

# Chromatic Bounds for Some Subclasses of $(P_3 \cup P_2)$ -free graphs

Athmakoori Prashant<sup>1</sup><sup>(⊠)</sup>, P. Francis<sup>2</sup>, and S. Francis Raj<sup>1</sup>

<sup>1</sup> Department of Mathematics, Pondicherry University, Puducherry 605014, India 11994prashant@gmail.com, francisraj\_s@pondiuni.ac.in <sup>2</sup> Department of Computer Science, Indian Institute of Technology, Palakkad 678557, India pfrancis@iitpkd.ac.in

Abstract. The class of  $2K_2$ -free graphs has been well studied in various contexts in the past. It is known that the class of  $\{2K_2, 2K_1 + K_p\}$ -free graphs and  $\{2K_2, (K_1 \cup K_2) + K_p\}$ -free graphs admits a linear  $\chi$ -binding function. In this paper, we study the classes of  $(P_3 \cup P_2)$ -free graphs which is a superclass of  $2K_2$ -free graphs. We show that  $\{P_3 \cup P_2, 2K_1 + K_p\}$ free graphs and  $\{P_3 \cup P_2, (K_1 \cup K_2) + K_p\}$ -free graphs also admits a linear  $\chi$ -binding function. In addition, we give tight chromatic bounds for  $\{P_3 \cup P_2, HVN\}$ -free graphs and  $\{P_3 \cup P_2, diamond\}$ -free graphs, and it can be seen that the latter is an improvement of the existing bound given by A. P. Bharathi and S. A. Choudum [1].

**Keywords:** Chromatic number  $\cdot \chi$ -binding function  $\cdot (P_3 \cup P_2)$ -free graphs  $\cdot$  Perfect graphs

2000 AMS Subject Classification: 05C15 · 05C75

### 1 Introduction

All graphs considered in this paper are simple, finite and undirected. Let G be a graph with vertex set V(G) and edge set E(G). For any positive integer k, a proper k-coloring of a graph G is a mapping  $c: V(G) \to \{1, 2, \ldots, k\}$  such that adjacent vertices receive distinct colors. If a graph G admits a proper k-coloring, then G is said to be k-colorable. The chromatic number,  $\chi(G)$ , of a graph G is the smallest k such that G is k-colorable. Let  $P_n, C_n$  and  $K_n$  respectively denote the path, the cycle and the complete graph on n vertices. For  $S, T \subseteq V(G)$ , let  $N_T(S) = N(S) \cap T$  (where N(S) denotes the set of all neighbors of S in G), let  $\langle S \rangle$  denote the subgraph induced by S in G and let [S, T] denote the set of all edges with one end in S and the other end in T. If every vertex in S is adjacent with every vertex in T, then [S, T] is said to be complete. For any graph G, let  $\overline{G}$  denote the complement of G. Let  $\mathcal{F}$  be a family of graphs. We say that G is  $\mathcal{F}$ -free if it does not contain any induced subgraph which is isomorphic to a graph in  $\mathcal{F}$ . For a fixed graph H, let us denote the family of H-free graphs by  $\mathcal{G}(H)$ . For any two disjoint graphs  $G_1$  and  $G_2$  let  $G_1 \cup G_2$  and  $G_1 + G_2$  denote the union and the join of  $G_1$  and  $G_2$  respectively. Let  $\omega(G)$  and  $\alpha(G)$  denote the clique number and independence number of a graph G respectively. When there is no ambiguity,  $\omega(G)$  will be denoted by  $\omega$ . A graph G is said to be perfect if  $\chi(H) = \omega(H)$ , for every induced subgraph H of G.

In order to determine an upper bound for the chromatic number of a graph in terms of their clique number, the concept of  $\chi$ -binding functions was introduced by A. Gyárfás in [4]. A class  $\mathcal{G}$  of graphs is said to be  $\chi$ -bounded [4] if there is a function f (called a  $\chi$ -binding function) such that  $\chi(G) \leq f(\omega(G))$ , for every  $G \in \mathcal{G}$ . We say that the  $\chi$ -binding function f is special linear if f(x) = x + c, where c is a constant.

The family of  $2K_2$ -free graphs has been well studied. A. Gyárfás in [4] posed a problem which asks for the order of magnitude of the smallest  $\chi$ -binding function for  $\mathcal{G}(2K_2)$ . In this direction, T. Karthick et al. in [5] proved that the families of  $\{2K_2, H\}$ -free graphs, where  $H \in \{HVN, diamond, K_1 + P_4, K_1 + C_4, \overline{P_5}, \overline{P_2} \cup \overline{P_3}, K_5 - e\}$  admit a special linear  $\chi$ -binding functions. The bounds for  $\{2K_2, K_5 - e\}$ -free graphs and  $\{2K_2, K_1 + C_4\}$ -free graphs were later improved by Athmakoori Prashant et al., in [7,8]. In [2], C. Brause et al., improved the  $\chi$ -binding function for  $\{2K_2, K_1 + P_4\}$ -free graphs to max $\{3, \omega(G)\}$ . Also they proved that for  $s \neq 1$  or  $\omega(G) \neq 2$ , the class of  $\{2K_2, (K_1 \cup K_2) + K_s\}$ -free graphs with  $\omega(G) \geq 2s$  is perfect. Clearly when s = 2 and r = 3,  $(K_1 \cup K_2) + K_s \cong HVN$ and  $2K_1 + K_r \cong K_5 - e$  which implies that the class of  $\{2K_2, HVN\}$ -free graphs and  $\{2K_2, K_5 - e\}$ -free graphs are perfect for  $\omega(G) \geq 4$  and  $\omega(G) \geq 6$  respectively which improved the bounds given in [5].

Motivated by C. Brause et al., and their work on  $2K_2$ -free graphs in [2], we started looking at  $(P_3 \cup P_2)$ -free graphs which is a superclass of  $2K_2$ -free graphs. In [1], A. P. Bharathi et al., obtained a  $O(\omega^3)$  upper bound for the chromatic number of  $(P_3 \cup P_2)$ -free graphs and obtained sharper bounds for  $\{P_3 \cup$  $P_2, diamond\}$ )-free graphs. In this paper, we obtain linear  $\chi$ -binding functions for the class of  $\{P_3 \cup P_2, (K_1 \cup K_2) + K_p\}$ -free graphs and  $\{P_3 \cup P_2, 2K_1 + K_p\}$ -free graphs. In addition, for  $\omega(G) \geq 3p - 1$ , we show that the class of  $\{P_3 \cup P_2, (K_1 \cup K_2) + K_p\}$ -free graphs additis a special linear  $\chi$ -binding function  $f(x) = \omega(G) + p - 1$  and the class of  $\{P_3 \cup P_2, 2K_1 + K_p\}$ -free graphs are perfect. In addition, we give a tight  $\chi$ -binding function for  $\{P_3 \cup P_2, HVN\}$ -free graphs and  $\{P_3 \cup P_2, diamond\}$ -free graphs. This bound for  $\{P_3 \cup P_2, diamond\}$ -free graphs turns out to be an improvement of the existing bound obtained by A. P. Bharathi et al., in [1].

Some graphs that are considered as forbidden induced subgraphs in this paper are given in Fig. 1. Notations and terminologies not mentioned here are as in [10].



Fig. 1. Some special graphs

#### 2 Preliminaries

in [1].

Throughout this paper, we use a particular partition of the vertex set of a graph G as defined initially by S. Wagon in [9] and later improved by A. P. Bharathi et al., in [1] as follows. Let  $A = \{v_1, v_2, \ldots, v_{\omega}\}$  be a maximum clique of G. Let us define the *lexicographic ordering* on the set  $L = \{(i, j) : 1 \leq i < j \leq \omega\}$  in the following way. For two distinct elements  $(i_1, j_1), (i_2, j_2) \in L$ , we say that  $(i_1, j_1)$  precedes  $(i_2, j_2)$ , denoted by  $(i_1, j_1) <_L$   $(i_2, j_2)$  if either  $i_1 < i_2$  or  $i_1 = i_2$  and  $j_1 < j_2$ . For every  $(i, j) \in L$ , let  $C_{i,j} = \{v \in V(G) \setminus A : v \notin N(v_i) \cup N(v_j)\} \setminus \{\bigcup_{(i',j') <_L(i,j)} C_{i',j'}\}$ . Note that, for any  $k \in \{1, 2, \ldots, j\} \setminus \{i, j\}, [v_k, C_{i,j}]$  is complete. Hence  $\omega(\langle C_{i,j} \rangle) \leq \omega(G) - j + 2$ .

For  $1 \leq k \leq \omega$ , let us define  $I_k = \{v \in V(G) \setminus A : v \in N(v_i), \text{ for every } i \in \{1, 2, \dots, \omega\} \setminus \{k\}\}$ . Since A is a maximum clique, for  $1 \leq k \leq \omega$ ,  $I_k$  is an independent set and for any  $x \in I_k$ ,  $xv_k \notin E(G)$ . Clearly, each vertex in  $V(G) \setminus A$  is non-adjacent to at least one vertex in A. Hence those vertices will be contained either in  $I_k$  for some  $k \in \{1, 2, \dots, \omega\}$ , or in  $C_{i,j}$  for some  $(i, j) \in L$ . Thus  $V(G) = A \cup \begin{pmatrix} \bigcup \\ k=1 \end{pmatrix} \cup \begin{pmatrix} \bigcup \\ (i,j) \in L \end{pmatrix} \end{pmatrix}$ . Sometimes, we use the partition  $V(G) = V_1 \cup V_2$ , where  $V_1 = \bigcup_{1 \leq k \leq \omega} (\{v_k\} \cup I_k) = \bigcup_{1 \leq k \leq \omega} U_k$  and  $V_2 = \bigcup_{(i,j) \in L} C_{i,j}$ . Let us recall a result on  $(P_3 \cup P_2)$ -free graphs given by A. P. Bharathi et al.,

**Theorem 1** [1]. If a graph G is  $(P_3 \cup P_2)$ -free, then  $\chi(G) \leq \frac{\omega(G)(\omega(G)+1)(\omega(G)+2)}{6}$ .

Without much difficulty one can make the following observations on  $(P_3 \cup P_2)$ -free graphs.

**Fact 2.** Let G be a  $(P_3 \cup P_2)$ -free graph. For  $(i, j) \in L$ , the following holds.

- (i) Each  $C_{i,j}$  is a disjoint union of cliques, that is,  $\langle C_{i,j} \rangle$  is  $P_3$ -free.
- (ii) For every integer  $s \in \{1, 2, ..., j\} \setminus \{i, j\}, N(v_s) \supseteq \{C_{i,j} \cup A \cup (\bigcup_{k=1}^{\omega} I_k)\} \setminus \{v_s \cup I_s\}.$

## $3 \quad \{P_3 \cup P_2, (K_1 \cup K_2) + K_p\}$ -free graphs

Let us start Sect. 3 with some observations on  $((K_1 \cup K_2) + K_p)$ -free graphs.

**Proposition 1.** Let G be a  $((K_1 \cup K_2) + K_p)$ -free graph with  $\omega(G) \ge p + 2$ ,  $p \ge 1$ . Then G satisfies the following.

- (i) For  $k, \ell \in \{1, 2, ..., \omega(G)\}$ ,  $[I_k, I_\ell]$  is complete. Thus,  $\langle V_1 \rangle$  is a complete multipartite graph with  $U_k = \{v_k\} \cup I_k$ ,  $1 \le k \le \omega(G)$  as its partitions.
- (ii) For  $j \ge p+2$  and  $1 \le i < j$ ,  $C_{i,j} = \emptyset$ .
- (iii) For  $x \in V_2$ , x has neighbors in at most (p-1)  $U_{\ell}$ 's where  $\ell \in \{1, 2, \dots, \omega(G)\}$ .

**Proposition 2.** Let G be a  $\{P_3 \cup P_2, (K_1 \cup K_2) + K_p\}$ -free graph with  $\omega(G) \ge p+2, p \ge 1$ . Then G satisfies the following.

(i) For  $(i, j) \in L$  such that  $j \leq p+1$ , if  $\omega(\langle C_{i,j} \rangle) \geq p-j+4$ , then  $\omega(\langle C_{k,j} \rangle) \leq 1$ for  $k \neq i$  and  $1 \leq k \leq j-1$ .

(ii) If 
$$\omega(G) = (p+2+k), \ k \ge 0, \ then \left\langle \begin{pmatrix} p+1 \\ \cup \\ j=\max\{2,p+1-\lfloor \frac{k}{2} \rfloor\} \begin{pmatrix} j-1 \\ \cup \\ i=1 \end{pmatrix} \end{pmatrix} \right\rangle$$
 is  $P_3$ -free.

As a consequence of Proposition 1, we obtain Corollary 1 which is a result due to S. Olariu in [6].

**Corollary 1** [6]. Let G be a connected graph. Then G is paw-free graph if and only if G is either  $K_3$ -free or complete multipartite.

Now, for  $p \ge 1$  and  $\omega \ge \max\{3, 3p - 1\}$ , let us determine the structural characterization and the chromatic number of  $\{P_3 \cup P_2, (K_1 \cup K_2) + K_p\}$ -free graphs.

**Theorem 3.** Let p be a positive integer and G be a  $\{P_3 \cup P_2, (K_1 \cup K_2) + K_p\}$ free graph with  $V(G) = V_1 \cup V_2$ . If  $\omega(G) \ge \max\{3, 3p - 1\}$ , then (i)  $\langle V_1 \rangle$  is a complete multipartite graph with partition  $U_1, U_2, \ldots, U_{\omega}$ , (ii)  $\langle V_2 \rangle$  is  $P_3$ -free graph and (iii)  $\chi(G) \le \omega(G) + p - 1$ .

Proof. Let  $p \geq 1$  and G be a  $\{P_3 \cup P_2, (K_1 \cup K_2) + K_p\}$ -free graph with  $\omega(G) \geq \max\{3, 3p-1\}$ . By (i) of Proposition 1, we see that  $\langle V_1 \rangle$  is a complete multipartite graph with the partition  $U_k = \{v_k\} \cup I_k, 1 \leq k \leq \omega$ . By (i) of Fact 2, each  $\langle C_{i,j} \rangle$  is  $P_3$ -free, for every  $(i, j) \in L$ . Also without much difficulty we can show that  $\langle V_2 \rangle$  is  $P_3$ -free. Now, let us exhibit an  $(\omega + p - 1)$ -coloring for G using  $\{1, 2, \ldots, \omega + p - 1\}$  colors. For  $1 \leq k \leq \omega$ , give the color k to the vertices of  $U_k$ . Let H be a component in  $\langle V_2 \rangle$ . Clearly, each vertex in H is adjacent to at most p - 1 colors given to the vertices of  $V_1$  and is adjacent to  $\omega(H) - 1$  vertices of H. Since  $\omega(H) \leq \omega(G)$ , each vertex in H is adjacent to at most  $\omega(G) + p - 2$  colors. Hence, there is a color available for each vertex in H. Similarly, all the components of  $\langle V_2 \rangle$  can be colored properly. Hence,  $\chi(G) \leq \omega(G) + p - 1$ .

Even though we are not able to show that the bound given in Theorem 3 is tight, we can observe that the upper bound cannot be made smaller than  $\omega$  +  $\lceil \frac{p-1}{2} \rceil$  by providing the following example. For  $p \geq 1$ , consider the graph  $G^*$  with  $V(G^*) = X \cup Y \cup Z$ , where  $X = \bigcup_{i=1}^{\omega} x_i$ ,  $Y = \bigcup_{i=1}^{\omega} y_i$  and  $Z = \bigcup_{i=1}^{p-1} z_i$  if  $p \ge 2$  else  $Z = \emptyset \text{ and edge set } E(G^*) = \{\{x_i x_j\} \cup \{y_i y_j\} \cup \{z_r z_s\} \cup \{x_m y_n\} \cup \{y_m z_n\} \cup \{x_n z_n\}, \{y_m z_n\} \cup \{y_m z_$ where  $1 \le i, j, m \le \omega, 1 \le r, s, n \le p - 1, i \ne j, r \ne s$  and  $m \ne n$ . Without much difficulty, one can observe that  $G^*$  is a  $\{P_3 \cup P_2, (K_1 \cup K_2) + K_p\}$ -free graph,  $\omega(G^*) = \omega$  and  $\alpha(G^*) = 2$ . Hence,  $\chi(G^*) \ge \left\lceil \frac{|V(G^*)|}{\alpha(G^*)} \right\rceil = \omega(G^*) + \left\lceil \frac{p-1}{2} \right\rceil$ .

Next, we obtain a linear  $\chi$ -binding function for  $\{P_3 \cup P_2, (K_1 \cup K_2) + K_p\}$ -free graphs with  $\omega > 3$ .

**Theorem 4.** Let p be an integer greater than 1. If G is a  $\{P_3 \cup P_2, (K_1 \cup K_2) +$  $K_p$ }-free graph, then

$$\chi(G) \leq \begin{cases} \omega(G) + \sum_{j=2}^{p+1} (j-1)(p-j+3) & \text{for } 3 \leq \omega(G) \leq p+1 \\ \omega(G) + 7(p-1) + \sum_{j=4}^{p-\left\lfloor \frac{k}{2} \right\rfloor} (j-1)(p-j+3) & \text{for } \omega(G) = (p+2+k), 0 \leq k \leq 2p-5 \\ \omega(G) + 4p - 3 & \text{for } \omega(G) = 3p-2 \\ \omega(G) + p - 1 & \text{for } \omega(G) \geq 3p-1. \end{cases}$$

*Proof.* Let G be a  $\{P_3 \cup P_2, (K_1 \cup K_2) + K_p\}$ -free graph with  $p \ge 2$ . For  $\omega(G) \ge 2$ 3p-1, the bound follows from Theorem 3. By (ii) of Proposition 1, we see that  $C_{i,j} = \emptyset$  for all  $j \ge p+2$ . We know that  $V(G) = V_1 \cup V_2$ , where  $V_1 = \bigcup_{1 \le \ell \le \omega} (\{v_\ell\} \cup I_\ell)$  and  $V_2 = \bigcup_{(i,j) \in L} C_{i,j}$ . Clearly, the vertices of  $V_1$  can be colored with  $\omega(G)$  colors. Let us find an upper bound for  $\chi(\langle V_2 \rangle)$ . First, let us consider the case when  $3 \leq \omega(G) \leq p+1$ . For  $1 \leq i < j \leq p+1$ , one can observe that  $\omega(\langle C_{i,j}\rangle) \leq \omega(G) - j + 2 \leq p - j + 3$ . Thus one can properly color the vertices of  $\binom{j-1}{\bigcup_{i=1}^{j-1} C_{i,j}}$  with at most (j-1)(p-j+3) colors and hence  $\chi(G) \leq 1$  $\chi(\langle V_1 \rangle) + \chi(\langle V_2 \rangle) \le \omega(G) + \sum_{j=2}^{p+1} (j-1)(p-j+3).$ Next, let us consider  $\omega(G) = (p+2+k)$ , where  $0 \le k \le 2p-4$ . By using (ii) of Proposition 2,  $\left\langle \begin{pmatrix} p+1 \\ \cup \\ j=p-\lfloor \frac{k}{2} \rfloor+1 \begin{pmatrix} j-1 \\ \cup \\ i=1 \end{pmatrix} \end{pmatrix} \right\rangle$  is a  $P_3$ -free graph. As in Theorem 3, one can color the vertices of  $V(G) \setminus \left\{ \bigcup_{\substack{j=2\\j=2}}^{p-\lfloor \frac{k}{2} \rfloor} {j-1 \choose \bigcup \\ i=1} C_{i,j} \right\}$  with at most  $\omega(G) + p - 1$ colors. For k = 2p - 4,  $\omega(G) = 3p - 2$  and we see that  $\langle V_2 \setminus C_{1,2} \rangle$  is  $P_3$ -free and  $\chi(\langle V(G) \setminus C_{1,2} \rangle) \leq \omega(G) + p - 1$ . Therefore,  $\chi(G) \leq \chi(\langle V(G) \setminus C_{1,2} \rangle) + \chi(\langle C_{1,2} \rangle) = 0$  $\omega(G) + 4p - 3$ . Finally, for  $0 \le k \le 2p - 5$ , by using (i) of Proposition 2 and by using similar strategies but with a little more involvement, we can show that  $\binom{j-1}{\bigcup i=1} C_{i,j}$ , where  $2 \leq j \leq p - \lfloor \frac{k}{2} \rfloor$  can be properly colored using  $\omega(G)$  colors when  $\omega(\langle C_{i,j} \rangle) \geq p - j + 4$ , for some  $i \in \{1, 2, \dots, j - 1\}$  or by using

 $\begin{aligned} (j-1)(p-j+3) \text{ colors when } \omega(\langle C_{i,j} \rangle) &\leq p-j+3, \text{ for every } i \in \{1,2,\ldots,j-1\}.\\ \text{For } 4 &\leq j \leq p - \lfloor \frac{k}{2} \rfloor, \text{ one can observe that } (j-1)(p-j+3) \geq \omega(G) \text{ and hence the } \\ \text{vertices of } \begin{pmatrix} p - \lfloor \frac{k}{2} \rfloor \\ \cup \\ j=4 \end{pmatrix} \begin{pmatrix} j-1 \\ \cup \\ i=1 \end{pmatrix} \begin{pmatrix} j-1 \\ \cup \\ i=1 \end{pmatrix} \end{pmatrix} \text{ can be properly colored with } \sum_{j=4}^{p-\lfloor \frac{k}{2} \rfloor} (j-1)(p-j+3) \\ \text{colors. When } j = 3, (j-1)(p-j+3) = 2p. \text{ Since } 2p-5 \geq 0, p \geq 3. \text{ Also, since } \\ \omega(G) \geq 4, \text{ the vertices of } C_{1,2} \text{ and } (C_{1,3} \cup C_{2,3}) \text{ can be properly colored with at } \\ \text{most } (3p-3) \text{ colors each. Hence, } \chi(G) \leq (\omega(G)+p-1)+2(3p-3)+\sum_{j=4}^{p-\lfloor \frac{k}{2} \rfloor} (j-1)(p-j+3). \end{aligned}$ 

The bound obtained in Theorem 4 is not optimal. This can be seen in Theorem 5. Note that when p = 2,  $(K_1 \cup K_2) + K_p \cong HVN$ .

**Theorem 5.** If G is a  $\{P_3 \cup P_2, HVN\}$ -free graph with  $\omega(G) \ge 4$ , then  $\chi(G) \le \omega(G) + 1$ .

The graph  $G^*$  (defined next to Theorem 3) shows that the bound given in Theorem 5 is tight.

## 4 $\{P_3 \cup P_2, 2K_1 + K_p\}$ -free graphs

Let us start Sect. 4 by observing that any  $\{P_3 \cup P_2, 2K_1 + K_p\}$ -free graph is also a  $\{P_3 \cup P_2, (K_1 \cup K_2) + K_p\}$ -free graph. Hence the properties established for  $\{P_3 \cup P_2, (K_1 \cup K_2) + K_p\}$ -free graphs is also true for  $\{P_3 \cup P_2, 2K_1 + K_p\}$ -free graphs.

One can observe that by using techniques similar to the one's used in Theorem 3 and by Strong Perfect Graph Theorem [3], any  $\{P_3 \cup P_2, 2K_1 + K_p\}$ -free graph is perfect, when  $\omega \geq 3p - 1$ .

**Theorem 6.** Let p be a positive integer and G be a  $\{P_3 \cup P_2, 2K_1 + K_p\}$ -free graph with  $V(G) = V_1 \cup V_2$ . If  $\omega(G) \ge 3p - 1$ , then  $\langle V_1 \rangle$  is complete,  $\langle V_2 \rangle$  is  $P_3$ -free and G is perfect.

As a consequence of Theorem 4 and Theorem 6, without much difficulty one can observe Proposition 3 and Corollary 2.

**Proposition 3.** Let G be a  $\{P_3 \cup P_2, 2K_1 + K_p\}$ -free graph. If  $\omega(\langle C_{1,2} \rangle) \ge 2p$ , then  $\chi(G) = \omega(G)$ .

**Corollary 2.** Let p be an integer greater than 1. If G is a  $\{P_3 \cup P_2, 2K_1 + K_p\}$ -free graph, then

$$\chi(G) \leq \begin{cases} \omega(G) + \sum_{j=2}^{p+1} (j-1)(p-j+3) & \text{for } 3 \leq \omega(G) \leq p+1 \\ \omega(G) + 2p - 1 + \sum_{j=3}^{p-\lfloor \frac{k}{2} \rfloor} (j-1)(p-j+3) & \text{for } \omega(G) = (p+2+k), 0 \leq k \leq 2p-5 \\ \omega(G) + 2p - 1 & \text{for } \omega(G) = 3p-2 \\ \omega(G) & \text{for } \omega(G) \geq 3p-1. \end{cases}$$

21

When p = 2,  $2K_1 + K_p \cong diamond$  and hence by Theorem 6,  $\{P_3 \cup P_2, diamond\}$ -free graphs are perfect for  $\omega(G) \ge 5$  which was shown by A. P. Bharathi et al., in [1].

**Theorem 7** [1]. If G is a {
$$P_3 \cup P_2$$
, diamond}-free graph then  
 $\chi(G) \leq \begin{cases} 4 \text{ for } \omega(G) = 2 \\ 6 \text{ for } \omega(G) = 3 \\ 5 \text{ for } \omega(G) = 4 \end{cases}$  and G is perfect if  $\omega(G) \geq 5$ .

We can further improve the bound given in Theorem 7 by obtaining a  $\omega(G)$ -coloring when  $\omega(G) = 4$ .

**Theorem 8.** If G is a {
$$P_3 \cup P_2$$
, diamond}-free graph then  
 $\chi(G) \leq \begin{cases} 4 \text{ for } \omega(G) = 2 \\ 6 \text{ for } \omega(G) = 3 \\ 4 \text{ for } \omega(G) = 4. \end{cases}$ 

Acknowledgment. The first author's research was supported by the Council of Scientific and Industrial Research, Government of India, File No: 09/559(0133)/2019-EMR-I. The second author's research was supported by Post Doctoral Fellowship at Indian Institute of Technology, Palakkad.

#### References

- 1. Bharathi, A.P., Choudum, S.A.: Colouring of  $(P_3 \cup P_2)$ -free graphs. Graphs Comb. **34**(1), 97–107 (2018)
- Brause, C., Randerath, B., Schiermeyer, I., Vumar, E.: On the chromatic number of 2K<sub>2</sub>-free graphs. Discrete Appl. Math. 253, 14–24 (2019)
- Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. Math. 164, 51–229 (2006)
- Gyárfás, A.: Problems from the world surrounding perfect graphs. Zastosowania Matematyki Applicationes Mathematicae 19(3–4), 413–441 (1987)
- 5. Karthick, T., Mishra, S.: Chromatic bounds for some classes of  $2K_2$ -free graphs. Discrete Math. **341**(11), 3079–3088 (2018)
- 6. Olariu, S.: Paw-free graphs. Inf. Process. Lett. 28(1), 53-54 (1988)
- 7. Prashant, A., Francis Raj, S., Gokulnath, M.: Chromatic bounds for the subclasses of  $pK_2$ -free graphs. arXiv preprint arXiv:2102.13458 (2021)
- Prashant, A., Gokulnath, M.: Chromatic bounds for the subclasses of pK<sub>2</sub>-free graphs. In: Mudgal, A., Subramanian, C.R. (eds.) CALDAM 2021. LNCS, vol. 12601, pp. 288–293. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67899-9\_23
- Wagon, S.: A bound on the chromatic number of graphs without certain induced subgraphs. J. Comb. Theory Ser. B 29(3), 345–346 (1980)
- 10. West, D.B.: Introduction to Graph Theory. Prentice-Hall of India Private Limited, Upper Saddle River (2005)