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Abstract. Explanation services are a crucial aspect of symbolic rea-
soning systems but they have not been explored in detail for defeasible
formalisms such as KLM. We evaluate prior work on the topic with a
focus on KLM propositional logic and find that a form of defeasible
explanation initially described for Rational Closure which we term weak
justification can be adapted to Relevant and Lexicographic Closure as
well as described in terms of intuitive properties derived from the KLM
postulates. We also consider how a more general definition of defeasible
explanation known as strong explanation applies to KLM and propose
an algorithm that enumerates these justifications for Rational Closure.
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1 Introduction

Explanation services indicate to users of symbolic reasoning systems which parts
of their knowledge base lead to particular conclusions. This is helpful particu-
larly when the reasoner is giving unexpected results since it allows the user to
identify the culprit knowledge base statements and thus debug their knowledge
base [10]. Explanation services have also been found to improve knowledge base
comprehension, particularly if the user is not familiar with the knowledge base
[1], and to improve users’ confidence in the reasoning system [2]. There is also
some evidence that formalisms of explanation can be theoretical tools in their
own right; for example, Casini et al. [4] base their work on Relevant Closure
fundamentally on classical justification, a form of classical explanation.

Although well-understood in the classical case, explanation has not yet been
explored in detail for defeasible reasoning apart from some foundational work
[3,8]. Our work aims to improve our understanding of explanation for defeasible
propositional logic and where relevant to provide algorithms for the practical
implementation of explanation services.

There are many approaches to defeasible reasoning but a particularly com-
pelling approach that has been studied at length in the literature [5–7,13,14] is
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the KLM approach suggested by Kraus, Lehmann and Magidor [11]. One of the
major appeals of KLM is that it can be viewed from two different angles, each
with its own advantages: either using a series of postulates asserting behaviours
we intuitively expect of the defeasible reasoning formalism, or using a model-
theoretic semantics perhaps not as obviously intuitive but more amenable to
computation by means of reasoning algorithms. These two perspectives are linked
by results in the literature [6,9,13]. Formalisms of defeasible entailment explored
in the literatue for KLM include Rational Closure [13], Relevant Closure [4] and
Lexicographic Closure [12].

Chama [8] proposes an algorithm for the evaluation of defeasible justifica-
tions for Rational Closure. We term this notion of defeasible justification weak
justification and adapt this result to the cases of Relevant Closure and Lexico-
graphic Closure. We then consider how this notion relates to strong explanation,
a more general notion of defeasible explanation given by Brewka and Ulbricht
[3] which has not yet been explored for KLM, and propose an algorithm for enu-
merating strong justifications for the case of Rational Closure using a revised
definition of strong justification. Our final result characterises weak justification
using properties with intuitive interpretations based on the KLM postulates.

2 Background

2.1 Classical Propositional Logic

We begin with a finite set P = {p, q, · · · } of propositional atoms. The binary con-
nectives ∧,∨,→,↔ and the negation operator ¬ are defined recursively to form
propositional formulas. The set of all such formulas over P is the propositional
language L. A valuation is a function P → {T,F} that assigns a truth value to
each atom in P. We say that a formula α ∈ L is satisfied by a valuation I if α
evaluates to true according to the usual truth-functional semantics given I. The
valuations that satisfy a formula α are referred to as models of α, and the set
of models of α is denoted Mod (α). By assertion, � is a propositional formula
satisfied by every valuation and ⊥ is a formula not satisfied by any valuation.

A classical knowledge base K is a finite set of propositional formulas. A val-
uation is a model of K if it is a model of every formula in K. A knowledge base
K entails a formula α, denoted K |= α, if Mod (K) ⊆ Mod (α) and a formula α
entails a formula β, denoted α |= β, if Mod (α) ⊆ Mod (β). A knowledge base
J is a justification for an entailment K |= α if J is a subset J ⊆ K such that
J |= α and there is no proper subset J ′ ⊂ J such that J ′ |= α. Algorithms for
enumerating classical justifications have been explored in detail by Horridge [10].

2.2 KLM Defeasible Entailment

Although there are many approaches to defeasible reasoning, one approach
that has been studied extensively in the literature is that proposed by Kraus,
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Lehmann and Magidor (KLM) [11]. This approach extends propositional logic
by introducing defeasible implication �∼ which can be viewed as the defeasible
analogue of classical implication →. Defeasible implications (DI) are expressions
of the form α �∼ β where α ∈ L, β ∈ L and are read as ‘α typically implies β’.

A defeasible knowledge base is then a finite set of defeasible implications and
defeasible entailment �≈ is defined as a binary relation over defeasible knowledge
baes and defeasible implications so that K �≈ α �∼ β reads as ‘K defeasibly entails
that α typically implies β’. Note that while we assume that defeasible knowledge
bases only contain defeasible implications, we can express any classical formula
α using the defeasible representation ¬α �∼ ⊥. From here on we will assume that
knowledge bases are defeasible unless stated otherwise.

Lehmann and Magidor [13] propose a series of postulates that define rational
defeasible entailment, where each postulate can be thought of as asserting an
intuitive characteristic we expect of a sensible defeasible entailment relation
(hence the name rational). In addition to this axiomatic definition, rational
entailment relations have a model-theoretic semantics which we do not discuss
here but which is (in some cases) described exactly by reasoning algorithms of
reasonable computational complexity. These reasoning algorithms are a central
focus in this paper and we introduce Rational Closure [13], the most well-known
form of defeasible entailment for KLM, in these terms.

2.3 Rational Closure

Rational Closure is a rational definition for defeasible entailment proposed by
Lehmann and Magidor [13]. Casini et al. [6] present an algorithm for Rational
Closure with two distinct sub-phases, shown in Algorithms 1 and 2. Essentially,
the algorithm works by imposing a ranking of typicality on the knowledge base.
Then, if there is an inconsistency when computing entailment, the most typical
information in this ranking is removed from the knowledge base. The ranking of
statements is produced by BaseRank, shown in Algorithm 2. The lower the rank
of a statement, the more typical it is.

Algorithm 1: RationalClosure
Input: A knowledge base K and a DI α �∼ β
Output: true, if K �≈RC α �∼ β, otherwise false

1 (R0, R1, ..., R∞, n) := BaseRank(K);
2 i := 0;

3 R :=
⋃j<n

i=0 Rj ;
4 while R∞ ∪ R |= ¬α and R �= ∅ do
5 R := R \ Ri;
6 i := i+1;

7 end
8 return R∞ ∪ R |= α → β;
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Algorithm 2: BaseRank
Input: A knowledge base K
Output: An ordered tuple (R0, ..., Rn−1, R∞, n)

1 i := 0;

2 E0 := K;
3 repeat
4 Ei+1 := {α → β ∈ Ei | Ei |= ¬α};
5 Ri := Ei \ Ei+1;
6 i := i+1;

7 until Ei−1 = Ei;
8 R∞ := Ei−1;
9 n := i-1;

10 return (R0, ..., Rn−1, R∞, n);

As an illustration of the Rational Closure algorithm, consider the following
example.

Example 1. Suppose one has the defeasible knowledge base K containing the
following information.

1. Birds typically fly (b �∼ f)
2. Birds typically have eyes (b �∼ e)
3. Birds typically sing (b �∼ s)
4. Penguins typically do not fly (p �∼ ¬f)
5. Penguins are birds (p → b)
6. Max is a penguin (m → p)

Consider the entailment of the statement ‘Max typically does not fly’ (m �∼
¬f). Using RationalClosure, BaseRank is first used to compute the ranking in
Fig. 1. Then we start by considering all the ranks and check whether R0 ∪ R1 ∪
R∞ |= ¬m. Since this holds, R0 is removed. We then check whether R1 ∪ R∞ |=
¬m. Since this entailment does not hold, we stop removing ranks and check
whether R1 ∪ R∞ |= m → ¬f . Since this entailment holds, RationalClosure
will return true.

0 b �∼ f, b �∼ e, b �∼ s

1 p �∼ ¬f
∞ p → b,m → p

Fig. 1. Base ranking of statements for Example 1

It is helpful to introduce some notation closely related to these algorithms
[13]:
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Definition 1. The materialisation K of a knowledge base K is the classical
knowledge base

{
α → β | α �∼ β ∈ K}

.

Definition 2. The exceptionality sequence EK
0 , . . . , EK

n for a knowledge base K
is given by letting EK

0 = K, and EK
i+1 =

{
α �∼ β ∈ EK

i | EK
i |= ¬α

}
for 0 ≤ i < n

where n is the smallest index such that EK
n = EK

n+1 according to these equa-
tions. The final element EK

n is usually denoted as EK
∞ as it is unique in that its

statements are never retracted when evaluating entailment queries.

Definition 3. The base rank brK (α) of a formula α ∈ L is the smallest index
i such that EK

i |= ¬α. If there is no such i, then let brK (α) = ∞. This is
distinguished from the case of brK (α) = n where EK

∞ is the first EK
i having

EK
i |= ¬α.

We also introduce the following shorthand:

Definition 4. For a knowledge base K and formula α, let EK
α = EK

r where r =
brK (α). The cases of r = ∞ and r = n both correspond to EK

α = EK
∞.

We note then that Rational Closure entailment �≈RC can alternatively be
expressed as follows:

Proposition 1. For a knowledge base K and an entailment query α �∼ β,

K �≈RC α �∼ β iff brK (α) = ∞ or EK
α |= α → β.

3 Weak Justification

One of the main works of interest here is that of Chama [8] which proposes a
notion of defeasible justification for Rational Closure according to an algorithm
closely connected to the Rational Closure reasoning algorithm. The insight here
is that we should follow the same process to eliminate more general statements,
and once we have done so, to use classical tools to reason about the knowledge
base—only in this case we obtain classical justifications instead of testing for
classical entailment. We refer to these justifications as weak justifications to dis-
tinguish from classical justifications and the strong justifications we discuss later.
We express this result for KLM propositional logic in the following definition (see
Appendix A for the corresponding algorithm):

Definition 5. A knowledge base J is a weak justification for a Rational Closure
entailment K �≈RC α �∼ β if J is a classical justification for EK

α |= α → β. The
set of weak justifications for K �≈RC α �∼ β is denoted JW

(K, α �∼ β
)
.
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3.1 Relevant Closure

Casini et al. [4] propose Relevant Closure which adapts the reasoning algorithm
for Rational Closure so that we only retract the statements in a less specific
rank that actually disagree with more specific statements in higher ranks with
respect to the antecedent of the query. Relevant Closure is not rational; it does
not obey all of the axioms of rational defeasible entailment.

For the sake of brevity, we do describe the reasoning algorithm procedu-
rally. However, the essence of the Relevant Closure reasoning algorithm can be
expressed simply using the following three definitions:

Definition 6. A knowledge base J is an ε-justification for (K, α) if J is a
classical justification for K |= ¬α.

Definition 7. A statement α �∼ β ∈ K is relevant for (K, γ) if a �∼ β is an
element of some ε-justification for (K, γ). Let R (K, γ) be the set of statements
in K that are relevant for (K, γ) and R− (K, γ) the set of statements in K not
relevant to (K, γ).

Definition 8. We have K �≈RelC α �∼ β if EK
α ∪ R− (K, α) |= α → β.

What we have described here is Basic Relevant Closure, but Minimal Relevant
Closure—the other definition of Relevant Closure entailment [4]—is based on
a slightly altered version of relevance and the difference is not important for
our purposes (i.e. minimal and basic relevance can be ‘swapped out’ by having
R (·, ·) and R− (·, ·) correspond to the form of relevance at hand).

Weak Justifications for Relevant Closure. We identify the following ana-
logue of weak justification for the case of Relevant Closure entailment:

Definition 9. A knowledge base J is a weak justification for an entailment
K �≈RelC α �∼ β if J is a classical justification for EK

α ∪ R− (K, α).

In other words, we ensure that the statements in the knowledge base considered
not relevant to the query remain under our consideration when materialising
just as they are when evaluating Relevant Closure entailment queries. We give
a corresponding algorithm in Appendix A by adapting WeakJustifyRC.

3.2 Lexicographic Closure

Lexicographic Closure is another rational definition for defeasible entailment
proposed by Lehmann [12] which is more permissive than Rational Closure. Like
Rational Closure, Lexicographic Closure can be defined both semantically and
algorithmically; we once again present the algorithmic definition. Lexicographic
Closure can be seen as a refinement of Rational Closure, where we remove single
statements instead of entire levels when inconsistencies arise during the reasoning
process. We utilize the algorithm presented by Morris et al. [15] for propositional
logic as the algorithm for Lexicographic Closure. However, while Morris et al.
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Algorithm 3: LexicographicClosure
Input: A knowledge base K and DI α �∼ β
Output: true, if K �≈LC α �∼ β, otherwise false

1 (R0, ..., Rn−1, R∞, n) := BaseRank(K);
2 i := 0;

3 R :=
⋃j<n

j=0 Rj ;

4 while R∞ ∪ R |= ¬α and R �= ∅ do
5 R := R \ Ri;
6 m := |Ri| − 1;
7 Ri,m :=

∨
X∈Subsets(Ri,m)

∧
x∈X x;

8 while R∞ ∪ R ∪ {Ri,m} |= ¬α and m > 0 do
9 m := m-1;

10 Ri,m :=
∨

X∈Subsets(Ri,m)

∧
x∈X x;

11 end
12 R := R ∪ {Ri,m};
13 i := i+1;

14 end
15 return R∞ ∪ R |= α → β;

refine the ranking of statements, we instead refine the removal of statements as
shown in LexicographicClosure in Algorithm 3.

Essentially, instead of removing an entire level Ri, this refinement weakens
Ri by simultaneously considering all the ways of removing j statements from the
level.

Weak Justifications for Lexicographic Closure. The refined method pre-
sented in LexicographicClosure is equivalent to considering a series of sub-
knowledge bases which are derived by replacing Ri with all the possible subsets
Ri of size m−j, where m is the number of statements in Ri. Using this approach,
the final entailment holds if the classical entailment holds in all the final sub-
knowledge bases. Thus to provide a weak justification for the entailment, we can
compute the classical justifications in the sub-knowledge bases and present these
as the final justification. However, we wish to maintain a structure that refers to
which justifications are responsible for the entailment of the statement in each
sub-knowledge base. We therefore present a tuple as our final weak justification,
where the i’th element of the tuple is a justification for the entailment of the
statement in the i’th sub-knowledge base. This allows us to refer to individual
statements in our knowledge base instead of a single combined formula.

To compute these weak justifications, we first modify Lexicographic
Closure to create LexicographicClosureForJustifications. This modifica-
tion is performed by returning the variable m, which represents the subset
size used in the final entailment computation, and the variable i, which rep-
resents the lowest complete level used in the final entailment computation, as
an ordered pair (i,m) along with the final entailment result. We can define
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an algorithm WeakJustificationsLC that then uses this information to recon-
struct the appropriate sub-knowledge bases and compute the justifications for
each sub-knowledge base using classical methods as was done for Rational Clo-
sure. Taking the cross product of these justifications then yields the final set
of tuples, which are the weak justifications. Full details of both algorithms are
given in Appendix A. We demonstrate how weak justifications are computed for
Lexicographic Closure in the following example.

Example 2. Suppose one has the knowledge base in Example 1 and consider once
again the entailment of the statement ‘penguins typically have eyes’ (p �∼ e).
LexicographicClosureForJustifications returns true, along with (1, 2).
Thus we reconstruct the sub-knowledge bases K1 = {b �∼ f, b �∼ e} ∪ R1 ∪ R∞,
K2 = {b �∼ f, b �∼ s} ∪ R1 ∪ R∞ and K3 = {b �∼ e, b �∼ s} ∪ R1 ∪ R∞. The set of
all justifications for K1, K2 and K3 are J1 = {j1, j2}, J2 = {j1} and J3 = {j2}
respectively, where:j1 = {b �∼ f, p �∼ ¬f, p → b}, j2 = {b �∼ e, p → b}. Thus our
weak justifications will be the elements of the cross products of these sets. For
example, (j1, j1, j2) will be a weak justification for the entailment.

4 Strong Justification for Rational Closure

While weak justifications present an intuitive and simple approach to defining
defeasible explanation, their level of description is arguably limited: we are only
presenting information as to why the final classical entailment holds and are
thus disregarding the rest of the reasoning process such as the determination
of the base rank. In this section, we apply an intuitively more comprehensive
definition for defeasible explanation, referred to as strong explanation, proposed
by Brewka and Ulbricht [3] to KLM style reasoning to produce what we refer
to as strong justifications. In particular, we look at defining what constitutes a
strong justification for Rational Closure and explore an algorithm for computing
these strong justifications. Note that the proofs of propositions and full details
for all algorithms not presented in this section are given in Appendix B.

4.1 Overview of the Approach

A strong justification is a set S such that for any S ′ with S ⊆ S ′ ⊆ K, S ′
�≈ α �∼ β

and the previous statement does not hold for any S ′′ ⊂ S. This is essentially
an extension of the definition for classical justification. The intuition here is
that the strong justification contains ‘just enough’ of the statements such that
the defeasible entailment always holds even if arbitrary statements from the
knowledge base are added to the justification. Note that while weak justifications
for Rational Closure are a subset of the knowledge base K that entails the final
statement—and hence always obey at least one aspect of this criterion—they
are not necessarily strong justifications. As an illustration of this, consider the
following example:

Example 3. Suppose one has a knowledge base K containing the following
information:
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1. If something walks, it typically does not fly (w �∼ ¬f)
2. If something walks, it typically has legs (w �∼ l)
3. Pigeons typically fly (p �∼ f)
4. Pigeons typically walk (p �∼ w)

This knowledge base has the ranking shown in Fig. 2a. Consider the entailment
of the statement ‘if something is a pigeon and it walks then it typically flies’ (p∧
w �∼ f). The weak justification for this statement is W = {p �∼ f}.

Now consider what happens when the statement w �∼ ¬f is added to W.
Ranking W ∪{w �∼ ¬f} yields the ranking shown in Fig. 2b. However, now when
computing the entailment of p ∧ w �∼ f , R0 |= ¬(p ∧ w) and so R0 is removed.
But then ∅ |= (p∧w) → f is computed as the final entailment result, which does
not hold. Thus W is not a strong justification since W ∪ {w �∼ ¬f} does not
entail our statement.

0 w �∼ ¬f, w �∼ l

1 p �∼ w, p �∼ f

∞
(a) Initial ranking

for K

0 w �∼ ¬f, p �∼ f

∞
(b) Ranking for
W ∪ {w �∼ ¬f}

Fig. 2. Base ranking of statements for Example 3

The issue that arises in Example 3 is that we can add statements to our set
that allow us to entail the negation the antecedent α off our entailed statement
but not the negation of all the antecedents of our statements in our weak justi-
fication. This leads to some of the statements in our weak justification getting
‘mixed into’ lower ranks in which we can still ‘disprove’ α, which are then
removed during the algorithm. However, we can extend W to create the strong
justification S = {p �∼ w, p �∼ f}. Here we ensure that the weak justification
is always pushed above the ranks in which we can ‘disprove’ p, which are the
ranks that contain justifications for ¬p.

4.2 Algorithm

We wish to define a procedure for extending weak justifications to form strong
justifications as we did for Example 3. First we define the ranking of a set K′ ⊆ K
in K to be the rank of the statement in K′ with the lowest ranking in K. For
example, in Fig. 2a, the set K′ = {w �∼ ¬f, p �∼ w} has rank 0 in K. We wish
to ensure our weak justification is always ranked above the justifications for ¬α,
which we denote J¬α. We restrict ourselves to considering strong justifications
for entailments where all justifications J¬α and weak justifications have finite
rank.
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We start by considering every possible way of ranking the justifications J¬α

and then consider all possible ways of ranking weak justifications W such that
they are one rank higher than the highest ranked J¬α in K. To do this we build
up a sequences of subsets (K0,K1, . . . ,Kx) where:

1. brKi
(γ) = i

2. For all K ′ ⊂ Ki, brK′(γ) < brKi
(γ)

If a statement γ has rank n, that the justification for ¬γ has rank n − 1.
Thus we use the statement γ = α for all justifications J¬α and γ = α ∧ ¬β
for all weak justifications W. We use this approach instead of defining a
fixed initial set to ensure the subsets in the sequence constructed are min-
imal. ComputeSubsetSequences shown in Algorithm 4, with the sub-process
Sequences shown in Algorithm 5, computes the appropriate sequences for weak
justifications. Proposition 2 states that ComputeSubsetSequences will always
compute at least one sequence for some weak justification.

Proposition 2. Let K be a knowledge base and γ a formula. Provided brK(γ) �=
∞, ComputeSubsetSequences returns at least one sequence of sets.

Algorithm 4: ComputeSubsetSequences
Input: A knowledge base K, a formula α, the rank n ≤ brK(α) required for α in

the final subset of a sequence
Output: Set of all sequences (K1, K2, ..., Kn), where α has brKi(α) = i, and

each Ki is minimal
1 i := 0;

2 E0 := K;
3 repeat
4 Ei+1 := {α → β ∈ Ei | Ei |= ¬α};
5 i := i+1;

6 until Ei−1 = Ei;
7 E∞ := Ei−1;
8 sequences := Sequences((E0, . . . , E∞), α, (∅), n, 1);
9 return sequences;

Note in Sequences, MinimalExtension(α, A,B) computes the set of all sets
M where M is attained by adding the minimum number of statements from A
to B so that B entails α and Minimize(A, α) returns true if we can remove
statements from A and maintain the ranking of α in A.

As a demonstration of how ComputeSubsetSequences creates a sequence,
consider the following example.

Example 4. Consider the knowledge base and query in Example 3.
ComputeSubsetSequences computes a single sequence (K0,K1,K2) for the weak
justifications, with K0 = ∅,K1 = W = {p �∼ w},K2 = K1 ∪ {p �∼ w,w �∼ ¬f}.
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Algorithm 5: Sequences
Input: A knowledge base K = (E0, E1, ...E∞), a formula α, the current

sequence of subsets (K0, . . . , Ki−1), the rank n of α in the final subset of
the sequence, the index i of the current subset

Output: A set of sequences of length n
1 if i > n then
2 return {(K0, . . . , Ki−1)};
3 A := ¬α ∧ (

∧
β∈Antecedents(Ki−1)

¬β);

4 S := MinimalExtension(A, En−i, Ki−1);
5 F := ∅;
6 if S �= ∅ then
7 for Ki in S do
8 if brKi(α) = i and Minimize(Ki, α) is False then
9 F := F ∪ Sequences(K, α, (K0, . . . , Ki−1, Ki), n, i + 1);

10 end

11 end

12 return F ;

We define similar algorithms ComputeGeneralSubsetSequences and
GeneralSequences for computing the sequences for all justifications J¬α. How-
ever, since we do not require these justifications to reach a certain rank, we do
not need to work from E subsets. Instead statements are added from K. We
also return a sequence when the final set can no longer be minimally extended,
instead of requiring the algorithm to iterate a fixed number of times. Proposi-
tion 3 states the soundness and completeness of ComputeSubsetSequences for
computing the minimal ways of ranking a statement.

Proposition 3. Let K be a knowledge base and γ a formula. Provided brK(γ) �=
∞, ComputeGeneralSubsetSequences computes exactly M ⊆ K such that for
all M ′ ⊂ M, brM ′(γ) < brM (γ) i.e. M is minimal in terms of the ranking of γ.

Given the ability to compute these sequences, we now define the formal
extension of a weak justification to create a strong justification. If we choose
a sequence SW for some weak justification, we can consider all sequences for
justifications J¬α and use SW to add the minimum number of statements to W
to ensure it is ranked above J¬α in each subset in each sequence. We consider
each sequence J produced by ComputeGeneralSubsetSequences individually
and compute all such minimal sets S for the sequence. To do this we define the
algorithm StrongSequences. We start with S containing our weak justification
and then iterate through each subset KJ

i in J , checking whether KJ
i ∪S |= ¬m

for all m �∼ n ∈ S. If this does not hold, we use KW
i+1 from our weak justification

sequence and consider all the ways of adding the minimum number of required
statements to S so that KJ

i ∪ S |= ¬m for all m �∼ n ∈ S′, where S′ is the pre-
vious iteration of S in a similar manner to Algorithm 5. We repeat this process
until we have considered all sets in the sequence. Essentially, what we have done
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is create all the minimal sets S that ensure that whenever J¬α has rank j in our
sequence, our weak justifications has at least rank j + 1.

We then consider all ways of taking a minimal set for each sequence and
taking the union of these sets. The smallest set created in this manner is then
taken as our strong justification. This full process is defined by the algorithm
StrongJustification. Proposition 4 states the correctness of this algorithm.

Proposition 4. Let K be a knowledge base and α �∼ β a defeasible implication.
Provided brK(α) �= ∞, StrongJustification returns a strong justification for
the entailment K �≈RC α �∼ β.

We provide a simple demonstration of StrongJustification using our
example from the introduction.

Example 5. Consider the knowledge base and query in Example 3. Compute
SubsetSequences produces the sequence in Example 4. ComputeGeneral
SubsetSequences produces the single sequence J = (K0,K1) with KJ

0 =
∅,KJ

1 = {p �∼ ¬f, b �∼ f}. We start with S = W = {p �∼ f} for this sequence.
We then consider whether KJ

1 ∪ S |= ¬p. Since this does not hold, we add the
statement p �∼ w ∈ K2 to S. Since there are no more subsets in J , we return
S = {p �∼ ¬f, p �∼ w} as the single minimal set and, since there are no other
sequences, S is returned as our final strong justification.

4.3 Limitations for the Approach

While we have defined strong justification as an extension of weak justifications,
not every weak justification can be extended to create a strong justification. As
an illustration of this, consider the following example.

Example 6. Suppose one has the knowledge base K shown in Fig. 3 and consider
the entailment of the statement sp ∧ p �∼ m ∨ w. This entailment has two weak
justifications:

1. W1 = {sp �∼ f, f �∼ m}
2. W2 = {sp �∼ f, f �∼ w}
W1 cannot be extended to create a strong justification. If initially S = W1, then
to ensure S ∪ {p �∼ ¬f} �≈RC sp ∧ p �∼ m ∨ w, the statements {l �∼ ¬x, f �∼
w,w �∼ x,w → l} need to be added to S. Then S = {l �∼ ¬x, f �∼ w,w �∼
x,w → l, sp �∼ f, f �∼ m}. But now if f �∼ m is removed from S, we still have
S ′

�≈ sp ∧ p �∼ m ∨ w for all S ′ ⊆ S ⊆ K. Thus due to the minimality property
of strong justifications, W1 cannot be extended to create a strong justification.

It is also not the case that all strong justifications can be defined as an
extension of a weak justification. As a demonstration of this fact, consider the
following example.
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0 p �∼ ¬f, l �∼ ¬x
1 sp �∼ f, f �∼ m, f �∼ w,w �∼ x

∞ w → l

Fig. 3. Base ranking for statements in Example 6

Example 7. Suppose one has a knowledge base K shown in Fig. 4 and consider
the entailment of the statement p �∼ s. This has the weak justification W = {p �∼
¬f,¬f �∼ s}. However, consider rather B = {b �∼ s, p → b} as the base set for
extension. B is not a weak justification since it contains information removed
during the Rational Closure algorithm. However, B can be extended to form the
strong justification

S = {b �∼ s,¬f �∼ s, r �∼ w,¬f �∼ ¬w,¬f �∼ r, p → b}.

First notice S �≈RC p �∼ s. Now consider what happens if any statements are
added to S. If we add any statements that cause B to be thrown away, namely
p �∼ ¬f , the set then contains W and so the entailment still holds.

0 b �∼ f, b �∼ s, r �∼ w

1 p �∼ ¬f,¬f �∼ ¬w,¬f �∼ r,¬f �∼ s

∞ p → b

Fig. 4. Base ranking of statements for Example 7

5 Properties of Weak Justification

Weak justification has currently only been explored in terms of reasoning algo-
rithms (such constructions as the exceptionality sequence E and base ranks) and
therefore an interesting question is whether it can be characterised in a more
intuitive manner. In this section, we show that for every postulate of rationality
there is a corresponding property obeyed by weak justification. For the sake of
simplicity, our presentation here will be limited to the case of Rational Closure
and therefore we assume for this section that �≈ refers to �≈RC. We begin by
considering a strengthening of the postulates for rationality given by Lehmann
and Magidor [13]:

1. Left logical equivalence (LLE). If K �≈ α ↔ β and K �≈ α �∼ γ then K �≈ β �∼
γ.

2. Right weakening (RW). If K �≈ α → β and K �≈ γ �∼ α then K �≈ γ �∼ β.
3. And. If K �≈ α �∼ β and K �≈ α �∼ γ then K �≈ α �∼ β ∧ γ.
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4. Or. If K �≈ α �∼ γ and K �≈ β �∼ γ then K �≈ α ∨ β �∼ γ.
5. Reflexivity (Ref). K �≈ α �∼ α.
6. Cautious Monotonicity (CM). If K �≈ α �∼ γ and K �≈ α �∼ β then K �≈

α ∧ β �∼ γ.
7. Rational Monotonicity (RM). If K �≈ α �∼ γ and K ��≈ α �∼ ¬β then K �≈

α ∧ β �∼ γ.

This is a strengthening of the KLM postulates because LLE has the condition
K �≈ α ↔ β in favour of α ≡ β and RW has K �≈ α → β in favour of α |= β. (Note
here that K �≈ α ↔ β is for example is a shorthand for K �≈ ¬ (α ↔ β) �∼ ⊥ as
discussed in the background section.) This provides a more useful perspective
for our purposes.

Our approach is to consider how defeasible justification applies to each of
these axioms. Take for instance the example of And. The insight here is that if
α typically implies β, and α typically implies γ, then not only should we be able
to conclude that α typically implies β and γ, we should be able to conclude it by
the same token. In this section we formalise this idea, and a similar idea for each
postulate above, in relation to weak justification. The following concept helps us
state these results:

Definition 10. A knowledge base D ⊆ K is deciding for an entailment K �≈
α �∼ β if D ⊆ EK

α and D |= α → β.

For a given entailment, any deciding knowledge base is always a superset of a
weak justification and all weak justifications are deciding (refer to Definition 5).
We also have the following results for deciding knowledge bases:

Proposition 5. If D is a deciding knowledge base for an entailment K �≈ α �∼ β
and brK (α) �= ∞, then D �≈ α �∼ β.

Proposition 6. If D is a deciding knowledge base for an entailment K �≈ α �∼ β
and we have D �≈ α �∼ β, then JW

(D, α �∼ β
) ⊆ JW

(K, α �∼ β
)
.

Proofs for these results, as well as all results in this section, are given in
Appendix C. We can now state a result corresponding to each axiom of rational
defeasible entailment:

Theorem 1. For any knowledge bases K,J1,J2,

(LLE) if J1 ∈ JW (K, α ↔ β) and J2 ∈ JW

(K, α �∼ γ
)
, J1 ∪ J2 is deciding

for K �≈ β �∼ γ;
(RW) if J1 ∈ JW (K, α → β) and J2 ∈ JW

(K, γ �∼ α
)
, J1 ∪ J2 is deciding

for K �≈ γ �∼ β;
(And) if J1 ∈ JW

(K, α �∼ β
)

and J2 ∈ JW

(K, α �∼ γ
)
, J1 ∪ J2 is deciding

for K �≈ α �∼ β ∧ γ;
(Or) if J1 ∈ JW

(K, α �∼ γ
)

and J2 ∈ JW

(K, β �∼ γ
)
, J1 ∪ J2 is deciding

for K �≈ α ∨ β �∼ γ.
(Ref) JW

(K, α �∼ α
)

= {∅}.
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(CM) if K �≈ α �∼ γ and K �≈ α �∼ β, every J ∈ JW

(K, α �∼ γ
)

is deciding
for K �≈ α ∧ β �∼ γ;

(RM) if K �≈ α �∼ γ and K ��≈ α �∼ ¬β, every J ∈ JW

(K, α �∼ γ
)

is deciding
for K �≈ α ∧ β �∼ γ.

6 Conclusions and Future Work

We have extended the principle of weak justification, previously only explored
for Rational Closure, to the case of Relevant and Lexicographic Closure and
proposed algorithms for enumerating these justifications. We then evaluated a
revised definition of strong justification in light of certain issues and proposed an
algorithm that enumerates these justifications for Rational Closure. This is, to
our knowledge, the first application of strong explanation to KLM and may offer
an alternative to weak justification that is perhaps more comprehensive as far as
the resulting justifications are concerned. Our final result is a characterisation
of weak justification in relation to the KLM postulates for rationality. This
provides evidence that weak justification is a sound and generalisable notion
of justification for KLM-style defeasible entailment and illustrates similarities
between weak justification for the defeasible case and classical justification for
the classical case.

Since the algorithm we propose for enumerating strong justifications and
the declarative characterisation of weak justification were limited to the case of
Rational Closure, further work might seek to apply this result to other notions
of defeasible entailment for KLM or perhaps generally to rational defeasible
entailment. Another possibility is to consider how these ideas apply to KLM
description logic [5,7,14].

A Supplementary Material

The full paper with the appendix containing proofs for all propositions and
additional details for algorithms is available at: https://www.cair.org.za/sites/
default/files/2021-11/Explanation For KLM.pdf
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