

Chromatic Bounds for Some Subclasses of $(P_3 ∪ P_2)$ -free graphs

Athmakoori Prashant^{[1](http://orcid.org/0000-0001-5407-0520)(\boxtimes}) \Box [,](http://orcid.org/0000-0003-2391-4625) P. Francis² \Box , and S. Francis Raj¹ \Box

¹ Department of Mathematics, Pondicherry University, Puducherry 605014, India 11994prashant@gmail.com, francisraj s@pondiuni.ac.in ² Department of Computer Science, Indian Institute of Technology, Palakkad 678557, India

pfrancis@iitpkd.ac.in

Abstract. The class of $2K_2$ -free graphs has been well studied in various contexts in the past. It is known that the class of $\{2K_2, 2K_1 + K_p\}$ -free graphs and $\{2K_2, (K_1 \cup K_2) + K_p\}$ -free graphs admits a linear χ -binding function. In this paper, we study the classes of $(P_3 \cup P_2)$ -free graphs which is a superclass of $2K_2$ -free graphs. We show that $\{P_3 \cup P_2, 2K_1 + K_p\}$ free graphs and $\{P_3 \cup P_2, (K_1 \cup K_2) + K_p\}$ -free graphs also admits a linear χ -binding function. In addition, we give tight chromatic bounds for $\{P_3 \cup P_2, HVN\}$ -free graphs and $\{P_3 \cup P_2, diamond\}$ -free graphs, and it can be seen that the latter is an improvement of the existing bound given by A. P. Bharathi and S. A. Choudum [\[1](#page-6-0)].

Keywords: Chromatic number $\cdot \chi$ -binding function $\cdot (P_3 \cup P_2)$ -free graphs · Perfect graphs

2000 AMS Subject Classification: 05C15 · 05C75

1 Introduction

All graphs considered in this paper are simple, finite and undirected. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For any positive integer k, a *proper* k-coloring of a graph G is a mapping $c: V(G) \to \{1, 2, ..., k\}$ such that adjacent vertices receive distinct colors. If a graph G admits a proper k -coloring, then G is said to be k-colorable. The *chromatic number*, $\chi(G)$, of a graph G is the smallest k such that G is k-colorable. Let P_n, C_n and K_n respectively denote the path, the cycle and the complete graph on n vertices. For $S, T \subseteq V(G)$, let $N_T(S) = N(S) \cap T$ (where $N(S)$ denotes the set of all neighbors of S in G), let $\langle S \rangle$ denote the subgraph induced by S in G and let $[S, T]$ denote the set of all edges with one end in S and the other end in T . If every vertex in S is adjacent with every vertex in T, then $[S, T]$ is said to be complete. For any graph G, let \overline{G} denote the complement of G.

Let $\mathcal F$ be a family of graphs. We say that G is $\mathcal F$ -free if it does not contain any induced subgraph which is isomorphic to a graph in $\mathcal F$. For a fixed graph H, let us denote the family of H-free graphs by $\mathcal{G}(H)$. For any two disjoint graphs G_1 and G_2 let $G_1 \cup G_2$ and $G_1 + G_2$ denote the *union* and the *join* of G_1 and G_2 respectively. Let $\omega(G)$ and $\alpha(G)$ denote the *clique number* and *independence number* of a graph G respectively. When there is no ambiguity, $\omega(G)$ will be denoted by ω . A graph G is said to be *perfect* if $\chi(H) = \omega(H)$, for every induced subgraph H of G .

In order to determine an upper bound for the chromatic number of a graph in terms of their clique number, the concept of χ -binding functions was introduced by A. Gyárfás in [\[4\]](#page-6-1). A class G of graphs is said to be χ -bounded [4] if there is a function f (called a χ -binding function) such that $\chi(G) \leq f(\omega(G))$, for every $G \in \mathcal{G}$. We say that the *x*-binding function f is *special linear* if $f(x) = x + c$, where c is a constant.

The family of $2K_2$ -free graphs has been well studied. A. Gyárfás in [\[4\]](#page-6-1) posed a problem which asks for the order of magnitude of the smallest χ-binding function for $\mathcal{G}(2K_2)$. In this direction, T. Karthick et al. in [\[5\]](#page-6-2) proved that the families of $\{2K_2, H\}$ -free graphs, where $H \in \{HVN, diamond, K_1 + P_4, K_1 + P_5\}$ $C_4, \overline{P_5}, \overline{P_2 \cup P_3}, K_5 - e$ admit a special linear *χ*-binding functions. The bounds for $\{2K_2, K_5 - e\}$ -free graphs and $\{2K_2, K_1 + C_4\}$ -free graphs were later improved by Athmakoori Prashant et al., in [\[7,](#page-6-3)[8\]](#page-6-4). In [\[2\]](#page-6-5), C. Brause et al., improved the χ -binding function for $\{2K_2, K_1 + P_4\}$ -free graphs to max $\{3, \omega(G)\}\$. Also they proved that for $s \neq 1$ or $\omega(G) \neq 2$, the class of $\{2K_2, (K_1 \cup K_2) + K_s\}$ -free graphs with $\omega(G) \geq 2s$ is perfect and for $r \geq 1$, the class of $\{2K_2, 2K_1 + K_r\}$ -free graphs with $\omega(G) \geq 2r$ is perfect. Clearly when $s = 2$ and $r = 3$, $(K_1 \cup K_2) + K_s \cong HVN$ and $2K_1 + K_r \cong K_5 - e$ which implies that the class of $\{2K_2, HVN\}$ -free graphs and $\{2K_2, K_5 - e\}$ -free graphs are perfect for $\omega(G) \geq 4$ and $\omega(G) \geq 6$ respectively which improved the bounds given in [\[5\]](#page-6-2).

Motivated by C. Brause et al., and their work on $2K_2$ -free graphs in [\[2\]](#page-6-5), we started looking at $(P_3 \cup P_2)$ -free graphs which is a superclass of 2K₂-free graphs. In [\[1](#page-6-0)], A. P. Bharathi et al., obtained a $O(\omega^3)$ upper bound for the chromatic number of $(P_3 \cup P_2)$ -free graphs and obtained sharper bounds for $\{P_3 \cup P_2\}$ P_2 , diamond})-free graphs. In this paper, we obtain linear χ -binding functions for the class of $\{P_3 \cup P_2, (K_1 \cup K_2) + K_p\}$ -free graphs and $\{P_3 \cup P_2, 2K_1 +$ K_p -free graphs. In addition, for $\omega(G) \geq 3p - 1$, we show that the class of ${P_3 \cup P_2, (K_1 \cup K_2) + K_p}$ -free graphs admits a special linear χ -binding function $f(x) = \omega(G) + p - 1$ and the class of $\{P_3 \cup P_2, 2K_1 + K_p\}$ -free graphs are perfect. In addition, we give a tight χ -binding function for $\{P_3 \cup P_2, HVN\}$ -free graphs and $\{P_3 \cup P_2, diamond\}$ -free graphs. This bound for $\{P_3 \cup P_2, diamond\}$ -free graphs turns out to be an improvement of the existing bound obtained by A. P. Bharathi et al., in [\[1\]](#page-6-0).

Some graphs that are considered as forbidden induced subgraphs in this paper are given in Fig. [1.](#page-2-0) Notations and terminologies not mentioned here are as in $|10|$.

Fig. 1. Some special graphs

2 Preliminaries

Throughout this paper, we use a particular partition of the vertex set of a graph G as defined initially by S. Wagon in $[9]$ and later improved by A. P. Bharathi et al., in [\[1](#page-6-0)] as follows. Let $A = \{v_1, v_2, \ldots, v_\omega\}$ be a maximum clique of G. Let us define the *lexicographic ordering* on the set $L =$ $\{(i,j):1\leq i\leq j\leq \omega\}$ in the following way. For two distinct elements $(i_1, j_1), (i_2, j_2) \in L$, we say that (i_1, j_1) precedes (i_2, j_2) , denoted by $(i_1, j_1) <_L$ (i_2, j_2) if either $i_1 < i_2$ or $i_1 = i_2$ and $j_1 < j_2$. For every $(i, j) \in L$, let $C_{i,j} = \{v \in V(G) \backslash A : v \notin N(v_i) \cup N(v_j)\} \setminus \left\{v_i\in V(G) \cup N(v_j) \right\}$ $\bigcup_{(i',j')\leq L(i,j)} C_{i',j'}\bigg\}$. Note that, for any $k \in \{1, 2, \ldots, j\} \setminus \{i, j\}, [v_k, C_{i,j}]$ is complete. Hence $\omega(\langle C_{i,j} \rangle) \leq \omega(G)-j+2$.

For $1 \leq k \leq \omega$, let us define $I_k = \{v \in V(G) \backslash A : v \in N(v_i)$, for every $i \in$ $\{1, 2, \ldots, \omega\} \backslash \{k\}$. Since A is a maximum clique, for $1 \leq k \leq \omega$, I_k is an independent set and for any $x \in I_k$, $xv_k \notin E(G)$. Clearly, each vertex in $V(G) \backslash A$ is non-adjacent to at least one vertex in A. Hence those vertices will be contained either in I_k for some $k \in \{1, 2, ..., \omega\}$, or in $C_{i,j}$ for some $(i,j) \in L$. Thus $V(G) = A \cup \left(\begin{matrix} \omega \\ \cup \\ k \end{matrix} \right)$ $\bigcup_{k=1}^{\omega} I_k\bigg)$ ∪ $\sqrt{2}$ $\bigcup_{(i,j)\in L} C_{i,j}$. Sometimes, we use the partition $V(G) = V_1 \cup V_2$, where $V_1 = \bigcup_{1 \le k \le \omega} (\{v_k\} \cup I_k) = \bigcup_{1 \le k \le \omega} U_k$ and $V_2 = \bigcup_{(i,j) \in L} C_{i,j}$. Let us recall a result on $(P_3 \cup P_2)$ -free graphs given by A. P. Bharathi et al.,

in [\[1\]](#page-6-0).

Theorem 1 [\[1](#page-6-0)]. *If a graph* G *is* $(P_3 \cup P_2)$ *-free, then* $\chi(G) \leq \frac{\omega(G)(\omega(G)+1)(\omega(G)+2)}{6}$ *.*

Without much difficulty one can make the following observations on $(P_3 \cup P_2)$ free graphs.

Fact 2. *Let* G *be a* $(P_3 \cup P_2)$ *-free graph. For* $(i, j) \in L$ *, the following holds.*

- *(i)* Each $C_{i,j}$ *is a disjoint union of cliques, that is,* $\langle C_{i,j} \rangle$ *is* P_3 -free.
- *(ii)* For every integer $s \in \{1, 2, ..., j\} \setminus \{i, j\}$, $N(v_s) \supseteq \{C_{i,j} \cup A \cup (\bigcup_{k=1}^{w} I_k)\} \setminus \{v_s \cup C_{i,j} \cup C_{i,j} \}$ I_s .

3 ${P_3 \cup P_2, (K_1 \cup K_2) + K_n}$ free graphs

Let us start Sect. [3](#page-3-0) with some observations on $((K_1 \cup K_2) + K_p)$ -free graphs.

Proposition 1. Let G be a $((K_1 \cup K_2) + K_p)$ -free graph with $\omega(G) \geq p+2$, ^p [≥] ¹*. Then* ^G *satisfies the following.*

- *(i)* For $k, \ell \in \{1, 2, \ldots, \omega(G)\}, [I_k, I_\ell]$ *is complete. Thus,* $\langle V_1 \rangle$ *is a complete multipartite graph with* $U_k = \{v_k\} \cup I_k$, $1 \leq k \leq \omega(G)$ *as its partitions.*
- *(ii)* For $j \geq p+2$ and $1 \leq i < j$, $C_{i,j} = \emptyset$.
- *(iii)* For $x \in V_2$, x has neighbors in at most $(p-1)$ U_{ℓ} 's where $\ell \in$ $\{1, 2, \ldots, \omega(G)\}.$

Proposition 2. *Let* G *be a* $\{P_3 \cup P_2, (K_1 \cup K_2) + K_p\}$ *-free graph with* $\omega(G) \ge$ $p + 2$, $p \geq 1$ *. Then G satisfies the following.*

(i) For $(i, j) \in L$ *such that* $j \leq p+1$ *, if* $\omega(\langle C_{i,j} \rangle) \geq p-j+4$ *, then* $\omega(\langle C_{k,j} \rangle) \leq 1$ *for* $k \neq i$ *and* $1 \leq k \leq j - 1$ *. (ii)* If $\omega(G) = (p + 2 + k)$, $k \ge 0$, then $\left\langle \begin{pmatrix} p+1 \\ \bigcup \limits_{j=\max\{2,p+1-\lfloor \frac{k}{2} \rfloor\}}^{p+1} \binom{j-1}{i=1} C_{i,j} \end{pmatrix} \right\rangle$ is

$$
P_3\text{-}free.
$$

As a consequence of Proposition [1,](#page-3-1) we obtain Corollary [1](#page-3-2) which is a result due to S. Olariu in [\[6](#page-6-8)].

Corollary 1 [\[6\]](#page-6-8)**.** *Let* G *be a connected graph. Then* G *is* paw*-free graph if and only if* G *is either* K3*-free or complete multipartite.*

Now, for $p \geq 1$ and $\omega \geq \max\{3, 3p-1\}$, let us determine the structural characterization and the chromatic number of $\{P_3 \cup P_2, (K_1 \cup K_2) + K_p\}$ -free graphs.

Theorem 3. Let p be a positive integer and G be a $\{P_3 \cup P_2, (K_1 \cup K_2) + K_p\}$ *free graph with* $V(G) = V_1 \cup V_2$ *. If* $\omega(G) \ge \max\{3, 3p - 1\}$ *, then (i)* $\langle V_1 \rangle$ *is a complete multipartite graph with partition* $U_1, U_2, \ldots, U_{\omega}$, (ii) $\langle V_2 \rangle$ *is* P_3 -free *graph and (iii)* $\chi(G) \leq \omega(G) + p - 1$.

Proof. Let $p \geq 1$ and G be a $\{P_3 \cup P_2, (K_1 \cup K_2) + K_p\}$ -free graph with $\omega(G) \geq$ max $\{3, 3p-1\}$. By (i) of Proposition [1,](#page-3-1) we see that $\langle V_1 \rangle$ is a complete multipartite graph with the partition $U_k = \{v_k\} \cup I_k$, $1 \leq k \leq \omega$. By (i) of Fact [2,](#page-2-1) each $\langle C_{i,j} \rangle$ is P₃-free, for every $(i, j) \in L$. Also without much difficulty we can show that $\langle V_2 \rangle$ is P₃-free. Now, let us exhibit an $(\omega + p - 1)$ -coloring for G using $\{1, 2, \ldots, \omega + p - 1\}$ colors. For $1 \leq k \leq \omega$, give the color k to the vertices of U_k . Let H be a component in $\langle V_2 \rangle$. Clearly, each vertex in H is adjacent to at most $p-1$ colors given to the vertices of V_1 and is adjacent to $\omega(H)-1$ vertices of H. Since $\omega(H) \leq \omega(G)$, each vertex in H is adjacent to at most $\omega(G) + p - 2$ colors. Hence, there is a color available for each vertex in H . Similarly, all the components of $\langle V_2 \rangle$ can be colored properly. Hence, $\chi(G) \leq \omega(G) + p - 1$.

Even though we are not able to show that the bound given in Theorem [3](#page-3-3) is tight, we can observe that the upper bound cannot be made smaller than $\omega +$ $\lceil \frac{p-1}{2} \rceil$ by providing the following example. For $p \ge 1$, consider the graph G^* with $V(G^*) = X \cup Y \cup Z$, where $X = \bigcup_{i=1}^{\omega} x_i$, $Y = \bigcup_{i=1}^{\omega} y_i$ and $Z = \bigcup_{i=1}^{p-1} z_i$ if $p \ge 2$ else $Z = \emptyset$ and edge set $E(G^*) = \{ \{x_i x_j\} \cup \{y_i y_j\} \cup \{z_r z_s\} \cup \{x_m y_n\} \cup \{y_m z_n\} \cup \{x_n z_n\},\$ where $1 \leq i, j, m \leq \omega, 1 \leq r, s, n \leq p-1, i \neq j, r \neq s \text{ and } m \neq n$. Without much difficulty, one can observe that G^* is a $\{P_3 \cup P_2, (K_1 \cup K_2) + K_p\}$ -free graph, $\omega(G^*) = \omega$ and $\alpha(G^*) = 2$. Hence, $\chi(G^*) \ge \left| \frac{|V(G^*)|}{\alpha(G^*)} \right| = \omega(G^*) + \left\lceil \frac{p-1}{2} \right\rceil$.

Next, we obtain a linear χ -binding function for $\{P_3 \cup P_2, (K_1 \cup K_2) + K_n\}$ -free graphs with $\omega > 3$.

Theorem 4. Let p be an integer greater than 1. If G is a $\{P_3 \cup P_2, (K_1 \cup K_2) + P_3 \cup (K_1 \cup K_2) \}$ ^Kp}*-free graph, then*

$$
\chi(G) \leq \begin{cases} \omega(G) + \sum_{j=2}^{p+1} (j-1)(p-j+3) & \text{for } 3 \leq \omega(G) \leq p+1 \\ \omega(G) + 7(p-1) + \sum_{j=4}^{p-\lfloor \frac{k}{2} \rfloor} (j-1)(p-j+3) & \text{for } \omega(G) = (p+2+k), 0 \leq k \leq 2p-5 \\ \omega(G) + 4p - 3 & \text{for } \omega(G) = 3p - 2 \\ \omega(G) + p - 1 & \text{for } \omega(G) \geq 3p - 1. \end{cases}
$$

Proof. Let G be a $\{P_3 \cup P_2, (K_1 \cup K_2) + K_p\}$ -free graph with $p \geq 2$. For $\omega(G) \geq$ $3p-1$, the bound follows from Theorem [3.](#page-3-3) By (ii) of Proposition [1,](#page-3-1) we see that $C_{i,j} = \emptyset$ for all $j \geq p+2$. We know that $V(G) = V_1 \cup V_2$, where $V_1 =$ $\bigcup_{1 \leq \ell \leq \omega} (\{\tilde{v}_\ell\} \cup I_\ell)$ and $V_2 = \bigcup_{(i,j) \in L} C_{i,j}$. Clearly, the vertices of V_1 can be colored with $\omega(G)$ colors. Let us find an upper bound for $\chi(\langle V_2 \rangle)$. First, let us consider the case when $3 \leq \omega(G) \leq p+1$. For $1 \leq i < j \leq p+1$, one can observe that $\omega(\langle C_{i,j} \rangle) \leq \omega(G) - j + 2 \leq p - j + 3$. Thus one can properly color the vertices of $\left(\bigcup_{i=1}^{j-1} C_{i,j}\right)$ with at most $(j-1)(p-j+3)$ colors and hence $\chi(G) \leq$ $\chi(\langle V_1 \rangle) + \chi(\langle V_2 \rangle) \leq \omega(G) + \sum_{i=1}^{p+1} (j-1)(p-j+3).$ Next, let us consider $\omega(G) = (p+2+k)$, where $0 \le k \le 2p-4$. By using (ii) of Proposition [2,](#page-3-4) $\left| \begin{array}{c} p+1 \\ -p \end{array} \right|$ $\bigcup_{j=p-\lfloor \frac{k}{2} \rfloor+1}^{p+1} \left(\bigcup_{i=1}^{j-1} C_{i,j} \right) \bigg)$ is a P_3 -free graph. As in Theorem [3,](#page-3-3) one can color the vertices of $V(G) \setminus \left\{ \bigcup_{j=2}^{p-\lfloor \frac{k}{2} \rfloor} \left(\bigcup_{i=1}^{j-1} C_{i,j} \right) \right\}$ with at most $\omega(G)+p-1$ colors. For $k = 2p - 4$, $\omega(G) = 3p - 2$ and we see that $\langle V_2 \backslash C_{1,2} \rangle$ is P₃-free and $\chi(\langle V(G) \setminus C_{1,2} \rangle) \leq \omega(G) + p-1$. Therefore, $\chi(G) \leq \chi(\langle V(G) \setminus C_{1,2} \rangle) + \chi(\langle C_{1,2} \rangle) =$ $\omega(G)+4p-3$. Finally, for $0 \leq k \leq 2p-5$ $0 \leq k \leq 2p-5$ $0 \leq k \leq 2p-5$, by using (i) of Proposition 2 and by using similar strategies but with a little more involvement, we can show that $\left(\bigcup_{i=1}^{j-1} C_{i,j}\right)$, where $2 \leq j \leq p - \lfloor \frac{k}{2} \rfloor$ can be properly colored using $\omega(G)$ colors when $\omega(\langle C_{i,j} \rangle) \geq p - j + 4$, for some $i \in \{1, 2, ..., j - 1\}$ or by using

 $(j-1)(p-j+3)$ colors when $\omega(\langle C_{i,j} \rangle) \leq p-j+3$, for every $i \in \{1,2,\ldots,j-1\}$. For $4 \leq j \leq p - \lfloor \frac{k}{2} \rfloor$, one can observe that $(j-1)(p-j+3) \geq \omega(G)$ and hence the vertices of $\left(\bigcup_{j=4}^{p-\lfloor \frac{k}{2} \rfloor} \left(\bigcup_{i=1}^{j-1} C_{i,j}\right)\right)$ can be properly colored with p−<u>| $\frac{k}{2}$ </u> $\sum_{j=4}^{5} (j-1)(p-j+3)$ colors. When $j = 3$, $(j - 1)(p - j + 3) = 2p$. Since $2p - 5 \ge 0$, $p \ge 3$. Also, since $\omega(G) \geq 4$, the vertices of $C_{1,2}$ and $(C_{1,3} \cup C_{2,3})$ can be properly colored with at most (3*p* − 3) colors each. Hence, $χ(G) ≤ (ω(G) + p - 1) + 2(3p - 3) + \sum_{n=1}^{p - \lfloor \frac{k}{2} \rfloor}$ $\sum_{j=4}^{5} (j 1)(p - j + 3) = \omega(G) + 7(p - 1) + \sum_{i=1}^{p-\lfloor \frac{k}{2} \rfloor}$ $\sum_{j=4}^{n} (j-1)(p-j+3).$

The bound obtained in Theorem [4](#page-4-0) is not optimal. This can be seen in The-orem [5.](#page-5-0) Note that when $p = 2$, $(K_1 \cup K_2) + K_p \cong HVN$.

Theorem 5. *If* G *is a* $\{P_3 \cup P_2, HVN\}$ *-free graph with* $\omega(G) > 4$ *, then* $\chi(G)$ < $\omega(G)+1$.

The graph G^* (defined next to Theorem [3\)](#page-3-3) shows that the bound given in Theorem [5](#page-5-0) is tight.

4 ${P_3 \cup P_2, 2K_1 + K_n}$ free graphs

Let us start Sect. [4](#page-5-1) by observing that any $\{P_3 \cup P_2, 2K_1 + K_p\}$ -free graph is also a $\{P_3 \cup P_2, (K_1 \cup K_2) + K_n\}$ -free graph. Hence the properties established for ${P_3 \cup P_2, (K_1 \cup K_2) + K_p}$ -free graphs is also true for ${P_3 \cup P_2, 2K_1 + K_p}$ -free graphs.

One can observe that by using techniques similar to the one's used in Theorem [3](#page-3-3) and by Strong Perfect Graph Theorem [\[3\]](#page-6-9), any $\{P_3 \cup P_2, 2K_1 + K_n\}$ -free graph is perfect, when $\omega \geq 3p - 1$.

Theorem 6. Let p be a positive integer and G be a $\{P_3 \cup P_2, 2K_1 + K_p\}$ -free *graph with* $V(G) = V_1 \cup V_2$ *. If* $\omega(G) \geq 3p - 1$ *, then* $\langle V_1 \rangle$ *is complete,* $\langle V_2 \rangle$ *is* P3*-free and* G *is perfect.*

As a consequence of Theorem [4](#page-4-0) and Theorem [6,](#page-5-2) without much difficulty one can observe Proposition [3](#page-5-3) and Corollary [2.](#page-5-4)

Proposition 3. *Let* G *be a* $\{P_3 \cup P_2, 2K_1 + K_p\}$ *-free graph. If* $\omega(\langle C_{1,2} \rangle) \geq 2p$ *, then* $\chi(G) = \omega(G)$ *.*

Corollary 2. Let p be an integer greater than 1. If G is a $\{P_3 \cup P_2, 2K_1 + K_p\}$ *free graph, then*

$$
\chi(G) \leq \begin{cases} \omega(G) + \sum_{j=2}^{p+1} (j-1)(p-j+3) & \text{for } 3 \leq \omega(G) \leq p+1 \\ \omega(G) + 2p - 1 + \sum_{j=3}^{p-\lfloor \frac{k}{2} \rfloor} (j-1)(p-j+3) & \text{for } \omega(G) = (p+2+k), 0 \leq k \leq 2p-5 \\ \omega(G) + 2p - 1 & \text{for } \omega(G) = 3p - 2 \\ \omega(G) & \text{for } \omega(G) \geq 3p - 1. \end{cases}
$$

When $p = 2$, $2K_1 + K_p \cong diamond$ and hence by Theorem [6,](#page-5-2) $\{P_3 \cup$ P_2 , diamond}-free graphs are perfect for $\omega(G) > 5$ which was shown by A. P. Bharathi et al., in [\[1](#page-6-0)].

Theorem 7 [1]. If G is a {
$$
P_3 \cup P_2
$$
, diamond}-free graph then
\n
$$
\chi(G) \leq \begin{cases}\n4 \text{ for } \omega(G) = 2 \\
6 \text{ for } \omega(G) = 3 \text{ and } G \text{ is perfect if } \omega(G) \geq 5. \\
5 \text{ for } \omega(G) = 4\n\end{cases}
$$

We can further improve the bound given in Theorem [7](#page-6-10) by obtaining a $\omega(G)$ coloring when $\omega(G) = 4$.

Theorem 8. If
$$
G
$$
 is a $\{P_3 \cup P_2, diamond\}$ -free graph then
\n
$$
\chi(G) \leq \begin{cases} 4 \text{ for } \omega(G) = 2 \\ 6 \text{ for } \omega(G) = 3 \\ 4 \text{ for } \omega(G) = 4. \end{cases}
$$
 and G is perfect if $\omega(G) \geq 5$.

Acknowledgment. The first author's research was supported by the Council of Scientific and Industrial Research, Government of India, File No: 09/559(0133)/2019-EMR-I. The second author's research was supported by Post Doctoral Fellowship at Indian Institute of Technology, Palakkad.

References

- 1. Bharathi, A.P., Choudum, S.A.: Colouring of $(P_3 \cup P_2)$ -free graphs. Graphs Comb. **34**(1), 97–107 (2018)
- 2. Brause, C., Randerath, B., Schiermeyer, I., Vumar, E.: On the chromatic number of 2K2-free graphs. Discrete Appl. Math. **253**, 14–24 (2019)
- 3. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. Math. **164**, 51–229 (2006)
- 4. Gyárfás, A.: Problems from the world surrounding perfect graphs. Zastosowania Matematyki Applicationes Mathematicae **19**(3–4), 413–441 (1987)
- 5. Karthick, T., Mishra, S.: Chromatic bounds for some classes of $2K_2$ -free graphs. Discrete Math. **341**(11), 3079–3088 (2018)
- 6. Olariu, S.: Paw-free graphs. Inf. Process. Lett. **28**(1), 53–54 (1988)
- 7. Prashant, A., Francis Raj, S., Gokulnath, M.: Chromatic bounds for the subclasses of pK_2 -free graphs. arXiv preprint [arXiv:2102.13458](http://arxiv.org/abs/2102.13458) (2021)
- 8. Prashant, A., Gokulnath, M.: Chromatic bounds for the subclasses of pK_2 -free graphs. In: Mudgal, A., Subramanian, C.R. (eds.) CALDAM 2021. LNCS, vol. 12601, pp. 288–293. Springer, Cham (2021). [https://doi.org/10.1007/978-3-030-](https://doi.org/10.1007/978-3-030-67899-9_23) [67899-9](https://doi.org/10.1007/978-3-030-67899-9_23) 23
- 9. Wagon, S.: A bound on the chromatic number of graphs without certain induced subgraphs. J. Comb. Theory Ser. B **29**(3), 345–346 (1980)
- 10. West, D.B.: Introduction to Graph Theory. Prentice-Hall of India Private Limited, Upper Saddle River (2005)