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Abstract. The class of 2K>-free graphs has been well studied in various
contexts in the past. It is known that the class of {2K>, 2K + K, }-free
graphs and {2K>, (K1 U K32) + K, }-free graphs admits a linear x-binding
function. In this paper, we study the classes of (P3UP»)-free graphs which
is a superclass of 2Ks-free graphs. We show that {Ps U P2, 2K;1 + K, }-
free graphs and {Ps U P, (K1 U K3) + Kp}-free graphs also admits a
linear x-binding function. In addition, we give tight chromatic bounds
for { PsU Py, HV N }-free graphs and { PsU P>, diamond}-free graphs, and
it can be seen that the latter is an improvement of the existing bound
given by A. P. Bharathi and S. A. Choudum [1].
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1 Introduction

All graphs considered in this paper are simple, finite and undirected. Let G be
a graph with vertex set V(G) and edge set F(G). For any positive integer k, a
proper k-coloring of a graph G is a mapping ¢ : V(G) — {1,2,...,k} such that
adjacent vertices receive distinct colors. If a graph G admits a proper k-coloring,
then G is said to be k-colorable. The chromatic number, x(G), of a graph G is
the smallest k such that G is k-colorable. Let P, C,, and K,, respectively denote
the path, the cycle and the complete graph on n vertices. For S, T C V(G), let
Nr(S) = N(S)NT (where N(S) denotes the set of all neighbors of S in G), let
(S) denote the subgraph induced by S in G and let [S,T] denote the set of all
edges with one end in S and the other end in T'. If every vertex in S is adjacent
with every vertex in T, then [S,T] is said to be complete. For any graph G, let
G denote the complement of G.
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Let F be a family of graphs. We say that G is F-free if it does not contain
any induced subgraph which is isomorphic to a graph in F. For a fixed graph H,
let us denote the family of H-free graphs by G(H). For any two disjoint graphs
G1 and G let Gy U G4 and G 4+ G2 denote the union and the join of G and
G respectively. Let w(G) and «(G) denote the clique number and independence
number of a graph G respectively. When there is no ambiguity, w(G) will be
denoted by w. A graph G is said to be perfect if x(H) = w(H), for every induced
subgraph H of G.

In order to determine an upper bound for the chromatic number of a graph in
terms of their clique number, the concept of x-binding functions was introduced
by A. Gyérfas in [4]. A class G of graphs is said to be x-bounded [4] if there is
a function f (called a x-binding function) such that x(G) < f(w(G)), for every
G € G. We say that the y-binding function f is special linear if f(x) = x + ¢,
where c is a constant.

The family of 2Ks-free graphs has been well studied. A. Gyérfas in [4] posed
a problem which asks for the order of magnitude of the smallest y-binding func-
tion for G(2K3). In this direction, T. Karthick et al. in [5] proved that the
families of {2K5, H }-free graphs, where H € {HV N,diamond, K1 + Py, K1 +
Cy, Ps, P, U P3, K5 — e} admit a special linear x-binding functions. The bounds
for {2K5, K5—e}-free graphs and {2K5, K1+ Cy }-free graphs were later improved
by Athmakoori Prashant et al., in [7,8]. In [2], C. Brause et al., improved the
x-binding function for {2K5, K1 + P4 }-free graphs to max{3,w(G)}. Also they
proved that for s # 1 or w(G) # 2, the class of {2Ks, (K1 UK>3)+ K }-free graphs
with w(G) > 2s is perfect and for r > 1, the class of {2K5, 2K, + K, }-free graphs
with w(G) > 2r is perfect. Clearly when s = 2 and r = 3, (K;UKy)+ K, =2 HVN
and 2K + K, = K5 — e which implies that the class of {2K5, HV N }-free graphs
and {2K5, K5 —e}-free graphs are perfect for w(G) > 4 and w(G) > 6 respectively
which improved the bounds given in [5].

Motivated by C. Brause et al., and their work on 2Ks-free graphs in [2],
we started looking at (Ps; U Py)-free graphs which is a superclass of 2K5-free
graphs. In [1], A. P. Bharathi et al., obtained a O(w?®) upper bound for the
chromatic number of (P;UP;)-free graphs and obtained sharper bounds for { P3U
Py, diamond})-free graphs. In this paper, we obtain linear x-binding functions
for the class of {Pg ] PQ, (Kl U KQ) + Kp}—free graphs and {Pg U P2,2K1 +
K, }-free graphs. In addition, for w(G) > 3p — 1, we show that the class of
{P3UPs, (K1 UK3)+ K, }-free graphs admits a special linear x-binding function
f(z) = w(G)+p—1 and the class of {PsU Py, 2K + K, }-free graphs are perfect.
In addition, we give a tight x-binding function for {P3 U Ps, HV N }-free graphs
and {Ps; U Py, diamond}-free graphs. This bound for {Ps; U Py, diamond}-free
graphs turns out to be an improvement of the existing bound obtained by A. P.
Bharathi et al., in [1].

Some graphs that are considered as forbidden induced subgraphs in this
paper are given in Fig. 1. Notations and terminologies not mentioned here are
as in [10].
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paw diamond HVN

Fig. 1. Some special graphs

2 Preliminaries

Throughout this paper, we use a particular partition of the vertex set of a
graph G as defined initially by S. Wagon in [9] and later improved by A.
P. Bharathi et al., in [1] as follows. Let A = {vj,v9,...,0,} be a maxi-
mum clique of G. Let us define the lexicographic ordering on the set L =
{({,5) + 1 < i < j < w} in the following way. For two distinct elements
(i1,71), (i2,72) € L, we say that (i1, j1) precedes (is, j2), denoted by (i1,71) <r
(i2,72) if either i1 < i or iy = i and j; < jo. For every (i,j5) € L, let
Cij ={veV(G)\A:v¢ N(v;)UN(vj)}\ {(‘, 4/)L<J - Ci/,j/}. Note that, for
@5 <r (4,

any k € {1,2,...,7}\{4, 5}, [vk, C; ;] is complete. Hence w((C; ;)) < w(G)—j+2.

For 1 < k < w, let us define I}, = {v € V(G)\A : v € N(v;), for every i€
{1,2,...,wi\{k}}. Since A is a maximum clique, for 1 < k < w, I is an inde-
pendent set and for any = € Iy, zv, ¢ E(G). Clearly, each vertex in V(G)\A
is non-adjacent to at least one vertex in A. Hence those vertices will be con-
tained either in Ij for some k € {1,2,...,w}, or in C;; for some (i,j5) € L.
Thus V(G) = AU (kﬁl Ik> U ((, 'L)JeL CZ> Sometimes, we use the partition

= i
V(G) =V1UVa, where Vi = U ({{vg}Ul)= U Ugand Vo= U
1<k<w 1<k<w (,j)eL

Let us recall a result on (Ps U Py)-free graphs given by A. P. Bharathi et al.,

in [1].

Ci ;-

Theorem 1 [1]. Ifa graph G is (P3UPy)-free, then x(G) < M(G)(W(G)'gl)(w(GHz).

Without much difficulty one can make the following observations on (Ps U Ps)-
free graphs.

Fact 2. Let G be a (P3 U Ps)-free graph. For (i,j) € L, the following holds.

(i) Each C;; is a disjoint union of cliques, that is, (C; ;) is Ps-free.
(it) For every integer s € {1,2,...,j}\{4,7}, N(vs) 2 {Ci, UAU(’C‘LH_J1 Ii) P\ {vs U
I},
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3 {P;UP,(K;UK,)+ K,}-free graphs

Let us start Sect. 3 with some observations on ((K; U K3) + K,)-free graphs.

Proposition 1. Let G be a ((K1 U K3) + K,)-free graph with w(G) > p + 2,
p > 1. Then G satisfies the following.

(i) For k.t € {1,2,...,w(Q)}, [Ix, Le] is complete. Thus, (V1) is a complete
multipartite graph with Uy = {vg} U I, 1 <k < w(G) as its partitions.
(ii) For j>p+2and1<i<j, C;; =0.
(iti) For © € Vs, x has neighbors in at most (p — 1) Up’s where £ €
{1,2,...,w(@)}.

Proposition 2. Let G be a {P3 U P, (K1 U Ky) + K, }-free graph with w(G) >
p+2,p>1. Then G satisfies the following.

(i) For (i,j) € L such that j < p+1, ifw((C;;)) > p—j+4, then w((Cy ;) <1
fork#iand1 <k<j-—1.

(ii) If 0(G) = (p+2+k), k = 0, then i (iul Cm,) s
j:max{Q,p+1—L§J} i=1
Ps-free.

As a consequence of Proposition 1, we obtain Corollary 1 which is a result
due to S. Olariu in [6].

Corollary 1 [6]. Let G be a connected graph. Then G is paw-free graph if and
only if G is either K3-free or complete multipartite.

Now, for p > 1 and w > max{3,3p — 1}, let us determine the structural
characterization and the chromatic number of {Ps U Py, (K7 U K3) + K, }-free
graphs.

Theorem 3. Let p be a positive integer and G be a {PsU Ps, (K1 U Ks) + Kp}-
free graph with V(G) = Vi U Va. If w(G) > max{3,3p — 1}, then (i) (V1) is
a complete multipartite graph with partition Uy, Us,...,U,, (i) (Va) is Ps-free
graph and (iii) x(G) < w(G) +p— 1.

Proof. Let p > 1 and G be a {P3 U Py, (K7 U K3) + K, }-free graph with w(G) >
max{3,3p—1}. By (i) of Proposition 1, we see that (V1) is a complete multipartite
graph with the partition Uy = {vg} U, 1 < k < w. By (i) of Fact 2, each
(C;,5) is Ps-free, for every (i,j) € L. Also without much difficulty we can show
that (Va) is Ps-free. Now, let us exhibit an (w + p — 1)-coloring for G using
{1,2,...,w+p—1} colors. For 1 < k < w, give the color k to the vertices of Uy,.
Let H be a component in (V5). Clearly, each vertex in H is adjacent to at most
p — 1 colors given to the vertices of V; and is adjacent to w(H) — 1 vertices of
H. Since w(H) < w(G), each vertex in H is adjacent to at most w(G) +p — 2
colors. Hence, there is a color available for each vertex in H. Similarly, all the
components of (V) can be colored properly. Hence, x(G) < w(G) +p — 1.
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Even though we are not able to show that the bound given in Theorem 3 is
tight, we can observe that the upper bound cannot be made smaller than w +
[%W by providing the following example. For p > 1, consider the graph G* with

V(G*)=X UY U Z, where X = U T, Y = U y; and Z = U z; if p> 2 else
Z = () and edge set E(G*) = {{xzxj}u{yiyj}u{zr }U{xmyn}u{ymzn}u{xnzn}

where 1 <i,jm <w,1<rsn<p-—1,1i+#j, r#sand m # n}. Without
much difficulty, one can observe that G* is a {P3 U P», (K1 U K») + K, }-free

graph, w(G*) = w and a(G*) = 2. Hence, x(G*) > PZ((CCJJ*)”—I =w(G*) + [B2].
Next, we obtain a linear x-binding function for { P3UPs, (K; UK3)+ K }-free

graphs with w > 3.

Theorem 4. Let p be an integer greater than 1. If G is a {P3U Py, (K1 UKs) +
K, }-free graph, then

()+p§(3—1)( —j+3) for 3<w(@) <p+1
j=2
X(@) < W(G)+7(P*1)+p7L%J(j*1)(p*j+3)forw(G):(p+2+k)0<k<2p,5
i—4 , — —
w(G)+4p—3 ’ for w(G) = 3p —2
w(@+p—1 for w(G) > 3p — 1.

Proof. Let G be a {P3U Py, (K7 UK>) + K, }-free graph with p > 2. For w(G) >
3p — 1, the bound follows from Theorem 3. By (ii) of Proposition 1, we see
that C; ; = 0 for all j > p+ 2. We know that V(G) = Vi U V,, where V; =

({ve}Ulp) and Vo = U ;. Clearly, the vertices of V; can be colored
1<t<w (i,5)EL

with w(G) colors. Let us find an upper bound for x((V2)). First, let us consider
the case when 3 < w(G) < p+ 1. For 1 < i < j < p+ 1, one can observe
that w({(C; ;) < w(G) —j+2 < p—j+ 3. Thus one can properly color the

j—1
vertices of (JEJ1 Ci,j) with at most (j — 1)(p — j + 3) colors and hence x(G) <

VA + X(TaY) < (@) +p“<j S+,

j=
Next, let us consider w(G) = (p+2+k), where 0 < k < 2p—4. By using (ii) of

1 —1
Proposition 2, pL+J <JU Cm) is a Ps-free graph. As in Theorem 3,
j=p—15]+1 \i=1

) p—L5] [j—1 )

one can color the vertices of V(G)\ u Y C;,j | ¢ with at most w(G)+p—1
j=2 \i=

colors. For k = 2p — 4, w(G) = 3p — 2 and we see that (Vo\C} o) is Ps-free and
X((V(G)\C1,2)) < w(G)+p—1. Therefore, x(G) < x((V(G)\C1,2))+x((C1,2)) =
w(G) + 4p — 3. Finally, for 0 < k < 2p — 5, by using (i) of Proposition 2 and
by using similar strategies but with a little more involvement, we can show

i—1
that (j_Ul Cm), where 2 < j < p— Lg] can be properly colored using w(QG)
colors when w((C; ;) > p — j + 4, for some ¢ € {1,2,...,j — 1} or by using
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(—1)(p—j+3) colors when w((C; ;) <p—j+3, forevery i € {1,2,...,5—1}.
For4 < j <p—|%|, one can observe that (j—1)(p—3j+3) > w( ) and hence the

ST

%] /i L)
vertices of ‘Uz (‘Ul Ci,j)) can be properly colored Wlth Z (j—1)(p—7+3)
j=4 \i=
colors. When j =3, (j —1)(p— j + 3) = 2p. Since 2p — 5 > 0, p > 3. Also, since
w(G) > 4, the vertices of C; 2 and (Cy,3 U Cy3) can be properly colored with at
p—L5]
most (3p — 3) colors each. Hence, x(G) < (w(G)+p—1)+23p—-3)+ > (j—

j=4
E

D= j+3) =w(@) +T(p - 1)+ g G-Dp=i+3)

The bound obtained in Theorem 4 is not optimal. This can be seen in The-
orem 5. Note that when p =2, (K; UKy)+ K, = HVN.

Theorem 5. If G is a {P3U Py, HV N }-free graph with w(G) > 4, then x(G) <
w(G) + 1.

The graph G* (defined next to Theorem 3) shows that the bound given in
Theorem 5 is tight.

4 {P;U P»,2K,; + K,}-free graphs

Let us start Sect. 4 by observing that any {P; U Py, 2K7 + K, }-free graph is also
a {P; U P, (K1 U Kj) + Kp}-free graph. Hence the properties established for
{P3 U Py, (K1 UK3)+ Kp}-free graphs is also true for {P3 U P, 2K, + K }-free
graphs.

One can observe that by using techniques similar to the one’s used in Theorem
3 and by Strong Perfect Graph Theorem [3], any {Ps U Pz, 2K; + K, }-free graph
is perfect, when w > 3p — 1.

Theorem 6. Let p be a positive integer and G be a {Ps U Py,2K, + K, }-free
graph with V(G) = Vi1 UVa. If w(G) > 3p — 1, then (V1) is complete, (Vo) is
Ps-free and G is perfect.

As a consequence of Theorem 4 and Theorem 6, without much difficulty one can
observe Proposition 3 and Corollary 2.

Proposition 3. Let G be a {P3 U Py, 2K1 + K, }-free graph. If w({C12)) > 2p,
then x(G) = w(G).

Corollary 2. Let p be an integer greater than 1. If G is a {PsU Py, 2K1 + K, }-
free graph, then

ptl
w(G) + ZQ(jfl)(pfj+3) for 3<w(G)<p+1
=
r—|5
XG) S qw@+2p-1+ Y G-Dp—j+3)forw(@ =@p+2+k),0<k<2p—5
j=3
w(@+2p—-1 ’ for w(G) =3p—2
w(Q) for w(G) > 3p — 1.
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When p = 2, 2K; + K, = diamond and hence by Theorem 6, {Ps; U
Py, diamond}-free graphs are perfect for w(G) > 5 which was shown by A.
P. Bharathi et al., in [1].

Theorem 7 [1]. If G is a {Ps U Py,diamond}-free graph then
4 for w(G) =2

X(G) < ¢ 6 forw(G) =3 and G is perfect if w(G) > 5.
5 for w(G) =4

We can further improve the bound given in Theorem 7 by obtaining a w(G)-
coloring when w(G) = 4.

Theorem 8. If G is a {P3 U Py, diamond}-free graph then

4 for w(G) =2
X(G) << 6forw(G) =3 and G is perfect if w(G) > 5.
4 for w(G) = 4.
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