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Abstract. We study the computational complexity of finding fair allo-
cations of indivisible goods in the setting where a social network on the
agents is given. Notions of fairness in this context are “localized”, that
is, agents are only concerned about the bundles allocated to their neigh-
bors, rather than every other agent in the system. We comprehensively
address the computational complexity of finding locally envy-free and
Pareto efficient allocations in the setting where the agents have binary
valuations for the goods and the underlying social network is modeled by
an undirected graph. We study the problem in the framework of param-
eterized complexity.

We show that the problem is computationally intractable even in fairly
restricted scenarios, for instance, even when the underlying graph is a
path. We show NP-hardness for settings where the graph has only two
distinct valuations among the agents. We demonstrate W-hardness with
respect to the number of goods or the size of the vertex cover of the under-
lying graph. We also consider notions of proportionality that respect the
structure of the underlying graph.

Keywords: Fair division · Social networks · Envy-freeness ·
Parameterized complexity

1 Introduction

The problem of fairly allocating resources among a set of agents with (possibly
distinct) interests in said resources is a fundamental problem with important
and varied practical applications. We focus on the problem of allocating indivis-
ible items: in this setting, we have n agents and m resources, and every agent
expresses their utilities for the resources, either as a ranking over the resources
or by specifying a valuation function. The goal is to determine an allocation of
the items to the agents that respects some notion of “fairness” and “efficiency”.
We use the term bundle to refer to the set of items that an agent receives in an
allocation.

Envy-freeness is one of the most widely used notions of fairness. Given an
allocation, an agent envies another if it perceives the bundle of the other agent
to be more valuable than her own. An allocation is envy-free if no agent envies
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another. Note that the trivial allocation that leaves every agent empty-handed
is always envy-free. Therefore, one is typically interested in fair allocations that
also satisfy some criteria of economic efficiency, such as completeness (every good
should be allocated to some agent), non-wastefulness (no agent receives a piece
of cake that is worth nothing to her and worth something to another agent),
or Pareto-efficiency (there is no other feasible agreement that would make at
least one agent strictly better off while not making any of the others worse
off). We remark here that just as there are trivial allocations that are fair, it is
also possible to trivially achieve efficiency if we had no fairness considerations
involved: for instance, the allocation that gives all goods to a single agent is
Pareto-efficient assuming that the agent has a strictly monotonic utility function
over the items.

The question of finding allocations that respect fairness and efficiency
demands simultaneously is non-trivial: in particular, such allocations may not
exist (if there are two agents and one good, and both agents have positive utility
for this single resource), and can be computationally hard to find (for instance,
the problem of finding a complete envy-free allocation between even two agents
who hold identical valuations over m goods is equivalent to the Partition prob-
lem).

The focus of this work is the notion of local envy-freeness. In this setting, the
agents are related by a graph, which might be thought of as modeling a social
network over the agents, and we explore notions of fairness that account for the
structure of this network. For instance, the notion of envy is now restricted: it
only manifests between agents who are friends in the network. This is a com-
pelling model of fairness, since agents are likely to not envy agents about whom
they have little or no information. We note that the problem of fair division
respecting a social network generalizes the classical notion, which can be cap-
tured by considering a complete graph on the agents. Thus, the problem of find-
ing allocations that are “locally fair” is a generalization of the classical allocation
problem.

1.1 Related Work

The model of local envy-freeness has been proposed and considered in several
recent lines of work. Some of the earliest considerations for incorporating a graph
structure on the agents were made in the context of the cake-cutting prob-
lem, which is the closely related setting of allocating a divisible resource among
agents [1,4]. Abebe et al. [1] consider both directed and undirected graphs and
focus on characterizing the structure of graphs that admit algorithms with cer-
tain bounds. They also consider the issue of the price of envy-freeness in this
setting, which compares the total utility of an optimal allocation to the best
utility of an allocation that is envy-free. Bei et al. [4], on the other hand, pro-
pose a moving-knife algorithm that outputs an envy-free allocation on trees and
an algorithm for computing a proportional allocation on descendant graphs.

We now turn to the literature in the context of indivisible items. Beynier
et al. [5] study the fair division problem in the setting of “house allocation”:
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here agents have (strict) preferences over items, and each agent must receive
exactly one item. An agent envies another in this setting if she prefers the item
received by the other agent over her own. In the case of a complete network,
for an allocation to be envy-free, each agent must get her top object, and this
assignment is automatically Pareto-efficient as well. This motivates the setting of
local envy-freeness with respect to a graph on the agents. The authors consider
the case when the underlying graph is undirected, and they also consider a
variant of the problem where agents themselves can be located on the network by
the central authority. These problems turn out to be computationally intractable
even on very simple graph structures.

Bredereck et al. [10] consider the problem of graph-based envy-freeness in the
context of directed graphs and for various classes of valuations: including binary,
identical, additive, and even valuations that are both identical and binary. They
also consider the complexity of the allocation problem in the framework of param-
eterized complexity.1 Somewhat surprisingly, it turns out that finding complete
envy-free allocations in the setting of a graph is NP-hard even when the valuations
are binary and identical. Note that in this setting, every agent in every strongly
connected component must get the same number of items: thus, the allocation
problem is trivial for directed graphs that are strongly connected, but NP-hard for
general directed graphs. Also, it turns out that for general binary preferences, the
problem of finding a complete envy-free allocation is NP-hard even when the graph
is strongly connected. The problem is also tractable for DAGs: indeed, allocating
all resources to a single source agent (corresponding to a vertex with no incoming
arcs) is both complete and locally envy-free since nobody can envy a source agent,
and empty-handed agents have no envy for each other.

More recently, Eiben et al. [13] consider the problem of finding locally envy-
free allocations and envy-free allocations that are additionally proportional in
the setting of directed graphs in the framework of parameterized complexity, and
specifically considering parameters such as treewidth, cliquewidth, and vertex
cover — all of these reflect the structure of the underlying network. It turns out
that the problem of finding fair and efficient allocations is tractable for networks
that have bounded values for these parameters with some additional assumptions
that bound the number of item types or the size of the largest bundle received by
an agent. The authors also show hardness results in both the parameterized and
classical settings. For instance, the authors show that finding a locally envy-free
allocation is NP-hard even when the underlying network is a star, but we note
that this is in the setting of general utilities.

The work of Bredereck et al. [8,9] demonstrates that the problem of find-
ing fair and efficient allocations in various settings (including graph-based con-
straints) is fixed-parameter tractable in the combined parameter “number of
agents” and “number of item types” for general utilities. In contrast, our work
here focuses on smaller parameters for the special case of binary utilities.

In [11], Chevaleyre, Endriss, and Maudet consider distributed mechanisms
for allocating indivisible goods, in which agents can locally agree on deals to

1 The terminology relevant to this framework is introduced in the next section.
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exchange some of the goods in their possession. This study focuses on conver-
gence properties for such distribution mechanisms both in the context of the
classical setting and the setting involving social constraints coming from an
underlying undirected graph. Here, the notions of fairness localized according to
the graph, and the network also constraints the exchanges that can take place —
agents can engage in an exchange only if they are friends in the network. There
are also some lines of work that suggest eliminating envy by some mechanism
for hiding information [14].

1.2 Our Contributions

Our focus in this paper is on the setting when agents have binary valuations
over the goods and the underlying social network is modeled by an undirected
graph. Our focus is on exploring the computational complexity of finding locally
envy-free allocations that are also Pareto efficient (EEF) in the framework of
parameterized complexity, building most closely on the works of [6,10,13].

Bounded Agent Types. We begin by noting that the setting of undirected graphs
can be significantly different from their directed counterparts: indeed, recall that
finding a complete and locally envy-free allocation was NP-hard for even identical
binary valuations for directed graphs, but the analogous question is easily seen
to be tractable for undirected graphs (indeed, observe that the notions of strong
connectivity and connectivity coincide). This motivates the question of whether
the problem of finding locally EEF allocations is easier for undirected graphs
with a bounded number of agent types. We answer this question in the negative
by showing that the problem of determining locally envy-free allocations is NP-
hard even when there are only two distinct binary valuations among the agents
by a reduction from a graph separation problem called Cutting � Vertices
(Theorem 1).

Sparse and Dense Graphs. In contrast with the result for DAGs, we show that
finding locally envy-free allocations that are Pareto efficient (EEF) is NP-hard
even when the underlying graph is a path (Theorem 4 and Corollary 1). Although
Beynier et al. [5] also show hardness results for very sparse graphs, we note that
our methods are significantly different since the models for the valuations are
different and additionally, the allocations we seek need not give every agent
exactly one item. Moving away from sparsity, we recall that finding complete
envy-free allocations for binary valuations is known to be NP-hard even for
complete graphs [3,14], which justifies the need for using additional parameters2

in the XP3 algorithm for finding locally envy-free allocations shown by [13,
Theorem 10].

2 The algorithm referred to is XP in the cliquewidth of the underlying graph, the
number of agent types and item types.

3 XP is the class of parameterized problems that can be solved in time nf(k) for some
computable function f.
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Structural Parameters I: Treewidth and Cliquewidth. Informally speaking, the
parameters treewidth and cliquewidth of graphs quantitatively capture the spar-
sity and density of the graph by measuring their “likeness” to trees and complete
graphs. The results we have already for sparse and dense graphs demonstrate
that these parameters being bounded alone is not enough to obtain tractable
algorithms. On the other hand, the results of [13] imply that the problem of
finding complete and locally envy-free allocations admits XP algorithms when
parameterized by either the treewidth or cliquewidth of the underlying graph
jointly with the number of item types and agent types. Since their model allows
for bidirectional edges, these results apply to the setting of undirected graphs as
well. We note that the algorithms described in [13] focus on complete allocations,
but can be adapted to account for Pareto efficiency as well.

Structural Parameters II: Vertex Cover and Twin Cover. In the setting of
directed graphs and general utilities, we note that the problem of finding a com-
plete and locally envy-free allocation is NP-hard even when the underlying graph
is a star. In particular, this demonstrates hardness on graphs with a constant-
sized vertex cover.4 It is not clear if this is the case for undirected graphs and
binary utilities. We show that the problem of finding locally EEF allocations
is W[1]-hard when parameterized by the vertex cover number (Theorem 3). We
remark that a stronger hardness result can be observed for the closely related
parameter of twin cover5 —indeed, the known NP-hardness of finding envy-free
allocations for binary valuations on complete graphs [3,14] implies hardness for
graphs that have a twin cover of size zero.

Few Resources or Agents. We also consider the cases where the number of goods
or the number of agents are relatively small. When considering these parameters,
the work of Bliem et al. [6] shows that the computation of EEF allocations is FPT
when parameterized by the number of goods or the number of agents for additive
0/1 valuations. In contrast, we show that finding EEF allocations respecting the
structure of an underlying undirected graph is W[1]-hard when parameterized
by the number of goods (Theorem 2). On the other hand, the FPT algorithm
when parameterized by the number of agents can be extended to account for the
graph constraints (noted in Observation 1 in the full version [15]).

Other Notions of Fairness. Finally, we also consider notions of proportionality
in the context of graphs — we refer to these as local and quasi-global propor-
tionality concepts, representing the extent to which the definitions account for
the underlying graph. We demonstrate that computing a locally proportional
allocation is NP-hard (Theorem 5), while computing a proportional allocation
that is quasi-global is tractable (Theorem 6). Notions of local proportionality

4 A vertex cover of a graph is a subset of vertices that contains at least one endpoint
of every edge. A graph with a bounded vertex cover also has bounded treewidth.

5 A twin cover of a graph is a subset of vertices S such that G\S is a disjoint union
of cliques, and further, every pair of vertices u, v in any clique of G\S are “twins”,
that is, N[v] = N[u].
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have been proposed and studied in several of the papers that were summarized
in the previous section.

2 Preliminaries

We use standard terminology from graph theory and fair division. Unless men-
tioned otherwise, the graphs we consider are simple and undirected. For a graph
G = (V,E), consisting of a set V of vertices and a set E of edges, by N(v) we
denote the neighborhood of vertex v ∈ V , i.e., the set W ⊂ V of vertices such
that for each vertex w ∈ W there exists an edge e = (v,w) ∈ E. The closed
neighborhood of a vertex v is N(v) ∪ {v} and is denoted N[v]. The degree of a
vertex v, denoted d(v), is |N(v)|. A clique is a subset of vertices which are pair-
wise adjacent. An independent set is a subset of vertices, no two of which are
adjacent. For X ⊆ V, the induced subgraph G[X] denotes the subgraph whose
vertex set is X and the edge set consists of all edges whose both end points are
in X.

An instance of fair division for indivisible goods consists of n agents A =
{1, . . . ,n} and m goods (also called items or resources), R = {o1, . . . ,om}. Fur-
ther, we are also given valuations (also called preference functions or utilities)
ν� : 2R → Z for every agent � ∈ A. We will assume throughout that the val-
uation functions are additive, i.e., for each agent � ∈ A and any set of goods
S ⊆ R, ν�(S) :=

∑
o∈S ν�({o}). A 0/1 valuation is a function that takes values

in {0, 1}, while valuations are said to be identical if every agent has the same
preference function. In the context of 0/1 valuations, we say that an agent values
or approves a good if her utility for the good is 1. We will use V to denote the
valuations of the agents A over R. When considering fair division in the context
of social networks, we are also given an undirected graph G over the agents A.

Every subset S ⊆ R is called a bundle. An allocation is a function π : A → 2R

mapping each agent to the bundle she receives, such that π(i) ∩ π(j) = ∅ when
i 	= j because the items cannot be shared. When

⋃
a∈A π(a) = R, the allocation

π is said to be complete, otherwise it is partial. An allocation is non-wasteful if
every good is allocated to an agent that assigns positive utility to it.

An allocation π′ dominates π if for all � ∈ A it holds that ν�(π(�))) �
ν�(π

′(�)) and for some aj ∈ A it holds that νaj
(π(aj))) < νaj

(π′(aj)). An
allocation π is Pareto-efficient if there exists no allocation π′ that dominates π.
In the case of 0/1 preferences, we note that an allocation is Pareto-efficient if and
only if it is complete and non-wasteful, assuming that each resource provides a
value of 1 to at least one agent.

Given an instance of fair division (A,R,G = (A,E),V) as described above,
we now introduce the following fairness notions:

� Graph Envy-Freeness (GEF). We call allocation π graph-envy-free if for
each pair of (distinct) agents i, j ∈ A such that j ∈ N(i), it holds that
νi(π(i)) � νi(π(j)).

� Quasi-Global Proportionality (QP). We say that an allocation π achieves
quasi-global proportionality if for each agent � ∈ A, νi(π(i)) � 1

d(�)+1νi(R).
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� Local Proportionality (LP). We say that an allocation π achieves local
proportionality if for each agent � ∈ A, νi(π(i)) � 1

d(�)+1

∑
j∈N[i] νi(π(j)).

Note that the graph versions of variants of envy-freeness (such as EF1 or
EFX) can be defined analogously in a straightforward manner. It is easy to
see that any graph envy-free allocation is also locally proportional and that if
the underlying graph is complete, then local proportionality coincides with the
standard notion of proportionality. For the problems we consider, we are typically
given an instance of fair division on a graph, and the goal is to determine if
there exists an allocation that satisfies some notion of fairness and efficiency.
For instance, consider the following problems:

Graph Envy-Free Allocation (E-GEFA)
Input: An instance of fair division on a graph
(A,R,G = (A,E),V).
Question: Does there exist an envy-free, Pareto-efficient allocation?

Locally Proportional Allocation (E-LPA)
Input: An instance of fair division on a graph
(A,R,G = (A,E),V).
Question: Does there exist a Pareto-efficient allocation that achieves
local proportionality?

For any efficiency concept (X) and fairness notion (Y), the X-YA problem
is defined in a similar fashion. Although our questions are posed as decision
versions, we note that most of our algorithms can be easily adapted to handle the
natural “search” version of these problems. We refer the reader to the books [7,
16] and the article [11] for additional background on fair division.

A problem parameterized by k is fixed-parameter tractable if it is solvable in
f(k)|I|O(1) time for some computable function f and the input size |I| according
to the problem’s encoding. Informally, W-hard problems are presumably not
fixed-parameter tractable. The problem of finding a clique on at least k vertices
is W[1]-hard when parameterized by k. We call a problem para-NP-hard if it
is NP-hard even for a constant value of the parameter. For a comprehensive
introduction to the paradigm of parametrized complexity and algorithms, we
refer the reader to the book [12].

3 Envy-Freeness

3.1 NP-Hardness for Two Agent Types

In this section, we show that finding E-GEFA allocations is NP-hard even in the
setting of near-identical binary valuations: in particular, when all agents have
one of two possible utilities over the items. Note that in the setting of identical
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binary valuations when the graph G is connected, it is easy to see that all agents
must value all goods without loss of generality, and that desirable allocations are
the ones that allocates the same number of goods to each agent, where the goods
themselves may be arbitrarily chosen. Indeed, it is clear that an allocation with
equal bundle sizes is E-GEFA. On the other hand, consider a E-GEFA allocation
that does not allocate bundles of equal size to all agents. Let ai and aj be two
agents that receive bundles of different size. We can always find two adjacent
agents on a path from ai to aj who have received bundles of different sizes,
contradicting envy-freeness.

We now show that even a slightly more general situation is computationally
intractable — in particular, if all agents have one of two valuations over the
goods, the problem of identifying E-GEFA allocations is NP-hard. Due to lack
of space, the proof is deferred to the full version [15].

Theorem 1. The E-GEFA problem is NP-complete even when there are two
agent types, and further, agents have 0/1 valuations over the goods.

3.2 W-Hardness Parameterized by Goods

In this section, we demonstrate the hardness of finding E-GEFA allocations even
when the number of goods is bounded by showing that the problem is W[1]-hard
when parameterized by the number of goods.

Theorem 2. The E-GEFA problem is W[1]-hard when parameterized by the
number of goods, even when agents have 0/1 valuations over the goods.

We describe a reduction from the W[1]-hard problem Clique, given a graph
G and an integer k, does there exist a clique on k vertices in G. Let I = (G,k)
be an instance of clique, where G = (V,E) and further, V = {v1, . . . , vn} and
E = {e1, . . . , em}. We assume, without loss of generality, that m �

(
k
2

)
, since we

can always return a trivial No-instance when this is not the case. We begin by
describing the construction of the reduced instance JI := (A,R,H = (A, F),V).
We define the set of goods R as follows:

R = {q1, . . . ,q�,p1, . . . ,pk,d1, . . . ,d�+1} ,

where � =
(
k
2

)
. For ease of discussion, we call the first � goods popular and

the next k goods specialized. The remaining are dummy items. We now define
the set of agents as A = V ∪ E ∪ S ∪ W, where:

S := {s1, . . . , s�+1} and W := {wij | i ∈ [n], j ∈ [� + 1]}.

We indulge in a mild abuse of notation and use vi to refer to both an element
of V from the clique instance and an agent of A in the reduced instance (similarly
for edges). The edges of H are as follows:

� e = (u, v) ∈ E is adjacent to all vertices of S and u, v.
� vi ∈ V is adjacent to all vertices wij for j ∈ [� + 1].
� For each 1 � i � n, H[∪�+1

j=1wij] induces a clique.
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wi1, · · · ,wi(�+1) W

v1, v2, · · · , vi, · · · , vj, · · · , vn V

e1, e2, · · · , et, · · · , em E

s1, s2, · · · , s�, s�+1 S

Fig. 1. A sketch of the reduced
instance based on an instance G =

(V,E),k of Clique. Recall that �

denotes
(

k
2

)
, and only some vertices of

W are shown for clarity. The shaded
vertices induce a complete subgraph.
The edge et = (vi, vj) is adjacent only
to vi and vj among vertices in V.

The preferences of the agents are as
follows:

� All agents have an utility of 1 for the
popular goods.

� All agents in V have an utility of 1 for
the specialized goods.

� The agent si ∈ S has an utility of 1 for
di, for all i ∈ [� + 1].

This completes the construction of the
instance (Fig. 1). Note that the number of
goods is a function of k alone. We now
turn to the argument for equivalence, a
clique X ⊆ V, of size k exists in G iff,
there is an GEF allocation for the instance
constructed JI := (A,R,H = (A, F),V).

Proof. In the forward direction, let X ⊆ V

be a clique in G and let Y := G[X] ⊆ G.
Consider now the following allocation π.
We let each agent corresponding to Y

receive one popular item, each agent cor-
responding to X receive one specialized
item, and finally allocate the item di to
si for all i ∈ [� + 1]. It is straightforward to verify that the allocation π is
Pareto-efficient and envy-free with respect to H.

This concludes our description of a fair and complete allocation strategy
given a clique in G. We now turn to the reverse direction, where we are given an
allocation π that is Pareto-efficient and envy-free with respect to H. It is useful
to make the following observation about π to begin with.

Claim. Let H be defined as above, and let π be an allocation that is Pareto-
efficient and envy-free with respect to H. Then, any popular good is assigned by
π to an agent from E. Further, no agent in E can receive more than one popular
good in the allocation π.

Since π is non-wasteful, the specialized goods must be distributed among
agents corresponding to V. The following is easy to see.

Claim. Let H be defined as above, and let π be an allocation that is Pareto-
efficient and envy-free with respect to H. No agent in V can receive more than
one specialized good in the allocation π.

Let X ⊆ V be the subset of k agents that receive at least one specialized item
and let Y ⊆ E be the subset of � agents that receive at least one popular item
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with respect to π. We claim that G[X] is a clique. In particular, we claim that
every edge of Y has both its endpoints in X. Indeed, suppose not, and let e ∈ Y

be an edge with at least one endpoint (say v) outside X. Then, v envies e, which
contradicts our assumption about π being envy-free with respect to H. 
�

3.3 W-Hardness Parameterized by Vertex Cover

Recall that a vertex cover of a graph G = (V,E) is a subset S ⊆ V such that G\S

is an independent set (i.e., for any pair of vertices u, v ∈ G\S, (u, v) /∈ E). In the
setting of directed graphs with arbitrary utilities, finding E-GEFA allocations is
NP-hard even for graphs that have a constant-sized vertex cover. Here, we show
that in the setting of binary utilities, finding a E-GEFA allocation is W[1]-hard
when parameterized by the vertex cover of the underlying graph. Due to lack of
space, the proof is deferred to the full version [15].

Theorem 3 (�). The E-GEFA problem is W[1]-hard when parameterized by
the vertex cover of the underlying graph, even when agents have 0/1 valuations
over the goods.

3.4 NP-Hardness on Paths

To show the hardness of E-GEFA even when the underlying graph is a path,
we reduce from a variant of SAT called Linear SAT (abbreviated LSAT).
In an LSAT instance, each clause has at most three literals, and further the
literals of the formula can be sorted such that every clause corresponds to at
most three consecutive literals in the sorted list, and each clause shares at most
one of its literals with another clause, in which case this literal is extreme in
both clauses. The hardness of LSAT was shown in [2]. In fact, by studying the
reduced instance, one may assume that a “hard” instance of LSAT has the
following structure: the first 2q clauses have two literals each and are of the
following form:

Ai = {si, �i},Bi = {�i, ti}; 1 � i � q,

where si, �i, and ti denote literals, while the remaining p clauses have three
literals each and are mutually disjoint from each other as well as the first 2q
clauses. For ease of description, we will assume that the LSAT formula that
we reduce from has this particular structure. We are now ready to describe our
reduction — in the interest of simplicity, our proof is designed to address the
case when the graph is a disjoint union of paths, although it is easy to “stitch”
these components into a single, longer path, as we will explain later.

Theorem 4. The E-GEFA problem is NP-complete even when the graph
induced by the agents is a disjoint union of paths, and further, agents have 0/1
valuations over the goods.
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Membership in NP is straightforward to check. We focus here on the reduction
demonstrating hardness. Let φ be an instance of LSAT over variables X̂ :=
{x1, . . . , xn} and clauses:

C := {A1,B1, . . . ,Aq,Bq,C1, . . . ,Cp},

as described above. We refer to the first 2q clauses as the coupled clauses
and the remaining as isolated clauses. We now turn to the construction of the
reduced instance Jφ := (V,R,H,V). We define the set of goods R as RX̂ ∪ RC,
where:

RX̂ = {y1, . . . ,yn, x1, . . . , xn, x1, . . . , xn, } ,

and:
RC = {g1, . . . ,gq,d1, . . . ,dp} .

The set of agents V is given by X ∪ C ∪ Y ∪ G ∪ D, where C is denoted
in the same way as in the LSAT instance, and further:

X = {X1, . . . ,Xn},Y = {Y1, . . . ,Yn},

G = {G1, . . . ,Gq} and D = {D1, . . . ,Dp}.

We now simultaneously describe the structure of the graph H and the pref-
erences of the agents.

Yi

yi

Xi

yi xi xi

Di

di

Ci

di j1 j2 j3

Gi

gi

Ai

gi si ti �i

Bi

si ti

Fig. 2. A schematic of the reduced
instance in the proof of Theorem 4,
which is a disjoint union of paths. j1
j2 j3 are the literals of clause Ci

Assignment Gadgets. For each 1 � i �
n, add an edge between Xi and Yi. The
agent Xi values {xi, xi,yi}, while Yi values
the good yi (and nothing else).

Isolated Clause Gadgets. For each 1 �
i � p, we add an edge between agents Ci

and Di. The agent Ci values the literal � if
and only if � ∈ Ci along with di, while Di

values the good di (and nothing else).

Coupled Clause Gadgets. For each 1 �
i � q, we add an edge between agents Ai

and Bi, and also an edge between Gi and Ai.
The agent Gi values the good gi (and noth-
ing else). Agents Ai and Bi value, respec-
tively, the goods {gi, si, ti, �i} and {si, ti}.

This completes the description of the
construction (Fig.2). We defer the proof of
equivalence to the full version [15] due to lack of space.

We remark that it is possible to combine the connected components in the
reduced instance above by simply introducing “dummy connector agents” that
each value a corresponding dummy item and nothing else, leading to the following
consequence.



276 N. Misra and D. Nayak

Corollary 1. The E-GEFA problem is NP-complete even when the graph
induced by the agents is a path, and further, agents have 0/1 valuations over
the goods.

4 Proportionality for Graphs

4.1 Local Proportionality: NP-hardness

Theorem 5. The E-LPA problem is NP-complete on undirected graphs, even
when all agents have 0/1 valuations over the resources.

Proof. We defer the proof to the full version [15] due to lack of space. 
�

4.2 Quasi-Global Proportionality: Efficient Algorithms

To obtain efficient algorithms for finding Pareto-efficient allocations that respect
quasi-global proportionality, We model the problem of finding Pareto-efficient
allocations respecting quasi-global proportionality using an integer linear pro-
gram (ILP) with a structured constraint matrix. In particular, it is well-known
that if the constraint matrix of an ILP is totally unimodular,6 then the corre-
sponding instance can be solved in polynomial time. We turn to an explanation
of our encoding.

Theorem 6. The problem of finding a Pareto-efficient allocation that is quasi-
globally proportional with respect to an underlying undirected graph on the agents
can be solved in polynomial time if all agents have 0/1 valuations.

Proof. Let us assume there are n agents and m goods. We will introduce a vari-
able xij which indicates whether agent i gets good j, and aij indicates whether
agent i likes good j. These constraints are as follows.

� We encode the fact that the allocation defined by x is well-defined by intro-
ducing the following constraint for each good j:

� For each agent i, let si be the number of items that have utility 1 for agent
i. For each agent i, introduce the following proportionality constraint:

∀j

n∑

i=1

xij � 1 and ∀i

m∑

j=1

aijxij � si

(di + 1)

We let the objective function be
∑n

i=1 aijxij. Note that any assignment for
which this function achieves a value of m is complete and non-wasteful, and
also respects quasi-global proportionality. It is straightforward to verify that
the constraint matrix for the ILP described above is totally unimodular for any
underlying graph H. 
�
6 A unimodular Matrix is a square integer matrix having determinant +1 or −1. A

totally unimodular matrix is a matrix for which every square non-singular submatrix
is unimodular.
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We remark that the problem of assigning goods in a proportional fashion (for
any of the notions of proportionality that we have introduced) beyond 0/1 valu-
ations is NP-hard even when there are only two agents with identical valuations,
by a standard reduction from Partition, with the graph being a singe edge on
two agents.
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