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Abstract. The class of 2K2-free graphs has been well studied in various
contexts in the past. It is known that the class of {2K2, 2K1 + Kp}-free
graphs and {2K2, (K1 ∪K2)+Kp}-free graphs admits a linear χ-binding
function. In this paper, we study the classes of (P3∪P2)-free graphs which
is a superclass of 2K2-free graphs. We show that {P3 ∪ P2, 2K1 + Kp}-
free graphs and {P3 ∪ P2, (K1 ∪ K2) + Kp}-free graphs also admits a
linear χ-binding function. In addition, we give tight chromatic bounds
for {P3∪P2, HV N}-free graphs and {P3∪P2, diamond}-free graphs, and
it can be seen that the latter is an improvement of the existing bound
given by A. P. Bharathi and S. A. Choudum [1].
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1 Introduction

All graphs considered in this paper are simple, finite and undirected. Let G be
a graph with vertex set V (G) and edge set E(G). For any positive integer k, a
proper k-coloring of a graph G is a mapping c : V (G) → {1, 2, . . . , k} such that
adjacent vertices receive distinct colors. If a graph G admits a proper k-coloring,
then G is said to be k-colorable. The chromatic number, χ(G), of a graph G is
the smallest k such that G is k-colorable. Let Pn, Cn and Kn respectively denote
the path, the cycle and the complete graph on n vertices. For S, T ⊆ V (G), let
NT (S) = N(S) ∩ T (where N(S) denotes the set of all neighbors of S in G), let
〈S〉 denote the subgraph induced by S in G and let [S, T ] denote the set of all
edges with one end in S and the other end in T . If every vertex in S is adjacent
with every vertex in T , then [S, T ] is said to be complete. For any graph G, let
G denote the complement of G.
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Let F be a family of graphs. We say that G is F-free if it does not contain
any induced subgraph which is isomorphic to a graph in F . For a fixed graph H,
let us denote the family of H-free graphs by G(H). For any two disjoint graphs
G1 and G2 let G1 ∪ G2 and G1 + G2 denote the union and the join of G1 and
G2 respectively. Let ω(G) and α(G) denote the clique number and independence
number of a graph G respectively. When there is no ambiguity, ω(G) will be
denoted by ω. A graph G is said to be perfect if χ(H) = ω(H), for every induced
subgraph H of G.

In order to determine an upper bound for the chromatic number of a graph in
terms of their clique number, the concept of χ-binding functions was introduced
by A. Gyárfás in [4]. A class G of graphs is said to be χ-bounded [4] if there is
a function f (called a χ-binding function) such that χ(G) ≤ f(ω(G)), for every
G ∈ G. We say that the χ-binding function f is special linear if f(x) = x + c,
where c is a constant.

The family of 2K2-free graphs has been well studied. A. Gyárfás in [4] posed
a problem which asks for the order of magnitude of the smallest χ-binding func-
tion for G(2K2). In this direction, T. Karthick et al. in [5] proved that the
families of {2K2,H}-free graphs, where H ∈ {HV N, diamond,K1 + P4,K1 +
C4, P5, P2 ∪ P3,K5 − e} admit a special linear χ-binding functions. The bounds
for {2K2,K5−e}-free graphs and {2K2,K1+C4}-free graphs were later improved
by Athmakoori Prashant et al., in [7,8]. In [2], C. Brause et al., improved the
χ-binding function for {2K2,K1 + P4}-free graphs to max{3, ω(G)}. Also they
proved that for s 
= 1 or ω(G) 
= 2, the class of {2K2, (K1∪K2)+Ks}-free graphs
with ω(G) ≥ 2s is perfect and for r ≥ 1, the class of {2K2, 2K1+Kr}-free graphs
with ω(G) ≥ 2r is perfect. Clearly when s = 2 and r = 3, (K1∪K2)+Ks

∼= HV N
and 2K1 +Kr

∼= K5 −e which implies that the class of {2K2,HV N}-free graphs
and {2K2,K5−e}-free graphs are perfect for ω(G) ≥ 4 and ω(G) ≥ 6 respectively
which improved the bounds given in [5].

Motivated by C. Brause et al., and their work on 2K2-free graphs in [2],
we started looking at (P3 ∪ P2)-free graphs which is a superclass of 2K2-free
graphs. In [1], A. P. Bharathi et al., obtained a O(ω3) upper bound for the
chromatic number of (P3∪P2)-free graphs and obtained sharper bounds for {P3∪
P2, diamond})-free graphs. In this paper, we obtain linear χ-binding functions
for the class of {P3 ∪ P2, (K1 ∪ K2) + Kp}-free graphs and {P3 ∪ P2, 2K1 +
Kp}-free graphs. In addition, for ω(G) ≥ 3p − 1, we show that the class of
{P3 ∪P2, (K1 ∪K2)+Kp}-free graphs admits a special linear χ-binding function
f(x) = ω(G)+p−1 and the class of {P3 ∪P2, 2K1 +Kp}-free graphs are perfect.
In addition, we give a tight χ-binding function for {P3 ∪ P2,HV N}-free graphs
and {P3 ∪ P2, diamond}-free graphs. This bound for {P3 ∪ P2, diamond}-free
graphs turns out to be an improvement of the existing bound obtained by A. P.
Bharathi et al., in [1].

Some graphs that are considered as forbidden induced subgraphs in this
paper are given in Fig. 1. Notations and terminologies not mentioned here are
as in [10].
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paw diamond HVN

Fig. 1. Some special graphs

2 Preliminaries

Throughout this paper, we use a particular partition of the vertex set of a
graph G as defined initially by S. Wagon in [9] and later improved by A.
P. Bharathi et al., in [1] as follows. Let A = {v1, v2, . . . , vω} be a maxi-
mum clique of G. Let us define the lexicographic ordering on the set L =
{(i, j) : 1 ≤ i < j ≤ ω} in the following way. For two distinct elements
(i1, j1), (i2, j2) ∈ L, we say that (i1, j1) precedes (i2, j2), denoted by (i1, j1) <L

(i2, j2) if either i1 < i2 or i1 = i2 and j1 < j2. For every (i, j) ∈ L, let

Ci,j = {v ∈ V (G)\A : v /∈ N(vi) ∪ N(vj)} \
{

∪
(i′,j′)<L(i,j)

Ci′,j′

}
. Note that, for

any k ∈ {1, 2, . . . , j}\{i, j}, [vk, Ci,j ] is complete. Hence ω(〈Ci,j〉) ≤ ω(G)−j+2.
For 1 ≤ k ≤ ω, let us define Ik = {v ∈ V (G)\A : v ∈ N(vi), for every i ∈

{1, 2, . . . , ω}\{k}}. Since A is a maximum clique, for 1 ≤ k ≤ ω, Ik is an inde-
pendent set and for any x ∈ Ik, xvk /∈ E(G). Clearly, each vertex in V (G)\A
is non-adjacent to at least one vertex in A. Hence those vertices will be con-
tained either in Ik for some k ∈ {1, 2, . . . , ω}, or in Ci,j for some (i, j) ∈ L.

Thus V (G) = A ∪
(

ω∪
k=1

Ik

)
∪

(
∪

(i,j)∈L
Ci,j

)
. Sometimes, we use the partition

V (G) = V1 ∪ V2, where V1 = ∪
1≤k≤ω

({vk} ∪ Ik) = ∪
1≤k≤ω

Uk and V2 = ∪
(i,j)∈L

Ci,j .

Let us recall a result on (P3 ∪ P2)-free graphs given by A. P. Bharathi et al.,
in [1].

Theorem 1 [1]. If a graphG is (P3∪P2)-free, then χ(G) ≤ ω(G)(ω(G)+1)(ω(G)+2)
6 .

Without much difficulty one can make the following observations on (P3 ∪ P2)-
free graphs.

Fact 2. Let G be a (P3 ∪ P2)-free graph. For (i, j) ∈ L, the following holds.

(i) Each Ci,j is a disjoint union of cliques, that is, 〈Ci,j〉 is P3-free.
(ii) For every integer s ∈ {1, 2, . . . , j}\{i, j}, N(vs) ⊇ {Ci,j ∪A∪(

ω∪
k=1

Ik)}\{vs ∪
Is}.
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3 {P3 ∪ P2, (K1 ∪ K2) + Kp}-free graphs

Let us start Sect. 3 with some observations on ((K1 ∪ K2) + Kp)-free graphs.

Proposition 1. Let G be a ((K1 ∪ K2) + Kp)-free graph with ω(G) ≥ p + 2,
p ≥ 1. Then G satisfies the following.

(i) For k, � ∈ {1, 2, . . . , ω(G)}, [Ik, I�] is complete. Thus, 〈V1〉 is a complete
multipartite graph with Uk = {vk} ∪ Ik, 1 ≤ k ≤ ω(G) as its partitions.

(ii) For j ≥ p + 2 and 1 ≤ i < j, Ci,j = ∅.
(iii) For x ∈ V2, x has neighbors in at most (p − 1) U�’s where � ∈

{1, 2, . . . , ω(G)}.
Proposition 2. Let G be a {P3 ∪ P2, (K1 ∪ K2) + Kp}-free graph with ω(G) ≥
p + 2, p ≥ 1. Then G satisfies the following.

(i) For (i, j) ∈ L such that j ≤ p+1, if ω(〈Ci,j〉) ≥ p−j+4, then ω(〈Ck,j〉) ≤ 1
for k 
= i and 1 ≤ k ≤ j − 1.

(ii) If ω(G) = (p + 2 + k), k ≥ 0, then

〈(
p+1∪

j=max{2,p+1−� k
2 �}

(
j−1∪
i=1

Ci,j

))〉
is

P3-free.

As a consequence of Proposition 1, we obtain Corollary 1 which is a result
due to S. Olariu in [6].

Corollary 1 [6]. Let G be a connected graph. Then G is paw-free graph if and
only if G is either K3-free or complete multipartite.

Now, for p ≥ 1 and ω ≥ max{3, 3p − 1}, let us determine the structural
characterization and the chromatic number of {P3 ∪ P2, (K1 ∪ K2) + Kp}-free
graphs.

Theorem 3. Let p be a positive integer and G be a {P3 ∪ P2, (K1 ∪ K2) + Kp}-
free graph with V (G) = V1 ∪ V2. If ω(G) ≥ max{3, 3p − 1}, then (i) 〈V1〉 is
a complete multipartite graph with partition U1, U2, . . . , Uω, (ii) 〈V2〉 is P3-free
graph and (iii) χ(G) ≤ ω(G) + p − 1.

Proof. Let p ≥ 1 and G be a {P3 ∪ P2, (K1 ∪ K2) + Kp}-free graph with ω(G) ≥
max{3, 3p−1}. By (i) of Proposition 1, we see that 〈V1〉 is a complete multipartite
graph with the partition Uk = {vk} ∪ Ik, 1 ≤ k ≤ ω. By (i) of Fact 2, each
〈Ci,j〉 is P3-free, for every (i, j) ∈ L. Also without much difficulty we can show
that 〈V2〉 is P3-free. Now, let us exhibit an (ω + p − 1)-coloring for G using
{1, 2, . . . , ω + p− 1} colors. For 1 ≤ k ≤ ω, give the color k to the vertices of Uk.
Let H be a component in 〈V2〉. Clearly, each vertex in H is adjacent to at most
p − 1 colors given to the vertices of V1 and is adjacent to ω(H) − 1 vertices of
H. Since ω(H) ≤ ω(G), each vertex in H is adjacent to at most ω(G) + p − 2
colors. Hence, there is a color available for each vertex in H. Similarly, all the
components of 〈V2〉 can be colored properly. Hence, χ(G) ≤ ω(G) + p − 1.
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Even though we are not able to show that the bound given in Theorem 3 is
tight, we can observe that the upper bound cannot be made smaller than ω +
�p−1

2 � by providing the following example. For p ≥ 1, consider the graph G∗ with

V (G∗) = X ∪ Y ∪ Z, where X =
ω∪

i=1
xi, Y =

ω∪
i=1

yi and Z =
p−1∪
i=1

zi if p ≥ 2 else

Z = ∅ and edge set E(G∗) = {{xixj}∪{yiyj}∪{zrzs}∪{xmyn}∪{ymzn}∪{xnzn},
where 1 ≤ i, j,m ≤ ω, 1 ≤ r, s, n ≤ p − 1, i 
= j, r 
= s and m 
= n}. Without
much difficulty, one can observe that G∗ is a {P3 ∪ P2, (K1 ∪ K2) + Kp}-free

graph, ω(G∗) = ω and α(G∗) = 2. Hence, χ(G∗) ≥
⌈

|V (G∗)|
α(G∗)

⌉
= ω(G∗) +

⌈
p−1
2

⌉
.

Next, we obtain a linear χ-binding function for {P3∪P2, (K1∪K2)+Kp}-free
graphs with ω ≥ 3.

Theorem 4. Let p be an integer greater than 1. If G is a {P3 ∪P2, (K1 ∪K2)+
Kp}-free graph, then

χ(G) ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω(G) +
p+1∑

j=2
(j − 1)(p − j + 3) for 3 ≤ ω(G) ≤ p + 1

ω(G) + 7(p − 1) +
p−� k

2 �∑

j=4
(j − 1)(p − j + 3) for ω(G) = (p + 2 + k), 0 ≤ k ≤ 2p − 5

ω(G) + 4p − 3 for ω(G) = 3p − 2
ω(G) + p − 1 for ω(G) ≥ 3p − 1.

Proof. Let G be a {P3 ∪P2, (K1 ∪K2)+Kp}-free graph with p ≥ 2. For ω(G) ≥
3p − 1, the bound follows from Theorem 3. By (ii) of Proposition 1, we see
that Ci,j = ∅ for all j ≥ p + 2. We know that V (G) = V1 ∪ V2, where V1 =

∪
1≤�≤ω

({v�} ∪ I�) and V2 = ∪
(i,j)∈L

Ci,j . Clearly, the vertices of V1 can be colored

with ω(G) colors. Let us find an upper bound for χ(〈V2〉). First, let us consider
the case when 3 ≤ ω(G) ≤ p + 1. For 1 ≤ i < j ≤ p + 1, one can observe
that ω(〈Ci,j〉) ≤ ω(G) − j + 2 ≤ p − j + 3. Thus one can properly color the

vertices of
(

j−1∪
i=1

Ci,j

)
with at most (j − 1)(p − j + 3) colors and hence χ(G) ≤

χ(〈V1〉) + χ(〈V2〉) ≤ ω(G) +
p+1∑
j=2

(j − 1)(p − j + 3).

Next, let us consider ω(G) = (p+2+k), where 0 ≤ k ≤ 2p−4. By using (ii) of

Proposition 2,

〈(
p+1∪

j=p−� k
2 �+1

(
j−1∪
i=1

Ci,j

))〉
is a P3-free graph. As in Theorem 3,

one can color the vertices of V (G)\
{

p−� k
2 �

∪
j=2

(
j−1∪
i=1

Ci,j

)}
with at most ω(G)+p−1

colors. For k = 2p − 4, ω(G) = 3p − 2 and we see that 〈V2\C1,2〉 is P3-free and
χ(〈V (G)\C1,2〉) ≤ ω(G)+p−1. Therefore, χ(G) ≤ χ(〈V (G)\C1,2〉)+χ(〈C1,2〉) =
ω(G) + 4p − 3. Finally, for 0 ≤ k ≤ 2p − 5, by using (i) of Proposition 2 and
by using similar strategies but with a little more involvement, we can show

that
(

j−1∪
i=1

Ci,j

)
, where 2 ≤ j ≤ p − �k

2 � can be properly colored using ω(G)

colors when ω(〈Ci,j〉) ≥ p − j + 4, for some i ∈ {1, 2, . . . , j − 1} or by using
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(j −1)(p− j +3) colors when ω(〈Ci,j〉) ≤ p− j +3, for every i ∈ {1, 2, . . . , j −1}.
For 4 ≤ j ≤ p−⌊

k
2

⌋
, one can observe that (j−1)(p−j+3) ≥ ω(G) and hence the

vertices of

(
p−� k

2 �
∪

j=4

(
j−1∪
i=1

Ci,j

))
can be properly colored with

p−� k
2 �∑

j=4

(j−1)(p−j+3)

colors. When j = 3, (j − 1)(p − j + 3) = 2p. Since 2p − 5 ≥ 0, p ≥ 3. Also, since
ω(G) ≥ 4, the vertices of C1,2 and (C1,3 ∪ C2,3) can be properly colored with at

most (3p− 3) colors each. Hence, χ(G) ≤ (ω(G)+ p− 1)+ 2(3p− 3)+
p−� k

2 �∑
j=4

(j −

1)(p − j + 3) = ω(G) + 7(p − 1) +
p−� k

2 �∑
j=4

(j − 1)(p − j + 3).

The bound obtained in Theorem 4 is not optimal. This can be seen in The-
orem 5. Note that when p = 2, (K1 ∪ K2) + Kp

∼= HV N .

Theorem 5. If G is a {P3 ∪P2,HV N}-free graph with ω(G) ≥ 4, then χ(G) ≤
ω(G) + 1.

The graph G∗ (defined next to Theorem 3) shows that the bound given in
Theorem 5 is tight.

4 {P3 ∪ P2, 2K1 + Kp}-free graphs

Let us start Sect. 4 by observing that any {P3 ∪P2, 2K1 +Kp}-free graph is also
a {P3 ∪ P2, (K1 ∪ K2) + Kp}-free graph. Hence the properties established for
{P3 ∪ P2, (K1 ∪ K2) + Kp}-free graphs is also true for {P3 ∪ P2, 2K1 + Kp}-free
graphs.

One can observe that by using techniques similar to the one’s used in Theorem
3 and by Strong Perfect Graph Theorem [3], any {P3 ∪P2, 2K1 +Kp}-free graph
is perfect, when ω ≥ 3p − 1.

Theorem 6. Let p be a positive integer and G be a {P3 ∪ P2, 2K1 + Kp}-free
graph with V (G) = V1 ∪ V2. If ω(G) ≥ 3p − 1, then 〈V1〉 is complete, 〈V2〉 is
P3-free and G is perfect.

As a consequence of Theorem 4 and Theorem 6, without much difficulty one can
observe Proposition 3 and Corollary 2.

Proposition 3. Let G be a {P3 ∪ P2, 2K1 + Kp}-free graph. If ω(〈C1,2〉) ≥ 2p,
then χ(G) = ω(G).

Corollary 2. Let p be an integer greater than 1. If G is a {P3 ∪P2, 2K1 +Kp}-
free graph, then

χ(G) ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω(G) +
p+1∑

j=2
(j − 1)(p − j + 3) for 3 ≤ ω(G) ≤ p + 1

ω(G) + 2p − 1 +
p−� k

2 �∑

j=3
(j − 1)(p − j + 3) for ω(G) = (p + 2 + k), 0 ≤ k ≤ 2p − 5

ω(G) + 2p − 1 for ω(G) = 3p − 2
ω(G) for ω(G) ≥ 3p − 1.
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When p = 2, 2K1 + Kp
∼= diamond and hence by Theorem 6, {P3 ∪

P2, diamond}-free graphs are perfect for ω(G) ≥ 5 which was shown by A.
P. Bharathi et al., in [1].

Theorem 7 [1]. If G is a {P3 ∪ P2, diamond}-free graph then

χ(G) ≤
⎧⎨
⎩

4 for ω(G) = 2
6 for ω(G) = 3
5 for ω(G) = 4

and G is perfect if ω(G) ≥ 5.

We can further improve the bound given in Theorem 7 by obtaining a ω(G)-
coloring when ω(G) = 4.

Theorem 8. If G is a {P3 ∪ P2, diamond}-free graph then

χ(G) ≤
⎧⎨
⎩

4 for ω(G) = 2
6 for ω(G) = 3
4 for ω(G) = 4.

and G is perfect if ω(G) ≥ 5.
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