a mean of 0
and a standard deviation of 1. Thus, the ratio of standard deviations is: SNR =
1
0.2 = 5.

This led to an accuracy of 70.84%, which is very similar to the original
model’s accuracy. The first simulated attack described in Sect. 5.1 resulted in an
extracted model with an accuracy of 12.66%.

Parasite: Mitigating Physical Side-Channel Attacks Against Neural Networks 159

(a) Parasitic model with one convolu-
tional layer. The input and output have
shape (1, 16, 16). The filter shape is (5,
5).

(b) Parasitic model with two convo-
lutional layers. All inputs and output
have shape (16, 16), but the middle
layer has two channels. The filter shape
is (5, 5).

Fig. 2. Parasitic CNN models with one (a) and two (b) convolutional layers. In both
cases, the convolution is followed by a ReLU activation function and a Batch Normal-
ization layer. (Images generated thanks to [22].)

Fig. 3. Accuracy of a protected MobileNetV2 model with relation to the standard
deviation of the parasitic models. The parasitic models P are trained to return P (x) =
x + Nσ(x) where Nσ is a Gaussian noise with mean 0 and standard deviation σ.

In order to test our protection on a more representative NN model we applied
this first simulated attack on the first twelve layers of MobileNetV2 trained on
the CIFAR10 dataset. The original accuracy on CIFAR10’s testing set is 71.41%.
In this case, the preprocessing of the training images only consists in dividing by
255, making sure that the values are in the range [0, 1]. The standard deviation of
the three input channels are, respectively: 0.25, 0.24 and 0.26. We add a parasitic
CNN approximating the identity function to which we added a Gaussian noise
with a 0.2 standard deviation. We therefore have an SNR approximately equal
to 1 for the three input channels. Adding a two-layer parasitic model with a
0.2 standard deviation leads to a 70.23% accuracy for the protected model. We
observe that with only the first twelve layers considered for the first simulated

160 H. Chabanne et al.

attack, the model’s accuracy already drops from 71.41% for the original model
to 9.97% for the extracted one. On the training set, adding the same parasite
leads to an 85.85% accuracy instead of 88.16%. The accuracy of the extracted
model drops to 10.40%.

Table 2. First simulation results on a protected MobileNetV2 model with an original
accuracy of 71.44% on the CIFAR10 testing set. The noise added in the protected
case is a Gaussian distribution with various standard deviations σ. The attacker uses
128 inputs to extract the weights. We log the extracted accuracy, as well as the mean

d = E[Ŵ−W]
||W ||2 between extracted weights Ŵ and original ones W over the first four

convolutions.

Number of

parasitic

layers

Standard

deviation

σ

New

Accuracy

Extracted

Accuracy

Mean

Conv1

Mean

Conv2

Mean

Conv3

Mean

Conv4

1 0.01 71.41% 71.21% 1 · 10−4 2.1 · 10−3 5 · 10−3 3.3 · 10−3

1 0.05 71.24% 69.54% 3 · 10−4 4.9 · 10−3 6 · 10−3 2.9 · 10−3

1 0.2 70.23% 18.17% 3.1 · 10−3 1.33 · 10−2 1.79 · 10−2 1.29 · 10−2

2 0.01 67.84% 11.74% 1 · 10−4 1.7 · 10−3 6.9 · 10−3 2.3 · 10−3

2 0.05 69.51% 10.15% 3 · 10−4 4.8 · 10−3 9.5 · 10−3 7.6 · 10−3

2 0.2 66.43% 9.97% 2.7054 3.65 · 10−2 5.26 · 10−2 3.1 · 10−2

We summarize our experimental results in Table 2. We see that increasing
the standard deviation and number of layers in the parasite leads to a much
lower extraction accuracy. It is therefore necessary to find a balance between
a protected model’s accuracy and the effectiveness of the defense. We also note
that in most cases, the weights extracted from deeper layers are further from the
original weights. We conducted further experiments, detailed in AppendicesA
(Pearson correlation in each layer) and B (distribution of the weight differences).

In Sect. 5.1, we described a second simulated attack, where the attacker also
tried to approximate the added parasite, whose weights are modified at each
run. On average, considering a set of 30 possible parasitic one-layer models, the
model to which we add one parasitic layer at random has an accuracy of 70.61%.
In this case, the attack on the aforementioned LeNet model leads to an extracted
model with an accuracy of 11.18%.

Similarly, we apply this second simulated attack to the first 13 layers
MobileNetV2 with an additional parasite. On average, this also leads to an
extracted model with a very low accuracy: 10%.

Thus, in both simulations, the model extracted has a low accuracy, leading
to a failed attack. This is the case even though we supposed the attacker had
perfect traces and could average them over several inputs. We believe this proves
the domino effect the weight extraction induces. Indeed, it does seem that the
small error introduced in the first layer because of the small noise added to the
inputs is transferred to the following layers and amplified by them.

Parasite: Mitigating Physical Side-Channel Attacks Against Neural Networks 161

Let us also compute the number of operations added through the parasitic
models. As detailed in Sect. 4.2, one layer adds M multiplications:

M = cout × k × k × cin × n × n

where cout, cin are the layer’s number of output and input channels respec-
tively, k is the filter size and (n, n) is the layer’s input size. We also explained
that here, we feed one channel at a time to the parasitic models.

In Sect. 5.1, we explain that, for the parasites, we consider models with var-
ious layer numbers.

The LeNet architecture can be considered small compared to the ones used
nowadays in the image processing field. Adding one parasitic layer should there-
fore already be noticeable in the total number of multiplications. For the one-
layer model described in Sect. 5.2, we have: cout = 1, cin = 1, k = 5 and n = 32.
We also know that the inputs from the CIFAR10 dataset have 3 input channels.
Ignoring the much less time consuming Batch Normalization layer, this amounts
to: M = nb input channels × cin × cout × k × k × n × n = 76, 800.

Thus, the one-layer model adds 76,800 multiplications to the original LeNet
model. But for inputs of size (32, 32, 3), LeNet requires 658,000 MAC (Multiply-
Accumulate) operations. Thus, one such parasitic layer represents an 11.7% addi-
tion in the multiplications. Let us note that the tests carried out on LeNet were
mainly for a proof-of-concept, as LeNet is no longer a standard model for image
processing.

MobileNetV2 is much larger than LeNet, and we can therefore consider larger
parasites. For the two-layer model described in Sect. 5.2, we have, for the first
layer: c

(1)
out = 2,c(1)in = 1, k(1) = 5 and n(1) = 32. For the second layer, we have:

c
(2)
out = 1,c(2)in = 2, k(2) = 5 and n(2) = 32. Ignoring the much less time consuming

Batch Normalization layer, this amounts to : Mtot = nb input channels× (c(1)out ·
k(1) · k(1) · c

(1)
in · n(1) · n(1) = 307, 200.

MobileNetV2 trained on the CIFAR10 dataset requires 6.32 millions MAC
operations. Thus, the additional 307,200 multiplications only represent 4.9% of
the original MAC operations.

One could argue that an attacker might proceed the same way as the
defender, and also train CNNs on Gaussian noise to improve the extracted
weights. However, when training the parasites several times, we noticed that
the resulting weights were very different from one training to the next. Thus,
the attacker would still need more work to extract the correct weights.

162 H. Chabanne et al.

6 Discussions

6.1 Number of Traces to Recover the Weights

Since our protection consists in adding randomness, an attacker who gathers
multiple traces should be able to approximate the correct weights. The question
that remains is the number of traces necessary for an almost exact extraction.

For the first simulation, 1,024 traces already enable an attacker to increase
the extracted model’s accuracy from 11.74% with 128 traces to 71.19% for a
model protected by a two-layer parasite with σ = 0.01. But increasing σ still
enables a protection: for instance, with σ = 0.05, the extracted accuracy is
17.12% with only a slight drop in the original accuracy: 69.51% instead of 71.41%.
It is therefore paramount to find a balance between the standard deviation, the
number of parasitic layers, the drop in the model’s accuracy and the effectiveness
of the protection.

6.2 Increasing the Entropy of the Added Noise

To maximize the efficiency of the protection, it is important to have a large
entropy in terms of the possible parasitic architectures. One way to increase
the said entropy is to consider selecting either one or several CNNs at random
instead of only one. These can then be applied to several parts of the input, as
long as all the neurons are affected by at least one model.

Thanks to the randomness in the parasites’ architectures, we believe that our
protection would be particularly advantageous when extending it to the black
box context – and [1]’s original threat model – where the attacker does not know
the model’s architecture, and which is enforced by [7]. This makes the parasitic
set’s entropy even more important.

6.3 Approximating the ReLU Activation Function

It is also possible to hide the activation functions by approximating them in a
similar fashion. Further work could study the impact of training small CNNs
that approximate the activation functions. Since CNNs contain nonlinear func-
tions, they should be able to approximate any activation function. For instance,
we could train a CNN (containing ReLU activation functions) to approximate
a noisy ReLU instead of a noisy identity function. Because ReLUs are more
complex than the identity, it would also be interesting to study whether ReLU
is complex enough that a small CNN cannot very precisely approximate it –
therefore introducing noise.

6.4 Improving the CNNs at Hand

Further work could also conduct a study on which architectures could best
approximate a noisy identity while minimising the number of added parasitic

Parasite: Mitigating Physical Side-Channel Attacks Against Neural Networks 163

operations. For instance, one could consider a smaller filter size: 3× 3 instead of
5 × 5. One could also increase the stride of the introduced convolutional layers.

A balance between the number of added operations and a high entropy in the
set of parasitic CNNs then needs to be reached. Indeed, the larger the filter and
number of layers, the higher the number of operations. But limiting the possible
filters and/or the number of layers decreases the set of possible CNNs. Hence,
further testing needs to be carried out to determine the right balance.

6.5 Comparing to Common Countermeasures

The authors of CSI NN [1] consider two possible SCA countermeasures to thwart
the parameter extraction: masking and shuffling independent operations. In both
cases, they mention that these would lead to a large overhead.

According to the authors of [1], masking each neuron at each iteration should
prevent the attack. However, masking a multiplication is expensive: it is at least
twice the cost of the initial multiplication, as can be seen in Table 1 of [2].
Since masking needs to be applied to all the multiplications, the total number of
multiplications in one run would double. In our case, our overhead only consisted
in a small percentage of the original number of multiplications.

Shuffling is also an expensive operation. With the Fisher-Yates algorithm,
if there are n elements to swap, then the algorithm runs in O(n) but requires
generating n truly random numbers [14]. Here, n is the number of operations
which can be permuted. In an FC layer with nx inputs and nw weights, n =
nx × nw. In the convolutional case, supposing a stride of 1, an input shape
(nx, ny, cin) and a weight shape (k, k, cout), there are n = cout ∗ (nx − k + 1) ∗
(ny −k+1) convolutional operations to shuffle. Since random number generation
is time consuming [1] and needs to be applied to all layers, we believe that our
countermeasure should also generate less overhead.

7 Conclusion

In this paper, we propose a novel approach to protect against EM side-channel
attacks targeting NN models, based on the technique introduced in [7]. Even
though we mainly discussed CSI NN’s [1] EM based attack, we believe that this
protection should mitigate any statistical side-channel attack.

For a proof of concept, we simulated two attacks where we supposed the
attacker had exact side-channel traces at her disposal. Sect. 5.3 shows that in
both cases, the extracted model resulted in a very low accuracy on the CIFAR10
dataset. Moreover, in a realistic setting such as MobileNetV2, the added parasitic
layers only incur a small increase in the number of multiplications, as detailed
in Sect. 5.3.

Further work could, as stated in Sect. 5, increase the number of simulations
and could also evaluate different noise parameters, as mentioned in Sect. 5.

164 H. Chabanne et al.

Another possible consideration would be to have a more fine-grained evalu-
ation that does not only take into account the accuracy of the extracted model.
For instance, we could examine the distance between the extracted weights and
the original ones, and carry out a layer by layer study.

Acknowledgements. We thank the reviewers for their very insightful inputs.

Appendix A Pearson Correlation

To further explain the way our countermeasure works, we measured the Pearson
correlation coefficient ρ between the extracted weights and original ones, one
output channel at a time. Figure 4 shows the coefficients for each extracted con-
volutional layer, for a 1-layer protected model with standard deviation σ = 0.01.
Thanks to the plots, we can see that the correlation decreases for deeper layers.

(a) Convolution 1 (b) Convolution 3 (c) Convolution 4

Fig. 4. Pearson correlation coefficient between the extracted weights and the original
ones, for the first, third and fourth convolutions in MobileNetV2. Each point in the
graph corresponds to the correlation coefficient for one output channel.

Appendix B Weight Distribution

In this appendix, we plot the distribution of weight differences δ = ŵi−wi

||W ||2
between the extracted and original weights, for each of the four recovered con-
volutional layers. We consider a MobileNetV2 model protected by a 1-layer par-
asite with standard deviation either σ = 0.01 in Fig. 5e or σ = 0.1 in Fig. 5j.
As we reach deeper layers, recovered weights get further away from the origi-
nal ones. Moreover, a higher σ leads to fewer correctly recovered weights. This
also explains why the extracted accuracy for σ = 0.1 is so low: 12.9% when the
original accuracy was 71.41% and the extracted accuracy for σ = 0.01 is 71.41%.

Parasite: Mitigating Physical Side-Channel Attacks Against Neural Networks 165

(a) First convolution (Conv1) (b) Second convolution (Conv2)

(c) Third convolution (Conv3) (d) Fourth convolution (Conv4)

(e) Distribution of the weight differences, when σ = 0.01.

(f) First convolution (Conv1) (g) Second convolution (Conv2)

(h) Third convolution (Conv3) (i) Fourth convolution (Conv4)

(j) Distribution of the weight differences, when σ = 0.1.

Fig. 5. Distribution of the weight differences ŵi−wi
||W ||2 within each of the four

MobileNetV2 convolutional layers extracted by the attacker, in the first simulation
with 128 traces (see Sect. 5.1) and σ = 0.01 (e) or σ = 0.1 (j).

166 H. Chabanne et al.

References

1. Batina, L., Bhasin, S., Jap, D., Picek, S.: CSI NN: reverse engineering of neural
network architectures through electromagnetic side channel. In: USENIX Security
Symposium, pp. 515–532. USENIX Association (2019)

2. Biryukov, A., Dinu, D., Le Corre, Y., Udovenko, A.: Optimal first-order Boolean
masking for embedded IoT devices. In: Eisenbarth, T., Teglia, Y. (eds.) CARDIS
2017. LNCS, vol. 10728, pp. 22–41. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-75208-2 2

3. Breier, J., Jap, D., Hou, X., Bhasin, S., Liu, Y.: SNIFF: reverse engineering of
neural networks with fault attacks. CoRR abs/2002.11021 (2020)

4. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

5. Camurati, G., Poeplau, S., Muench, M., Hayes, T., Francillon, A.: Screaming chan-
nels: when electromagnetic side channels meet radio transceivers. In: CCS, pp.
163–177. ACM (2018)

6. Carlini, N., Jagielski, M., Mironov, I.: Cryptanalytic extraction of neural network
models. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172,
pp. 189–218. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1 7

7. Chabanne, H., Despiegel, V., Guiga, L.: A protection against the extraction of
neural network models. In: ICISSP, pp. 258–269. SCITEPRESS (2021)

8. Chabanne, H., Danger, J., Guiga, L., Kühne, U.: Side channel attacks for architec-
ture extraction of neural networks. CAAI Trans. Intell. Technol. 6(1), 3–16 (2021)

9. Chmielewski, �L, Weissbart, L.: On reverse engineering neural network implementa-
tion on GPU. In: Zhou, J., et al. (eds.) ACNS 2021. LNCS, vol. 12809, pp. 96–113.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81645-2 7

10. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248–255. IEEE (2009)

11. Dubey, A., Cammarota, R., Aysu, A.: MaskedNet: a pathway for secure inference
against power side-channel attacks. CoRR abs/1910.13063 (2019)

12. Dubey, A., Cammarota, R., Aysu, A.: BomaNet: Boolean masking of an entire
neural network. CoRR abs/2006.09532 (2020)

13. Duddu, V., Samanta, D., Rao, D.V., Balas, V.E.: Stealing neural networks via
timing side channels. CoRR abs/1812.11720 (2018). http://arxiv.org/abs/1812.
11720

14. Eberl, M.: Fisher-yates shuffle. Arch. Formal Proofs 2016 (2016)
15. Genkin, D., Pachmanov, L., Pipman, I., Tromer, E., Yarom, Y.: ECDSA key extrac-

tion from mobile devices via nonintrusive physical side channels. IACR Cryptol.
ePrint Arch. 2016, 230 (2016)

16. Hong, S., et al.: Security analysis of deep neural networks operating in the presence
of cache side-channel attacks (code) (2017)

17. Hong, S., Davinroy, M., Kaya, Y., Dachman-Soled, D., Dumitras, T.: How to 0wn
NAS in your spare time. In: International Conference on Learning Representations
(2020)

18. Hua, W., Zhang, Z., Suh, G.E.: Reverse engineering convolutional neural networks
through side-channel information leaks. In: DAC, pp. 4:1–4:6. ACM (2018)

19. Jagielski, M., Carlini, N., Berthelot, D., Kurakin, A., Papernot, N.: High-fidelity
extraction of neural network models. CoRR abs/1909.01838 (2019)

https://doi.org/10.1007/978-3-319-75208-2_2
https://doi.org/10.1007/978-3-319-75208-2_2
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-030-56877-1_7
https://doi.org/10.1007/978-3-030-81645-2_7
http://arxiv.org/abs/1812.11720
http://arxiv.org/abs/1812.11720

Parasite: Mitigating Physical Side-Channel Attacks Against Neural Networks 167

20. Jagielski, M., Carlini, N., Berthelot, D., Kurakin, A., Papernot, N.: High accuracy
and high fidelity extraction of neural networks. In: Capkun, S., Roesner, F. (eds.)
29th USENIX Security Symposium, USENIX Security 2020, 12–14 August 2020,
pp. 1345–1362. USENIX Association (2020)

21. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical
report (2009)

22. LeNail, A.: NN-SVG: publication-ready neural network architecture schematics. J.
Open Source Softw. 4(33), 747 (2019)

23. Milli, S., Schmidt, L., Dragan, A.D., Hardt, M.: Model reconstruction from model
explanations, pp. 1–9. Association for Computing Machinery, New York (2019)

24. Mondal, A., Srivastava, A.: Energy-efficient design of MTJ-based neural networks
with stochastic computing. ACM J. Emerg. Technol. Comput. Syst. 16(1), 7:1–7:27
(2020)

25. Oh, S.J., Schiele, B., Fritz, M.: Towards reverse-engineering black-box neural net-
works. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R.
(eds.) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning.
LNCS (LNAI), vol. 11700, pp. 121–144. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-28954-6 7

26. Rolnick, D., Kording, K.P.: Reverse-engineering deep Relu networks. In: Proceed-
ings of the 37th International Conference on Machine Learning, ICML 2020, 13–18
July 2020, Virtual Event. Proceedings of Machine Learning Research, vol. 119, pp.
8178–8187. PMLR (2020)

27. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.: MobileNetV2:
inverted residuals and linear bottlenecks. In: 2018 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22
June 2018, pp. 4510–4520. IEEE Computer Society (2018)

28. Takatoi, G., Sugawara, T., Sakiyama, K., Li, Y.: Simple electromagnetic analysis
against activation functions of deep neural networks. In: Zhou, J., et al. (eds.)
ACNS 2020. LNCS, vol. 12418, pp. 181–197. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-61638-0 11

29. Wang, R., Wang, H., Dubrova, E.: Far field EM side-channel attack on AES using
deep learning. In: ASHES@CCS, pp. 35–44. ACM (2020)

30. Wang, X., Hou, R., Zhu, Y., Zhang, J., Meng, D.: NPUFort: a secure architecture
of DNN accelerator against model inversion attack. In: CF, pp. 190–196. ACM
(2019)

31. Y. LeCun, L. Bottou, Y.B., Haffner, P.: Gradient-based learning applied to docu-
ment recognition. In: Proceedings of IEEE (1998)

32. Yan, M., Fletcher, C.W., Torrellas, J.: Cache telepathy: leveraging shared resource
attacks to learn DNN architectures. In: USENIX Security Symposium, pp. 2003–
2020. USENIX Association (2020)

33. Zhang, C., Bengio, S., Hardt, M., Mozer, M.C., Singer, Y.: Identity crisis: mem-
orization and generalization under extreme overparameterization. In: 8th Inter-
national Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, 26–30 April 2020. OpenReview.net (2020)

https://doi.org/10.1007/978-3-030-28954-6_7
https://doi.org/10.1007/978-3-030-28954-6_7
https://doi.org/10.1007/978-3-030-61638-0_11
https://doi.org/10.1007/978-3-030-61638-0_11

Reinforcement Learning-Based Design
of Side-Channel Countermeasures

Jorai Rijsdijk, Lichao Wu(B), and Guilherme Perin

Delft University of Technology, Delft, The Netherlands

Abstract. Deep learning-based side-channel attacks are capable of
breaking targets protected with countermeasures. The constant progress
in the last few years makes the attacks more powerful, requiring fewer
traces to break a target. Unfortunately, to protect against such attacks,
we still rely solely on methods developed to protect against generic
attacks. The works considering the protection perspective are few and
usually based on the adversarial examples concepts, which are not always
easy to translate to real-world hardware implementations.

In this work, we ask whether we can develop combinations of coun-
termeasures that protect against side-channel attacks. We consider sev-
eral widely adopted hiding countermeasures and use the reinforcement
learning paradigm to design specific countermeasures that show resilience
against deep learning-based side-channel attacks. Our results show that it
is possible to significantly enhance the target resilience to a point where
deep learning-based attacks cannot obtain secret information. At the
same time, we consider the cost of implementing such countermeasures
to balance security and implementation costs. The optimal countermea-
sure combinations can serve as development guidelines for real-world
hardware/software-based protection schemes.

Keywords: Side-channel analysis · Reinforcement learning ·
Countermeasures · Deep learning

1 Introduction

Deep learning is a very powerful option for profiling side-channel analysis (SCA).
In profiling SCA, we assume an adversary with access to a clone device under
attack. Using that clone device, the attacker builds a model that is used to attack
the target. This scenario maps perfectly to supervised machine learning, where
first, a model is trained (profiling phase) and then tested on previously unseen
examples (attack phase). While other machine learning approaches also work well
in profiling SCA (e.g., random forest or support vector machines), deep learning
(deep neural networks) is commonly considered the most powerful direction.
This is because deep neural networks 1) do not require feature engineering,
which means we can use raw traces, and 2) can break protected implementations,
which seems to be much more difficult with simpler machine learning techniques

c© Springer Nature Switzerland AG 2022
L. Batina et al. (Eds.): SPACE 2021, LNCS 13162, pp. 168–187, 2022.
https://doi.org/10.1007/978-3-030-95085-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95085-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-95085-9_9

Reinforcement Learning-Based Design of Side-Channel Countermeasures 169

or the template attack [17]. As such, the last few years brought several research
works that report excellent attack performance and breaking of targets in a
(commonly) few hundred attack traces. What is more, attack improvements are
regularly appearing as many new results from the machine learning domain can
be straightforwardly applied to improve the side-channel attacks, see, e.g., [16,
19,25]. Simultaneously, there are only sporadic improvements from the defense
perspective, and almost no research aimed to protect against deep learning-based
SCA.

We consider this an important research direction. If deep learning attacks
are the most powerful ones, an intuitive direction should be to design counter-
measures against such attacks. Unfortunately, this is also a much more difficult
research perspective. We can find several reasons for it:

– As other domains do not consider countermeasures in the same shape as in
SCA, it is not straightforward to use the knowledge from other domains.

– While adversarial machine learning is an active research direction and intu-
itively, adversarial examples are a good defense against deep learning-based
SCA, it is far from trivial to envision how such defenses would be imple-
mented in cryptographic hardware. Additionally, adversarial examples com-
monly work in the amplitude domain but not in the time domain.

– It can be easier to attack than to defend in the context of masking and hiding
countermeasures. Validating that an attack is successful is straightforward as
it requires assessing how many attack traces are needed to break the imple-
mentation. Unfortunately, confirming that a countermeasure works would, in
an ideal case, require testing against all possible attacks (which is not possi-
ble).

There are only a few works considering countermeasures against machine
learning-based SCA to the best of our knowledge. Inci et al. used adversar-
ial learning as a defensive tool to obfuscate and mask side-channel information
(concerning micro-architectural attacks) [9]. Picek et al. considered adversarial
examples as a defense against power and EM side-channel attacks [18]. While
they reported the defense works, how would such a countermeasure be imple-
mented is still unknown. Gu et al. used an adversarial-based countermeasure
that inserts noise instructions into code [7]. The authors report that their app-
roach also works against classical side-channel attacks. However, such a coun-
termeasure cannot be implemented at zero cost. From a designer’s perspective,
knowing the trade-off between the countermeasures’ complexity and target’s
performance (i.e., running speed and power consumption), the countermeasure
should be carefully selected and tuned. Finally, Van Ouytsel et al. recently pro-
posed an approach they called cheating labels, which would be misleading labels
that the device is trying to make obvious to the classifier [13]. Differing from the
previous listed works, this work aimed at showing the limitations analysis in the
SCA context, regardless of the specific technique.

In this work, we do not aim at finding a more powerful countermeasure
with adversarial examples. Instead, with the help of the reinforcement learning
paradigm, our goal is to find an optimal combination of hiding countermeasures

170 J. Rijsdijk et al.

that have the lowest performance cost but still ensure that the deep learning-
based SCA is difficult to succeed. Although the random search can reach similar
goals, we argue that our SCA-optimized reinforcement learning method can con-
sistently evolve the countermeasure selection, thus outputs reliable results. We
emphasize that we simulate the countermeasures to assess their influence on a
dataset. This is why we concentrate on hiding countermeasures, as it is easier
to simulate hiding than masking (and there are also more options, making the
selection more challenging). As we attack datasets that are already protected
with masking, we consider both countermeasure categories covered. What we
provide is an additional layer of resilience besides the masking countermeasure.
The optimized combinations of countermeasures work in both amplitude and
time domains and could be easily implemented in real-world targets. From a
developer’s perspective, the optimized combination can become the development
guideline of protection mechanisms. In this paper, we conduct experiments with
results indicating the time-based countermeasures as the key ingredient of strong
resilience against deep learning-based SCA. Our main contributions are:

1. We propose a novel reinforcement learning approach to construct low-cost
hiding countermeasure combinations, making deep learning-based SCA diffi-
cult to succeed.

2. We motivate and develop custom reward functions for countermeasure selec-
tion to increase the SCA resilience.

3. We conduct extensive experimental analysis considering four countermea-
sures, two datasets, and two leakage models.

4. We report on a number of countermeasures that indicate strong resilience
against the selected profiling SCAs.

2 Preliminaries

Calligraphic letters (X) denote sets and the corresponding upper-case letters
(X) random variables and random vectors X over X . The corresponding lower-
case letters x and x denote realizations of X and X, respectively. A dataset T is
a collection of traces (measurements). Each trace ti is associated with an input
value (plaintext or ciphertext) di and a key candidate ki. Here, k ∈ K and k∗

represents the correct key. As common in profiling SCA, we divide the dataset
into three parts: a profiling set of N traces, a validation set of V traces, and an
attack set of Q traces.

2.1 Deep Learning and Profiling Side-Channel Analysis

We consider the supervised learning task where the goal is to learn a func-
tion f that maps an input to the output (f : X → Y)) based on examples
of input-output pairs. There is a natural mapping between supervised learning
and profiling SCA. Supervised learning has two phases: training and test. The

Reinforcement Learning-Based Design of Side-Channel Countermeasures 171

training phase corresponds to the SCA profiling phase, and the testing phase
corresponds to the side-channel attack phase. The profiling SCA runs under the
following setup:

– The goal of the profiling phase is to learn the parameters of the profiling model
minimizing the empirical risk represented by a loss function on a profiling set
of size N .

– The goal of the attack phase is to make predictions about the classes
y(x1, k

∗), . . . , y(xQ, k∗), where k∗ represents the secret (unknown) key on the
device under the attack.

Probabilistic deep learning algorithms output a matrix that denotes the prob-
ability that a certain measurement should be classified into a specific class. Thus,
the result is a matrix P with dimensions equal to Q × c, where c denotes the
number of output labels (classes). The probability S(k) for any key candidate k
is the maximum log-likelihood distinguisher:

S(k) =
Q∑

i=1

log(pi,v). (1)

The value pi,v represents the probability that a specific class v is predicted. The
class v is obtained from the key and input through a cryptographic function and
a leakage model.

From the matrix P , it is straightforward to obtain the accuracy of the model
f . Still, in SCA, an adversary is not interested in predicting the classes in the
attack phase but in obtaining the secret key k∗. Thus, to estimate the difficulty of
breaking the target, it is common to use metrics like guessing entropy (GE) [21].

Given Q traces in the attack phase, an attack outputs a key guessing vector
g = [g1, g2, . . . , g|K|] in decreasing order of probability (g1 is the most likely key
candidate and g|K| the least likely key candidate). Guessing entropy represents
the average position of k∗ in g.

2.2 Side-Channel Countermeasures

It is common to protect the implementation with countermeasures. Countermea-
sures aim to break the statistical link between intermediate values and traces
(e.g., power consumption or EM emanation). There are two main categories of
countermeasures for SCA: masking and hiding. In many cases, they will be both
implemented in increase the security level of the product.

In masking, a random mask is generated to conceal every intermediate value.
More precisely, random masks are used to remove the correlation between the
measurements and the secret data. In general, there are two types of masking:
Boolean masking and arithmetic masking.

On the other hand, the goal of hiding is to make measurements looking ran-
dom or constant. Hiding decreases the signal-to-noise ratio (SNR) only. Hiding
can happen in the amplitude (e.g., adding noise) and time (e.g., desynchroniza-
tion, random delay interrupts, jitter) dimensions. In our work, we simulate only
hiding countermeasures as masking is always active.

172 J. Rijsdijk et al.

2.3 Datasets and Leakage Models

The two datasets we use are versions of the ASCAD database [2]. Both datasets
contain the measurements from an 8-bit AVR microcontroller running a masked
AES-128 implementation. We attack the first masked key byte (key byte three).
The datasets are available at https://github.com/ANSSI-FR/ASCAD. The first
dataset version has a fixed key (thus, the key is the same in the profiling and
attack set). This dataset consists of 50 000 traces for profiling and 10 000 for the
attack. From 50 000 traces in the profiling set, we use 45 000 traces for profiling
and 5 000 for validation. Each trace has 700 features (preselected window). The
second version has random keys, with 200 000 traces for profiling and 100 000 for
the attack. We use 5 000 traces from the attack set for validation (note that the
attack set has a fixed but a different key from the profiling set). Each trace has
1 400 features (preselected window).

We consider two leakage models:

– The Hamming weight (HW) leakage model - the attacker assumes the leakage
proportional to the sensitive variable’s Hamming weight. Considering the AES
cipher with 8-bit S-boxes, this leakage model has nine classes for a single key
byte (values from 0 to 8).

– The Identity (ID) leakage model - the attacker considers the leakage in the
form of an intermediate value of the cipher. Considering the AES cipher with
8-bit S-boxes, this leakage model results in 256 classes for a single key byte
(values from 0 to 255).

2.4 Reinforcement Learning

Reinforcement learning (RL) aims to teach an agent how to perform a task by
letting the agent experiment and experience the environment. There are two
main categories of reinforcement learning algorithms: policy-based algorithms
and value-based algorithms. Policy-based algorithms directly try to find this
optimal policy. Value-based algorithms, however, try to approximate or find the
value function that assigns state-action pairs a reward value. Most reinforcement
learning algorithms are centered around estimating value functions, but this is
not a strict requirement for reinforcement learning. For example, methods such
as genetic algorithms or simulated annealing can all be used for reinforcement
learning without ever estimating value functions [22]. In this research, we only
focus on Q-Learning, belonging to the value estimation category.

Reinforcement learning has fundamental differences compared with super-
vised and unsupervised machine learning, commonly adopted by the SCA com-
munity. Supervised machine learning learns from a set of examples (input-output
pairs) labeled with the correct answers. A benefit of reinforcement learning over
supervised machine learning is that the reward signal can be constructed without
prior knowledge of the correct course of action, which is especially useful if such
a dataset does not exist or is infeasible to obtain. In unsupervised machine learn-
ing, the algorithm attempts to find some (hidden) structure within a dataset,

https://github.com/ANSSI-FR/ASCAD

Reinforcement Learning-Based Design of Side-Channel Countermeasures 173

while reinforcement learning aims to teach an agent how to perform a task
through rewards and experiments [22].

Q-Learning. Q-Learning was introduced in 1989 by Chris Watkins [23] with
an aim not only to learn from the outcome of a set of state-action transitions
but from each of them individually. Q-learning is a value-based algorithm that
tries to estimate q∗(s, a), the reward of taking action a in the state s under
the optimal policy, by iteratively updating its stored q-value estimations using
Eq. (2). The simplest form of Q-learning stores these q-value estimations as a
simple lookup table and initializes them with some chosen value or method. This
form of Q-learning is also called Tabular Q-learning.

Equation (2) is used to incorporate the obtained reward into the saved reward
for the current state Rt. St and At are the state and action at time t, and
Q(St, At) is the current expected reward for taking action At in state St. α
and γ are the q-learning rate and discount factor, which are hyperparameters
of the Q-learning algorithm. The q-learning rate determines how quickly new
information is learned, while the discount factor determines how much value to
assign to short-term versus long-term rewards. Rt+1 is the currently observed
reward for having taken action At in state St. maxaQ(St+1, a) is the maximum
of the expected reward of all the actions a that can be taken in state St+1.

Q(St, At) ← Q(St, At) + α
[
Rt+1 + γ max

a
Q(St+1, a) − Q(St, At)

]
. (2)

3 Related Works

We divide related works into two directions: improving deep learning-based SCA
and improving the defenses against such attacks. In the first direction, from
2016 and the first paper using convolutional neural networks [11], there are
continuous improvements in the attack performance. Commonly, such works
investigate (note this is only a small selection of the papers):

– the importance of hyperparameters and designing top-performing
neural networks. Benadjila et al. made an empirical evaluation of different
CNN hyperparameters for the ASCAD dataset [2]. Perin and Picek explored
the various optimizer choices for deep learning-based SCA [15]. Zaid et al.
proposed a methodology to select hyperparameters related to the size of lay-
ers in CNNs [29]. To the best of our knowledge, this is the first methodology
to build CNNs for SCA. Wouters et al. [24] improved upon the work from Zaid
et al. [29] and showed it is possible to reach similar attack performance with
significantly smaller neural network architectures. Wu et al. used Bayesian
optimization to find optimal hyperparameters for multilayer perceptron and
convolutional neural network architectures [25]. Rijsdijk et al. used reinforce-
ment learning to design CNNs that exhibit strong attack performance and
have a small number of trainable parameters [20]. Our reinforcement learning
setup is inspired by the one presented here, especially the reward function

174 J. Rijsdijk et al.

part1 To improve the attack performance, some authors also proposed cus-
tom elements for neural networks for SCA. For instance, Zaid et al. [28],
and Zhang et al. [30] introduced new loss functions that improve the attack
performance.

– well-known techniques from the machine learning domain to
improve the performance of deep learning-based attacks. Cagli et
al. showed how CNNs could defeat jitter countermeasure, and they used data
augmentation to improve the attack process [3]. Kim et al. constructed VGG-
like architecture that performs well over several datasets, and they use regu-
larization in the form of noise added to the input [10]. Perin et al. showed how
ensembles could improve the attack performance even when single models are
only moderately successful [14]. Wu et al. used the denoising autoencoder to
remove the countermeasures from measurements to improve the attack perfor-
mance [26]. Perin et al. considered the pruning technique and the lottery ticket
hypothesis to make small neural networks reach top attack performance [16].

– explainability and interpretability of results. Hettwer et al. investigated
how to select points of interest for deep learning by using three deep neural
network attribution methods [8]. Masure et al. used gradient visualization to
discover where the sensitive information leaks [12].

On the other hand, the domain of countermeasures’ design against machine
learning-based SCA is much less explored2. Indeed, to the best of our knowledge,
there are only a few works considering this perspective as briefly discussed in
Sect. 1. At the same time, it is unclear how such countermeasures would be
implemented or the implementation cost.

4 the RL-Based Countermeasure Selection Framework

4.1 General Setup

We propose a Tabular Q-Learning algorithm based on MetaQNN that can select
countermeasures, including their parameters, to simulate their effectiveness on
an existing dataset against an arbitrary neural network. To evaluate the effective-
ness of the countermeasures, we use guessing entropy. There are several aspects
to consider if using MetaQNN:

1. We need to develop an appropriate reward function that considers particu-
larities of the SCA domain. Thus, considering only machine learning metrics
would not suffice.

2. MetaQNN uses a fixed α (learning rate) for Q-Learning while using a learning
rate schedule where α decreases either linearly or polynomially are the normal
practice [6].

1 The authors mention they conducted a large number of experiments to find a reward
function that works well for different datasets and leakage models, so we decided to
use the same reward function.

2 Many works consider the development of SCA countermeasures, but not specifically
against deep learning approaches.

Reinforcement Learning-Based Design of Side-Channel Countermeasures 175

3. One of the shortcomings of MetaQNN is that it requires significant compu-
tational power and time to explore the search space properly. As we consider
several different countermeasures with its hyperparameters, this results in a
very large search space.

We model the selection of the right countermeasures and their parameters as a
Markov Decision Process (MDP). Specifically, each state has a transition towards
an accepting state with the currently selected countermeasures. Each counter-
measure can only be applied once per Q-Learning iteration, so the resulting set
of chosen countermeasures can be empty (no countermeasure being added) or
contain up to four different countermeasures in any order.3 One may consider
that with the larger number of countermeasures being added to the traces, the
more difficult the secret information to be retrieved by the side-channel attacks.
However, one should note that the implementation of the countermeasure is not
without any cost. Indeed, some software-based countermeasures add overhead
in the execution efficiency (i.e., dummy executions), while others add overhead
in total power consumption (i.e., dedicated noise engine).

To select optimal countermeasure combinations with a limited burden on the
device, a cost function that can approximate the implementation costs should
balance the strength of the countermeasure implementation and the security of
the device. Thus, such a function is also a perfect candidate as a reward function
to guide the Q-learning process. While we try to base the costs on real-world
implications of adding each of the countermeasures in a chosen configuration,
translating the total cost back to a real-world metric is nontrivial. Therefore,
we design a cost function associated with each countermeasure, where the value
depends on the chosen countermeasure’s configuration. The total cost of the
countermeasure set, ctotal, is defined as:

ctotal =
|C|∑

i=1

ci. (3)

Here, C represents the set of applied countermeasures, and ci is the cost
of the individual countermeasure defined differently for each countermeasure.
Based on the values chosen by Wu et al. [26] for the ASCAD fixed key dataset,
we set the total cost budget cmax to five, but it can be easily adjusted for other
implementations. cmax set the upper limit of the applied countermeasure so that
the selected countermeasure is in a reasonable range and avoid the algorithm to
’cheat’ by adding all possible countermeasures with the strongest settings. Only
countermeasure configurations within the remaining budget are selectable by
the Q-Learning agent. If the countermeasures successfully defeat the attack (GE
does not reach 0 within the configured number of attack traces), any leftover
budget is used as a component of the reward function. By evaluating the reward
function, we can find the best budget-effective countermeasure combinations,
3 The countermeasures set is an ordered set based on the order that the RL agent

selected them. Since the countermeasures are applied in this order, sets with the
same countermeasures but a different ordering are treated as disjoint.

176 J. Rijsdijk et al.

together with their settings, to protect the device from the SCA with the lowest
budget.

We evaluated four countermeasures: desynchronization, uniform noise, clock
jitter, and random delay interrupt (RDI), and applied them to the original
dataset. The performance of each countermeasure against deep learning-based
SCA can be found in [26]. The countermeasures are all applied a-posteriori to
the chosen dataset in our experiments. Note that the implementations of the
countermeasure are based on the countermeasure designs from Wu et al. [26].
Already that work showed that a combination of countermeasures makes the
attack more difficult to succeed.

Some of these countermeasures generate traces of varying length. To make
them all of the same length, the traces shorter than the original are padded with
zeroes, while any longer traces are truncated back to the original length. The
detailed implementation and design of each countermeasure’s cost function are
discussed in the following sections. We emphasize that the following definitions
of the countermeasure cost are customized for the selected attack datasets. They
can be easily tuned and adjusted to other implementations based on the actual
design specifications.

Desynchronization We draw a number uniformly between 0 and the chosen
maximum desynchronization for each trace in the dataset and shift the trace by
that number of features. In terms of the cost for desynchronization, Wu et al.
showed that a maximum desynchronization of 50 greatly increases the attack’s
difficulty. This leads us to set the desynchronization level (desync level) ranges
from 5 to 50 in a step of 5 (thus, not allowing the desynchronization value so large
that it will be trivial to defeat the deep learning attack). The cost calculation for
desynchronization is defined in Eq. (4). Note that the maximum cdesync is five,
which matches the cmax we defined as the total cost of countermeasures (which
is why cdesync needs to be divided by ten).

cdesync =
desync level

10
. (4)

Uniform Noise. Several sources, such as the transistor, data buses, the trans-
mission line to the record devices such as oscilloscopes, or even the work environ-
ment, introduce noise to the amplitude domain. Adding uniform noise amounts
to adding a uniformly distributed random value to each feature. To make sure
the addition of the noise causes a similar effect on different datasets, we set the
maximum noise level based on the dataset variation defined by Eq. (5):

max noise level =

√
V ar(T)

2
. (5)

Here, T denotes the measured leakage traces. Then, max noise level is mul-
tiplied with a noise factor parameter, ranging from 0.1 to 1.0 with steps of 0.1,
to control the actual noise level introduced to the traces. Since the noise factor

Reinforcement Learning-Based Design of Side-Channel Countermeasures 177

is the only adjustable parameter, we define the cost of the uniform noise in
Eq. (6) to make sure that the maximum cnoise equals to cmax.

cnoise = noise factor × 5. (6)

Clock Jitter. One way of implementing clock jitters is by introducing the insta-
bility in the clock [3]. While desynchronization introduces randomness globally
in the time domain, the introduction of clock jitters increases each sampling
point’s randomness, thus increasing the alignment difficulties. When applying
the clock jitter countermeasure to the ASCAD dataset, Wu et al. chose eight as
the jitter level, but none of the attacks managed to retrieve the key in 10 000
traces. Thus, we decide to tune the jitter level (jitter level) with a maximum
of eight. The corresponding cost function is defined in Eq. 7. In the following
experiments, we set the jitter level ranging from 2 to 8 in a step of 2. Again,
maximum cjitter value matches the cmax value we defined before.

cjitter = jitter level × 1.6. (7)

Random Delay Interrupts (RDIs) Similar to clock jitter, RDIs introduce
local desynchronization in the traces. We implement RDIs based on the floating
mean method [5]. More specifically, we add RDI for each feature in each trace
with a configurable probability. If an RDI occurs for a trace feature, we select
the delay length based on the A and B parameters, where A is the maximum
length of the delay and B is a number � A. Since RDIs in practice are imple-
mented using instructions such as nop, we do not simply flatten the simulated
power consumption but introduce peaks with a configurable amplitude. Since
the RDI countermeasure has many adjustable parameters, it will, by far, have
the most MDP paths dedicated to it, meaning that during random exploration,
it is far more likely to select it as a countermeasure. To offset this, we reduce
the number of configurable parameters by fixing the amplitude for RDIs based
on the max noise level defined in Eq. 5 for each dataset. Furthermore, we add
1 to the cost of any random delay interrupt countermeasure, as shown in Eq. 8,
defining the cost function for RDIs.

crdi = 1 +
3 × probability × (A + B)

2
, (8)

where A ranges from 1 to 10, B ranges from 0 to 9, and probability ranges from
0.1 to 1 in a step of 1. We emphasize that we made sure the selected B value is
never larger than A.

When looking at the parameters Wu et al. [26] used for random delay
interrupts applied on the ASCAD fixed key dataset, A = 5, B = 3 and
probability = 0.5, none of the chosen attack methods show any signs of con-
verging on the correct key guess, even after 10 000 traces. With our chosen crdi,
this configuration cost equals seven, which we consider appropriate.

178 J. Rijsdijk et al.

We emphasize that we selected the ranges for each countermeasure based on
the related works, while the cost of such countermeasures is adjusted based on the
maximum allowed budget. While these values are indeed arbitrary, they can be
easily adjusted for any real-world setting. We do not give to each countermeasure
the same cost, but normalize it so that the highest value for each countermeasure
represents a setting that is difficult to break and consumes the whole cost budget.

4.2 Reward Functions

To allow MetaQNN to be used for the countermeasure selection, we use a rela-
tively complex reward function. This reward function incorporates the guessing
entropy and is composed of four metrics: 1) t′: the percentage of traces required
to get the GE to 0 out of the fixed maximum attack set size; 2) GE′

10: the GE
value using 10% of the attack traces; 3) GE′

50: the GE value using 50% of the
attack traces and 4) c′: the percentage of countermeasures budget left over out
of the fixed maximum budget parameter. The formal definitions of the first three
metrics are expressed in Eqs. (9), (10), (11), and (12). We note this is the same
reward function as used in [20].

t′ =
tmax − min(tmax, QtGE

)
tmax

. (9)

GE′
10 =

128 − min(GE10, 128)
128

. (10)

GE′
50 =

128 − min(GE50, 128)
128

. (11)

c′ =
cmax − ctotal

cmax
. (12)

The first three metrics of the reward function are derived from the GE metric,
aiming to reward neural network architectures based on their attack performance
using the configured number of attack traces.4 Since we reward countermeasure
sets that manage to reduce the SCA performance, we incorporate the inverse of
these metrics into our reward functions, as these metrics are appropriate in a
similar setting [20]. Combining these three metrics allows us to assess the coun-
termeasure set performance, even if the neural network model does not retrieve
the secret key within the maximum number of attack traces. We incorporate
these metrics inversely into our reward function by subtracting their value from
their maximum value. Combined, the sum of the maximum values from which
we subtract (multiplied by their weight in the reward function) equals 2.5, as

4 Note that the misleading GE behavior as discussed in [27] may happen during the
experiments. Although one could reverse the ranking provided by an attack to obtain
the correct key, we argue it is not possible in reality as an attacker would always
assume the correct key being the one with the lowest GE (most likely guess).

Reinforcement Learning-Based Design of Side-Channel Countermeasures 179

shown in Eq. (13). The weight of each metric is determined based on a large
number of experiments.

In terms of the fourth metric c′, recall C is the set of countermeasures cho-
sen by the agent, and ctotal equals five. We only apply this reward when the
key retrieval is unsuccessful in tmax traces, as we do not want to reward small
countermeasure sets for their size if they do not adequately decrease the attack
performance. Combining these four metrics, we define the reward function as in
Eq. (13), which gives us a total reward between 0 and 1. To better reward the
countermeasure set performance, making the SCA neural networks require more
traces for a successful break, a smaller weight is set on GE′

50.

R =
1
3

×
{

2.5 − t′ − GE′
10 − 0.5 × GE′

50, if tGE=0 < tmax

2.5 − GE′
10 − 0.5 × GE′

50 + 0.5 × c′, otherwise
(13)

We multiply the entire set of metrics by 1
3 to normalize our reward function

between 0 and 1. While this reward function does look complicated, it is derived
based on the results from [20] and our experimental tuning lasting several weeks.
Still, we do not claim the presented reward function is optimal, but it gives good
results. Further improvements are always possible, especially from the budget
perspective or the cost of a specific countermeasure.

5 Experimental Results

To assess the performance of the selected set of countermeasures for each dataset
and leakage model, we perform experiments with different CNN models (as those
are reported to reach top results in SCA, see, e.g. [10,29]). Those models are
tuned for each dataset and leakage model combination without considering hid-
ing countermeasures that we simulate. One could consider this not to be fair
as those architectures do not necessarily work well with countermeasures. Still,
there are two reasons to follow this approach as we 1) do not know a priori the
best set of countermeasures and we do not want to optimize both architectures
and countermeasures at the same time, and 2) evaluate against state-of-the-art
architectures that are not tuned against any of those countermeasures to allow
a fair assessment of all architectures.

Specifically, we use reinforcement learning to select the model’s hyperparam-
eter [20]. We execute the search algorithm for every dataset and leakage model
combination and select the top-performing models over 2 500 iterations. To assess
the performance of the Q-Learning agent, we compare the average rewards per ε.
For instance, a ε of 1.0 means the network was generated completely randomly,
while an ε of 0.1 means that the network was generated while choosing random
actions 10% of the time. For the test setup, we use an NVIDIA GTX 1080 Ti
graphics processing unit (GPU) with 11 Gigabytes of GPU memory and 3 584
GPU cores. All of the experiments are implemented with the TensorFlow [1]
computing framework and Keras deep learning framework [4].

180 J. Rijsdijk et al.

The details about the specific architectures can be found in Table 1. Note
that Rijsdijk et al. implemented two reward functions: one that only consid-
ers the attack performance, and the other that also considers the network size
(small reward function) [20]. We consider both reward functions aligned with
that paper, leading to two models used for testing; the one denoted with RS
is the model optimized with the small reward function. For all models, we use
he uniform and selu as kernel initializer and activation function.

Table 1. CNN architectures used in the experiments [20].

Test models Convolution
(filter number, size)

Pooling
(size, stride)

Fully-connected layer

ASCADHW Conv(16, 100) avg(25, 25) 15+4+4

ASCADHW RS Conv(2, 25) avg(4, 4) 15+10+4

ASCADID Conv(128, 25) avg(25, 25) 20+15

ASCADID RS Conv(2+2+8, 75+3+2) avg(25+4+2, 25+4+2) 10+4+2

ASCAD RHW Conv(4, 50) avg(25, 25) 30+30+30

ASCAD RHW RS Conv(8, 3) avg(25, 25) 30+30+20

ASCAD RID Conv(128, 3) avg(75, 75) 30+2

ASCAD RID RS Conv(4, 1) avg(100, 75) 30+10+2

5.1 ASCAD Fixed Key Dataset

Figure 1 shows the scatter plot results for the HW and ID leakage models for
both the regular and RS CNN. The vertical red line indicates the highest Q-
learning reward for the countermeasure set, which could not prevent the CNN
from retrieving the key within the configured 2 000 attack traces. Notably, a
sharp line can be found on the right side of the Q-Learning reward plots, which
is solely due to the c′ component of the reward function. Although the selected
CNNs can retrieve the secret key when no countermeasures were applied (c′ =
0) for all experiments with both HW and ID leakage models, as soon as any
countermeasure is applied, the attack becomes unsuccessful with 2 000 attack
traces. Indeed, we observe that only very few countermeasures seem inefficient
in defeating the deep learning attacks from the result plots.

For the experiments presented, the top countermeasures for ASCAD using
different profiling models are listed in Table 2. Notably, the best countermeasure
set in terms of performance and cost for this CNN consists of desynchronization
with a level equal to ten, which could be caused by the lack of sufficient convolu-
tion layers (only one) in countering such a countermeasure. The rest of the top
20 countermeasure sets include or solely consist of random delay interrupts. This
observation is also applied to other profiling models and ID leakage models. The
amplitude for RDI is fixed for each dataset, as explained in Sect. 4.1. In terms
of the parameters of RDIs, B stays zero for all three profiling models, indicating
that A solely determines the length of RDIs. Indeed, B varies the mean of the

Reinforcement Learning-Based Design of Side-Channel Countermeasures 181

number of added RDIs and enhances the difficulties in learning from the data.
However, a larger B value would also increase the countermeasure cost, which is
against the reward function’s principle. From Table 2, we can observe both low
values of A and probability being applied to the RDIs countermeasure, indicating
the success of our framework in finding countermeasure with high performance
and low cost.

(a) ASCAD fixed key HW leakage
model (192 hours).

(b) ASCAD fixed key ID leakage
model (204 hours).

(c) ASCAD fixed key HW leakage
model (RS) (196 hours).

(d) ASCAD fixed key ID leakage
model (RS) (198 hours).

Fig. 1. An overview of the countermeasure cost, reward, and the ε value a counter-
measure combination set was first generated for the ASCAD with fixed key dataset
experiments. The red lines indicate the countermeasure set with the highest reward for
that GE reached 0 within 2 000 traces. (Color figure online)

Next, we compare the general performance of the countermeasure sets
between CNNs designed for the HW and ID leakage model. We observe that
the ID model appears to be at least a little better at handling countermeasures.
Specifically, for the ID leakage model CNNs, the countermeasures’ Q-Learning
reward variance is higher, indicating that the ID model CNNs can better handle
countermeasures, making the countermeasure selection more important. This

182 J. Rijsdijk et al.

Table 2. Best performing countermeasures for the ASCAD fixed key dataset.

Model Reward Countermeasures c′

ASCADHW 0.967 Desync(desync level= 10) 1.00

ASCADHW RS 0.962 RDI(A=1,B=0, probability= 0.10, amplitude=12.88) 1.15

ASCADID 0.957 RDI(A=2,B=0, probability= 0.10, amplitude=12.88) 1.30

ASCADID RS 0.962 RDI(A=1,B=0, probability= 0.10, amplitude=12.88) 1.15

observation is confirmed by the c′ value listed in Table 2: to reach a similar level
of the reward value, the countermeasures are implemented with a greater cost.

Considering the time required to run the reinforcement learning, we observe
we require around 200 h on average, which is double the time required by Rijs-
dijk et al. when finding neural networks that perform well [20]. In Fig. 2, we
show the rolling average of the Q-learning reward and the average Q-learning
reward per epsilon for the ASCAD fixed key dataset. As can be seen, the reward
value for countermeasure gradually increases when more iteration is performed,
indicating that the agent is learning from the environment and becoming more
capable of finding effective countermeasure settings with a low cost. Then, the
reward value is saturated when ε reaches 0.1, meaning that the agent is well
trained and constantly finds well-performing countermeasures. One may notice
that the number of iterations performed is significantly higher than the config-
ured 1 700 iterations. This is because we only count an iteration when generating
a countermeasure set that was not generated before.

5.2 ASCAD Random Keys Dataset

The scatter plot results for both the HW and ID model for both the regular
and RS CNN are listed in Fig. 3. Aligned with the ASCAD fixed key dataset
observation, the vertical red line in the plots is far away from the dots in the
plot, indicating that the countermeasure’s addition effectively increases side-
channel attack difficulty. Furthermore, we again see the sharp line on the right
side of the Q-Learning reward, which is caused by the c′ component of the reward
function.

Compared with the ASCAD results for both leakage models (Fig. 1), we
see a greater variation of the individual countermeasure implementations: even
with the same countermeasure cost, a different combination of countermeasures
and their corresponding setting may lead to unpredictable reward values. Fortu-
nately, we see this tendency with the RL-based countermeasure selection scheme
and can better select the countermeasures’ implementation with a limited bud-
get. Finally, we observe that the later leakage model is more effective in defeating
the countermeasure when comparing the HW and ID leakage models. In other
words, to protect the essential execution that leaks the ID information, more
effort may be required to implement countermeasures. The top-performing coun-
termeasures for different profiling models are listed in Table 3. From the results,
RDIs again become the most effective one among all of the considered counter-
measures. The RDI amplitude is fixed at 16.95 for this dataset, as explained in
Sect. 4.1.

Reinforcement Learning-Based Design of Side-Channel Countermeasures 183

(a) ASCAD fixed key HW leakage
model.

(b) ASCAD fixed key ID leakage
model.

Fig. 2. An overview of the Q-Learning performance for the ASCAD with fixed key
dataset experiments. The blue line indicates the rolling average of the Q-Learning
reward for 50 iterations, where at each iteration, we generate and evaluate a coun-
termeasure set. The bars in the graph indicate the average Q-Learning reward for
all countermeasure sets generated during that ε. The results for RS experiments are
similar. (Color figure online)

Interestingly, the countermeasures are implemented with higher costs when
compared with the one used for ASCAD with a fixed key. The reason could be
that training with random keys traces enhances the generalization of the profiling
model. What is more, we also observe that we require significantly longer time
to run the reinforcement learning framework: on average, 300 h, which is more
than 12 days of computations. Interestingly, we see an outlier with the ASCAD
random keys for the ID leakage model, where only 48 h were needed for the
experiments.

Table 3. Best performing countermeasures for the ASCAD random keys dataset.

Model Reward Countermeasures c′

ASCAD RHW 0.940 RDI(A=1,B=0, probability= 0.20, amplitude=16.95) 1.30

ASCAD RHW RS 0.952 RDI(A=2,B=1, probability= 0.10, amplitude=16.95) 1.45

ASCAD RID 0.942 RDI(A=5,B=0, probability= 0.10, amplitude=16.95) 1.75

ASCAD RID RS 0.962 RDI(A=1,B=0, probability= 0.10, amplitude=16.95) 1.15

The rolling average of the Q-learning reward and the average Q-learning
reward per ε for the ASCAD random keys dataset are given in Fig. 4,
Appendix A. Interestingly, at the beginning of Fig. 4a, there is a significant
drop in Q-learning reward, followed by a rapid increase in the ε update from
0.4 to 0.3. A possible explanation could be that the model we used is power-
ful in defeating the selected countermeasures at the early learning stage. Still,
the algorithm managed to learn from each interaction, finally selecting powerful
countermeasures. In contrast, selecting countermeasure to defeat ASCAD RID

is an easy task: the reward value reaches above 0.8 at the very beginning, and it

184 J. Rijsdijk et al.

(a) ASCAD random keys HW
leakage model (280 hours).

(b) ASCAD random keys ID
leakage model (48 hours).

(c) ASCAD random keys HW
leakage model (RS) (296 hours).

(d) ASCAD random keys ID
leakage model (RS) (309 hours).

Fig. 3. An overview of the countermeasure cost, reward, and the ε value a counter-
measure combination set was first generated for the ASCAD with random keys dataset
experiments. The red lines indicates the countermeasure set with the highest reward
for that GE reached 0 within 2 000 traces. (Color figure online)

stops increasing regardless of the number of iterations. Since each test consumes
300 h on average, we stopped the tests after around 3 000 iterations. There is a
similar performance for settings with the RS objective in the ASCAD with the
fixed key dataset: the RL algorithm is constantly learning. The highest reward
value is obtained when ε reaches the minimum.

6 Conclusions and Future Work

This paper presents a novel approach to designing side-channel countermeasures
based on reinforcement learning. We consider four well-known types of counter-
measures (one in the amplitude domain and three in the time domain), and we
aim to find the best combinations of countermeasures within a specific budget.
We conduct experiments on two datasets and report a number of countermeasure

Reinforcement Learning-Based Design of Side-Channel Countermeasures 185

combinations providing significantly improved resilience against deep learning-
based SCA. Our experiments show that the best performing countermeasure
combinations use the random delay interrupt countermeasure, making it a natu-
ral choice for real-world implementations. While the specific cost for each coun-
termeasure was defined arbitrarily (as well as the total budget), we believe the
whole approach is easily transferable to settings with real-world targets.

The experiments performed currently take significantly longer than might
be necessary, as we generate a fixed number of unique countermeasure sets. In
contrast, the chance to generate a unique countermeasure set towards the end of
the experiments is significantly smaller (due to the lower ε). For future work, we
plan to explore how to detect this behavior. Besides, it would be interesting to
benchmark our method with Dynamic Programming or random solutions. We
plan to consider multilayer perceptron architectures and sets of countermeasures
that work well for different datasets and leakage models. Moreover, this work only
evaluates existing countermeasures. It would also be interesting to investigate if
reinforcement learning can be used to develop novel countermeasures.

A Q-Learning Performance for the ASCAD with Random
Keys Dataset

(a) ASCAD random keys HW
leakage model.

(b) ASCAD random keys ID
leakage model.

Fig. 4. An overview of the Q-Learning performance for the ASCAD with the random
keys dataset experiments. The blue line indicates the rolling average of the Q-Learning
reward for 50 iterations, where at each iteration, we generate and evaluate a coun-
termeasure set. The bars in the graph indicate the average Q-Learning reward for
all countermeasure sets generated during that ε. The results for RS experiments are
similar. (Color figure online)

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). http://tensorflow.org/, software available from tensorflow.org

http://tensorflow.org/

186 J. Rijsdijk et al.

2. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for side-
channel analysis and introduction to ASCAD database. J. Cryptogr. Eng. 10(2),
163–188 (2020). https://doi.org/10.1007/s13389-019-00220-8

3. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66787-4 3

4. Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras
5. Coron, J.-S., Kizhvatov, I.: An efficient method for random delay generation in

embedded software. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp.
156–170. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04138-
9 12

6. Even-Dar, E., Mansour, Y.: Learning rates for q-learning. J. Mach. Learn. Res. 5,
1–25 (2004)

7. Gu, R., Wang, P., Zheng, M., Hu, H., Yu, N.: Adversarial attack based counter-
measures against deep learning side-channel attacks (2020)

8. Hettwer, B., Gehrer, S., Güneysu, T.: Deep neural network attribution methods
for leakage analysis and symmetric key recovery. In: Paterson, K.G., Stebila, D.
(eds.) SAC 2019. LNCS, vol. 11959, pp. 645–666. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-38471-5 26

9. Inci, M.S., Eisenbarth, T., Sunar, B.: Deepcloak: Adversarial crafting as a defensive
measure to cloak processes. CoRR abs/1808.01352 (2018). http://arxiv.org/abs/
1808.01352

10. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. unleashing
the power of convolutional neural networks for profiled side-channel analysis. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 148–179 (2019)

11. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.)
SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-49445-6 1

12. Masure, L., Dumas, C., Prouff, E.: Gradient visualization for general character-
ization in profiling attacks. In: Polian, I., Stöttinger, M. (eds.) COSADE 2019.
LNCS, vol. 11421, pp. 145–167. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-16350-1 9

13. Ouytsel, C.B.V., Bronchain, O., Cassiers, G., Standaert, F.: How to fool a black
box machine learning based side-channel security evaluation. Cryptogr. Commun.
13(4), 573–585 (2021). https://doi.org/10.1007/s12095-021-00479-x

14. Perin, G., Chmielewski, L., Picek, S.: Strength in numbers: improving gen-
eralization with ensembles in machine learning-based profiled side-channel
analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(4), 337–364
(2020). https://doi.org/10.13154/tches.v2020.i4.337-364, https://tches.iacr.org/
index.php/TCHES/article/view/8686

15. Perin, G., Picek, S.: On the influence of optimizers in deep learning-based side-
channel analysis. In: Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.) SAC
2020. LNCS, vol. 12804, pp. 615–636. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-81652-0 24

16. Perin, G., Wu, L., Picek, S.: Gambling for success: The lottery ticket hypothesis
in deep learning-based sca. Cryptology ePrint Archive, Report 2021/197 (2021).
https://eprint.iacr.org/2021/197

https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://github.com/fchollet/keras
https://doi.org/10.1007/978-3-642-04138-9_12
https://doi.org/10.1007/978-3-642-04138-9_12
https://doi.org/10.1007/978-3-030-38471-5_26
https://doi.org/10.1007/978-3-030-38471-5_26
http://arxiv.org/abs/1808.01352
http://arxiv.org/abs/1808.01352
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-030-16350-1_9
https://doi.org/10.1007/978-3-030-16350-1_9
https://doi.org/10.1007/s12095-021-00479-x
https://doi.org/10.13154/tches.v2020.i4.337-364
https://tches.iacr.org/index.php/TCHES/article/view/8686
https://tches.iacr.org/index.php/TCHES/article/view/8686
https://doi.org/10.1007/978-3-030-81652-0_24
https://doi.org/10.1007/978-3-030-81652-0_24
https://eprint.iacr.org/2021/197

Reinforcement Learning-Based Design of Side-Channel Countermeasures 187

17. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of
class imbalance and conflicting metrics with machine learning for side-channel
evaluations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(1), 209–237
(2018). https://doi.org/10.13154/tches.v2019.i1.209-237, https://tches.iacr.org/
index.php/TCHES/article/view/7339

18. Picek, S., Jap, D., Bhasin, S.: Poster: when adversary becomes the guardian -
towards side-channel security with adversarial attacks. In: Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, pp. 2673–
2675. CCS 2019, Association for Computing Machinery, New York, NY, USA
(2019). https://doi.org/10.1145/3319535.3363284

19. Ramezanpour, K., Ampadu, P., Diehl, W.: SCARL: side-channel analysis with
reinforcement learning on the Ascon authenticated cipher (2020)

20. Rijsdijk, J., Wu, L., Perin, G., Picek, S.: Reinforcement learning for hyperparam-
eter tuning in deep learning-based side-channel analysis. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2021(3), 677–707 (2021). https://doi.org/10.46586/tches.
v2021.i3.677-707, https://tches.iacr.org/index.php/TCHES/article/view/8989

21. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

22. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2 edn. MIT
Press, Cambridge (2018). http://incompleteideas.net/book/the-book.html

23. Watkins, C.J.C.H.: Learning from delayed rewards. Phd thesis, University of Cam-
bridge England (1989)

24. Wouters, L., Arribas, V., Gierlichs, B., Preneel, B.: Revisiting a methodology for
efficient CNN architectures in profiling attacks. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2020(3), 147–168 (2020). https://doi.org/10.13154/tches.v2020.i3.
147-168, https://tches.iacr.org/index.php/TCHES/article/view/8586

25. Wu, L., Perin, G., Picek, S.: I choose you: automated hyperparameter tuning
for deep learning-based side-channel analysis. Cryptology ePrint Archive, Report
2020/1293 (2020). https://eprint.iacr.org/2020/1293

26. Wu, L., Picek, S.: Remove some noise: On pre-processing of side-channel measure-
ments with autoencoders. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(4),
389–415 (2020). https://doi.org/10.13154/tches.v2020.i4.389-415, https://tches.
iacr.org/index.php/TCHES/article/view/8688

27. Wu, L., et al.: On the attack evaluation and the generalization ability in profiling
side-channel analysis. Cryptology ePrint Archive, Report 2020/899 (2020). https://
eprint.iacr.org/2020/899

28. Zaid, G., Bossuet, L., Dassance, F., Habrard, A., Venelli, A.: Ranking loss: maxi-
mizing the success rate in deep learning side-channel analysis. IACR Trans. Cryp-
togr. Hardw. Embed. Syst. 2021(1), 25–55 (2021). https://doi.org/10.46586/tches.
v2021.i1.25-55

29. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient cnn archi-
tectures in profiling attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst.2020(1),
1–36 (2019). https://doi.org/10.13154/tches.v2020.i1.1-36, https://tches.iacr.org/
index.php/TCHES/article/view/8391

30. Zhang, J., Zheng, M., Nan, J., Hu, H., Yu, N.: A novel evaluation metric for deep
learning-based side channel analysis and its extended application to imbalanced
data. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(3), 73–96 (2020). https://
doi.org/10.13154/tches.v2020.i3.73-96, https://tches.iacr.org/index.php/TCHES/
article/view/8583

https://doi.org/10.13154/tches.v2019.i1.209-237
https://tches.iacr.org/index.php/TCHES/article/view/7339
https://tches.iacr.org/index.php/TCHES/article/view/7339
https://doi.org/10.1145/3319535.3363284
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.46586/tches.v2021.i3.677-707
https://tches.iacr.org/index.php/TCHES/article/view/8989
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
http://incompleteideas.net/book/the-book.html
https://doi.org/10.13154/tches.v2020.i3.147-168
https://doi.org/10.13154/tches.v2020.i3.147-168
https://tches.iacr.org/index.php/TCHES/article/view/8586
https://eprint.iacr.org/2020/1293
https://doi.org/10.13154/tches.v2020.i4.389-415
https://tches.iacr.org/index.php/TCHES/article/view/8688
https://tches.iacr.org/index.php/TCHES/article/view/8688
https://eprint.iacr.org/2020/899
https://eprint.iacr.org/2020/899
https://doi.org/10.46586/tches.v2021.i1.25-55
https://doi.org/10.46586/tches.v2021.i1.25-55
https://doi.org/10.13154/tches.v2020.i1.1-36
https://tches.iacr.org/index.php/TCHES/article/view/8391
https://tches.iacr.org/index.php/TCHES/article/view/8391
https://doi.org/10.13154/tches.v2020.i3.73-96
https://doi.org/10.13154/tches.v2020.i3.73-96
https://tches.iacr.org/index.php/TCHES/article/view/8583
https://tches.iacr.org/index.php/TCHES/article/view/8583

Deep Freezing Attacks on Capacitors
and Electronic Circuits

Jalil Morris, Obi Nnorom Jr., Anisul Abedin, Ferhat Erata,
and Jakub Szefer(B)

Yale University, New Haven, CT 06511, USA
{jalil.morris,obi.nnorom,anisul.abedin,ferhat.erata,

jakub.szefer}@yale.edu

Abstract. This paper introduces new deep freezing attacks on capac-
itors and electronic circuits that use them. The new attacks leverage
liquid nitrogen to rapidly freeze electrolytic capacitors and supercapaci-
tors to temperatures approaching −195 ◦C (−320 ◦F or 77K). Due to the
quick freezing to the extremely low temperatures, overall capacitance of
the capacitors rapidly drops towards zero. Change of the capacitance can
affect reliability and security of electronic circuits that these capacitors
are used to build, and this work in particular evaluates electronic filters,
as well as capacitor-powered microcontrollers, and their response to the
deep freezing attacks. This work presents disruptive attacks that affect
the operation of the target device, but then return device to normal
operation after short amount of time when the components warm up. In
addition to the disruptive attacks, this work also demonstrates destruc-
tive attacks where the target device is damaged due to the extreme freez-
ing. Both types of attacks leave no trace as the liquid nitrogen evapo-
rates after the attack is finished. This paper highlights new threats that
designers should be aware of and defend against.

Keywords: Electrolytic capacitors · Supercapacitors · High-pass
filters · Low-pass filters · Microcrontrollers · Liquid nitrogen · Freezing
attacks · Security

1 Introduction

Computer and embedded systems depend on capacitors as the very basic building
blocks of many electronic circuits that make them up. Two particular types of
capacitors often used in electronic circuits are the electrolytic capacitors and
supercapacitors. Electrolytic capacitors are polarized capacitors, which leverage
wet or dry electrolytic, and can be made from aluminum, tantalum, or niobium.
Wet aluminum capacitors tend to be widely used and are the focus of this work.
Another type of widely used capacitors are supercapacitors, which have very
high capacitance values, but tend to have lower voltage ratings compared to
electrolytic capacitors. They can be polarized or non-polarized, although they
are more commonly polarized, and use an electrolytic between the electrodes of
the capacitor.
c© Springer Nature Switzerland AG 2022
L. Batina et al. (Eds.): SPACE 2021, LNCS 13162, pp. 188–203, 2022.
https://doi.org/10.1007/978-3-030-95085-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95085-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-95085-9_10

Deep Freezing Attacks on Capacitors and Electronic Circuits 189

These capacitors are not entirely stable over all possible operating temper-
atures. Generally, Equivalent Series Resistance (ESR) increases as the temper-
ature decreases, and this effect is particularly pronounced for aluminum elec-
trolytic capacitors, “due to the limitation of wet electrolyte conductivity at low
temperatures” [1]. Similar effects also exist in supercapacitors. Consequently,
rapidly freezing such capacitors can have a significant effect on their capacitance,
which is leveraged by our deep freezing attacks using liquid nitrogen (LN2).

By using liquid nitrogen we can rapidly freeze electrolytic capacitors and
supercapacitors to temperatures approaching −195 ◦C (−320 ◦F or 77 K). When
the electrolyte in the capacitors freezes to these temperatures, the electrons or
ions within the electrolyte no longer have much freedom to move, an electric field
is not formed between the plates of the capacitor, and the overall capacitance
of the capacitor rapidly drops towards zero. Rapid reduction of the capacitance
has direct impact on the circuits that utilize these capacitors as we show in
this work. This in particular leads to the new non-invasive and trace-free LN2

attacks. LN2can be obtained easily from chemical or scientific supply companies
and, in small quantities, is easy to transport and deploy. The attacks are further
very low-cost. Vendors such as Airgas charge about $0.28 per liter when LN2 is
purchased in bulk, while academic cleanroom at our institution charges about
$0.10 per liter for bulk LN2. Each individual attack instance uses no more than
few liters, costing at most $0.50 per attack.

To evaluate the new physical LN2 attacks, we investigate how the aluminum
electrolytic capacitors respond to temperatures well below their operable range
by dousing or dipping them in the liquid nitrogen. We also investigate how
a capacitor’s physical size, volume, composition, and electrical properties (i.e.
capacitance and voltage rating) influence how effective liquid nitrogen is in
changing a capacitor’s characteristics. We further study the impact of the freez-
ing duration on the measured capacitance changes. The main take-away is that
even with short attack time on order of 10–30 s, a capacitor’s capacitance drops
towards zero. Further, capacitance quickly returns to normal when LN2 is no-
longer applied and the target allowed to warm up, leaving no trace of the attack.
This is thus a new type of a disruptive attack, where device briefly operates
abnormally during the attack, but then returns to normal operation when attack
finishes. Although permanent damage was not observed when freezing individual
capacitors, we did observe permanent damage of a microcontroller board when
it was frozen while attacking on-board capacitors, leading to a possible new type
of a destructive attack as well.

Many circuits’ functionality depends on capacitors for their correct operation.
A simple, but important class of circuits are electronic filters, such as high-pass
and low-pass filters. Their cut-off frequency, i.e. frequency above which the high-
pass filter passes signals or equivalently the frequency at which a low-pass filter
attenuates signals, depends on the time constant, which is the product of the
resistance (R) and capacitance (C). Affecting the capacitance of the capacitors
in the filters, through the freezing attacks, directly affects the resistance and
capacitance product, effectively changing the time constant and the behavior

190 J. Morris et al.

of the filter. Consequently, we investigate the deep freezing attacks and their
effects on the cut-off frequency. We observe the high-pass filters begin to atten-
uate some signals that were passed before, and, conversely, low-pass filters allow
some signals to pass which were attenuated before. This can in the least cause
wrong sensor readings, or at worst cause unexpected faults in the system using
the filters.

Capacitors are not only used in sensing circuits, but can also be used for
energy storage. In particular electrolytic capacitors and supercapacitors can be
used to power intermittent-computing devices, such as MSP430-class microcon-
trollers (MCUs). We evaluate how affecting the capacitance of these capacitors
used to power microcontrollers can lead to a device crash or an inconsistent
operation of the device.

For all the different types of devices and circuits that we consider, once the
freezing effect wears off, the circuits usually return to their normal operation,
without leaving any traces of the freezing attack. These are new types of disrup-
tive attacks that temporarily modify behavior of the device, but then return the
device to normal operation. In one case, a destructive attack was also observed,
when a microcontroller board failed to operate after repeated freezing. The fact
that circuits are not physically modified and that no easily observable traces per-
sist after the freezing is finished (for the disruptive attacks) make these attacks
very stealthy. For destructive attacks, even though the device is damaged, ana-
lyzing the source of the damage is difficult if all the traces of the LN2 freezing
are gone.

Based on our findings, we propose a set of defenses. Some of the different pos-
sible passive defenses can be easily deployed, such as switching away from using
aluminum electrolytic capacitors or by adding insulation. In addition, active
defenses can use temperature sensors deployed near critical capacitors or cir-
cuits to detect the freezing attack and take evasive action.

1.1 Paper Organization

The remainder of the paper is organized as follows. Section 2 presents back-
ground on capacitor temperature characteristics and cooling-related attacks.
Section 3 gives the threat model. Section 4 overviews setup used for the exper-
iments. Section 5 presents the evaluation results. Discussion of the results and
potential defenses is given in Sect. 8 and the paper concludes in Sect. 9

2 Background

This section provides background on thermal characteristics of capacitors, and on
existing work on security effects of cooling or freezing of electronic components.

2.1 Temperature Characteristics of Capacitors

Capacitors are passive electronic components that are used to store energy. Their
capacitance is affected by temperature, and, for polarized aluminum electrolytic

Deep Freezing Attacks on Capacitors and Electronic Circuits 191

capacitors, the capacitance can decrease by almost 40% when exposed to low
temperatures of −55 ◦C [1], [?]. Supercapacitors are also susceptible to tempera-
ture variations, and are typically not designed to work below −20 ◦C or −40 ◦C,
as their capacitance is significantly reduced.

While the temperature effects on capacitors are known when the discrete
capacitors are exposed to temperatures reaching −55 ◦C, how the capacitors
behave when frozen by an attacker using liquid nitrogen and reaching −195 ◦C
has not been evaluated from security perspective before. As will be explained
in the threat model, Sect. 3, it is relatively easy to freeze the electronics with
liquid nitrogen, without leaving a trace of an attack. It is in this context that
we are especially interested in evaluating the impact of the freezing effects on
different types of capacitors and circuits as a function of the freezing time of
the capacitors.

2.2 Cold Boot and Chill Out Attacks

Security attacks based on rapidly cooling computer components are perhaps best
exemplified by the Cold Boot attack [2], which focused on the internal capacitors
found in the data cells of Dynamic Random Access Memory (DRAM) modules.
The authors showed that by cooling DRAM chips (and thus the capacitors that
they contain), the decay rate of the capacitors used to store data bits in DRAMs
is reduced. This extends the time for which data persists in a powered-off chip,
and allows malicious adversaries to transfer the cooled DRAM to a different
computer to read the DRAM cells before the data is lost. The Cold Boot attacks
focused on using up-side-down compressed air cans which leak compressed gas
when used up-side-down and cool the DRAM. Authors also showed dipping
DRAM chips in liquid nitrogen as a means to extend the time of the Cold Boot
attack. Follow-up work, among others, showed similar security attacks by, for
example, cooling smartphones in a refrigerator to extract keys stored in DRAM
and break Android Full-Disk Encryption [4]. More recent work [6] showed that
Cold Boot attacks still work in new DDR4 memories that use scrambling. The
existing Cold Boot related work thus has focused on computer memories only,
and did not consider electrolytic capacitors or supercapacitors, which we do in
this work.

More recent work demonstrated the Chill Out attack [3], which focused on
evaluation of behavior of capacitors and DC/DC converters when exposed to
cooling sprays. The authors showed that there is a decrease in capacitance when
electrolytic capacitors are cooled to about −55 ◦C, and that DC/DC converter
behavior changes if the cooling is applied to the output electrolytic capacitors
used in the converters. The authors used off-the-shelf electronic cooling sprays
and, similar to prior work, up-side-down compressed air cans.

Our work differs from such prior research by considering the security impli-
cations of freezing capacitors individually, and also freezing capacitors inside
electronic filters and energy-storage capacitors in microcontrollers. Neither did
the existing work evaluate using liquid nitrogen to bring these devices to extreme
temperatures approaching −195 ◦C.

192 J. Morris et al.

3 Threat Model

This work assumes a malicious attacker who has physical access to the target
device, but cannot modify or probe the target device, which could be easily
noticed or detected by on-board circuitry. Instead, the attacker has a brief time
window to make changes to the environment in which the device operates, such
as by pouring liquid nitrogen or dipping it in liquid nitrogen. We assume the
attacker can control the time of the LN2 pouring or time of dipping in the LN2.
We assume the attacker has access to device for no more than about 30–60 s,
making this a very fast attack.

While the attack could be detected by use of thermal sensors, to best of
our knowledge, existing circuits targeted in this work do not contain thermal
sensors or other defenses. Section 8 has a more detailed discussion of the poten-
tial defenses and other considerations. We further assume the defenders could
analyze the device after the attack for any traces of the attack, but this type
of attack leaves no trace of the freezing once the liquid nitrogen evaporates,
allowing the attack to go undetected.

4 Experimental Setup

In this work, we use three basic setups: one to observe changes to capacitor
behavior in response to freezing, one to test impact of capacitor freezing on a
high-pass and low-pass filters, and one to test impact of capacitor freezing on
capacitor-powered MCUs.

The capacitor testing setup uses the ADALM2000 power supply and oscil-
loscope module1 to drive the capacitors with 3–5 V inputs by applying a step
function input and captures the voltage across the capacitor as it is charging and
discharging, under different freezing conditions. When step function is applied
and input becomes one, the time to go from zero to full charge can be observed,
and when the input goes to zero at the end of the step function, the time to
go from full charge to zero can be observed. Both charging and discharging
characteristics are measured using the ADALM2000 module.

The high-pass and low-pass filter testing setup uses a Keithley 2231A power
supply to provide input voltages, the ADALM2000 to provide sine wave input to
the filters with 5 V peak-to-peak voltage and frequency in the 1 kHz range, and
captures the output of the high-pass filter and low-pass filter using a Tektronix
MDO3104 Mixed Domain Oscilloscope with TPP1000 1 GHz passive probes.

The microcontroller and supercapacitor testing setup uses multiple MSP430-
class microcontroller boards, especially MSP430FR5994 and MSP430FR5969 devel-
opment boards. These can be powered through a USB cable, or a P2110-EVB
harvester kit board can be used to power the microcontroller boards from an RF
transmitter. All the boards are described in detail in Sect. 7. The capacitors on
1 ADALM2000: Advanced Active Learning Module, https://www.analog.com/en/de

sign-center/evaluation-hardware-and-software/evaluation-boards-kits/ADALM20
00.html.

https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/ADALM2000.html
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/ADALM2000.html
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/ADALM2000.html

Deep Freezing Attacks on Capacitors and Electronic Circuits 193

Table 1. Aluminum electrolytic capacitors of different types, physical dimensions, and
voltage ratings used in the capacitor freezing tests. The capacitors are cylindrical in
shape and their volume is π(D

2
)2H, where H is the height and D is the diameter. The

times are rounded to the closest 15 second interval due to the experimental setup and
the time measurement method.

Brand Value Rating H D Tzero Tnormal

Capacitor freezing tests

Panasonic 220µF 6.3 V 11 mm 5mm 15 s 120 s

Panasonic 220µF 25.0 V 12 mm 8mm 30 s 150 s

Panasonic 220µF 63.0 V 22 mm 10mm 45 s 210 s

Panasonic 470µF 16.0 V 12 mm 8mm 15 s 165 s

Panasonic 680µF 35.0 V 20 mm 13mm 45 s 210 s

Panasonic 1500µF 50.0 V 36 mm 16mm 120 s 360 s

these boards are subjected to the freezing attacks and the time before boards
crash due to lack of stored energy as the capacitors are frozen is measured. Time
is measured by observing an output LED which stops blinking when the test
program crashes.

4.1 Liquid Nitrogen Freezing Approach

Liquid Nitrogen (LN2) is used to gauge the effects of freezing the capacitors.
When used to freeze a device, it is expected to freeze down to approximately
−195 ◦C or −320 ◦F. To freeze the capacitors, they are either dipped or doused
with LN2. Liquid nitrogen is non-conducting, thus making it safe for pouring
over electronics, or dipping electronics in it. For the capacitor-only tests, the
capacitors are connected to the target circuit by long wires so that the capacitor
is frozen, but the rest of the circuit is not affected. For dipping, the capacitors
are lowered into a container filled with LN2 and held inside LN2 for the specified
mount of time. For dousing, the capacitors are placed on a styrofoam surface
and LN2 is poured over for the specified amount of time. For other tests, if the
capacitor is permanently attached to another device and cannot be removed,
e.g., to the MCU board, the liquid nitrogen is poured on the capacitor for the
specified amount of time, and it may also spill over onto adjacent components
during pouring.

5 Capacitor Freezing Attacks

To understand impact of freezing on capacitors, we first perform a set of experi-
ments to determine how the capacitance is affected by the freezing. This capacitor
testing can give insights into attacks discussed in later sections. Table 1 shows
capacitors of different types, physical dimensions, and voltage ratings used in
the capacitor freezing tests.

194 J. Morris et al.

Table 2. Aluminum electrolytic capacitors used in electronic filter tests. H is the
height and D is the diameter of the cylindrical-shaped capacitors used in high-pass
and low-pass filter tests.

Brand Value Rating H D

High-Pass filter tests

Kemet 47 µF 25.0 V 13mm 5 mm

Panasonic 220 µF 25.0 V 12mm 8 mm

Nichicon 470 µF 16.0 V 13mm 10 mm

Low-Pass filter tests

Kemet 47 µF 25.0 V 13mm 5 mm

Panasonic 220 µF 25.0 V 12mm 8 mm

Nichicon 470 µF 16.0 V 13mm 10 mm

The table in particular shows Tzero and Tnormal which are the freezing time
taken for freezing to cause an aluminum electrolytic capacitor’s capacitance to
approach zero and thawing time taken for capacitor to return to its normal
capacitance, respectively. It can be seen from the table that in general Tzero

is correlated with the physical volume of the capacitor. For same capacitance
values, capacitors with bigger voltage rating in general have bigger volume. Thus
for same capacitance values, capacitors with bigger voltage rating tend to take
longer to cool down. Tnormal is also related to the capacitor size and volume,
and it can be seen that once frozen, the bigger the capacitor, the longer it takes
for it to regain normal operation. For most of capacitors freezing of less than
60 s is sufficient to bring the aluminum electrolytic capacitors’ capacitance down
to zero, and these deep freezing times will be used to study effects on filters and
capacitor-powered microcontrollers in the next sections.

6 Electronic Filter Freezing Attacks

In this section we evaluate effects of deep freezing on high-pass and low-pass filter
circuits. Table 2 shows capacitors evaluated with these electronic filters. As we
demonstrate in this section, the deep freezing is able to be used to non-invasively
shift the cutoff frequency of these filters. We also call this a new Cutoff Frequency
Shifting Attack (CFSA). By affecting the cutoff frequency, wrong operation of
the filters can be induced.

6.1 Attacks on High-Pass Filters

The frequency above which the high-pass filter passes signals, i.e. the cutoff
frequency, depends on the time constant 1

RC , where R is the resistance and C is
the capacitance. Freezing capacitors brings down value of C, effectively changing
the time constant of the circuit, and increasing the cutoff frequency. For a fixed

Deep Freezing Attacks on Capacitors and Electronic Circuits 195

Fig. 1. Example of high-pass filter’s response to 30 s of LN2 pouring. The filter used
47µF electrolytic capacitor. The x-axis is in seconds, and the y-axis is the output signal
amplitude. The experiment was stopped at 75 s.

Fig. 2. Example of high-pass filter’s response to 30 s of LN2 pouring. The filter used
220µF electrolytic capacitor. The x-axis is in seconds, and the y-axis is the output
signal amplitude.

Fig. 3. Example of high-pass filter’s response to 30 s of LN2 pouring. The filter used
470µF electrolytic capacitor. The x-axis is in seconds, and the y-axis is the output
signal amplitude.

Fig. 4. Example of high-pass filter’s response to 10 s of LN2 pouring. The filter used
47µF electrolytic capacitor. The x-axis is in seconds, and the y-axis is the output signal
amplitude. The experiment was stopped at 75 s.

Fig. 5. Example of high-pass filter’s response to 30 s of dipping in LN2. The filter used
220µF electrolytic capacitor. The x-axis is in seconds, and the y-axis is the output
signal amplitude.

input frequency, as the capacitors freeze, the signal begins to be attenuated. For
fixed size capacitor, this happens at approximately same time, regardless of the
pouring duration. Once the pouring stops, the capacitors slowly start to warm
up, which means the time constant changes back towards its original value, and
the filter begins to pass the input signal again.

196 J. Morris et al.

Figures 1 and 4 show an example of a high-pass filter’s response to 30 s and
10 s of LN2 pouring, respectively. A 47µF and 15.6 kΩ were connected in series
to create a high-pass filter with a cutoff frequency of 0.7 Hz. A 5 V peak-to-peak
1 Hz signal was passed through the filter and the output was observed as shown
on the figures. The figures demonstrate that longer freezing results in longer
time when filter attenuates frequency it should not. Figure 1 shows attenuation
between approximately 10 s and 50 s marks, while Fig. 4, where freezing was
shorter, shows attenuation between approximately 10 s and 35 s marks. In all
cases the effect lasts past the end of the freezing.

Figures 2 and 5 compare effect of pouring LN2 over the capacitors vs. dip-
ping capacitors in LN2, both for 30 s, respectively. A 220 µF and 3.3 kΩ were
connected in series to create a high-pass filter with a cutoff frequency of 0.7 Hz.
Again a 5 V peak-to-peak 1 Hz signal was passed through the filter and the out-
put was observed as shown on the figures. It can be seen from the figures that
dipping creates a longer-lasting freezing effect, and it takes longer for the filter
to regain its original behavior.

Figures 1, 2, and 3 show filters with 47 µF, 220 µF, and 470µF capacitors,
respectively. For all three, the freezing effect takes place before the pouring
finishes. The 47 µF capacitor recovers faster compared to 220 µF. For the 470µF,
although the input frequency is no-longer passed as seen from the figure, it may
not be fully frozen, and starts to recover sooner. Due to biggest physical volume,
the recovery rate is slowest as can be seen between 40 s and 80 s mark.

6.2 Attacks on Low-Pass Filters

The cutoff frequency of the low-pass filter likewise depends on the time constant
of the circuit, which is the 1

RC , where R is the resistance and C is the capacitance.
As the capacitor freezes, the value of C is reduced, which increases the cutoff
frequency. As a result, when low-pass filter is frozen, the previously attenuated
signals begin to be passed through.

Figure 6 shows an example of low-pass filter’s response to 30 s of LN2 pouring.
A 220 µF and 3.3 kΩ were connected in series to create a low-pass filter with a
cutoff frequency of 0.7 Hz. A 5 V peak-to-peak 1 Hz was inputted to the filter,
and the output was observed as shown in the figure. Our results indeed confirm
the expectation that during the attack the input signal is not attenuated as much
(between 20 s and 70 s mark), while once the capacitor begins to warm up the
signal is again attenuated (after 70 s mark).

6.3 Attacks on Higher-Order Filters

Attacks in the previous section targeted first-order filters. In addition, we have
tested second-order filters. We used same 47 µF, 220 µF, and 470µF electrolytic
capacitors. Each filter used only one type of capacitor. Since the higher-order
filters use multiple capacitors, we tested LN2 dipping attack on individual capac-
itors (where only one of the capacitors was frozen at a time), and on all capacitors
(where all capacitors used in the filter were frozen at once). In particular, we

Deep Freezing Attacks on Capacitors and Electronic Circuits 197

Fig. 6. Example of low-pass filter’s response to 30 s of LN2 pouring. The filter used
220µF electrolytic capacitor. The x-axis is in seconds, and the y-axis is the output
signal amplitude.

tested “Vin”, “Vout,” and a “Vin + Vout” capacitors. “Vin” indicates the test
done on the capacitor closest to the input, “Vout” indicates the freezing test done
on the capacitor closest to the output, and “Vin + Vout” indicates that both
capacitors were dipped in LN2 at the same time. The capacitors were dipped in
LN2 for 10 s, 30 s, and 60 s for different tests.

In all cases we observed similar results to the first-order filter tests. Regard-
less of which capacitor or capacitors were frozen, the filters behaved the same,
e.g., high-pass filter is made to attenuate signals during freezing. Freezing the
“Vin” capacitor causes high-pass filter to attenuate the inputs, and the second
stage cannot recover this input. Freezing of the “Vout” capacitor attenuates the
signal at the output, which unfrozen first stage cannot correct. Freezing of both
capacitors simply combines the effects. Based on the results, we conclude that
higher-order filters do not help mitigate the new freezing attacks.

6.4 Comparison to Freezing with Cooling Sprays

In addition to using liquid nitrogen, we used electronics cooling spray, similar to
the Chill Out attack [3], but in our case we cooled the capacitors in the filters.
The capacitors in the filters were sprayed for up to 30 s with the cooling spray.
However, no significant effect was observed on the filters. This seems consistent
with the existing work [3], where cooling capacitors with the cooling spray caused
capacitance changes to be 10% or less. Thus, the time constant of the filter will be
changed minimally when cooling spray is applied, while with the liquid nitrogen
there is significant time constant change as the capacitance goes to zero.

7 Energy Storage Freezing Attacks

In addition to being able to modify behavior of circuits such as electronic fil-
ters, the freezing attacks can directly impact operation of devices that depend on
them for energy storage. In particular, we have explored the MSP430-class micro-
controllers (MCUs) which are a representative of transiently-powered computing
devices, also called intermittent-computing devices. The intermittent-computing
devices are used to run computations on limited amount of energy stored in the
capacitors. The code running on intermittent-computing devices is designed to
work with the specified capacitor by, for example, using checkpointing [5] to
ensure forward progress between each discharge of the capacitor.

198 J. Morris et al.

Fig. 7. Example of freezing attack via pouring LN2 on the supercapacitor on the
MSP430FR5994 board.

However, as we demonstrate in this section, freezing of the capacitors used for
energy storage effectively cuts down, or even fully eliminates, the stored energy
available to run computation. Freezing thus can be used to stop computation
from progressing, or to introduce faults if the checkpoint is not reached. Because
frozen capacitor stores less, or even zero, energy than what is assumed when
selecting checkpoint locations, code that works correctly under normal condi-
tions, will not work with frozen capacitors where energy storage is not sufficient
to reach the checkpoints. The repeated deep freezing attacks may even perma-
nently damage the boards, as we observe.

7.1 Capacitor-Powered MSP430-class MCUs

The freezing tests were conducted on the MSP430FR5994 development board
with a 0.22 F supercapacitor and on the MSP430FR5969 development board with
a 0.10 F supercapacitor. The boards can be powered via USB to charge the
devices, and when USB cable is disconnected, they run on the energy stored in
the on-board capacitors until the device runs out of energy.

In addition, a P2110-EVB harvester kit board was tested, which has a 0.05 F
AVX BestCap supercapacitor, a 0.001 F electrolytic capacitor, or can be used
with user-installed capacitor. The harvester kit board can be used to power
the MPS430 boards, bypassing the capacitor on these boards. The harvester
kit board is charged when a remote radio-frequency (RF) transmitter transmits
power, when the transmitter is turned-off, or out of range, the harvester kit
board powers the MSP430 boards from its capacitor. The P2110-EVB harvester
kit board is optimized for operation in the 902–928 MHz band, but will operate
outside this band with reduced efficiency. RF transmitter used transmits in at
915 MHz.

Deep Freezing Attacks on Capacitors and Electronic Circuits 199

Table 3. MSP430-class MCUs and capacitors tested. FR5994 refers to the
MSP430FR5994 board, FR5969 refers to the MSP430FR5969 board, and P2110 refers
to the P2110-EVB harvester kit board. If harvester was used, the pre-installed or user-
installed capacitor on the harvester was used, otherwise the MCU board’s capacitor
was used.

Board Harvester Used? Capacitor Volt Rating Type

Electrolytic capacitor tests

FR5969 P2110 330 µF 25.0 V Electrolytic

FR5969 P2110 470 µF 16.0 V Electrolytic

FR5969 P2110 3300µF 16.0 V Electrolytic

Supercapacitor tests

FR5994 P2110 0.05 F — Supercap.

FR5969 — 0.10 F — Supercap.

FR5994 — 0.22 F — Supercap

7.2 Setup for Microcrontroller Freezing Attacks

The freezing attacks on microcontrollers were done similar to attacks on capac-
itors and electronic filters discussed in prior sections: by dipping the capacitors
in LN2 or by pouring LN2 over the capacitor. Figure 7 shows example of attack
by pouring LN2 over the supercapacitor on the MSP430FR5994 board. Table 3
shows the boards and capacitors tested.

7.3 Freezing Attacks on Energy Storage in Electrolytic Capacitors

The P2110-EVB harvester kit board allows for installation of user-provided capac-
itor, and we tested three different types of electrolytic capacitors by installing
them on the harvester kit board. The pre-installed 0.05 F AVX BestCap super-
capacitor and 0.001 F electrolytic capacitor where both disabled by use of select
jumpers. Auxiliary eZ-FET module on the MSP430FR5994 board was disabled
by removing jumpers to reduce energy consumption of the board.

The software running on the microcontroller was a simple code loop which
is used to blink an LED following a predefined delay. Energy is consumed by
the microcontroller as it is running the code as well as by the LED. Since the
run-time on the electrolytic capacitors is very short, the oscilloscope was used
to observe the VCC voltage and measure how long the device ran using the
capacitor before energy ran out and VCC dropped below a threshold.

We evaluated effects of freezing before vs. after charging when dipping capac-
itors in LN2. In the freezing before and after charging approach, the freezing
starts before the energy-storage capacitor is charged. The total freezing time
before device starts running in this approach is 50 s (20 s before charging plus
30 s while charging). In the freezing after charging only approach, the energy-
storage capacitor is first charged, and freezing is then applied. The total freezing

200 J. Morris et al.

Table 4. Freezing tests for 50 s of freezing of capacitors on MSP430-class MCUs tested
on FR5969 with P2110 harvester for two freezing approaches. The run times are average
of three runs. The control run time was measured when no freezing was performed.
With freezing, the run time is indeed 0 s for both approaches.

Capacitor Control With freezing

Freezing before and after charging approach

330 µF 0.009 s 0.000 s

470 µF 0.020 s 0.000 s

3300µF 0.180 s 0.000 s

Freezing after charging only approach

330 µF 0.009 s 0.000 s

470 µF 0.020 s 0.000 s

3300µF 0.180 s 0.000 s

Table 5. Freezing test for checking varying amount of freezing of capacitors before
charging on MSP430-class MCUs tested on FR5969 with P2110 harvester. The control
run time was measured when no freezing was performed.

Capacitor Control 10 s Freezing 20 s Freezing

Freezing before charging only approach

330µF 0.010 s 0.000 s 0.000 s

470µF 0.020 s 0.000 s 0.000 s

3300µF 0.160 s 0.080 s 0.016 s

time before device starts running in this approach is also 50 s (all after charging).
In both approaches the total charging time is 30 s and on-board switches are used
to enable or disable connection to the energy-storage capacitor to ensure fixed
charging time and that device only starts running (and thus consuming energy)
after the charging and 50 s of freezing are completed. For both approaches the
capacitors were dipped in LN2 and remained in LN2 for the duration of the test.
The results are shown in Table 4. As can be seen, with freezing the run time for
both approaches is 0 s.

Since the extended freezing of the capacitors resulted in run time approaching
zero, we also evaluated different freezing times. In a modified freezing before
charging only approach, the capacitors are frozen for different amounts of time
before they are charged, then they are removed from LN2 and charged for 30 s
and then the device is allowed to execute to measure run time. The results are
shown in Table 5. As can be seen, for smallest capacitors, the devices still are
not able to run. For largest capacitor, the run-time is cut by 50% with 10 s of
freezing, and cut by almost 90% with 20 s of freezing.

Deep Freezing Attacks on Capacitors and Electronic Circuits 201

Table 6. Example results of pouring LN2 to perform a freezing attack on microcon-
troller when different supercapacitors were used for energy storage. The freezing time
refers to how long the LN2 was being poured over the supercapacitor.

Capacitor Freezing time Run-time before crash

0.22 F (FR5994 board) 0 s 204 s

30 s 15 s

0.10 F (FR5969 board) 0 s 192 s

30 s 27 s

0.05 F (P2110 board) 0 s device

30 s damaged

7.4 Freezing Attacks on Energy Storage in Supercapacitors

In addition to electrolytic capacitors, we have evaluated three supercapaci-
tors. The 0.22 F supercapacitor pre-installed on the MSP430FR5994 development
board, the 0.10 F supercapacitor pre-installed on the MSP430FR5969 develop-
ment board, and the 0.05 F AVX BestCap supercapacitor pre-installed on the
P2110-EVB harvester kit board. For supercapacitor tests, the same testing soft-
ware was used as in electrolytic capacitor tests. However, since the supercapac-
itors allow the device to run for hundreds of seconds, a stopwatch application
was used to measure the run-time until the LED stopped blinking and device
runs out of energy.

Table 6 shows the results of pouring LN2 over the supercapacitors. It can
be seen the freezing effect is also significant on the supercapacitors. Especially,
with 30 s of pouring of LN2, the code run-time before energy runs out is cut by
over 85% for the capacitors. The exact run-time available depends on number of
factors, such as how the LN2 is poured. Also, note that the MSP430FR5994 and
MSP430FR5969 boards have different power management circuitry and extensions
(i.e. there are other differences than just the capacitor size), this can explain the
similar run times, despite different capacitor values. However, the freezing effect
has the same magnitude in stored energy reduction.

In addition to significantly reducing energy storage and causing premature
crashes, we further observed that following multiple freezing attacks permanent
damage can occur. In particular, the P2110-EVB harvester kit board was dam-
aged following LN2 pouring. While we leave analysis of destructive attacks as
future work, one possible explanation of the damage are excess currents gen-
erated during the freezing that affected the harvester kit’s logic and charging
circuits. Thus deep freezing can not only produce transient effects, but also last-
ing device damage.

8 Discussion

To detect or defend the deep freezing attacks, different possible defenses can be
deployed, as discussed below.

202 J. Morris et al.

8.1 Alternative Polarized Capacitors

One potential passive defense for attacks on aluminum electrolytic capacitors
includes switching to other types of capacitors, such as capacitors based on tan-
talum or niobium. Tantalum capacitors have added benefit of high capacitance
per volume, but tend to be more expensive, about 4× more expensive compared
to aluminum electrolytic capacitors. Niobium capacitors are an alternative to
tantalum and have lower cost, but still are about 3× more expensive compared
to aluminum electrolytic capacitors. Both types, however, are significantly less
impacted by temperature changes.

8.2 Larger Capacitors

Based on our experiments, large capacitor sizes (larger volume) require longer
freezing time for the attack to take effect. Consequently, a different passive mit-
igation, but not a full defense, is to use physically larger capacitors, e.g., use
capacitors for larger voltage ratings, than what the target circuit requires.

8.3 Added Insulation

Alternatively, dedicated insulation can be added around capacitors or whole
circuits as a passive defense. Freezing attacks would now require removal of the
insulation, which would make the attack noticeable. However, insulation may
cause circuits to overheat during normal operation.

8.4 Temperature Sensitive Packaging

Key to the attacks is that they are difficult to notice after the attack is fin-
ished since the packaging of the electronic components is mostly unchanged by
the freezing. To allow for better detection of the attack after the attack has
happened, temperature sensitive packaging or labeling could be used. Sample
passive indicators could include labels that peel off due to extreme freezing, or
paint that changes colors permanently after the freezing.

8.5 Temperature Sensors

As an active defense, temperature sensors can be deployed near critical elec-
trolytic capacitors or circuits that use them, to detect the freezing attack. The
system detection and response would have to happen within the short attack
time, so that defensive action takes place before circuit is frozen. The filters
could output an error signal if they detect unusual temperatures, or for the
microcontroller scenario, additional checkpoints could be activated at run-time.
However, in all cases, the freezing my affect the sensors themselves. Study of
freezing impacts on sensors is orthogonal and future work.

Deep Freezing Attacks on Capacitors and Electronic Circuits 203

9 Conclusion

This paper presented new deep freezing attacks on capacitors and electronic
circuits that use them. This work demonstrated that liquid nitrogen can be
leveraged to rapidly freeze electrolytic capacitors and supercapacitors to tem-
peratures approaching −195 ◦C (−320 ◦F or 77 K). At these temperatures, elec-
trolytic capacitors and supercapacitors cease to operate within their specifica-
tion. As a proof-of-concept of real attacks, this work demonstrated that opera-
tion of electronic filters is affected by the freezing attacks and that filters can be
made to attenuate (for high-pass filters) or pass (for low-pass filters) undesired
frequencies when frozen. Meanwhile, for capacitor-power microcontrollers, this
work demonstrated that the microcontrollers can be made to crash as energy
storage is significantly reduced due to the deep freezing attacks. This paper
thus highlighted a number of new threats that designers of electronic circuits
should be aware of and also presented number of potential defenses that can be
considered to mitigate the new threats.

Acknowledgment. This work was supported in part by NSF grant 1901901. The
authors would like to thank Kelly Woods and the Yale University Cleanroom for assis-
tance in obtaining liquid nitrogen used in the experiments.

References

1. Faltus, R., Flegr, Z., Šponar, R., Jáně, M., Zedńıček, T.: DC/DC converter output
capacitor benchmark. In: Annual Passive Components Symposium. CARTS Europe
(2008)

2. Halderman, J.A., et al.: Lest we remember: cold-boot attacks on encryption keys.
Commun. ACM 52(5), 91–98 (2009)

3. Nnorom, Jr., O., Morris, J., Giechaskiel, I., Szefer, J.: Chill out: freezing attacks on
capacitors and dc/dc converters. In: Proceedings of the European Test Symposium.
ETS (2021)

4. Müller, T., Spreitzenbarth, M.: FROST: forensic recovery of scrambled telephones.
In: International Conference on Applied Cryptography and Network Security. ACNS
(2013)

5. Ransford, B., Sorber, J., Fu, K.: Mementos: system support for long-running compu-
tation on RFID-scale devices. In: International Conference on Architectural Support
for Programming Languages and Operating Systems. ASPLOS (2011)

6. Yitbarek, S.F., Aga, M.T., Das, R., Austin, T.: Cold boot attacks are still hot: secu-
rity analysis of memory scramblers in modern processors. In: International Sympo-
sium on High Performance Computer Architecture. HPCA (2017)

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1901901

AI and Cloud Security

Encrypted SQL Arithmetic Functions
Processing for Secure Cloud Database

Tanusree Parbat(B) and Ayantika Chatterjee

Indian Instutite of Technology Kharagpur, Kharagpur, India

Abstract. With the growing opportunities in cloud computing, differ-
ent types of databases are used for storing and managing heterogeneous
data in the cloud. However, several reported data breaches show that
data security promises as per cloud agreement are not adequate to move
critical data to cloud. Homomorphic Encryption (HE) emerges as a secu-
rity solution in this regard. However, it is a non-trivial task to real-
ize any algorithm in circuit-based representation to be implemented in
homomorphic domain. Moreover, existing encrypted databases are with
limited features and still not fully able to perform SQL query process-
ing along with complex mathematical operations in encrypted domain
without any need of intermediate decryption. In this work, we explore
implementing the encrypted counterparts of a few complex transaction-
SQL related mathematical functions like ABS(), CEILING(), FLOOR(),
SIGN(), SQUARE(), POWER(), and SQRT(), which are heavily used in
cloud database queries. We have evaluated these mathematical operators
without any intermediate decryption, considering the support of under-
lying fully homomorphic encryption (FHE). Though the usage of under-
lying FHE scheme incurs some performance bottleneck, our proposed
designs are flexible enough to be realized on any leveled homomorphic
encryption (LHE) scheme for performance improvement. Experimental
results show FHE encrypted SQL conditional SELECT operations with
complex mathematical functions can be performed within 48 min on a
single processor for a dataset of 768 rows with 9 columns, and each data
size of 16-bit. Performance can be further improved by suitable imple-
mentation platform translation from CPU to GPU or with the restric-
tions of leveled fully homomorphic encryption.

Keywords: Homomorphic Encryption · Cloud applications · SQL
mathematical functions

1 Introduction

With the onset of Internet of Things (IoT), sensor-based devices contribute to
increasing data generation rates day by day. To store and process such huge
amount of data effortlessly, cloud computing is now a prominent platform. Sev-
eral cloud databases like NoSQL, MongoDB, CouchDB have been reported [1]
nowadays. However, storage data misuse, illegitimate outsourced data disclosure
c© Springer Nature Switzerland AG 2022
L. Batina et al. (Eds.): SPACE 2021, LNCS 13162, pp. 207–225, 2022.
https://doi.org/10.1007/978-3-030-95085-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95085-9_11&domain=pdf
http://orcid.org/0000-0002-0618-9591
http://orcid.org/0000-0001-6368-0718
https://doi.org/10.1007/978-3-030-95085-9_11

208 T. Parbat and A. Chatterjee

are all incurring significant risks for the cloud applications with security critical
data [2]. Therefore, data owners are no longer fully satisfied with cloud secu-
rity agreements to preserve and operate critical data on the cloud. Traditional
encrypted schemes confirm data security in storage. However, such encrypted
data poses an extra challenge in case of cloud domain processing without an
encryption key. Hence, previous IoT frameworks [3] support cloud processing
only with insensitive data-part but, sensitive data is being computed locally on
the user(edge) side to avoid critical information leakage. However, that incurs
huge computation overhead at the edge site. Therefore, to process sensitive data
inside the cloud directly maintaining data confidentiality, homomorphic encryp-
tion (HE) is a preferred choice [4].

HE enables a third party to conduct computations directly on encrypted data
preserving the features of the function and format of the encrypted data [5].
Although this useful feature of HE was known for over 30 years, initial HE
schemes were Partially Homomorphic Encryption(PHE), either additive or mul-
tiplicative. In additive HE, for sample messages m1 and m2, one can obtain
E(m1+m2) only with E(m1) and E(m2) without knowing m1 and m2 explicitly,
where E denotes the encryption function. In 2009, first plausible construction of
Fully Homomorphic Encryption (FHE) scheme was proposed. However, present
research is still thriving to make FHE schemes performance practical. Hence,
some less performance costly HE approaches with restricted features like Leveled
Fully Homomorphic Encryption (LHE) or Somewhat homomorphic encryption
(SHE) are mostly preferred over FHE while implementing practical applications
on encrypted data.

There are multiple reported databases [6–10] in literature, encrypted with
existing HE schemes. Some are based on partial HE [11–13] which supports
either additive or multiplicative homomorphic operations. Some databases fol-
low Somewhat homomorphic encryption (SHE) [14] which supports substantial
arbitrary additions and few multiplication operations and Leveled Fully Homo-
morphic Encryption (LHE) [15], provides a certain level of homomorphic oper-
ations. Few other reported schemes [8] are deterministic which always gener-
ates the same ciphertext for a certain plaintext. However, all these reported
databases have their inherent limitations either in terms of types of supporting
queries or in case of preventing few known database attacks [16]. For this reason,
complex mathematical functions (which are essential part of existing plaintext
databases [10]) are either not supported or incorporated with the support of
intermediate decryptions in existing encrypted SQL query processing [6–10].

In this work, we focus on designing encrypted counterparts of few com-
plex mathematical operators [17] without any requirement of such intermedi-
ate decryption. For the implementation, we have considered fully homomor-
phic encryption (FHE) [18] as underlying scheme, which claims to support
arbitrary bit-wise processing on encrypted data. Moreover, our proposed mod-
ules are flexible enough to be implemented over any LHE framework for better
performance. But, in this work, we consider FHE to support unlimited SQL
processing on encrypted data, which is not possible if the database is LHE

Encrypted SQL Arithmetic Functions Processing for Secure Cloud Database 209

encrypted. Few arithmetic functions such as ABS(), CEILING(), FLOOR(),
SIGN(), SQUARE(), POWER(), and SQRT() are frequently used by Microsoft
SQL Server [17] and Azure SQL database [10]. But, these operators are yet to be
explored with encrypted SQL query processing. General SQL processing chal-
lenges in FHE domain with integer inputs already have been discussed in [19].
But, implementing these mathematical functions in homomorphic domain is sig-
nificantly challenging as most of these functions receive floating-point numbers
as inputs, which are not supported by existing FHE schemes. Another challenge
in designing such mathematical operators is to realize all the algorithms in their
respective circuit-based representations [20]. Moreover, many traditional con-
cepts like looping, branch handling, etc., do not work directly on encrypted data
considering our existing implementation platforms are unencrypted [21]. Consid-
ering all these aspects, we have revisited the algorithms related to these operators
and implemented them with optimizations, which are suitable for FHE domain.
Other trigonometry-related mathematical functions for instance, TAN(), COS(),
SIN(), RADIAN(), COT(), etc., will be explored in our future work.

The rest of this paper is organized as follows: In Sect. 3, we discuss prelimi-
nary concepts of homomorphic encryption. Then, we describe FHE-based design
implementation for encrypted SQL-related mathematical functions in Sect. 4.
Next, we discuss the timing requirements in Sect. 5 followed by the conclusion
in Sect. 6.

2 Prior Works

Recent studies report several databases (InfluxDB, CrateDB, MongoDB,
RethinkDB, SQLite), which are well suited to store and process heterogeneous
data [22]. One of them is InfluxDB [23], which efficiently handles single-node
time-series data but does not support few database functions due to schema-
less design. Like to similarly InfluxDB, MongoDB [24] is not efficiently scalable
because of primary and secondary node configurations. It is mainly a single
node database. On the contrary, CrateDB is highly scalable with the property of
automatic rebalancing of data, and dynamic schema [24]. Another light-weight
database is RethinkDB [25], which is an open-source, scalable, and with limited
support of ACID (atomicity, consistency, isolation, and durability of transaction)
property. In terms of IoT applications with the full support of SQL, SQLite [22]
database is a perfect choice to reduce the query latency by caching the data
locally. Unlike RDMS enterprise, SQLite keeps alive end application. However,
all these mentioned databases are primarily designed for unencrypted data.

There are various reported encrypted databases in the literature supporting
limited mathematical functions. In ZeroDB [7], all encrypted operations occur
on the client-side after retrieving data from the server. In contrast, PHE based-
CryptDB [8] supports only a limited number of queries, and complex mathemat-
ical functions are not addressed. In Stealthdb [6], decryption is required for com-

210 T. Parbat and A. Chatterjee

putation on cloud side. Always Encrypted with secure enclave [10] requires a key
to enable the enclave for computation. In [9], authors proposed few FHE-based
secure cloud analytical solutions simply using encrypted addition and squaring
operators. Kaiping et al. [26] proposed an efficient multiparty computational
cloud framework under only partial HE [13]. In 2016, authors in [27] presented
homomorphic arithmetic operations (like addition, subtraction, multiplication,
and division) over encrypted integers applying BGV encrypted scheme under
HElib library. Data processing frameworks reported based on this encrypted
scheme are mostly limited with LHE.

In this context, we aim to design an encrypted counterpart of SQLite [28].
Though basic encrypted SQL query processing techniques with FHE are dis-
cussed in previous literature [19], encrypted transactional SQL queries with com-
plex mathematical functions are not handled. Since such mathematical functions
are supported by unencrypted SQLite and used in Azure databases, it is essen-
tial to explore such complex mathematical processing on encrypted data to get
a complete encrypted SQLite framework (shown in Fig. 1). In the next section,
we explain basics of HE, and in the subsequent sections, we discuss the steps to
design such mathematical operators with underlying FHE support.

Fig. 1. Application framework with encrypted processing database

3 Preliminaries: Homomorphic Encryption(HE)

Homomorphic encryption [4] supports homomorphic evaluation of any arbitrary
operation. It is a structure-preserving transformation between two sets (say P
and C), where p1, p2 are members of P , and c1, c2 ∈ C. A transformation T :
P → C is said to be homomorphic if transformation function with an operation
⊕ between two members of P i.e., T (p1 ⊕ p2) is equivalent to the transformation

Encrypted SQL Arithmetic Functions Processing for Secure Cloud Database 211

function over another operation � between individual members of C i.e., T (c1) �
T (c2).

In general, a public-key homomorphic encryption technique ε integrates a
series of polynomial-time procedures (KeyGenε, Encryptε, Decryptε), where
KeyGenε, and Encryptε are probabilistic. HE incorporates a specific function
Evaluateε (pk, f, c1,ct), which takes ciphertexts c1, ..., ct as inputs and gener-
ates resultant ciphertext (corresponding to the computable result of plaintexts)
by the public key pk with the help of function f , which can be evaluated in
homomorphic way.

Due to this Evaluateε(), associated noise growth increases with multipli-
cation and addition operation. Theoretically, this growth rate can be evaded
if intermediate data decryption and reciphering are possible when growth rate
rises beyond the threshold value. But a secret key is required to accomplish
the task, which defeats the aim of FHE scheme. This problem is solved by
bootstrapping method [18] which reduces the noise from ciphertext [5]. This
method can evaluate the decryption circuit in homomorphic domain by an
encrypted secret key. Later, different works have been proposed in literature to
improve the performance of FHE scheme. We choose a non-deterministic FHE
scheme mentioned in TFHE library [29] based on the work ‘Fast Fully Homo-
morphic Encryption over the Torus’. TFHE supports faster bitwise homomor-
phism with bootstrapping in less than 0.1 s [29]. Another advantage of TFHE
is that there is no limitation on number of gates and the bit-wise bootstrap-
ping provides flexibility to develop operators as per application’s operand bit-
size requirement. In the succeeding section, we will realize few complex mathe-

Fig. 2. Application specific floating point number representation

212 T. Parbat and A. Chatterjee

matical functions using basic FHE modules like encrypted decision-making
module (FHE MUX), encrypted comparison module (FHE Is Lesser,
FHE Is Greater), FHE equality check module (FHE Is Equal), FHE
arithmatic modules (FHE Addition, FHE Subtraction), etc. as detailed
in [21].

4 Designing SQL Associated Arithmetic Functions
in Encrypted Domain

This section will explore encrypted counterpart design of few arithmetic func-
tions to be executed with encrypted SQL queries. These mathematical functions
should also handle floating-point numbers, which are impossible to handle with
existing FHE libraries directly. Therefore, our solution in terms of floating-point
number representation is shown in Fig. 2, which shows any floating-point number
can be normalized by multiplying 10i, where i is number of digits after decimal
point taken into account. This i can be changed to control accuracy versus per-
formance. After that, we FHE encrypt ’integer part’ and ’after decimal part’
and perform FHE processing on the whole or partial bits as and when required.
After FHE processing, a suitable de-normalization module is applied just by
discarding few bits, and that does not add any performance overhead.

Fig. 3. Implementation of encrypted ABS() function

4.1 ABS() Function

ABS() function in SQL generates absolute value of a passed argument. If the
argument is non-numeric, it is required to convert that into a numeric data-type.

Encrypted SQL Arithmetic Functions Processing for Secure Cloud Database 213

Syntax of this function is “SELECT ABS (Enc(numeric expression));”
Fig. 3 shows implementation details, where FHE encrypted numeric expression
is passed as an argument in ABS(). In order to obtain the absolute
value, most significant bit (MSB) of Enc(numeric expression) is sent to
an encrypted multiplexer (FHE MUX). Remaining two inputs of FHE
MUX are encrypted updated numeric(after performing 2’s complement of
Enc(numeric expression) [21]) and Enc(numeric expression). If the MSB is
Enc(0), Enc(numeric expression) is a positive numeric, and it will be selected
as ABS output; otherwise, output will be updated numeric.

Algorithm 1: Algorithm for ceiling value
Input: Enc(integer), Enc(decimal)
Output: CEILING(Enc(integer), Enc(decimal))
begin

Eout= FHE Is Equal(Enc(0),Enc(decimal))
updated Enc(integer part)= FHE Addition(Enc(integer part),Enc(1))
Ceiling output= FHE MUX(Eout, Enc(integer part),updated Enc(integer
part)

end

4.2 CEILING() and FLOOR() Function

Ceiling() function is used to evaluate any given numeric and return
the nearest round figure value, which is greater or equal to the pass-
ing argument. General syntax of the Ceiling() is “SELECT CEILING
(Enc(numeric expression));” To implement this function, we follow our
floating-point representation procedure. First, we normalize the decimal part
of numeric expression with 10i and store this numeric expression in encrypted
form as shown in Fig. 2. After that, according to the Algorithm1, we compare
(Enc(decimal)) with 4-bit Enc(0) with the help of FHE Is Equal module. If out-
put of this module, Eout is Enc(1), it means decimal part is zero. Therefore,
Enc(integer part) itself is ceiling value. If Eout = Enc(0), Enc(integer part) is
incremented by Enc(1) using FHE Addition. In order to get this decision, an
FHE MUX is required where Eout is select input, and another two inputs are
Enc(integer part) and updated Enc(integer part).

In FLOOR() function implementation, Enc(integer part) of Enc(numeric
expression) as shown in Fig. 2 is directly selected as output of Floor() function.

4.3 SIGN() Function

SIGN() function returns sign value of specified number passing as an
argument. It will return 0 for positive number and 1 for the neg-
ative number. Syntax for encrypted SIGN() is given as “SELECT

214 T. Parbat and A. Chatterjee

SIGN(Enc(numeric expression));” To implement this function, most sig-
nificant bit (MSB) of Enc(numeric expression) is sent as output. If this MSB
is Enc(0), Enc(numeric expression) is a positive numeric; otherwise, it is a
negative number.

Fig. 4. Encrypted multiplication module

4.4 SQUARE() Function

SQL SQUARE() is used to compute square value of a numeric expres-
sion. SQL encrypted SQUARE() is as follows ”SELECT SQUARE(Enc
(numeric expression));” In this experiment, we have used bit-wise multipli-
cation using the shift-and-add method [30]. Figure 4 shows multiplication proce-
dure, is used in our SQUARE() implementation, where one bit of the multiplier
is multiplied with every bit of multiplicand. In our implementation, a multiplier
is ciphertex2, and ciphertext1 is the multiplicand. These two ciphertexts and
Enc Theta (initialized to Enc(00)̇) send to the multiplexer (MUX) as a selec-
tor, second, and first inputs, respectively. Based on the selector bits, repetitive
additions (FHE Addition) are performed with result val and right shifting of
multiplexer output (shown in Fig. 4). In this way, we implement SQUARE()
function.

4.5 EXP() and LOG() Function

To implement these two mathematical functions in a straightforward way, costly
repetitive multiplications are required. However, a simple approach has been

Encrypted SQL Arithmetic Functions Processing for Secure Cloud Database 215

adopted by [31] to avoid such huge number of FHE multiplications for these
functions. The general idea of this paper [31] is to preserve pre-computed func-
tion values within a specific integer range in encrypted form along with corre-
sponding encrypted range values. In order to compute EXP() or LOG() for a
particular encrypted integer, encrypted list search operation is performed over
the preserved integer range.

Fig. 5. Implementation of encrypted POWER() function

Algorithm 2: a) POWER() function calculation with unencrypted
exponent
Input: Enc(base), exponent
Output: POWER(Enc(base), exponent)
begin

power= Enc(1)
for i = 0; i < exponent; i = i + + do

power= Multiplication (power, Enc(base))
end

end

4.6 POWER() Function

To compute POWER() function (be), we require two arguments base (b) and
exponent (e), which is the power of base argument. The straightforward way
to compute be is to compute b ∗ b within a loop of maximum loop count e.
However, for encrypted e, the loop condition checking i < e (for loop index i)
should generate encrypted result. This result cannot be processed by existing

216 T. Parbat and A. Chatterjee

underlying processors to decide when to stop the iteration of the loop. That
makes the encrypted loop handling infeasible. To implement an encrypted version
of POWER() function, we consider the following two ways:

– Case 1: Only the base argument is encrypted for POWER(Enc(base),
exponent). According to Algorithm2, base is initialized with Enc(1). Then,
considering unencrypted exponent we compute multiplication operations
(shown in Fig. 4) inside a loop.

Algorithm 3: b) POWER() function calculation with encrypted exponent
Input: Enc(base), exponent, range = [Enc(0), Enc(1),Enc(n− 1)]
Output: POWER(Enc(base), Enc(exponent))
begin

Prev power= Enc(1)
for i = 0; i < n; i = i + + do

Current power= Multiplication (Prev power, Enc(Base))
Eout= FHE Is Lesser(rangei, Enc(exponent))
Final power= FHE MUX(Eout, Prev power, Current power)
Prev power=Final power

end

end

– Case 2: Both base and exponent arguments are encrypted in FHE domain
in this case. In this implementation, the main challenge is to decide an unen-
crypted value for loop iteration though the exponent value is encrypted.
Figure 5 shows implementation details of POWER() with encrypted base
and exponent. For k-bit exponent value, we consider n = 2k as the maxi-
mum loop count. However, for cases where the exponent value is less than
n, we need to compute b ∗ b only up to e value is reached. In encrypted
domain, we do that in the following way as shown in Algorithm3: Ini-
tially, we set Prev power = Enc(1). Current power is calculated multi-
plying Prev power and Enc(base) with the help of multiplication module
(shown in Fig. 4) during each loop iteration. FHE Is Lesser module [21]
is used to find whether value of encrypted loop count (rangei computed
as Enc(0), Enc(1), Enc(2) . . . Enc(n − 1)) and checked if it is lesser than
Enc(exponent) in each iteration (rangei < Enc(exponent)). In this condition
checking , if rangei < Enc(exponent), output Eout will be Enc(0); other-
wise Enc(1). According to this Eout value, Final power value will be selected
through FHE MUX, where first and second inputs are Current power and
Prev power respectively, and Eout is used as select input. This encrypted
decision-making will not allow to increase the final result further once
encrypted loop count is equal to Enc(exponent). Further, loop iterations
will perform encrypted b∗ b computations, but that will not contribute to the
final result.

Encrypted SQL Arithmetic Functions Processing for Secure Cloud Database 217

However, it is evident that Algorithm 3 is performance costly and includes some
extra encrypted multiplications only to make the loop handling feasible.

Fig. 6. Approximate range offset of intermediate sub-ranges

4.7 SQRT() Function

Implementing SQRT() on FHE data is a challenging task, especially to calculate
the square root value of a non-perfect square value. Here, we propose approx-
imate square root computation steps for Enc(numeric expression) (shown in
algorithm 4) based on arithmetic estimates assuming input numeric expression
belongs to a particular range. We consider a few intermediate sub-ranges (such
as (1, 4), (4, 9), . . . (81, 100)) within the maximum range according to the Algo-
rithm4 and store lower range, upper range, square root, and range offset for each
sub-range as shown in Fig. 6. Here, lower range contains encrypted perfect square
numbers in the range, and upper range stores immediate next encrypted per-
fect square number. Square root column holds square root values of lower range
numbers in increasing order, and the range offset (last column) holds average
difference between each of the non-perfect square values within a specific upper
and lower range i.e., (

∑n
j=1(lower rangei + j)− lower rangei)/(upper rangei −

lower rangei), where n = (upper rangei − 1).
For the sake of implementation simplicity, we assume maximum upper range

value, max V al = 100 in this implementation. We also assume that values of
square root column are multiplied by 100 to normalize the floating-point num-
bers. We follow Fig. 2 to normalize the floating-point range offset value. To com-
pute SQRT() function for both perfect square and non-perfect square inputs,
following steps are considered as detailed in Fig. 7:

Initially,we compare the given Enc(numeric expression) with all encrypted
lower range (LB) and upper range (UB) values from the range Table (Fig. 7)
using FHE comparison modules FHE Is Greater and FHE Is Lesser [19]. Out-
put of FHE Is Greater module, Eout is fed into MUX1 as select input. If

218 T. Parbat and A. Chatterjee

Algorithm 4: Square root finding algorithm
Input: LB={Enc(1),Enc(4),Enc(9)..Enc(100)},

UB={Enc(4),Enc(9),Enc(16)..Enc(100)},
root={Enc(100),Enc(200),Enc(300),..Enc(1000)},
offset={Enc(0),Enc(40),Enc(20),..Enc(10)}, Enc(numeric expression)

Output: SQRT(Enc(numeric expression))
begin

UB=upper range
LB=lower range
while FHE Is Greater (Enc(numeric expression),lower rangei) do

find range offset
end
while FHE Is Lesser (Enc(numeric expression),lower rangen−i) do

find nearest lower range
find nearest square root value

end
difference= FHE Subtract (Enc(numeric expression),nearest lower range)
SQRT result=FHE Addition (nearest square root value, Multiplication
(range offset, ABS(difference)))

end

Fig. 7. Implementation of Encrypted SQRT()

Encrypted SQL Arithmetic Functions Processing for Secure Cloud Database 219

Eout = Enc(0), that indicates encrypted Enc(numeric expression) > lower
rangei. Then first input of MUX1, range offseti comes to the output of MUX1;
otherwise, second input, ‘previous range offseti’ will be selected as output. In
general exact range offset can be computed as follows:

range offset = (
∑n

j=1(lower rangei + j) − lower rangei)/num,
where n = (upper rangei − 1) and num is total number of non-perfect square
values within the bounded range values (upper rangei − lower rangei).

Fig. 8. Encrypted SQL with GROUP BY and POWER()

Initially, ‘previous range offset’ is set to Enc(0). Next time, it will be updated
by current range offseti. Again, output of FHE Is Lesser module, Eout1 is
taken as select input in MUX2 and MUX3 to find the last lower range per-
fect square value of Enc(numeric expression) at which FHE Is Lesser con-
dition is satisfied. Based on the output of this module, MUX2 and MUX3

generate nearest lower range perfect square value and its nearest square root

220 T. Parbat and A. Chatterjee

value of given numeric expression. Further, to calculate square root of a non-
perfect square value, we find the difference between lower range value and
Enc(numeric expression) using FHE Subtraction module [19]. The generated
output of this module is used as an argument of ABS() (mentioned in Sect. 4.1)
to find the absolute difference value. In the next step, ABS(difference) value is
multiplied by range offset (output of MUX1) using the multiplication module
(shown in Fig. 4) to obtain Multiplicative result. Finally, SQRT result will be
generated by performing FHE Addition with Multiplicative result and nearest
square root value (output of MUX3).

Fig. 9. Group formation without hash valued column

4.8 Encrypted SQL Query with Mathematical Function

In this section, we show how the proposed encrypted mathematical operators can
be used with encrypted SQL query. For instance, we have tested our query execu-
tion on standard ’Pima-Indians-Diabetes-Database’ [33] with encrypted column
values. As an example, we consider the following SQL query with POWER()
function:

SELECT POWER(Enc(OUTCOME),Enc(exponent)) FROM DIABETES
WHERE AGE=Enc(AGE) GROUP BY POWER(Enc(OUTCOME),Enc
(exponent));

User transmits this query to the cloud with all the field values encrypted.
Cloud will perform homomorphic equality check with the given encrypted age
value (Enc(AGE)) and stored AGE column values within encrypted database

Encrypted SQL Arithmetic Functions Processing for Secure Cloud Database 221

using FHE Is Equal module [19]. Further, the cloud processing unit computes
encrypted power() over generated resultant data, taking input the encrypted
‘OUTCOME’ and Enc(exponent) from this query. After that, GROUP BY oper-
ation is applied on the outputs of power() function to create groups of similar
values (shown in Fig. 8). Final encrypted output is transmitted to the user. User
decrypts this output and uses that result to specific applications.

Fig. 10. Group formation with hash valued column

In general, the execution-time of GROUP BY operation grows rapidly in the
homomorphic domain. To explain the reason, let us consider the GROUP BY
operation is being done based on the values of a column C (C(i)). In this case,
for all rows with C(j) = C(i), ∀ j �= i, some valid rows will be produced with
encrypted non-zero values and these rows are the valid members of the group.
Otherwise, ∀C(j) �= C(i) cases, invalid rows (with all encrypted zeroes) will be
generated. Thus, for each C(i) based comparison, number of total rows (including
valid and invalid rows) are always equal to m, where m = total number of rows in
actual database (shown in Fig. 9). Thus, GROUP BY operation over a particular
column value generates m2 rows in total as a resultant. That makes next-level
processing infeasible. To alleviate this issue, GROUP BY operation is proposed
in this work with the support of hash value comparison. Here, we append an
extra hash column (for the columns whose values can be the key of GROUP BY
operation) in the original database. Group formations are done by performing a
hash equality check instead of homomorphic comparison (as shown in Fig. 10).
Figure 10 also shows that hash equality check reduces the group size generating
only valid row values for which the GROUP BY condition is getting satisfied.

222 T. Parbat and A. Chatterjee

Table 1. CPU and GPU based processing time of various functions including
POWER() with 6 a) Unencrypted exponent and 6 b) Encrypted exponent.

Serial

no.

SQL queries with

mathematical

functions

Input Details Required FHE

modules

CPU based

execution

time (sec)

GPU based

execution

time (sec)

1 SELECT ABS

(Enc(number))

number:16 bit FHE Addition,FHE

NOT,FHE MUX

0.97 0.09

2 SELECT CEILING

(Enc(number))

number:16 bit FHE Is Equal,FHE

Addition, FHE MUX

8.97 0.9

3 SELECT FLOOR

(Enc(number))

number:16 bit No FHE module

required

0.13 0.2

4 SELECT SIGN

(Enc(number))

number:16 bit No FHE module

required

0.24 0.3

5 SELECT SQUARE

(Enc(number))

number:16 bit FHE

MUX,FHE Addition

35.27 3.6

6 a) SELECT POWER

(Enc(base),exponent))

(Unenctypted

exponent)

base:(16 bit),

exponent:5

FHE

MUX,FHE Addition

177.30 17.8

6 b) SELECT POWER

(Enc(base),

Enc(exponent))

(Encrypted exponent)

base:(16 bit),

exponent:4 bit

FHE Addition, FHE

MUX,FHE Is Lesser

360.71 36.1

7 SELECT SQRT

(Enc(number))

number:16 bit FHE Is Lesser,FHE

Is Greater, FHE

MUX,

FHE Addition,

FHE Subtraction,

FHE Addition

63.92 6.39

However, non-deterministic homomorphic encrypted ciphertexts may not
generate equal hash values. Hence, the main limitation of this proposed scheme
is that GROUP BY operation only can be performed based on few selected
columns for which hash values are already stored beforehand.

Similarly, cloud can evaluate encrypted ORDER BY with costly base and
exponent encrypted POWER() function, which takes 115.83 min to execute 100
data rows with 9-columns, each of the column values having 8 bits of data. How-
ever, row-based parallelization can be easily incorporated in our implementation
framework, since FHE operations in each rows are independent to each other
and that can reduce the performance overhead further.

Encrypted SQL Arithmetic Functions Processing for Secure Cloud Database 223

Table 2. Bit-wise performance of encrypted SQRT(), ABS(), SQUARE(), CEILING(),
POWER() functions

5 Performance Analysis

Table 1 shows the timing requirements for encrypted mathematical functions
with TFHE [29] on 64 bit Intel(R) Xeon(R) E-2104G CPU clock speed 3.20 GHz,
64 GiB system memory with Ubuntu 16.04.3 platform and possible speed up with
GPU based nuFHE library [34] in google colab platform. We have summarized
a list of required FHE modules to implement several functions in that table.
We also observe variations of processing time of these functions with respect to
varying bit-lengths over 8-bits, 16-bits, and 32-bits encrypted numeric values as
shown in Table 2.

This observation shows effective improvement in encrypted processing if
input data of the application can be encoded with smaller bit-length. In case
of POWER() implementation, we further observe the variation of timing with

224 T. Parbat and A. Chatterjee

respect to bit-length of exponents (shown in Table 2). However, with suitable
GPU support, same designs can exhibit improved timing requirements with
underlying nuFHE library [34] with GPU, as the costly bootstrapping time itself
reduces with efficient multiplier design in the GPU platform.

6 Conclusion

In this work, we focus on designing encrypted SQL query execution with com-
plex mathematical functions, which are suitable for encrypted cloud databases.
These operators are heavily used in existing cloud databases like NoSQL, Mon-
goDB, CouchDB, InfluxDB, SQLite, etc., in unencrypted form, but not previ-
ously explored in any encrypted SQL processing framework without the sup-
port of intermediate decryption. The proposed encrypted operators are flexible
enough to be incorporated within any LHE or FHE-based SQL query processing
framework. In our future work, we shall consider remaining SQL mathematical
functions like COS(), TAN(), SIN(), etc. Parallel implementation techniques also
will be explored to improve the performance further.

References

1. Mai, P.T.A., Nurminen, J.K., Francesco, M.D.: Cloud databases for Internet-of-
Things data. In: Proceedings of the IEEE International Conference on Internet of
Things (iThings) (2014)

2. Bradford contel 7 most infamous cloud security breaches (2018). https://blog.
storagecraft.com/7-infamous-cloud-security-breaches/

3. Nie, X., Yang, L.T., Feng, J., Zhang, S.: Differentially private tensor train decom-
position in edge-cloud computing for SDN-based internet of things. IEEE Internet
Things J. 7, 5695–5705 (2020)

4. Gentry, C.: A fully homomorphic encryption scheme, in Ph.D. Dissertation, Stan-
ford, CA, USA. Advisor(s) Boneh, D.: AAI3382729 (2009)

5. Acar, A., Aksu, H., Uluagac, A.S., Conti, M.: A Surveyon homomorphic encryption
schemes: theory and implementation. arXiv:1704.03578v2 [cs.CR] (2017)

6. Vinayagamurthy, D., Gribov, A., Gorbunov, S.: StealthDB: a scalable encrypted
database with full SQL query support. arXiv:1711.02279v2, [cs.CR] (2019)

7. Egorov, M., Wilkison, M.: Zerodb white paper. CoRR absarXiv : 1602.07168
8. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: CryptDB: protect-

ing confidentiality with encrypted query processing. In: Proceedings of the 23rd
ACM Symposium on Operating System Principles, pp. 85–100 (2011)

9. Kumarage, H., Khalil, I., Alabdulatif, A., Tari, Z., Yi, X.: Secure data analytics
for cloud-integrated Internet of Things applications. IEEE Cloud Comput. 3(2),
46–56 (2016)

10. Always encrypted. https://www.cs.purdue.edu/homes/csjgwang/cloudb/
EncrptedSQLSIGMOD20.pdf

11. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystem. In: Proceedings of the Communication. ACM, pp.
120–126 (1978)

https://blog.storagecraft.com/7-infamous-cloud-security-breaches/
https://blog.storagecraft.com/7-infamous-cloud-security-breaches/
http://arxiv.org/abs/1704.03578v2
http://arxiv.org/abs/1711.02279v2
https://www.cs.purdue.edu/homes/csjgwang/cloudb/EncrptedSQLSIGMOD20.pdf
https://www.cs.purdue.edu/homes/csjgwang/cloudb/EncrptedSQLSIGMOD20.pdf

Encrypted SQL Arithmetic Functions Processing for Secure Cloud Database 225

12. Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. Inf. IEEE Trans. 31(4), 469–472 (1985)

13. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

14. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30576-7 18

15. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homo-morphic
encryption without bootstrapping. In: Proceedings of the 3rd Innovations in The-
oretical Computer Science Conference (ITCS 2012), pp. 309–325. ACM, NewYork
(2012)

16. Grubbs, P., Ristenpart, T., Shmatikov, V.: Why your encrypted database is not
secure. HotOS 2017, 162–168 (2017)

17. Mathematical functions(transact-sql). https://docs.microsoft.com/en-us/sql/t-
sql/functions/mathematical-functions-transact-sql?view=sql-server-ver15

18. Gentry, C.: Computing arbitrary functions of encrypted data. Commun. ACM
53(3), 97–105 (2010)

19. Chatterjee, A., Aung, K.M.M.: Fully homomorphic encryption in real world appli-
cation (2019)

20. Rass, S., Slamanig, D.: Cryptography for Security and Privacy in Cloud Comput-
ing. Artech House Inc., Norwood (2013)

21. Chatterjee, A., Sengupta, I.: Translating algorithms to handle fully homomorphic
encrypted data on the cloud. IEEE Trans. Cloud Comput. 6(1), 287–300 (2018)

22. Ghulam, A.: Top 5 databases to store data of IoT applications (2021). https://
iot4beginners.com/top-5-databases-to-store-iot-data/

23. Influxdb design insights and tradeoffs. https://docs.influxdata.com/influxdb/v1.
8/concepts/insights tradeoffs/

24. Compare cratedb. https://crate.io/cratedb-comparison/cratedb-vs-mongodb/
25. RethinkDB: Rethinkdb https://rethinkdb.com/faq/
26. Xue, K., Li, S., Hong, J., Xue, Y., Yu, P., Hong, N.: Two-cloud secure database

for numeric-related SQL range queries with privacy preserving. IEEE Trans. Inf.
Forensics Secur. 12(7), 1596–1608 (2017)

27. Xu, C., Chen, J., Wu, W., Feng, Y.: Homomorphically encrypted arithmetic oper-
ations over the integer ring, pp. 167–181 (2016)

28. Built-in mathematical SQL functions. https://www.sqlite.org/langmathfunc.html
29. Chillotti, I., Gama, N., Georgieva, M., Izabachne, M.: Faster fully homomorphic

encryption : bootstrapping [1] in less than 0.1 seconds. Cryptology ePrint Archive
Report 2016/870 (2016). https://eprint.iacr.org/2016/870

30. Shift-and-add multiplication. https://users.utcluj.ro/baruch/book ssce/SSCE-
Shift-Mult.pdf

31. Gosh, A., Chatterjee, A.: Practical performance improvement of domain aware
encrypted computing. In: Proceedings of the ICMC (2021). Accepted

32. Jena, A., Panda, S.K.: Revision of various square-root algorithms for efficient VLSI
signal processing applications. Proc. MCSP 2016, 38–41 (2016)

33. Pima indians diabetes database. https://www.kaggle.com/uciml/pima-indians-
diabetes-database

34. NuFHE. A GPU implementation of fully homomorphic encryption on torus.
https://github.com/nucypher/nufhe

https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-540-30576-7_18
https://docs.microsoft.com/en-us/sql/t-sql/functions/mathematical-functions-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/mathematical-functions-transact-sql?view=sql-server-ver15
https://iot4beginners.com/top-5-databases-to-store-iot-data/
https://iot4beginners.com/top-5-databases-to-store-iot-data/
https://docs.influxdata.com/influxdb/v1.8/concepts/insights_tradeoffs/
https://docs.influxdata.com/influxdb/v1.8/concepts/insights_tradeoffs/
https://crate.io/cratedb-comparison/cratedb-vs-mongodb/
https://rethinkdb.com/faq/
https://www.sqlite.org/langmathfunc.html
https://eprint.iacr.org/2016/870
https://users.utcluj.ro/baruch/book_ssce/SSCE-Shift-Mult.pdf
https://users.utcluj.ro/baruch/book_ssce/SSCE-Shift-Mult.pdf
https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://github.com/nucypher/nufhe

Robustness Against Adversarial Attacks
Using Dimensionality

Nandish Chattopadhyay1(B), Subhrojyoti Chatterjee2,
and Anupam Chattopadhyay1

1 Nanyang Technological University, Jurong West, Singapore
nandish001@e.ntu.edu.sg

2 Indian Institute of Technology, Kanpur, Kanpur, India

Abstract. Adversarial attacks have been a major deterrent towards
the adoption of machine learning models reliably in many safety-critical
applications. Structured perturbations introduced to test samples can
fool high performing trained neural networks and force errors. We note
that one of the key causes that facilitate adversarial attacks, is the curse
of dimensionality or the behaviour of the high dimensional spaces. In
this paper, we propose a machine learning infrastructure that is robust
against adversarial attacks. The proposed pipeline uses a parallel path-
way to carry out the primary machine learning task as well as identify
adversarial samples. We use dimension reduction techniques to project
adversarial samples into lower dimensions, thus eliminating adversarial
perturbations. The end-to-end system has been tested to provide robust-
ness, through different choices of neural architectures (VGG-19 [1], Incep-
tion ResNet v2 [2]), modes of adversarial attacks (FGSM [3] and PGD
[4]) and multiple datasets (MNIST [5], CIFAR-10 and CIFAR-100 [6]).
The overall accuracy of the end-to-end system was consistently found
to be within a range of 1–2% (2%–4% in worst case scenarios) of what
the accuracy would have been without the presence of any adversarial
examples. We also show that this robustness is delivered without much
compromise in time consumed for inference per sample.

Keywords: Adversarial attacks · Robustness · Adversarial defence ·
Dimensionality reduction · Neural networks

1 Introduction

Over the years, research in machine learning has seen improvements by leaps
and bounces, particularly with the advancements in high performance neural
networks, and the overall realm of deep learning. Some applications of neural
architectures have reached and surpassed human accuracies, giving it a fresh
start [7]. A variety of science and technology applications have adopted the data
driven paradigm, both in academia and the industry. Historically, most statistical
learning techniques consisted of significant data pre-processing requirements [8].

c© Springer Nature Switzerland AG 2022
L. Batina et al. (Eds.): SPACE 2021, LNCS 13162, pp. 226–241, 2022.
https://doi.org/10.1007/978-3-030-95085-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95085-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-95085-9_12

Robustness Against Adversarial Attacks Using Dimensionality 227

The accuracies of these models saturated over time and they typically lacked
generalisation.

The much required breakthrough was provided by the emergence of deep
learning models. Although the perceptron algorithm [9] was initially proposed
long back, the idea did not receive much attention due to the lack of computing
hardware, that was needed to sustain its operations. This problem was solved by
the advent of high performing computational systems with multiple GPU cores.
They could take advantage of the linear operations within neural architectures,
and make multiple computations in parallel. Thus, enormous neural networks
emerged into the scenes with tremendous learning capacities to solve problems
which were not possible to have been addressed earlier.

1.1 Motivation

With the growth of machine learning applications, researchers found a new prob-
lem that proves to be a deterrent to reliable use of ML models. Adversarial
attacks were first observed as an intriguing property [10] of neural networks,
and over the years, many attack modes have been developed. Designing defence
mechanisms against adversarial attacks has been a challenge for researchers as
novel attacks emerge. Most mechanisms are quite ad-hoc in nature, and are suc-
cessful against specific targets. The way this field of research has progressed is
much like other domains in security, with every counter-measure proposed, a
new attack is developed. We set out to take a step back from this loop, and
understand one of the primary reasons behind the existence of such adversarial
vulnerabilities, and use the learning to design the defence. We study the geom-
etry of landscape in higher dimensions in which the neural network optimises,
and note that its properties contribute to adversarial vulnerability. Dimension
reduction therefore addresses this fundamental problem, and we observe that
at lower dimensions, the attacks become significantly difficult. However, generic
dimension reduction techniques are not able to specifically distinguish between
adversarial noise and features of the clean sample. So, for a sample that doesn’t
have any adversarial perturbation, dimension reduction can potentially reduce
its likelihood of correct classification. So the goal of this paper is to design a
method that intelligently selects adversarial samples and subjects them to noise
reduction through dimension reduction. Achieving that is important for a robust
system that is able to correctly carry out the machine learning task, despite the
presence of adversarial examples.

1.2 Contribution

In this paper, we propose a robust mechanism for fulfilling machine learning
objectives by carrying out classification tasks and eliminating errors arising
from adversarial attacks. Specifically, the end-to-end infrastructure that we have
designed is able to accomplish the reliable functionality by leveraging the fol-
lowing:

228 N. Chattopadhyay et al.

– A parallel pathway of simultaneously carrying out the classification task and
detection of adversarial perturbations in the samples to increase efficiency

– Using dimensionality reduction to eliminate adversarial perturbation from
only those samples that are detected to be adversarial examples.

The proposed framework has been tested to generate satisfactory results, for
multiple choices of neural architectures (VGG-19 [1], Inception ResNet v2 [2]),
modes of adversarial attacks (FGSM [3] and PGD [4]) and multiple datasets
(MNIST [5], CIFAR-10 and CIFAR-100 [6]). The overall accuracy of the end-
to-end system was consistently found to be within a range of 1–2% of what the
accuracy would have been without the presence of any adversarial examples.

1.3 Organization

In Sect. 2, we define adversarial attacks, and how the behaviour of high dimen-
sions of the optimizing landscape of the neural networks impact them. We also
provide the literature review on adversarial attacks and defences. In Sect. 3,
we introduce our proposed adversarial defence mechanism using parallel path-
ways and dimensionality reduction. In Sect. 4, we describe the pipeline and the
corresponding models and techniques used for the implementation. Then, the
experimental results and findings are presented in Sect. 5. Finally, we conclude
with some remarks on future scope and implications.

2 Adversarial Attacks

Adversarial attacks were first observed as anomalies in image classification sys-
tems [11]. For a specific classifier model trained on a particular dataset, and a
particular correctly classified sample, the corresponding adversarial sample that
can be generated using an adversarial attack, would be a sample with struc-
tured adversarial perturbation that would be invisible to the human vision, but
picked up by the machine learning model, therefore creating a discrepancy at
the inference decision.

There are some essential components of a machine learning system. Consid-
ering an image processing task, there are four aspects to look at. Firstly, the
model of choice, which could be a neural network of some other parameterised
model [12]. Next, a training dataset is necessary and for most tasks which are
supervised, the dataset should also be annotated with labels. Then, there has
to be a test dataset for inference. And in the end of the training process, we
obtain a trained model, which is essentially the trained manifolds separated by
the classifier [13].

To understand the process of the creation of adversarial examples, we explain
the idea using the example of a simple binary image classification problem. First,
is the notion of the dataset, for the task, which is a 2D approximation of some
instances of what’s observable in the real world, typically referred to as the
population. We can not have the exhaustive set of the population at our disposal,

Robustness Against Adversarial Attacks Using Dimensionality 229

and therefore have to work with the samples. There exists a true classifier, within
the population, that correctly classifies all samples. However, that classifier is
unknown, and therefore we have to use an approximation of it, using a machine
learning model. A manifestation of the true classifier could be thought of as that
of human vision annotator, while the ML model could be a neural network.

Fig. 1. Adversarial examples in context of a classifier.

Since we are trying to approximate the true classifier, we train the machine
learning model to create the sample classifier, that is able to split the sample
space into trained manifolds of the associated class labels. The sample space, in
this case, is the labelled dataset of image samples derived from the population.
One may assume that the true classifier within the population extends indis-
tinguishably to the true classifier within the sample for simplicity. The sample
classifier is an approximation of it for the dataset. As expected, this approxi-
mation can only be accurate up to a certain extent, and that might result is a
notional ‘gap’ between the true classifier and the sample classifier trained on a
definitely non-exhaustive dataset. In theory, this gap is responsible for creating
an adversarial space, as any data point lying in that region would be associated

230 N. Chattopadhyay et al.

with differing class labels with respect to the true and sample classifiers. And
thus, the adversarial example is generated.

It is important to take note of the fact that if the data points are situated
close to the boundaries of the individual trained manifolds, then the addition of
a little adversarial perturbation facilitates the transfer of some of the samples
to across the sample classifier, but not enough to cross the true classifier, as
shown in Fig. 1. If the perturbation is high enough to make the sample cross
over the true classifier as well, then the misclassification would hold good for
the human annotator as well, and the sample will no longer be adversarial. This
perturbation is therefore always bounded.

2.1 Formulation

Having had a good look at why the adversarial samples exist, it is important to
formally define these adversarial examples, so that we can have a better under-
standing of how they are created and why dimensionality plays and important
role (Fig. 2).

Fig. 2. Generation of adversarial examples.

We may consider X to be the space of input samples. When the system
takes images as inputs, X may be thought of as the vector space of dimensions
equal to the size of the image, that is pixels. The two classifiers being looked
into are f1 (sample classifier) and f2 (human annotator). The classifiers have
two components each, feature extraction and classification. We therefore have

Robustness Against Adversarial Attacks Using Dimensionality 231

X1 to be the space of features for the sample classifier and X2 to be the space
of features for the human annotator, where d1 and d2 are norms defined in the
spaces X1 and X2 respectively. As shown, f1 = c1 ◦ g1 and f2 = c2 ◦ g2.

We look at x ∈ X, to be a training sample. Given x, its corresponding
adversarial example x∗, for a norm d2 defined on the space X2, and a predefined
threshold δ > 0, must satisfy:

f1(x) �= f1(x∗) and f2(x) = f2(x∗)
such that d2(g2(x), g2(x∗)) < δ

2.2 Curse of Dimensionality

Our goal is to explain the creation of adversarial examples by understanding
the geometry of the high dimensional spaces of the trained manifolds of the
classed where they exist. We therefore pay particular attention to the behaviour
of data points in such high dimensional settings, and look at their distribution
within the manifolds. We take note of certain properties of objects in the high
dimensional setting, like the fact that the majority of their volume lies near the
surface. This is important is providing a theoretical explanation into why little
structured perturbations are able to create adversarial samples [14] by pushing
them across the sample classifier, as discussed earlier.

We look at an object A in a d-dimensional space, that is Rd. If we force to
reduce it a little, that is bring down A by a small amount ε to create another
object (1 − ε)A = {(1 − ε)x | x ∈ A}, Then we can note the following:

volume((1 − ε)A) = (1 − ε)d volume(A)

In order to see if this holds or not, we begin by partitioning A into infinites-
imal cubes. Then, we have (1 − ε)A as the union of a set of cubes, which we
have created by the shrinkage of the cubes in A by a factor of (1 − ε). Upon the
shrinkage of the 2d sides of a d-dimensional cube by a factor of (1− ε), it follows
that the corresponding volume has a shrinkage by a factor of (1− ε)d. Therefore,
considering any object A in Rd, we may note:

volume((1 − ε)A)
volume(A)

= (1 − ε)d ≤ e−εd

Upon fixing the ε and letting d → ∞, we see that the right hand side of the
inequality in the equation rapidly approaches zero. The key takeaway from this
is that almost all of the volume of A has to be present in that part of A which
can not belong to the region (1−ε)A. Therefore, in the high dimensional setting,
almost all of the volume of A is present near its surface.

This property of the high-dimensional space is counter-intuitive, but it is one
that tremendously facilitates the creation and existence of adversarial exam-
ples [15].

232 N. Chattopadhyay et al.

2.3 Attack and Defences Review

The research in this domain has led to competitive works in attacks and defences
which have both improved over time. The first adversarial attack was studied as
an interesting property of neural networks [10], but over time, different attack
mechanisms have been developed like the Fast Gradient Sign method [3], the
Momentum Iterative version of it [16], the Carlini Wagner attack [17] and the
Projected Gradient Descent attack [4]. Similarly, multiple defence techniques
have been proposed over time, to mitigate such attacks. Some prominent ones
include the defensive distillation technique [18] and other filtering mechanisms
[19]. Needless to say, as the attacks got stronger, it was imperative to come up
with stronger defences and that serves as one of the primary motivations of this
work, presented in this paper.

3 Defence Design

As discussed in the earlier sections, higher dimensionality facilitates adversarial
example generation, and it is natural to try reducing dimensionality of the test
samples as a defence. This may be effective in reducing, and in some cases elim-
inating adversarial perturbations. There is a sound theoretical explanation for
the empirical results seen in experimental results of using techniques of reducing
dimensionality as an adversarial defence. However, there are some issues which
prevent it from being applied universally as a filter to deter adversarial attacks.
They are as follows.

– Dimensionality reduction is not targeted, and therefore may reduce useful
information from the samples along with adversarial noise. While being useful
to eliminate adversarial noise, this process may at times make the original
machine learning task (classification for example) difficult for a trained model.
How much variability to preserve in the samples is therefore a critical design
decision.

– It is also an unnecessary overhead for samples which are clean, and may slow
down a system where there are many samples to deal with.

We seek to address this, by intelligently selecting which samples to expose
to dimensionality reduction and which to remain as is, before sending them as
inputs to the machine learning model. In particular, we adopt a design of parallel
pathways, to simultaneously carry out the inference task and identify potential
adversarial samples and apply dimensionality reduction to only those which have
been picked up to contain adversarial noise. Our only assumption for choosing
the parallel setup, as opposed to a serial setup is that most samples are clean,
with some being adversarial.

3.1 Parallel Pathways

We consider a particular machine learning task as the primary objective, like
classification. This is a trained neural network that is vulnerable to adversarial

Robustness Against Adversarial Attacks Using Dimensionality 233

attacks. We design another classifier, that is specifically trained to identify sam-
ples that contain adversarial noise. The overall system is so designed that the
input samples are fed to the two networks, in parallel. One network carries out
the actual task (classification for instance) and we call that the Main Model. The
other network determines whether the sample is clean or adversarial, and we call
it the Adversarial Detector. If the sample is found to be clean, the output of the
Main model is mapped to the output of the system. If the sample is found to be
adversarial (that is it contains adversarial noise as identified by the Adversarial
Detector), then the Dimensionality Reduction loop is activated. The sample is
then fed to the Dimensionality Reducer and its result is further sent to the Main
Model for carrying out the task (classification) again.

This design choice has been made keeping the following in mind:

– Adversarial samples, crafted by adversaries are fewer in number than natu-
rally occurring clean samples. The system is likely to encounter many more
clean samples and therefore not require dimensionality reduction.

– Since the dimensionality reduction loop will be activated for fewer adver-
sarial samples, for most clean samples the throughput of the system will be
comparable to what it would have been, without any defence mechanisms.

– By checking for the presence of adversarial perturbations and only then reduc-
ing dimension, we are ensuring that the model performance for clean samples
is not hampered.

3.2 Detecting Adversarial Samples

Adversarial examples contain structured noise inserted as perturbation by
attackers to fool the trained neural networks. This perturbations are bounded,
because they are by design, imperceptible to human vision. The misclassification
or simply mistake in the machine learning task by the model as opposed to cor-
rect classification by the human annotator leads to the discrepancy in class labels
that generate adversarial attacks. In this work, we re-use the neural architecture
that falls prey to adversarial attacks, by training it to differentiate between clean
samples and adversarial samples. The intuition is that the model that picks up
the adversarial noise to lead to an error, will also be able to detect that same
noise, if it is trained to do so. We have generated pairs of adversarial samples
for corresponding clean samples, and trained the network as a binary classifier.
The sensitivity of the main model towards the attack is used in this classifier
to identify adversarial samples. The experimental results later on vindicate the
proposition.

3.3 Dimensionality

As a manifestation of the theoretical setup mentioned in the earlier section,
high dimensionality of the optimizing landscape of the neural network classifier
makes it vulnerable to adversarial attacks. It has been shown that the sensitivity
of the model to adversarial perturbation grows with higher dimensions. As a

234 N. Chattopadhyay et al.

natural extension of that idea, we propose to use dimension reduction to defend
against such attacks. Essentially, we select the samples that have been detected to
contain adversarial perturbation and then project them onto a lower dimension,
eliminating a certain amount of information (measured through variability) to
convert them into clean samples. The intuition is that such samples, with cropped
information, will be classified to the correct classes when subjected to the Main
Model. We have tested this idea through a series of thorough experiments.

4 Implementation

The adversarial defence mechanism has been implemented as an end-to-end sys-
tem, that takes in samples, both clean and adversarial ones alike, and outputs the
correct probability distribution over the classes with high accuracy. Internally, it
is able to detect adversarial samples using a separate adversarial detector, and
thereby activates a dimension reduction loop to eliminate noise that pertains to
the attack. The implementation of the framework is shown in Fig. 3.

Fig. 3. Implementation of the framework pipeline. The flow of data samples is shown
in black channels, the flow of output class probabilities is shown in blue channels and
the flow of enable control is shown in red. (Color figure online)

4.1 Pipeline

The pipeline is setup using parallel pathways for the primary machine learning
task of classification and the additional task of detecting adversarial samples.
This is in accordance with the notion described in Sect. 3.1. The input samples

Robustness Against Adversarial Attacks Using Dimensionality 235

are sent in parallel to both the networks, the Main Model and the Adversarial
Detector. The have tested two different neural architectures for both these tasks.
The Main Model generates the probability distribution over the classes and the
Adversarial Detector labels the samples as clean or adversarial. If the sample is
found to be clean, then the corresponding channel is enabled so as to map the
output of the Main Model to the final output of the system. If the sample is
found to be adversarial, then the other channel is enabled, which feeds the input
sample to the Dimension Reduction block. This is where the sample is projected
onto a lower dimension based on a tuning parameter, and then its output is
again fed to the input of the overall system. This process ensures that the Main
Model’s predicted class probabilities are mapped to the final output only if the
sample is deemed to be a clean one. The entire flow of data and control is shown
in the diagram.

4.2 Models

In order to check if the proposed infrastructure’s robustness against adversarial
attacks is agnostic to any specific neural architecture or adversarial attack, we
used multiple combinations of them and checked for performance. In particular,
we used two state-of-the-art neural architectures (VGG-19 [1], Inception ResNet
v2 [2]), two most widely used and effective modes of adversarial attacks (FGSM
[3] and PGD [4]) and some benchmarking datasets (MNIST [5], CIFAR-10 and
CIFAR-100 [6]) for making the results to comparable to the available literature.

4.3 Dimension Reduction

The process of transformation of data from a high dimensional space to a low
dimensional space is carried out using dimensionality reduction algorithms. They
ensure that the representation so created in the low dimensional setting, is able
to retain as much meaningful properties as possible, of the data in the original
high dimensional setting. This is particularly necessary for a variety of reasons,
like avoiding the issues that arise due to the curse of dimensionality and other
unfavourable behaviours of the high dimensional space. Reducing the dimension
makes computation and analysis easier.

There are different ways of carrying out dimension reduction. Typically, tech-
niques like principal components analysis or singular value decomposition [20]
are used to reduce dimensions in a linear fashion, that is the new components
so created are linear combinations of the original. There are some useful non-
linear dimensionality reduction techniques as well, like the t-distributed stochas-
tic neighbor embedding [21].

5 Experiments

In this section we discuss the experimental setup and corresponding results in
details. The overall aim of the experiments is to study whether the proposed

236 N. Chattopadhyay et al.

system is able to match the accuracies of the model when there are no adversarial
examples, even when adversarial samples are introduced via attacks. The entire
infrastructure has been built in TensorFlow [22] and the experiments were run
on Google Colab with a NVIDIA Tesla K80 GPU. The attacks were taken from
Google’s Cleverhans [23] repository.

5.1 Design

We study each component of the infrastructure separately first, and then we
look into the performance of the overall framework under specific circumstances.
We note the accuracy of the Main Model when exposed to clean samples as
the baseline (first row of the Tables 1, 2, 3, 4). This is the highest possible
performance that we may have, given the neural architecture and a specific
dataset. The rest of the accuracies will be compared to this benchmark.

Next, we look at the drop in performance of the Main Model when exposed
to adversarial examples (second row of the Tables 1, 2, 3, 4). Then, we turn
our attention to the Adversarial Detector. It is important to note that high
accuracies of this component is extremely critical to the overall performance of
the infrastructure. The error in Adversarial Detection, will be propagated to
the overall output error of the system, as we apply the adversarial perturbation
reduction loop to only those samples that are identified to be adversarial by this
detector. Intuitively, a neural architecture that is vulnerable to picking up adver-
sarial noise and thereby misclassifying, will also be sensitive to that exact same
noise when trained as an Adversarial Detector rather than a regular classifier.
We take a note of it in the third row of the Tables 1, 2, 3, 4.

In the next part of the experimental setup, we study the impact of using
dimensionality reduction techniques and use two different techniques for the
same. Note that only adversarial samples, detected by the Adversarial detector,
are exposed to the dimensionality reduction. We report the corresponding per-
formance of the Main Model when exposed to the projections of those samples
on lower dimensions. We use two different techniques for doing the same, as
shown in the fourth and fifth rows of the Tables 1, 2, 3, 4.

Finally, we check the performance of the overall framework. This is where
we run the entire pipeline shown in Fig. 3. We use different scenarios here. One,
where the test samples are 80% clean samples and 20% adversarial, this being
a more likely situation from a practical perspective (results shown in the sixth
row of the Tables 1, 2, 3, 4). And secondly, we consider a set of test samples
which are 50% clean samples and 50% adversarial (results shown in the last row
of the Tables 1, 2, 3, 4). We compare these accuracies to the baseline accuracy.
Additionally, we also study how much time is consumed in the inference process
for the aforementioned setups in Table 5. This gives us a good understanding of
the efficiency of the infrastructure.

Robustness Against Adversarial Attacks Using Dimensionality 237

5.2 Results

The experimental results are presented in a tabulated form here. Each table is
associated with a particular combination of neural architecture and adversar-
ial attack pair. The performances of different settings are noted, for all three
datasets (MNIST [5], CIFAR-10 and CIFAR-100 [6]). The bounds on adversar-
ial perturbation, is set like this: ε = 1.0 for MNIST and ε = 0.1 for CIFAR -10
and CIFAR-100.

Considering a VGG-19 [1] neural architecture and the mode of adversarial
attack being the FGSM [3] attack, the step by step results are shown in Table 1
and Fig. 4. We observe the drop in performance of the Main Model upon the
introduction of the adversarial examples, while the Detector is able to correctly
identify adversarial samples effectively. We also note that dimension reduction
works well on adversarial samples to be correctly classified thereafter. In the
end, the framework is able to perform almost as well (within a 1%–2% range) as
the Main Model without the existence of any adversarial samples, thus fulfilling
our objective.

Fig. 4. Performances using a VGG-19 [1] neural architecture and the mode of adver-
sarial attack is the FGSM [3] attack.

The exact same analysis is repeated for some different choices of neural archi-
tectures and adversarial attacks. Table 2 uses a VGG-19 [1] neural architecture
and the mode of adversarial attack is the PGD [4] attack. Table 3 uses a Incep-
tion ResNet V2 [2] neural architecture and the mode of adversarial attack is the
FGSM [3] attack. Table 4 uses a Inception ResNet V2 [2] neural architecture and
the mode of adversarial attack is the PGD [4] attack.

238 N. Chattopadhyay et al.

Table 1. Neural architecture: VGG-19 and adversarial attack: FGSM

Experiment design (type of samples and model) MNIST CIFAR-10 CIFAR-100

Clean Samples and Main Model 99.12% 93.58% 72.14%

Adversarial Samples and Main Model 89.11% 71.04% 39.61%

Adversarial Sample Detector 99.24% 99.24% 98.89%

Post Dimension Reduction (SVD) and Main Model 98.51% 90.87% 70.66%

Post Dimension Reduction (t-SNE) and Main Model 98.66% 91.52% 70.04%

Overall Framework Accuracy (80% clean –20% adv) 98.79% 92.16% 72.05%

Overall Framework Accuracy (50% clean –50% adv) 98.66% 91.89% 71.95%

Table 2. Neural architecture: VGG-19 and adversarial attack: PGD

Experiment design (type of samples and model) MNIST CIFAR-10 CIFAR-100

Clean Samples and Main Model 99.12% 93.58% 72.14%

Adversarial Samples and Main Model 87.81% 70.01% 37.89%

Adversarial Sample Detector 99.27% 99.05% 98.11%

Post Dimension Reduction (SVD) and Main Model 97.18% 89.93% 68.91%

Post Dimension Reduction (t-SNE) and Main Model 97.84% 90.17% 68.76%

Overall Framework Accuracy (80% clean –20% adv) 98.88% 91.84% 70.88%

Overall Framework Accuracy (50% clean –50% adv) 98.22% 91.56% 70.41%

Table 3. Neural architecture: inception ResNet V2 and adversarial attack: FGSM

Experiment design (type of samples and model) MNIST CIFAR-10 CIFAR-100

Clean Samples and Main Model 99.32% 95.42% 79.89%

Adversarial Samples and Main Model 87.43% 72.36% 41.89%

Adversarial Sample Detector 99.28% 99.18% 99.02%

Post Dimension Reduction (SVD) and Main Model 98.49% 91.80% 72.86%

Post Dimension Reduction (t-SNE) and Main Model 98.23% 92.30% 74.01%

Overall Framework Accuracy (80% clean –20% adv) 99.01% 93.98% 78.11%

Overall Framework Accuracy (50% clean –50% adv) 98.77% 93.15% 75.18%

Table 4. Neural architecture: inception ResNet V2 and adversarial attack: PGD

Experiment design (type of samples and model) MNIST CIFAR-10 CIFAR-100

Clean Samples and Main Model 99.32% 95.42% 79.89%

Adversarial Samples and Main Model 86.15% 69.78% 38.45%

Adversarial Sample Detector 98.19% 98.16% 97.65%

Post Dimension Reduction (SVD) and Main Model 98.11% 90.41% 71.87%

Post Dimension Reduction (t-SNE) and Main Model 98.07% 90.59% 71.55%

Overall Framework Accuracy (80% clean –20% adv) 98.54% 93.66% 74.09%

Overall Framework Accuracy (50% clean –50% adv) 98.37% 92.89% 73.88%

Robustness Against Adversarial Attacks Using Dimensionality 239

Table 5 reports the amount of time taken for:

– just the Main Model to process the samples when they are in the proportion
of 80% clean samples and 20% adversarial samples, as opposed to when they
are equally likely to be clean or adversarial.

– the overall framework, that is the proposed pipeline, to process the samples
when they are in the proportion of 80% clean samples and 20% adversarial
samples, as opposed to when they are equally likely to be clean or adversarial.

Table 5. Inference time per sample (in ms)

Dataset composition Model MNIST CIFAR-10 CIFAR-100

80% clean samples,
20% adversarial samples

Main Model 3.29 3.26 3.26

Overall Pipeline 3.91 4.05 4.09

50% clean samples,
50% adversarial samples

Main Model 3.29 3.26 3.26

Overall Pipeline 4.71 4.82 4.91

5.3 Key Findings

As evident form the data presented above, we have some important takeaways
from the extensive set of experiments that we carried out. They are noted here.

– While the introduction of adversarial samples is able to bring down the accu-
racy of the Main Model (the image classifier) significantly (ranging from 15%–
50% decline in performance), the use of dimensionality reduction successfully
prevents it.

– Dimension Reduction works very well for reducing/eliminating adversarial
perturbations and proves to be a good technique for correctly classifying
adversarial samples (its performance being within 2%–5% within the range
of accuracy of the classifier without any adversarial samples).

– The adversarial Detector, a model specifically trained to detect adversarial
samples, is extremely efficient in doing so (accurate in excess of 98% for
all combinations of models, attacks and datasets) and this is crucial for the
successful working of the parallel nature of the pipeline (results shown in the
third row of the Tables 1, 2, 3, 4).

– Since dimensionality reduction sometimes eliminates important information
from clean samples, the parallel pipeline is necessary to increase overall accu-
racy of the framework when the input samples are a mix of clean and adver-
sarial samples. There seems to be not much difference in using either of the
techniques for dimension reduction though, both SVD and t-SNE generate
similar performances (results shown in the fourth and fifth row of the Tables 1,
2, 3, 4).

240 N. Chattopadhyay et al.

– The overall framework is robust against adversarial attacks, whilst being func-
tionality preserving for clean samples. For a practical scenario of an input set
of samples consisting of some adversarial examples within clean samples (in
a 80% clean and 20% adversarial split), the framework consistently gener-
ates good performance of accuracies within the range of 1%–2% of baseline
(results shown in the sixth row of the Tables 1, 2, 3, 4).

– Even for an extreme scenario of a 50%–50% split in clean and adversarial
samples (this is unlikely because adversarial samples are not naturally occur-
ring), the framework is able to generate accuracies within a 2%–4% of baseline
(results shown in the last row of the Tables 1, 2, 3, 4).

– The inference time per sample is comparable for the Main Model and the
overall pipeline. This indicates that the framework is able to deliver robustness
without much compromise on overheads (results shown in Table 5).

6 Concluding Remarks

Since adversarial attacks are capable of introducing structured perturbations
into clean samples that are imperceptible to the human vision, they can easily
be used to fool high performance trained neural networks. This is a major concern
for adopting neural networks in critical operations. We address this problem by
developing a frame work that delivers robustness against such attacks. We ensure
that the framework is functionality preserving, that is it works as expected for
clean samples and also is able to correctly classify adversarial samples, therefore
preventing such attacks from disrupting the machine learning task. We approach
the solution by first understanding one key property of neural networks, that is
their vulnerability to attacks due to the high dimensional nature of the optimi-
sation landscape. We use dimensionality reduction to tackle this problem, and
aim to reduce/eliminate adversarial noise. However, we do not disturb the clean
samples and therefore use a parallel pathway to detect adversarial samples and
expose only those to the defence mechanism. The framework has been heav-
ily tested with multiple neural architectures, datasets, dimensionality reduction
techniques and adversarial attacks. Going ahead, we are looking to extend this
idea to video streams instead of images and study the real-time applicability of
the framework in greater detail, so as to find many more practical use-cases for
it to be deployed in public.

Acknowledgement. This research is supported by the National Research Foundation
(NRF, Prime Minister’s Office, Singapore) as part of the “SoCure” project.

References

1. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

2. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet
and the impact of residual connections on learning. In: Thirty-First AAAI Confer-
ence on Artificial Intelligence (2017)

http://arxiv.org/abs/1409.1556

Robustness Against Adversarial Attacks Using Dimensionality 241

3. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial machine learning at scale.
arXiv preprint arXiv:1611.01236 (2016)

4. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

5. LeCun, Y., Cortes, C., Burges, C.J.: MNIST handwritten digit database. AT&T
Labs, p. 2 (2010). http://yann.lecun.com/exdb/mnist

6. Krizhevsky, A., Nair, V., Hinton, G.: The CIFAR-10 dataset (2014). http://www.
cs.toronto.edu/kriz/cifar.html

7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Adv. Neural Inf. Process. Syst. 1097–1105 (2012)

8. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning, vol.
1. Springer series in statistics, New York, NY, USA (2001)

9. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and
organization in the brain. Psychol. Rev. 65(6), 386 (1958)

10. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199 (2013)

11. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT
press, Cambridge (2016)

12. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

13. Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford University
Press, Oxford (1995)

14. Dube, S.: High dimensional spaces, deep learning and adversarial examples. arXiv
preprint arXiv:1801.00634 (2018)

15. Chattopadhyay, N., Chattopadhyay, A., Gupta, S.S., Kasper, M.: Curse of dimen-
sionality in adversarial examples. In: 2019 International Joint Conference on Neural
Networks (IJCNN), pp. 1–8. IEEE (2019)

16. Dong, Y., et al.: Boosting adversarial attacks with momentum. arXiv preprint
arXiv:1710.06081 (2017)

17. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)

18. Papernot, N., McDaniel, P.: On the effectiveness of defensive distillation. arXiv
preprint arXiv:1607.05113 (2016)

19. Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A., Mukhopadhyay, D.:
Adversarial attacks and defences: a survey. CoRR, abs/1810.00069 (2018)

20. Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions.
In: Bauer, F.L. (eds.) Linear Algebra. Handbook for Automatic Computation, vol.
2, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-
3-662-39778-7 10

21. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9(11) (2008)

22. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning
library. Adv. Neural Inf. Process. Syst. 8026–8037 (2019)

23. Papernot, N., et al.: cleverhans v2. 0.0: an adversarial machine learning library.
arXiv preprint arXiv:1610.00768 (2016)

http://arxiv.org/abs/1611.01236
http://arxiv.org/abs/1706.06083
http://yann.lecun.com/exdb/mnist
http://www.cs.toronto.edu/kriz/cifar.html
http://www.cs.toronto.edu/kriz/cifar.html
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1801.00634
http://arxiv.org/abs/1710.06081
http://arxiv.org/abs/1607.05113
https://doi.org/10.1007/978-3-662-39778-7_10
https://doi.org/10.1007/978-3-662-39778-7_10
http://arxiv.org/abs/1610.00768

SoK - Network Intrusion Detection
on FPGA

Laurens Le Jeune1,2, Arish Sateesan1, Md Masoom Rabbani1, Toon Goedemé2,
Jo Vliegen1, and Nele Mentens1,3(B)

1 ES&S - imec-COSIC, ESAT, KU Leuven, Leuven, Belgium
{laurensle.jeune,arish.sateesan,mdmasoom.rabbani,jo.vliegen,

nele.mentens}@kuleuven.be
2 EAVISE - PSI, ESAT, KU Leuven, Leuven, Belgium

toon.goedem@kuleuven.be
3 LIACS, Leiden University, Leiden, The Netherlands

Abstract. The amount of Internet traffic is ever increasing. With a
well maintained network infrastructure, people find their way to Inter-
net forums, video streaming services, social media and webshops on a
day-to-day basis. With the growth of the online world, criminal activi-
ties have also spread out to the Internet. Security researchers and system
administrators develop and maintain infrastructures to control these pos-
sible threats. This work focuses on one aspect of network security: intru-
sion detection. An Intrusion Detection System (IDS) is only one of the
many components in the security engineer’s toolbox. An IDS is a passive
component that tries to detect malicious activities. With the increase
of Internet traffic and bandwidth, the detection speed of IDSs needs to
be improved accordingly. This work focuses on how Field-programmable
Gate Arrays (FPGA) are used as hardware accelerators to assist the
IDS in keeping up with high network speed. We give an overview of
three approaches: Intrusion detection based on machine learning, pat-
tern matching, and large flow detection. This work is concluded with a
comparison between the three approaches on the most relevant metrics.

Keywords: Network intrusion detection · Deep learning · FPGA

1 Introduction

Stating that the amount of Internet traffic is increasing, is like kicking at an open
door. The global COVID-19 pandemic contributed in raising the total amount of
network traffic to unprecedented volumes. This was mainly due to the lock downs
that were installed in various parts of the world, boosting video conferencing and
on-line shopping. It should not come as a surprise that malicious individuals or
groupings saw this as a lucrative evolution. Even without this evolution, network
security is becoming increasingly important.

The simplest way to describe the Internet is calling it a network of networks.
Figure 1 helps with introducing a number of concepts or components that are
c© Springer Nature Switzerland AG 2022
L. Batina et al. (Eds.): SPACE 2021, LNCS 13162, pp. 242–261, 2022.
https://doi.org/10.1007/978-3-030-95085-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95085-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-95085-9_13

SoK - Network Intrusion Detection on FPGA 243

INTERNET DMZ LAN

firewall
IDS

router switch
IDS

IPS

Fig. 1. General network setup

typically used in organising network security. The local network (e.g. the office
network or a home network) is referred to as the Local Area Network (LAN). All
the devices in the network can communicate with each other. When the LAN
is hooked up to the Internet, a number of components are added in between.
Generally these devices reside in a so-called demilitarised zone (DMZ).

The device, in the DMZ, that is positioned the closest to the Internet is the
traditional firewall. This firewall uses a set of rules which it traverses sequentially.
Depending on matches or mismatches to certain rules, incoming (or outgoing)
traffic is allowed through or is denied passage. The firewall typically operates
standalone and provides a first layer of network protection in an active way and
focuses primarily in a single direction: from the Internet to the LAN. The actions
taken by a firewall are typically also logged on the system.

An Intrusion Detection System (IDS) has a more passive role. Network traffic
that is allowed by the firewall is examined by the IDS, as shown in Fig. 1. The IDS
searches for signatures of network attacks. When such symptoms are detected,
the system administrators can be notified. The logs of the passive IDS can be
used to strengthen the active firewall. By using an IDS, additional defenses can
be set up against threats like access of unauthorised clients or servers, Trojan
horses, viruses, policy violations, SQL injections or Distributed Denial of Service
(DDoS) attacks [35]. An IDS could also be placed in the local network to detect
potential malicious activities from within the private network. In this work,
we concentrate on network-based intrusion detection systems (NIDSs), which
monitor the traffic in the network, as opposed to host-based intrusion detection
systems (HIDSs) that monitor a specific host. In fact, the IDS in Fig. 1 is an
NIDS. Figure 2 introduces this classification.

A challenge that comes with the design of an NIDS is that it should detect
potential attacks as fast as possible in order to reduce the window of oppor-
tunity for an attack to be exploited. Therefore, this work focuses on NIDSs
that are supported by dedicated hardware accelerators implemented on a Field-
Programmable Gate Array (FPGA). Although with each new FPGA generation,
larger designs can be supported, it is not always trivial to fit an NIDS in the
configurable resources of one FPGA. When the FPGA needs additional external
components, this has a detrimental effect on the processing speed. Moreover, the
larger the utilized configurable resources, the longer it takes to run the toolchain
for each new design. When frequent updates of the NIDS are needed, the redesign
and reconfiguration delay plays an important role.

244 L. Le Jeune et al.

Network-based IDS

Pattern matching Flow Measurement

Intrusion Detection System

Host-based IDS

Machine learning

...

Fig. 2. IDS classification

Although many methods can be used, this work approaches the IDS from
three different angles based on the technique that is used to make a deci-
sion: pattern matching, large flow detection, and machine learning (see Fig. 2).
While related work typically concentrates on only one technique, the contribu-
tion of this paper is that it makes a qualitative comparison between the three
approaches. This allows practitioners to make a decision on which method to
use based on the specific application scenario. The three different approaches
are discussed in Sect. 2, Sect. 3, and Sect. 4. Subsequently, a number of relevant
properties are compared in Sect. 5 and the work is concluded in Sect. 6.

2 Pattern Matching-Based Network Intrusion Detection

When a network frame has been captured and has passed the firewall, it is
inspected by the NIDS. An NIDS that follows the pattern matching approach
then searches for signatures in the frame that belong to known network attacks in
an extensive database. This database is generated (and maintained) by security
engineers and contains a long list of rules. The number of rules can be as high
as hundreds of thousands [54]. An example of a rule could be, for example,
that an alarm should be triggered if network frames arrive, destined for port
number 80 (which is the default port for an HTTP server). This rule could have
been added because the policy states that only HTTPS traffic is allowed (which
uses port 443).

Because of the large amount of rules that need to be verified, it becomes
infeasible to linearly go over all of them. The main software suite that serves
IDS or IDPS is Snort1. Other available systems include Zeek2 (formerly known
as Bro) and Suricata3. In Snort, the comparison with the active rule-set is done
through string matching and/or regular expression (RegEx) string matching.
Wang et al. published Hyperscan [70] which is a software-library to facilitate
both. FPGA architectures for pattern matching-based NIDS are based on three
different approaches: deterministic solutions, non-deterministic finite automata,
and probabilistic architectures.

1 https://www.snort.org/.
2 https://zeek.org/.
3 https://suricata.io/.

https://www.snort.org/
https://zeek.org/
https://suricata.io/

SoK - Network Intrusion Detection on FPGA 245

Deterministic Solutions for Pattern Matching: Zhao et al. present the
IDS/IPS Pigasus in [78]. They devise Pigasus as an FPGA-first implementation
where the FPGA is not a co-processor to assist the main processor (which is
doing the heavy lifting), but where the FPGA executes the majority of the
processing. Pigasus can support a 100 Gbps network speed and consumes 38×
less power than a CPU-first implementation. In their work, the authors present
an FPGA implementation on an Intel FPGA.

Kang et al. presented in 2019 an FPGA-based implementation of a rule-
based IDS [29]. This work is based on a ‘whitelist’ that can hold up to 256
entries. The ruleset can be updated through an on-chip processor. The latency
is 0.032µs which is mentioned to allow detection even before the complete packet
has arrived.

Non-deterministic Finite Automata for Pattern Matching: Software
IDSs heavily lean on the power of RegExs to provide flexible and high-
performance searches. Unfortunately, checking RegExs on FPGAs is not straight-
forward. Luinaud et al. overcome the implementation challenge by using the
reconfigurable nature of FPGAs [42]. This is achieved by using Non-deterministic
Finite Automata (NFA), which is an approach to implement Finite State
Machines (FSMs). In contrast with DFA (Deterministic Finite Automata), NFA
can result in a different output state for a given input state and a set of inputs.
Luinaud et al. use an intermediate layer on top of the classical reconfigurable
fabric. Through this they are able to implement NFAs.

In [14], Ceška et al. implement resource-efficient RegEx matching by approx-
imately reducing NFAs based on the probabilistic distance between an automa-
ton and its reduced counterpart. They propose heuristics to approximate this
reduction, using a probabilistic model of the network traffic. Using this approach
allows for significantly reducing automata while limiting the resulting error. As
a result, they are able to accelerate the detection of Snort rules for 100 Gbps.
Moreover, in [15], the authors implement multiple stages of over-approximating
NFAs to push the possible throughput even further. Consider the traffic profile
of the local networking environment they once again reducing the NFAs to limit
the impact on accuracy. With their resulting multistage hardware accelerators,
they are able to process traffic of up to 400 Gbps for some Snort modules.

Probabilistic Architectures for Pattern Matching: The most commonly
used architectures for implementing of pattern matching algorithms on hardware
are Bloom filters [12], content addressable memories (CAM), and ternary con-
tent addressable memories (TCAM) [2]. Even though CAMs and TCAMs are
mighty accurate, disadvantages such as high cost per bit, storage inefficiency,
limited scalability to long input keys, and large memory overhead put CAMs
and TCAMs on the back foot [2]. In bloom filters, the length of the string has
no effect on the memory requirements and the query time is not affected by the
number of strings in the database. These advantages give a significant boost to
bloom filters when it comes to hardware. These properties hold the same for
other probabilistic lookup architectures such as Cuckoo filters [23] too.

246 L. Le Jeune et al.

Numerous hardware-focused researches on the implementation of signature-
based IDS using deep packet inspection (DPI) and prefix matching schemes
employ bloom filters as the main component. Dharmapurikar et al. [19] pro-
posed a DPI system using parallel bloom filters, which employs a set of parallel
bloom filters where each bloom filter contains predefined signature of a particular
length. Considering the fact that there could be false positives, an analyzer based
on a deterministic string matching algorithm, followed by the set of bloom filters
ensures that false positives are eliminated. However, these analyzer units are slow
and would affect the throughput when the false positive rates are high. Artan
and Chao [9] proposed a chain heuristic method to reduce the false positive rate
of Prefix bloom filters (PBF) without additional memory requirements, hence
reducing the operation of the analyzer. Prefix bloom filters is the term given
to the bloom filters stored with signatures and it used the same set of parallel
bloom filters as in [19]. Additionally, this method also helps to detect signa-
tures distributed over multiple packets, which [19] could not detect. A similar
architecture using counting bloom filters as a system on chip (SoC) implemen-
tation is performed by Harwayne-Gidansky [26]. In this SoC, the operation of
the analyzer part is performed by the PowerPC softcore processor.

Work by Dharmapurikar [20] extend the functionality of [19] to longest prefix
matching (LPM) by employing additional off-chip hash tables. Based on the
match vector from prefix bloom filter outputs, hash table lookups are performed
for matching prefixes. However, this method would result in reduced throughput
because of the multiple off-chip memory accesses. A slight modification to longest
prefix matching using parallel counting bloom filters is put forward by Li [36],
which requires less memory but at the cost of reduced speed. Extended bloom
filter (EBF) proposed by Song and Lockwood [62] is a modified version of bloom
filter for string matching. Each bucket in the bloom filter consists of 3 fields,
hit-bit, a counter, and a pointer. Hit-bit is the same as in bloom filters whereas
counter field is used to accelerate the matching process and pointer points to
the signature storage location in the off-chip memory. In order to limit the false
positive rate, either the number of EBF buckets or number of hash functions
must be increased, which increases the memory consumption. The pointer field is
11-bits, which also adds to the high memory consumption compared to standard
bloom filters. The use of off-chip memory in EBF also decreases the throughput.

Most of the deep packet inspection/string matching approaches based on
bloom filters are static and also many of the techniques do suffer from a low
throughput. Kefu et al. [30] proposed a counting bloom filter based architec-
ture with two pipeline stages, fast and slow, on FPGA. The fast pipeline stage
consisting of parallel counting bloom filter engines which is very much similar
to [19], and the slow pipeline consists of a dynamic pattern matching algorithm.
The fast pipeline ensures fast dynamic query and a high throughput whereas
the slow pipeline validates the suspicious matches from the fast pipeline and at
the same time updates the rule sets dynamically at run-time. Dharmapurikar
and Lockwood [21] proposed another approach to improve the throughput by
minimising the off-chip memory usage. In this work, prefix bloom filters are

SoK - Network Intrusion Detection on FPGA 247

implemented in on-chip memory and hash tables in off-chip memory. The hash
table lookup is performed only when there is a match in the bloom filters. This
drastically reduces the off-chip memory access time and hence the throughput is
improved. Aggregated bloom filter (AGF) [10] is a completely different approach
than the parallel bloom filters. In AGF, each query is serialized into a queue and
multiple queries can be performed simultaneously by one bloom filter, unlike
parallel bloom filters where it can perform only one query at a time. Al-Dalky
et al. [3] employed the NetFPGA as a hardware line of defense to accelerate
the Snort NIDS. A bloom filter is used for matching the Snort rules and the
most frequently triggered rules are dynamically offloaded to the NetFPGA. The
NetFPGA replaces the Ethernet card and for every new incoming packet, the
packet is passed to the slow Snort IDS module only if no matches are found
in the NetFPGA. This minimizes the processing burden on the Snort IDS and
improves the processing rate.

Even though not entirely specific to intrusion detection, there are numer-
ous works available presenting the improvements of bloom filters for pattern
matching applications on FPGA. The work by Wada [69] presents an FPGA
implementation using UltraRAMs and rolling hash functions, providing a signif-
icant boost in performance. A sublinear time string matching algorithm using
bloom filters is presented by Lin et al. [37] which allows skipping characters
which are not matching, and proposed a bad-block heuristic to handover verifi-
cation job to a verification module. An approach to improve the throughput of
bloom filters on hardware is presented by Sateesan et al. [56], which showcases a
high-throughput implementation of bloom filter having a single memory access
and eliminates the disadvantages of hashing for bloom filters. Other than bloom
filters, a few researches are available based on cuckoo filters. Works by His-
nawi and Ahmadi [4] which implements deep packet inspection system on CPU
using cuckoo filters by storing the rule signatures on the filter, and the work by
Ho [27] which proposes a deep packet inspection system on graphics processing
units employing a pattern matching scheme on cuckoo filters provides showcases
improved performance.

3 Flow Measurement-Based Network Intrusion Detection

With the emergence of high-speed networks and devices, flow measurement
has become an important research challenge than ever before [22]. Real-time
monitoring and storage of enormous amount of data pose the need of huge
amount of resources and memory, which makes the implementation practi-
cally impossible and even more difficult on hardware. There has been numer-
ous approaches to alleviate the complexities in flow measurements. Sampling
based approaches [16,60] were commonly employed in many of the networking
systems, which helped in significantly reducing the memory consumption com-
pared to exact measurement approaches. Even though sampling techniques do
achieve memory reduction, it has become obsolete with high-speed networks, and
recent studies have pointed out the remarkable reduction in accuracy and loss

248 L. Le Jeune et al.

of information caused by high sampling [39]. The proposal of an approximate
counting algorithm in 1978 by Robert Morris [43] give rise to an alternate count-
ing technique in database and networking applications. Along with approximate
counting, the introduction of probabilistic counting algorithms based on hash
tables [24] helped in significantly reducing the counting overhead while allowing
a small error in accuracy. Sketches [17,39,74] in general significantly reduced the
memory overhead of measurement and flow record generation tasks. An in-depth
study of the role of sketches for traffic measurement is presented by Zhou in [79].

Sketch algorithms [74] and works employing sketches [72] have shown already
that sketch based traffic monitoring schemes can deliver high throughput on
FPGA. Work by Wellem et al. [72] employed a sketch data structure to extract
the traffic features and the sketch-based monitoring part is implemented on a
multi-core CPU. The hashing, bloom-filter based lookup and flow tables are
implemented on the FPGA. The system is able to process a packet in every
clock cycle at 210 MHz and is able to deliver a throughput of 53 Gbps assum-
ing a minimum packet size of 64 bytes on a Virtex-5 platform. Approximation
approaches such as self adaptive (SA) counters [73] on sketches for per-flow mea-
surement proved to be effective reducing the memory footprint, but SA counters
seem to be too complex for hardware. A more hardware efficient method to
replace exact counting with approximate counting is proposed by Sateesan et
al. [57]. This work proposes approximate CM ((A-CM) sketch and showed that
the memory overhead can be reduced to half for CM sketch implementation and
a high throughput can be obtained even without pipelining. With pipelining, A-
CM sketch of width w= 216 and depth d= 4 can process a packet in every clock
cycle at 454 MHz to achieve a throuhput of 233 Gbps on a Xilinx ultrascale+
device. Schweller et al. [59] proposes a reversible sketch architecture for traffic
monitoring and change detection. Sketches in general are not reversible, which
means we cannot track down flows having a large change estimate. This paper
by Schweller presents reversible sketches with reverse hashing algorithms that
provide an efficient way to network traffic monitoring for change detection. The
FPGA implementation is able to produce a throughput of 16 Gbps on a virtex
2000E FPGA.

An intrusion detection model on FPGA using sketch-based feature extrac-
tion modules (FEM) is proposed by Das et al. [18]. The FEM is associated with
an anomaly detection mechanism using principal component analysis (PCA).
FEM summerizes the network behaviour and the PCA helps for detecting out-
liers. The FPGA implementations are performed on a Virtex-II device. The
FEM implementation shows a throughput of 23.82 Gbps at 216 MHz with an
accuracy of 97.61% for a sketch width of 2048 and the number of hash func-
tions h= 4. But with increasing depth, the throughput and frequency decreases.
Feature extraction modules and traffic classifiers also play a vital role in the net-
work intrusion detection systems. Sketches have been the most hardware-friendly
architecture for in-line feature extraction and classification applications. Similar
to the work by Das et al. [18], another high speed feature extraction module
using feature sketches is presented by Pati et al. [52] and the implementation on

SoK - Network Intrusion Detection on FPGA 249

virtex-II fpga was able to produce a maximum throughput of 3.32 Gbps. Tong
and Prasanna [65] proposed a method for anomaly detection on sketches. A
generic architecture to accelerate sketches is proposed in this work and the anal-
ysis is performed on Count-Min (CM) sketch and K-ary sketch. The main design
goal of this work is to enhance the throughput by parallel and pipelined combina-
tions of components. In online network anomaly detection, the CM sketch serves
the purpose of online heavy hitter detection and K-ary sketch performs the online
change detection. Keeping the width of the sketch w= 216 and depth d= 5, the
implementation of the sketch acceleration on a virtex ultrascale xcvu440 plat-
form leverages a throughput of 159 Gbps for K-ary sketch and 155 Gbps for CM
sketch, which is lower only to the implementation in [57]. Lai et al. [33] propose
a work on sketch-based DDoS detection on the NetFPGA SUME platform. In
this work, the complex and time consuming shannon entropy computations are
pre-computed and stored in lookup tables on the FPGA, which considerably
reduce the latency and is able to achieve a throughput of 40 Gbps.

Detection of heavy-hitters is very much relevant for DDoS, anomaly and
intrusion detection. Tong and Prasanna [64] proposed an algorithm for an online
heavy-hitter detection using CM sketch. With pipelining and parallel computing
engines to accelerate the sketch, this architecture was able to achieve a through-
put of 118 Gbps on a virtex-7 platform. Heavy hitter detection on FPGA using a
CM-CU sketch is proposed by Saavedra [55], where the advantage with CM-CU
algorithm is that the memory requirement is small and only a 2-stage pipeline
is required for the update operation. This is somewhat advantageous than [65]
because the deep-pipeline requires complex hazard detection and data forward-
ing unit. When running at 400 MHz, the CM-CU architecture of width w= 214

and depth d= 4 can achieve throughput of 128 Gbps with no false positives on
a Kintex-7 XC7K325T platform. Not many works on FPGA are targeted for
Terabit Ethernet and Zazo et al. [76] presents a heavy hitter detection architec-
ture on 100 GbE links on a single FPGA. The detection architecture is based on
Count Sketch (CS) and this work take advantage of the available 100 G Ethernet
subsystem on Xilinx Ultrascale devices. The main components in this design are
the CS sketch and a priority queue (PQ), where the CS sketch populates the PQ
and PQ keeps track of the most active flows. The memory requirement of the
design is so low that both the CS sketch and PQ are able to fit in the on-chip
BRAM. The implementation also achieves a frequency of 322 MHz at 100 Gbps
line-rate. Most of the recent works like LOFT [58] for detecting overuse flows and
Jaqen [40] for volumetric DDoS attack detection also underlines the capability
of sketches on hardware to support processing at line-rate for Terabit Ethernet.

4 Machine Learning-Based Network Intrusion Detection

Instead of defining rules to detect intrusions, it is possible to use learning
algorithms. Before considering FPGA implementations of such approaches in
Sect. 4.2 through 4.4, we will first start by providing a brief introduction to
machine learning for network intrusion detection in the next section.

250 L. Le Jeune et al.

4.1 Machine Learning for Network Intrusion Detection

In a machine learning-based network intrusion detection system, a machine learn-
ing algorithm is responsible for deciding what network traffic is malicious. Con-
cretely, the system is able to use specific features as input for a specific algorithm
that as a result differentiates between benign traffic and attacks. While not nec-
essarily new, this intrusion detection method remains challenging and is subject
to continuous research. Initially, the detection algorithms mainly comprised tra-
ditional approaches such as Support Vector Machines (SVM) [5,6,32], decision
trees (DT) [53,77] or simple neural networks (ANN) [41,45]. With the advent
of Deep Learning (DL), larger and complexer architectures such as Convolu-
tional Neural Networks (CNN), Long Short-Term Memory (LSTM) or autoen-
coders (AE) have become applicable for network intrusion detection. Some recent
examples include [31,38,71]. Those learning algorithms are trained on datasets,
usually publicly available, that present extracted traffic traces and/or features
alongside their corresponding labels. Some frequently used examples include
KDD99 [1], NSL-KDD [63], UNSW-NB15 [44] and CICIDS2017 [61]. While some
datasets are outdated or consist of simulated traffic, they at least provide a com-
mon ground for comparison. Besides using published datasets, authors sometimes
opt to instead use a custom dataset by combining other datasets [75] or using a
custom testbed [25]. As these datasets are usually not available to other users,
they can complicate comparison between different approaches.

The vast majority of research into machine learning for network intrusion
detection however is limited to the design of software algorithms for improved
detection of attacks through optimal feature and algorithm selection: Feature
extraction and selection techniques are explored to obtain the features that best
allow for distinguishing between normal and malicious traffic, while different
machine learning models are investigated to optimally use the resulting features
for decision making. Although this focus on software improvement is evidently
important, it lacks consideration for the eventual implementation down the line.
The resulting systems are often very resource intensive and have no innate sup-
port for feature extraction from raw network traffic. A complete NIDS should be
able to interface with traffic in a network whilst consuming reasonable resources
and returning feedback at an adequate rate. This is increasingly challenging as
network bandwidths are ever increasing. Therefore, we investigate FPGA imple-
mentations of machine learning-based network intrusion detection systems as
well as their capabilities and resource requirements. Section 4.2 considers tradi-
tional machine learning algorithms, while Sect. 4.3 lists current Deep Learning
(DL) implementations on FPGA. Finally, Table 1 provides an overview of all
discussed architectures with various metrics for comparison, which we will also
discuss in Sect. 4.4.

4.2 Traditional Machine Learning Algorithms on FPGA

When it comes to traditional machine learning algorithms, it is possible to dif-
ferentiate between (shallow) neural network implementations and other imple-
mentations. While neural networks use calculations that are very similar to the

SoK - Network Intrusion Detection on FPGA 251

calculations used in DL networks, other algorithms such as k-means clustering
incorporate a different way to turn the provided input into a classification. Before
moving on to neural networks, we will therefore first consider other approaches.

One of the earliest machine-learning based network intrusion detection sys-
tems on FPGA is provided by Das et al. [18] in 2008. They introduce a new
feature extraction module (FEM) to summarize network behaviour, the output
of which is fed to a Principal Component Analysis (PCA) to detect anomalies.
The FEM first extracts relevant information from the traffic flom by updat-
ing Feature Sketches that track various properties. Retrieving values from those
sketches produces the features than can be processed in the PCA. Anomalies are
then finally detected by considering the deviation from the mean of the normal
data set, taking into account both the most and the least significant principal
components. The authors report a Detection Rate (also known as recall) of 99%
with a False Alarm Rate of 1.95% on samples from the KDDCup1999 dataset.
As they manage to combine this with a throughput of 23.76 Gbps and a latency
of 0.5 µs, the resulting system is both accurate and fast.

Maciel et al. [8] use a modified version of the k-means clustering algorithm,
namely k-modes, that can deal with categorical data of the NSL-KDD dataset.
For comparison, they implemented integer and floating-point alternatives for
k-means as well, running the three different versions on different features (coun-
ters, percentages or categorical features). All three approaches obtain significant
improvements over their CPU counterparts, both in number of clock cycles uses
as well as in energy consumption. Moreover, of the three approaches, the k-modes
algorithm on categorical data clearly outperforms the integer and floating-point
alternatives. The authors however do not report the actual learning performance
in terms of accuracy, or any other alternative metric.

Rather than k-means, Gordon et al. [25] use the k-nearest neighbours algo-
rithm (KNN) to classify samples of a custom dataset on an FPGA. They propose
a new sorting algorithm K-Min Sort to use during classification, which reduces
resource overhead when compared to alternatives such as Bubblesort. For a train-
ing set size of 50%, they obtain an accuracy of 95% and a latency of 3.913 ms
while using a limited amount of hardware.

Although alternative learning methods such as k-means and KNN are used in
some amount, the majority of learning architectures comprises neural networks:
Structures consisting of a least one hidden layer with neurons to process input
data. While software solutions more often use large, multi-layer neural networks,
most neural networks for network intrusion detection on FPGA only consist of
one hidden layer.

Murovič et al. set out to train and synthesize hardwired Binary Neural Net-
works (BNN) [46] for real-time and high-speed applications on FPGA. After
training a 1-layer BNN of 100 neurons on UNSW-NB15 and obtaining an accu-
racy of 90.74%, they built a parallel Verilog implementation in hardware that
has a latency of only 19.6 ns. In [47] they propose a method to more efficiently
implement BNN architectures in hardware. They replace the XNOR-popcount
operation of binarized neurons with popcount operations preceded by precal-
culated masking. As a result, they reduce the hardware requirements for BNN

252 L. Le Jeune et al.

layer computations. They also inclde a tool to map software BNNs to hardware.
When reaccelerating their previous 1-layer network using this novel approach,
they report an improvement of 38.1% when compared to their previous results.
While their latency has slightly increased, the power consumption is further
reduced to 0.72 W. In [48] they once again propose improved hardware accelera-
tion methods, and they now train models for both NSL-KDD and UNSW-NB15.
For their hardware, they introduce a ripple architecture based on the difference
between neighbouring neurons in a layer. Moreover, as the hamming distance
travelled when passing through a layer is correlated to the total number of
summed bits, the authors use a genetic algorithm to minimize this distance.
Using this approach, they manage to once improve upon their previous work.
While the accuracy on NSL-KDD is rather limited at 77.77%, the hardware out-
performs other work such as [8,28]. They also achieve very high throughputs
of 256 Gbps for UNSW-NB15 and 288 Gbps for CICIDS2017 when considering
packets of 576 bytes, which proves their architecture is very suited for high-speed
applications.

Iannou et al. [28] implement a reconfigurable neural network on FPGA, that
allows for updating coefficients at runtime. After selecting 29 input features
from NSL-KDD, one-hot encoding them as necessary, they devise a model with
110 inputs, 29 hidden neurons and 2 outputs. They implement the model on
a Xilinx Zynq Z-7020 FPGA using High-Level Synthesis (HLS), utilizing the
included ARM to control the accelerator. Once the model is trained to reach
an accuracy of 80.52%, they report a latency of 9.02 ms for the implemented
accelerator at a clock frequency of 76 MHz.

Ngo et al. [50] design a decision tree and a neural network architecture on
FPGA to classify NSL-KDD samples. They extract six features from input pack-
ets, and feed these features to the specific classifiers. While the neural network
is very limited in size, using 6 inputs, two layers of 2 neurons and an output
layer, it also features hardware for updating the weights using backpropagation.
As the classifiers use 32-bit floating point precision arithmetic, the resource con-
sumption is considerable. For packets of at least 512 bytes, the system man-
ages a throughput of about 9.5 Gbps, which quickly collapses as the packet size
decreases in the case of the neural network. However, the decision tree retains a
throughput of near line-speed even for 64-byte packets. In [49], the same authors
propose network intrusion engines to secure Software Defined Networking for-
warding devices, implementing a neural network in an FPGA after training it
on a GPU. A controller presents 10 features to a neural network with 10 input
units, one hidden layer with 4 neurons and an output layer to perform classifi-
cation. The model reaches a throughput of 4.84Gbps with a recall of 99.01% on
a custom dataset.

Somewhat different from the other research, Tran et al. [66] decide to split
the machine learning challenge in two seperate parts: They implement a feature
extraction solution on an FPGA, but use a Graphical Processing Unit (GPU) to
then perform neural network-based anomaly detection. On the FPGA, a packet
decoder provides headers to the FEM, from which 10 features are extracted
and normalized. An intermediate CPU facilitaties the transfer of normalized
data from FPGA to GPU. Although the utilized FPGA supports up to 10Gbps,

SoK - Network Intrusion Detection on FPGA 253

the bandwidth is limited to 200 Mbps due to hashing collisions when storing
statistical information in memory. The authors report 80.42% accuracy on a
custom dataset.

4.3 Deep Learning on FPGA

Contrary to traditional learning methods and shallow neural networks, DL incor-
porates neural networks with various layers to perform more complex computa-
tions. While this increase in complexity has more potential with regards to classi-
fication performance, it comes paired with an increased cost to FPGA resources:
Larger data structures and an increased number of computations will have to be
dealt with to implement DL on FPGA.

Alrawashdeh et al. [7] accelerate the training and inference of a Deep Belief
Network (DBN) on FPGA. Their design is not only able to detect intrusions in
the NSL-KDD dataset, but also to (re)train the model while still online. The
3-layer DBN reuses the same hardware for each Restricted Boltzmann Machine
(RBM) layer to limit hardware usage. Moreover, they use dynamic fixed-point
arithmetic and limit the bit width of the second and third RBMs to 8 bits
while maintaining 16 bits for the first layer. This results in a 30% resource
usage improvement in hardware over using just 16-bit fixed point arithmetic.
In addition, using an approximation function to replace the sigmoid activation
function constitutes another optimization. They then evaluate, among others,
on the NSL-KDD dataset, obtaining an accuracy of 94.66%, about 1.5% worse
than the corresponding software implementation.

Umuroglu et al. [67] accelerate Deep Neural Networks (DNN) on an FPGA
through their LogicNets methodology. This methodology is based on representing
neurons in a DNN as truth tables on an FPGA, and allows for training the DNNs
in PyTorch after which they can be translated to hardware. Among potential
evaluation scenarios, they select network intrusion detection with the UNSW-
NB15 dataset at very high bandwidths. They report an accuracy of 91.30% and
a latency of 10.5 ns when accelerating a 5-layer DNN with 593×256×128×128
neurons.

Le Jeune et al. [34] use two frameworks to quantize a convolutional neural
network (CNN) and translate it to HLS. After using quantization aware train-
ing in Brevitas [51] to quantize their model’s weights and activations to 2 bits,
FINN [13,68] provides all the required steps to turn the resulting software model
to hardware. Training on the CICIDS2017 dataset, they obtained an accuracy of
99.41%, with their reported hardware implementation obtaining a throughput
of 90Mbps. While their throughput is significantly smaller than that of related
work, the corresponding model complexity and classification performance is con-
siderably higher than that of any other related work.

4.4 Discussion

The overview in Table 1 shows that FPGA implementations of machine learning
algorithms for network intrusion detection vary greatly. Some implementations

254 L. Le Jeune et al.

Table 1. Overview of different FPGA implementations of machine learning algorithms
for network intrusion detection. The columns feature, from left to right, the reference,
the year of publishing, the used algorithm, the used dataset, the achieved accuracy,
the supported network bandwidth, the model latency, the number of Lookup Tables,
the number of registers, the power and the clock frequency.

Ref Year Algo Dataset Acc(%) BW Latency LUTs FF P(W) F(MHz)

[18] 2008 PCA KDD99 23.76Gbps 0.5µs 93

[66] 2017 ANN Custom 80.42 200Mbps 58561 71860 102

[7] 2017 DBN NSL-KDD 94.3 8µs 121127 169290

[50] 2019 ANN NSL-KDD 87.30 9.58Gbps 12ms 107036 117078 104

[50] 2019 DT NSL-KDD 95.10 9.58Gbps 4ms 67552 74059 100

[46] 2019 ANN UNSW-NB15 90.74 19.6 ns 51353 0 1.57

[28] 2019 ANN NSL-KDD 80.52 9.0ms 26463 56478 76

[8] 2020 k-means NSL-KDD 1.2ms 31864 1.50 50

[49] 2020 ANN Custom 4.84Gbps 99890 122085 11.00 100

[47] 2020 ANN UNSW-NB15 90.74 23.5 ns 26879 0 0.72 43

[67] 2020 DNN UNSW-NB15 91.3 10.5 ns 15949 1274 471

[48] 2021 ANN NSL-KDD 77.77 288Gbps 16 ns 26879 0 0.57

[48] 2021 ANN UNSW-NB15 92.04 256Gbps 19 ns 26879 0 0.62

[25] 2021 KNN Custom 95 3.9ms 3663 3886

[34] 2021 CNN CICIDS2017 99.41 90Mbps 26615 27450 100

reach bandwidths of over 250 Gbps, some occupy a limited area, and some retain
a very high accuracy. In the ideal NIDS, all these factors should be present,
but the current situation is that trade-offs have to be made: It is possible to
reach blazing speeds using techniques such as those demonstrated by Murovič et
al. [48] or in LogicNets [67], but this severely limits the computational size of the
models, both in number of neurons and layers as well as in arithmetic. Binary
neural networks are the pinnacle of such an approach. On the other hand, more
expensive algorithms such as the DBN [7] or CNN [34] increase the accuracy,
and therefore the reliability of the resulting NIDS. This is also essential, as
inaccurate NIDSs will just flood a system administrator with false alarms or not
detect actual attacks. Future machine learning-based NIDS implementations on
FPGA will have to somehow compromise between these seemingly opposite goals
of resource efficiency and accuracy.

5 Main Takeaways

In this section, we compare the properties of the techniques covered in this paper
as well as the limitations and open challenges in the state of the art.

5.1 Properties of the Compared NIDS Approaches

We will now compare the capabilities of pattern matching, large flow detec-
tion and machine learning through four key properties: detection capabilities,

SoK - Network Intrusion Detection on FPGA 255

expert knowledge, detection speed and hardware efficiency. To help practition-
ers, Table 2 summarizes these properties and their effect on the three discussed
approaches.

Detection Capabilities. The detection capabilities of an NIDS comprise both
the range of detectable attacks, as well as the detection accuracy for those
attacks. For pattern matching-based detection this is quite clear: They detect
all attacks that are effectively described in their ruleset. Traffic either violates a
rule, or it does not. Attacks that however are not incorporated in the ruleset will
not trigger any alarm and remain unnoticed. Flow measurement approaches are
more dynamic than pattern matching techniques, but probabilistic measurement
could cause false positives and this in fact would reduce the detection accuracy.
Machine learning systems, in contrast, can potentially detect a wide range of
attacks. Not only can they detect whatever is present in a training dataset,
they also have the potential to detect attacks that are unknown if those attacks
deviate from the trained model. The downside to machine learning is that the
resulting systems often produce myriad errors, both in the form of unseen attacks
as well as false alarms. Such false alarms can also be dangerous, as they might
form a distraction for actual attacks.

Expert Knowledge. Different approaches to NIDS also result in different
requirements of expert knowledge. Pattern matching-based approaches rely on
rules, which have to be defined by experts. Without those rules, the system
is useless. Moreover, whenever a new attack is discovered, a new rule must be
made that effectively detects the attack. Machine learning on the other hand is
based on a dataset, which the training algorithm uses to create its own rules
internally. This removes the need for experts defining the precise characteristics
of an attack. Updating a machine learning model can be done through updat-
ing its weights, for example by retraining. Flow measurement-based approaches
fall somewhat in the middle, where the rules not necessarily have to be defined
by the experts, but setting the parameters such as the threshold bandwidth,
measurement period, and memory sizes would require high level of expertise.

Detection Speed. Attack detection does not only need to be accurate, it also
needs to be fast. Fast detection not only facilitates swift response, it also helps
in processing larger amounts of data. Generally, pattern-matching approaches
can be very quick, with sub-microsecond latencies possible. However, the speed
is tied to the size of the ruleset: As a system wants to check against more rules, it
becomes harder to maintain speed. This also goes for the throughput, which can
reach up to 400 Gbps for limited rulesets. However, in probabilistic architectures
the size of the ruleset does not affect the detection speed. In machine learning,
the speed is tied to the model size rather than the number of rules. As model
types and sizes vary wildly, so does the detection speed, with measurements both
in the millisecond and the nanosecond range (see Table 1). While extremely fast

256 L. Le Jeune et al.

models are certainly possible, these are often very limited in size, bit-width and
accuracy. The most accurate models are therefore usually significantly slower and
only support a limited bandwidth. The speed of online flow measurement-based
systems is largely dependant on the speed of the measurement unit. Keeping the
measurement unit within the on-chip memory of the FPGA reduces the latency
to a minimum. However, with larger measurement period and higher memory
requirement, offloading the storage to external memory significantly reduces the
detection speed and even causes the monitoring to be performed offline.

Hardware Efficiency. The trade-offs that present themselves while consid-
ering detection speed, are similarly present when regarding hardware resource
consumption. For pattern matching-based approaches, an increase in ruleset size
implies an increase in resource consumption. In machine learning, the resources
used depend strongly on the model used, considering the model size and the com-
putational complexity. Once again, more accurate models will usually require
more resources. It is however also possible to design models that are both
accurate and (relatively) cheap in resource usage, but that might result in
an increased latency instead. Similarly, the resource/memory requirement for
measurement-based approaches is dependant on parameters like measurement
period, traffic-rate, and accuracy.

Table 2. Summary of the most important properties of all three approaches

Pattern matching Flow measurement Machine learning

Detection capabilities

• Coverage ++ + +++

• Accuracy +++ ++ +

Expert knowledge

• Ease of maintenance + ++ +++

• Ease of design +++ ++ +

Detection speed +++ ++ +

Hardware efficiency +++ ++ +

5.2 Limitations and Challenges of State-of-the-Art NIDSs

Encrypted Traffic. In the previous sections, different approaches to implement
(parts of) IDS on FPGAs are discussed. One important remark to make is that,
regardless of the approach, it is assumed that all network data are available to
the IDS in plaintext. When connections use cryptography to encrypt the payload
of network frames, pattern matching of this payload is infeasible. Depending on
what type of encryption is used (e.g. IPSec in transport or tunnel mode or the

SoK - Network Intrusion Detection on FPGA 257

new HTTP/3 (with QUIC4)) a number of protocol fields, or even entire proto-
cols headers, are no longer available for inspection. With new secure Internet
Architectures like SCION [11], the packet headers of the available metadata also
differ from what security experts are used to.

External Components. Most of the approaches that are mentioned earlier
require a substantial amount of resources, and mainly memory resources. Going
off-chip to external memory would cost too much time to achieve the required
response times. It is therefore important to stay within the resources of one
FPGA.

Update Speed. As network intrusion detection implies updates and changes
at a quick pace, changes to the FPGA implementations also need to be fast. One
way of speeding up the update process is through improving the FPGA toolchain.
Another way is to use hierarchical or partial FPGA design and configuration.

6 Conclusion

Network intrusion detection systems on FPGA deal with the growing need for
real-time intrusion detection in high-bandwidth networks. This paper discusses
three important approaches, namely pattern matching, flow measurement and
machine learning. An overview of both the employed techniques and the FPGA
architectures is given, and the different methods are compared in terms of detec-
tion capabilities, expert knowledge, detection speed and hardware resources.
Besides describing the clear potential of the different approaches, this paper also
discusses the shortcomings and open challenges that need to be solved in order
to be ready for the next generation of intrusion detection systems in high-speed
networks.

Acknowledgements. This work is supported by CORNET and funded by VLAIO
under grant number HBC.2018.0491. This work is also supported by the ESCALATE
project, funded by FWO and SNSF (G0E0719N), and by Cybersecurity Initiative Flan-
ders (VR20192203).

References

1. KDD Cup 1999 Data (1999). http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html

2. AbuHmed, T., Mohaisen, A., Nyang, D.: A survey on deep packet inspection for
intrusion detection systems. arXiv preprint arXiv:0803.0037 (2008)

3. Al-Dalky, R., Salah, K., Otrok, H., Al-Qutayri, M.: Accelerating snort NIDS using
NetFPGA-based Bloom filter. In: 2014 International Wireless Communications and
Mobile Computing Conference (IWCMC). IEEE (2014)

4 https://datatracker.ietf.org/doc/html/rfc9000.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://arxiv.org/abs/0803.0037
https://datatracker.ietf.org/doc/html/rfc9000

258 L. Le Jeune et al.

4. Al-Hisnawi, M., Ahmadi, M.: Deep packet inspection using cuckoo filter. In: 2017
NTICT. IEEE (2017)

5. Al-Qatf, M., Lasheng, Y., Al-Habib, M., Al-Sabahi, K.: Deep learning approach
combining sparse autoencoder with SVM for network intrusion detection. IEEE
Access 6, 52843–52856 (2018)

6. Al-Yaseen, W.L., Othman, Z.A., Nazri, M.Z.A.: Multi-level hybrid support vector
machine and extreme learning machine based on modified K-means for intrusion
detection system. Expert Syst. Appl. 67, 296–303 (2017)

7. Alrawashdeh, K., Purdy, C.: Reducing calculation requirements in FPGA imple-
mentation of deep learning algorithms for online anomaly intrusion detection. In:
2017 IEEE National Aerospace and Electronics Conference (NAECON) (2017)

8. Maciel, L.A., Souza, M.A., de Freitas, H.C.: Reconfigurable FPGA-based K-
means/K-modes architecture for network intrusion detection. IEEE Trans. Circ.
Syst. II: Express Briefs 67(8), 459–1463 (2020)

9. Artan, N.S., Chao, H.J.: Multi-packet signature detection using prefix bloom filters.
In: GLOBECOM 2005, vol. 3. IEEE (2005)

10. Artan, N.S., Sinkar, K., Patel, J., Chao, H.J.: Aggregated bloom filters for intrusion
detection and prevention hardware. In: IEEE GLOBECOM 2007-IEEE Global
Telecommunications Conference. IEEE (2007)

11. Barrera, D., Chuat, L., Perrig, A., Reischuk, R.M., Szalachowski, P.: The scion
internet architecture. Commun. ACM 60(6), 56–65 (2017)

12. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

13. Blott, M., et al.: FINN-R: an end-to-end deep-learning framework for fast explo-
ration of quantized neural networks. ACM TRETS 11(3), 1–23 (2018)

14. Češka, M., Havlena, V., Hoĺık, L., Lengál, O., Vojnar, T.: Approximate reduction
of finite automata for high-speed network intrusion detection. In: Beyer, Dirk,
Huisman, Marieke (eds.) TACAS 2018. LNCS, vol. 10806, pp. 155–175. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-89963-3 9

15. Ceška, M., et al.: Deep packet inspection in FPGAs via approximate nondeter-
ministic automata. In: 2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM) (2019)

16. CISCO: CISCO IOS NetFlow Version 9 (2015). http://www.cisco.com/c/en/us/
products/ios-nx-os-software/netflow-version-9/index.html

17. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-
min sketch and its applications. J. Algorithms 55(1), 58–75 (2005)

18. Das, A., Nguyen, D., Zambreno, J., Memik, G., Choudhary, A.: An FPGA-based
network intrusion detection architecture. IEEE Trans. Inf. Forensics Secur. 3(1),
118–132 (2008)

19. Dharmapurikar, S., Krishnamurthy, P., Sproull, T., Lockwood, J.: Deep packet
inspection using parallel bloom filters. In: 11th Symposium on High Performance
Interconnects, 2003. Proceedings. IEEE (2003)

20. Dharmapurikar, S., Krishnamurthy, P., Taylor, D.E.: Longest prefix matching using
bloom filters. In: Proceedings of the 2003 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications (2003)

21. Dharmapurikar, S., Lockwood, J.W.: Fast and scalable pattern matching for net-
work intrusion detection systems. IEEE J. Sel. Areas Commun. 24(10), 1781–1792
(2006)

22. Dreger, H., Feldmann, A., Paxson, V., Sommer, R.: Operational experiences with
high-volume network intrusion detection. In: ACM CCS (2004)

https://doi.org/10.1007/978-3-319-89963-3_9
http://www.cisco.com/c/en/us/products/ios-nx-os-software/netflow-version-9/index.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/netflow-version-9/index.html

SoK - Network Intrusion Detection on FPGA 259

23. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.D.: Cuckoo filter: prac-
tically better than bloom. In: Proceedings of the 10th ACM International on Con-
ference on Emerging Networking Experiments and Technologies (2014)

24. Flajolet, P., Martin, G.N.: Probabilistic counting algorithms for data base appli-
cations. J. Comput. Syst. Sci. 31(2), 182–209 (1985)

25. Gordon, H., Park, C., Tushir, B., Liu, Y., Dezfouli, B.: An efficient SDN architec-
ture for smart home security accelerated by FPGA. In: 2021 IEEE International
Symposium on Local and Metropolitan Area Networks (LANMAN) (2021)

26. Harwayne-Gidansky, J., Stefan, D., Dalal, I.: FPGA-based SoC for real-time net-
work intrusion detection using counting Bloom filters. In: IEEE Southeastcon 2009.
IEEE (2009)

27. Ho, T., Cho, S.J., Oh, S.R.: Parallel multiple pattern matching schemes based
on cuckoo filter for deep packet inspection on graphics processing units. IET Inf.
Secur. 12(4), 381–388 (2018)

28. Ioannou, L., Fahmy, S.A.: Network intrusion detection using neural networks on
FPGA SoCs. In: 2019 29th International Conference on Field Programmable Logic
and Applications (FPL) (2019)

29. Kang, J., Kim, T., Park, J.: FPGA-based real-time abnormal packet detector for
critical industrial network. In: 2019 IEEE Symposium on Computers and Commu-
nications (ISCC) (2019)

30. Kefu, X., Deyu, Q., Zhengping, Q., Weiping, Z.: Fast dynamic pattern matching
for deep packet inspection. In: 2008 IEEE ICNSC. IEEE (2008)

31. Khan, M.A.: HCRNNIDS: hybrid convolutional recurrent neural network-based
network intrusion detection system. Processes 9(5), 834 (2021)

32. Kim, D.S., Park, J.S.: Network-based intrusion detection with support vector
machines. In: Kahng, H.-K. (ed.) ICOIN 2003. LNCS, vol. 2662, pp. 747–756.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45235-5 73

33. Lai, Y.K., et al.: Real-time DDoS attack detection using sketch-based entropy esti-
mation on the NetFPGA SUME platform. In: 2020 Asia-Pacific Signal and Infor-
mation Processing Association Annual Summit and Conference (APSIPA ASC).
IEEE (2020)

34. Le Jeune, L., Goedemé, T., Mentens, N.: Towards real-time deep learning-based
network intrusion detection on FPGA. In: ACNS Workshops (2021)

35. Li, C., Li, J., Yang, J., Lin, J.: A novel workload scheduling framework for intrusion
detection system in NFV scenario. Comput. Secur. 106, 102271 (2021)

36. Li, Y.Z.: Memory efficient parallel bloom filters for string matching. In: 2009 Inter-
national Conference on Networks Security, Wireless Communications and Trusted
Computing, vol. 1. IEEE (2009)

37. Lin, P.C., Lin, Y.D., Lai, Y.C., Zheng, Y.J., Lee, T.H.: Realizing a sub-linear time
string-matching algorithm with a hardware accelerator using bloom filters. IEEE
Trans. Very. Large. Scale. Integr. (VLSI) Syst. 17(8), 1008–1020 (2009)

38. Liu, L., Wang, P., Lin, J., Liu, L.: Intrusion detection of imbalanced network traffic
based on machine learning and deep learning. IEEE Access 9, 7550–7563 (2021)

39. Liu, Z., Manousis, A., Vorsanger, G., Sekar, V., Braverman, V.: One sketch to rule
them all: Rethinking network flow monitoring with UnivMon. In: Proceedings of
the ACM Special Interest Group Data Communication (SIGCOMM) (2016)

40. Liu, Z., et al.: Jaqen: a high-performance switch-native approach for detecting
and mitigating volumetric DDoS attacks with programmable switches. In: 30th
(USENIX Security 21) (2021)

https://doi.org/10.1007/978-3-540-45235-5_73

260 L. Le Jeune et al.

41. Lopez-Martin, M., Carro, B., Sanchez-Esguevillas, A., Lloret, J.: Shallow neural
network with kernel approximation for prediction problems in highly demanding
data networks. Expert Syst. Appl. 124, 196–208 (2019)

42. Luinaud, T., Savaria, Y., Langlois, J.P.: An FPGA coarse grained intermediate
fabric for regular expression search. In: GLSVLSI 2017. ACM (2017)

43. Morris, R.: Counting large numbers of events in small registers. ACM Commun.
(1978)

44. Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for network intru-
sion detection systems (UNSW-NB15 network data set). In: 2015 Military Com-
munications and Information Systems Conference (MilCIS) (2015)

45. Mukkamala, S., Janoski, G., Sung, A.: Intrusion detection using neural networks
and support vector machines. In: Proceedings of the 2002 International Joint Con-
ference on Neural Networks. IJCNN 2002 (Cat. No.02CH37290), vol. 2 (2002)

46. Murovič, T., Trost, A.: Massively parallel combinational binary neural networks
for edge processing. Electrotechnical Rev. 86, 47–53 (01 2019)

47. Murovič, T., Trost, A.: Resource-optimized combinational binary neural network
circuits. Microelectron. J. 97, 104724 (2020)

48. Murovič, T., Trost, A.: Genetically optimized massively parallel binary neural net-
works for intrusion detection systems. Comput. Commun. 179, 1–10 (2021)

49. Ngo, D.-M., Pham-Quoc, C., Thinh, T.N.: Heterogeneous hardware-based network
intrusion detection system with multiple approaches for SDN. Mob. Netw. Appl.
25(3), 1178–1192 (2019). https://doi.org/10.1007/s11036-019-01437-x

50. Ngo, D.-M., Tran-Thanh, B., Dang, T., Tran, T., Thinh, T.N., Pham-Quoc, C.:
High-throughput machine learning approaches for network attacks detection on
FPGA. In: Vinh, P.C., Rakib, A. (eds.) ICCASA/ICTCC -2019. LNICST, vol.
298, pp. 47–60. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34365-
1 5

51. Pappalardo, A.: Xilinx/brevitas. https://doi.org/10.5281/zenodo.3333552
52. Pati, S., Narayanan, R., Memik, G., Choudhary, A., Zambreno, J.: Design and

implementation of an FPGA architecture for high-speed network feature extrac-
tion. In: ICFPT. IEEE (2007)

53. Pfahringer, B.: Winning the KDD99 classification cup: bagged boosting. SIGKDD
Explor. Newsl. 1(2), 65–66 (2000)

54. Roh, J.h., Lee, S.k., Son, C.W., Hwang, C., Kang, J., Park, J.: Cyber security
system with FPGA-based network intrusion detector for nuclear power plant. In:
IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Soci-
ety. IEEE (2020)

55. Saavedra, A., Hernández, C., Figueroa, M.: Heavy-hitter detection using a hard-
ware sketch with the countmin-cu algorithm. In: 2018 21st Euromicro Conference
on Digital System Design (DSD). IEEE (2018)

56. Sateesan, A., Vliegen, J., Daemen, J., Mentens, N.: Novel bloom filter algorithms
and architectures for ultra-high-speed network security applications. In: 2020 23rd
Euromicro Conference on Digital System Design (DSD). IEEE (2020)

57. Sateesan, A., Vliegen, J., Scherrer, S., Hsiao, H.C., Perrig, A., Mentens, N.: Speed
records in network flow measurement on FPGA. In: Proceedings of the Interna-
tional Conference on Field-Programmable Logic (FPL) (2021)

58. Scherrer, S., et al.: Low-rate Overuse Flow tracer (LOFT): an efficient and scalable
algorithm for detecting overuse flows. arXiv preprint arXiv:2102.01397 (2021)

59. Schweller, R., et al.: Reversible sketches: enabling monitoring and analysis over
high-speed data streams. IEEE/ACM Trans. Netw. 15(5), 1059–1072 (2007)

https://doi.org/10.1007/s11036-019-01437-x
https://doi.org/10.1007/978-3-030-34365-1_5
https://doi.org/10.1007/978-3-030-34365-1_5
https://doi.org/10.5281/zenodo.3333552
http://arxiv.org/abs/2102.01397

SoK - Network Intrusion Detection on FPGA 261

60. sFlow: Traffic Monitoring using sFlow (2003). http://www.sflow.org/
sFlowOverview.pdf

61. Sharafaldin, I., Lashkari, A.H., Ghorbani, A.: (2018)
62. Song, H., Lockwood, J.W.: Multi-pattern signature matching for hardware network

intrusion detection systems. In: GLOBECOM 2005, vol. 3. IEEE (2005)
63. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the

KDD CUP 99 data set. In: 2009 IEEE Symposium on Computational Intelligence
for Security and Defense Applications (2009)

64. Tong, D., Prasanna, V.: High throughput sketch based online heavy hitter detection
on FPGA. ACM SIGARCH Comput. Architect. News 43(4), 70–75 (2016)

65. Tong, D., Prasanna, V.K.: Sketch acceleration on FPGA and its applications in
network anomaly detection. IEEE TPDS 29(4), 929–942 (2017)

66. Tran, C., Vo, T.N., Thinh, T.N.: HA-IDS: A heterogeneous anomaly-based intru-
sion detection system. In: NAFOSTED NICS 2017 (2017)

67. Umuroglu, Y., Akhauri, Y., Fraser, N.J., Blott, M.: LogicNets: co-designed neural
networks and circuits for extreme-throughput applications. In: FPL 2020 (2020)

68. Umuroglu, Y., et al.: FINN: a framework for fast, scalable binarized neural network
inference. In: Proceedings of the 2017 ACM/SIGDA FPGA. ACM (2017)

69. Wada, T., Matsumura, N., Nakano, K., Ito, Y.: Efficient byte stream pattern test
using bloom filter with rolling hash functions on the FPGA. In: 2018 Sixth CAN-
DAR. IEEE (2018)

70. Wang, X., et al.: Hyperscan: a fast multi-pattern regex matcher for modern CPUs.
In: USENIX NSDI (2019)

71. Wang, Z., Zeng, Y., Liu, Y., Li, D.: Deep belief network integrating improved
kernel-based extreme learning machine for network intrusion detection. IEEE
Access 9, 16062–16091 (2021)

72. Wellem, T., Lai, Y.K., Huang, C.Y., Chung, W.Y.: A hardware-accelerated infras-
tructure for flexible sketch-based network traffic monitoring. In: IEEE 17th HPSR.
IEEE (2016)

73. Yang, T., et al.: A generic technique for sketches to adapt to different counting
ranges. In: IEEE INFOCOM (2019)

74. Yang, T., et al.: Elastic sketch: Adaptive and fast network-wide measurements.
In: Proceedings of the ACM Special Interest Group Data Communication (SIG-
COMM) (2018)

75. Yu, Y., Long, J., Cai, Z.: Session-based network intrusion detection using a deep
learning architecture. In: Torra, V., Narukawa, Y., Honda, A., Inoue, S. (eds.)
MDAI 2017. LNCS (LNAI), vol. 10571, pp. 144–155. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-67422-3 13

76. Zazo, J.F., Lopez-Buedo, S., Ruiz, M., Sutter, G.: A single-FPGA architecture
for detecting heavy hitters in 100 Gbit/s ethernet links. In: 2017 International
Conference on ReConFigurable Computing and FPGAs (ReConFig). IEEE (2017)

77. Zhang, J., Zulkernine, M., Haque, A.: Random-forests-based network intrusion
detection systems. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 38(5),
649–659 (2008)

78. Zhao, Z., Sadok, H., Atre, N., Hoe, J.C., Sekar, V., Sherry, J.: Achieving 100Gbps
intrusion prevention on a single server. In: 14th USENIX OSDI20 (2020)

79. Zhou, Y., Zhang, Y., Ma, C., Chen, S., Odegbile, O.O.: Generalized sketch families
for network traffic measurement. POMACS 3(3), 1–34 (2019). Kindly provide year
of the publication for the Ref. [51]

http://www.sflow.org/sFlowOverview.pdf
http://www.sflow.org/sFlowOverview.pdf
https://doi.org/10.1007/978-3-319-67422-3_13

Author Index

Abedin, Anisul 188

Baksi, Anubhab 81
Bhasin, Shivam 81

Campos, Fabio 104
Chabanne, Hervé 148
Chakraborti, Avik 22
Chatterjee, Ayantika 207
Chatterjee, Subhrojyoti 226
Chatterjee, Urbi 129
Chattopadhyay, Anupam 81, 226
Chattopadhyay, Nandish 226

Daemen, Joan 3
Danger, Jean-Luc 148
Datta, Nilanjan 22
Deb, Suman 81

Erata, Ferhat 188

Goedemé, Toon 242
Guiga, Linda 148

Jain, Mishel 63
Jha, Ashwin 22

Krämer, Juliane 104
Kühne, Ulrich 148
Kumar, Manoj 42

Le Jeune, Laurens 242

Mancillas-López, Cuauhtemoc 22

Mehrdad, Alireza 3
Mella, Silvia 3
Mendelson, Avi 81
Mentens, Nele 242
Morris, Jalil 188
Müller, Marcel 104

Naik, Pushpraj 129
Nandi, Mridul 22
Nnorom Jr., Obi 188

Parbat, Tanusree 207
Perin, Guilherme 168

Rabbani, Md Masoom 242
Raman, Balasubramanian 63
Ravi, Prasanna 81
Rijsdijk, Jorai 168

Sateesan, Arish 242
Singh, Priyanka 63
Szefer, Jakub 188

Vliegen, Jo 242

Wu, Lichao 168

Yadav, Tarun 42

	Preface
	Organization
	Contents
	Symmetric Cryptography
	Computing the Distribution of Differentials over the Non-linear Mapping Chi
	1 Introduction
	2 Preliminary
	2.1 Circular Strings
	2.2 Differential Probability and Restriction Weight
	2.3 Chi Mappings

	3 Number of Differentials in chin with Given Weight
	3.1 Computing N3(L,H,R)
	3.2 Computing N5(L,H,R,Y,X)

	4 Experimental Results
	4.1 257-Bit State as in Subterranean
	4.2 384-Bit State as in Xoodoo
	4.3 400-Bit State as in Keccak-f[400]

	5 Conclusions
	References

	Light-OCB: Parallel Lightweight Authenticated Cipher with Full Security
	1 Introduction
	1.1 Parallel Authenticated Encryption
	1.2 LOCUS-AEAD
	1.3 Our Contribution
	1.4 Applications and Use Cases
	1.5 Light-OCB in DSCI Light-Weight Competition

	2 Preliminaries
	2.1 Notations and Conventions
	2.2 (Ideal) Tweakable Blockcipher
	2.3 Authenticated Encryption in the Ideal Cipher Model
	2.4 Coefficients-H Technique

	3 Specification
	3.1 Light-OCB Mode
	3.2 Features
	3.3 Recommended Instantiation
	3.4 Design Rationale
	3.5 Light-OCB vs LOCUS-AEAD

	4 Security Analysis of Light-OCB
	4.1 Privacy Security of Light-OCB
	4.2 INT-CTXT Security of Light-OCB

	5 Hardware Implementation
	5.1 Clock Cycle Analysis
	5.2 Hardware Architecture
	5.3 Implementation Results
	5.4 Benchmarking

	References

	MILP Based Differential Attack on Round Reduced WARP
	1 Introduction
	2 Description of WARP
	2.1 Encryption Algorithm

	3 Differential Characteristics Search in WARP
	3.1 Differential Cryptanalysis
	3.2 MILP Modeling to Search the Differential Characteristics
	3.3 Differential Characteristics for 18-Round WARP
	3.4 Differential Characteristics for 19-Round WARP

	4 Key Recovery Attack on 21-Round WARP
	4.1 Data Collection
	4.2 Key Recovery
	4.3 Complexity

	5 Conclusion
	Appendices
	A Differential Characteristics (108) of 18-Round WARP with Probability of 2-122

	References

	Post-Quantum Cryptography and Homomorphic Encryption
	SHELBRS: Location-Based Recommendation Services Using Switchable Homomorphic Encryption
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Hilbert Curve
	3.2 Collaborative Filtering (CF) Recommender Based on Co-occurrence Matrix (CM)
	3.3 Partially Homomorphic Encryption (PHE)
	3.4 Switchable Homomorphic Encryption (SHE)

	4 Lyu et al.'s Protocol
	4.1 System Model
	4.2 Description of Lyu et al.'s Protocol

	5 Proposed SHELBRS Protocol
	5.1 Setup Stage
	5.2 Initialization Stage
	5.3 Protocol Operation Stage

	6 Experimental Results
	6.1 Security Analysis

	7 Conclusions and Future Work
	References

	On Threat of Hardware Trojan to Post-Quantum Lattice-Based Schemes: A Key Recovery Attack on SABER and Beyond
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Generic Framework for LWE/LWR-Based PKE
	2.3 Practical CCAs on IND-CCA Secure KEMs

	3 PC Oracle-Based CCA on LWE/LWR-Based KEMs
	3.1 PC Oracle-Based CCA
	3.2 Parallelized PC Oracle-Based CCA

	4 HT-Assisted Key Recovery Attack
	4.1 Adversary Model
	4.2 Intuition
	4.3 Applicability of Binary/Parallel Oracle-Based CCA

	5 HT Design Methodology
	5.1 Design of HT Trigger Mechanism
	5.2 Design of HT Payload

	6 Implementation Details
	6.1 Implementing HT Trigger
	6.2 Implementing HT Payload
	6.3 Improved HT Design
	6.4 Implementation Results

	7 On the Applicability of HT Detection Techniques
	7.1 White Box IP

	8 Conclusion
	A Chosen Ciphertexts for Key Recovery in Kyber
	References

	Safe-Error Attacks on SIKE and CSIDH
	1 Introduction
	2 Background
	2.1 SIKE
	2.2 CSIDH
	2.3 Safe-Error Attacks

	3 Attacks on SIKE
	3.1 M-Safe Attack on SIKE
	3.2 C-Safe Attack on SIKE

	4 Attacks on CSIDH
	4.1 M Safe-Error Attack on an Implementation Using One Point
	4.2 M Safe-Error Attacks on an Implementation Using Two Points

	5 Practical Experiments
	5.1 Attacks on SIKE
	5.2 Attacks on CSIDH

	6 Countermeasures
	6.1 Securing SIKE
	6.2 Securing CSIDH

	7 Conclusion
	References

	Hardware Security and Side-Channel Attacks
	Network Data Remanence Side Channel Attack on SPREAD, H-SPREAD and Reverse AODV
	1 Introduction
	2 Background
	2.1 Working Principle of Secret Sharing (SS) Scheme
	2.2 Working Principle of MSSS
	2.3 Network Data Remanence Side-Channel
	2.4 NDR Attacks on MSSS

	3 Working Principle of SPREAD and H-SPREAD
	4 Proposed NDR Side Channel on SPREAD and H-SPREAD
	5 Working Principle of Path Hopping Based on Reverse AODV for Security (PHR-AODV)
	6 Proposed NDR Side Channel Attack on PHR-AODV
	7 Experimental Setup and Results
	8 Conclusion
	References

	Parasite: Mitigating Physical Side-Channel Attacks Against Neural Networks
	1 Introduction
	1.1 Threat Scenario

	2 Related Works
	3 Background
	3.1 Neural Networks
	3.2 Correlation Electromagnetic Analysis
	3.3 Side-Channel Attacks on Neural Networks

	4 Adding Parasitic Layers
	4.1 Proposal Overview
	4.2 Proposal Description
	4.3 Approximating the Identity Function

	5 Evaluation
	5.1 Simulation
	5.2 Models Considered
	5.3 Results

	6 Discussions
	6.1 Number of Traces to Recover the Weights
	6.2 Increasing the Entropy of the Added Noise
	6.3 Approximating the ReLU Activation Function
	6.4 Improving the CNNs at Hand
	6.5 Comparing to Common Countermeasures

	7 Conclusion
	A Pearson Correlation
	B Weight Distribution
	References

	Reinforcement Learning-Based Design of Side-Channel Countermeasures
	1 Introduction
	2 Preliminaries
	2.1 Deep Learning and Profiling Side-Channel Analysis
	2.2 Side-Channel Countermeasures
	2.3 Datasets and Leakage Models
	2.4 Reinforcement Learning

	3 Related Works
	4 the RL-Based Countermeasure Selection Framework
	4.1 General Setup
	4.2 Reward Functions

	5 Experimental Results
	5.1 ASCAD Fixed Key Dataset
	5.2 ASCAD Random Keys Dataset

	6 Conclusions and Future Work
	A Q-Learning Performance for the ASCAD with Random Keys Dataset
	References

	Deep Freezing Attacks on Capacitorspg and Electronic Circuits
	1 Introduction
	1.1 Paper Organization

	2 Background
	2.1 Temperature Characteristics of Capacitors
	2.2 Cold Boot and Chill Out Attacks

	3 Threat Model
	4 Experimental Setup
	4.1 Liquid Nitrogen Freezing Approach

	5 Capacitor Freezing Attacks
	6 Electronic Filter Freezing Attacks
	6.1 Attacks on High-Pass Filters
	6.2 Attacks on Low-Pass Filters
	6.3 Attacks on Higher-Order Filters
	6.4 Comparison to Freezing with Cooling Sprays

	7 Energy Storage Freezing Attacks
	7.1 Capacitor-Powered MSP430-class MCUs
	7.2 Setup for Microcrontroller Freezing Attacks
	7.3 Freezing Attacks on Energy Storage in Electrolytic Capacitors
	7.4 Freezing Attacks on Energy Storage in Supercapacitors

	8 Discussion
	8.1 Alternative Polarized Capacitors
	8.2 Larger Capacitors
	8.3 Added Insulation
	8.4 Temperature Sensitive Packaging
	8.5 Temperature Sensors

	9 Conclusion
	References

	AI and Cloud Security
	Encrypted SQL Arithmetic Functions Processing for Secure Cloud Database
	1 Introduction
	2 Prior Works
	3 Preliminaries: Homomorphic Encryption(HE)
	4 Designing SQL Associated Arithmetic Functions in Encrypted Domain
	4.1 ABS() Function
	4.2 CEILING() and FLOOR() Function
	4.3 SIGN() Function
	4.4 SQUARE() Function
	4.5 EXP() and LOG() Function
	4.6 POWER() Function
	4.7 SQRT() Function
	4.8 Encrypted SQL Query with Mathematical Function

	5 Performance Analysis
	6 Conclusion
	References

	Robustness Against Adversarial Attacks Using Dimensionality
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Organization

	2 Adversarial Attacks
	2.1 Formulation
	2.2 Curse of Dimensionality
	2.3 Attack and Defences Review

	3 Defence Design
	3.1 Parallel Pathways
	3.2 Detecting Adversarial Samples
	3.3 Dimensionality

	4 Implementation
	4.1 Pipeline
	4.2 Models
	4.3 Dimension Reduction

	5 Experiments
	5.1 Design
	5.2 Results
	5.3 Key Findings

	6 Concluding Remarks
	References

	SoK - Network Intrusion Detection on FPGA
	1 Introduction
	2 Pattern Matching-Based Network Intrusion Detection
	3 Flow Measurement-Based Network Intrusion Detection
	4 Machine Learning-Based Network Intrusion Detection
	4.1 Machine Learning for Network Intrusion Detection
	4.2 Traditional Machine Learning Algorithms on FPGA
	4.3 Deep Learning on FPGA
	4.4 Discussion

	5 Main Takeaways
	5.1 Properties of the Compared NIDS Approaches
	5.2 Limitations and Challenges of State-of-the-Art NIDSs

	6 Conclusion
	References

	Author Index

