
Niranjan Balachandran
R. Inkulu (Eds.)

LN
CS

 1
31

79

Algorithms
and Discrete Applied
Mathematics
8th International Conference, CALDAM 2022
Puducherry, India, February 10–12, 2022
Proceedings

Lecture Notes in Computer Science 13179

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873

More information about this subseries at https://link.springer.com/bookseries/7407

https://springerlink.bibliotecabuap.elogim.com/bookseries/7407

Niranjan Balachandran · R. Inkulu (Eds.)

Algorithms
and Discrete Applied
Mathematics
8th International Conference, CALDAM 2022
Puducherry, India, February 10–12, 2022
Proceedings

Editors
Niranjan Balachandran
Indian Institute of Technology Bombay
Mumbai, India

R. Inkulu
Indian Institute of Technology Guwahati
Guwahati, India

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-95017-0 ISBN 978-3-030-95018-7 (eBook)
https://doi.org/10.1007/978-3-030-95018-7

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-95018-7

Preface

This volume contains the papers presented at CALDAM 2022 (the 8th International
Conference on Algorithms and Discrete Applied Mathematics) held during February
10–12, 2022, at Pondicherry University, Puducherry, India. CALDAM 2022 was
organized by the Department of Mathematics, Pondicherry University, and the
Association for Computer Science and Discrete Mathematics (ACSDM), India. The
program committee consisted of 34 highly experienced and active researchers from
various countries.

The conference topics included algorithms, graph theory, computational geometry,
and optimization. We received 80 submissions from authors from all over the world.
Each paper was extensively reviewed by program committee members and other expert
reviewers. The committee decided to accept 24 papers for presentation. The program
included three Google invited talks by Timothy M. Chan (University of Illinois at
Urbana-Champaign),DayaR.Gaur (University ofLethbridge), and JosephS.B.Mitchell
(Stony Brook University).

As volume editors, we would like to thank the authors of all submissions for
considering CALDAM 2022 for the potential presentation of their works. We are very
much indebted to the program committee members and the external reviewers for
providing serious reviews within a very short period. We thank Springer for publishing
the proceedings in the Lecture Notes in Computer Science series. Our sincerest thanks
to the invited speakers, Timothy M. Chan, Daya R. Gaur, and Joseph S. B. Mitchell, for
accepting our invitation to give a talk. We thank the organizing committee, chaired by
S. Francis Raj of Pondicherry University, for conducting CALDAM 2022 smoothly, and
Pondicherry University for providing the necessary facilities. We are very grateful to the
chair of the steering committee, Subir Ghosh, for his active help, support, and guidance.
And, we thank the Program Committee co-chairs of CALDAM 2021, Apurva Mudgal
and C R Subrahmanyam, for their timely input throughout. We thank our sponsors,
Google Inc. for their financial support and Springer for the best paper presentation
awards. We also thank Springer OCS staff for their support.

February 2022 Niranjan Balachandran
R. Inkulu

Organization

Steering Committee

Subir Kumar Ghosh (Chair) Ramakrishna Mission Vivekananda Educational
and Research Institute, India

Gyula O. H. Katona Alfréd Rényi Institute of Mathematics, Hungarian
Academy of Sciences, Hungary

János Pach École Polytechnique Fédérale De Lausanne
(EPFL), Switzerland

Nicola Santoro Carleton University, Canada
Swami Sarvattomananda Ramakrishna Mission Vivekananda Educational

and Research Institute, India
Chee Yap Courant Institute of Mathematical Sciences,

New York University, USA

Program Committee

Amitabha Bagchi IIT Delhi, India
Niranjan Balachandran (Co-chair) IIT Bombay, India
Boštjan Brešar University of Maribor, Slovenia
Sergio Cabello University of Ljubljana, Slovenia
Paz Carmi Ben-Gurion University of the Negev, Israel
Manoj Changat University of Kerala, India
Sandip Das ISI Kolkata, India
Josep Diaz Polytechnic University of Catalonia, Spain
Martin Furer Pennsylvania State University, USA
Daya Gaur University of Lethbridge, Canada
Sathish Govindarajan IISc Bangalore, India
Pavol Hell Simon Fraser University, Canada
R. Inkulu (Co-chair) IIT Guwahati, India
Subrahmanyam Kalyanasundaram IIT Hyderabad, India
Van Bang Le University of Rostock, Germany
Sanjiv Kapoor Illinois Institute of Technology, USA
Andrzej Lingas Lund University, Sweden
Anil Maheshwari Carleton University, Canada
Bodo Manthey University of Twente, The Netherlands
Rogers Mathew IIT Hyderabad, India
Bojan Mohar Simon Fraser University, Canada
Apurva Mudgal IIT Ropar, India

viii Organization

Rahul Muthu DA-IICT, India
Kamal Lochan Patra NISER Bhubaneswar, India
Iztok Peterin University of Maribor, Slovenia
Valentin Polishchuk Linköping University, Sweden
Deepak Rajendraprasad IIT Palakkad, India
Abhiram Ranade IIT Bombay, India
Sagnik Sen IIT Dharwad, India
Rishi Ranjan Singh IIT Bhilai, India
Michiel Smid Carleton University, Canada
Joachim Spoerhase University of Wurzburg, German
C. R. Subramanian IMSc Chennai, India
Antoine Vigneron UNIST, South Korea

Organizing Committee

Rajeswari Seshadri Pondicherry University, India
Malai Subbiah Pondicherry University, India
S. R. Kannan Pondicherry University, India
T. Duraivel Pondicherry University, India
A. Joseph Kennedy Pondicherry University, India
S. Francis Raj (Chair) Pondicherry University, India
Syeda Noor Fathima Pondicherry University, India
I. Subramania Pillai Pondicherry University, India
Swami Dhyanagamyananda Ramakrishna Mission Vivekananda Educational

and Research Institute, India
Pritee Khanna IIITDM Jabalpur, India
Arti Pandey IIT Ropar, India
Tarkeshwar Singh BITS Pilani K K Birla Goa Campus, India

Additional Reviewers

Ankush Acharyya
N. R. Arvind
Devsi Bantva
Manu Basavaraju
Srimanta Bhattacharya
Sriram Bhyravarapu
Arun Das
Hiranya Kishore Dey
Amit Kumar Dhar
Tanja Dravec
Barun Gorain
Vinod Reddy I.

Marko Jakovac
Jesper Jansson
Ce Jin
Sreejith K. P.
Anjeneya Swami Kare
Niraj Khare
Mirosław Kowaluk
Christos Levcopoulos
Vincenzo Liberatore
Tian Liu
Raghunath Reddy M.
Atrayee Majumder

Organization ix

Tapas Kumar Mishra
Shuichi Miyazawaki
Fahad Panolan
Pablo Perez-Lantero
Veena Prabhakaran
Sadagopan N.
Francis P.
Venkata Subba Reddy P.
Sajith Padinhatteeri
Narad Rampersad
M. V. Panduranga Rao

Prakash Saivasan
Brahadeesh Sankarnarayanan
Ildikó Schlotter
Elżbieta Tumidajewicz
Karol Wegrzycki
Mariusz Wozniak
Hyeyun Yang
Ismael Gonzalez Yero
Jingru Zhang
Paweł Żyliṅski

Abstracts of Invited Talks

All-Pairs Shortest Paths and Fine-Grained Complexity

Timothy M. Chan

University of Illinois at Urbana-Champaign, Urbana, USA
tmc@illinois.edu

Abstract. The all-pairs shortest paths (APSP) problem is one of the
most fundamental problems in algorithm design and fine-grained
complexity. The problem for general weighted dense graphs is
conjectured to require close to n3 time. On the other hand, substantially
subcubic algorithms are known in some important special cases via
fast matrix multiplication; for example, for directed graphs that are
unweighted (or have small integer weights), the current best algorithm
due to Zwick (FOCS 1998) had running time near n2.5 if the matrix
multiplication exponent ω is equal to 2.

In this talk, I will survey the current landscape surrounding the
complexity of APSP and its variants, and how the conjectured hardness of
APSP in the general and unweighted cases have been used as the basis for
establishing conditional lower bounds for other problems. In particular,
I will describe recent joint work with Virginia Vassilevska Williams and
Yinzhan Xu (ICALP 2021), showing that Zwick’s algorithm is in some
sense optimal for directed unweighted graphs.

Linear Programming and its Uses in Algorithm Design

Daya R. Gaur

University of Lethbridge, Lethbridge, Canada
gaur@cs.uleth.ca

Abstract. Linear programming has a rich history. In this talk, we focus
on its use in algorithm design. We will look at its use in three areas.
The first is the design of exact algorithms, and the second is the design
of approximate algorithms. Thirdly, its use in the creation of practical
algorithms for computationally challenging problems. I will give several
examples of how researchers in my group use linear programming to
develop exact and approximate algorithms. These illustrative examples
will also highlight the computational challenges still remaining. Most of
the theory that will be covered is explained nicely in these books [Dantzig
and Thapa, 2006; Vazirani, 2003; Lau et al., 2011; Cook et al., 1998]. This
talk will be a little tour of the strengths of linear programming and how
to use them. This introductory talk will be a mix of theory and practice
and no background is assumed.

Approximation Algorithms for Some Geometric
Optimization Problems

Joseph S. B. Mitchell

Stony Brook University, Stony Brook, USA
joseph.mitchell@stonybrook.edu

Abstract. We discuss approximation algorithms for some instances of
geometric optimization problems, including maximum independent set,
dominating set, vehicle routing, and set cover. In all cases the problems
are specified by geometric data, such as points, rectangles, polygons,
and disks, and the results strongly exploit geometry to yield better
results than can be achieved (or at least better than results known so
far) in non-geometric settings. We are motivated by applications
of computational geometry in sensor networks and mobile robotics,
including classic problems on “art galleries” that need to be guarded
by static or mobile guards within a polygonal domain. Almost all of
these optimization problems areNP-hard even in simple two-dimensional
settings. The problems get even harder when we take into account
uncertain data, time constraints for scheduled coverage, and rout-
ing/connectivity problems in combination with coverage constraints.
We discuss selected versions of these geometric optimization problems
from the perspective of approximation algorithms and we describe some
techniques that have led to new or improved approximation bounds for
certain maximum independent set and routing/coverage problems.

Contents

Graph Theory

A Proof of the Multiplicative 1-2-3 Conjecture . 3
Julien Bensmail, Hervé Hocquard, Dimitri Lajou, and Éric Sopena

Chromatic Bounds for Some Subclasses of (P3 ∪ P2)-free graphs 15
Athmakoori Prashant, P. Francis, and S. Francis Raj

List Homomorphisms to Separable Signed Graphs . 22
Jan Bok, Richard Brewster, Tomás Feder, Pavol Hell,
and Nikola Jedličková

Some Position Problems for Graphs . 36
James Tuite, Elias John Thomas, and Ullas Chandran S. V.

Comparability Graphs Among Cover-Incomparability Graphs 48
Arun Anil and Manoj Changat

Graph Algorithms

Complexity of Paired Domination in AT-free and Planar Graphs 65
Vikash Tripathi, Ton Kloks, Arti Pandey, Kaustav Paul,
and Hung-Lung Wang

The Complexity of Star Colouring in Bounded Degree Graphs and Regular
Graphs . 78

M. A. Shalu and Cyriac Antony

On Conflict-Free Spanning Tree: Algorithms and Complexity 91
Bruno José S. Barros, Luiz Satoru Ochi, Rian Gabriel S. Pinheiro,
and Uéverton S. Souza

B0-VPG Representation of AT-free Outerplanar Graphs . 103
Sparsh Jain, Sreejith K. Pallathumadam, and Deepak Rajendraprasad

P Versus NPC: Minimum Steiner Trees in Convex Split Graphs 115
A. Mohanapriya, P. Renjith, and N. Sadagopan

On cd-Coloring of {P5, K4}-free Chordal Graphs . 127
M. A. Shalu and V. K. Kirubakaran

xviii Contents

An Output-Sensitive Algorithm for All-Pairs Shortest Paths in Directed
Acyclic Graphs . 140

Andrzej Lingas, Mia Persson, and Dzmitry Sledneu

Covering a Graph with Densest Subgraphs . 152
Riccardo Dondi and Alexandru Popa

Computational Geometry

Coresets for (k, �)-Median Clustering Under the Fréchet Distance 167
Maike Buchin and Dennis Rohde

Bounds and Algorithms for Geodetic Hulls . 181
Sabine Storandt

Voronoi Games Using Geodesics . 195
Arun Kumar Das, Sandip Das, Anil Maheshwari, and Sarvottamananda

Algorithms and Optimization

Approximation and Parameterized Algorithms for Balanced Connected
Partition Problems . 211

Phablo F. S. Moura, Matheus Jun Ota, and Yoshiko Wakabayashi

Algorithms for Online Car-Sharing Problem . 224
Xiangyu Guo and Kelin Luo

Algebraic Algorithms for Variants of Subset Sum . 237
Pranjal Dutta and Mahesh Sreekumar Rajasree

Hardness and Approximation Results for Some Variants of Stable
Marriage Problem . 252

B. S. Panda and Sachin

On Fair Division with Binary Valuations Respecting Social Networks 265
Neeldhara Misra and Debanuj Nayak

Parameterized Intractability of Defensive Alliance Problem 279
Ajinkya Gaikwad, Soumen Maity, and Shuvam Kant Tripathi

On the Approximability of Path and Cycle Problems in Arc-Dependent
Networks . 292

Piotr Wojciechowski, K. Subramani, Alvaro Velasquez,
and Matthew Williamson

Contents xix

Approximation Algorithms in Graphs with Known Broadcast Time
of the Base Graph . 305

Puspal Bhabak and Hovhannes A. Harutyunyan

Author Index . 317

Graph Theory

A Proof of the Multiplicative 1-2-3
Conjecture

Julien Bensmail1(B), Hervé Hocquard2, Dimitri Lajou2, and Éric Sopena2

1 Université Côte d’Azur, CNRS, Inria, I3S, Biot, France
2 Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI,

UMR 5800, 33400 Talence, France

Abstract. We prove that the product version of the 1-2-3 Conjecture,
raised by Skowronek-Kaziów in 2012, is true. Namely, for every connected
graph with order at least 3, we can assign labels 1, 2, 3 to the edges so
that no two adjacent vertices are incident to the same product of labels.

Keywords: 1-2-3 Conjecture · Product version · Labels 1, 2, 3

1 Introduction

Let G be a graph. A k-labelling � : E(G) → {1, . . . , k} is an assignment of
labels 1, . . . , k to the edges of G. From �, we can compute different parameters
of interest for all vertices v, such as the sum σ�(v) of incident labels (being
formally σ�(v) = Σu∈N(v)�(uv)), or similarly the multiset μ�(v) of labels incident
to v or the product ρ�(v) of labels incident to v. We say that � is s-proper if σ�

is a proper vertex-colouring of G, i.e., we have σ�(u) �= σ�(v) for every edge
uv ∈ E(G). Similarly, we say that � is m-proper and p-proper, if μ� and ρ�,
respectively, form proper vertex-colourings of G.

In the context of so-called distinguishing labellings, the goal is generally to
not only distinguish vertices within some distance according to some parameter
computed from labellings (such as the parameters σ�, μ� and ρ� above, to name
a few), but also to construct such k-labellings with k as small as possible. We
refer the interested reader to [4], which lists hundreds of labelling techniques.

Regarding s-proper, m-proper and p-proper labellings, which are the main
focus in this work, we are thus interested, as mentioned above, in finding such k-
labellings with k as small as possible, for a given graph G. In other words, we are
interested in the parameters χS(G), χM(G) and χP(G) which denote the smallest
k ≥ 1 such that s-proper, m-proper and p-proper, respectively, k-labellings exist
(if any). Actually, through greedy labelling arguments, it can be observed that
the only connected graph G for which χS(G), χM(G) or χP(G) is not defined, is
K2, the complete graph on 2 vertices. Consequently, these three parameters are

Some proofs in this paper are voluntarily omitted due to space limitation; the interested
reader will find them in [3], the full version of the current paper. This work is partially
supported by the ANR project HOSIGRA (ANR-17-CE40-0022).

c© Springer Nature Switzerland AG 2022
N. Balachandran and R. Inkulu (Eds.): CALDAM 2022, LNCS 13179, pp. 3–14, 2022.
https://doi.org/10.1007/978-3-030-95018-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95018-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-95018-7_1

4 J. Bensmail et al.

generally investigated for so-called nice graphs, which are those graphs with no
connected component isomorphic to K2.

S-proper, m-proper and p-proper labellings form a subfield of distinguish-
ing labellings, which has been attracting attention due to the so-called 1-2-3
Conjecture, raised, in [6], by Karoński, �Luczak and Thomason in 2004:

1-2-3 Conjecture (sum version). If G is a nice graph, then χS(G) ≤ 3.

Later on, counterparts of the 1-2-3 Conjecture were raised for m-proper and
p-proper labellings. Addario-Berry et al. first raised, in 2005, the following in [1]:

1-2-3 Conjecture (multiset version). If G is a nice graph, then χM(G) ≤ 3.

while Skowronek-Kaziów then raised, in 2012, the following in [8]:

1-2-3 Conjecture (product version). If G is a nice graph, then χP(G) ≤ 3.

It is worth mentioning that all three conjectures above, if true, would be
tight, as attested for instance by complete graphs. Note also that the multiset
version of the 1-2-3 Conjecture is, out of the three variants, the easiest one in a
sense, as every s-proper or p-proper labelling is also m-proper (thus, proving the
sum or product variant of the 1-2-3 Conjecture would prove the multiset one).

To date, the best result towards the sum version of the 1-2-3 Conjecture,
proved by Kalkowski, Karoński and Pfender in [5], is that χS(G) ≤ 5 holds for
every nice graph G. Another significant result is due to Przyby�lo, who recently
proved in [7] that even χS(G) ≤ 4 holds for every nice regular graph G. Karoński,
�Luczak and Thomason themselves also proved in [6] that χS(G) ≤ 3 holds for
nice 3-colourable graphs. Regarding the multiset version, for long the best result
was the one proved by Addario-Berry, Aldred, Dalal and Reed in [1], stating that
χM(G) ≤ 4 holds for every nice graph G. Building on that result, Skowronek-
Kaziów later proved in [8] that χP(G) ≤ 4 holds for every nice graph G. She also
proved that χP(G) ≤ 3 holds for every nice 3-colourable graph G.

A breakthrough result was recently obtained by Vučković, as he totally
proved the multiset version of the 1-2-3 Conjecture in [9]. Due to connections
between m-proper and p-proper 3-labellings, we observed in [2] that this result
directly implies that χP(G) ≤ 3 holds for every nice regular graph G. Inspired
by Vučković’s proof scheme, we were also able to prove that χP(G) ≤ 3 holds
for nice 4-colourable graphs G, and to prove related results that are very close
to what is stated in the product version of the 1-2-3 Conjecture.

Building on these results, we prove the following throughout this paper.

Theorem 1. The product version of the 1-2-3 Conjecture is true. That is, every
nice graph admits p-proper 3-labellings.

2 Proof of Theorem 1

Let us start by introducing some terminology and recalling some properties of
p-proper labellings, which will be used throughout the proof. Let G be a graph,

A Proof of the Multiplicative 1-2-3 Conjecture 5

and � be a 3-labelling of G. For a vertex v ∈ V (G) and a label i ∈ {1, 2, 3}, we
denote by di(v) the i-degree of v by �, being the number of edges incident to v
that are assigned label i by �. Note then that ρ�(v) = 2d2(v)3d3(v). We say that v
is 1-monochromatic if d2(v) = d3(v) = 0, while we say that v is 2-monochromatic
(3-monochromatic, resp.) if d2(v) > 0 and d3(v) = 0 (d3(v) > 0 and d2(v) = 0,
resp.). In case v has both 2-degree and 3-degree at least 1, we say that v is
bichromatic. We also define the {2, 3}-degree of v as the sum d2(v) + d3(v) of its
2-degree and 3-degree. If v is bichromatic, then its {2, 3}-degree is at least 2.

Because � assigns labels 1, 2, 3, and, in particular, because 2 and 3 are
coprime, note that, for every edge uv of G, we have ρ�(u) �= ρ�(v) when u
and v have different 2-degrees, 3-degrees, or {2, 3}-degrees. In particular, u and
v cannot be in conflict, i.e., satisfy ρ�(u) = ρ�(v), if u and v are i-monochromatic
and j-monochromatic for i �= j, or if u is monochromatic while v is bichromatic.

Before going into the proof of Theorem 1, let us start by giving an overview
of it. Let G be a nice graph. Our goal is to build a p-proper 3-labelling � of G.
We can clearly assume that G is connected. We also set t = χ(G), where, recall,
χ(G) refers to the chromatic number1 of G. In particular, t ≥ 2.

In what follows, we construct � through three main steps. First, we need to
partition the vertices of G in a way satisfying specific cut properties, forming
what we call a valid partition of V (G) (see later Definition 1 for a more formal
definition). In short, a valid partition V = (V1, . . . , Vt) is a partition of V (G) into
t independent sets V1, . . . , Vt fulfilling two main properties, being, roughly put,
that 1) every vertex v in some part Vi with i > 1 has an incident upward edge
to every part Vj with j < i, and 2) for every connected component of G[V1 ∪ V2]
having only one edge, we can freely swap its two vertices in V1 and V2 while
preserving the main properties of a valid partition.

Once we have this valid partition V in hand, we can then start constructing
�. The main part of the labelling process, Step 2 below, consists in starting from
all edges of G being assigned label 1 by �, and then processing the vertices of
V3, . . . , Vt one after another, possibly changing the labels by � assigned to some
of their incident edges, so that certain product types are achieved by ρ�. These
desired product types can be achieved due to the many upward edges that some
vertices are incident to (in particular, the deeper a vertex lies in V, the more
upward edges it is incident to). The product types we achieve for the vertices
depend on the part Vi of V they belong to. In particular, the modifications we
make on � guarantee that all vertices in V3, . . . , Vt are bichromatic, every two
vertices in Vi and Vj with i, j ∈ {3, . . . , t} and i �= j have different 2-degrees
or 3-degrees, all vertices in V2 are 1-monochromatic or 2-monochromatic, and
all vertices in V1 are 1-monochromatic or 3-monochromatic. By itself, achieving
these product types makes � almost p-proper, in the sense that the only possible
conflicts are between 1-monochromatic vertices in V1 and V2. An important point
also, is that, through these label modifications, we will make sure that all edges

1 Recall that a proper k-vertex-colouring of a graph G is a partition (V1, . . . , Vk) of
V (G) where all Vi’s are independent. The chromatic number χ(G) of G is the smallest
k ≥ 1 such that proper k-vertex-colourings of G exist. G is k-colourable if χ(G) ≤ k.

6 J. Bensmail et al.

of G[V1∪V2] remain assigned label 1, and no vertex in V3∪· · ·∪Vt has 3-degree 1,
2-degree at least 2, and odd {2, 3}-degree; in last Step 3 below, we will use that
last fact to remove remaining conflicts by allowing some vertices of V1 ∪ V2 to
become special, i.e., make such vertices v satisfy d3(v) = 1, d2(v) ≥ 2, and
d2(v) + d3(v) ≡ 1 mod 2, while making sure that the products of the vertices in
V3 ∪ · · · ∪ Vt are not altered.

Step 3 is designed to get rid of the last conflicts between the adjacent 1-
monochromatic vertices of V1 and V2 without introducing new ones in G. To
that end, we will consider the set H of the connected components of G[V1 ∪ V2]
having conflicting vertices, and, if needed, modify the labels assigned by � to
some of their incident edges so that no conflicts remain, and no new conflicts are
created in G. To make sure that no new conflicts are created between vertices
in V1 ∪ V2 and vertices in V3 ∪ · · · ∪ Vt, we will modify labels while making sure
that all vertices in V1 ∪ V2 are monochromatic or special. An important point
also, is that the fixing procedures we introduce require the number of edges in a
connected component of H to be at least 2. Because of that, once Step 2 ends,
we must ensure that H does not contain a connected component with only one
edge incident to two 1-monochromatic vertices. To guarantee this, we will also
make sure, during Step 2, to modify labels and the partition V slightly so that
H has no such configuration.

Step 1: Constructing a valid partition

Let V = (V1, . . . , Vt) be a partition of V (G) where each Vi is an independent set.
Note that such a partition exists, as, for instance, any proper t-vertex-colouring
of G forms such a partition of V (G). For every vertex u ∈ Vi, an incident upward
edge (downward edge, resp.) is an edge uv for which v belongs to some Vj with
j < i (j > i, resp.). Note that all vertices in V1 have no incident upward edges,
while all vertices in Vt have no incident downward edges.

We denote by M0(V) (also denoted M0 when the context is clear) the set of
isolated edges in the subgraph G[V1 ∪V2] of G induced by the vertices of V1 ∪V2.
That is, M0 contains the edges of the connected components of G[V1 ∪ V2] that
consist in one edge only. To lighten the exposition, whenever referring to the
vertices of M0, we mean the vertices of G incident to the edges in M0.

For an edge uv ∈ M0 with u ∈ V1 and v ∈ V2, swapping uv consists in
modifying the partition V by removing u from V1 (v from V2, resp.) and adding
it to V2 (V1, resp.). In other words, we exchange the parts to which u and
v belong. Note that if V1 and V2 are independent sets before the swap, then,
because uv ∈ M0, by definition the resulting new V1 and V2 remain independent.
Also, the set M0 is unchanged by the swap operation.

We can now give a formal definition for the notion of valid partition.

Definition 1 (Valid partition). For a t-colourable graph G, a partition V =
(V1, . . . , Vt) of V (G) is valid (for G) if V satisfies the following properties.

(I) Every Vi is an independent set.
(P1) Every vertex in some Vi with i ≥ 2 has a neighbour in Vj for every j < i.

A Proof of the Multiplicative 1-2-3 Conjecture 7

(S) For every sequence (ei)i of edges of M0(V), successively swapping every ei

(in any order) results in a partition V ′ satisfying Properties (I) and (P1).

Note that Property (S) implies the following property:

(P2) Swapping any number of edges of M0(V) results in a valid partition V ′.

To prove Theorem 1, as mentioned earlier, to start constructing � we need to
have a valid partition of G in hand. The following result guarantees its existence.

Lemma 1. Every nice t-colourable graph G admits a valid partition.

Proof. For a partition V = (V1, . . . , Vt) of V (G) where each Vi is independent
(such a partition exists, as attested by any proper t-vertex-colouring of G), set
f(V) =

∑t
k=1 k · |Vi|. Among all possible V’s, consider a V that minimises f(V).

Suppose that there is a vertex u ∈ Vi with i ≥ 2 for which Property (P1)
does not hold, i.e., there is a j < i such that u has no incident upward edge
to Vj . By moving u to Vj , we obtain another partition V ′ of V (G) where every
part is an independent set. However, note that f(V ′) = f(V) + j − i < f(V), a
contradiction to the minimality of V. From this, we deduce that every partition
V minimising f must satisfy Property (P1).

Let now V ′ be the partition of V (G) obtained by successively swapping edges
of M0(V). Recall that the swapping operation preserves Property (I) and observe
that f(V) = f(V ′). Hence, V ′ minimises f and thus satisfies Properties (I)
and (P1). Thus Property (S) also holds, and V is a valid partition of G. 	

From here, we assume that we have a valid partition V = (V1, . . . , Vt) of G.

Step 2: Labelling the upward edges of V3, . . . , Vt

From G and V, our goal now is to construct a 3-labelling � of G achieving certain
properties, the most important of which being that the only possible conflicts
are between pairs of vertices of V1 and V2 that do not form an edge of M0. The
following result sums up the exact conditions we want � to fulfil. Recall that a
vertex v is special by �, if d3(v) = 1, d2(v) ≥ 2 and d2(v) + d3(v) is odd. Note
that special vertices are bichromatic.

Lemma 2. For every nice graph G and every valid partition (V1, . . . , Vt) of G,
there exists a 3-labelling � of G such that:

1. all vertices of V1 are either 1-monochromatic or 3-monochromatic,
2. all vertices of V2 are either 1-monochromatic or 2-monochromatic,
3. all vertices of V3 ∪ · · · ∪ Vt are bichromatic,
4. no vertex is special,
5. if u ∈ V1 and v ∈ V2 are adjacent, then �(uv) = 1,
6. if two vertices u and v are in conflict, then u ∈ V1 and v ∈ V2 (or vice versa),

and at least one of u or v has a neighbour w in V1 ∪ V2.

8 J. Bensmail et al.

Proof. From now on, we fix the valid partition V = (V1, . . . , Vt) of G. During
the construction of �, we may have, however, to swap some edges of M0, result-
ing in a different valid partition of G. Abusing the notations, for simplicity we
will still denote by V any valid partition of G obtained this way, through swap-
ping edges. Recall that valid partitions are closed under swapping edges of M0

(Property (P2) of Definition 1).
Our goal is to design � so that it not only satisfies the four colour properties

of Items 1 to 4 of the statement, but also achieves the following refined product
types, for every vertex v in a part Vi of V:

– v ∈ V1: v is 1-monochromatic or 3-monochromatic;
– v ∈ V2: v is 1-monochromatic or 2-monochromatic;
– v ∈ V3: v is bichromatic with 2-degree 1 and even {2, 3}-degree;
– v ∈ V4: v is bichromatic with 3-degree 2 and odd {2, 3}-degree;
– v ∈ V5: v is bichromatic with 2-degree 2 and even {2, 3}-degree;
– ...
– v ∈ V2n, n ≥ 3: v is bichromatic with 3-degree n and odd {2, 3}-degree;
– v ∈ V2n+1, n ≥ 3: v is bichromatic with 2-degree n and even {2, 3}-degree;
– ...

We start from � assigning label 1 to all edges of G. Let us now describe how to
modify � so that the conditions above are met for all vertices. We consider the
vertices of Vt, . . . , V3 following that order, from “bottom to top”, and modify
labels assigned to upward edges. An important condition we will maintain, is
that every vertex in an odd part V2n+1 (n ≥ 0) has all its incident downward
edges (if any) labelled 3 or 1, while every vertex in an even part V2n (n ≥ 1) has
all its incident downward edges (if any) labelled 2 or 1. Note that this is trivially
satisfied for the vertices in Vt, since they have no incident downward edges.

At any point in the process, let M be the set of edges of M0 for which
both ends are 1-monochromatic (initially, M = M0). When treating a vertex
u ∈ V3 ∪ · · · ∪ Vt, we define Mu as the subset of edges of M having an end that
is a neighbour of u. For every edge e ∈ Mu, we choose one end of e that is a
neighbour of u and we add it to a set Su. Note that |Su| = |Mu|. Another goal
during the labelling process, to fulfil Item 6, is to label the edges incident to
u so that at least one end of every edge in Mu is no longer 1-monochromatic.
Note that the set Mu considered when labelling the edges incident to u is not
necessarily the set of edges of M0 incident to a neighbour of u, as, during the
whole process, some of these edges might be removed from M when dealing with
previous vertices in V3 ∪ · · · ∪ Vt.

Let us now consider the vertices in Vt, . . . , V3 one by one, following that order.
Let thus u ∈ Vi be a vertex that has not been treated yet, with i ≥ 3. Recall
that every vertex belonging to some Vj with j > i was treated earlier on, and
thus has its desired product. Suppose that i = 2n with n ≥ 2 (i = 2n + 1 with
n ≥ 1, resp.). Recall also that u is assumed to have all its incident downward
edges labelled 1 or 2 (3, resp.), due to how vertices in Vj ’s with j > i have been
treated earlier on, and to have all its incident upward edges labelled 1.

A Proof of the Multiplicative 1-2-3 Conjecture 9

If Mu �= ∅, then we swap edges of Mu, if necessary, so that every vertex in
Su belongs to V2 (V1, resp.). This does not invalidate any of our invariants since
both ends of an edge in Su are 1-monochromatic.

In any case, by Property (P1), we know that, for every j < i, there is a vertex
xj ∈ Vj which is a neighbour of u. In particular, the vertex x1 (x2, resp.) does
not belong to Su (but may be the other end of an edge in Mu). We label the
edges ux3, ux5, . . . , ux2n−1 with 3 (ux4, ux6, . . . , ux2n with 2, resp.). Note that,
at this point, d3(u) = n − 1 (d2(u) = n − 1, resp.). To finish dealing with u, we
need to distinguish two cases depending on whether Mu is empty or not.

– Suppose first that Mu = ∅. Label ux1 with 3 (ux2 with 2, resp.). Now u has
the desired 3-degree (2-degree, resp.). If i > 3, then label uxi−2 with 2 (3,
resp.) so that u is sure to be bichromatic. If i > 3 and the {2, 3}-degree of u
does not have the desired parity, then label ux2 with 2 (ux1 with 3, resp.).
If u ∈ V3 and the {2, 3}-degree of u is even, then u is already bichromatic
since d2(u) = 1. If u ∈ V3 and the {2, 3}-degree of u is odd, then label ux1

with 3 to adjust the parity of the {2, 3}-degree of u and make u bichromatic.
In all cases, u gets bichromatic with 3-degree n (2-degree n, resp.) and odd
{2, 3}-degree (even {2, 3}-degree, resp.), which is what is desired for u.

– Suppose now that Mu �= ∅. Let z ∈ Su and let e be the edge of Mu containing
z. For every w ∈ Su \ {z}, we label the edge uw with 2 (3, resp.). Then:

• If d2(u) + d3(u) is odd (even, resp.), then label uz with 2 (3, resp.) and
ux1 with 3 (ux2 with 2, resp.). In this case, every edge in Mu is incident to
at least one vertex which is not 1-monochromatic, while u is bichromatic
with 3-degree n (2-degree n, resp.) and odd {2, 3}-degree (even {2, 3}-
degree, resp.).

• If d2(u) + d3(u) is even (odd, resp.) and d2(u) > 0 (d3(u) > 0, resp.),
then swap e and label uz with 3 (2, resp.). Note that, after the swap
of e, we have z ∈ V1 (z ∈ V2, resp.). In this case, every edge in Mu is
incident to at least one vertex which is not 1-monochromatic, while u
is bichromatic with 3-degree n (2-degree n, resp.) and odd {2, 3}-degree
(even {2, 3}-degree, resp.).

• The last case is when d2(u) + d3(u) is even (odd, resp.) and d2(u) = 0
(d3(u) = 0, resp.). If i > 4, then we can label uxi−2 with 2 (3, resp.)
and fall back into one of the previous cases. If i = 4, then the only
edge labelled 3 is the edge ux3 which implies that d3(u) = 1, which is
impossible since d2(u) = 0 and d2(u) + d3(u) is odd. If i = 3, then the
conditions of this case imply that d2(u) = 1 while every upward edge
incident to u is labelled 1 or 3 and similarly for every incident downward
edge; this case thus cannot occur.

To finish, we remove the edges of Mu from M since their two ends are not
both 1-monochromatic any more.

At the end of this process, all vertices in V1 are 1-monochromatic or 3-
monochromatic, while all vertices in V2 are 1-monochromatic or 2-monochromatic.
Every vertex in V3 ∪· · ·∪Vt is bichromatic and there are no conflicts involving any

10 J. Bensmail et al.

pair of these vertices. Indeed if a ∈ Vi and b ∈ Vj are adjacent with i > j ≥ 3, then
either i and j do not have the same parity, in which case a and b do not have the
same {2, 3}-degree; or both i and j are even (odd, resp.) and d3(a) = i

2 �= j
2 = d3(b)

(d2(a) = i−1
2 �= j−1

2 = d2(b), resp.). Note also that no vertex in G is special, as
special vertices have 3-degree 1, 2-degree at least 2, and odd {2, 3}-degree. Also,
we did not relabel any edge in the cut (V1, V2).

Finally, suppose that there is a conflict between two vertices u and v. Previous
remarks imply that u ∈ V1 and v ∈ V2 (or vice versa) and that both u and v
are 1-monochromatic. If none of u and v has another neighbour w in V1 ∪ V2,
then the edge uv belongs to the set M0. Since G is nice, one of u or v must have
a neighbour z in V3 ∪ · · · ∪ Vt. Hence uv ∈ Mz. Recall also that we relabelled
the edges incident to z in such a way that, for every edge of Mz, at least one
incident vertex became 2-monochromatic or 3-monochromatic, a contradiction
to the existence of u and v. Hence, all properties of the lemma hold. 	

Step 3: Labelling the edges between V1 and V2

From now on, we will modify a 3-labelling � of G obtained by applying Lemma 2.
We denote by H the set of the connected components of G[V1 ∪V2] that contain
two adjacent vertices u ∈ V1 and v ∈ V2 having the same product by �. By
Items 1 and 2 of Lemma 2, such u and v are 1-monochromatic. Also, by Item 6
of Lemma 2, recall that every connected component of H has at least two edges.
In what follows, we only relabel edges of some connected components H ∈ H
with making sure that their vertices (in V1 ∪ V2) are monochromatic or special.
This ensures that only vertices of H have their product affected, thus that no
new conflicts involving vertices in V3 ∪ · · · ∪ Vt are created.

For a subgraph X of H ∈ H (possibly X = H), if, after having relabelled
edges of X, no conflict remains between vertices of X and all vertices of X are
either monochromatic or special, then we say that X satisfies Property (P3).

Lemma 3. If we can relabel the edges of every H ∈ H so that every H satisfies
Property (P3), then the resulting 3-labelling is p-proper.

Proof. This is because if we get rid of all conflicts in H, then the only possi-
ble remaining conflicts are between vertices in V1 ∪ V2 and in V3 ∪ · · · ∪ Vt. In
particular, recall that any two vertices of two distinct connected components
H1,H2 ∈ G[V1 ∪ V2] cannot be adjacent. Note also that, because we only rela-
belled edges in H, the vertices in V3 ∪· · ·∪Vt retain the product types described
in Lemma 2. In particular, they remain bichromatic and none of them is special.
Thus, they cannot be in conflict with the vertices in V1 ∪ V2. 	

In order to show that we can relabel the edges of every H ∈ H so that it
fulfils Property (P3), the following result will be particularly handy.

Lemma 4. For every integer s ∈ {2, 3}, every connected bipartite graph H
whose edges are labelled 1 or s, and any vertex v in any part Vi ∈ {V1, V2}
of H, we can relabel the edges of H with 1 and s so that ds(u) is odd (even,
resp.) for every u ∈ Vi \ {v}, and ds(u) is even (odd, resp.) for every u ∈ V3−i.

A Proof of the Multiplicative 1-2-3 Conjecture 11

Proof. As long as H has a vertex u different from v that does not satisfy the
desired condition, apply the following. Choose P any path from u to v, which
exists by the connectedness of H. Now follow P from u to v, and change the
labels of the traversed edges from 1 to s and vice versa. It can be noted that
this alters the parity of the s-degrees of u and v, while this does not alter that
parity for any of the other vertices of H. Thus, this makes u satisfy the desired
condition, while the situation did not change for the other vertices different from
u and v. Thus, once this process ends, all vertices of H different from v have
their s-degree being as desired by the resulting labelling. 	

We are now ready to treat the connected components H ∈ H independently,
so that they all meet Property (P3). To ease the reading, we distinguish several
cases depending on the types and on the degrees of the vertices that H includes.
In each of the successive cases we consider, it is implicitly assumed that H does
not meet the conditions of any previous case.

Claim 1. If H ∈ H has a 3-monochromatic vertex v ∈ V1, or a 1-
monochromatic vertex v1 ∈ V1 having two 1-monochromatic neighbours u1, u2 ∈
V2 with degree 1 (in H), then we can relabel edges of H so that H satisfies
Property (P3).

Proof. Recall that all edges of H are assigned label 1; thus, if a vertex of H is
3-monochromatic, then it must be due to incident downward edges to V3, . . . , Vt.

If H has a 1-monochromatic vertex v1 ∈ V1 that is adjacent to two degree-
1 1-monochromatic vertices u1, u2 ∈ V2, then we set �(v1u1) = �(v1u2) = 3.
Note that u1 and u2 become 3-monochromatic with 3-degree 1, and are thus no
longer in conflict with v1, as it becomes 3-monochromatic with 3-degree 2. Note
that either we got rid of all conflicts in H and H now satisfies Property (P3)
as desired, or conflicts between other 1-monochromatic vertices of H remain. In
the latter case, we continue with the following arguments.

Assume H has remaining conflicts, and that H has a 3-monochromatic vertex
v ∈ V1 (and, due to the previous process, perhaps 3-monochromatic vertices u1

and u2 in V2, in which case their 3-degree (and degree in H) is precisely 1, while
their unique neighbour v in V1 ∩ V (H) is 3-monochromatic with 3-degree 2).
Let X be the set of all 3-monochromatic vertices of H belonging to V1. Let
C1, . . . , Cq denote the q ≥ 1 connected components of H −X that do not consist
in a 3-monochromatic vertex of V2 (the vertices u1 and u2 we dealt with earlier
on). For every Ci, we choose arbitrarily a vertex xi ∈ X and a vertex yi ∈ Ci

such that xi and yi are adjacent in H. Note that the vertices of Ci are either
1-monochromatic or 2-monochromatic (in which case they belong to V2), since
all 3-monochromatic vertices of H are part of X (or are the vertices u1 and u2

dealt with earlier on, which we have omitted and are not part of the Ci’s).
By Lemma 4, in every Ci we can relabel the edges with 1 and 2 so that all

vertices in (V2 ∩ V (Ci)) \ {yi} are 2-monochromatic with odd 2-degree, while
all vertices in V1 ∩ V (Ci) are 2-monochromatic with even 2-degree or possibly
1-monochromatic if their even 2-degree is 0. In particular, recall that yi must
be 1-monochromatic or 2-monochromatic. If yi has odd 2-degree, then there are

12 J. Bensmail et al.

no conflicts between vertices of Ci. If yi has even non-zero 2-degree, then we set
�(xiyi) = 3, thereby making yi special.

Let Y be the set of all 1-monochromatic yi’s having a 1-monochromatic
neighbour wi in Ci. Let H ′ be the subgraph of H induced by Y ∪ X. Note
that every edge of H ′ is labelled 1. Let now Q1, . . . , Qp denote the connected
components of H ′ and choose xk ∈ X∩V (Qk) for every k ∈ {1, . . . , p}. For every
k, we apply Lemma 4 with labels 1 and 3 so that all vertices in V2 ∩ V (Qk) get
3-monochromatic with odd 3-degree, while all vertices in V1 ∩ V (Qk) \ {xk} get
3-monochromatic with even 3-degree or possibly 1-monochromatic (3-degree 0).

If xk is involved in a conflict with a vertex yi ∈ V2 ∩ V (Qk), then this is
because xk has odd 3-degree. Then:

– If �(xkyi) = 3, then d3(yi) = d3(xk) ≥ 3 since xk ∈ X (xk must thus be
incident to at least one other edge labelled 3, either a downward edge to
V3, . . . , Vt or an edge incident to u1 (and similarly an edge incident to u2)).
We here assign label 1 to the edge xkyi and label 3 to the edge yiwi. This
way, xk gets even 3-degree while the 3-degree of yi does not change. Note
that yi and wi are not in conflict since d3(wi) = 1 and d3(yi) ≥ 3.

– Otherwise, if �(xkyi) = 1, then we assign label 3 to the edge xkyi and label 3
to the edge yiwi. This way, xk gets even 3-degree while the 3-degree of yi

remains odd and must be at least 3. Again yi and wi are not in conflict since
d3(wi) = 1 and d3(yi) ≥ 3.

We claim that we got rid of all conflicts in H. Indeed, consider two adjacent
vertices a ∈ V1 ∩ V (H) and b ∈ V2 ∩ V (H). Suppose first that a and b belong to
some Ci. Note that, with the exception of yi and maybe of the vertex wi (if it
exists and yi ∈ Y), every vertex of Ci is 1-monochromatic or 2-monochromatic,
the vertices of V1 ∩ V (Ci) having even 2-degree and the vertices of V2 ∩ V (Ci)
having odd 2-degree. Thus, no conflict involves two of these vertices. Suppose
now that b = yi. If yi is 2-monochromatic with odd 2-degree, then there is no
conflict involving yi in Ci since all of its neighbours in Ci have even 2-degree.
If yi is special, then it is the only special vertex of Ci, so, here again, it cannot
be involved in a conflict. If yi /∈ Y and yi is 1-monochromatic, then yi has no
other 1-monochromatic neighbour in Ci by definition of Y . If yi ∈ Y , then yi is
3-monochromatic with odd 3-degree, the only other possible 3-monochromatic
neighbour of yi in Ci being wi, but we showed previously that their 3-degrees
differ. Thus, in all cases, there cannot be conflicts between vertices of Ci.

We are left with the case where a and b do not belong to the same Ci. In
particular, this implies that a ∈ X and that a is 3-monochromatic. The only
possible 3-monochromatic vertices in V2 are the vertices of Y , which have odd 3-
degree, and the 3-monochromatic vertices u1 and u2 with 3-degree 1 and degree 1
in H which might have been created at the very beginning of the proof. If b ∈ Y ,
then, due to the application of Lemma 4 above, the only vertex of X which can
have odd 3-degree is some xk, but for this vertex we either ensured that it was
involved in no conflict, or we tweaked the labelling so that it got even 3-degree
without modifying the labelling properties obtained through Lemma 4. If b is u1

A Proof of the Multiplicative 1-2-3 Conjecture 13

or u2, then b has only one neighbour v. Note that the edges vu1 and vu2 are still
labelled 3 as they are not part of the Qi’s, and, thus, d3(b) = 1 and d3(v) ≥ 2.
Hence, there is no conflict between vertices of X and other vertices of H. This
implies that H satisfies Property (P3). 	

We can thus assume that H does not meet any of the conditions in Claim 1.
The next step is showing that we can treat H in a similar way, in case H contains
a 1-monochromatic vertex u ∈ V2 with at least two neighbours in H. This can
be proved similarly as Claim 1, by investigating the structure of H and making
use of Lemma 4 to relabel edges of H in such a way that all remaining conflicts
are located in very precise places of H (so that we can then handle them one
by one). The formal proof being long, tedious, and in the same vein as that
of Claim 1, due to space limitation we omit it from this paper. The interested
reader will find the whole proof in [3], the full version of the current paper.

Claim 2. If H has a 1-monochromatic vertex u ∈ V2 with at least two neighbours
in H, then we can relabel edges of H so that H satisfies Property (P3).

Assuming H does not meet any of the conditions in Claims 1 and 2, final
arguments allow to relabel edges of H to get rid of all its conflicts.

Claim 3. We can relabel edges of H so that it satisfies Property (P3).

Proof. Let v ∈ V1 and u ∈ V2 be two adjacent 1-monochromatic vertices of H
(which must exist as otherwise H would satisfy Property (P3)). Because H has
at least two edges (as otherwise it would belong to M , not to H), at least one
of v and u must have another neighbour in H. Since Claim 2 does not apply,
note that u must have degree 1 in H (since all neighbours of u in H must be
1-monochromatic due to Claim 1 not applying). So v is also adjacent to k ≥ 1
vertices x1, . . . , xk ∈ V2 different from u, which must all be 2-monochromatic
(because of incident downward edges to V3, . . . , Vt; recall that all edges of H are
labelled 1) as otherwise Claim 2 would apply.

Set H ′ = H − u. According to Lemma 4, we can relabel edges in H ′ with 1
and 2 so that all vertices in (V1 ∩ V (H ′)) \ {v} have odd 2-degree, while all
vertices in V2 ∩ V (H ′) have even 2-degree. Recall that u is 1-monochromatic.
Thus, if also v is 2-monochromatic with odd 2-degree, then we are done. Assume
thus that v is 2-monochromatic with even 2-degree.

– Assume first that the 2-degree of v is even at least 2. In that case, set �(vu) =
3. This way, u becomes 3-monochromatic, while v becomes special.

– Assume now v is 1-monochromatic. This implies that �(vx1) = 1. Change
�(vx1) to 3. This way, x1 becomes special (recall its 2-degree is even and at
least 1, due to incident downward edges), while v becomes 3-monochromatic.
Note that u remains 1-monochromatic.

In both cases, it can be checked that H now fulfils Property (P3). 	

At this point, we dealt with all connected components of H, and the resulting

labelling � of G is p-proper by Lemma 3. The whole proof is thus complete.

14 J. Bensmail et al.

References

1. Addario-Berry, L., Aldred, R.E.L., Dalal, K., Reed, B.A.: Vertex colouring edge
partitions. J. Comb. Theory Ser. B 94(2), 237–244 (2005)

2. Bensmail, J., Hocquard, H., Lajou, D., Sopena, É.: Further evidence towards the
Multiplicative 1-2-3 Conjecture. Discrete Appl. Math. 307, 135–144 (2022). https://
doi.org/10.1016/j.dam.2021.10.014

3. Bensmail, J., Hocquard, H., Lajou, D., Sopena, É.: A proof of the Multiplicative
1-2-3 Conjecture. http://arxiv.org/abs/2108.10554 (2021)

4. Gallian, J.A.: A dynamic survey of graph labeling. Electron. J. Comb. 6, DS6 (1998)
5. Kalkowski, M., Karoński, M., Pfender, F.: Vertex-coloring edge-weightings: towards

the 1-2-3 Conjecture. J. Comb. Theory Ser. B 100, 347–349 (2010)
6. Karoński, M., �Luczak, T., Thomason, A.: Edge weights and vertex colours. J. Comb.

Theory Ser. B 91, 151–157 (2004)
7. Przyby�lo, J.: The 1-2-3 Conjecture almost holds for regular graphs. J. Comb. Theory

Ser. B 147, 183–200 (2021)
8. Skowronek-Kaziów, J.: Multiplicative vertex-colouring weightings of graphs. Inf.

Process. Lett. 112(5), 191–194 (2012)
9. Vučković, B.: Multi-set neighbor distinguishing 3-edge coloring. Discrete Math. 341,

820–824 (2018)

https://doi.org/10.1016/j.dam.2021.10.014
https://doi.org/10.1016/j.dam.2021.10.014
http://arxiv.org/abs/2108.10554

Chromatic Bounds for Some Subclasses
of (P3 ∪ P2)-free graphs

Athmakoori Prashant1(B) , P. Francis2 , and S. Francis Raj1

1 Department of Mathematics, Pondicherry University, Puducherry 605014, India
11994prashant@gmail.com, francisraj s@pondiuni.ac.in

2 Department of Computer Science, Indian Institute of Technology,
Palakkad 678557, India
pfrancis@iitpkd.ac.in

Abstract. The class of 2K2-free graphs has been well studied in various
contexts in the past. It is known that the class of {2K2, 2K1 + Kp}-free
graphs and {2K2, (K1 ∪K2)+Kp}-free graphs admits a linear χ-binding
function. In this paper, we study the classes of (P3∪P2)-free graphs which
is a superclass of 2K2-free graphs. We show that {P3 ∪ P2, 2K1 + Kp}-
free graphs and {P3 ∪ P2, (K1 ∪ K2) + Kp}-free graphs also admits a
linear χ-binding function. In addition, we give tight chromatic bounds
for {P3∪P2, HV N}-free graphs and {P3∪P2, diamond}-free graphs, and
it can be seen that the latter is an improvement of the existing bound
given by A. P. Bharathi and S. A. Choudum [1].

Keywords: Chromatic number · χ-binding function · (P3 ∪ P2)-free
graphs · Perfect graphs
2000 AMS Subject Classification: 05C15 · 05C75

1 Introduction

All graphs considered in this paper are simple, finite and undirected. Let G be
a graph with vertex set V (G) and edge set E(G). For any positive integer k, a
proper k-coloring of a graph G is a mapping c : V (G) → {1, 2, . . . , k} such that
adjacent vertices receive distinct colors. If a graph G admits a proper k-coloring,
then G is said to be k-colorable. The chromatic number, χ(G), of a graph G is
the smallest k such that G is k-colorable. Let Pn, Cn and Kn respectively denote
the path, the cycle and the complete graph on n vertices. For S, T ⊆ V (G), let
NT (S) = N(S) ∩ T (where N(S) denotes the set of all neighbors of S in G), let
〈S〉 denote the subgraph induced by S in G and let [S, T] denote the set of all
edges with one end in S and the other end in T . If every vertex in S is adjacent
with every vertex in T , then [S, T] is said to be complete. For any graph G, let
G denote the complement of G.

c© Springer Nature Switzerland AG 2022
N. Balachandran and R. Inkulu (Eds.): CALDAM 2022, LNCS 13179, pp. 15–21, 2022.
https://doi.org/10.1007/978-3-030-95018-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95018-7_2&domain=pdf
http://orcid.org/0000-0001-9427-5870
http://orcid.org/0000-0003-2391-4625
http://orcid.org/0000-0001-5407-0520
https://doi.org/10.1007/978-3-030-95018-7_2

16 A. Prashant et al.

Let F be a family of graphs. We say that G is F-free if it does not contain
any induced subgraph which is isomorphic to a graph in F . For a fixed graph H,
let us denote the family of H-free graphs by G(H). For any two disjoint graphs
G1 and G2 let G1 ∪ G2 and G1 + G2 denote the union and the join of G1 and
G2 respectively. Let ω(G) and α(G) denote the clique number and independence
number of a graph G respectively. When there is no ambiguity, ω(G) will be
denoted by ω. A graph G is said to be perfect if χ(H) = ω(H), for every induced
subgraph H of G.

In order to determine an upper bound for the chromatic number of a graph in
terms of their clique number, the concept of χ-binding functions was introduced
by A. Gyárfás in [4]. A class G of graphs is said to be χ-bounded [4] if there is
a function f (called a χ-binding function) such that χ(G) ≤ f(ω(G)), for every
G ∈ G. We say that the χ-binding function f is special linear if f(x) = x + c,
where c is a constant.

The family of 2K2-free graphs has been well studied. A. Gyárfás in [4] posed
a problem which asks for the order of magnitude of the smallest χ-binding func-
tion for G(2K2). In this direction, T. Karthick et al. in [5] proved that the
families of {2K2,H}-free graphs, where H ∈ {HV N, diamond,K1 + P4,K1 +
C4, P5, P2 ∪ P3,K5 − e} admit a special linear χ-binding functions. The bounds
for {2K2,K5−e}-free graphs and {2K2,K1+C4}-free graphs were later improved
by Athmakoori Prashant et al., in [7,8]. In [2], C. Brause et al., improved the
χ-binding function for {2K2,K1 + P4}-free graphs to max{3, ω(G)}. Also they
proved that for s
= 1 or ω(G)
= 2, the class of {2K2, (K1∪K2)+Ks}-free graphs
with ω(G) ≥ 2s is perfect and for r ≥ 1, the class of {2K2, 2K1+Kr}-free graphs
with ω(G) ≥ 2r is perfect. Clearly when s = 2 and r = 3, (K1∪K2)+Ks

∼= HV N
and 2K1 +Kr

∼= K5 −e which implies that the class of {2K2,HV N}-free graphs
and {2K2,K5−e}-free graphs are perfect for ω(G) ≥ 4 and ω(G) ≥ 6 respectively
which improved the bounds given in [5].

Motivated by C. Brause et al., and their work on 2K2-free graphs in [2],
we started looking at (P3 ∪ P2)-free graphs which is a superclass of 2K2-free
graphs. In [1], A. P. Bharathi et al., obtained a O(ω3) upper bound for the
chromatic number of (P3∪P2)-free graphs and obtained sharper bounds for {P3∪
P2, diamond})-free graphs. In this paper, we obtain linear χ-binding functions
for the class of {P3 ∪ P2, (K1 ∪ K2) + Kp}-free graphs and {P3 ∪ P2, 2K1 +
Kp}-free graphs. In addition, for ω(G) ≥ 3p − 1, we show that the class of
{P3 ∪P2, (K1 ∪K2)+Kp}-free graphs admits a special linear χ-binding function
f(x) = ω(G)+p−1 and the class of {P3 ∪P2, 2K1 +Kp}-free graphs are perfect.
In addition, we give a tight χ-binding function for {P3 ∪ P2,HV N}-free graphs
and {P3 ∪ P2, diamond}-free graphs. This bound for {P3 ∪ P2, diamond}-free
graphs turns out to be an improvement of the existing bound obtained by A. P.
Bharathi et al., in [1].

Some graphs that are considered as forbidden induced subgraphs in this
paper are given in Fig. 1. Notations and terminologies not mentioned here are
as in [10].

Chromatic Bounds for Some Subclasses of (P3 ∪ P2)-free graphs 17

paw diamond HVN

Fig. 1. Some special graphs

2 Preliminaries

Throughout this paper, we use a particular partition of the vertex set of a
graph G as defined initially by S. Wagon in [9] and later improved by A.
P. Bharathi et al., in [1] as follows. Let A = {v1, v2, . . . , vω} be a maxi-
mum clique of G. Let us define the lexicographic ordering on the set L =
{(i, j) : 1 ≤ i < j ≤ ω} in the following way. For two distinct elements
(i1, j1), (i2, j2) ∈ L, we say that (i1, j1) precedes (i2, j2), denoted by (i1, j1) <L

(i2, j2) if either i1 < i2 or i1 = i2 and j1 < j2. For every (i, j) ∈ L, let

Ci,j = {v ∈ V (G)\A : v /∈ N(vi) ∪ N(vj)} \
{

∪
(i′,j′)<L(i,j)

Ci′,j′

}
. Note that, for

any k ∈ {1, 2, . . . , j}\{i, j}, [vk, Ci,j] is complete. Hence ω(〈Ci,j〉) ≤ ω(G)−j+2.
For 1 ≤ k ≤ ω, let us define Ik = {v ∈ V (G)\A : v ∈ N(vi), for every i ∈

{1, 2, . . . , ω}\{k}}. Since A is a maximum clique, for 1 ≤ k ≤ ω, Ik is an inde-
pendent set and for any x ∈ Ik, xvk /∈ E(G). Clearly, each vertex in V (G)\A
is non-adjacent to at least one vertex in A. Hence those vertices will be con-
tained either in Ik for some k ∈ {1, 2, . . . , ω}, or in Ci,j for some (i, j) ∈ L.

Thus V (G) = A ∪
(

ω∪
k=1

Ik

)
∪

(
∪

(i,j)∈L
Ci,j

)
. Sometimes, we use the partition

V (G) = V1 ∪ V2, where V1 = ∪
1≤k≤ω

({vk} ∪ Ik) = ∪
1≤k≤ω

Uk and V2 = ∪
(i,j)∈L

Ci,j .

Let us recall a result on (P3 ∪ P2)-free graphs given by A. P. Bharathi et al.,
in [1].

Theorem 1 [1]. If a graphG is (P3∪P2)-free, then χ(G) ≤ ω(G)(ω(G)+1)(ω(G)+2)
6 .

Without much difficulty one can make the following observations on (P3 ∪ P2)-
free graphs.

Fact 2. Let G be a (P3 ∪ P2)-free graph. For (i, j) ∈ L, the following holds.

(i) Each Ci,j is a disjoint union of cliques, that is, 〈Ci,j〉 is P3-free.
(ii) For every integer s ∈ {1, 2, . . . , j}\{i, j}, N(vs) ⊇ {Ci,j ∪A∪(

ω∪
k=1

Ik)}\{vs ∪
Is}.

18 A. Prashant et al.

3 {P3 ∪ P2, (K1 ∪ K2) + Kp}-free graphs

Let us start Sect. 3 with some observations on ((K1 ∪ K2) + Kp)-free graphs.

Proposition 1. Let G be a ((K1 ∪ K2) + Kp)-free graph with ω(G) ≥ p + 2,
p ≥ 1. Then G satisfies the following.

(i) For k, � ∈ {1, 2, . . . , ω(G)}, [Ik, I�] is complete. Thus, 〈V1〉 is a complete
multipartite graph with Uk = {vk} ∪ Ik, 1 ≤ k ≤ ω(G) as its partitions.

(ii) For j ≥ p + 2 and 1 ≤ i < j, Ci,j = ∅.
(iii) For x ∈ V2, x has neighbors in at most (p − 1) U�’s where � ∈

{1, 2, . . . , ω(G)}.
Proposition 2. Let G be a {P3 ∪ P2, (K1 ∪ K2) + Kp}-free graph with ω(G) ≥
p + 2, p ≥ 1. Then G satisfies the following.

(i) For (i, j) ∈ L such that j ≤ p+1, if ω(〈Ci,j〉) ≥ p−j+4, then ω(〈Ck,j〉) ≤ 1
for k
= i and 1 ≤ k ≤ j − 1.

(ii) If ω(G) = (p + 2 + k), k ≥ 0, then

〈(
p+1∪

j=max{2,p+1−� k
2 �}

(
j−1∪
i=1

Ci,j

))〉
is

P3-free.

As a consequence of Proposition 1, we obtain Corollary 1 which is a result
due to S. Olariu in [6].

Corollary 1 [6]. Let G be a connected graph. Then G is paw-free graph if and
only if G is either K3-free or complete multipartite.

Now, for p ≥ 1 and ω ≥ max{3, 3p − 1}, let us determine the structural
characterization and the chromatic number of {P3 ∪ P2, (K1 ∪ K2) + Kp}-free
graphs.

Theorem 3. Let p be a positive integer and G be a {P3 ∪ P2, (K1 ∪ K2) + Kp}-
free graph with V (G) = V1 ∪ V2. If ω(G) ≥ max{3, 3p − 1}, then (i) 〈V1〉 is
a complete multipartite graph with partition U1, U2, . . . , Uω, (ii) 〈V2〉 is P3-free
graph and (iii) χ(G) ≤ ω(G) + p − 1.

Proof. Let p ≥ 1 and G be a {P3 ∪ P2, (K1 ∪ K2) + Kp}-free graph with ω(G) ≥
max{3, 3p−1}. By (i) of Proposition 1, we see that 〈V1〉 is a complete multipartite
graph with the partition Uk = {vk} ∪ Ik, 1 ≤ k ≤ ω. By (i) of Fact 2, each
〈Ci,j〉 is P3-free, for every (i, j) ∈ L. Also without much difficulty we can show
that 〈V2〉 is P3-free. Now, let us exhibit an (ω + p − 1)-coloring for G using
{1, 2, . . . , ω + p− 1} colors. For 1 ≤ k ≤ ω, give the color k to the vertices of Uk.
Let H be a component in 〈V2〉. Clearly, each vertex in H is adjacent to at most
p − 1 colors given to the vertices of V1 and is adjacent to ω(H) − 1 vertices of
H. Since ω(H) ≤ ω(G), each vertex in H is adjacent to at most ω(G) + p − 2
colors. Hence, there is a color available for each vertex in H. Similarly, all the
components of 〈V2〉 can be colored properly. Hence, χ(G) ≤ ω(G) + p − 1.

Chromatic Bounds for Some Subclasses of (P3 ∪ P2)-free graphs 19

Even though we are not able to show that the bound given in Theorem 3 is
tight, we can observe that the upper bound cannot be made smaller than ω +
�p−1

2 � by providing the following example. For p ≥ 1, consider the graph G∗ with

V (G∗) = X ∪ Y ∪ Z, where X =
ω∪

i=1
xi, Y =

ω∪
i=1

yi and Z =
p−1∪
i=1

zi if p ≥ 2 else

Z = ∅ and edge set E(G∗) = {{xixj}∪{yiyj}∪{zrzs}∪{xmyn}∪{ymzn}∪{xnzn},
where 1 ≤ i, j,m ≤ ω, 1 ≤ r, s, n ≤ p − 1, i
= j, r
= s and m
= n}. Without
much difficulty, one can observe that G∗ is a {P3 ∪ P2, (K1 ∪ K2) + Kp}-free

graph, ω(G∗) = ω and α(G∗) = 2. Hence, χ(G∗) ≥
⌈

|V (G∗)|
α(G∗)

⌉
= ω(G∗) +

⌈
p−1
2

⌉
.

Next, we obtain a linear χ-binding function for {P3∪P2, (K1∪K2)+Kp}-free
graphs with ω ≥ 3.

Theorem 4. Let p be an integer greater than 1. If G is a {P3 ∪P2, (K1 ∪K2)+
Kp}-free graph, then

χ(G) ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω(G) +
p+1∑

j=2
(j − 1)(p − j + 3) for 3 ≤ ω(G) ≤ p + 1

ω(G) + 7(p − 1) +
p−� k

2 �∑

j=4
(j − 1)(p − j + 3) for ω(G) = (p + 2 + k), 0 ≤ k ≤ 2p − 5

ω(G) + 4p − 3 for ω(G) = 3p − 2
ω(G) + p − 1 for ω(G) ≥ 3p − 1.

Proof. Let G be a {P3 ∪P2, (K1 ∪K2)+Kp}-free graph with p ≥ 2. For ω(G) ≥
3p − 1, the bound follows from Theorem 3. By (ii) of Proposition 1, we see
that Ci,j = ∅ for all j ≥ p + 2. We know that V (G) = V1 ∪ V2, where V1 =

∪
1≤�≤ω

({v�} ∪ I�) and V2 = ∪
(i,j)∈L

Ci,j . Clearly, the vertices of V1 can be colored

with ω(G) colors. Let us find an upper bound for χ(〈V2〉). First, let us consider
the case when 3 ≤ ω(G) ≤ p + 1. For 1 ≤ i < j ≤ p + 1, one can observe
that ω(〈Ci,j〉) ≤ ω(G) − j + 2 ≤ p − j + 3. Thus one can properly color the

vertices of
(

j−1∪
i=1

Ci,j

)
with at most (j − 1)(p − j + 3) colors and hence χ(G) ≤

χ(〈V1〉) + χ(〈V2〉) ≤ ω(G) +
p+1∑
j=2

(j − 1)(p − j + 3).

Next, let us consider ω(G) = (p+2+k), where 0 ≤ k ≤ 2p−4. By using (ii) of

Proposition 2,

〈(
p+1∪

j=p−� k
2 �+1

(
j−1∪
i=1

Ci,j

))〉
is a P3-free graph. As in Theorem 3,

one can color the vertices of V (G)\
{

p−� k
2 �

∪
j=2

(
j−1∪
i=1

Ci,j

)}
with at most ω(G)+p−1

colors. For k = 2p − 4, ω(G) = 3p − 2 and we see that 〈V2\C1,2〉 is P3-free and
χ(〈V (G)\C1,2〉) ≤ ω(G)+p−1. Therefore, χ(G) ≤ χ(〈V (G)\C1,2〉)+χ(〈C1,2〉) =
ω(G) + 4p − 3. Finally, for 0 ≤ k ≤ 2p − 5, by using (i) of Proposition 2 and
by using similar strategies but with a little more involvement, we can show

that
(

j−1∪
i=1

Ci,j

)
, where 2 ≤ j ≤ p − �k

2 � can be properly colored using ω(G)

colors when ω(〈Ci,j〉) ≥ p − j + 4, for some i ∈ {1, 2, . . . , j − 1} or by using

20 A. Prashant et al.

(j −1)(p− j +3) colors when ω(〈Ci,j〉) ≤ p− j +3, for every i ∈ {1, 2, . . . , j −1}.
For 4 ≤ j ≤ p−⌊

k
2

⌋
, one can observe that (j−1)(p−j+3) ≥ ω(G) and hence the

vertices of

(
p−� k

2 �
∪

j=4

(
j−1∪
i=1

Ci,j

))
can be properly colored with

p−� k
2 �∑

j=4

(j−1)(p−j+3)

colors. When j = 3, (j − 1)(p − j + 3) = 2p. Since 2p − 5 ≥ 0, p ≥ 3. Also, since
ω(G) ≥ 4, the vertices of C1,2 and (C1,3 ∪ C2,3) can be properly colored with at

most (3p− 3) colors each. Hence, χ(G) ≤ (ω(G)+ p− 1)+ 2(3p− 3)+
p−� k

2 �∑
j=4

(j −

1)(p − j + 3) = ω(G) + 7(p − 1) +
p−� k

2 �∑
j=4

(j − 1)(p − j + 3).

The bound obtained in Theorem 4 is not optimal. This can be seen in The-
orem 5. Note that when p = 2, (K1 ∪ K2) + Kp

∼= HV N .

Theorem 5. If G is a {P3 ∪P2,HV N}-free graph with ω(G) ≥ 4, then χ(G) ≤
ω(G) + 1.

The graph G∗ (defined next to Theorem 3) shows that the bound given in
Theorem 5 is tight.

4 {P3 ∪ P2, 2K1 + Kp}-free graphs

Let us start Sect. 4 by observing that any {P3 ∪P2, 2K1 +Kp}-free graph is also
a {P3 ∪ P2, (K1 ∪ K2) + Kp}-free graph. Hence the properties established for
{P3 ∪ P2, (K1 ∪ K2) + Kp}-free graphs is also true for {P3 ∪ P2, 2K1 + Kp}-free
graphs.

One can observe that by using techniques similar to the one’s used in Theorem
3 and by Strong Perfect Graph Theorem [3], any {P3 ∪P2, 2K1 +Kp}-free graph
is perfect, when ω ≥ 3p − 1.

Theorem 6. Let p be a positive integer and G be a {P3 ∪ P2, 2K1 + Kp}-free
graph with V (G) = V1 ∪ V2. If ω(G) ≥ 3p − 1, then 〈V1〉 is complete, 〈V2〉 is
P3-free and G is perfect.

As a consequence of Theorem 4 and Theorem 6, without much difficulty one can
observe Proposition 3 and Corollary 2.

Proposition 3. Let G be a {P3 ∪ P2, 2K1 + Kp}-free graph. If ω(〈C1,2〉) ≥ 2p,
then χ(G) = ω(G).

Corollary 2. Let p be an integer greater than 1. If G is a {P3 ∪P2, 2K1 +Kp}-
free graph, then

χ(G) ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω(G) +
p+1∑

j=2
(j − 1)(p − j + 3) for 3 ≤ ω(G) ≤ p + 1

ω(G) + 2p − 1 +
p−� k

2 �∑

j=3
(j − 1)(p − j + 3) for ω(G) = (p + 2 + k), 0 ≤ k ≤ 2p − 5

ω(G) + 2p − 1 for ω(G) = 3p − 2
ω(G) for ω(G) ≥ 3p − 1.

Chromatic Bounds for Some Subclasses of (P3 ∪ P2)-free graphs 21

When p = 2, 2K1 + Kp
∼= diamond and hence by Theorem 6, {P3 ∪

P2, diamond}-free graphs are perfect for ω(G) ≥ 5 which was shown by A.
P. Bharathi et al., in [1].

Theorem 7 [1]. If G is a {P3 ∪ P2, diamond}-free graph then

χ(G) ≤
⎧⎨
⎩

4 for ω(G) = 2
6 for ω(G) = 3
5 for ω(G) = 4

and G is perfect if ω(G) ≥ 5.

We can further improve the bound given in Theorem 7 by obtaining a ω(G)-
coloring when ω(G) = 4.

Theorem 8. If G is a {P3 ∪ P2, diamond}-free graph then

χ(G) ≤
⎧⎨
⎩

4 for ω(G) = 2
6 for ω(G) = 3
4 for ω(G) = 4.

and G is perfect if ω(G) ≥ 5.

Acknowledgment. The first author’s research was supported by the Council of Scien-
tific and Industrial Research, Government of India, File No: 09/559(0133)/2019-EMR-
I. The second author’s research was supported by Post Doctoral Fellowship at Indian
Institute of Technology, Palakkad.

References

1. Bharathi, A.P., Choudum, S.A.: Colouring of (P3 ∪P2)-free graphs. Graphs Comb.
34(1), 97–107 (2018)

2. Brause, C., Randerath, B., Schiermeyer, I., Vumar, E.: On the chromatic number
of 2K2-free graphs. Discrete Appl. Math. 253, 14–24 (2019)

3. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect
graph theorem. Ann. Math. 164, 51–229 (2006)

4. Gyárfás, A.: Problems from the world surrounding perfect graphs. Zastosowania
Matematyki Applicationes Mathematicae 19(3–4), 413–441 (1987)

5. Karthick, T., Mishra, S.: Chromatic bounds for some classes of 2K2-free graphs.
Discrete Math. 341(11), 3079–3088 (2018)

6. Olariu, S.: Paw-free graphs. Inf. Process. Lett. 28(1), 53–54 (1988)
7. Prashant, A., Francis Raj, S., Gokulnath, M.: Chromatic bounds for the subclasses

of pK2-free graphs. arXiv preprint arXiv:2102.13458 (2021)
8. Prashant, A., Gokulnath, M.: Chromatic bounds for the subclasses of pK2-free

graphs. In: Mudgal, A., Subramanian, C.R. (eds.) CALDAM 2021. LNCS, vol.
12601, pp. 288–293. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
67899-9 23

9. Wagon, S.: A bound on the chromatic number of graphs without certain induced
subgraphs. J. Comb. Theory Ser. B 29(3), 345–346 (1980)

10. West, D.B.: Introduction to Graph Theory. Prentice-Hall of India Private Limited,
Upper Saddle River (2005)

http://arxiv.org/abs/2102.13458
https://doi.org/10.1007/978-3-030-67899-9_23
https://doi.org/10.1007/978-3-030-67899-9_23

List Homomorphisms to Separable Signed
Graphs

Jan Bok1(B) , Richard Brewster2 , Tomás Feder3, Pavol Hell4 ,
and Nikola Jedličková5

1 Computer Science Institute, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic

bok@iuuk.mff.cuni.cz
2 Department of Mathematics and Statistics, Thompson Rivers University,

Kamloops, Canada
rbrewster@tru.ca

3 268 Waverley Street, Palo Alto, USA
tomas@theory.stanford.edu

4 School of Computing Science, Simon Fraser University, Burnaby, Canada
pavol@cs.sfu.ca

5 Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic

jedlickova@kam.mff.cuni.cz

Abstract. The complexity of the list homomorphism problem for signed
graphs appears difficult to classify. Existing results focus on special
classes of signed graphs, such as trees [1] and reflexive signed graphs [18].
Irreflexive signed graphs are the heart of the problem, and Kim and Sig-
gers have formulated a conjectured classification for these signed graphs.
We focus on a special case of irreflexive signed graphs, namely those in
which the unicoloured edges form a spanning path or cycle, and classify
the complexity of list homomorphisms to these signed graphs. In partic-
ular, our results confirm the conjecture of Kim and Siggers for this class
of signed graphs.

1 Motivation and Background

We investigate the complexity of (list) homomorphism problems for signed
graphs. The complexity of homomorphism (and list homomorphism) problems
is a popular topic. For undirected graphs, it was shown in [16] that the prob-
lem of deciding the existence of homomorphisms from an input graph to a fixed
graph H is polynomial if H is bipartite or has a loop, and is NP-complete other-
wise. For general structures H, the corresponding problem lead to the so-called
Dichotomy Conjecture [12,17], which was only recently established [8,25]. In the
list homomorphism problem for H, the input contains with each input graph
also lists of allowed images for each vertex. (The precise definitions are given
below.) The list homomorphism problems have generally a nicer behaviour than

c© Springer Nature Switzerland AG 2022
N. Balachandran and R. Inkulu (Eds.): CALDAM 2022, LNCS 13179, pp. 22–35, 2022.
https://doi.org/10.1007/978-3-030-95018-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95018-7_3&domain=pdf
http://orcid.org/0000-0002-7973-1361
http://orcid.org/0000-0001-7237-4288
http://orcid.org/0000-0001-7609-9746
http://orcid.org/0000-0001-9518-6386
https://doi.org/10.1007/978-3-030-95018-7_3

List Homomorphisms to Separable Signed Graphs 23

the homomorphism problems, because the lists facilitate recursion to subprob-
lems. For undirected graphs, the list homomorphism problem is polynomial if
H is a bi-arc graph (see below), and is NP-complete otherwise [9,10]. Even for
general structures H, where the list version is equivalent to a special case of
the basic version, the classification for the list version was achieved a decade
earlier [7].

Signed graphs are related to graphs with two symmetric binary relations; in
addition, they are equipped with an operation of switching (explained below).
The possibility of switching poses challenges when classifying the complexity
of homomorphisms, as the problem no longer appears to be a homomorphism
problem for relational structures. Nevertheless, it can be shown that it is equiv-
alent to such a problem and hence the results from [8,25] imply that there these
problems also enjoy a dichotomy of polynomial versus NP-complete. For homo-
morphisms of signed graphs (without lists), a concrete dichotomy classification
was conjectured in [4], and proved in [6]. Interestingly, for signed graphs, the
list version no longer seems easier to classify, and the progress towards a classi-
fication has been slow [1,4,18]. In this paper we focus on one particular class of
signed graphs and provide a full classification of complexity of the corresponding
homomorphism problem. In particular, our results confirm a conjecture from [18]
for this class of signed graphs.

A signed graph ̂G consists of a set V (G) and two symmetric binary relations
+,−. We also view ̂G as a graph G with the vertex set V (G), the edge set +∪−
(the underlying graph of ̂G), and a mapping σ : E(G) → {+,−}, assigning a sign
(+ or −) to each edge of G. (A loop is considered to be an edge.) Two signed
graphs are considered (switching-) equivalent if one can be obtained from the
other by a sequence of switchings; switching at a vertex v results in changing the
signs of all edges incident to v. We will usually view signs of edges as colours, and
view positive edges as blue, and negative edges as red. It will be convenient to call
a red-blue pair of edges with the same endpoint(s) a bicoloured edge; however,
it is important to keep in mind that formally they are two distinct edges.

The study of signed graphs seems to have originated in [14,15], and was most
notably advanced in the papers of Zaslavsky [20–24]. Guenin [13] pioneered the
investigation of homomorphisms of signed graphs; see also, e.g., [5] and [19].

A homomorphism of the signed graph ̂G to the signed graph ̂H is a mapping
f : V (G) → V (H) for which there exists a signed graph ̂G′ equivalent to ̂G such
that f preserves both relations + and −. A list homomorphism of ̂G to ̂H, with
respect to the lists L(v) ⊆ V (H), v ∈ V (G), is a homomorphism f of ̂G to ̂H

such that f(v) ∈ L(v) for all v ∈ V (G). Let ̂H be a fixed signed graph. The
homomorphism problem for ̂H takes as input a signed graph ̂G and asks whether
there exists a homomorphism of ̂G to ̂H. The list homomorphism problem for ̂H
takes an input a signed graph ̂G with lists L(v) ⊆ V (H) for every v ∈ V (G),
and asks whether there exists a homomorphism f of the signed graph ̂G to ̂H
such that f(v) ∈ L(v) for every v ∈ V (G). A subgraph ̂G of the signed graph ̂H

is the signed core of ̂H if there is signed graph homomorphism f of ̂H to ̂G, and
every homomorphism of the signed graph ̂G to itself is a bijection on V (G). It is
easy to see that the signed core of any signed graph is unique up to isomorphism
and switching equivalence. The dichotomy classification conjectured in [4] and

24 J. Bok et al.

proved in [6] is as follows. (In counting edges we count each unicoloured edge as
one and each bicoloured edge as two.)

Theorem 1 [6]. The homomorphism problem for the signed graph ̂H is
polynomial-time solvable if the signed core of ̂H has at most two edges, and
is NP-complete otherwise.

In an earlier paper [3], cf. [1], we have classified the complexity of the list
homomorphism problem for signed graphs with only unicoloured edges. A signed
graph is balanced if it is equivalent to one without red edges (and bicoloured
edges), and is anti-balanced if it is equivalent to one without blue edges (and
bicoloured edges); here we view a bicoloured edge as both blue and red. We say
that a signed graph is weakly balanced (weakly anti-balanced) if it is equivalent
to one in which all edges are bicoloured or blue (respectively red). (Previously
[1] we used the slightly awkward terms ‘uni-balanced’ and ‘anti-uni-balanced’.)

Let C be a fixed circle with two specified points n and s. A bi-arc graph
is a graph H such that each vertex v ∈ V (H) can be associated with a pair
of intervals Nv, Sv where Nv contains n but not s and Sv contains s but not n
satisfying the following conditions: (i) Nv intersects Sw if and only if Sv intersects
Nw, and (ii) Nv intersects Sw if and only if vw is not an edge of H. This class
of graphs includes all interval graphs: a reflexive graph is a bi-arc graph if and
only if it is an interval graph. Moreover, an irreflexive graph is a bi-arc graph if
and only if it is bipartite and its complement is a circular arc graph [10].

Theorem 2 [3]. Suppose ̂H is a connected signed graph without bicoloured edges.
If the underlying graph H is a bi-arc graph, and ̂H is balanced or anti-balanced,
then the list homomorphism problem for ̂H is polynomial-time solvable. Other-
wise, the problem is NP-complete.

Additionally, in [1] we have classified the complexity of the list homomor-
phism problems for signed trees. The general classification is quite technical,
but we will give a simplified description in the special case of irreflexive trees ̂H.
The following concept plays an important role. Let U,D be two walks in ̂H of
equal length. Suppose U has vertices u = u0, u1, . . . , uk = v, and D has vertices
u = d0, d1, . . . , dk = v. We say that (U,D) is a chain, provided uu1, dk−1v are uni-
coloured edges and ud1, uk−1v are bicoloured edges, and for each i, 1 ≤ i ≤ k−2,
we have (1) both uiui+1 and didi+1 are edges of ̂H while diui+1 is not an edge
of ̂H, or (2) both uiui+1 and didi+1 are bicoloured edges of ̂H while diui+1 is
not a bicoloured edge of ̂H.

Theorem 3 [1]. If a signed graph ̂H contains a chain, then the list homomor-
phism problem for ̂H is NP-complete.

Figure 1 shows some important signed trees with a chain.
An invertible pair in an undirected graph H is a pair of vertices a, b, with

two walks U,D of the same length, where U has vertices a = u0, u1, . . . , uk =
b, uk+1, . . . , ut = a, and D has vertices b = d0, d1, . . . , dk = a, dk+1, . . . , dt = b,

List Homomorphisms to Separable Signed Graphs 25

blue path

bicolored path

a)

b)

c)

d)

1 2 3 k − 1 k

1

1

1

2

2

2

3

3

3

k − 1k − 2 k4

4 5 6 7

8

9

8

4 5 6 7

e)
1 2 3

8

4 5 6 7

9

U = 2− 3− . . .− k − (k − 1)
D = 2− 1− 2− . . .− (k − 1)

U = 3− 2− 1− 2−− (k − 2)
D = 3− . . .− (k − 1)− k − (k − 1)− (k − 2)

U = 4− 8− 9− 8− 4− 5− 6− 7− 6− 5− 4
D = 4− 3− 2− 1− 2− 3− 4− 8− 9− 8− 4

U = 4− 3− 2− 1− 2− 3− 4− 8− 4
D = 4− 8− 4− 5− 6− 7− 6− 5− 4

U = 8− 4− 5− 6− 7− 6− 5− 4− 8− 9− 8
D = 8− 9− 8− 4− 3− 2− 1− 2− 3− 4− 8

Fig. 1. The family F of signed graphs yielding NP-complete problems, and a chain in
each. (The figure appeared first in [1].) (Color figure online)

such that for each i, 1 ≤ i ≤ k − 2, both uiui+1 and didi+1 are edges of H, while
diui+1 is not an edge of ̂H. For simplicity we say that a signed graph has an
invertible pair if its underlying graph has an invertible pair. It follows from [1,9]
that we have the following observation.

Theorem 4. If ̂H has an invertible pair, then the list homomorphism problem
for ̂H is NP-complete.

Figure 2 shows the graph F1, with an invertible pair 1, 10. The walks U,D
begin as indicated, then continue from 7, 10 to 7, 1 in a similar manner, and then
to 10, 1, and similarly for the second half, from 10, 1 to 1, 10.

a = 1

b = 10

2 3 4 5 6 7

8

9

U = 1− 2− 3− 4− 5− 6 − 7− ...
D = 10− 9− 10− 9− 10− 9− 10− ...

Fig. 2. The graph F1, with an invertible pair.

The following result from [1] therefore implies that for irreflexive signed trees,
the only NP-complete cases have a chain or an invertible pair. (We will make
the same conclusion about the irreflexive signed graphs discussed in this paper.)

26 J. Bok et al.

Theorem 5 [1]. Let ̂H be an irreflexive tree. If the underlying graph of ̂H

contains F1 or ̂H contains a signed graph from the family F , as an induced
subgraph, then the list homomorphism problem to ̂H is NP-complete. Otherwise,
̂H admits a special min ordering and the problem is polynomial-time solvable.

Further progress on the list homomorphism problem for signed graphs can be
made by transforming the list homomorphism problem for the signed graph ̂H to
a list homomorphism problem for an auxiliary structure with two binary relations
red, blue. (In such a structure we do not allow switchings.) We call a structure
with two binary relations red, blue an edge-coloured graph. The switching graph
S(̂H) of ̂H is an edge-coloured graph with two vertices v1, v2 for each vertex v of
̂H, and each edge vw of ̂H yields edges v1w1, v2w2 of the same colour as vw and
edges v1w2, v2w1 of the opposite colour. (This definition applies also for loops,
i.e., when v = w.) Each homomorphism of the signed graph ̂G to the signed
graph ̂H corresponds to a homomorphism of the edge-coloured graph ̂G to the
edge-coloured graph S(̂H) and conversely. If ̂G has lists L(v), v ∈ V (G), then
the new lists L+(v), v ∈ V (G), for S(̂H) are defined as follows: for any x ∈ L(v)
with v ∈ V (G), we place both x1 and x2 in L+(v). It is easy to see that the
signed graph ̂G has a list homomorphism to the signed graph S(̂H) with respect
to the lists L if and only if the edge-coloured graph ̂G has a list homomorphism
to the edge-coloured graph S(̂H) with respect to the lists L+. The new lists
L+ are symmetric sets in H+, meaning that for any x ∈ V (H), v ∈ V (G),
we have x1 ∈ L+(v) if and only if we have x2 ∈ L+(v). Thus we obtain the
list homomorphism problem for the edge-coloured graph S(̂H), restricted to
input instances ̂G with lists L that are symmetric in S(̂H). We shall call the
corresponding vertices x1, x2 mates.

A polymorphism of an edge-coloured graph ̂H is a homomorphism f of
some power ̂Ht to ̂H, i.e., a function f that assigns to each ordered t-tuple
(v1, v2, . . . , vt) of vertices of ̂H a vertex f(v1, v2, . . . , vt) such that two coordinate-
wise tuples adjacent in blue (red) obtain images adjacent in blue (red). A poly-
morphism of order t = 3 is a majority if f(v, v, w) = f(v, w, v) = f(w, v, v) = v
for all v, w. A Siggers polymorphism is a polymorphism of order t = 4, if
f(a, r, e, a) = f(r, a, r, e) for all a, r, e. One formulation of the dichotomy the-
orem proved by Bulatov [8] and Zhuk [25] states that the constraint satisfac-
tion problem for the template H is polynomial-time solvable if H admits a
Siggers polymorphism, and is NP-complete otherwise. (Other equivalent ver-
sions refer to other useful polymorphisms, notably weak near-unanimity poly-
morphisms [8,18,25].) Majority polymorphisms are less powerful, but it is known
(see [12,17]) that if H admits a majority then the constraint satisfaction problem
for the template H is polynomial-time solvable. We say that a polymorphism is
conservative if f(v1, v2, . . . , vt) is always one of v1, v2, . . . , vt, and we say that a
polymorphism of S(̂H) is semi-conservative if f(v1, v2, . . . , vt) is always one of
v1, v2, . . . , vt or their mates.

To distinguish the two parts of a bipartite graph we speak of black and white
vertices. A min ordering of a bipartite edge-coloured graph H is a pair <b, <w,

List Homomorphisms to Separable Signed Graphs 27

where <b is a linear ordering of the black vertices and <w is a linear ordering
of the white vertices, such that for white vertices x <w x′ and black vertices
y <b y′, if xy′, x′y are both red (blue) edges in H, then xy is also a red (blue)
edge in H. It is known [12] that if a bipartite graph H has a min ordering, then
the list homomorphism problem for H can be solved in polynomial time. In fact,
min ordering can be viewed as a polymorphism of order t = 2 [12]. We call a
bipartite min ordering of the signed irreflexive tree ̂H special if for black vertices
x, x′ and white vertices y, y′, if xy is bicoloured and xy′ is unicoloured, then
y <w y′, and if xy is bicoloured and x′y is unicoloured, then x <b x′. In other
words, the bicoloured neighbours of any vertex appear before its unicoloured
neighbours.

For weakly balanced irreflexive signed graphs, [18] suggests the following.

Conjecture. For a weakly balanced irreflexive signed graph ̂H, the list homo-
morphism problem is polynomial-time solvable if ̂H has a special min order-
ing; otherwise ̂H contains a chain or an invertible pair and the problem is NP-
complete.

We note that in [18], authors prove that the existence of a special min order-
ing implies the existence of a semi-conservative majority which means that the
problem is polynomial-time solvable; so to confirm their conjecture it remains
only to prove the remaining cases are NP-complete.

Theorem 5 from [1] confirms the above conjecture, when ̂H is a signed tree.
We say that an irreflexive signed graph ̂H is path-separable (cycle-separable)

if the unicoloured edges of ̂H form a spanning path (cycle) in the underlying
graph of ̂H. For brevity we also say a signed graph is separable if it is path-
separable or cycle-separable. In this paper we explicitly classify the complexity
of the list homomorphism problem for separable signed graphs ̂H, see Theorems
6 and 7. The descriptions suggest that the polynomial cases are rather rare and
very nicely structured.

In particular, we confirm the above conjecture in the special case of separable
signed graphs. Moreover, in our results we do not assume that ̂H is weakly
balanced.

2 Path-Separable Signed Graphs

Irreflexive signed graphs are in a sense the core of the problem. By Theorem 1,
the list homomorphism problem for H is NP-complete unless the underlying
graph H is bipartite. There is a natural transformation of each general problem
to a problem for a bipartite irreflexive signed graph, akin to what is done for
unsigned graphs in [11]; this is nicely explained in [18].

However, for bipartite H, we don’t have a combinatorial classification beyond
the case of trees H, except in the case ̂H has no bicoloured edges or loops
(when Theorem 2 applies), or when ̂H has no unicoloured edges or loops (when
the problem essentially concerns unsigned graphs and thus is solved by [11]).

28 J. Bok et al.

Therefore we may assume that both bicoloured and unicoloured edges or loops
are present. We focus in this paper on those bipartite irreflexive signed graphs ̂H
in which the unicoloured edges form simple structures, such as paths and cycles.
In this section, we consider irreflexive signed graphs in which the unicoloured
edges form a spanning path.

Recall that an irreflexive signed graph ̂H is path-separable if the unicoloured
edges of ̂H form a hamiltonian path P in the underlying graph H. We may
assume the edges of P are all blue. In other words, all the edges of the hamil-
tonian path P are blue, and all the other edges of ̂H are bicoloured. Recall
that the distinction between unicoloured and bicoloured edges is independent of
switching, thus such a hamiltonian path P = v1v2 . . . vn is unique, if it exists.

We first observe that for any irreflexive signed graph ̂H, the list homomor-
phism problem for ̂H is NP-complete if the underlying graph H contains an odd
cycle, since then the s-core of ̂H has at least three edges. Moreover, we now show
that the list homomorphism problem for ̂H is also NP-complete if H contains
an induced cycle of length greater than four. Indeed, it suffices to prove this if
H is an even cycle of length k > 4. If all edges of H are unicoloured, then the
problem is NP-complete by Theorem 2, since an irreflexive cycle of length k > 4
is not a bi-arc graph. If all edges of the cycle H are bicoloured, then we can easily
reduce from the previous case. If H contains both unicoloured and bicoloured
edges, then ̂H contains an induced subgraph of type a) or b) in the family F in
Fig. 1, and the problem is NP-complete by Theorem 3. (There are cases when
the subgraphs are not induced, but the chains from the proof of Theorem 3 are
still applicable.)

We further identify two additional cases of ̂H with NP-complete list homo-
morphism problems. An alternating 4-cycle is a 4-cycle v1v2v3v4 in which the
edges v1v2, v3v4 are bicoloured and the edges v2v3, v4v1 unicoloured. A 4-cycle
pair consists of 4-cycles v1v2v3v4 and v1v5v6v7, sharing the vertex v1, in which
the edges v1v2, v1v5 are bicoloured, and all other edges are unicoloured. An alter-
nating 4-cycle has the chain U = v1, v4, v3;D = v1, v2, v3, and a 4-cycle pair has
the chain U = v1, v4, v3, v2, v1;D = v1, v5, v6, v7, v1. Therefore, if a signed graph
̂H contains an alternating 4-cycle or a 4-cycle pair as an induced subgraph, then
the list homomorphism problem for ̂H is NP-complete. Note that the latter chain
requires only v2v6 and v3v5 to be non-edges. The problem remains NP-complete
as long as these edges are absent; all other edges with endpoints in different
4-cycles can be present. If both v2v6 and v3v5 are bicoloured edges, then there
is an alternating 4-cycle v2v3v5v6. Thus we conclude that the problem is NP-
complete if ̂H contains a 4-cycle pair as a subgraph (not necessarily induced),
unless exactly one of v3v5 or v2v6 is a bicoloured edge.

From now on we will assume that ̂H is a path-separable signed graph with the
unicoloured edges (all blue) forming a hamiltonian path P = v1, . . . , vn. We will
assume further that the list homomorphism problem for ̂H is not NP-complete,
and derive information on the structure of ̂H. In particular, the underlying graph
H is bipartite and does not contain any induced cycles of length greater than 4,
and ̂H does not contain an alternating 4-cycle or a 4-cycle pair; more generally,

List Homomorphisms to Separable Signed Graphs 29

̂H does not contain a chain. If ̂H has no bicoloured edges (and hence no edges
not on P), then the list homomorphism problem for ̂H is polynomially solvable
by Theorem 2, since a path is a bi-arc graph. If there is a bicoloured edge in ̂H,
then we may assume there is an edge vivi+3, otherwise there is an induced cycle
of length greater than 4.

A block in a path-separable signed graph ̂H is a subpath vivi+1vi+2vi+3 of P ,
with the bicoloured edge vivi+3. The previous paragraph concluded that ̂H must
contain a block. Note that if vivi+1vi+2vi+3 is a block, then vi+1vi+2vi+3vi+4 can-
not be a block: in fact, vi+1vi+4 cannot be a bicoloured edge, otherwise ̂H would
contain an alternating 4-cycle. However, vi+2vi+3vi+4vi+5 can again be a block,
and so can vi+4vi+5vi+6vi+7, etc. If both vivi+1vi+2vi+3 and vi+2vi+3vi+4vi+5

are blocks then vivi+5 must be a bicoloured edge, otherwise vivi+3vi+2vi+5 would
induce a signed graph of type a) in family F from Fig. 1. A segment in ̂H is a
maximal subpath vivi+1 . . . vi+2j+1 of P with j ≥ 1 that has all bicoloured edges
vi+evi+e+3, where e is even, 0 ≤ e ≤ 2j − 2. (A maximal subpath is not properly
contained in another such subpath.) Thus each subpath vi+evi+e+1vi+e+2vi+e+3

of the segment is a block, and the segment is a consecutively intersecting sequence
of blocks; note that it can consist of just one block. Two segments can touch as
the second and third segment in Fig. 3, or leave a gap as the first and second
segment in the same figure.

In a segment vivi+1 . . . vi+2j+1 we call each vertex vi+e with 0 ≤ e ≤ 2j − 2
a forward source, and each vertex vi+o with 3 ≤ o ≤ 2j + 1 a backward source.
Thus forward sources are the beginning vertices of blocks in the segment, and the
backward sources are the ends of blocks in the segment. If a < b, we say the edge
vavb is a forward edge from va and a backward edge from vb. In this terminology,
each forward source has a forward edge to its corresponding backward source.
Because of the absence of a signed graph of type a) in family F from Fig. 1, we
can in fact conclude, by the same argument as in the previous paragraph, that
each forward source in a segment has forward edges to all backward sources in
the segment.

We say that a segment vivi+1 . . . vi+2j+1 is right-leaning if vi+evi+e+o is a
bicoloured edge for all e is even, 0 ≤ e ≤ 2j − 2, and all odd o ≥ 3; and
we say it is left-leaning if vi+2j+1−evi+2j+1−e−o is a bicoloured edge for all e
even, 0 ≤ e ≤ 2j − 2 and all odd o ≥ 3. Thus a in a right-leaning segment
each forward source has all possible forward edges (that is, all edges to vertices
of opposite colour in the bipartition, including vertices with subscripts greater
than i + 2j + 1). The concepts of left-leaning segments, backward sources and
backward edges are defined similarly.

We say that a path-separable signed graph ̂H is right-segmented if all seg-
ments are right-leaning, and there are no edges other than those mandated by
this fact. In other words, each forward source has all possible forward edges, and
each vertex which is not a forward source has no forward edges. Similarly, we
say that a path-separable signed graph ̂H is left-segmented if all segments are
left-leaning, and there are no edges other than those mandated by this fact. In
other words, each backward source has all possible backward edges, and each

30 J. Bok et al.

to all white vertices

17 18 19 20

to all black vertices to all white
vertices

to all black vertices

v v v v v v v v v v v v v v vvv
3 4 5 6 v

7 8 9 10 11 12 13 14 15 16

Fig. 3. An example of a left-right-segmented signed graph. The additional bicoloured
edges from all white vertices before v12 to all black vertices after v15 are not shown.
(The figure appeared first in [1].) (Color figure online)

vertex which is not a backward source has no backward edges. Finally, ̂H is
left-right-segmented if there is a unique segment vivi+1 . . . vi+2j+1 that is both
left-leaning and right-leaning, all segments preceding it are left-leaning, all seg-
ments following it are right-leaning, and moreover there are additional bicoloured
edges vi−evi+2j+o for all even e ≥ 2 and all odd o ≥ 3, but no other edges. In
other words, vertices v1, v2, . . . , vi+2j+1 induce a left-segmented graph, vertices
vi, vi+1, . . . , vn induce a right-segmented graph, and in addition to the edges
this requires there are all the edges joining vi−e from v1, . . . , vi−1 to vi+o from
vi+2j+2, . . . , vn, with even e and odd o. A segmented graph is a path-separable
signed graph that is right-segmented or left-segmented or left-right-segmented.

See Fig. 3 there are three segments, the left-leaning segment v5v6v7v8v9v10,
the left- and right-leaning segment v12v13v14v15, and the right-leaning segment
v15v16v17v18v19v20. Thus this is a left-right-segmented signed graph.

Theorem 6. Let ̂H be a path-separable signed graph. Then the list homomor-
phism problem for ̂H is polynomial-time solvable if ̂H is switching equivalent to
a segmented signed graph ̂H. Otherwise, the problem is NP-complete.

The NP-completeness is proved in the journal version. To show that the
problem is polynomial when ̂H is a segmented signed graph, we use the result
from [18] which asserts that the existence of a special min ordering ensures the
existence of a polynomial-time algorithm. (We provide an alternate proof in [2].)

We now describe a special min ordering of the vertices for the case of a right-
segmented signed graph. Consider two vertices vx and vy with even subscripts
x < y, and each with a forward bicoloured edge. Then all forward neighbours
of vy are also forward neighbours of vx, and all backward neighbours of vx are
also backward neighbours of vy. Vertices vz with no forward bicoloured edges
have backward edges to all vertices with forward bicoloured edges from vertices
vt with t odd and t < z. We now order the vertices with even subscripts as
follows: first we take vertices with forward bicoloured edges in increasing order
of subscripts, then we take the remaining vertices in the decreasing order of
subscripts. The same ordering is applied on the vertices with odd subscripts.
It now follows from our observations that this is a min ordering, and for every
vertex the bicoloured edges come before the unicoloured edges.

For left-segmented graphs the ordering is similar; for left-right-segmented
graphs the ordering is described in the journal version.

List Homomorphisms to Separable Signed Graphs 31

3 Cycle-Separable Signed Graphs

As an application of Theorem 6, we now consider irreflexive signed graphs in
which the unicoloured edges form a spanning cycle. We say that an irreflexive
signed graph ̂H is cycle-separable if the unicoloured edges of ̂H form a hamil-
tonian cycle C in the underlying graph H. In other words, we have a hamilto-
nian cycle C whose edges are all unicoloured, and all the other edges of ̂H are
bicoloured. In contrast to the path-separable signed graphs, we cannot assume
the edges of C are all blue, see below.

We first introduce three cycle-separable signed graphs for which the list
homomorphism problem will turn out to be polynomial-time solvable. The signed
graph ̂H0 is the 4-cycle with all edges unicoloured blue. The signed graph ̂H1

consists of a blue path b = t0, t1, t2, t3 = w, a red path b, s1, s2, w, together with
a bicoloured edge bw. The signed graph ̂H� consists of a blue path b, s1, s2, w,
a blue path b = t0, t1, t2, . . . , t� = w (with � ≥ 3 odd), and all bicoloured edges
titj with even i and odd j, j > i + 1. (Note that this includes the edge bw.)
These three cycle separable signed graphs are illustrated in Fig. 4. Note that if
the subscript � is greater than 0, then it is odd. Moreover, both H1 and H3 have
6 vertices and differ only in the colours of the unicoloured edges forming the
hamiltonian cycle C: H1 has the cycle C unbalanced, and H3 has the cycle C
balanced.

b = t0

t1
t2 t3

w = t�

s1 s2s1 s2

t2t1

̂H0
̂H1

̂H�

b = t0 w = t3

Fig. 4. The cycle-separable signed graphs ̂H0, ̂H1, and ̂H� with � ≥ 3 odd.

Theorem 7. Let ̂H be a cycle-separable signed graph. Then the the list homo-
morphism problem for ̂H is polynomial-time solvable if ̂H is switching equivalent
to ̂H0, or to ̂H1, or to ̂H� for some odd � ≥ 3. Otherwise, the problem is NP-
complete.

The NP-complete cases are again found in the journal version. Here we show
that the list homomorphism problem for ̂H can be solved in polynomial time for
all remaining cycle-separable signed graphs.

If ̂H is switching equivalent to ̂H0, then the list homomorphism problem for
̂H is polynomial-time solvable by Theorem 2.

32 J. Bok et al.

Let ̂G together with lists L be an instance of List-S-Hom(̂H). We may
assume G is connected and bipartite. We will call the vertices of parts of biparti-
tion in ̂G black and white as well. First, we try mapping the black vertices of ̂G
to the black vertices of ̂H. If that fails, we try mapping the white vertices of ̂G
to the black vertices of ̂H. In the former case we remove all white (respectively
black) vertices from the lists of the black (respectively white) vertices in ̂G. The
latter case is analogous.

First, we preform the arc consistency procedure (cf. [9]) and also the arc
consistency procedure for bicoloured edges. If there is a vertex with empty list
after this step, then no suitable list homomorphism exists. Otherwise, we define
two mappings f1 and f2 as follows.

– f1(v) = min{ti : ti ∈ L(v)},
– f2(v) = min{si : si ∈ L(v)}.

(Observe when L(v) consists of black vertices fj(v) is the vertex, ti or si for j = 1
or j = 2, with the smallest index, and conversely for the case L(v) consists of
white vertices fj(v) is the vertex with the largest index.) Let uv be a bicoloured
edge of ̂G with u black and v white. Then by arc consistency there is a bicoloured
edge between a vertex from L(u) and a vertex from L(v). By the labelling of
̂H, it has the form t2it2j+3, where i ≤ j. By our observation, f1(u) = t2i′

where i′ ≤ i. Similarly, f1(v) = t2j′+3 where j′ ≥ j. This implies i′ ≤ j′ and
consequently, f1(u)f2(v) is a bicoloured edge. A similar argument applies for f2.
Similarly, if uv is a unicoloured edge in ̂G with u black and v white, then there
is a (possibly bicoloured) edge t2it2j+1 in ̂H where t2i ∈ L(u) and t2j+1 ∈ L(v)
with i ≤ j − 1. Again f1(u) = t2i′ with i′ ≤ i and f1(v) = t2j′+1 with j′ ≥ j.
This implies t2i′t2j′+1 is an edge of ̂H. We conclude that both f1 and f2 are
list homomorphisms from G to H (the underlying graphs) with the additional
property that vertices adjacent by bicoloured edges in ̂G map to vertices adjacent
by bicoloured edges in ̂H. We now examine the signs of the unicoloured edges
and determine the switchings required to define a list homomorphism from ̂G to
̂H. We make the following key observation. Due to the ordering on the vertices
if, for example, f1(u)f1(v) is a unicoloured edge in ̂H (again u is black and v

is white), then under no list homomorphism of ̂G to ̂H (with lists L) does uv
map to a bicoloured edge. (If such a mapping did exist, then the bicoloured edge
would remain as a possible image during the consistency check, and a bicoloured
edge would have end points occurring first in the ordering <.)

If b ∈ L(v) for some black vertex v, then f1(v) = f2(v) = b. Analogously,
if w ∈ L(v) for some white vertex v, then f1(v) = f2(v) = w. That is, any
vertex that can map to b (respectively w) will be mapped to b (respectively
w). Moreover, when examining the resigning of vertices (below), if there is no
resigning that works when v maps to b, then there is no homomorphism at all, as
b dominates all white vertices (in ̂H). Similarly w dominates all black vertices.

Consequently, we can partition the vertices of ̂G into those mapped to b
or w under f1 and under f2 and those vertices that can only map to interior
vertices of the two segments, i.e. to t1, . . . , t�−1 and s1, s2. The vertices in the

List Homomorphisms to Separable Signed Graphs 33

pre-images f−1
1 (b) = f−1

2 (b) and f−1
1 (w) = f−1

2 (w) are called boundary vertices.
Removing the boundary vertices from ̂G leaves a union of components. Consider
such a component K. The subgraph of ̂G induced by K is called a region (similar
to [1]). For each region, either its vertices all map to s-vertices or all to t-vertices.

We now examine how to test if there is a switching of the boundary vertices
of ̂G so that each region maps to ̂H.

First suppose that ̂H is switching equivalent to ̂H� with odd � ≥ 3. Let K
be some region of ̂G. If the lists of vertices of K contain only s-vertices or only
t-vertices, then there is no choice and we will use mappings f2 or f1, respectively.
Now suppose that the lists of vertices of K contains both s-vertices and t-vertices.
We claim we can use f1 to map K to ̂H. If there is any list homomorphism
̂G → ̂H under which K maps to s-vertices, then there is a switching of ̂G such
that K, together with its boundary vertices, induces a subgraph having only
blue edges. (Recall b, s1, s2, w is a blue path.) The mapping f1 restricted to K
and its boundary vertices is a homomorphism of G to H. As each edge in the
segment containing the t-vertices is at least blue, f1 is a homomorphism of the
induced subgraph to ̂H. Thus for any region that has both s-vertices and t-
vertices in its lists after the consistency checks, we may assume if is mapped ̂H
under f1. The remaining regions must map to s-vertices and we may assume
they are mapped using f2. Moreover, by our key observation above, the edges
mapping to unicoloured edges under these mappings must map to unicoloured
edges under any mapping. In particular, the discovery of a cycle consisting of
unicoloured edges in G whose sign does not agree with the sign of its image under
our use of f1 and f2 certifies that G is a no-instance of the problem.

It now remains to determine the switching of boundary vertices to ensure
the signs of all unicoloured edges are positive. We describe this in detail in the
journal version.

4 Conclusions

It seems difficult to give a full combinatorial classification of the complexity of
list homomorphism problems for general signed graphs. For irreflexive signed
graphs, which are in a sense the core of the problem, there is a conjectured
classification in [18]. We have obtained a full dichotomy classification in the
special case of separable irreflexive signed graphs. The classification confirms
the dichotomy conjecture of [18] for this case, and also confirms that the only
polynomial cases enjoy a special min ordering and the only NP-complete cases
have chains or invertible pairs, as also conjectured in [18].

Acknowledgements. The first author received funding from the European Union’s
Horizon 2020 project H2020-MSCA-RISE-2018: Research and Innovation Staff
Exchange. The second author was supported by his NSERC Canada Discovery Grant.
The fourth and fifth author were also partially supported by the fourth author’s NSERC
Canada Discovery Grant. The first and the fifth author were also supported by the
Charles University Grant Agency project 1198419 and by SVV–2020–260578.

34 J. Bok et al.

References

1. Bok, J., Brewster, R., Feder, T., Hell, P., Jedličková, N.: List homomor-
phism problems for signed graphs. In Esparza, J., Krá̌l, D. (eds.) 45th
International Symposium on Mathematical Foundations of Computer Science
(MFCS 2020), volume 170 of Leibniz International Proceedings in Informatics
(LIPIcs), Dagstuhl, Germany, pp. 20:1–20:14. Schloss Dagstuhl-Leibniz-Zentrum
für Informatik (2020). https://doi.org/10.4230/LIPIcs.MFCS.2020.20, https://
drops.dagstuhl.de/opus/volltexte/2020/12688

2. Bok, J., Brewster, R., Feder, T., Hell, P., Jedličková, N.: List homomorphism prob-
lems for signed graphs. arXiv:2005.05547 (2021)

3. Bok, J., Brewster, R.C., Hell, P., Jedličková, N.: List homomorphisms of signed
graphs. In: Bordeaux Graph Workshop, pp. 81–84 (2019)

4. Brewster, R.C., Foucaud, F., Hell, P., Naserasr, R.: The complexity of signed graph
and edge-coloured graph homomorphisms. Discrete Math. 340(2), 223–235 (2017)

5. Brewster, R.C., Graves, T.: Edge-switching homomorphisms of edge-coloured
graphs. Discrete Math. 309(18), 5540–5546 (2009)

6. Brewster, R.C., Siggers, M.: A complexity dichotomy for signed h-colouring. Dis-
crete Math. 341(10), 2768–2773 (2018)

7. Bulatov, A.A.: Complexity of conservative constraint satisfaction problems. ACM
Trans. Comput. Logic (TOCL) 12(4), 1–66 (2011)

8. Bulatov, A.A.: A dichotomy theorem for nonuniform CSPs. In: 58th Annual IEEE
Symposium on Foundations of Computer Science–FOCS 2017, Los Alamitos, CA,
pp. 319–330. IEEE Computer Society (2017)

9. Feder, T., Hell, P.: List homomorphisms to reflexive graphs. J. Comb. Theory Ser.
B 72(2), 236–250 (1998)

10. Feder, T., Hell, P., Huang, J.: List homomorphisms and circular arc graphs. Com-
binatorica 19(4), 487–505 (1999)

11. Feder, T., Hell, P., Huang, J.: Bi-arc graphs and the complexity of list homomor-
phisms. J. Graph Theory 42(1), 61–80 (2003)

12. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP
and constraint satisfaction: a study through Datalog and group theory. In: STOC,
pp. 612–622 (1993)

13. Guenin, B.: Packing odd circuit covers: a conjecture. Manuscript (2005)
14. Harary, F.: On the notion of balance of a signed graph. Michigan Math. J. 2,

143–146 (1955). 1953/54
15. Harary, F., Kabell, J.A.: A simple algorithm to detect balance in signed graphs.

Math. Social Sci. 1(1), 131–136 (1980/81)
16. Hell, P., Nešetřil, J.: On the complexity of H-coloring. J. Comb. Theory Ser. B

48(1), 92–110 (1990)
17. Jeavons, P.: On the algebraic structure of combinatorial problems. Theor. Comput.

Sci. 200(1–2), 185–204 (1998)
18. Kim, H., Siggers, M.: Towards a dichotomy for the switch list homomorphism

problem for signed graphs. arXiv:2104.077646 (2021)
19. Naserasr, R., Rollová, E., Sopena, É.: Homomorphisms of signed graphs. J. Graph

Theory 79(3), 178–212 (2015)
20. Zaslavsky, T.: Characterizations of signed graphs. J. Graph Theory 5(4), 401–406

(1981)
21. Zaslavsky, T.: Signed graph coloring. Discrete Math. 39(2), 215–228 (1982)
22. Zaslavsky, T.: Signed graphs. Discrete Appl. Math. 4(1), 47–74 (1982)

https://doi.org/10.4230/LIPIcs.MFCS.2020.20
https://drops.dagstuhl.de/opus/volltexte/2020/12688
https://drops.dagstuhl.de/opus/volltexte/2020/12688
http://arxiv.org/abs/2005.05547
http://arxiv.org/abs/2104.077646

List Homomorphisms to Separable Signed Graphs 35

23. Zaslavsky, T.: Is there a matroid theory of signed graph embedding? Ars Comb.
45, 129–141 (1997)

24. Zaslavsky, T.: A mathematical bibliography of signed and gain graphs and allied
areas. Electron. J. Combin. 5, 124 (1998). Dynamic Surveys 8. Manuscript prepared
with Marge Pratt

25. Zhuk, D.: A proof of CSP dichotomy conjecture. In: 58th Annual IEEE Symposium
on Foundations of Computer Science–FOCS 2017, Los Alamitos, CA, pp. 331–342.
IEEE Computer Society (2017)

Some Position Problems for Graphs

James Tuite1(B), Elias John Thomas2, and Ullas Chandran S. V.3

1 Department of Mathematics and Statistics, Open University,
Walton Hall, Milton Keynes, UK

james.tuite@open.ac.uk
2 Department of Mathematics, Mar Ivanios College, University of Kerala,

Thiruvananthapuram 695015, Kerala, India
3 Department of Mathematics, Mahatma Gandhi College, University of Kerala,

Thiruvananthapuram 695004, Kerala, India

Abstract. The general position problem for graphs stems from a puzzle
of Dudeney and the general position problem from discrete geometry. The
general position number of a graph G is the size of the largest set of ver-
tices S such that no geodesic of G contains more than two elements of S.
The monophonic position number of a graph is defined similarly, but with
‘induced path’ in place of ‘geodesic’. In this abstract we discuss the small-
est possible order of a graph with given general and monophonic position
numbers, determine the asymptotic order of the largest size of a graph
with given order and position numbers and finally determine the possible
diameters of a graph with given order and monophonic position number.

Keywords: General position · Monophonic position · Turán
problems · Size · Diameter · Induced path

1 Introduction

In this paper all graphs will be taken to be simple and undirected. The order of
the graph G will be denoted by n and its size by m. The clique number ω(G) of
a graph G is the order of the largest clique in G. An independent union of cliques
in a graph G is an induced subgraph H of G such that every component of H is a
clique. The independent clique number αω(G) is the order of a largest independent
union of cliques in G. The distance d(u, v) between two vertices u and v in a graph
G is the length of the shortest path in G from u to v and a shortest path is called a
geodesic. An induced or monophonic path is a path without any chords. The join
of two graphs G and H is the graph G ∨ H obtained from the disjoint union of G
and H by joining every vertex of G to every vertex of H.

The general position problem for graphs can be traced back to one of the
many puzzles of Dudeney [7]. This problem was introduced in the context of

The research of the first author was supported by an LMS Early Career Fellowship,
Project ECF-2021-27. The second author was supported by a Junior Research Fellow-
ship from the University of Kerala.

c© Springer Nature Switzerland AG 2022
N. Balachandran and R. Inkulu (Eds.): CALDAM 2022, LNCS 13179, pp. 36–47, 2022.
https://doi.org/10.1007/978-3-030-95018-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95018-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-95018-7_4

Some Position Problems for Graphs 37

graph theory independently in [4,13]. A set S of vertices of a graph G is in
general position if no geodesic of G contains more than two points of S; in this
case S is a general position set, or a gp-set. The general position problem asks for
the largest possible size of a gp-set for a given graph G; this number is denoted
by gp(G). A characterisation of the structure of a gp-set is derived in [2]. Other
recent papers on the general position problem include [8–10,14].

In [15] the authors introduced the monophonic position number of a graph, or
mp-number for short. A set S of vertices in a graph G is in monophonic position
if there is no monophonic path in G that contains more than two elements of S.
A set satisfying this condition is called a monophonic position set or simply an
mp-set. The size of a largest mp-set in a graph G is the mp-number mp(G) of
G. The mp- and gp-numbers of trees have a particularly simple form.

Lemma 1 [4,15]. For any tree T with �(T) leaves we have mp(T) = gp(T) =
�(T).

In Sect. 2 we discuss the problem of finding the smallest possible order of a
graph with given mp- and gp-numbers. In Sect. 3 we introduce the Turán-type
problem of the largest possible size of a graph with given order and mp-number.
We solve this problem asymptotically and present exact values for mp-number
two, along with a classification of the extremal graphs. Finally in Sect. 4 we
consider the problem of the possible diameters of graphs with given order and
mp-number.

2 The Smallest Graph with Given mp- and gp-Numbers

In a previous paper the authors characterised the values of a, b ∈ N such that
there exists a graph with mp-number a and gp-number b.

Theorem 1 [15]. For all a, b ∈ N there exists a graph with mp-number a and
gp-number b if and only if 2 ≤ a ≤ b or a = b = 1.

This raises the question: for 2 ≤ a ≤ b what are the possible values of the order of
a graph with mp-number a and gp-number b? In particular, what is the smallest
such order? We give strong bounds on this order and solve the problem for a
certain range of a and b. For all a, b ∈ N such that 2 ≤ a ≤ b the order of the
smallest graph G with mp(G) = a and gp(G) = b will be denoted by μ(a, b).
Trivially for a ≥ 2 we have μ(a, a) = a. The following lower bound on μ(a, b) for
a < b can be derived by considering the points lying on a longest induced path
that is not a geodesic.

Lemma 2. For 2 ≤ a < b we have μ(a, b) ≥ b + 2.

For r ≥ 3 we define the pagoda graph Pag(r) as follows. The vertex set
of Pag(r) consists of three sets A = {a1, a2, . . . , ar}, B = {b1, . . . , br}, C =
{c1, . . . , cr} of size r and an additional vertex x. For 1 ≤ i ≤ r we set bi to
be adjacent to aj and cj for j �= i and also add an edge from x to every vertex
of C. Pag(4) is illustrated in Fig. 1.

38 J. Tuite et al.

c1 c2 c3 c4

b1 b2 b3 b4

a1 a2 a3 a4

x

Fig. 1. Pag(4)

Lemma 3. For r ≥ 3 we have mp(Pag(r)) = 2 and gp(Pag(r)) = 2r.

Proof. The order of Pag(r) is n = 3r + 1. We now show that for r ≥ 3 we
have mp(Pag(r)) = 2 and gp(Pag(r)) = 2r. Trivially any two vertices constitute
an mp-set and A ∪ C is a gp-set of size 2r. It therefore suffices to show that
mp(Pag(r)) ≤ 2 and gp(Pag(r)) ≤ 2r.

For a contradiction, let M be an mp-set in Pag(r) with size ≥ 3. For 1 ≤ i, j ≤
r and i �= j let Pi,j be the monophonic path ai, bj , ci, x, cj , bi, aj . The existence
of this path shows that if x ∈ M , then M cannot contain two other vertices of
Pag(r), so we can assume that x �∈ M . Suppose that M contains two vertices
from the same ‘layer’ A,B or C. For the sake of argument say a1, a2 ∈ M ; the
other cases are similar. The path P1,2 shows that b1, b2, c1, c2 �∈ M . If another
element of A, say a3, belonged to M , then we would have the monophonic
path a1, b2, a3, b1, a2, a contradiction. For 3 ≤ i ≤ r the path a1, bi, a2 is trivially
monophonic, so M∩B = ∅. It follows that there must be a point ci ∈ M for some
3 ≤ i ≤ r. However a1, b2, ci, b1, a2 is a monophonic path, another contradiction.
As M cannot contain ≥ 3 points of Pag(r) we obtain the necessary inequality.

Now assume that K is any gp-set in Pag(r) with size ≥ 2r. For 1 ≤ i, j, k ≤ r,
j �∈ {i, k}, let Qi,j,k be the geodesic ai, bj , ck, x. Suppose that x ∈ K. If also
K ∩ C �= ∅, say c1 ∈ K, then as c1, x, ci is a geodesic for 2 ≤ i ≤ r, it follows
that K ∩ {c2, . . . , cr} = ∅. Also, letting j �∈ {1, i} in the path Qi,j,1 shows that
K ∩ A = K ∩ (B − {b1}) = ∅, so that we would have |K| ≤ 3 < 2r. Hence
K ∩C = ∅. Furthermore if some bj lies in K, then for 1 ≤ i, k ≤ r and j �∈ {i, k}
the geodesic Qi,j,k contains x, bj and ai, so that we would have K ⊆ B ∪ {ai, x}
and |K| ≤ r + 2 < 2r. Therefore K ⊆ A ∪ {x} and |K| ≤ r + 1 < 2r. Therefore
x is not contained in any gp-set of Pag(r) of size ≥ 2r.

Suppose now that K ∩ B �= ∅, say b1 ∈ K. For 2 ≤ i, k ≤ r the existence of
the geodesic Qi,1,k shows that K cannot intersect both A − {a1} and C − {c1}.
Therefore if |K| ≥ 2r+1, K must either have the form A∪B∪{c1} or {a1}∪B∪C;
however, a1, b2, c1 is a geodesic that contains three points from both of these
sets. It follows that |K| ≤ 2r. Furthermore, if |K ∩ B| ≥ 2, say b2 ∈ K, then

Some Position Problems for Graphs 39

K ∩ ((A−{a1, a2})∪ (C −{c1, c2})) = ∅ and also K cannot contain both ai and
ci for i = 1, 2, so that |K| would be bounded above by r + 2, which is strictly
less than 2r, whereas if K contains a unique vertex of B, then again |K| ≤ r+2;
therefore A ∪ C is the unique gp-set in Pag(r) with size 2r.

In a similar fashion it can be shown that the graphs Pag′(r) = Pag(r)−{ar}
have order 3r, mp-number 2 and gp-number 2r − 1 for r ≥ 3.

We now define a second family of graphs. We need the following result on
the position numbers of the join of graphs.

Lemma 4 [15]. The mp- and gp-numbers of the join G ∨ H of graphs G and
H satisfies

mp(G ∨ H) = max{ω(G) + ω(H),mp(G),mp(H)}

and
gp(G ∨ H) = max{ω(G) + ω(H), αω(G), αω(H)}.

It follows from Lemmas 1 and 4 that if T is any tree with �(T) ≥ 3 leaves,
then mp(K1 ∨ T) = �(T), whilst gp(K1 ∨ T) = αω(T). If T is a starlike tree
with r branches of length one and s branches of length two, then K1 ∨ T has
order r + 2s + 2, mp-number r + s and gp-number r + 2s; the gp-number of this
graph matches the lower bound in Lemma 2. It follows that if 3 ≤ a < b and
b
2 ≤ a, then μ(a, b) = b + 2; furthermore for this range there exists a graph with
mp-number a, gp-number b and order n if and only if n ≥ b + 2.

More generally, if we allow one branch of the starlike tree to have length
longer than two, then our constructions yield the following upper bounds.

Theorem 2. – μ(2, 3) = 5 and for b ≥ 4 we have μ(2, b) ≤
 3b
2 � + 1, with

equality for 4 ≤ b ≤ 8.
– For 3 ≤ a < b and b

2 ≤ a we have μ(a, b) = b + 2.
– For 3 ≤ a < b

2 we have μ(a, b) ≤ b − a + 2 +
 b
2�.

We conjecture the bounds in Theorem 2 to be best possible. This has been
confirmed by computation for most pairs (a, b) between 2 and 11 [11].

3 The Largest Size of Graphs with Given Order
and Position Numbers

A Turán-type problem asks for the largest possible size of a graph with order n
that contains no subgraph isomorphic to a graph from a family F of forbidden
subgraphs. The first such result was proved by Mantel, who showed in [12] that
the largest possible size of a triangle-free graph with order n is �n2

4 , the unique
extremal graph being the complete bipartite graph K�n

2 �,�n
2 �. This result was

generalised by Turán as follows.

40 J. Tuite et al.

Theorem 3 [16]. The number of edges of a Ka+1-free graph H is at most(
n − r

2

)
+ (a − 1)

(
r + 1

2

)
,

where r = �n
a . Equality holds if and only if H is isomorphic to the Turán graph

Tn,a, which is the complete a-partite graph with every partite set of size �n
a or

n
a �.

We will denote the size of the Turán graph Tn,a by tn,a. We now discuss
some Turán-type problems for the general and monophonic position numbers.
For a ≥ 2 and n ≥ a we define mex(n; a) (respectively gex(n; a)) to be the largest
possible size of a graph with order n and mp-number (resp. gp-number) a. Both
of these numbers are defined for n ≥ a by Theorem 1. The only graphs with gp-
number two are the cycle C4 and paths, so for n ≥ 5 we have gex(n; 2) = n−1. We
can derive a quadratic upper bound for mex(n; a) by an elementary application
of Turán’s Theorem. To reduce the bound slightly we will need a lemma on the
mp-numbers of complete multipartite graphs that extends the result on complete
bipartite graphs from [15].

Lemma 5. For integers r1 ≥ r2 ≥ · · · ≥ rt the mp-number and gp-number of
the complete multipartite graph Kr1,r2,...,rt

are given by

gp(Kr1,r2,...,rt
) = mp(Kr1,r2,...,rt

) = max{r1, t}.

Proof. Let the partite sets of Kr1,r2,...,rt
be W1,W2, . . . ,Wt and let M be a

maximum mp-set of Kr1,r2,...,rt
. Suppose that M contains two vertices u1, u2 in

the same partite set W . Then M cannot contain any vertex v in any other partite
set, for u1, v, u2 is a monophonic path. Hence in this case |M | ≤ |W | ≤ r1. If M
contains at most one vertex from every partite set then |M | ≤ t.

For the converse, observe that Kr1,r2,...,rt
contains a clique of size t, so that

|M | ≥ t. Each partite set is also an mp-set, so that |M | ≥ r1. The proof for
gp-sets is identical.

Lemma 6. For a ≤ n ≤ a2

mex(n; a) = tn,a,

but for n ≥ a2+1 we have the strict inequalities mex(n; a) < tn,a and gex(n; a) <
tn,a.

Proof. Any clique is in monophonic position. Thus if mp(G) = a, then G is
Ka+1-free and the conclusion follows from Turán’s Theorem and Lemma 5.

We now show that the upper bound given in Lemma 6 is asymptotically
tight.

Theorem 4. For a ≥ 2 and n ≥ a2 + 1 we have

tn,a − �n

a

(

a

2

)
≤ mex(n; a) ≤ tn,a − 1.

Some Position Problems for Graphs 41

Proof. Take the Turán graph Tn,a and label the partite sets T1, T2, . . . , Ta, where
|Ti| =
n

a � for 1 ≤ i ≤ s and |Ti| = �n
a for s + 1 ≤ i ≤ a, where s = n − �n

a a.
For 1 ≤ i ≤ a we denote the vertices of Ti by uij , where 1 ≤ j ≤
n

a � if i ≤ s
and 1 ≤ j ≤ �n

a if s + 1 ≤ i ≤ a.
For each j in the range 1 ≤ j ≤ �n

a delete the edges of the clique of order a
on the vertices uij , 1 ≤ i ≤ a, from Tn,a. This yields a new graph T ∗

n,a with size
tn,a − �n

a (a
2

)
.

Considering the vertices uii for 1 ≤ i ≤ a, we see that T ∗
n,a contains a clique

of size a, so certainly mp(T ∗
n,a) ≥ a. For the converse, let M be a largest mp-set

of T ∗
n,a. Suppose that M contains two vertices uij and uik from the same partite

set Ti. Then M cannot contain a vertex ui′j′ from a different partite set Ti′ where
j′ �∈ {j, k}, as uij , ui′j′ , uik is a monophonic path. We have mex(5; 2) = 5, so the
lower bound holds for n = 5 and a = 2; otherwise for n ≥ a2+1 we have �n

a ≥ 3.
Hence let 1 ≤ l ≤ �n

a and l �∈ {j, k}. Then for any i′ ∈ {1, 2, . . . , a} − {i} the
path P = uij , ui′k, uil, ui′j , uik is monophonic, so M ⊆ V (Ti). However the path
P shows that no three points of the partite set Ti can all lie in M , so that
|M | ≤ 2. Therefore we can assume that any optimal mp-set has at most one
point in each partite set, so that mp(T ∗

n,a) ≤ a, completing the proof.

Theorem 4 shows that the asymptotic order of mex(n; a) is 1
2 (1 − 1

a)n2 + O(n).
For a = 2 we were able to push our result further to give an exact formula
for mex(n; 2) and classify the extremal graphs. We omit the lengthy proof,
which makes use of Turán stability results from [3] and the classification of
non-bipartite triangle-free graphs with largest size from [1].

Theorem 5. For n ≥ 6 we have mex(n; 2) =
 (n−1)2

4 �, with the unique extremal
graph given by T ∗

n,a for odd n and T ∗
n,a with one edge added between the partite

sets for even n.

In marked contrast to the quadratic size of extremal graphs with given mono-
phonic position number, the function gex(n; a) is O(n). A graph with order
n = 10, general position number 3 and largest size is shown in Fig. 2. This can
be shown by a simple upper bound on the maximum degree of such a graph that
comes from Ramsey theory. The Ramsey number R(s, t) is the smallest value
of n such that any graph with order n contains either a clique of size s or an
independent set of size t; taking the converse of the extremal graphs we trivially
have the symmetry R(s, t) = R(t, s).

Theorem 6. For a ≥ 3 the function gex(n; a) is bounded above in terms of the
Ramsey number R(a, a + 1) by gex(n; a) ≤ R(a,a+1)−1

2 n.

Proof. Let G be a graph with order n, gp-number a, size gex(n; a) and maximum
degree Δ. Suppose that there exists a vertex x with degree d(x) ≥ R(a, a + 1)
and let X be the subgraph induced by N(x). Then X contains either a clique of
order a, which together with x would give a clique of size a+1, or else X has an
independent set of size a+1; either of these sets constitutes a general position set
with more than a vertices. Thus Δ ≤ R(a, a+1)−1 and gex(n; a) ≤ R(a,a+1)−1

2 n.

42 J. Tuite et al.

Fig. 2. A graph with order 10, gp-number 3 and largest size

Another interesting question is to find the smallest possible size of a graph with
order n, mp-number a and gp-number b; we denote this number by ex−(n; a; b). It
follows from the results of Sect. 2 that this number exists for a ≤ b and sufficiently
large n. Again we conjecture the following constructions to be extremal.

Theorem 7. If a and b have the same parity, then for n ≥ 5b−3a
2 + 4 we have

ex−(n; a; b) ≤ n+ b−a
2 +1. If a and b have opposite parities, then for n ≥ 5b−3a+11

2

we have ex−(n; a; b) ≤ n + b−a+3
2 .

Proof. For r ≥ 2 and t ≥ 0 we define a graph S(r, t) as follows. Take a cycle
C5r+1 of length 5r + 1 and identify its vertex set with Z5r+1 in the natural way.
Join the vertex 0 to the vertices 3 + 5s for all s ∈ N in the range 0 ≤ s ≤ r − 1.
Finally append a set W = {w1, . . . , wt} of t pendant vertices to the vertex 0. An
example is shown in Fig. 3. We claim that S(r, t) has mp(S(r, t)) = t + 2 and
gp(S(r, t)) = 2r + t.

The set W ∪ {1,−1} is obviously in monophonic position, so mp(S(r, t)) ≥
t+2. Let M be any optimal mp-set of S(r, t). By a result of [15] on triangle-free
graphs any set in monophonic position in S(r, t) is an independent set. The path
1, 2, 3, . . . , 5r − 1, 5r in C5r+1 is monophonic in S(r, t) and hence contains at
most two points of M , so if the mp-number of S(r, t) is any greater than t + 2,
then M contains three vertices of C5r+1, one of which is 0, so that M ∩ W = ∅

and t = 0. A simple argument shows that the mp-number of S(r, 0) is two. Thus
mp(S(r, t)) = t + 2.

Consider now the set {2 + 5s, 4 + 5s : 0 ≤ s ≤ r − 1} ∪ W . The vertices
of this set are at distance at most four from each other and it is easily verified
that none of the geodesics between them pass through other vertices of the set.
Thus gp(S(r, t)) ≥ 2r + t. Let K be a gp-set of S(r, t) that contains ≥ 2r + t + 1
vertices. For 0 ≤ s ≤ r − 1 the set S[s] = {1 + 5s, 2 + 5s, 3 + 5s, 4 + 5s, 5 + 5s}
on C5r+1 contains at most two vertices of K. It follows that K must contain the

Some Position Problems for Graphs 43

vertex 0, two vertices in each of the aforementioned sets and every vertex of W .
As the vertices of W have shortest paths to the vertices of K in S[0], we must
have t = 0. For r ≥ 3, if 0 ≤ s < s′ ≤ r − 1 and s + 2 ≤ s′, then vertices in
S[s] have shortest paths to the vertices in S[s′] passing through 0, so 0 �∈ K and
gp(S(r, t)) = 2r + t. Also gp(S(2, 0)) = 4. If a and b have the same parity and
b > a the graph S(b−a

2 + 1, a − 2) therefore has the required parameters. It is
shown in [15] that adding a pendant vertex to an extreme vertex (i.e. a vertex
with neighbourhood that induces a clique) preserves the mp-number. As this
also holds for the gp-number if a ≥ 3 we can add a path to a vertex of W to give
a graph with any larger order n′ ≥ n and the same mp- and gp-numbers. If a = 2
then lengthening one of the sections of length five on C5r+1 accomplishes the
same aim. If a and b have opposite parities, then shortening one of the sections
of length five on C5r+1 yields a graph with order n = 5r + t, size m = n + r,
mp-number a = t + 2 and gp-number b = 2r + t − 1; solving for r and t and
substituting yields the desired bounds.

w1

w2

w3

0

1

2
345

6

7

8

9

10
11 12 13

14

15

Fig. 3. S(3, 3) (left) with an optimal gp-set in black (right)

4 The Diameters of Graphs with Given Order
and mp-Number

The possible diameters of graphs with given geodetic number or hull number
are classified in [5,6]. This raises the following question: what are the possible
diameters of a graph with given order n and monophonic position number k? In
particular, what are the largest and smallest possible diameters of such a graph?
We now solve this problem. We split our analysis into two parts, beginning with
mp-numbers k ≥ 3.

Theorem 8. For any integers k and n with 3 ≤ k ≤ n − 1, there exists a
connected graph G with order n, monophonic position number k and diameter
D if and only if 2 ≤ D ≤ n − k + 1.

Proof. It was shown in [15] that the monophonic position number of a graph
with order n and longest monophonic path with length L is bounded above by

44 J. Tuite et al.

n − L + 1; rearranging, it follows that L ≤ n − k + 1. As any geodesic in G is
induced, it follows that n − k + 1 is the largest possible diameter of a graph G
with order n and mp(G) = k. Therefore it remains only to show existence of
the required graphs for the remaining values of the parameters. For k = n − 1
and D = 2 this follows easily by considering the star graph K1,n−1, so we can
assume that k ≤ n − 2.

For n ≥ 2, Theorem 1 shows that any caterpillar graph formed by adding
k − 2 leaves to the internal vertices of a path of length n − k + 1 has order n,
mp-number k and diameter D = n − k + 1. For k ≥ 3 we can construct a graph
F (n, k, n − k) with order n, mp-number k and diameter D = n − k as follows.
Take a path P of length n − k; let V (P) = {u0, u1, . . . , un−k}, where ui ∼ ui+1

for 0 ≤ i ≤ n − k − 1. Introduce a set Q of k − 1 new vertices v1, v2, . . . , vk−1

and join each of them to u0 and u1. A straightforward argument shows that this
graph has the required parameters.

Fig. 4. F (16, 6, 7)

Finally for 2 ≤ D ≤ n−k −1 we define the graph F (n, k,D) as follows. Take
a path P of length D − 2 with vertices {x0, x1, . . . , xD−2}, where xi ∼ xi+1 for
0 ≤ i ≤ D − 3. Let Cs be a cycle with length s = n − D − k + 3 and vertex
set {u0, u1, . . . , us−1}, where ui ∼ ui+1 for 0 ≤ i ≤ s − 1 and addition is carried
out modulo s. Join x0 to every vertex of Cs, so that Cs ∪ {x0} induces a wheel.
Finally append a set Q = {v1, v2, . . . , vk−2} of k − 2 pendant edges to xD−2.
An example of this construction is given in Fig. 4. This graph has order n and
diameter D. It is simple to verify that the set Q∪{u0, u1} is an mp-set and that
this is largest possible, so that mp(F (n, k,D)) = k.

It is more challenging to determine the possible diameters of graphs with mp-
number two.

Theorem 9. There exists a graph with order n, monophonic position number
k = 2 and diameter D ≥ 3 if and only if D = n − 1 or 3 ≤ D ≤ �n

2 .
Proof. For n ≥ 2 the path with length n−1 is a graph with order n, mp-number
k = 2 and diameter n−1. Theorem 4 shows that for n ≥ 3 the complete bipartite
graph K�n

2 �,�n
2 � minus a matching of size �n

2 has mp-number k = 2; this graph
has diameter D = 3. The existence of graphs with other values of the diameter

Some Position Problems for Graphs 45

in the claimed range follow by altering the number of spokes in the ‘half-wheel
graphs’ defined in [15].

We now show that there is no graph with order n, mp-number k = 2 and
diameter D, where �n

2 < D < n − 1. Suppose that G is such a graph and let
u and v be vertices at distance D. Assume that G is 2-connected. Then u and
v are joined by internally disjoint paths of length ≥ D, so that n ≥ 2D > n,
which is impossible. Hence G contains a cut-vertex w. Suppose that d(w) ≥ 3.
Then choose a set M of three neighbours of w such that the vertices of M are
not all contained in the same component of G − w; it is easily seen that M is
an mp-set. Hence we must have d(w) = 2. Each neighbour of w is either a leaf
of G or a cut-vertex, so repeating this reasoning shows that G is a path, which
contradicts D < n − 1.

We now introduce a special graph operation to clarify when there exists a graph
with diameter two and mp-number two.

Lemma 7. If there exists a graph with order n ≥ 4, monophonic position num-
ber k = 2 and diameter D = 2, then there exist graphs with monophonic position
number k = 2, diameter D = 2 and orders 3n, 3n + 1 and 3n + 2.

Proof. Let H be a graph with order n ≥ 4, monophonic position number k = 2
and diameter D = 2. Label the vertices of H as h1, h2, . . . , hn. We will construct
new graphs with orders 3n, 3n + 1 and 3n + 2 with mp-number k = 2 and
diameter D = 2 from H as follows.

First we define the graph G(H) with order 3n + 2. Let X = {x1, x2, . . . , xn}
and Y = {y1, y2, . . . , yn} be two new sets of vertices disjoint from V (H). On
X ∪ Y draw a complete bipartite graph with partite sets X and Y and then
delete the perfect matching xiyi, 1 ≤ i ≤ n. For 1 ≤ i ≤ n join both xi and yi

to the vertex hi by an edge. Finally add two new vertices z1 and z2, join z1 to
each vertex of X by an edge, join z2 to each vertex of Y and lastly add the edge
z1z2 between the two new vertices. An example of this construction for H = C4

is displayed in Fig. 5. It is easily seen that G has diameter D = 2. To show that
the mp-number of G is k = 2 it is sufficient to show that for any set M of three
vertices of G there is an induced path containing each vertex of M . It is evident
that for any vertex v ∈ V (G)−{z1, z2} there is an induced path in G containing
z1, z2 and v, so we can assume that |M ∩ {z1, z2}| ≤ 1.

The map fixing every element of H, interchanging xi and yi for 1 ≤ i ≤ n
and swapping z1 and z2 is an automorphism of G, which reduces the number
of cases that we need to check. Suppose that M is a set of three vertices of
G(H) containing one of z1, z2; say z1 ∈ M . Without loss of generality we have
the following nine possibilities for M ′ = M − {z1}: i) M ′ = {x1, x2}, ii) M ′ =
{x1, h1}, iii) M ′ = {x1, h2}, iv) M ′ = {x1, y1}, v) M ′ = {x1, y2}, vi) M ′ =
{h1, h2}, vii) M ′ = {h1, y1}, viii) M ′ = {h1, y2} and ix) M ′ = {y1, y2}.

Consider the following two cycles. For 1 ≤ i, j ≤ n, where i �= j, we define
C(i, j) to be the cycle z1, xi, yj , hj , xj , z1 and, if P is a shortest path in H from
hi to hj , then D(i, j) is the cycle formed from the path P from hi to hj , followed
by the path hj , xj , z1, xi, hi. Both of these cycles are induced and so can contain

46 J. Tuite et al.

at most two points of M . By varying the parameters i and j we see that the first
seven configurations for M ′ above are not possible.

For viii) let P be a shortest path in H from h1 to h2. By assumption n ≥ 4,
so as P has length at most two, there exists a vertex of H, say h3, not appearing
in P . Then the path P , followed by the path h2, y2, x3, z1 contains all three
vertices of M . Finally for case ix) the induced path y1, x2, z1, x1, y2 contains all
three vertices of {z1, y1, y2}.

We can now suppose that M ∩{z1, z2} = ∅. Observe that the subgraph of G
induced by X ∪ Y is isomorphic to the graph T ∗

2n,2 from the proof of Theorem
4, so we can also assume that M �⊆ X ∪ Y . Furthermore, as mp(H) = 2, we
can take M �⊆ V (H). For all 1 ≤ i, j ≤ n and i �= j there is an induced cycle
xi, hi, yi, xj , hj , yj , xi, so M must contain vertices with at least three different
subscripts i ∈ {1, . . . , n}. Therefore without loss of generality we are left with
the following three cases: i) M = {x1, x2, h3}, ii) M = {x1, y2, h3} and iii)
M = {x1, h2, h3}.

For cases i) and ii), let P ′ be the shortest path in H from h3 to {h1, h2};
without loss of generality P ′ is a h2, h3-path that does not pass through h1. Then
in case i) x1, z1, x2, h2 followed by P ′ contains all three points of M = {x1, x2, h3}
and in case ii) the path x1, y2, h2 followed by P ′ contains all three vertices of
M = {x1, h3, y2}. For case iii), if P ′ is a shortest h2, h3-path in H, then x1, y2, h2

followed by P ′ contains all three vertices of M = {x1, h2, h3} unless d(h2, h3) = 2
and P ′ is the path h2, h1, h3, in which case the path h3, y3, x1, y2, h2 suffices.

This analysis also shows that the graphs G′(H) = G(H) − {z2} with order
3n + 1 and the graph G′′(H) = G(H) − {z1, z2} with order 3n also have mp-
number k = 2 and diameter D = 2. Hence for any n ≥ 4 if there is a graph with
order n, mp-number k = 2 and diameter D = 2 there also exists such a graph
for orders 3n, 3n + 1 and 3n + 2.

Fig. 5. The graph G(C4)

Some Position Problems for Graphs 47

Theorem 10. There is a graph with order n, monophonic position number k =
2 and diameter D = 2 if and only if n ∈ {3, 4, 5, 8} or n ≥ 11.

Proof. The statement of the theorem has been verified by computer search for
all n ≤ 32 [11]. Let n ≥ 33 and assume that the result is true for all orders < n.
Write n = 3r + s, where s is the remainder on division of n by 3. Then r ≥ 11
and by the induction hypothesis there exists a graph with order r, mp-number
k = 2 and diameter D = 2. Then by Lemma 7 there exists a graph with order
n, mp-number k = 2 and diameter D = 2. The theorem follows by induction.

Acknowledgements. The authors are grateful to the two anonymous reviewers for
their suggestions to improve the presentation of this abstract.

References

1. Amin, K., Faudree, J., Gould, R.J., Sidorowicz, E.: On the non-(p − 1)-partite
Kp-free graphs. Discuss. Math. Graph Theory 33(1), 9–23 (2013)

2. Anand, B.S., Chandran, S.V.U., Changat, M., Klavžar, S., Thomas, E.J.: Char-
acterization of general position sets and its applications to cographs and bipartite
graphs. Appl. Math. Comp. 359, 84–89 (2019)

3. Brouwer, A.E.: Some lotto numbers from an extension of Turán’s theorem. Math.
Centr. report ZW152, Amsterdam (1981)

4. Chandran, S.V.U., Parthasarathy, G.J.: The geodesic irredundant sets in graphs.
Int. J. Math. Comb. 4, 135 (2016)

5. Chartrand, G., Harary, F., Zhang, P.: On the geodetic number of a graph. Networks
39, 1–6 (2002)

6. Chartrand, G., Zhang, P.: Extreme geodesic graphs. Czech. Math. J. 52(4), 771–
780 (2002)

7. Dudeney, H.E.: Amusements in Mathematics, vol. 473. Courier Corporation, North
Chelmsford (1958)

8. Klavžar, S., Patkós, B., Rus, G., Yero, I.G.: On general position sets in Cartesian
products. Results Math. 76(3), 1–21 (2021)

9. Klavžar, S., Rus, G.: The general position number of integer lattices. Appl. Math.
Comput. 390, 125664 (2021)

10. Ghorbani, M., Klavžar, S., Maimani, H.R., Momeni, M., Rahimi-Mahid, F., Rus,
G.: The general position problem on Kneser graphs and on some graph operations.
Discuss. Math. Graph Theory 41, 1199–1213 (2021)

11. Erskine, G.: Personal communication (2021)
12. Mantel, W.: Problem 28. Wiskundige Opgaven 10, 60–61 (1907)
13. Manuel, P., Klavžar, S.: A general position problem in graph theory. Bull. Aust.

Math. Soc. 98, 177–187 (2018)
14. Patkós, B.: On the general position problem on Kneser graphs. Ars Math. Contemp.

18, 273–280 (2020)
15. Thomas, E.J., Chandran, S.V.U., Tuite, J.: On monophonic position sets in graphs.

Preprint (2020)
16. Turán, P.: On an extremal problem in graph theory. Math. Fiz. Lapok 48, 436–452

(1941)

Comparability Graphs Among
Cover-Incomparability Graphs

Arun Anil and Manoj Changat(B)

Department of Futures Studies, University of Kerala,
Thiruvananthapuram 695581, India
mchangat@keralauniversity.ac.in

Abstract. Comparability graphs and cover-incomparability graphs (C-I
graphs) are two interesting classes of graphs from posets. Comparability
graph of a poset P = (V, ≤) is a graph with vertex set V and two
vertices u and v are adjacent in V if u and v are comparable in P . A
C-I graph is a graph from P with vertex set V , and the edge-set is the
union of edge sets of the cover graph and the incomparability graph of
the poset. C-I graphs have interesting implications on both graphs and
posets. In this paper, the C-I graphs, which are also comparability graphs
are studied. We identify the class of comparability C-I graphs, which are
Ptolemaic graphs, cographs, chordal cographs, distance-hereditary and
bisplit graphs. We also determine the posets of these C-I graphs.

Keywords: Comparability graphs · Cover-incomparability graphs ·
Ptolemaic graph · Cographs · Distance-hereditary graphs · Bisplit
graphs

1 Introduction

Comparability graphs form a well-studied class of graphs from posets having
many applications and algorithmic interest. Several characterizations are avail-
able for comparability graphs [3]. One of them is a characterization in terms
of forbidden subgraphs by Gallai in his classic paper [9]. Comparability graphs
are also termed as transitively orientable graphs, partially orderable graphs, and
containment graphs of the family of sets [3]. Comparability graphs can be rec-
ognized in polynomial time [14]. Another important graph from posets is the
cover graph, which is the abstract undirected graph behind the Hasse diagram
of the poset. It is well known that recognition complexity of a cover graph is
NP-complete (Nešetřil and Rödl [15], and Brightwell [7]).

Cover-incomparability graphs of posets, or shortly C-I graphs, were intro-
duced in [4] as underlying graphs of the standard transit function on posets.
The C-I graphs are precisely the graphs whose edge set is the union of edge sets
of the cover graph and the incomparability graph (complement of a compara-
bility graph) of a poset. Like the cover graph, the recognition complexity of a

c© Springer Nature Switzerland AG 2022
N. Balachandran and R. Inkulu (Eds.): CALDAM 2022, LNCS 13179, pp. 48–61, 2022.
https://doi.org/10.1007/978-3-030-95018-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95018-7_5&domain=pdf
http://orcid.org/0000-0003-0660-5484
http://orcid.org/0000-0001-7257-6031
https://doi.org/10.1007/978-3-030-95018-7_5

Comparability Graphs Among Cover-Incomparability Graphs 49

C-I graph is also NP-complete (Maxová et al. [13]) in contrast to the compa-
rability graphs. Hence the problem of characterizing well-known graph families
whose C-I graphs have polynomial recognition complexity is interesting. Such
C-I graphs studied include the family of split graphs, block graphs [5], cographs
[6], Ptolemaic graphs [11], distance-hereditary graphs [11] and k-trees [12]. C-I
graphs were recently characterized among the planar graphs and chordal graphs
along with new characterizations of Ptolemaic graphs, respectively in [2] and [1].
It is also interesting to note that every C-I graph has a Ptolemaic C-I graph as
a spanning subgraph [2].

It is trivial to note that the C-I graphs, which are cover graphs, are precisely
the paths, but the same problem for comparability graphs is nontrivial and
exciting. This paper identifies the C-I graphs that are comparability graphs
among the Ptolemaic graphs, cographs, distance-hereditary graphs and bisplit
graphs. Of these graphs, bisplit graphs and cographs are comparability graphs
in general. We observe that the class of C-I graphs, which are Ptolemaic graphs
and distance-hereditary graphs are comparability graphs. If G is the class of C-I
graphs that are also comparability graphs, then for a graph G ∈ G, there exists
two different partial orders on the vertex set of G, one gives rise to the C-I graph
and the other to the comparability graph and both graphs being isomorphic to
G. We address this problem also for the families of graphs as mentioned above
and determine the posets.

We organize the paper as follows. In the rest of this introductory section,
we fix the terminology and notations and discuss some preliminary results on
C-I graphs. In Sect. 2, we characterize the posets and graphs whose compara-
bility graphs are Ptolemaic C-I graphs. In Sect. 3, we characterize the posets
and graphs whose comparability graphs are cographs and distance hereditary
graphs. Similarly we do the same for bisplit graphs in Sect. 4. Finally, in Sect. 5,
we study the composition of C-I graphs and observe that the composition of C-I
graphs need not be a C-I graph in general and determine some cases when the
composition of graphs is a C-I graph as well as a comparability graph.

A partially ordered set or poset P = (V,≤) consists of a nonempty set V and
a reflexive, anti-symmetric, transitive relation ≤ on V , denoted as P = (V,≤),
we call u ∈ V an element of P . If u ≤ v or v ≤ u in P , we say u and v are
comparable, otherwise incomparable. If u ≤ v but u �= v, then we write u < v.
If u and v are in V , then v covers u in P if u < v and there is no w in V
with u < w < v, denoted by u � v. We write u � �v if u < v but not u � v.
By u||v, we mean that u and v are incomparable elements of P . A poset P is
pictured as a Hasse diagram consisting of elements of P and the covering relation
between elements denoted as line segments in upward orientation. Let V ′ ⊆ V
and Q = (V ′,≤′) be a poset, Q is called a subposet of P , if u ≤′ v if and only if
u ≤ v, for any u, v ∈ V ′. The subposet Q = (V ′,≤) is a chain (antichain) in P ,
if every pair of elements from V ′ is comparable (incomparable) in P . A chain of
maximum cardinality is named as the height of P denoted as h(P). An element
u in P is a minimal (maximal) if there is no x ∈ V such that x ≤ u(x ≥ u) in

50 A. Anil and M. Changat

P . A poset P is dual to a poset Q if for any x, y ∈ P the following holds: x ≤ y
in P if and only if y ≤ x in Q.

A finite ranked poset (also known as graded poset [8]) is a poset P = (V,≤)
that is equipped with a rank function ρ : V → Z satisfying:

– ρ has value 0 on all minimal elements of P , and
– ρ preserves covering relations: if a � b then ρ(b) = ρ(a) + 1.

A ranked poset P is said to be complete if for every i, every element of rank i
covers all the elements of rank i − 1. For a completely ranked poset P = (V,≤)
we say that element v ∈ V is on height i, if ρ(v) = i−1. We refer [8], for notions
of posets.

Let G = (V,E) be a connected graph, vertex set and edge set of G denoted as
V (G) and E(G) respectively, the complement of G is denoted as G. A graph H is
said to be a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). H is an induced
subgraph of G if for u, v ∈ V (H) and uv ∈ E(G) implies uv ∈ E(H). A graph G
is said to be H-free, if G has no induced subgraph isomorphic to H. A complete
graph is a graph whose vertices are pairwise adjacent, denoted as Kn, a set
S ⊆ V (G) is a clique if the subgraph of G induced by S is a complete graph, and
a maximal clique is a clique which is not contained by any other clique. A vertex
v is called simplicial vertex if its neighborhood induces a complete subgraph. An
independent set in a graph is a set of pairwise nonadjacent vertices. The 3-fan
is the graph that consists of a path on 4 vertices and a vertex adjacent to all
vertices of the path. The distance between u and v in G is the length (i.e. the
number of edges) of the shortest path from u to v in G. The diameter of G,
diam(G), is defined as the maximum distance over all the pair of vertices in G.
A graph G is bipartite if V (G) is the union of two disjoint independent sets called
partite sets of G. A complete bipartite graph or biclique is a bipartite graph such
that two vertices are adjacent if and only if they are in different partite sets. If
graphs G1 and G2 have disjoint vertex set V1 and V2 and edge set E1 and E2

respectively, then their union G = G1 ∪ G2 has V = V1 ∪ V2 and E = E1 ∪ E2

and their join, denoted by G1∨G2, consists of G = G1∪G2 and all edges joining
V1 with V2.

A graph G is chordal if it contains no induced cycles of length more than
3, it is distance-hereditary if every induced path is also a shortest path in G.
A graph G is Ptolemaic if it is distance-hereditary and chordal. Equivalently,
G is Ptolemaic if and only if it is 3-fan free chordal graph. P4- free graphs are
called cographs. A graph G that is both chordal and cograph is called chordal
cograph. A graph G is the comparability graph of a poset P denoted as CP , if two
vertices are adjacent in CP if and only if they are comparable in P . Finally the
cover-incomparability graph of a poset P = (V,≤) denoted as GP is the graph
G = (V,E), where uv ∈ E(G), if either u � v or v � u or u||v in P . A graph is
C-I (comparability) graph if it is the C-I (comparability) graph of some poset P .

Now we recall some basic properties of posets and their C-I graphs.

Lemma 1. [4] Let P be a poset. Then

(i) the C-I graph of P is connected;

Comparability Graphs Among Cover-Incomparability Graphs 51

Fig. 1. 3-fan, net graph and the poset N

(ii) points of P that are independent in the C-I graph of P lie on a common
chain;

(iii) an antichain of P corresponds to a complete subgraph in the C-I graph of P;
(iv) the C-I graph of P contains no induced cycles of length greater than 4.

In the following sections, we discuss some families of graphs, which are compa-
rability graphs, as well as C-I graphs and describe the family of posets whose
comparability graphs are precisely the graphs in the family. We begin with the
class of Ptolemaic graphs.

2 Ptolemaic Graph

It is proved in [2] that a graph G is a Ptolemaic C-I graph if and only if G
is the C-I graph of a completely ranked poset P . In this section, we construct
the family of posets whose comparability graphs are Ptolemaic C-I graphs, and
prove that every Ptolemaic C-I graph is a comparability graph.

Define a family of posets P as follows. Consider a sequence of disjoint chains
denoted by L1, L3, . . . , L2d+1.

Where Li consists of elements {ai1, ai2, . . . , aiki
, a(i+1)1, . . . , a(i+1)ki+1}, for

i = 1, 3, . . . 2d+1, d ≥ 0. Make a covering relation between aiki
in Li and a(i−1)1

in Li−2; that is, aiki
� a(i−1)1, for i = 3, 5, . . . , 2d + 1. (see Fig. 2)

Theorem 1. A comparability graph CP of a poset P is a Ptolemaic C-I graph
if and only if P ∈ P. Moreover, every Ptolemaic C-I graph is a comparability
graph.

Proof. Let G be a comparability graph of some poset P . That is, G ∼= CP .
Suppose that G is also a Ptolemaic C-I graph of a poset, say P ′. Then it

follows that P ′ is a completely ranked poset. Let the elements of rank i be
denoted as Ci+1. Now every element of Ci+1 covers every element of Ci. That
is, the sets Ci and Ci ∪ Ci+1 form cliques covering all the edges in G and that
V (G) = C1 ∪ C2 ∪ C3 · · · ∪ Ch, for some h > 0. Also an element x is adjacent
to y in G if and only if x, y ∈ Ci ∪ Ci+1 for some i ∈ {1, 2, . . . h − 1}. Let Ci =
{ai1, ai2, . . . , aiki

} for i = 1, 2, . . . , h. The adjacent vertices in a comparability
graph must lie on the same chain and non adjacent vertices lie on different chains
in P . So the elements in Ci and Ci+1 lie on a chain and the elements in Ci and
Cj lie on different chains for i = 1, 2, . . . , h − 1 and j �= i − 1, i + 1. This implies
that Ci ∪ Ci+1 = Li, for i = 1, 3, . . . 2d + 1, where 2d + 1 is h or h − 1 according
to h is odd and even respectively. That is, we have proved that P ∈ P.

52 A. Anil and M. Changat

Fig. 2. GP ′ be the general form of a family of the Ptolemaic C-I graph and P be the
corresponding family of poset whose comparability graphs are Ptolemaic C-I graphs
GP ′ .

Conversely, suppose that P ∈ P. That is, the elements of P form disjoint
chains Li with the covering relation defined between elements aiki

in Li and
ai−1ki−1 in Li−2. Now partition the elements of Li as Ci = {ai1, ai2, . . . , aiki

}
for i = 1, 2, . . . , h. In CP , the elements in Ci and Ci ∪ Ci+1 form cliques for
i = 1, 2, . . . , h. Also no pair of elements in Ci and Cj , for |i− j| > 1 are adjacent
in CP . Let P ′ be the poset defined such that every element of Ci+1 cover every
element of Ci, i = 1, . . . , h. Now P ′ is a completely ranked poset and hence GP ′

is a Ptolemaic C-I graph. It is clear that GP ′ ∼= CP . That is, we have proved that
corresponding to every completely ranked poset P ′, there exists a poset P ∈ P
and conversely for every P ∈ P, there exists a completely ranked poset P ′ such
that CP

∼= GP ′ which completes the proof. ��

3 Cograph and Distance-Hereditary Graph

In this section, we prove that C-I graphs among distance-hereditary graphs are
comparability graphs. We first prove that the C-I graph, which is a distance-
hereditary graph, is either a Ptolemaic graph or a cograph. We determine the
posets whose comparability graphs are distance-hereditary C-I graphs.

Distance-hereditary C-I graphs have been studied in [11]. We quote the fol-
lowing result from [6] and [11].

Theorem 2. [6] Let G be a chordal cograph. Then G is a C-I graph if and only
if G is a connected graph that contains at most two maximal cliques.

Comparability Graphs Among Cover-Incomparability Graphs 53

From Theorem 2, a graph G is chordal, C-I graph and cograph (called chordal
C-I cograph) if and only if there exists three pairwise disjoint set C1, C2 and C3

such that V (G) = C1 ∪C2 ∪C3, and x, y ∈ V (G) are adjacent in G if and only if
x, y ∈ C1 ∪ C2 or x, y ∈ C2 ∪ C3. That is, C1, C2, C3, C1 ∪ C2 and C2 ∪ C3 forms
cliques and the graph has no other edges. It is clear that a chordal C-I cograph is
a Ptolemaic C-I graph as it is C-I graph of a completely ranked poset of height 3.
From this observation and the posets P from Sect. 2, we can describe the family
of posets whose comparability graphs are chordal C-I cographs. The figure is
depicted in Fig. 3(b).

Fig. 3. (a) General form of a chordal C-I cograph, where C1, C2, C3, C1 ∪ C2 and
C2 ∪ C3 form cliques. (b) Corresponding poset whose comparability graph is a chordal
C-I cograph.

Now from the fact that a C-I cograph is the join of chordal C-I cographs
(which is proved in [6]) and from the family of posets in Fig. 3, we can describe
the family of posets whose comparability graphs are also C-I graphs as well as
cographs. It is obtained by the ordinal sum of the poset or its dual as shown in
Fig. 3(b). (The ordinal sum Z = P ⊕ R of two disjoint posets P and R is the
poset with the underlying set as union of the underlying sets of P and R and
the Hasse diagram of Z is obtained by placing the Hasse diagram of R above the
Hasse diagram of P and joined by a covering relation from the maximal elements
of P to all the minimal elements of R). In Fig. 4(a), one such family of posets is
described.

It is known that, in general, a cograph is a comparability graph of a series-
parallel partial order. (A poset P = (V,≤) is series parallel if and only if the
poset N (shown in Fig. 1) is not a subposet of P .) Now the C-I cographs are the
join of chordal C-I cographs whose posets are a particular class of series-parallel
partial orders.

Theorem 3. A graph G is both a C-I graph and a cograph if and only if G is
a vertex disjoint union of b complete bipartite subgraphs and i isolated vertices
and i ≥ b.

54 A. Anil and M. Changat

Fig. 4. G be the C-I cograph, join of chordal C-I cographs G1, G2, . . . , Gn and (a) be
a poset whose comparability graph is G.

Proof. If G is a complete graph, then the result follows trivially. Now let G is
not complete.

Suppose G is a C-I cograph. That is, it is the join of chordal C-I cographs.
Let G = G1 ∨ G2 ∨ . . . ∨ Gn, where G1, G2, . . . , Gn are chordal C-I cographs.
For each Gk, the vertex set consist of pairwise disjoint sets Ck

1 , Ck
2 and Ck

3 such
that V (Gk) = Ck

1 ∪ Ck
2 ∪ Ck

3 and that Ck
1 , Ck

2 , Ck
3 , Ck

1 ∪ Ck
2 and Ck

2 ∪ Ck
3 forms

cliques and covers all the edges of Gk. If some Gk’s are complete graphs, then
we can take Ck

1 and Ck
3 as empty sets (see the Fig. 3(a)). Now consider G. In

G, the vertices Ck
1 ∪ Ck

3 induces complete bipartite subgraphs for k = 1, 2, . . . , n

and
n⋃

k=1

Ck
2 induces isolated vertices. Consider i = |

n⋃

k=1

Ck
2 |, then clearly i ≥ n.

Conversely, let G be a graph such that G is a vertex disjoint union of b
complete bipartite subgraphs and i isolated vertices, i ≥ b. Let G1, G2, . . . , Gb

be complete bipartite subgraphs of G and for each Gj , let the vertex set V (Gj)
be Cj

1 ∪ Cj
3 and since every Gj is a complete bipartite graph, every vertex in

Cj
1 adjacent to every vertex in Cj

3 , the vertices in Cj
1 and Cj

3 are independent
for j = 1, 2, . . . , b. Since there are i isolated vertices in G with i ≥ b, we can
partition the i isolated vertices into b sets, labeled as Cj

2 for j = 1, 2, . . . , b. Now,
we consider the graph G and construct an induced subgraph of G as follows. Let
Gj be the induced subgraph of G with the vertex set V (Gj) = Cj

1 ∪ Cj
2 ∪ Cj

3

and by the definition of Cj
i , i = 1, 2, 3 and their adjacency relations in G, it

follows that Cj
1 , C

j
2 , C

j
3 , C

j
1 ∪ Cj

2 and Cj
2 ∪ Cj

3 form cliques covering all the edges

Comparability Graphs Among Cover-Incomparability Graphs 55

in Gj , for j = 1, 2, . . . , b. That is, Gj is a chordal C-I cograph. Also every vertex
of Gj is adjacent to every vertex of Gk for k = 1, 2, . . . , b, j �= k in G. Since
V (G) = V (G1) ∪ V (G2) ∪ . . . ∪ V (Gb), G is the join of chordal C-I cographs or
G is C-I cograph. Hence the Theorem. ��
Theorem 4. [11] Let G be a distance-hereditary graph. G is a C-I graph if and
only if one of the following two conditions holds:

(1) diam(G) = 2 and G is a vertex disjoint union of b complete bipartite sub-
graphs and i isolated vertices and i ≥ b, or

(2) diam(G) ≥ 3, G is chordal, and G does not contain a triple of independent
simplicial vertices (That is, G is Ptolemaic).

From Theorems 3 and 4 we have,

Theorem 5. A graph G is a distance-hereditary C-I graph if and only if either

(i) G is a Ptolemaic C-I graph if diam(G) > 2, Or,
(ii) G is a C-I cograph if diam(G) = 2.

In general, a distance-hereditary graph need not be a comparability graph.
For example, it can be verified easily that the net graph (shown in Fig. 1) is a
distance-hereditary graph, but it is not a comparability graph. From Theorem 5,
it follows that distance-hereditary C-I graph is either a C-I cograph or a Ptole-
maic C-I graph. Hence distance-hereditary C-I graphs are comparability graphs.
The family of the posets, whose comparability graphs are distance-hereditary
graphs are either of the form P in Fig. 2 or the ordinal sum of posets or the
dual posets in Fig. 3(b). In Fig. 4(a), one such family of posets is described.

4 Bisplit Graphs

In this section, we identify C-I graphs that are bisplit graphs, and prove that
bisplit C-I graphs are comparability graphs.

A graph G is a bisplit graph if its vertex set can be partitioned into three
independent sets X,Y and Z such that Y ∪ Z induces a complete bipartite
subgraph (bi-clique) in G. That is, a graph is bisplit if and only if it can be
partitioned into an independent set and a bi-clique.

It is trivial to observe that the path graphs are bipartite. Now suppose a C-I
graph GP of a poset P is a bipartite graph. That is, the vertex set V (|V | = n) can
be partitioned into two independent sets, say {u1, u2, ..., ur} and {v1, v2, ..., vs},
where n = r+s. Since u1, u2, ..., ur−1, and ur are independent, they lie on a chain
alternately. Also v1, v2, ..., vs−1, and vs lie on a chain alternately. Therefore, the
poset P is a chain, when |V | > 2 . When |V | = 2, the poset is a chain of height
2 or an antichain of size 2. Thus we have the following remark.

Remark 1. A C-I graph G is bipartite if and only if it is a path. Hence a C-I
graph is a complete bipartite graph if and only if G is either the path graph P1,
P2 or P3.

56 A. Anil and M. Changat

Fig. 5. Family of bisplit C-I graphs (ΦC−I)

The family of graphs denoted by ΦC−I are depicted in Fig. 5.

Theorem 6. A graph G is a bisplit C-I graph if and only if G is from ΦC−I (in
Fig. 5).

Proof. Let G be a bisplit C-I graph. So the vertices of G can be partitioned into
three independent set X,Y and Z such that X ∪ Y induced a bi-clique in G.
Since G is a C-I graph, independent elements lie on a chain non consecutively.
X ∪ Y induces a bi-clique, so every element of X is adjacent to every element of
Y . That is, either of the following will occur.

(i) Every element in X is incomparable with every element of Y .
(ii) The maximal element in X covers the minimal element of Y .
(iii) The minimal element of X covers the maximal element of Y .
(iv) Satisfies both conditions (ii) and (iii).

It may be noted that other elements in X and Y are incomparable. Let C1 be the
chain containing the elements in X and C2 be the chain containing the elements
in Y . It is further noted that the elements in X, Y cannot occur consecutively in
C1, respectively C2. Since X,Y ,Z form a partition of V , the remaining elements
of C1 and C2 must be from Z. Since the elements in Z are also independent, the
elements in Z should also lie on a chain. This will happen only if either |X| ≤ 1
or |Y | ≤ 1. Without loss of generality assume |X| ≤ 1. The following cases can
happen.

Case 1: |X| = 0, |Y | = 0 then Z = 1. In this case, G is the single vertex graph.
Case 2: |X| = 0, |Y | = n, n ≥ 1 then |Z| = n − 1, n or n + 1.

In this case G is the path graph Pm, where m = 2n − 1, 2n or 2n + 1.

Comparability Graphs Among Cover-Incomparability Graphs 57

Case 3: |X| = 1, |Y | = 1, then |Z| = 0, 1 or 2
(the case |X| = 1, |Y | = 0 is similar to Case 2, when n = 1).
Let X = {x} and Y = {y} then

(i) if |Z| = 0, then the graph G is K2.
(ii) if |Z| = 1, let Z = {z}, then the possible posets are isomorphic to the

posets in Fig. 6 or its duals.
It is clear that the C-I graph corresponding to the posets in Fig. 6(i) is
P3 and in all the other cases in Fig. 6, the C-I graph is isomorphic to K3

(special case of Fig. 5(d)).

Fig. 6. Posets whose C-I graphs have a bi-clique of size 2 and independent set of size
1 (i.e., |X| = |Y | = |Z| = 1)

(iii) |Z| = 2, let Z = {z1, z2}, then the possible poset are isomorphic to the
posets in Fig. 7 or its duals.
The C-I graph corresponding to the posets in Fig. 7(i),(ii) and (iii) are
isomorphic to 2-fan (Fig. 5(d) is the k-fan), the C-I graph corresponding
to the poset Fig. 7(iv) is a sub-case of Fig. 5(e) and for the poset Fig. 7(v)
is a path graph P4 (Fig. 5(a)).

Fig. 7. Posets whose C-I graphs have a bi-clique of size 2 and independent set of size
2 (i.e., |X| = |Y | = 1 and |Z| = 2).

Case 4: |X| = 1, |Y | = 2, then |Z| = 0, 1, 2 or 3.
(i) |Z| = 0, then the graph is just a P3.
(ii) |Z| = 1, let Z = {z}, then the possible posets are isomorphic to the

posets in Fig. 8 or its duals and they are precisely, the posets isomorphic
to those of Case 3(iii).

(iii) |Z| = 2, Let Z = {z1, z2} , then the possible poset are isomorphic to the
posets in Fig. 9 or its duals.

58 A. Anil and M. Changat

Fig. 8. Posets whose C-I graphs have a bi-clique of size 3 and independent set of size
2 (i.e., |X| = 1, |Y | = 2 and |Z| = 2).

The C-I graphs corresponding to the posets in Fig. 9 (i) and (ii), respec-
tively are shown in Fig. 5 (a) and (b). The C-I graph corresponding to
the posets in Fig. 9 (iii) is depicted in Fig. 5 (c). The C-I graphs corre-
sponding to the posets in Fig. 9 (iv) and (v) are isomorphic to the graph
depicted in Fig. 5 (e). For all the other posets in Fig. 9, the C-I graphs
are isomorphic to the graph shown in Fig. 5 (d).

Fig. 9. Posets whose C-I graphs have a bi-clique of size 3 and independent set of size
1 (i.e., |X| = 1, |Y | = 2 and |Z| = 1)

Case 5: |X| = 1, |Y | = n, n ≥ 3 then |Z| = n− 1, n or n+1. the possible posets
are isomorphic to the posets in Fig. 10 or its duals.
The C-I graphs corresponding to the posets in Fig. 10 (i) (ii) and (iii)
are isomorphic and is shown in Fig. 5 (d). The C-I graphs corresponding
to the posets in Fig. 10 (iv) and (v) are the isomorphic and is depicted
in Fig. 5 (e). The C-I graph corresponding to the poset Fig. 10 (vi) is
shown in Fig. 5 (f).

In all the cases, we have shown that the C-I graphs G which are bisplit graphs
belong to the family ΦC−I and hence the necessary part follows.

It is easy to verify that the graphs from the family ΦC−I are bisplit C-I
graphs. Hence the theorem follows. ��

The posets whose comparability C-I graphs are bisplit graphs are easily con-
structed, and for each bisplit graph in Fig. 4, the corresponding posets are respec-
tively represented in Fig. 11.

Comparability Graphs Among Cover-Incomparability Graphs 59

Fig. 10. Posets whose C-I graphs have a bi-clique of size ≥ 4 (i.e., |X| = 1, |Y | = n,
n ≥ 3 and then |Z| = n − 1, n or n + 1).

Fig. 11. The posets whose comparability graphs are bisplit C-I graphs (ΦC−I)

5 Composition of C-I Graphs

It may be noted that the composition of graphs plays a vital role in the theory
of comparability graphs as noted in the Theorem 7 by Martin Golumbic in [10].

We first define the composition of graphs. Let G0 be a graph with n ver-
tices v1, v2, . . . , vn and let G1, G2, . . . , Gn be n disjoint graphs. The composition
graph, G = G0[G1, G2, . . . , Gn] is formed as follows: For all 1 ≤ i, j ≤ n, replace
vertex vi in G0 with the graph Gi and make each vertex of Gi adjacent to each
vertex of Gj whenever vi is adjacent to vj in G0. It may be noted that if G0 is
a complete graph, then the composition becomes the join operation of graphs.

Theorem 7. [10] Let G = G0[G1, G2, . . . , Gn], where Gi’s are disjoint graphs.
Then G is a comparability graph if and only if each Gi (0 ≤ i ≤ n) is a compa-
rability graph.

This section attempts to study the comparability graphs among C-I graphs
using the composition operation.

Theorem 8. If G = G0[G1, G2, . . . , Gn] is a C-I graph then G0 is a C-I graph.

Proof. Let G be the composition graph which is also a C-I graph of a poset
P . Let G = G0[G1, G2, . . . , Gn]. If u, v ∈ V (G) then uv ∈ E(G) if and only
if either u, v ∈ V (Gi) with uv ∈ E(Gi), or u ∈ V (Gi) and v ∈ V (Gj) whose

60 A. Anil and M. Changat

corresponding vertex vi for Gi and vj for Gj in G0 are adjacent (i.e., vivj ∈
E(G0)).

Let S = {u1, u2, u3, . . . , un} ⊆ V (G), where ui ∈ V (Gi) for i = 1, 2, . . . , n.
Let GS be the subgraph of G induced by S. Then GS

∼= G0.
Now we need to prove that GS is a C-I graph. For u, v ∈ V (GS), depending

upon whether uv ∈ E(GS) or uv /∈ E(Gs), the following cases can occur.

Case 1: If uv ∈ E(GS) then clearly uv ∈ E(G). So either u � v or v � u or u||v
in P . Now the subposet P ′ of P consisting of elements u, v ∈ S with
u � v or v � u or u||v is a poset whose C-I graph is isomorphic to GS .

Case 2: If uv /∈ E(Gs), then uv /∈ E(G), that is, either u � �v or v � �u in P .
That is, u and v lie on some chain, say C in P . If all the elements of
C belongs to S, then the poset P ′ defined by the same relation in C is
such that GP ′ ∼= GS . If C contains elements w belonging to some Gj

not in S, then replace w by the unique element w′ in Gj which is in
S, thus obtaining a poset P ′ consisting of only elements in S using the
same relation in C. It follows that GP ′ ∼= GS .

Hence the theorem. ��
Theorem 9. Let G = G0[G1, G2, . . . , Gn]. If G0 is a C-I graph and Gi for
i = 1, 2, . . . , n are complete graphs then G is a C-I graph.

Proof. Let G = G0[G1, G2, . . . , Gn] be the composition of graphs G1, G2, . . . , Gn.
By definition of G, the vertices of G consists of vertices in Gi, for i = 1, . . . , n.
Let G0 be the C-I graph of a poset P0 and Gi for i = 1, 2, . . . , n be complete
graphs. Clearly Gi is the C-I graph of a poset Pi with every element a, b ∈ Pi

being incomparable (a||b). Now we construct a poset P from P0 by replacing the
element vi in P0 by the vertices of Gi. Corresponding to vertices a, b ∈ V (Gi)
make a||b in P for i = 1, 2, . . . , n. If vi � vj in P0, then make every element
u ∈ V (Gi) and v ∈ V (Gj) as u � v in P .

Consider the C-I graph GP of the poset P . Now we need to prove that
GP

∼= G. Now ab ∈ E(GP) if and only if a � b or b � a or a||b in P . This implies
that a� b (or b�a) in P if and only if for a ∈ V (Gi) and b ∈ V (Gj) with vi � vj
(or vj � vi)in P0 and also a||b in P if and only if either a and b are in V (Gi)
or a ∈ V (Gi) and b ∈ V (Gj) with vi||vj in P0. That is, either ab ∈ E(Gi) or
a ∈ V (Gi) and b ∈ V (Gj) such that vivj ∈ E(G0). Therefore, ab ∈ E(G). Hence
the result. ��

From the above results, we get the following,

Corollary 1. If G = G0[G1, G2, . . . , Gn] is a comparability C-I graph then G0

is a comparability C-I graph.

Corollary 2. Let G = G0[G1, G2, . . . , Gn] and Gi’s are complete graphs for
i = 1, 2, . . . , n. Then G is a comparability C-I graph if and only if G0 is a
comparability C-I graph.

Comparability Graphs Among Cover-Incomparability Graphs 61

Concluding Remarks: We have given some preliminary results of comparabil-
ity graphs which are also C-I graphs, along with their corresponding posets and
obtained some families of such graphs. Using Theorem 9, we may obtain several
new classes of these graphs by considering the known C-I graphs as the graph
G0. In particular, we can take the known C-I graphs that we have seen in this
paper as the graph G0 in Theorem 9, and obtain new classes of C-I graphs that
are comparability graphs. It will be an interesting problem to characterize com-
parability C-I graphs. We will address the composition of C-I graphs in detail in
a forthcoming paper.

Acknowledgements. A.A. acknowledges the financial support from UGC, Govt. of
India, for providing Senior Research Fellowship (1220/(CSIR-UGC NET DEC.2017)).
M.C. acknowledges the financial support from SERB, Department of Science
& Technology, Govt. of India (research project under MATRICS scheme No.
MTR/2017/000238).

References

1. Anil, A., Changat, M.: Ptolemaic and chordal cover-incomparability graphs. Order
38, 1–15 (2021). https://doi.org/10.1007/s11083-021-09551-w

2. Anil, A., Changat, M., Gologranc, T., Sukumaran, B.: Ptolemaic and planar cover-
incomparability graphs. Order 38(3), 421–439 (2021). https://doi.org/10.1007/
s11083-021-09549-4

3. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph classes - a survey. In: SIAM Mono-
graphs on Discrete Mathematics and Applications, ISBN 0-89871-432-X

4. Brešar, B., Changat, M., Klavžar, S., Kovše, M., Mathew, J., Mathews, A.: Cover-
incomparability graphs of posets. Order 25, 335–347 (2008)

5. Brešar, B., Changat, M., Gologranc, T., Mathew, J., Mathews, A.: Cover-
incomparability graphs and chordal graphs. Discrete Appl. Math. 158, 1752–1759
(2010)

6. Brešar, B., Gologranc, T., Changat, M., Sukumaran, B.: Cographs which are cover-
incomparability graphs of posets. Order 32(2), 179–187 (2014). https://doi.org/
10.1007/s11083-014-9324-x

7. Brightwell, G.: On the complexity of diagram testing. Order 10(4), 297–303 (1993)
8. Brightwell, G., West, W.B.: Partially ordered sets. In: Rosen, K.H. (ed.) Handbook

of Discrete and Combinatorial Mathematics, Chapter 11, pp. 717–752. CRC Press,
Boca Raton (2000)

9. Gallai, T.: Transitiv orientierbare Graphen. Acta Math. Acad. Sci. Hung. 18, 25–66
(1967)

10. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Annals
of Discrete Mathematics, vol. 57. Elsevier (2004)

11. Maxová, J., Turźık, D.: Which distance-hereditary graphs are cover-
incomparability graphs? Discrete Appl. Math. 161, 2095–2100 (2013)

12. Maxová, J., Dubcová, M., Pavĺıková, P., Turźık, D.: Which k-trees are cover-
incomparability graphs. Discrete Appl. Math. 167, 222–227 (2014)

13. Maxová, J., Pavĺıková, P., Turźık, D.: On the complexity of cover-incomparability
graphs of posets. Order 26(3), 229–236 (2009)

14. McConnell, R.M., Spinrad, J.: Linear-time transitive orientation. In: 8th ACM-
SIAM Symposium on Discrete Algorithms, pp. 19–25 (1997)

15. Nešetřil, J., Rödl, V.: Complexity of diagrams. Order 3(4), 321–330 (1987)

https://doi.org/10.1007/s11083-021-09551-w
https://doi.org/10.1007/s11083-021-09549-4
https://doi.org/10.1007/s11083-021-09549-4
https://doi.org/10.1007/s11083-014-9324-x
https://doi.org/10.1007/s11083-014-9324-x

Graph Algorithms

Complexity of Paired Domination
in AT-free and Planar Graphs

Vikash Tripathi1, Ton Kloks2, Arti Pandey1(B), Kaustav Paul1,
and Hung-Lung Wang3

1 Department of Mathematics, Indian Institute of Technology Ropar,
Rupnagar 140001, Punjab, India

{2017maz0005,arti,kaustav.20maz0010}@iitrpr.ac.in
2 Eindhoven, Netherlands

klokston@gmail.com
3 Department of Computer Science and Information Engineering,

National Taiwan Normal University, Taipei, Taiwan
hlwang@ntnu.edu.tw

Abstract. For a graph G = (V,E), a subset D of vertex set V , is
a dominating set of G if every vertex not in D is adjacent to atleast
one vertex of D. A dominating set D of a graph G with no isolated
vertices is called a paired dominating set (PD-set), if G[D], the sub-
graph induced by D in G has a perfect matching. The Min-PD prob-
lem requires to compute a PD-set of minimum cardinality. The deci-
sion version of the Min-PD problem remains NP-complete even when
G belongs to restricted graph classes such as bipartite graphs, chordal
graphs etc. On the positive side, the problem is efficiently solvable for
many graph classes including intervals graphs, strongly chordal graphs,
permutation graphs etc. In this paper, we study the complexity of the
problem in AT-free graphs and planar graph. The class of AT-free graphs
contains cocomparability graphs, permutation graphs, trapezoid graphs,
and interval graphs as subclasses. We propose a polynomial-time algo-
rithm to compute a minimum PD-set in AT-free graphs. In addition, we
also present a linear-time 2-approximation algorithm for the problem in
AT-free graphs. Further, we prove that the decision version of the prob-
lem is NP-complete for planar graphs, which answers an open question
asked by Lin et al. (in Theor. Comput. Sci., 591(2015) : 99 − 105 and
Algorithmica, 82(2020) : 2809 − 2840).

Keywords: Domination · Paired domination · Planar graphs ·
AT-free graphs · Graph algorithms · NP-completeness · Approximation
algorithm

1 Introduction

Let G = (V,E) be a graph. A vertex v ∈ V is adjacent to another vertex u ∈ V
if uv is an edge of G. In this case, we say u, a neighbour of v. The set of all
c© Springer Nature Switzerland AG 2022
N. Balachandran and R. Inkulu (Eds.): CALDAM 2022, LNCS 13179, pp. 65–77, 2022.
https://doi.org/10.1007/978-3-030-95018-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95018-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-95018-7_6

66 V. Tripathi et al.

vertices adjacent to v ∈ V , denoted by NG(v), is known as open neighbourhood
of v, whereas the set NG[v] = NG(v) ∪ {v} is known as closed neighbourhood of
v in G.

In a graph G = (V,E), a vertex v ∈ V dominates a vertex u ∈ V if u ∈ NG[v].
A subset D of vertex set V , is a dominating set of G if every vertex of V is
dominated by at least one vertex of D. The domination number, symbolized as
γ(G), is the minimum cardinality of a dominating set. The concept of domination
has wide applications and is thoroughly studied by researchers in the literature.
A survey of the results, both algorithmic as well as combinatorial, on domination
can be found in [7,8]. Due to several applications in the real world problems,
numerous variations of domination are introduced by imposing one or more
additional condition on dominating set. Many of these variations are thoroughly
studied by researchers in the literature. Total domination is one of the important
variation of domination. For a graph G = (V,E) without an isolated vertex, a
total dominating set of G is a subset D of vertex set such that every vertex of
the graph is adjacent to at least one vertex in D.

Paired domination is another important variation of domination, introduced
by Haynes and Slater in [9]. A detailed survey of results on domination problem
and its variations can also be found in a recent book by Haynes et al. [6]. Given
a graph G = (V,E) with no isolated vertices, a subset D of vertex set V , is a
paired dominating set(PD-set) if D is a dominating set and the subgraph induced
by D in G has a perfect matching. The paired domination number, symbolized
as γpr(G), is the cardinality of a minimum PD-set of G. The Min-PD problem
requires to compute a PD-set of a graph G without an isolated vertex. More
precisely, the Min-PD problem and its decision version of the same are defined
as follows:

Min-PD problem

Instance: A graph G with no isolated vertices.
Solution: A PD-set D.
Measure: Size of D.

Decide PD-set problem

Instance: A graph G and an integer k > 0, satisfying k ≤ |V |.
Query: Is there is a PD-set D of G, satisfying |D| ≤ k?

It is shown that the decision version of the problem is NP-complete for
general graphs [9]. Therefore, complexity of the problem is studied for sev-
eral restricted graph classes. It is proven that, the decision version of the prob-
lem is NP-complete when restricted to special graph classes, including bipartite
graphs [3], perfect elimination bipartite graphs [16], and split graphs [3]. But,
on the good side, the problem is efficiently solvable in several important graph
classes, including permutation graphs [12], interval graphs [3], block graphs [3],
strongly chordal graphs [4], circular-arc graphs [13] and some others. A detailed
survey of the results on paired domination can be found in [5]. In Fig. 1 we show
the hierarchy of some important graph classes and the complexity status of the
Decide PD-set problem in these graph classes.

Complexity of Paired Domination in AT-free and Planar Graphs 67

General

Chordal

Split

Strongly Chordal

Interval

k-Polygon (?)

Block

Tree

Circular Arc

Comparibility

Cocomparibility

AT-free

Bipartite

Dually Chordal (?)

Permutation

Chordal Bipartite

Circle (?)

Convex BipartiteDistance Hereditary

Cograph

Planar Perfect

Bipartite Permutation Proper Interval

Series-Parallel

NP-complete

Polynomial-time

Fig. 1. Complexity status of Min-PD problem in some well known graph classes.

The computational complexity of the problem is still unknown in some graph
classes including planar graphs, AT-free graphs and circle graphs. AT-free graphs
is introduced by Corneil et al. in [1]. AT-free graph class includes some important
classes of graphs such as interval graphs, permutation graphs and cocompara-
bility graphs as subclasses. A minimum dominating and total dominating set of
an AT-free graph can be computed in polynomial-time, see [11]. In this paper,
we investigate the computational complexity of the problem on AT-free graph
and planar graphs. We show that minimum PD-set of an AT-free graph can be
computed in polynomial-time. In addition, we give an approximation algorithm
which computes a PD-set of any AT-free graph, within a factor of 2. Lin et al. in
[13] and [14] asked to determine the complexity of the problem in planar graphs.
In this paper, we prove that Decide PD-set problem remain NP-complete
even for planar graphs. The section wise contribution of the paper is outlined as
follows:

In Sect. 2, we give insights on some notations and definitions, including prop-
erties of AT-free graphs. In Sect. 3, we prove the existence of a linear-time 2-
approximation algorithm to compute a PD-set of an AT-free graph. In Sect. 4,
we design a polynomial time algorithm to compute a minimum cardinality PD-
set of an AT-free graph. In Sect. 5, we show that the problem remains NP-hard
for planar graphs. Finally, Sect. 6 wind up the paper with some interesting open
questions on the problem.

2 Preliminaries

2.1 Basic Notations and Definitions

In this paper, we consider only simple, connected and finite graphs with no iso-
lated vertices. Let G = (V,E) be a graph. The sets V (G) and E(G) represents

68 V. Tripathi et al.

node(vertex) set and edge set respectively of the graph. When there is no ambi-
guity regarding graph G, for simplification, we use V and E to denote of V (G)
and E(G) respectively. For an edge e = uv ∈ E, u and v are called end vertices
of e. For any non-empty set A ⊆ V , the open neighbourhood of A, symbolized as
NG(A), is given by NG(A) =

⋃
v∈A NG(v) whereas the set NG[A] = NG(A) ∪ A

is known as closed neighbourhood of A. Further, for a set A ⊆ V , G\A represents
the graph obtained by deleting vertices of set A and all edges having at least
one end vertex in A, from the graph. In case, A = {u}, we use G \ u, instead of
using G \ {u}.

A subset X of vertex set is an independent set if no two vertices of X are
adjacent in G. A path P in G is a sequence of vertices (x1, x2, . . . , xn) such that
(xi, xi+1) ∈ E for each i ∈ {1, 2, . . . , n − 1}. For a path P = (x1, x2, . . . , xn+1)
in G, the length of P is |V (P) − 1| = n. Let x, y ∈ V (G). The distance between
x and y in the graph G, denoted by dG(x, y), is the length of a shortest path
between x and y. The diameter of a graph G, denoted by diam(G), is defined as
diam(G) = max{dG(x, y) | x, y ∈ V (G)}. We use the standard notation [n] to
denote the set {1, 2, . . . , n}.

2.2 AT-free Graphs

Let G = (V,E) be a graph. A set T = {p, q, r} of three vertices, is called an
asteroidal tripe(in short AT) if T is an independent set and for any two vertices
in the set T there exits a path P between them such that V (P) does not contain
any vertex from the closed neighbourhood of third. A graph is AT free if it
does not contain an asteroidal tripe. A path on six vertices is an example of an
AT-free graph.

Definition 1. In a graph G = (V,E), a pair of vertices (x, y) is called a domi-
nating pair, if the vertex set of any path between x and y in G is a dominating
set of G. A dominating shortest path is a shortest path connecting x and y in G.

v1 v3

v4

v5 v6

v5

v2

Fig. 2. An AT-free graph G

An asteroidal triple free graph is shown in Fig. 2. For the graph G in Fig. 2,
(v1, v3) is a dominating pair, and P = (v1, v2, v3) is a dominating shortest path.
We have the following result for a connected AT-free graph in the literature.

Complexity of Paired Domination in AT-free and Planar Graphs 69

Theorem 1. [1,2] A dominating pair exists in every AT-free graph which can
be computed in linear time.

3 Approximation Algorithm

In this section, we show that a PD-set of an AT-free graph G, can be computed
in linear time whose cardinality is at most twice of γpr(G). Let G is an AT-free
graph. Using Theorem 1, we note that there exists a dominating pair (x, y) in
G. Assume that P is a dominating shortest path between x and y in G, and
the number of vertices in P are t. Note that any vertex that is not in P is
adjacent to some vertex of V (P), as the set V (P) is a dominating set of G. We
may also conclude that any vertex not in P has at most three neighbours in P ,
since otherwise P will not be a shortest path. By a similar argument we note
that any two adjacent vertices in G dominate at most the vertices of a P4 in P .
Consequently, γpr

2 ≥ � t
4�, that is, γpr ≥ 2 · � t

4�. Before proving the Theorem 2,
which is the main result of this section, we notice that the following lemma is
true.

Lemma 1. For any odd positive integer n, �n
4 � ≥ n+1

4 .

Proof. The proof is easy, and hence is omitted. 	

Theorem 2. Given an AT-free graph G, a PD-set D of G can be computed in
linear time, satisfying |D| ≤ 2 · γpr(G).

Proof. Given an AT-free graph G = (V,E), there is a linear-time algorithm
to find a dominating pair (x, y) of G (by Theorem 1). Let P = (x =
v1, v2 . . . vt−1, vt = y) be a shortest path between x and y, and D = V (P).
We have already observed that γpr(G) ≥ 2 · � t

4�. We prove the result under the
following assumptions:

Case 1: If t is even.
Here, we note that the set D is a PD-set and |D| = t ≤ 4 · � t

4� ≤ 2 · γpr(G).

Case 2: If t is odd.
In this case, we construct a PD-set of the graph G by adding at most one
vertex in D. Clearly, D is a dominating set. For pairing, we pair vi with vi+1 for
i ∈ [t − 2]. Now we need to pair vt. Note that if N(vt) ⊆ D then D \ {vt} is a
PD-set of G, otherwise if there exists a vertex u ∈ N(vt) \ D then the updated
set D = D ∪ {u} is a PD-set of g. Therefore, we can always construct a PD-set
D of G, where |D| ≤ t + 1. Using Lemma 1, we have t + 1 ≤ 4 · � t

4�. Hence,
|D| ≤ t + 1 ≤ 2γpr(G).

In both the cases, we can obtain a PD-set D satisfying, |D| ≤ 2γpr(G).
Hence, we have an efficient 2-approximation algorithm to computes a PD-set of
an AT-free graph. 	

70 V. Tripathi et al.

4 Exact Polynomial-Time Algorithm

The main purpose this section is to establish a polynomial time algorithm that
outputs a minimum cardinality PD-set, when the input graph is an AT-free
graph. For this, we first present a theorem, which will be useful in designing
our algorithm. In this theorem, we show that there exists a BFS-tree T of G
and a minimum PD-set D of G such that the number of vertices of D in some
consecutive levels of T are bounded. We will use the notation Li to denote the
vertices, which are at ith level in the tree T , that is, the set of vertices which are
at distance i from the root node in tree T . The following result is already known
in literature.

Theorem 3. [10] Let G be an AT-free graph with dominating pair (x, y) and
T be a BFS-tree of G rooted at x. Let L0, L1, L2, . . . , Ll are the BFS-levels of
the BFS-tree T . Then there exists a linear-time algorithm which computes a path
P = (x = x0, x1, x2, . . . , xd = y) such that xi ∈ Li for each 0 ≤ i ≤ d and every
vertex w ∈ Li for i ∈ {1, 2, . . . , l} is adjacent to either xi−1 or xi.

Theorem 4. Let G = (V,E) be an AT-free graph and (x, y) be a dominating pair
of G. If L0, L1, L2, . . . , Ll are the BFS-levels of the BFS-tree T rooted at x then
there exists a minimum cardinality PD-set Dp of G such that |Dp ∩ ⋃i+j

k=i Lk| ≤
j + 4 for all i ∈ {0, 1, . . . l} and j ∈ {0, 1, . . . l − i}.
Proof. Let G = (V,E) be an AT-free graph and Dp be a minimum cardinality
PD-set of the graph G. Suppose that the set Dp does not satisfy the given
property, that is, there is at least one pair (i, j) such that |Dp ∩⋃i+j

k=i Lk| > j +4
where i ∈ {0, 1, . . . l} and j ∈ {0, 1, . . . l − i}. Let B = {(i, j) : |Dp ∩ ⋃i+j

k=i Lk| ≥
j +5}. Note that B �= ∅. Now we choose pair (i′, j′) such that i′ = min{i|(i, j) ∈
B} and j′ = max{j | (i′, j) ∈ B}. By the choice of the pair (i′, j′), note that
Dp ∩ Li′−1 = ∅ and Dp ∩ Li′+j′+1 = ∅. Using the properties of a BFS-tree, we
note that for any vertex v ∈ (Dp∩⋃i′+j′

k=i′ Lk), any neighbor of v belongs to one of
the levels Li′−1, Li′ , · · · Li′+j+1. Let A = {xi′−2, xi′−1, . . . xi′+j′+1}. Note that,
|A| = j′ + 4. Since V (P) is a dominating set of G and each vertex z ∈ Li is
adjacent to either xi−1 or xi,

⋃i′+j′+1
k=i′−1 Lk ⊆ N [A]. Now by updating Dp we will

find another minimum PD-set D′
p such that A ⊆ D′

p.

Case 1: If xi′−2 /∈ Dp and |A| is even.
Since Dp∩Li′+j′+1 = ∅, xi′+j′+1 /∈ Dp. If xi′−2 /∈ Dp and |A| is even then the

set D′
p = (Dp \⋃i′+j′

k=i′ Lk)∪A is a PD-set of G with |D′
p| < |Dp|, a contradiction

to the choice of Dp.

Case 2: If xi′−2 /∈ Dp and |A| is odd.
Note that |A| is odd and G[A] is a path, if we include A in a PD-

set we can pair all the vertices in A except one. We pair (xi′−2, xi′−1),
(xi′ , xi′+1), . . . , (xi′+j′−1, xi′+j′). Now we need to pair xi′+j′+1. If (NG(xi′+j′+1)\
{xi′+j′}) ⊆ Dp and (NG(xi′+j′+1) \ {xi′+j′}) ∩ (Lxi′+j′+1

∪ Lxi′+j′) = ∅. In this
case using the property of path P , note that all the vertices in Li′+j′+1 is adjacent

Complexity of Paired Domination in AT-free and Planar Graphs 71

to xi′+j′ . Hence the set D′
p = (Dp \⋃i′+j′

k=i′ Lk)∪ (A\{xi′+j′+1}) is a PD-set of G
with |D′

p| < |Dp|, a contradiction. If there is a vertex u ∈ NG(xi′+j′+1)\{xi′+j′}
such that u /∈ Dp or if NG(xi′+j′+1) \ {xi′+j′} ⊆ Dp but there is a ver-
tex u ∈ NG(xi′+j′+1) \ {xi′+j′} such that u ∈ (Lxi′+j′+1

∪ Lxi′+j′) then take

A′ = A ∪ {u}. Note that the set D′
p = (Dp \ ⋃i′+j′

k=i′ Lk) ∪ A′ is a PD-set of G,

implying that |D′
p| ≥ |Dp|. Also we have |Dp∩⋃i′+j′

k=i′ Lk| ≥ j′+5 and |A′| = j′+5
implying that |D′

p| ≤ |Dp|. Hence D′
p is also a minimum PD-set of G.

Case 3: If xi′−2 ∈ Dp and |A| is even.
Proof is omitted due to space constraints.

Case 4: If xi′−2 ∈ Dp and |A| is odd.
Proof is omitted due to space constraints.
Further, note that if i′ is 0 or 1, we can choose A = {x0, x1, . . . , xi′+j′+1}

if |{x0, x1, . . . , xi′+j′+1}| is even, otherwise we can choose A =
{
x0, x1, . . . ,

xi′+j′+1, u
}
, where u ∈ N(xi′+j′+1). We can show the existence of u as we did

above. In both the cases |A| ≤ j′ + 4 implying that D′
p = (Dp \ ⋃i′+j′

k=i′ Lk) ∪ A
is a PD-set of G having cardinality less than the minimum cardinality PD-
set Dp of G, a contradiction. Hence i′ /∈ {0, 1}. Similarly we can claim that
i′ + j′ /∈ {l − 1, l}.

We call this replacement of Dp with D′
p an exchange step. Now, if |D′

p ∩
⋃i+j

k=i Lk| ≤ j + 4 for all i ∈ {0, 1, . . . l} and j ∈ {0, 1, . . . l − i} then G has a
minimum paired dominating D′

p satisfying the condition given in Theorem 4.
Otherwise, let B′ = {(i, j) : |D′

p ∩ ⋃i+j
k=i Lk| ≥ j + 5}. Suppose (i, j) ∈ B′. Now

we will show that i > i′. By contradiction suppose, i ≤ i′. In this case note
that i + j ≥ i′ − 2 otherwise, (i, j) ∈ B, contradicting the choice of i′. Also,
|D′

p ∩ Lt| ≥ 1 for all t ∈ {i′ − 2, i′ − 1, . . . , i′ + j′ + 1}. Hence for (i, j) ∈ B′ with
i < i′ and i+j ≥ i′−2 there exits a j′ such that (i, j′) ∈ B′ and i+j′ ≥ i′+j′+1.
By construction of D′

p, we note that |Dp ∩ ⋃i+j′

k=i Lk| ≥ |D′
p ∩ ⋃i+j′

k=i Lk| ≥ j′ + 5
implying that (i, j′) ∈ B, a contradiction to the choice of i′ or j′. Hence i > i′.
Therefore, if i

′′
= min {i | (i, j) ∈ B′} then i

′′
> i′.

This implies that, at every exchange step, we replace a minimum cardinal-
ity PD-set Dp with an updated minimum cardinality PD-set D′

p. After each
exchange step, we note that the smallest value of i for which there was a
j ∈ {0, 1, . . . , l − i} satisfying |Dp ∩ ⋃i+j

k=i Lk| ≥ j + 5, for the minimum car-
dinality PD-set Dp, will increase. Therefore, we conclude that, if we start with
any minimum cardinality PD-set Dp, we obtain a minimum cardinality PD-set
D′

p, such that |D′
p∩⋃i+j

k=i Lk| ≤ j+4 for all i ∈ {0, 1, . . . l} and j ∈ {0, 1, . . . l−i},
by executing at most d exchange steps. 	

Now we are ready to present an algorithm to compute a minimum cardinality
PD-set of an AT-free G. Using Theorem 4, we may conclude that there is a
minimum PD-set of G that contains at most 6 vertices from any three consecutive
BFS-levels of x, where (x, y) is a dominating pair of G. The idea behind our
algorithm is the following:

72 V. Tripathi et al.

In our algorithm, we explore a BFS-level of x in each iteration. In the ith-
iteration of the algorithm, we do the following:

– store all the possible sets X ′ ⊆ ⋃i+1
j=0 Lj such that X ′ dominates all the

vertices till ith-level.
– ensure that all the vertices in X ′ ∩ (

⋃i
j=0 Lj) are paired as these vertices can

not be paired with a vertex at level i + 2 or above.
– for every possible set X ′, store another set X = X ′ ∩ (Li ∪ Li+1)

The set X helps in extending a partial solution X ′ to the next level as we
are restricted to select at most 6 vertices from any three consecutive levels in a
minimum PD-set. Below, we have provided the detailed algorithm for computing
a minimum cardinality PD-set Dp of an AT-free graph G. The set Dp maintains
the property that it contains at most 6 vertices from any three consecutive BFS-
levels of x.

Algorithm 1: Minimum Paired Domination in AT-free Graphs
Input: A connected AT-free graph G = (V,E) with a dominating pair (x, y);
Output: A PD-set Dp of G;
Compute the BFS-levels of x;
For 0 ≤ i ≤ l, let Li = {w ∈ V | dG(x,w) = i} denote the set of vertices at level
i in the BFS of G rooted at u.
In particular, L0 = {x}.
Initialize the queue Q1 which contains an ordered tuple (X,X, size(X)) for all
non-empty X ⊆ N [x] such that size(X) = |X| ≤ 6;
Initialize i = 1;
while (Qi �= ∅ and i < l) do

Update i = i + 1;
for (each element (X,X ′, size(X ′)) of the queue Qi−1) do

for (every U ⊆ Li with |X ∪ U | ≤ 6) do
if (Li−1 ⊆ N [X ∪ U] and there exists a set U ′ ⊆ U such that
G[X ′ ∪ U ′] has a perfect matching) then

Y = (X ∪ U) \ Li−2;
Y ′ = X ′ ∪ U ;
size(Y ′) = size(X ′) + |U |;
if (for all element (X,X ′, size(X ′)) of Qi, X �= Y) then

insert (Y, Y ′, size(Y ′)) in the queue Qi;

if (there is a tuple (Z,Z′, size(Z′)) in Qi such that Z = Y and
size(Y ′) < size(Z′)) then

delete (Z,Z′, size(Z′)) form Qi;
insert (Y, Y ′, size(Y ′)) in Qi;

Among all the triples (X,X ′, size(X ′)) in the queue Ql that satisfy Ll ⊆ N [X]
and G[X ′] has a perfect matching, find one such that size(X ′) is minimum, say
(D,D′, size(D′));
Dp = D′;
return Dp;

Complexity of Paired Domination in AT-free and Planar Graphs 73

Now we prove the following theorem to show that the Algorithm 1 returns a
minimum PD-set. We also analyse the running time of the algorithm.

Theorem 5. Let G = (V,E) be an AT-free graph such that |V | = n and |E| =
m. Algorithm 1 computes a minimum cardinality PD-set of G in O(n8.5)-time.

Proof. Proof is omitted due to space constraints. 	

5 Paired Domination in Planar Graphs

In this section we show that the Decide PD-set problem is NP-complete even
when restricted to planar graph. For this purpose, we will give a polynomial
reduction from the Minimum Vertex Cover(Min-VC) problem to the Min-
PD problem. In a graph G = (V,E), a vertex cover is a set C ⊆ V such that C
has at least one end point of every edge e ∈ E. The Min-VC problem require to
compute a minimum cardinality vertex cover of a given graph G. The following
theorem is already proved for the Min-VC problem.

Theorem 6. [15] The Min-VC problem is NP-hard for the planar cubic
graphs.

Now, we prove the main result of this section.

Theorem 7. The Decide PD-set problem is NP-complete for planar graphs
with maximum degree 5.

Proof. Clearly, the Decide PD-set problem is in NP. To show the hardness
of the problem, we give a reduction from Min-VC problem which is NP-hard
for planar cubic graphs, by Theorem 6. Let G = (V,E) be a planar cubic graph
with V = {v1, v2, . . . , vn}. We transform the graph G into a graph G′ = (V ′, E′)
as follows:

– replace each vertex vi ∈ V with the gadget Gvi
as shown in the Fig. 3

– If three edges ej , ek, el were incident on vi in G, then in G′, we make ej

incident on v1
i , ek incident on v2

i and el incident on v3
i .

We note that the graph G′ is a planar graph with maximum degree 5, and
G′ can be computed from G in polynomial time. Now, to prove the result we
only need to prove the following claim:

Claim. If β(G) denotes the cardinality of a minimum vertex cover of G, then
γpr(G′) = 4n + 2β(G), where n denotes the number of vertices in G.

Proof. Let V c be a minimum cardinality vertex cover of G. Let Dp =
{v1

i , y1
i , v2

i , y4
i , v3

i , z2i | vi ∈ V c} ∪ {y2
i , z1i , y3

i , z3i | vi /∈ V c} where i ∈ [n]. Note
that if vi /∈ V c, then all the three vertices adjacent to vi in G must be present
in V c. Using this fact, it can be easily verified that Dp is a PD-set of G′, and

74 V. Tripathi et al.

v1
i v2

i

v3
i

x1
i x2

i

y1
i y2

i y3
i y4

iz1
i z2

i z3
i

Gvi

a1
i a2

i

Fig. 3. Gadget Gvi used in the construction of graph G′ from G in Theorem 7.

|Dp| = 6 · β(G) + 4 · (n − β(G)) = 4n + 2β(G). Therefore, if D∗
p is a minimum

cardinality PD-set of G′ then |D∗
p| ≤ 4n + 2β(G). Hence, we have

γpr(G′) ≤ 4n + 2β(G) (1)

Conversely, suppose Dp is a minimum cardinality PD-set of G′. Then,
to dominate the vertex x1

i , Dp ∩ {x1
i , y

1
i , y2

i } must be non-empty. Further, a
vertex u ∈ {x1

i , y
1
i , y2

i } ∩ Dp can only be paired with a vertex in the set
{v1

i , x1
i , y

1
i , y2

i , z1i } \ {u}. Hence, |Dp ∩ {v1
i , x1

i , y
1
i , y2

i , z1i }| ≥ 2. Similarly, we
have |Dp ∩ {v3

i , x3
i , y

3
i , y4

i , z3i }| ≥ 2. Therefore, for each i ∈ [n], we have
|Dp ∩ V (Gvi

)| ≥ 4. Note that to dominate x1
i , Dp ∩ {x1

i , y
1
i , y2

i } �= ∅. Fur-
ther, to dominate a1

i , Dp ∩ {z1i , z2i , a1
i } �= ∅. Similarly, to dominate x2

i and a2
i ,

Dp∩{x2
i , y

3
i , y4

i } �= ∅ and Dp∩{z3i , z2i , a2
i } �= ∅ respectively. Therefore, we observe

that, if |Dp ∩ V (Gvi
)| = 4, then Dp ∩ V (Gvi

) = {y2
i , z1i , y3

i , z3i }.
Now, we prove that we can update Dp such that Dp remains a minimum

cardinality PD-set of G′ and for each i ∈ [n], |Dp ∩ V (Gvi
)| = 4 or |Dp ∩

V (Gvi
)| ≥ 6. Suppose |Dp ∩ V (Gvi

)| = 5 for some i ∈ [n]. As we observed,
the vertices dominating x1

i and x2
i are paired with the vertices of V (Gvi

), and
|Dp ∩V (Gvi

)| ≥ 4. Hence if |Dp ∩V (Gvi
)| = 5 then Dp ∩{v1

i , v2
i , v3

i } �= ∅, as only
these vertices of the gadget Gvi

can be paired with a vertex of another gadget.

Case 1: Suppose v1
i ∈ Dp.

In this case, first we show that Dp ∩ {v2
i , v3

i } = ∅. Note that v1
i is paired

with a vertex of some other gadget, and v1
i is not dominating x1

i . Further, if u
is the vertex dominating vertex x1

i then u can only be paired with a vertex in
the set {x1

i , y
1
i , y2

i , z1i } \ {u}. Therefore, |Dp ∩ {v1
i , x1

i , y
1
i , y2

i , z1i }| ≥ 3. Also as
|Dp ∩ {v2

i , x2
i , y

3
i , y4

i , z3i }| ≥ 2 and |Dp ∩ V (Gvi
)| = 5, we have v3

i /∈ Dp. Further,
as |Dp ∩ {v1

i , x1
i , y

1
i , y2

i , z1i }| ≥ 3 therefore, |Dp ∩ {v2
i , x2

i , y
3
i , y4

i , z3i }| = 2. Now,
if v2

i ∈ Dp then v2
i is paired with y4

i this leaves the vertex z3i undominated, a
contradiction. Therefore, v2

i /∈ Dp. This concludes that Dp ∩ {v2
i , v3

i } = ∅.
Now, let v1

i is paired with a vertex u of another gadget, say Gvj
where

i �= j. Note that u ∈ {v1
j , v2

j , v3
j }. It is easy to observe that |Dp ∩ V (Gvj

)| ≥
5. Suppose v1

i is paired with v1
j . Now if y1

j /∈ Dp then update Dp as follows:
Dp = Dp \ V (Gvi

) ∪ {y2
i , y3

i , z1i , z3i , y1
j } and pair v1

j with y1
j . Now, suppose that

Complexity of Paired Domination in AT-free and Planar Graphs 75

y1
j already belongs to Dp. Note that y1

j is paired with either y2
j or x1

j . If both
y2

j and x1
j ∈ Dp then y1

j must be paired with x1
j . In this case, the set D′

p =
Dp \ (V (Gvi

) ∪ {x1
j}) ∪ {y2

i , y3
i , z1i , z3i , y1

j } where v1
j is paired with y1

j is a PD-set
of G′ and |D′

p| < |Dp|, a contradiction. Therefore, in this case either y2
j /∈ Dp or

x1
j /∈ Dp. If x1

j /∈ Dp then y1
j is paired with y2

j and in this case, we update Dp as
follows: Dp = Dp \ V (Gvi

) ∪ {y2
i , y3

i , z1i , z3i , x1
j}, pair v1

j with y1
j and y2

j with x1
j .

We can update Dp in a similar way if y2
j /∈ Dp.

Similarly we can update Dp if v1
i is paired with v2

j . Now suppose v1
i is

paired with v3
j . If z2j /∈ Dp then update Dp as follows: Dp = Dp \ V (Gvi

) ∪
{y2

i , y3
i , z1i , z3i , z2j } and pair v3

j with z2j . But, if z2j ∈ Dp, we may observe that
it is possible to update Dp by giving similar arguments as above with suitable
modifications, such that v3

j is paired with z2j . After update in each case, we may
note that |Dp ∩ V (Gvi

)| = 4 and |Dp ∩ V (Gvj
)| ≥ 6.

Case 2: Suppose v2
i ∈ Dp.

The arguments are similar to Case 1.

Case 3: Suppose v3
i ∈ Dp.

Let v3
i is paired with a vertex u of another gadget Gvj

. Since, |Dp∩V (Gvi
)| =

5 we have |Dp ∩ {v1
i , x1

i , y
1
i , y2

i , z1i }| = 2 and |Dp ∩ {v3
i , x3

i , y
3
i , y4

i , z3i }| = 2. Now,
if v1

i ∈ Dp then v1
i is paired with y1

i this leaves the vertex z1i undominated, a
contradiction. Similarly, if v2

i ∈ Dp then v2
i is paired with y4

i this leaves the
vertex z3i undominated, a contradiction. Hence, Dp ∩ {v1

i , v2
i } = ∅. Now we can

give similar arguments as Case 1, to show that Dp can be updated such that
|Dp ∩ V (Gvi

)| = 4 and |Dp ∩ V (Gvj
)| ≥ 6.

Now, without loss of generality, we may assume that there exists a minimum
cardinality PD-set of G′ such that for each i ∈ [n], |Dp ∩ V (Gvi

)| = 4 or |Dp ∩
V (Gvi

)| ≥ 6
Define V c = {vi ∈ V | |Dp ∩ V (Gvi

)| ≥ 6}. Next, we claim that V c is a
vertex cover of G. Consider any two distinct vertices vi and vj in G such that
vivj ∈ E(G). We prove that either |Dp ∩ V (Gvi

)| ≥ 6 or |Dp ∩ V (Gvj
)| ≥ 6. Let

vk
i is made adjacent to vk′

j , where k, k′ ∈ [3]. Note that if |Dp ∩ V (Gvi
)| = 4

and |Dp ∩ V (Gvi
)| = 4 then from above observation, we have Dp ∩ V (Gvi

) =
{y2

i , z1i , y3
i , z3i } and Dp ∩V (Gvj

) = {y2
j , z1j , y3

j , z3j }, this leaves the vertices vk
i and

vk′
j undominated, a contradiction. Therefore, V c is a vertex cover of G. Also,

γpr(G′) ≥ 6|V c| + 4(n − |V c|). So, we have 2|V c| ≤ γpr(G′) − 4n. Hence,

2β(G) ≤ γpr(G′) − 4n (2)

Therefore, using Eqs. 1 and 2, we have γpr(G′) = 4n + 2β(G). This proves
the claim. 	

Since, the Min-VC problem is NP-hard for cubic planar graphs, from above
claim we conclude that the Decide PD-set problem is NP-complete for planar
graphs with maximum degree 5. 	

76 V. Tripathi et al.

6 Concluding Remarks

In this paper, we resolve the complexity of the Min-PD problem for planar
graphs and AT-free graphs. We proposed a polynomial time algorithm for Min-
PD problem in AT-free graphs. We also proposed a 2-approximation algorithm to
compute a PD-set in AT-free graphs. Since the class of AT-free graphs include the
class of cocomparability graphs, the results and algorithms presented for paired
domination in AT-free graphs, also holds for cocomparability graphs. We further
investigated the computational complexity of the problem in planar graphs and
proved that the problem is NP-hard. The complexity of the problem is still not
known in circle graphs. One may be interested in investigating the complexity
status of the Min-PD problem in circle graph. Further, it is interesting to design
more efficient algorithm for the problem in AT-free graphs and cocomparability
graphs.

References

1. Corneil, D.G., Olariu, S., Stewart, L.: Asteroidal triple-free graphs. SIAM J. Dis-
crete Math. 10, 399–430 (1997)

2. Corneil, D.G., Olariu, S., Stewart, L.: Linear time algorithms for dominating pairs
in asteroidal triple-free graphs. In: Fülöp, Z., Gécseg, F. (eds.) ICALP 1995. LNCS,
vol. 944, pp. 292–302. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
60084-1 82

3. Chen, L., Lu, C., Zeng, Z.: Labelling algorithms for paired domination problems
in block and interval graphs. J. Comb. Optim. 19(4), 457–470 (2008)

4. Chen, L., Lu, C., Zeng, Z.: A linear-time algorithm for paired-domination in
strongly chordal graphs. Inf. Process. Lett. 110(1), 20–23 (2009)

5. Desormeaux, W., Henning, M.A.: Paired domination in graphs: a survey and recent
results. Util. Math. 94, 101–166 (2014)

6. Haynes, T.W., Hedetniemi, S.T., Henning, M.A. (eds.): Topics in Domination in
Graphs. DM, vol. 64. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
51117-3

7. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in
Graphs, vol. 208. Marcel Dekker Inc., New York (1998)

8. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in Graphs: Advanced
Topics, vol. 209. Marcel Dekker Inc., New York (1998)

9. Haynes, T.W., Slater, P.J.: Paired domination in graphs. Networks 32, 199–206
(1998)

10. Kloks, T., Kratsch, D., Müller, H.: Approximating the bandwidth for asteroidal
triple-free graphs. In: Spirakis, P. (ed.) ESA 1995. LNCS, vol. 979, pp. 434–447.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60313-1 161

11. Kratsch, D.: Domination and total domination in asteroidal triple-free graphs.
Discrete Appl. Math. 99, 111–123 (2000)

12. Lappas, E., Nikolopoulos, S.D., Palios, L.: An O(n)-time algorithm for paired dom-
ination problem on permutation graphs. Eur. J. Combin. 34(3), 593–608 (2013)

13. Lin, C.C., Tu, H.L.: A linear-time algorithm for paired-domination on circular arc
graphs. Theor. Comput. Sci. 591, 99–105 (2015)

https://doi.org/10.1007/3-540-60084-1_82
https://doi.org/10.1007/3-540-60084-1_82
https://doi.org/10.1007/978-3-030-51117-3
https://doi.org/10.1007/978-3-030-51117-3
https://doi.org/10.1007/3-540-60313-1_161

Complexity of Paired Domination in AT-free and Planar Graphs 77

14. Lin, C.-C., Ku, K.-C., Hsu, C.-H.: Paired-domination problem on distance-
hereditary graphs. Algorithmica 82(10), 2809–2840 (2020). https://doi.org/10.
1007/s00453-020-00705-7

15. Mohar, B.: Face covers and the genus problem for apex graphs. J. Comb. Theory
Ser. A. 82, 102–117 (2001)

16. Panda, B.S., Pradhan, D.: Minimum paired-dominating set in chordal bipartite
graphs and perfect elimination bipartite graphs. J. Comb. Optim. 26(4), 770–785
(2012). https://doi.org/10.1007/s10878-012-9483-x

https://doi.org/10.1007/s00453-020-00705-7
https://doi.org/10.1007/s00453-020-00705-7
https://doi.org/10.1007/s10878-012-9483-x

The Complexity of Star Colouring
in Bounded Degree Graphs

and Regular Graphs

M. A. Shalu and Cyriac Antony(B)

Indian Institute of Information Technology,
Design and Manufacturing (IIITDM) Kancheepuram, Chennai, India

{shalu,mat17d001}@iiitdm.ac.in

Abstract. A k-star colouring of a graph G is a function f : V (G) →
{0, 1, . . . , k−1} such that f(u) �= f(v) for every edge uv of G, and G does
not contain a 4-vertex path bicoloured by f as a subgraph. For k ∈ N,
the problem k-Star Colourability takes a graph G as input and asks
whether G is k-star colourable. By the construction of Coleman and Moré
(SIAM J. Numer. Anal., 1983), for all k ≥ 3, k-Star Colourability is
NP-complete for graphs of maximum degree d = k(k − 1 + �√k�). For
k = 4 and k = 5, the maximum degree in this NP-completeness result is
d = 20 and d = 35 respectively. We reduce the maximum degree to d = 4
in both cases: i.e., 4-Star Colourability and 5-Star Colourability
are NP-complete for graphs of maximum degree four. We also show that
for all k ≥ 3 and d < k, the time complexity of k-Star Colourability is
the same for graphs of maximum degree d and d-regular graphs (i.e., the
problem is either in P for both classes or NP-complete for both classes).

Keywords: Graph coloring · Vertex coloring · Star coloring ·
Complexity

1 Introduction

The star colouring is a well-known variant of (vertex) colouring introduced
by Grünbaum [7] in the 1970s. The scientific computing community indepen-
dently discovered star colouring in the 1980s and used it for lossless compres-
sion of symmetric sparse matrices, which is in turn used in the estimation of
sparse Hessian matrices (see the survey [6]). A k-colouring f of a graph G, say
f : V (G) → {0, 1, . . . , k − 1}, is a k-star colouring of G if G does not contain a
4-vertex path bicoloured by f as a subgraph. For every positive integer k, the
problem k-Star Colourability takes a graph G as input and asks whether
G is k-star colourable. The problem k-Colourability is defined likewise. The
problem Star Colourability takes a graph G and a positive integer k as
input and asks whether G is k-star colourable.

M. A. Shalu—Supported by SERB(DST), MATRICS scheme MTR/2018/000086.

c© Springer Nature Switzerland AG 2022
N. Balachandran and R. Inkulu (Eds.): CALDAM 2022, LNCS 13179, pp. 78–90, 2022.
https://doi.org/10.1007/978-3-030-95018-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95018-7_7&domain=pdf
http://orcid.org/0000-0002-4399-0791
http://orcid.org/0000-0001-7503-801X
https://doi.org/10.1007/978-3-030-95018-7_7

The Complexity of Star Colouring in Bounded Degree and Regular Graphs 79

The complexity of star colouring is studied in various graph classes. Star
Colourability is polynomial-time solvable for cographs [10] and line graphs
of trees [12]. For the class of co-bipartite graphs, Star Colourability is NP-
complete eventhough k-Star Colourability is polynomial-time solvable for
every k ∈ N [2,13]. Coleman and Moré [3] proved that for all k ≥ 3, k-
Star Colourability is NP-complete for bipartite graphs. The problem 3-Star
Colourability is NP-complete for planar bipartite graphs [1], line graphs of sub-
cubic graphs [9] and graphs of arbitrarily large girth [2]. Gebremedhin et al. [5]
produced an inapproximation result on star colouring of bipartite graphs. In this
paper, we focus on the classes of bounded degree graphs and regular graphs.

For motivation, let us look at the complexity of colouring in bounded degree
graphs. It is well-known that for all k ≥ 3, k-Colourability is NP-complete.
Emden-Weinert et al. [4] proved that k-Colourability remains NP-complete
when restricted to graphs of maximum degree d = k − 1 + �√k�. For sufficiently
large k, the maximum degree in this NP-completeness result is the minimum
possible (because the problem is in P for d < k − 1 + �√k� [11, Theorem 43]).
Coleman and Moré [3] proved that for k ≥ 3, k-Star Colourability is NP-
complete for bipartite graphs. From their construction, it follows that for all k ≥
3, k-Star Colourability is NP-complete for graphs of maximum degree d =
k(k−1+�√k�). We seek to reduce the maximum degree in this NP-completeness
result to the minimum possible. For k = 3, Lei et al. [9] reduced the maximum
degree to d = 4 (because 3-Star Colourability is NP-complete for line graphs
of subcubic graphs). No similar result exists for k > 3. For k = 4 and k = 5,
the maximum degree of the output graph in Coleman and Moré’s construction
is d = 20 and d = 35 respectively. We reduce the maximum degree to d = 4
in both cases: i.e., 4-Star Colourability and 5-Star Colourability are
NP-complete for graphs of maximum degree four.

It is easy to show that for all k and d, the time complexity of k-
Colourability is the same for graphs of maximum degree d and d-regular
graphs (i.e., the problem is either in P for both classes or NP-complete for both
classes). Such a property does not hold in general for star colouring: 3-Star
Colourability is NP-complete for graphs of maximum degree four [9] whereas
it is in P for 4-regular graphs [15]. We show that for k ≥ 3 and d < k, the
time complexity of k-Star Colourability is the same for graphs of maximum
degree d and d-regular graphs. We briefly discuss the consequences of our results
to hardness transitions of the problem k-Star Colourability restricted to the
class of graphs of maximum degree d (resp. d-regular graphs).

The paper is organized as follows. See Sect. 2 for definitions. The hardness
results on bounded degree graphs and regular graphs appear in Sects. 3 and 4,
respectively.

2 Definitions

All graphs considered in this paper are finite, simple and undirected. We follow
West [14] for graph theory terminology and notation. The girth of a graph G is the
length of a shortest cycle in G. A k-colouring of a graph G is a function f from

80 M. A. Shalu and C. Antony

the vertex set of G to a set of k colours, say {0, 1, . . . , k − 1}, such that f maps
every pair of adjacent vertices to different colours. A k-colouring f of G is a k-star
colouring if G does not contain a 4-vertex path bicoloured by f as a subgraph.

For every positive integer k, the decision problem k-Colourability takes
a graph G as input and asks whether G is k-colourable. The problem k-Star
Colourability is defined likewise. To denote the restriction of a decision prob-
lem, we write the conditions in parenthesis. For instance, 4-Star Colourabil-
ity(Δ = 4, girth= 5) denotes the problem 4-Star Colourability restricted
to the class of graphs G with the maximum degree Δ(G) = 4 and girth(G) = 5.
For every construction in this paper, the output graph is made up of gadgets.
For every gadget, only some of the vertices in it are allowed to have edges to
vertices outside the gadget; we call these vertices as terminals. In diagrams, we
draw a circle around each terminal. A decision problem is said to have a hard-
ness transition with respect to a parameter d at a point d = x if either (i) the
problem is in P for d = x−1 and it is NP-complete for d = x, or (ii) the problem
is NP-complete for d = x − 1 and it is in P for d = x.

3 Bounded Degree Graphs

In this section, we prove that 4-Star Colourability and 5-Star Coloura-
bility are NP-complete for graphs of maximum degree four. To this end, we
employ two similar constructions named Construction 1 and Construction 2.
Detailed proofs are omitted from Sect. 3.1 due to space constraints.

3.1 4-Star Colouring

We use Petersen graph minus one vertex as the gadget component to build
gadgets in Construction 1.

Construction 1.
Input: A 4-regular graph G.
Output: A graph G′ of maximum degree four and girth five.
Guarantee: G is 3-colourable if and only if G′ is 4-star colourable.
Steps:
Let v1, v2, . . . , vn be the vertices in G. First, replace each vertex of G by a vertex
gadget as shown in Fig. 1. The vertex gadget for vi has five terminals, and the
terminals vi,1, vi,2, vi,3, vi,4 accommodate the four edges incident on vi in G in a
one-to-one fashion (order does not matter). So, corresponding to each edge vivj

in G, there is an edge vi,kvj,� in G′ for some k, � ∈ {1, 2, 3, 4}. Finally, introduce
the chain gadget displayed in Fig. 2, and join vi,0 to v∗

i for i = 1, 2, . . . , n.

Proof of Guarantee (Overview). The following claims are pivotal to the proof.

Claim 1: Every 4-star colouring of the gadget component (i.e., Petersen graph
minus one vertex) must assign the same colour on all three degree-2 vertices of
the gadget component.

The Complexity of Star Colouring in Bounded Degree and Regular Graphs 81

vi

4 edges

vi,1vi,0 vi,2 vi,3 vi,4

Fig. 1. Replacement of vertex by vertex gadget.

v∗
1 v∗

2 v∗
i

. . .
v∗
n

. . .

Fig. 2. Chain gadget in Construction 1.

Claim 2: For every 4-star colouring of the vertex gadget (resp. chain gadget),
all terminals of the gadget get the same colour.

Claim 3: For every v ∈ V (G) and every colour c �= 0, the vertex gadget for
v admits a 4-star colouring such that all terminals of the gadget have colour c,
no neighbour of vi,0 is coloured 0, and neighbours of vi,1, vi,2, vi,3, vi,4 are all
coloured 0.

Claim 4: The chain gadget admits a 4-star colouring such that all terminals of
the gadget get colour 0.

The proofs of Claims 1, 3 and 4 are omitted. Claim 2 follows from Claim 1.
Suppose that G admits a 3-colouring f : V (G) → {1, 2, 3}. The following

steps give a 4-star colouring of G′: (i) for each v ∈ V (G), choose c = f(v)
and colour the vertex gadget for v by the colouring guaranteed in Claim 3, and
(ii) colour the chain gadget by the colouring guaranteed in Claim 4.

Conversely, suppose that G′ admits a 4-star colouring f ′. By Claim 2, all
terminals of a vertex gadget (resp. chain gadget) get the same colour under f ′.
Without loss of generality, assume that f ′(v∗

i) = 0 for i = 1, 2, . . . , n. Since vi,0v
∗
i

is an edge for 1 ≤ i ≤ n, the chain gadget forbids colour 0 at vertices vi,j for
1 ≤ i ≤ n and 1 ≤ j ≤ 4. Therefore, the function f : V (G) → {1, 2, 3} defined as
f(vi) = f ′(vi,0) for 1 ≤ i ≤ n is a 3-colouring of G.
�

Construction 1 establishes a reduction from 3-Colourability(4-regular) to
4-Star Colourability(Δ = 4, girth = 5). Note that Construction 1 requires
only time polynomial in m+n because |E(G′)| = 61n+m and |V (G′)| = 41n+1
(where m = |E(G)| and n = |V (G)|). Thus, we have the following theorem.

Theorem 1. 4-Star Colourability is NP-complete for graphs of maximum
degree four and girth five.
�

82 M. A. Shalu and C. Antony

3.2 5-Star Colouring

We show that 5-Star Colourability is NP-complete for graphs of maxi-
mum degree four. Construction 2 below is employed to establish a reduction
from 3-Colourability(4-regular) to 5-Star Colourability(triangle-free, 4-
regular). Construction 2 is similar to Construction 1, albeit a bit more com-
plicated. For instance, we will need two chain gadgets this time because two
colours should be forbidden. The gadgets used in the construction are made of
two gadgets called 2-in-2-out gadget and not-equal gadget. These are in turn
made of one fixed graph namely Grötzsch graph minus one vertex; we call it the
gadget component (in Construction 2) for obvious reason. The gadget compo-
nent is displayed in Fig. 3a. The following lemma explains why it is interesting
for 5-star colouring (the proof is omitted).

Lemma 1. Under every 5-star colouring of the gadget component, the degree-2
vertices of the graph should get pair-wise distinct colours. Moreover, every 5-star
colouring of the gadget component must be of the form displayed in Fig. 3b or
Fig. 3c upto colour swaps.

v1

v2 v3

v4
v5

w1

w2 w3

w4

w5

(a)

v10

v2

1

v3

2

v4 3
v5

4
w1

2

3
w2

4
w3

0

w4

1
w5

(b)

v10

v2

1

v3

2

v4 3
v5

4
w1

3

4
w2

0
w3

1
w4

2
w5

(c)

Fig. 3. (a) Gadget component, (b, c) General form of 5-star colouring of it.

The 2-in-2-out gadget is displayed in Fig. 4. Observe that two copies of the
gadget component are part of this gadget. The following lemma shows why 5-star
colouring of this gadget is interesting (the proof is omitted).

Lemma 2. For every 5-star colouring f of the 2-in-2-out gadget, there exist two
distinct colours c1 and c2 such that f(y1) = f(y2) = f(z∗

1) = f(z∗
2) = c1 and

f(y∗
1) = f(y∗

2) = f(z1) = f(z2) = c2. Moreover, every 3-vertex path containing
one of the pendant edges of the gadget is tricoloured by f .

The not-equal gadget is the graph displayed in Fig. 5. The not-equal gadget
is made from one 2-in-2-out gadget by identifying vertex y∗

1 of the 2-in-2-out
gadget with vertex y∗

2 and identifying vertex z∗
1 with vertex z∗

2 . Hence, the next
lemma follows from Lemma 2 (note that c1 �= c2 in Lemma 2).

The Complexity of Star Colouring in Bounded Degree and Regular Graphs 83

u1

u2 u3

u4

u5

x1

x2 x3

x4

x5

v1

v2 v3

v4
v5

w1 w4

w5

y1 y2

y∗
1 y∗

2

z1 z2

z∗
1 z∗

2

(a)

⇓

y∗
1 y∗

2

z∗
1 z∗

2

(b)

u14

u2

2

u3

0

u4 1
u5

3

x1

1

x2 x3

x4

2

x5
0

v10

v2

1

v3

2

v4 3
v5

4
w1

2

3 4

w4

0

w5
1

y1 4 y24

y∗
1 3 y∗

23

z1 3 z23

z∗
1 4 z∗

24

(c)

Fig. 4. (a) The 2-in-2-out gadget, (b) its symbolic representation, and (c) a 5-star
colouring of the gadget.

Lemma 3. The terminals of the not-equal gadget should get different colours
under each 5-star colouring f . Moreover, every 3-vertex path within the gadget
with a terminal as one endpoint is tricoloured by f .
�

We are now ready to present the construction.

Construction 2.

Input: A 4-regular graph G.
Output: A triangle-free graph G′ of maximum degree four.
Guarantee: G is 3-colourable if and only if G′ is 5-star colourable.
Steps:
Let v1, v2, . . . , vn be the vertices in G. First, replace each vertex vi of G by a ver-
tex gadget as shown in Fig. 6. The vertex gadget for vi has six terminals namely
vi,0, vi,1, vi,2, vi,3, vi,4 and vi,5. The terminals vi,1, vi,2, vi,3, vi,4 accommodate the
edges incident on vi in G. The replacement of vertices by vertex gadgets con-
verts each edge vivj of G to an edge between terminals vi,k and vj,� for some
k, � ∈ {1, 2, 3, 4}.

84 M. A. Shalu and C. Antony

Fig. 5. (a) A not-equal gadget between terminals y and z (it is made of one 2-in-2-out
gadget), and (b) its symbolic representation.

Next, replace each edge vi,k vj,� between terminals by a not-equal gadget
between vi,k and vj,� (that is, introduce a not-equal gadget, identify one terminal
of the gadget with vertex vi,k and identify the other terminal with the vertex
vj,�). Next, introduce two chain gadgets. The chain gadget is displayed in Fig. 7.

Next, add a not-equal gadget between vi,0 and v∗
i,1 for 1 ≤ i ≤ n. Similarly,

introduce a not-equal gadget between vi,5 and v∗
i,2 for 1 ≤ i ≤ n. Finally, add a

not-equal gadget between x1,1 and x1,2.

Proof of Guarantee. For convenience, let us call the edges y1y
∗
1 , y2y

∗
2 of a 2-in-2-

out gadget (see Fig. 4) as in-edges of the 2-in-2-out gadget, edges z1z
∗
1 , z2z

∗
2 as

out-edges of the 2-in-2-out-gadget, vertices y∗
1 , y

∗
2 as in-vertices of the 2-in-2-out

gadget, and vertices z∗
1 , z

∗
2 as out-vertices of the 2-in-2-out gadget. The next

claim follows from Lemma 2.

Claim 1: If an in-edge of a 2-in-2-out gadget is an out-edge of another 2-in-2-
out gadget, the colour of the out-vertices of both gadgets must be the same.

Next, we point out a property of the vertex gadget and the chain gadget.

Claim 2: All terminals of a vertex gadget (resp. chain gadget) should get the
same colour under a 5-star colouring.

By Claim 1, if an in-edge of a 2-in-2-out gadget is an out-edge of another
2-in-2-out gadget, the colour of out-vertices of both gadgets must be the same.
Repeated application of this idea proves Claim 2.

We are now ready to prove the guarantee. Suppose that G admits a 3-
colouring f : V (G) → {2, 3, 4}. A 5-colouring f ′ : V (G′) → {0, 1, 2, 3, 4} of G′ is

The Complexity of Star Colouring in Bounded Degree and Regular Graphs 85

Fig. 6. Replacement of vertex by vertex gadget.

constructed as follows. First, assign f ′(vi,j) = f(vi) for 1 ≤ i ≤ n and 0 ≤ j ≤ 5.
Extend this into a 5-star colouring of the vertex gadget by using the scheme in
Fig. 4c on each 2-in-2-out-gadget within the vertex gadget (use the scheme in
Fig. 4c if f ′(vi,j) = 4; suitably swap colours in other cases). To colour the first
chain gadget, colour each 2-in-2-out gadget within this chain gadget using the
scheme obtained from Fig. 4c by swapping colour 4 with colour 0. Similarly, for
the second chain gadget, colour each 2-in-2-out gadget within the chain gadget
using the scheme obtained from Fig. 4c by swapping colour 4 with colour 1. To
complete the colouring, it suffices to extend the partial colouring to not-equal
gadgets. For each not-equal gadget between two terminals, say terminal y and
terminal z, colour the 2-in-2-out gadget within the not-equal gadget using the
scheme obtained from Fig. 4c by swapping colour 3 with colour f ′(y) and swap-
ping colour 4 with colour f ′(z).

By Lemma 2 and Lemma 3 (see the second statements in both lemmas),
every 3-vertex path in any gadget in G′ containing a terminal of the gadget as
an endpoint is tricoloured by f ′. In addition, the construction of the graph G′

is merely glueing together terminals of different gadgets. Therefore, there is no
P4 in G′ bicoloured by f ′; that is, f ′ is a 5-star colouring of G′.

Conversely, suppose that G′ admits a 5-star colouring f ′ : V (G′) →
{0, 1, 2, 3, 4}. By Claim 2, all terminals of a vertex/chain gadget should have
the same colour under f ′. As there is a not-equal gadget between x1,1 and
x1,2, f ′(x1,1) �= f ′(x1,2) (by Lemma 3). Without loss of generality, assume
that f ′(x1,1) = 0 and f ′(x1,2) = 1. By Claim 2, all terminals of the first
chain gadget have colour 0; that is, f ′(x1,1) = f(x2,1) = f ′(v∗

i,1) = 0 for
1 ≤ i ≤ n. Similarly, all terminals of the second chain gadget have colour 1;
that is, f ′(x1,2) = f ′(x2,2) = f ′(v∗

i,2) = 1 for 1 ≤ i ≤ n. By Claim 2,

86 M. A. Shalu and C. Antony

Fig. 7. t-th chain gadget in Construction 2 if n is even where t = 1 or 2. If n is odd, the
t-th chain gadget is the same except that it has only n + 1 terminals v∗

1,t, v
∗
2,t, . . . , v

∗
n,t

and x1,t. A chain gadget is similar to a vertex gadget; the only difference is that it has
more levels and terminals.

all terminals of the vertex gadget for v1 have the same colour under f ′, say
colour c. Since there is a not-equal gadget between v1,0 and v∗

1,1, we have
c = f ′(v1,0) �= f ′(v∗

1,1) = 0. Since there is a not-equal gadget between v1,5 and
v∗
1,2, we have c = f ′(v1,5) �= f ′(v∗

1,2) = 1. So, c ∈ {2, 3, 4}. Hence, for 0 ≤ j ≤ 5,
f ′(v1,j) ∈ {2, 3, 4}. Similarly, for 1 ≤ i ≤ n and 0 ≤ j ≤ 5, f ′(vi,j) ∈ {2, 3, 4}.
Moreover, whenever vivj is an edge in G, there is a not-equal gadget between ter-
minals vi,k and vj,� in G′ for some k, � ∈ {1, 2, 3, 4} and hence f ′(vi,k) �= f ′(vj,�).
Therefore, the function f : V (G) → {2, 3, 4} defined as f(vi) = f ′(vi,0) is indeed
a 3-colouring of G. This proves the converse part and thus the guarantee.
�
Theorem 2. 5-Star Colourability is NP-complete for triangle-free graphs
of maximum degree four.

Proof. We employ Construction 2 to establish a reduction from 3-
Colourabilty(4-regular) to 5-Star Colourability(triangle-free, Δ = 4).
Let G be an instance of 3-Colourabilty(4-regular). From G, construct an
instance G′ of 5-Star Colourability(triangle-free, Δ = 4) by Construction 2.

Let m = |E(G)| and n = |V (G)|. In G′, there are at most 6n+m+2(1+2+
· · · + �(n + 1)/2� + n) + 1 ≤ 1

4 (n2 + 46n + 12) 2-in-2-out gadgets and in addition
at most 16n + 8 vertices and 32n + 12 edges. So, G′ can be constructed in time
polynomial in n. By the guarantee in Construction 2, G is 3-colourable if and
only if G′ is 5-star colourable.
�

The Complexity of Star Colouring in Bounded Degree and Regular Graphs 87

4 Regular Graphs

We prove that for all k ≥ 3 and d < k, the complexity of k-Star Colourability
is the same for graphs of maximum degree d and d-regular graphs. That is, for
all k ≥ 3 and d < k, k-Star Colourability restricted to graphs of maximum
degree d is in P (resp. NP-complete) if and only if k-Star Colourability
restricted to d-regular graphs is in P (resp. NP-complete). First, we show that
for all k ≥ 3, the complexity of k-Star Colourability is the same for graphs
of maximum degree k − 1 and (k − 1)-regular graphs.

Construction 3.
Parameter: An integer k ≥ 3.
Input: A graph G of maximum degree k − 1.
Output: A (k − 1)-regular graph G′.
Guarantee 1: G is k-star colourable if and only if G′ is k-star colourable.
Guarantee 2: If G is triangle-free (resp. bipartite), then G′ is triangle-free (resp.
bipartite).
Steps:
Introduce two copies of G. For each vertex v of G, introduce (k − 1) − degG(v)
filler gadgets (see Fig. 8) between the two copies of v.

...

...k − 2
v v

Fig. 8. A filler gadget for v ∈ V (G).

It is easy to show that each k-star colouring of G can be extended into a
k-star colouring of G′ (detailed proofs of the guarantees in Construction 3 are
omitted). Thanks to Construction 3, we have the following theorem.

Theorem 3. For all k ≥ 3, the complexity of k-Star Colourability is the
same for graphs of maximum degree k−1 and (k−1)-regular graphs. In addition,
for k ≥ 3, the complexity of k-Star Colourability is the same for triangle-
free (resp. bipartite) graphs of maximum degree k − 1 and triangle-free (resp.
bipartite) (k − 1)-regular graphs.
�

By Theorem 3, the complexity of 5-Star Colourability is the same for
triangle-free graphs of maximum degree four and triangle-free 4-regular graphs.
Thus, by Theorem 2, we have the following.

Theorem 4. 5-Star Colourability is NP-complete for triangle-free 4-
regular graphs.
�

88 M. A. Shalu and C. Antony

Construction 4.

Parameters: Integers k ≥ 3 and d < k.
Input: A graph G of maximum degree d.
Output: A d-regular graph G∗.
Guarantee: G is k-star colourable if and only if G∗ is k-star colourable.
Steps:
Introduce two copies of G. For each vertex v of G, introduce d − degG(v) filler
gadgets (see Fig. 9) between the two copies of v.

Fig. 9. A filler gadget for v ∈ V (G).

To prove the guarantee, observe that G is a subgraph of G∗ and G∗ is a sub-
graph of G′ (the output graph in Construction 3). Thus, we have the following.

Theorem 5. For all k ≥ 3 and d < k, the complexity of k-Star Coloura-
bility is the same for (triangle-free/bipartite) graphs of maximum degree d and
(triangle-free/bipartite) d-regular graphs.
�

5 Conclusion

A decision problem has a hardness transition with respect to a parameter d at a
point d = x if either (i) the problem is in P for d = x−1 and it is NP-complete for
d = x, or (ii) the problem is NP-complete for d = x−1 and it is in P for d = x (see
[8]). For all k ≥ 3, the problem k-Colourability restricted to graphs of maxi-
mum degree d has exactly one point of hardness transition with respect to d (to
produce a reduction, add a disjoint copy of K1,d+1). By the same reasoning, star
colouring displays similar behaviour when restricted to bounded degree graphs.
That is, the problem k-Star Colourability restricted to graphs of maximum
degree d has exactly one point of hardness transition (w.r.t. d), say d = T

(k)
1 . For

sufficiently large k, d = k − 1 + �√k� is the unique point of hardness transition
(w.r.t. d) for the problem k-Colourability restricted to graphs of maximum
degree d (see [4] and [11, Theorem 43]). In contrast, for the problem k-Star
Colourability in graphs of maximum degree d, the unique point of hardness
transition (namely T

(k)
1) is unknown even for sufficiently large k. Since 4-Star

The Complexity of Star Colouring in Bounded Degree and Regular Graphs 89

Colourability and 5-Star Colourability are NP-complete for graphs of
maximum degree four (see Theorems 1 and 2), T

(4)
1 ≤ 4 and T

(5)
1 ≤ 4.

In a forthcoming (unpublished) paper, we prove that for all k ≥ 4, T
(k)
1 ≤ k.

We suspect that for all k ≥ 5, T
(k)
1 ≤ k − 1.

When it comes to the class of regular graphs, colouring shows the same
behaviour as in the class of bounded degree graphs because k-Colourability
is NP-complete for d-regular graphs if and only if k-Colourability is NP-
complete for graphs of maximum degree d. Such a property does not hold in
general for star colouring; for example, 3-Star Colourability is NP-complete
for graphs of maximum degree four [9] whereas it is in P for 4-regular graphs [15].
We show that for all k ≥ 3 and d < k, the complexity of k-Star Colourability
is the same for graphs of maximum degree d and d-regular graphs. The following
observation is a consequence of this (the proof is omitted).

Observation 1. If k ≥ 3 and T
(k)
1 ≤ k − 1, then between d = 1 and d = k − 1,

the problem k-Star Colourability in d-regular graphs has exactly one point
of hardness transition (w.r.t. d) namely d = T

(k)
1 .

In a forthcoming (unpublished) paper, we show that for all k ≥ 4, the problem
k-Star Colourability is NP-complete for graphs of maximum degree k and
polynomial-time solvable for d-regular graphs for each d > 2k−4. In particular, 5-
Star Colourability is polynomial-time solvable for d-regular graphs for each
d > 6. Since 5-Star Colourability in d-regular graphs is NP-complete for d =
4 (see Theorem 4) and in P for d ≤ 2 as well as d > 6, 5-Star Colourability
in d-regular graphs has at least two points of hardness transition. In general,
for k ≥ 5, k-Star Colourability in d-regular graphs has either zero or at
least two points of hardness transition (the latter is more likely). We conjecture
that there are exactly two points of hardness transition and the second point of
hardness transition is close to 2k − 4.

Conjecture 1. For k ≥ 5, the problem k-Star Colourability in d-regular
graphs has exactly two points of hardness transition d = T

(k)
1 and d = T

(k)
2 , and

the second point of hardness transition T
(k)
2 satisfies |T (k)

2 − (2k − 4)| ≤ 1.

Acknowledgements. The first author is supported by SERB(DST), MATRICS
scheme MTR/2018/000086. We thank Kirubakaran V. K. and three anonymous referees
for their suggestions.

References

1. Albertson, M.O., Chappell, G.G., Kierstead, H.A., Kündgen, A., Ramamurthi, R.:
Coloring with no 2-colored P4’s. Electron. J. Comb. 11(1), 26 (2004). https://doi.
org/10.37236/1779

https://doi.org/10.37236/1779
https://doi.org/10.37236/1779

90 M. A. Shalu and C. Antony

2. Bok, J., Jedlic̆ková, N., Martin, B., Paulusma, D., Smith, S.: Acyclic, star and
injective colouring: a complexity picture for H-free graphs. In: Grandoni, F.,
Herman, G., Sanders, P. (eds.) 28th Annual European Symposium on
Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 173, pp. 22:1–22:22. SchlossDagstuhl-Leibniz-Zentrumfür Informatik,Dagstuhl,
Germany (2020). https://doi.org/10.4230/LIPIcs.ESA.2020.22

3. Coleman, T.F., Moré, J.J.: Estimation of sparse Jacobian matrices and graph col-
oring problems. SIAM J. Numer. Anal. 20(1), 187–209 (1983)

4. Emden-Weinert, T., Hougardy, S., Kreuter, B.: Uniquely colourable graphs and
hardness of colouring graphs of large girth. Comb. Probab. Comput. 7(4), 375–386
(1998). https://doi.org/10.1017/S0963548398003678

5. Gebremedhin, A.H., Tarafdar, A., Manne, F., Pothen, A.: New acyclic and star
coloring algorithms with application to computing Hessians. SIAM J. Sci. Comput.
29(3), 1042–1072 (2007). https://doi.org/10.1137/050639879

6. Gebremedhin, A.H., Manne, F., Pothen, A.: What color is your Jacobian? Graph
coloring for computing derivatives. SIAM Rev. 47(4), 629–705 (2005). https://doi.
org/10.1137/S0036144504444711

7. Grünbaum, B.: Acyclic colorings of planar graphs. Israel J. Math. 14, 390–408
(1973). https://doi.org/10.1007/BF02764716

8. mikero (https://cstheory.stackexchange.com/users/149/mikero): Parameterized
complexity from P to NP-hard and back again. Theoretical Computer Science
Stack Exchange. https://cstheory.stackexchange.com/q/3473, (version: 13 April
2017)

9. Lei, H., Shi, Y., Song, Z.X.: Star chromatic index of subcubic multigraphs. J. Graph
Theory 88(4), 566–576 (2018). https://doi.org/10.1002/jgt.22230

10. Lyons, A.: Acyclic and star colorings of cographs. Discret. Appl. Math. 159(16),
1842–1850 (2011). https://doi.org/10.1016/j.dam.2011.04.011

11. Molloy, M., Reed, B.: Colouring graphs when the number of colours is almost the
maximum degree. J. Comb. Theory Ser. B 109, 134–195 (2014). https://doi.org/
10.1016/j.jctb.2014.06.004

12. Omoomi, B., Roshanbin, E., Dastjerdi, M.V.: A polynomial time algorithm to find
the star chromatic index of trees. Electron. J. Comb. 28(1) (2021). https://doi.
org/10.37236/9202. Article No. 16

13. Shalu, M.A., Antony, C.: The complexity of restricted star colouring. Discret.
Appl. Math. (2021, in press). https://doi.org/10.1016/j.dam.2021.05.015. Avail-
able online: 31 May 2021

14. West, D.B.: Introduction to graph theory, 2nd edn. Prentice Hall, Upper Saddle
River (2001)

15. Xie, D., Xiao, H., Zhao, Z.: Star coloring of cubic graphs. Inf. Process. Lett.
114(12), 689–691 (2014). https://doi.org/10.1016/j.ipl.2014.05.013

https://doi.org/10.4230/LIPIcs.ESA.2020.22
https://doi.org/10.1017/S0963548398003678
https://doi.org/10.1137/050639879
https://doi.org/10.1137/S0036144504444711
https://doi.org/10.1137/S0036144504444711
https://doi.org/10.1007/BF02764716
https://cstheory.stackexchange.com/users/149/mikero
https://cstheory.stackexchange.com/q/3473
https://doi.org/10.1002/jgt.22230
https://doi.org/10.1016/j.dam.2011.04.011
https://doi.org/10.1016/j.jctb.2014.06.004
https://doi.org/10.1016/j.jctb.2014.06.004
https://doi.org/10.37236/9202
https://doi.org/10.37236/9202
https://doi.org/10.1016/j.dam.2021.05.015
https://doi.org/10.1016/j.ipl.2014.05.013

On Conflict-Free Spanning Tree:
Algorithms and Complexity

Bruno José S. Barros1, Luiz Satoru Ochi1, Rian Gabriel S. Pinheiro2,
and Uéverton S. Souza1(B)

1 Instituto de Computação, Universidade Federal Fluminense, Niterói, Brazil
bruno barros@id.uff.br, {satoru,ueverton}@ic.uff.br

2 Instituto de Computação, Universidade Federal de Alagoas, Maceió, Brazil
rian@ic.ufal.br

Abstract. A natural constraint in real-world applications is to avoid
conflicting elements in the solution of problems. Given an undirected
graph G = (V, E) where each edge e ∈ E has a positive integer weight
ω(e), and a conflict graph Ĝ = (V̂ , Ê) such that V̂ ⊆ E and each edge
ê = (e1, e2) ∈ Ê represents a conflict between two edges e1, e2 ∈ E, in
the Minimum Conflict-Free Spanning Tree (MCFST) problem we
are asked to find (if any) a spanning tree avoiding pairs of conflicting
edges (conflict-free) with minimum cost, i.e., a minimum solution among
spanning trees T such that E(T) is an independent set of Ĝ. A spanning
tree T of G is a feasible solution for an instance I = (G, Ĝ) of MCFST if
E(T) is an independent set of Ĝ. In contrast to the polynomial-time solv-
ability of Minimum Spanning Tree, to determine whether an instance
I = (G, Ĝ) of MCFST admits a feasible solution is NP-complete. In this
paper, we present a multivariate complexity analysis of MCFST by con-
sidering particular classes of graphs G and Ĝ. In particular, we show that
the problem of determining whether an instance I = (G, Ĝ) of MCFST
has a feasible solution is NP-complete even if G is a bipartite planar
subcubic graph, and Ĝ is a disjoint union of paths of size three (P3).
Moreover, we show that whether G is a complete graph and Ĝ is a dis-
joint union of stars, then a feasible solution for I = (G, Ĝ) can be found
in polynomial time. In addition, we present (in)approximability results
for MCFST on complete graphs G, and an FPT algorithm parameter-
ized by the distance to F of the conflict graph Ĝ, where F is a hereditary
graph class such that MCFST on conflict graphs Ĝ ∈ F can be solved
in polynomial time.

Keywords: Conflict-free · Spanning tree · Approximation · FPT

1 Introduction

Given an edge-weighted graph G, the Minimum Spanning Tree (MST) prob-
lem consists of finding a spanning tree of G having minimum cost, where the

Supported by CAPES, CNPq, and FAPERJ.

c© Springer Nature Switzerland AG 2022
N. Balachandran and R. Inkulu (Eds.): CALDAM 2022, LNCS 13179, pp. 91–102, 2022.
https://doi.org/10.1007/978-3-030-95018-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95018-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-95018-7_8

92 B. J. S. Barros et al.

cost is the sum of the weights of its edges. MST is a very important problem
with application in several areas. Besides that, the MST problem can be solved
in polynomial time by either Kruskal or Prim algorithms [9,13]. A survey on
MST can be found in [8].

Conflict-free variants of classical decision and optimization problems have
aroused considerable interest and have been studied in the recent literature. A
classical computational problem X can be turned into a conflict-free version of
X by coupling a conflict graph Ĝ together with the instances IX of X . In such
a conflict graph, the vertices represent elements of IX , and its edges represent
pairs of elements that are prohibited from being mutually in the same solution.
A solution for an instance (IX , Ĝ) of the conflict-free version of X represents,
simultaneously, an independent set in Ĝ and a solution for the instance IX of X .

Several optimization problems have already been studied from the viewpoint
of conflict-free versions, such as Bin Packing [1,7], Knapsack [11], Max-
imum Matching and Shortest Path [3]. In this work, we deal with the
conflict-free versions of the Minimum Spanning Tree problem. The Conflict-
Free Spanning Tree (CFST) problem was introduced in [2] and consists in
determining if a graph G has a conflict-free spanning tree according to a con-
flict graph Ĝ representing conflicts between edges. In addition, the Minimum
Conflict-Free Spanning Tree (MCFST) problem consists in finding a min-
imum conflict-free spanning tree (if any) of (G, Ĝ) where G is an edge-weighted
simple graph. Below we formally present both problems.

Conflict-Free Spanning Tree (CFST)
Input: A simple undirected graph G = (V,E), and a conflict graph Ĝ = (V̂ , Ê),
where V̂ ⊆ E(G).
Question: Is there a spanning tree T of G such that T induces an independent
set in Ĝ?

Minimum Conflict-Free Spanning Tree (MCFST)
Input: A simple undirected graph G = (V,E) where each edge e ∈ E has a
positive integer weight ω(e), and a conflict graph Ĝ = (V̂ , Ê), where V̂ ⊆ E.
Goal: Find (if any) a conflict-free spanning tree of (G, Ĝ) which minimizes the
sum of its edge weights.

Note that given a simple undirected edge-weighted graph G = (V,E), and a
conflict graph Ĝ = (V̂ , Ê) of G, the Conflict-Free Spanning Tree problem
consists in determining whether (G, Ĝ) admits a feasible solution, while MCFST
is the natural conflict-free minimization version of Minimum Spanning Tree.

In [3], the authors proved that CFST remains NP-hard even when the conflict
graph is a disjoint union of paths of size three (P3’s - paths of length 2). Also, they
show that if the conflict graph is a disjoint union of paths of size 2 (P2’s -paths
of length 1), then MCFST becomes polynomial-time solvable. In addition, when

On Conflict-Free Spanning Tree: Algorithms and Complexity 93

the underlying graph G is a cactus it holds that CFST (the feasibility problem)
is polynomial-time solvable, but MCFST (the optimization version) is still NP-
hard [16]. Another interesting result obtained by [16] is that if the conflict graph
is a cluster graph (disjoint union of cliques), then MCFST can be solved in
polynomial-time. In addition, a unifying model for locally constrained spanning
tree problems was presented in [5].

In this paper, we present a multivariate complexity analysis of MCFST by
considering particular classes of graphs G and Ĝ. In particular, we show that
the problem of determining whether an instance I = (G, Ĝ) admits a feasible
solution is NP-complete even when G is a bipartite planar subcubic graph, and
Ĝ is a disjoint union of paths of size three. Moreover, we show that whether G is a
complete graph and Ĝ is a disjoint union of stars, then a feasible solution for I =
(G, Ĝ) can be found in polynomial time, while the problem of finding an optimum
solution still NP-hard. Finally, concerning MCFST, (in)approximability results
on complete graphs G, and an FPT algorithm parameterized by the distance to
F of Ĝ are also presented, where F is any hereditary graph class such that
MCFST on conflict graphs Ĝ ∈ F can be solved in polynomial time.

2 Preliminaries

Graphs

We consider a simple undirected graph G = (V,E) (or just a graph, for short) as
a pair of sets such that V (G) is the set of vertices and E(G) is the set of edges,
where each edge connects a distinct pair of vertices. When two vertices share an
edge they are “adjacent” (or “neighbors”). The number of neighbors of a vertex
v is called the degree of v. An induced subgraph of a graph G is another graph,
formed from a subset X of V (G) and all of the edges of G connecting pairs of
vertices in X. For X ⊆ V (G), we denote by G[X] the subgraph of G induced
by X. A set X ⊆ V (G) is an independent set of G if G[X] does not contain any
edge. A complete graph, Kn, is a simple graph with n vertices and n2−n

2 edges.
A clique of a graph G is a subgraph of G that is complete. A path is a sequence
of vertices that do not repeat any vertex, and each pair of consecutive vertices
in the sequence are adjacent in the graph. A cycle is a path where the first and
last vertex of the sequence are also adjacent. Vertices v1 and v2 are connected if
there is a path beginning with v1 and ending with v2. A graph G is connected if
every pair of vertices in G is connected. A graph that is not connected is called
disconnected. A tree is a connected graph having no cycle. A star is a tree having
a vertex v called center (or root) such that all remaining vertices are adjacent to
v. A connected component of a graph G is a maximal connected subgraph of G. If
each connected component of G is a clique then G is a cluster graph. We named
G[X] as a block of G if G[X] is connected, there is no v ∈ X such that G[X \{v}]
is disconnected, and X is maximal with respect to such properties. A graph G
is subcubic if each vertex of G has degree at most three. An induced path of a
graph G is a path that is an induced subgraph of G, i.e., nonadjacent vertices

94 B. J. S. Barros et al.

in the sequence are not connected by an edge in G. An induced path with n
vertices is a Pn. We denote by Ev the set of edges incident to v. A spanning tree
T of a graph G is a subgraph of G that is a tree and contains all vertices of G.

Given a graph G = (V,E) where each edge e ∈ E has a positive integer weight
ω(e), the Minimum Spanning Tree problem consists in finding a spanning tree
with the minimum cost, where its cost is the sum of its edge weights. The conflict
graph of an instance G of Minimum Spanning Tree is denoted by Ĝ and its
vertex set is formed only by edges of G.

SAT and Its Variants

Given a CNF Boolean formula F , the SAT problem consists of determining if
there exists an assignment to the variables of F that satisfies the formula. 3SAT
is the particular case of SAT where each clause has at most three literals, and
its subcase where each variable occurs at most three times is denoted by 3SAT3.
3SAT as well as 3SAT3 are classical NP-complete problems extensively used in
NP-hardness proofs.

Let F be a CNF Boolean formula, and let BF be the bipartite incidence
graph where the vertices represent the variables and clauses of F , and the edges
represent the occurrence of variables in clauses. When the instances are restricted
to formulas having a planar embedding for their bipartite incidence graphs, these
particular cases are called Planar SAT, Planar 3SAT, and Planar 3SAT3

respectively, and all remain NP-complete.
It is useful to consider additional constraints concerning the bipartite inci-

dence graph of the formulas to prove the NP-hardness of problems in special
graph classes. In addition to the constraint of being planar, if we add a Hamil-
tonian cycle that goes through all the variable nodes, and the incidence graph
is still planar, then we have a Var-Linked Planar instance. Besides, if all vari-
able nodes can be drawn as straight line segments in the x axis and all clauses
can be drawn as horizontal lines, connected to the variable nodes by at most 3
vertical segments also known as three-legged embedding [6,12], then we have a
Rectilinear Var-Linked Planar 3SAT instance.

Tippenhauer [14] showed that Var-Linked Planar 3SAT is equivalent to
Rectilinear Var-Linked Planar 3SAT, and from a planar embedding of
the incidence graph BF a rectilinear var-linked planar embedding can be easily
drawn for BF . Thus, whenever convenient, we can assume rectilinear embeddings
for instances of Var-Linked Planar 3SAT.

In [10], it was shown that Var-Linked Planar 3SAT is NP-complete even
when all variables occur exactly three times with two positive and one negative
occurrence, and no variable appears more than once in the same clause. This,
together with the equivalence provided by [14], implies that Rectilinear Var-
Linked Planar 3SAT3 is NP-complete.

3 Computational Complexity

In this section, we present some new theoretical results concerning CFST.

On Conflict-Free Spanning Tree: Algorithms and Complexity 95

NP-completeness

Using a reduction from Rectilinear Var-Linked Planar 3SAT3 we show
that Conflict-Free Spanning Tree (CFST) remains NP-complete even
when the input graph G is bipartite planar and subcubic, and the conflict graph
Ĝ is a disjoint union of induced paths of size three.

Theorem 1. Conflict-Free Spanning Tree is NP-complete even when G
is a bipartite planar subcubic graph, and the conflict graph Ĝ is a disjoint union
of P3’s (induced paths with three vertices).

Proof. It is easy to see that Conflict-Free Spanning Tree is in NP. There-
fore, it is enough to show the NP-hardness. Let F be an instance of Recti-
linear Var-Linked Planar 3SAT3 where all variables occur exactly three
times with one negative and two positive occurrences. From F we construct an
instance (G, Ĝ) of Conflict-Free Spanning Tree as follows.

Let BF be the bipartite incidence graph of F . Considering a rectilinear var-
linked planar embedding of BF , we use such an embedding of BF as support to
construct G.

1. For each clause Cj , create a vertex cj in G and position it in the plane in the
position corresponding to Cj in the embedding of BF ;

2. For each variable xi, create three vertices xi, x
′
i and x̄i in G. To position these

three vertices, we consider the relative position between the edges with an
endpoint in xi ∈ BF . If, from the left to the right, the edge representing
the negative connection appears first, in the middle, or last, we position over
the X-axis the vertices in the sequence “x̄i, xi, x′

i”, “xi, x̄i, x′
i”, or “xi, x′

i,
x̄i”, respectively. The relative position between the edges always must be
maintained by the vertices, and we also add an intermediate vertex between
any pair of consecutive vertices as in Fig. 1; (The intermediate vertices make
the resulting graph bipartite.)

xi xi x′
i x̄i

Fig. 1. Vertex gadget

3. If the edge (Cj , xi) is in BF , we add in G the equivalent edge, respecting the
connection in F and the relative position in the rectilinear var-linked planar
embedding of BF ;

4. Create an induced path P in G connecting all xi, x
′
i, x̄i and intermediate

vertices created over the X-axis by adding edges between the consecutive
vertices. Note that P is similar to the straight line crossing the variables in
the rectilinear var-linked planar embedding of BF .

96 B. J. S. Barros et al.

5. The conflict graph Ĝ is obtained by creating one vertex by each edge repre-
senting an occurrence of a literal in a clause. And then, for each i from 1 to
n, we add a P3 representing (xi, cj) conflicting with (x̄i, ck), and (x′

i, cl) con-
flicting with (x̄i, ck), where Ck is the clause containing the literal x̄i, and Cj ,
Cl are the clauses containing the first and second occurrences of the literal
xi, respectively.

Figure 2 shows an instance of CFST obtained by the steps described above.
The square and round shapes of the vertices illustrate the bipartition of V (G).

G = (V,E)

c1

c2

c3

c4

x1 x′
1 x̄1 x2 x′

2 x̄2 x̄3 x3 x′
3 x4 x′

4 x̄4

Ĝ = (E, Ê)

(x′
1, c1)

(x1, c2)
(x̄1, c4)

(x2, c1)
(x′

2, c4)
(x̄2, c3)

(x3, c2)
(x′

3, c3)
(x̄3, c1)

(x4, c3)
(x′

4, c4)
(x̄1, c2)

Fig. 2. Instance of Conflict-Free Spanning Tree obtained from F = (x1 + x2 +
x̄3)(x1 + x3 + x̄4)(x̄2 + x3 + x4)(x̄1 + x2 + x4).

Since each clause has at most three variables and each literal occurs at most
twice, it is easy to see that the resulting graph G has maximum degree equal to
three. In order to observe that G is planar (see step 2), it is enough to note that
BF is planar, and each xi in BF has been replaced by a gadget that preserves
the planarity.

Now, it remains to show that F is satisfiable if and only if (G, Ĝ) is a “yes”-
instance of Conflict-Free Spanning Tree. Let n be the number of variables
of F , and let m be the number of clauses of F .

Let A be a satisfying assignment for F . As G has 6n + m − 1 vertices, we
must select at least 6n + m − 2 edges forming a connected subgraph of G and
an independent set in Ĝ. Note that it is sufficient to find a connected spanning
subgraph of G in which the edges induce an independent set in Ĝ (in this case,
the tree can be easily computed). Let X be the set of variables from F , and
consider that T initially contains all vertices of G and no edge. From A we
obtain the edge set to be added in T as follows.

– Add all edges incident on two vertices over the X-axis in T .
– If xi ∈ X has true value in A, add the edges incident to xi and x′

i in T .
Otherwise, add in T the remaining edge of x̄i.

On Conflict-Free Spanning Tree: Algorithms and Complexity 97

Since A is a satisfying assignment, every vertex cj has at least one edge added
to T . Thus, by construction, T is a conflict-free connected spanning subgraph of
G, which is enough to our proof.

Now, let T be a conflict-free spanning tree of G. Without loss of generality,
we can assume that T contains P. Therefore, we form a satisfying assignment
A for F as follows. If the vertex x̄i in T has a neighbor in {c1, . . . , ck}, then
set xi equals false, otherwise set xi equals true. Since all vertices cj has some
neighbor in T , and edges representing occurrences of xi and x̄i are conflicting
edges, it holds that every clause of F has at least one literal evaluated as true
by A, which is a consistent assignment due to the construction of Ĝ.

Therefore, Conflict-Free Spanning Tree is NP-complete even on
instances (G, Ĝ) where G is a bipartite planar subcubic graph, and Ĝ is a disjoint
union of P3’s. ��

Next, we present some remarks regarding complete graphs.

Theorem 2. Let F be a family of graphs. If Conflict-Free Spanning Tree
is NP-complete when restricted to instances with conflict graph in F , then the
Minimum Conflict-free Spanning Tree problem is NP-hard when G is a
complete graph and Ĝ ∈ F .

Proof. Let I = (G, Ĝ) be an instance of the Conflict-Free Spanning Tree
problem, where |V (G)| = n and |E(G)| = m. From I = (G, Ĝ) we create an
instance I ′ = (G′, Ĝ′) of MCFST such that I has a feasible solution if and only
if I ′ has a spanning tree with cost n − 1. First, G′ starts as a copy of G, so we
define a weight function ω on the edges. For each e ∈ E(G′), we set ω(e) = 1,
after that, for each edge f /∈ E(G) we add f to E(G′) with ω(f) = 2. Finally, Ĝ′
is defined as a copy of Ĝ. At this point, it is easy to see that I has a conflict-free
solution if and only if I ′ has an optimal solution of cost n − 1. That means the
optimal solution of I ′ does not contain any edge of cost 2. Thus, since Ĝ′ is a
copy of Ĝ, the claim holds. ��
Corollary 1. Minimum Conflict-free Spanning Tree is strongly NP-hard
on complete graphs G even when the conflict graph is a disjoint union of paths
of size three.

Proof. Let I = (G, Ĝ) be an instance of CFST with Ĝ being a disjoint union of
P3’s. By Theorem 1, we know that deciding if I contains a conflict-free spanning
tree is an NP-complete problem. Let F3 be the family of graphs formed by the
disjoint union of P3’s. By Theorem 2, we can construct a complete graph G′

coupled with Ĝ, such that, I ∈ CFST if and only if the minimum conflict-free
spanning tree of (G′, Ĝ) has cost (|V (G)| − 1). Since the instance weights are
constants, the strongly NP-hardness holds. ��

Note that Corollary 1 is regarding MCFST. At this point, the reader may
be asking about the problem of finding a feasible solution when G is a complete
graph and Ĝ is a disjoint union of paths of size three. Next, in contrast with
Corollary 1, we show that finding a feasible solution can be done in polynomial
time in this case.

98 B. J. S. Barros et al.

A Polynomial-Time Solvable Case

Recall that a P3 is a star with three vertices, and CFST is NP-complete even
when Ĝ is a disjoint union of paths of size three. Next, we consider the CFST
problem when G is a complete graph and Ĝ is a disjoint union of stars.

Theorem 3. If G is a complete graph and Ĝ is a disjoint union of stars, then
I = (G, Ĝ) admits a conflict-free spanning tree.

Proof. If n = |V (G)| ≤ 2 then the claim holds.
Now, assume that the claim holds for every possible instance I = (G, Ĝ) of

CFST such that G is a complete graph with n ≤ k vertices (i.e., G ∼= Kk) and
Ĝ is a disjoint union of stars.

Let I = (Kk+1, Ĝ) be an instance where V (Kk+1) = {v1, v2, . . . , vk+1} and
Ĝ is a disjoint union of stars. By induction, it remains only to prove that I =
(Kk+1, Ĝ) also admits a conflict-free spanning tree.

Let I ′ = (Kk, Ĝ′) be the instance obtained by removing the vertex vk+1 and
its edges from Kk+1 and Ĝ. Let Evk+1 = {(v1, vk+1), (v2, vk+1), . . . , (vk, vk+1)}
be the set of edges incident to vk+1 in the Kk+1 graph. Note that Ĝ′ = Ĝ − Ex

remains a disjoint union of stars.
If Evk+1 is an independent set in Ĝ then T = ({v1, v2, . . . , vk+1}, Evk+1) is a

conflict-free spanning tree of I, because Kk+1 is a complete graph (so, vk+1 is a
universal vertex). Conversely, if Evk+1 contains a pair e�, ex of conflicting edges,
it holds that either e� or ex has degree one in Ĝ, because Ĝ is a disjoint union of
stars. Let e� be such an edge. By hypothesis, I ′ admits a conflict-free spanning
tree T ′. Since e� has degree one in Ĝ and it conflicts with ex, it holds that e�

has no conflict with any e ∈ E(T ′) then by adding vk+1 and e� in T ′ we obtain
a conflict-free spanning tree T for I = (Kk+1, Ĝ). ��

The constructive proof of Theorem 3 suggests a polynomial-time algorithm
to obtain a conflict-free spanning tree when G is a complete graph and Ĝ is a
disjoint union of stars.

Corollary 2. Let I = (G, Ĝ) be an instance of Minimum Conflict-free
Spanning Tree where G is an edge-weighted complete graph and Ĝ is a disjoint
union of stars. It holds that a feasible solution for I = (G, Ĝ) can be found in
O(n + m) time, where n = |V (G)| and m = |E(G)|.
Proof. Let I = (G, Ĝ) be an instance of MCFST where G is an edge-weighted
complete graph and Ĝ is a disjoint union of stars. Let V (G) = {v1, v2, . . . , vn},
and let Gk be the subgraph of G induced by {v1, v2, . . . , vk}. According to the
proof of Theorem 3, for k from 2 to n we obtain a conflict-free spanning tree for
Gk by either using the edges incidents to vk in Gk or adding an edge from vk in
a solution of Gk−1.

Since Ĝ is a disjoint union of stars, in O(n + m) time, we can identify and
store in a list L the information whether the edges incident to vk in Gk form an
independent set. Note that whenever such a set of edges is not an independent

On Conflict-Free Spanning Tree: Algorithms and Complexity 99

set, there is an edge (vk, vj) that is the center of a star S of Ĝ and is adjacent to
an edge (vk, vi) that is a leaf of S, where i, j < k. Thus, in O(n+m) time, we can
either store the leaf (edge (vk, vi)) to be aggregated together with a solution of
Gk−1, or store a information that {(v1, vk), (v2, vk), . . . , (vk−1, vk)} is a solution
for Gk. After this preprocessing, We can, in linear time, traverse the stored list
L from position n to 1 recovering the edges of a conflict-free spanning tree of
G = Gn.

Approximation Results

By Corollary 1, Minimum Conflict-free Spanning Tree is strongly NP-
hard on complete graphs G even when the conflict graph is a disjoint union
of paths of size three. However, by Corollary 2, concerning such instances of
MCFST, a feasible solution can be found in O(n+m) time. This motivates the
study of the approximability in such a particular case of MCFST.

Theorem 4. Minimum Conflict-free Spanning Tree on instances I =
(G, Ĝ) such that G is a complete graph and Ĝ is a disjoint union of stars,
admits a c-approximation algorithm where c is the maximum weight among the
edges of G. In addition, considering the same constraints, it does not admit a
(c − 1)-approximation algorithm unless P = NP .

Proof. Let I = (Kn, Ĝ) be an instance of MCFST where Kn is a complete graph
with positive weight on the edges and Ĝ is a disjoint union of stars.

To prove the first statement, we use the algorithm of Theorem 3. Let c =
max{ω(e) | e ∈ E(Kn)}. By Theorem 3, we can obtain in polynomial time a
feasible solution T . In the worst case, all edges in T have a weight equal to
c, so that ω(T) = c(n − 1), but the optimal solution must have cost at least
n− 1, because the weights are positive integers. Therefore, T is a c-approximate
solution for the problem.

Now, to prove the second claim, suppose that there is a (c−1)-approximation
algorithm for the problem. Thus, we can run this (c − 1)-approximation algo-
rithms in the instances I = (Kn, Ĝ) where Kn is a complete graph with
ω(e) ∈ {1, 2},∀ e ∈ E(Kn) and Ĝ is a disjoint union of P3’s. Note that on
such instances, since c = 2, the (c − 1)-approximation algorithm must solve
them in polynomial time. However, by Corollary 1, MCFST remains NP-hard
even restricted on such instances. Therefore, the existence of such a (c − 1)-
approximation algorithm would imply that P = NP . ��
Theorem 5. Minimum Conflict-free Spanning Tree on complete graphs
G with the conflict graph Ĝ being a disjoint union of P3’s is a exp-APX-complete
problem.

Proof. To prove the hardness we modify the construction of the proof of Theo-
rem 2. Let n be the input size of CFST. Instead of adding edges f with weight
ω(f) = 2, we assign ω(f) = 2n. Note that encoding 2n can be done using n bits.
This implies that, if there is a non-exponential approximation factor algorithm

100 B. J. S. Barros et al.

to these modified instances, then the resulting solution does not contain any edge
with weight 2n, solving the original CFST instance in polynomial time, which
contradicts the fact that CFST is NP-complete when Ĝ is a disjoint union of
P3’s. Thus, this particular case of MCFST is exp-APX-hard.

Finally, to see that such a particular case is in exp-APX, it is enough to
consider the c-approximation algorithm of Theorem 4. ��

FPT Algorithm

Throughout this paper, the results show that even if the conflict graph has
only isolated P3’s, the CFST problem remains challenging. In addition, P3’s
are necessary structures in the conflict graph for the problem to become hard.
Recall that a cluster graph is a graph formed from the disjoint union of complete
graphs. It is well known that a graph is a cluster graph if and only if it has no
induced path with three vertices, i.e., the class of cluster graphs is exactly the
class of P3-free graphs. In [16], Zhang, Kabadi, and Punnen showed that if the
conflict graph is a cluster graph (disjoint union of cliques), then MCFST can
be solved in polynomial-time. This shows that induced paths with three vertices
are key structures for the intractability of the problem.

Besides the existence of P3’s, another structural property necessary in conflict
graphs Ĝ on hard instances of MCFST is the existence of 2K2’s. It is well known
that 2K2-free graphs have a polynomial number of maximal independent sets.
In addition, all distinct maximal independent sets of a 2K2-free graph can be
enumerated in polynomial time [4]. Therefore, it is easy to see that MCFST can
be solved in polynomial time on 2K2-free conflict graphs Ĝ. Recall that 2K2-free
graphs generalize interesting graph classes such as the class of split graphs.

At this point, we consider the “distance from trivialities” of the conflict graph
as structural parameterizations.

The distance to a graph class F is the minimum number of vertices to be
removed to obtain a graph in F . A F-vertex deletion set K of a graph H is a
set of vertices such that H[V \ K] is in F . The F-vertex deletion number, also
known as distance to F , is the minimum cardinality of a set K such that K is
a F-vertex deletion set.

Now, let F be a hereditary graph class such that MCFST on conflict graphs
Ĝ ∈ F can be solved in polynomial time. Given a minimum F-vertex deletion set
K of a conflict graph Ĝ, we can design an FPT algorithm to solve the Minimum
Conflict-free Spanning Tree problem parameterized by the distance to F
of the conflict graph Ĝ.

Note that cluster graphs and 2K2-free graphs are particular cases of F . Also,
notice that Cluster Vertex Deletion and 2K2-Free Vertex Deletion
can be solved in 2O(k) · nO(1) time when parameterized by the solution size (k)
through the bounded search tree technique. In addition, an 1.811k · nO(1)-time
algorithm for Cluster Vertex Deletion can be found in [15]. Therefore,
we may assume that a minimum F-vertex deletion set of Ĝ is given when-
ever it can be computed in FPT time (concerning its size), and the Minimum
Conflict-free Spanning Tree problem is parameterized by the distance to

On Conflict-Free Spanning Tree: Algorithms and Complexity 101

F of the conflict graph. Zhang, Kabadi, and Punnen [16] showed that MCFST
is polynomial-time solvable if the distance to cluster of the conflict graph is
bounded by a constant. Next, we generalize such a result.

Theorem 6. Let F be a hereditary graph class such that MCFST on conflict
graphs Ĝ ∈ F can be solved in polynomial time, and let (G, Ĝ) be an instance
of Minimum Conflict-free Spanning Tree. Given a minimum F-vertex
deletion set K of Ĝ, a minimum conflict-free spanning tree of (G, Ĝ) can be
found (if any) in 2k · nO(1) time, where k = |K|.
Proof. We assume that a minimum F-vertex deletion set K of Ĝ is given.

Moreover, we named by F-Algorithm a polynomial-time algorithm to solve
MCFST on conflict graphs Ĝ ∈ F . Next, we show the pseudocode of our FPT-
MCFST algorithm. We use NG(v) to indicate the (open) neighborhood of v in
the graph G, and use NG[v] to denote its closed neighborhood.

1 FPT-MCFST(G, Ĝ,K);
2 if |K| = 0 then
3 return F-Algorithm(G, Ĝ)
4 else
5 Take an element e = (u, v) of K
6 K ← K \ {e}
7 (V (G′), E(G′)) ← (V (G), E(G) \ {e}) #edge e is not in the solution
8 Ĝ′ ← Ĝ − {e}
9 (V (G′′), E(G′′)) ← (V (G), E(G) \ NĜ(e)) #edge e is in the solution

10 K ′′ ← K \ NĜ(e)
11 Ĝ′′ ← Ĝ − NĜ[e]
12 return min{FPT-CFST(G′, Ĝ′,K), FPT-CFST(G′′, Ĝ′′,K ′′)}
13 end

Algorithm 1: Parameterized algorithm for MCFST.

When |K| = 0, the resulting conflict graph is in F , and the problem can be
solved in polynomial-time by the F-algorithm that we assume exists. Therefore,
Algorithm 1 works as a bounded search tree using the F-vertex deletion set K
to branch into two branches that distinguish regarding the potential use or not
of an element e ∈ K in the solution. If we use e in the solution, we should delete
the elements in NĜ(e) (the neighborhood of e in Ĝ) from both G and Ĝ. In
addition, we also remove e from Ĝ because isolated vertices are irrelevant in
conflict graphs. On the other hand, if e is not in the solution, we should remove
e from G and Ĝ. Note that e is removed from Ĝ in both cases. This procedure
is applied recursively until |K| = 0, resulting in a conflict graph in F because
F is a hereditary graph class. Note that we don’t need to fix a particular edge
on a solution; we just need to leave it free to be used if necessary. Finally, when
the conflict graph becomes a graph in the class F , we can run the F-algorithm
to solve the resulting instance. Since the FPT-MCFST algorithm constructs a
bounded search tree with k levels, we have a 2k · nO(1)-time algorithm. ��

102 B. J. S. Barros et al.

As a corollary, it follows that MCFST can be solved in FPT time when
parameterized by the distance to 2K2-free graphs or the distance to P3-free
graphs. We left as an open problem the complexity of the problem when the
conflict graph is (K2 ∪ P3)-free or 2P3-free.

References

1. Capua, R., Frota, Y., Ochi, L.S., Vidal, T.: A study on exponential-size neigh-
borhoods for the bin packing problem with conflicts. J. Heuristics 24(4), 667–695
(2018). https://doi.org/10.1007/s10732-018-9372-2

2. Darmann, A., Pferschy, U., Schauer, J.: Determining a minimum spanning tree
with disjunctive constraints. In: Rossi, F., Tsoukias, A. (eds.) ADT 2009. LNCS
(LNAI), vol. 5783, pp. 414–423. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04428-1 36

3. Darmann, A., Pferschy, U., Schauer, J., Woeginger, G.J.: Paths, trees and match-
ings under disjunctive constraints. Discret. Appl. Math. 159(16), 1726–1735 (2011)

4. Dhanalakshmi, S., Sadagopan, N., Manogna, V.: On 2K2-free graphs. Int. J. Pure
Appl. Math. 109(7), 167–173 (2016)

5. Viana, L., Campêlo, M., Sau, I., Silva, A.: A unifying model for locally constrained
spanning tree problems. J. Comb. Optim. 42(1), 125–150 (2021). https://doi.org/
10.1007/s10878-021-00740-2

6. Filho, I.T.F.A.: Characterizing Boolean satisfiability variants. Ph.D. thesis, Mas-
sachusetts Institute of Technology (2019)

7. Gendreau, M., Laporte, G., Semet, F.: Heuristics and lower bounds for the bin
packing problem with conflicts. Comput. Oper. Res. 31(3), 347–358 (2004)

8. Graham, R., Hell, P.: On the history of the minimum spanning tree problem. Ann.
Hist. Comput. 7(1), 43–57 (1985)

9. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling sales-
man problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956)

10. Maňuch, J., Gaur, D.R.: Fitting protein chains to cubic lattice is NP-complete. J.
Bioinform. Comput. Biol. 6(01), 93–106 (2008)

11. Pferschy, U., Schauer, J.: The knapsack problem with conflict graphs. J. Graph
Algorithms Appl. 13(2), 233–249 (2009)

12. Pilz, A.: Planar 3-SAT with a clause/variable cycle. Discrete Math. Theor. Comput.
Sci. 21(3), 18:1–18:20 (2019). https://doi.org/10.23638/DMTCS-21-3-18

13. Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst.
Tech. J. 36(6), 1389–1401 (1957)

14. Tippenhauer, S.: On planar 3-SAT and its variants. Master’s thesis, Fachbereich
Mathematik und Informatik der Freien Universitat Berlin (2016)

15. Tsur, D.: Faster parameterized algorithm for cluster vertex deletion. Theory Com-
put. Syst. 65(2), 323–343 (2021)

16. Zhang, R., Kabadi, S.N., Punnen, A.P.: The minimum spanning tree problem with
conflict constraints and its variations. Discrete Optim. 8(2), 191–205 (2011)

https://doi.org/10.1007/s10732-018-9372-2
https://doi.org/10.1007/978-3-642-04428-1_36
https://doi.org/10.1007/978-3-642-04428-1_36
https://doi.org/10.1007/s10878-021-00740-2
https://doi.org/10.1007/s10878-021-00740-2
https://doi.org/10.23638/DMTCS-21-3-18

B0-VPG Representation of AT-free
Outerplanar Graphs

Sparsh Jain1 , Sreejith K. Pallathumadam2(B) ,
and Deepak Rajendraprasad2

1 College of Computing, Georgia Institute of Technology, Atlanta, GA, USA
sparsh.jain@gatech.edu

2 Indian Institute of Technology Palakkad, Palakkad, India
111704002@smail.iitpkd.ac.in, deepak@iitpkd.ac.in

Abstract. B0-VPG graphs are intersection graphs of axis-parallel line
segments in the plane. We show that all AT-free outerplanar graphs are
B0-VPG. In the course of the argument, we show that any AT-free outer-
planar graph can be identified as an induced subgraph of a 2-connected
outerplanar graph whose weak dual is a path. Our B0-VPG drawing pro-
cedure works for such graphs and has the potential to be extended to
larger classes of outerplanar graphs.

Keywords: Outerplanar · AT-free · B0-VPG · Grid intersection
graph · Graph drawing

1 Introduction

A k-bend path is a simple path in a two-dimensional grid with at most k bends.
Geometrically they are polylines in the plane made of at most k+1 axis-parallel
(horizontal or vertical) line segments. Vertex intersection graphs of Paths on a
Grid (VPG) (resp., Bk-VPG) is the class of graphs which can be represented
as intersection graphs of simple (resp., k-bend) paths in a two-dimensional grid.
The bend number of a graph G in VPG is the minimum k for which G is in
Bk-VPG. VPG graphs are equivalent to string graphs which are intersection
graphs of curves in the plane. One motivation to study Bk-VPG graphs comes
from VLSI circuit design where the paths correspond to wires in the circuit. A
natural concern in VLSI design is to reduce the number of bends in each path
(wire) in the representation. A second motivation is that certain algorithmic
tasks become easier when restricted to B1-VPG or B0-VPG graphs (cf. [21]).

Some of the standard graph theoretic terminology used in the rest of the
introduction are defined in Sect. 1.2. Planar graphs have received the maximum
attention from the perspective of Bk-VPG representations, some of which we
describe in Sect. 1.1. Following up on a series of improvements and conjectures
by various authors, Gonçalves, Isenmann, and Pennarun in 2018 showed that all

S. Jain—A part of this work was done while at Indian Institute of Technology Palakkad.

c© Springer Nature Switzerland AG 2022
N. Balachandran and R. Inkulu (Eds.): CALDAM 2022, LNCS 13179, pp. 103–114, 2022.
https://doi.org/10.1007/978-3-030-95018-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95018-7_9&domain=pdf
http://orcid.org/0000-0002-5175-8511
http://orcid.org/0000-0003-4697-5391
http://orcid.org/0000-0001-9101-8967
https://doi.org/10.1007/978-3-030-95018-7_9

104 S. Jain et al.

planar graphs are B1-VPG [17]. This is tight since many simple planar graphs
like 4-wheel, 3-sun, triangular prism, to name a few, are not B0-VPG. This
makes the question of characterizing B0-VPG planar graphs very appealing.
Even though recognizing B0-VPG graphs is NP-complete in general, we do not
know the recognition complexity of the same question restricted to planar graphs.
Segment intersection graphs are intersection graphs of line segments in the plane.
Chalopin and Gonçalves in 2009 showed that every planar graph is a segment
intersection graph [7], confirming a conjecture of Scheinerman from 1984 [24].
One way to refine the class of segment intersection graphs is to restrict the
number of directions permitted for the segments. If the number of directions is
limited to two, we rediscover B0-VPG. k-DIR graphs are intersection graphs of
line segments that can lie in at most k directions in the plane. It is known that
bipartite planar graphs are 2-DIR [12,13,18] and triangle-free planar graphs are
3-DIR [4]. West conjectures that any planar graph is 4-DIR [25]. This adds to
the appeal for characterizing B0-VPG planar graphs.

Characterizing outerplanar B0-VPG graphs will be a good step towards the
above since some of the structures that forbid a planar graph from having a
B0-VPG representation are also present among outerplanar graphs. Outerpla-
nar graphs were known to be B1-VPG [5] before the same was shown for planar
graphs. In this article we take a small step towards this goal by showing that
AT-free outerplanar graphs are B0-VPG. To do so, we first show that any AT-
free outerplanar graph can be identified as an induced subgraph of a 2-connected
linear outerplanar graph. We call a 2-connected outerplanar graph linear if it’s
weak dual is a path. This result may be of independent interest. Our B0-VPG
drawing is essentially for 2-connected linear outerplanar graphs and has poten-
tial to be extended to larger classes of outerplanar graphs. However, we cannot
extend this result to AT-free planar graphs since we have examples of AT-free
planar graphs, like 4-wheel and triangular prism, which are not B0-VPG.

After a brief literature review in Sect. 1.1 and a recall of some standard graph
theoretic terminology in Sect. 1.2, we spread the proof of our main result in two
sections. In Sect. 2 we introduce a subclass of outerplanar graphs called linear
outerplanar graphs and show that every AT-free outerplanar graph is linear.
Further, we show that every linear outerplanar graph is an induced subgraph
of a 2-connected linear outerplanar graph. In Sect. 3, we show that every 2-
connected linear outerplanar graph is B0-VPG. Since B0-VPG is easily seen to
be a hereditary graph class (closed under induced subgraphs), it follows that all
linear outerplanar graphs are B0-VPG. Furthermore, since we have shown that
all AT-free outerplanar graphs are linear the main result of this article follows.

1.1 Literature

The class Bk-VPG was introduced by Asinowski et al. in 2012 [2]. Neverthe-
less, these graphs were previously studied in various forms. One of them is grid
intersection graphs (GIG) which are bipartite graphs that can be represented as
intersection graphs of horizontal and vertical line segments in the plane where

B0-VPG Representation of AT-free Outerplanar Graphs 105

no two parallel line segments intersect [18]. It is easy to see that the class of
bipartite B0-VPG graphs and GIGs are equivalent.

Apart from the celebrated result by Gonçalves et al. that planar graphs are
B1-VPG [17], we can see a chronology of results of Bk-VPG in planar graphs.
Hartman et al. proved that bipartite planar graphs are GIG [18] and hence
B0-VPG. In [2], Asinowski et al. showed that planar graphs are B3-VPG and
conjectured that it is tight. Disproving this conjecture, Chaplick and Ueckerdt
proved that planar graphs have a B2-VPG representation [10]. Biedl and Derka
further improved the result which proves that planar graphs have 1-string B2-
VPG representation which means that any two paths can intersect at most once
[3]. Francis and Lahiri proved that any plane graphs, formed by connecting the
leaves of a tree making only simple cycles, have a B1-VPG representation [15].

The recognition problem for string graphs and hence VPG graphs is NP-
complete [19,23]. The recognition problem for 2-DIR graphs and hence B0-VPG
graphs is NP-complete [20]. The recognition of whether a given graph is in Bk-
VPG, k ≥ 0, is NP-complete even if it is guaranteed that the given graph is in
Bk+1-VPG [9]. The same article also shows that the classes Bk-VPG and Bk+1-
VPG , k ≥ 0, are separated. Chaplick et al. left the possibility of such a sepa-
ration in chordal graphs open [9] which was answered partially by Chakraborty
et al. [6]. Cohen et al. showed the existence of a cocomparability graph with
bend number k for all k ≥ 0 (Theorem 3.1 in [11]). Chaplick et al. provided
a polynomial time decision algorithm for B0-VPG chordal graphs in 2011 [8].
B0-VPG characterizations are known for block graphs [1], split graphs, chordal
bull-free graphs, chordal claw-free graphs [16] and cocomparability graphs [22].

1.2 Terminology and Notation

The closed neighborhood N [v] of a vertex v in a graph is the set containing v
and its neighbors in G. We will refer to vertices of a graph with k neighbors as
k-degree vertices. A graph G is H-free if G does not contain an induced subgraph
isomorphic to H. We use Ck to denote the simple cycle on k vertices. A cycle on
k vertices x0, . . . , xk−1 where each xi is adjacent to xi+1 (addition is modulo k)
can also be denoted as x0, . . . , xk−1, x0. A Ck together with an additional vertex
v adjacent to all the vertices of the cycle is called a wheel graph, denoted as Wk. A
triangular prism is the complement of C6. A triangle v0, v1, v2, v0 together with
an independent set S = {u0, u1, u2} is called a 3-sun if ∀i ∈ {0, 1, 2}, N [ui] =
{ui, vi, vi+1} where addition is modulo 3.

A set of three independent vertices is called an asteroidal triple or AT when
there exists a path among each pair of them containing no vertex from the closed
neighborhood of the third vertex. An AT-free graph is a graph which does not
have an AT. A subset of vertices in a graph is called a separator if its removal
increases the number of components of the graph. A vertex x is a cutvertex if
{x} is a separator. A graph is k-connected if it does not have a separator of size
smaller than k. A graph is connected if it is 1-connected. A block of a graph
is any maximal 2-connected subgraph of the graph. A trivial block is a block
containing at most two vertices.

106 S. Jain et al.

A plane graph is an embedding of a planar graph in the plane with no crossing
edges. A face in a plane graph is any region in the plane bounded by edges in the
graph and not containing any other vertex or edge. Among the faces contributed
by a plane graph in the plane, exactly one is an unbounded (outer) face and the
remaining are bounded (inner) faces. The dual graph H of a plane graph G is a
graph that has a vertex for each face of G and an edge between two vertices in
H if the corresponding faces of G share an edge. The weak dual of a plane graph
G is an induced subgraph of its dual whose vertices correspond to the bounded
faces of G. A boundary edge in a plane graph is an edge that is shared by the
unbounded face of the graph. Edges shared only by bounded faces are called
internal edges. A planar graph is called outerplanar if it has a plane embedding
in which all the vertices are incident on the outer face. Outerplanar graphs will
always be drawn in such a way that the outer (unbounded) face contains all the
vertices and hence the above terminology of faces, duals, weak duals, boundary
edges and internal edges will be used assuming such a plane drawing.

2 Linear Outerplanar Graphs

In this section, we introduce a subclass of outerplanar graphs called linear out-
erplanar graphs (Definition 2) and show that every AT-free outerplanar graph
is linear. Further, we show that every linear outerplanar graph is an induced
subgraph of a 2-connected linear outerplanar graph. Though the definition of
general linear outerplanar graphs is technical, 2-connected linear outerplanar
graphs turn out to be exactly those 2-connected outerplanar graphs whose weak
dual is a path. This simplicity is exploited in the next section to find a B0-VPG
representation for them.

Definition 1. Let G be an outerplanar graph. A face of G which corresponds
to a leaf of the weak dual is called a leaf face. A block B of G is called safe if B
has at most two cutvertices and if B contains more than one face, then to each
cutvertex x in B we can associate a different leaf face of B containing x. A block
B of G incident to a cutvertex x is called big for x if either B has a cutvertex
other than x or a face not containing x. A cutvertex x of G is called safe if at
most two blocks of G incident to x are big.

Definition 2 (Linear Outerplanar Graph). An outerplanar graph G is
called linear if the weak dual of G is a linear forest, and every block and cutvertex
of G are safe.

We start with some observations that will help us prove that AT-free outer-
planar graphs are linear.

Observation 1. If v is a 2-degree vertex in a 2-connected outerplanar graph,
then N [v] is not a separator of G.

Proof. Since degree of v is 2, v and its two neighbors are three consecutive
vertices in the outer face of G. Removing three consecutive vertices from the
outer cycle of G does not disconnect G. ��

B0-VPG Representation of AT-free Outerplanar Graphs 107

x

y
z

Fig. 1. A linear outerplanar graph with three cutvertices x, y, z and five blocks. Notice
that all blocks and cutvertices are safe.

The following list of observations are immediate consequences of applying
the above observation to a block of an outerplanar graph and the trivial fact
that a single vertex does not separate a 2-connected graph.

Observation 2. Let B be a block of an outerplanar graph G. A 2-degree vertex
in B is a vertex in B whose degree inside B is 2. For every cutvertex x in B,
we will denote a neighbor of x outside B by x′.

(i) If a, b, c are three pairwise non-adjacent 2-degree vertices in B, then {a, b, c}
forms an AT in G.

(ii) If a and b are two non-adjacent 2-degree vertices in B and c is a cutvertex
in B non-adjacent to a and b, then {a, b, c′} forms an AT in G.

(iii) If a and b are two cutvertices in B and c is a 2-degree vertex in B non-
adjacent to a and b, then {a′, b′, c} forms an AT in G.

(iv) If a, b, c are three cutvertices in B, then {a′, b′, c′} forms an AT in G.

Observation 3. Let B be a block of an outerplanar graph. Every leaf face of B
contains a 2-degree vertex in B which is not incident to any other bounded face
of B.

Proof. A face has at least three vertices and at most two vertices of a leaf face
can be shared by another face. Hence all the remaining vertices are 2-degree
vertices in B not incident to any other bounded face of B.

Theorem 1. AT-free outerplanar graphs are linear.

Proof. Let G be an AT-free outerplanar graph. To prove that G is linear, we
need to show that G satisfies three conditions.

1. Weak dual of G is a linear forest. Let W be the weak dual of G. Since G is
outerplanar, W is a forest [14]. If W is not a linear forest, then, it has a vertex
of degree 3 (or more). Let that vertex be f and three of its neighbors be n1,
n2, and n3. Let the corresponding faces in G be F for f , and Ni for ni, i ∈ [3].
Consider the induced subgraph H formed by vertices of F , N1, N2, and N3. It
is easy to see that H is a 2-connected outerplanar graph where N1, N2, and N3

108 S. Jain et al.

are leaf faces in it. For each i ∈ [3], let ai be a 2-degree vertex which belongs
exclusively to Ni (Observation 3). By Observation 2(i), we can conclude that
{a1, a2, a3} forms an AT in H and hence in G. Therefore W is a linear forest.

2. Every block of G is safe. Let B be a block of G. Suppose B has at least 3
cutvertices a, b, and c. Then by Observation 2(iv), G has an AT. Let B be a
block of G with at most two cutvertices but more than one face. This implies
that B has at least two leaf faces, F1 and F2. If B has a cutvertex which is
neither incident to F1 nor F2, then by Observations 3 and 2(ii), we have an
AT in G. Hence every cutvertex of B is incident to a leaf face of B. If B has
two cutvertices x and y and neither of them is incident to one of the leaf faces,
then by Observations 3 and 2(iii), we have an AT in G. Hence x and y can be
associated with two leaf faces containing them. Hence B is safe.

3. Every cutvertex of G is safe. Let x be a cutvertex in G. Suppose x has at
least 3 big blocks B1, B2, and B3 incident to it. For each i ∈ [3], since Bi is
big, it either contains a face Fi not containing x or another cutvertex xi and
another block B′

i incident to xi. In both cases we can find a vertex yi (in Fi or
B′

i respectively) which is at a distance 2 or more from x. One can easily see that
{y1, y2, y3} forms an AT in G. Hence x is safe. ��

We end this section by showing that every linear outerplanar graph is an
induced subgraph of a 2-connected linear outerplanar graph. Figure 2 shows a
2-connected linear outerplanar graph which contains the graph in Fig. 1 as an
induced subgraph.

Lemma 1. Every connected linear outerplanar graph is an induced subgraph of
a 2-connected linear outerplanar graph.

Proof. Let G be a connected linear outerplanar graph. Let B1 and B2 be any two
blocks of G joined by a cutvertex x. For each i ∈ {1, 2}, we choose a neighbor
yi of x from Bi as follows. If Bi is a single edge or a single face Li, then any
neighbor of x in Bi can be chosen as yi. If Bi has more than one face, then we
have a leaf face Li of Bi associated to x. Pick yi to be a neighbor of x from Li

such that xyi is a boundary edge of Li. Let the supergraph of G obtained by
adding a new vertex x′ adjacent to y1 and y2 be called G′ and the new block
containing B1, B2 and x′ be called B′.

Since x is a cutvertex and xy1, xy2 are boundary edges of G, the block B′

remains outerplanar. Let the weak duals of B1 and B2 respectively be (possibly
empty) the paths F1, . . . , Fk−1 and Fk+1, . . . , Fl with Fk−1 = L1 and Fk+1 = L2

when they are non-empty paths. Then the path F1, . . . , Fk−1, Fk, Fk+1, . . . , Fl is
the weak dual of B′ where Fk corresponds to the new face x, y1, x

′, y2, x. This
holds true even if B1 is trivial (k = 1) or B2 is trivial (k = l), or both. Hence G′

is outerplanar and its weak dual is a linear forest. We argue next that the graph
G′ is linear outerplanar in two special cases. Since the blocks of G′ other than
B′ and cutvertices of G′ not in B′ remain safe in G′, it suffices to argue that
the block B′ and the cutvertices in it are safe in G′. Moreover, any cutvertex x′

of B′ other than x is safe since the number of big blocks incident to x′ does not

B0-VPG Representation of AT-free Outerplanar Graphs 109

increase due to the merging of B1 and B2. This is because if Bi, i ∈ {1, 2}, has
two cutvertices, then Bi is already big for both. Hence it suffices to show that
the block B′ and the vertex x (if it remains a cutvertex in G′) are safe.

Since x is a safe cutvertex in G, at most two blocks of G incident to x are big.
Thus we can always find two blocks B1 and B2 incident to x such that either
B2 is not big for x or B1, B2 are the only two blocks incident to x. Hence the
following two cases are exhaustive.

Case 1 (B2 is not big for x). Since B2 does not have any cutvertex other than x,
B′ has at most two cutvertices in G′, possibly x and another vertex x1 from B1.
If B1 has more than one face, then since x is associated with Fk−1, x1 belongs
to F1. If B1 is a single edge or a single face, then x1 still belongs to F1 in B′.
Since B2 is not big for x, Fl contains x. Hence we can associate x1 to F1 and x
to Fl in B′ and conclude that B′ is safe. One can verify that B′ is big for x in
G′ only if B1 is big for x in G. Hence x is safe in G′.

Case 2 (B1 and B2 are the only two blocks incident to x). In this case, x is no
more a cutvertex in G′. Hence B′ has at most two cutvertices, possibly x1 from
B1 and x2 from B2. One can verify, as in the first case, that x1 belongs to F1

whether B1 is trivial or not and x2 belongs to Fl whether B2 is trivial or not.
Hence B′ is safe in G′.

Repeating the above merging till no cutvertices are left results in
a 2-connected linear outerplanar graph which contains G as an induced
subgraph. ��

x

y
z

x

y

z1 z2

Fig. 2. A 2-connected linear outerplanar graph constructed from the graph in Fig. 1
using the construction procedure employed in the proof of Lemma 1. It can be verified
that the addition of new vertices x′, y′, z′

1 and z′
2 satisfy the cases 1, 2, 1 and 2 in the

proof respectively.

Remark 1. We would also like to point out that not all connected AT-free outer-
planar graphs are induced subgraphs of 2-connected AT-free outerplanar graphs.
Let G be a C5 together with a pendant vertex. While G is AT-free outerplanar,
any 2-connected outerplanar graph G′ containing G as an induced subgraph is

110 S. Jain et al.

not AT-free. To see this, consider the induced subgraph H of G′ formed by the
C5 in G and another face F sharing an edge with this C5. We can pick one
2-degree vertex a from F and two non-adjacent 2-degree vertices b and c from
the C5 which are both non-adjacent to a. From Observation 2(i), it follows that
{a, b, c} is an AT. This is the obstacle which nudged us to study the larger class
of linear outerplanar graphs, which admittedly is rather technical.

3 B0-VPG Representation of 2-connected Linear
Outerplanar Graphs

It’s drawing time. In this section, we show that every 2-connected linear out-
erplanar graph is B0-VPG (Lemma 2). The proof of Lemma 2 is algorithmic
which draws a B0-VPG representation for any 2-connected linear outerplanar
graph (cf. Fig. 3 for example). Since B0-VPG is easily seen to be a hereditary
graph class (closed under induced subgraphs), it follows from Lemma 1 that all
linear outerplanar graphs are B0-VPG. Furthermore, since we have shown that
all AT-free outerplanar graphs are linear (Theorem 1), the main result of this
article follows.

Lemma 2. Every 2-connected linear outerplanar graph is B0-VPG.

Proof. Let G be a 2-connected linear outerplanar graph with n faces labeled
F1, . . . , Fn such that the weak dual of G is the path F1, . . . , Fn. For each i ∈ [n−
1], the edge shared by Fi and Fi+1 is denoted by ei. For notational convenience,
we set en to be any boundary edge of Fn. For each i ∈ [n], let Gi denote the
induced subgraph of G restricted to the faces F1, . . . , Fi.

In a B0-VPG drawing Di of Gi, we call a non-point horizontal (resp., vertical)
line segment l in Di extendable from a point p ∈ l if at least one of the two infinite
horizontal (resp., vertical) open rays starting at p (but not containing p) does not
intersect any other line segment of Di. A point segment l is said to be extendable
from its location p if it is extendable from p both as a horizontal and a vertical
line segment. An edge xy in Gi is said to be extendable in Di if the line segments
lx and ly representing the vertices x and y are extendable from a common point
p ∈ lx ∩ ly either in the same direction or in orthogonal directions. Finally a
B0-VPG drawing Di is said to be extendable if ei is extendable and whenever
Fi is a triangle, the vertex of Fi not incident to ei−1 is represented by a point
segment. Note that if F1 is a triangle, all the vertices of F1 are represented by
point segments in D1.

If the length of F1 is 4 or more, then we can represent F1 as the intersection
graph of line segments laid out on the boundary of an axis-parallel rectangle
with the endpoints of e1 being orthogonal (and hence sharing only a corner of
the rectangle). This is an extendable B0-VPG drawing D1 of G1. If F1

∼= C3,
then representing all the three vertices as point segments at the same point
gives an extendable B0-VPG drawing D1 of G1. Let Di, i < n, be an extendable
B0-VPG drawing of Gi. From Di, we construct an extendable B0-VPG drawing
Di+1 of Gi+1 as follows.

B0-VPG Representation of AT-free Outerplanar Graphs 111

F1 F13

1

2
3

4 5

6

7

8

9

11

10

12

13

14

15

16

17

18 19

20

21
22

23

24

25

(a) Fig. 2 is redrawn with labels for all the vertices.

1

2

3

4

5

6

3

6

7

8

9

6

11

9

10

11

10

16

15

14

11

14

12

13

13

17

14

18

14

19

20

21

14

21

22

24

23

25

(b) The B0-VPG drawing of the graph depicted in Fig. 2.

Fig. 3. A 2-connected linear outerplanar graph G and a B0-VPG representation of it.
The collinear overlapping line segments are drawn a little apart for clarity. The point
segments (for e.g. vertices 1 and 25) are drawn as black squares.

Case 1 (length of Fi+1 is 4 or more). Let Fi+1 = v0, . . . , vk, v0, with ei = vkv0
and ei+1 = vjvj+1, j < k. Since Di is extendable, the edge vkv0 is extendable in
Di. Extend the line segments lk and l0 (representing vk and v0 respectively) in
orthogonal directions to two points qk and q0 outside of the bounding box of Di.
Let q be the intersection point of the perpendiculars to lk and l0 at qk and q0
respectively. Represent the path v1, . . . vk−1 on the two line segments from q0 to

112 S. Jain et al.

q and q to qk such that v1 is represented by a segment containing q0, vk−1 by a
segment containing qk and vj , vj+1 by orthogonal line segments sharing a point.
The point shared by these two segments will be q0 when j = 0, qk when j = k−1
and q in all other cases. This gives the drawing Di+1. It is clear that the new
line segments added in this stage do not intersect any other line segments in Di

except l0 and lk. It is easy to verify that the edge ei+1 = vjvj+1 is extendable.
Hence Di+1 is extendable.

Case 2 (Fi+1
∼= C3). Let Fi+1 = a, b, c, a, with ei = ca and ei+1 = ab. Since Di

is extendable, the edge ca is extendable in Di from a point p. If the line segments
lc and la are extendable in the same direction, then extend them to a point q
outside the bounding box of Di and represent b by a point segment lb at q to
obtain Di+1. It is easy to check that the line segment la, the point segment lb,
and also the edge ab are extendable from q in Di+1. Since ab is extendable and b
is represented by a point segment, Di+1 is extendable. If lc and la are extendable
only in orthogonal directions, then neither of them is a point segment. Hence
Fi 	∼= C3 and hence the vertices c and a have no common neighbor in Gi. So
the point p is not contained in any line segment of Di other than lc and la.
Represent b by a point segment lb at p to get Di+1. In both the subcases, it is
clear that the new line segments added in this stage do not intersect any other
line segments in Di except lc and la. It is easy to check that the line segment la,
the point segment lb, and also the edge ab are extendable from p in Di+1. Since
ab is extendable and b is represented by a point segment, Di+1 is extendable.

Repeating the above construction n − 1 times gives a B0-VPG drawing Dn

of Gn = G. ��
Since B0-VPG is easily seen to be a hereditary graph class (closed under

induced subgraphs), the next theorem follows from Lemmas 1 and 2.

Theorem 2. Every linear outerplanar graph is B0-VPG.

Together with Theorem 1, the above establishes the main result in this article.

Theorem 3. Every AT-free outerplanar graph is B0-VPG.

4 Concluding Remarks

Even though we showed that all linear outerplanar graphs and in particular,
all AT-free outerplanar graphs are B0-VPG, the characterization of B0-VPG
outerplanar graphs still evades us. It is easy to see that linearity is not necessary
for B0-VPG outerplanar graphs. Planar bipartite graphs, and hence outerplanar
bipartite graphs are B0-VPG [18]. But outerplanar bipartite graphs can be far
from being linear, in the sense that their weak duals can be trees with arbitrarily
large degrees for internal nodes. More than our result, we think the drawing
technique employed in the proof of Lemma 2 might become useful in an attempt
to characterize B0-VPG outerplanar graphs.

Acknowledgments. We thank K. Muralikrishnan for posing the question of charac-
terizing B0-VPG outerplanar graphs.

B0-VPG Representation of AT-free Outerplanar Graphs 113

References

1. Alcón, L., Bonomo, F., Mazzoleni, M.P.: Vertex intersection graphs of paths on
a grid: characterization within block graphs. Graphs and Combinatorics 33(4),
653–664 (2017)

2. Asinowski, A., Cohen, E., Golumbic, M.C., Limouzy, V., Lipshteyn, M., Stern, M.:
Vertex intersection graphs of paths on a grid. J. Graph Algorithms Appl. 16(2),
129–150 (2012)

3. Biedl, T., Derka, M.: 1-string B2-VPG representation of planar graphs. J. Comput.
Geom. (Old Web Site) 7(2), 191–215 (2016)

4. de Castro, N., Cobos, F.J., Dana, J.C., Márquez, A., Noy, M.: Triangle-free planar
graphs and segment intersection graphs. J. Graph Algorithms Appl. 6(1), 7–26
(2002)

5. Catanzaro, D., et al.: Max point-tolerance graphs. Discret. Appl. Math. 216, 84–97
(2017)

6. Chakraborty, D., Das, S., Mukherjee, J., Sahoo, U.K.: Bounds on the bend num-
ber of split and cocomparability graphs. Theory Comput. Syst. 63(6), 1336–1357
(2019). https://doi.org/10.1007/s00224-019-09912-4

7. Chalopin, J., Gonçalves, D.: Every planar graph is the intersection graph of seg-
ments in the plane. In: Proceedings of the Forty-First Annual ACM Symposium
on Theory of Computing, pp. 631–638 (2009)

8. Chaplick, S., Cohen, E., Stacho, J.: Recognizing some subclasses of vertex inter-
section graphs of 0-bend paths in a grid. In: Kolman, P., Kratochv́ıl, J. (eds.) WG
2011. LNCS, vol. 6986, pp. 319–330. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25870-1 29

9. Chaplick, S., Jeĺınek, V., Kratochv́ıl, J., Vyskočil, T.: Bend-bounded path intersec-
tion graphs: sausages, noodles, and waffles on a grill. In: Golumbic, M.C., Stern,
M., Levy, A., Morgenstern, G. (eds.) WG 2012. LNCS, vol. 7551, pp. 274–285.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34611-8 28

10. Chaplick, S., Ueckerdt, T.: Planar graphs as VPG-graphs. In: Didimo, W., Patrig-
nani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 174–186. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36763-2 16

11. Cohen, E., Golumbic, M.C., Trotter, W.T., Wang, R.: Posets and VPG graphs.
Order 33(1), 39–49 (2016)

12. Czyzowicz, J., Kranakis, E., Urrutia, J.: A simple proof of the representation of
bipartite planar graphs as the contact graphs of orthogonal straight line segments.
Inf. Process. Lett. 66(3), 125–126 (1998)

13. De Fraysseix, H., Ossona de Mendez, P., Pach, J.: Representation of planar graphs
by segments. Intuitive Geom. 63, 109–117 (1991)

14. Fleischner, H.J., Geller, D.P., Harary, F.: Outerplanar graphs and weak duals. J.
Indian Math. Soc. 38(1–4), 215–219 (1974)

15. Francis, M.C., Lahiri, A.: VPG and EPG bend-numbers of Halin graphs. Discret.
Appl. Math. 215, 95–105 (2016)

16. Golumbic, M.C., Ries, B.: On the intersection graphs of orthogonal line segments
in the plane: characterizations of some subclasses of chordal graphs. Graphs and
Combinatorics 29(3), 499–517 (2013)

17. Gonçalves, D., Isenmann, L., Pennarun, C.: Planar graphs as L-intersection or
L-contact graphs. In: Proceedings of the Twenty-Ninth Annual ACMSIAM Sym-
posium on Discrete Algorithms, pp. 172–184. SIAM (2018)

https://doi.org/10.1007/s00224-019-09912-4
https://doi.org/10.1007/978-3-642-25870-1_29
https://doi.org/10.1007/978-3-642-25870-1_29
https://doi.org/10.1007/978-3-642-34611-8_28
https://doi.org/10.1007/978-3-642-36763-2_16

114 S. Jain et al.

18. Hartman, I.B.-A., Newman, I., Ziv, R.: On grid intersection graphs. Discrete Math.
87(1), 41–52 (1991)

19. Kratochv́ıl, J.: String graphs. II. Recognizing string graphs is NP-hard. J. Comb.
Theory Ser. B 52(1), 67–78 (1991)

20. Kratochv́ıl, J., Matoušek, J.: Intersection graphs of segments. J. Comb. Theory,
Series B 62(2), 289–315 (1994)

21. Mehrabi, S.: Approximation algorithms for independence and domination on B1-
VPG and B1-EPG graphs. arXiv preprint arXiv:1702.05633 (2017)

22. Pallathumadam, S.K., Rajendraprasad, D.: Characterization and a 2D visualiza-
tion of B0-VPG cocomparability graphs. In: GD 2020. LNCS, vol. 12590, pp. 191–
204. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-68766-3 16

23. Schaefer, M., Sedgwick, E., Štefankovič, D.: Recognizing string graphs in NP. J.
Comput. Syst. Sci. 67(2), 365–380 (2003)

24. Scheinerman, E.R.: Intersection classes and multiple intersection parameters of
graphs. Princeton University (1984)

25. West, D.: Open problems. SIAM J. Discrete Math. Newslett. 2, 10–12 (1991)

http://arxiv.org/abs/1702.05633
https://doi.org/10.1007/978-3-030-68766-3_16

P Versus NPC: Minimum Steiner Trees
in Convex Split Graphs

A. Mohanapriya1(B), P. Renjith2, and N. Sadagopan1

1 Design and Manufacturing, Indian Institute of Information Technology,
Kancheepuram, Chennai, India

{coe19d003,sadagopan}@iiitdm.ac.in
2 Design and Manufacturing, Indian Institute of Information Technology,

Kurnool, India
renjith@iiitk.ac.in

Abstract. We investigate the complexity of finding a minimum Steiner
tree in new subclasses of split graphs namely tree-convex split graphs
and circular-convex split graphs. It is known that the Steiner tree prob-
lem (STREE) is NP-complete on split graphs [1]. To strengthen this
result, we introduce convex ordering on one of the partitions (clique or
independent set), and prove that STREE is polynomial-time solvable for
tree-convex split graphs with convexity on clique (K), whereas STREE is
NP-complete on tree-convex split graphs with convexity on independent
set (I). Further, we show that STREE is polynomial-time solvable for
path (triad)-convex split graphs with convexity on I, and circular-convex
split graphs. Finally, we show that STREE can be used as a framework
for the dominating set problem in split graphs, and hence the complex-
ity of STREE and the dominating set problem is the same for all these
graph classes.

Keywords: Steiner tree · Tree-convex · Path-convex · Triad-convex ·
Circular-convex · Domination

1 Introduction

The computational complexity of the Steiner tree problem (STREE), Domina-
tion and its variants for different classes of graphs has been well studied. Given
a graph G with terminal set R ⊆ V (G), STREE asks for a set S ⊆ V (G) \ R
such that the graph induced on S ∪R is connected. The objective is to minimize
the number of vertices in S. STREE is NP-complete for general graphs, chordal
bipartite graphs [2], and split graphs [3] whose vertex set can be partitioned
into a clique and an independent set. It is polynomial-time solvable in strongly
chordal graphs [3], series-parallel graphs [4], and outerplanar graphs [5], and for
graphs with fixed treewidth [6]. It is known [1] that STREE is polynomial-time
solvable in K1,3-free split graphs and K1,4-free split graphs, whereas in K1,5-free

This work is partially supported by the DST-ECRA Project-ECR/2017/001442.

c© Springer Nature Switzerland AG 2022
N. Balachandran and R. Inkulu (Eds.): CALDAM 2022, LNCS 13179, pp. 115–126, 2022.
https://doi.org/10.1007/978-3-030-95018-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95018-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-95018-7_10

116 A. Mohanapriya et al.

split graphs, STREE is NP-complete. In this paper, we focus on new subclasses
of split graphs, and study the tractability versus intractability status of STREE
in those subclasses of split graphs.

It is important to highlight that many problems that are NP-complete on
bipartite graphs become polynomial-time solvable when a linear ordering is
imposed on one of the partitions. Such graphs are known as convex bipartite
graphs in the literature. For example, the dominating set problem is NP-complete
on bipartite graphs, whereas it is polynomial-time solvable in convex bipartite
graphs [7]. A bipartite graph G = (X,Y) is said to be tree-convex if there is a
tree (imaginary) on X such that the neighborhood of each y in Y is a subtree
in X. Apart from linear ordering (path-convex ordering), tree-convex ordering,
triad-convex ordering, and circular-convex ordering on bipartite graphs have
been considered in the literature [8]. Further, the convex ordering on bipartite
graphs yielded many interesting algorithmic results for domination and Hamil-
tonicity [9]. Similarly, the feedback vertex set problem (FVS) is NP-complete
on star-convex bipartite graphs, and comb-convex bipartite graphs, whereas it is
polynomial-time solvable in chordal bipartite graphs and convex bipartite graphs
[9]. Thus, the convex ordering on bipartite graphs reinforces the borderline sep-
arating P-versus-NPC instances of many classical combinatorial problems.

Since the tractability versus intractability status of many combinatorial prob-
lems on bipartite graphs can be investigated with the help of convex ordering
on bipartite graphs, we wish to extend this line of study to split graphs as well.
To the best of our knowledge, this paper makes the first attempt in introduc-
ing convex properties on split graphs. There are many classical problems such
as Domination, Steiner tree, Hamiltonicity and its variants are NP-complete
on split graphs. By imposing convex ordering on one of the partitions (clique
or independent set), we wish to investigate P-versus-NPC status of STREE on
this new subclass of split graphs. As part of this paper, we consider the follow-
ing convex properties; star-convex, tree-convex, comb-convex, path-convex, and
circular-convex split graphs. Further, we look at split graphs having convexity
on I (independent set) and split graphs having convexity on K (clique).

For tree-convex and circular-convex split graphs, the computational complex-
ity of the following graph problems are studied in this paper.

1. The Steiner tree problem (STREE).
Instance: A graph G, a terminal set R ⊆ V (G), and a positive integer k.
Question: Does there exist a set S ⊆ V (G)\R such that |S| ≤ k, and G[S∪R]
is connected ?

2. The Dominating set problem (DS).
Instance: A graph G, and a positive integer k.
Question: Does G admit a dominating set of size at most k ?

3. The Connected Dominating set problem (CDS).
Instance: A graph G, and a positive integer k.
Question: Does G admit a connected dominating set of size at most k ?

P Versus NPC: Minimum Steiner Trees in Convex Split Graphs 117

4. The Total Dominating set problem (TDS).
Instance: A graph G, and a positive integer k.
Question: Does G admit a total dominating set of size at most k ?

All these problems are NP-complete for general graphs, bipartite graphs, and
split graphs [1,8,10]. The complexity of these problems in tree-convex bipartite
graphs have been considered in [9]. In this paper, we analyze the complexity of
STREE in tree-convex split graphs and its subclasses (triad-convex, star-convex,
comb-convex) with convexity on I (K). An interesting theoretical question is

-What is the boundary between the tractability and intractability of STREE in
split graphs ?

In this paper, we answer this question by imposing a convex ordering on clique or
independent set. In particular, we show that STREE is polynomial-time solvable
for tree-convex split graphs with convexity on K, and is NP-complete for tree-
convex split graphs with convexity on I. Further, we investigate path, triad
convex properties, and show that STREE is polynomial-time solvable for triad
(path)-convex split graphs with convexity on I and circular-convex split graphs.

This paper is structured as follows: In Sect. 2, the complexity results of convex
split graphs with convexity on I is shown, and the complexity results of convex
split graphs with convexity on K is shown in Sect. 3. Using the results of Sects. 2
and 3, we establish the complexities of DS, CDS, and TDS in convex split graphs.

Graph Preliminaries: In this paper, we consider connected, undirected,
unweighted and simple graphs. For a graph G, V (G) denotes the vertex set
and E(G) represents the edge set. For a set S ⊆ V (G), G[S] denotes the
subgraph of G induced on the vertex set S. The open neighborhood of a ver-
tex v is NG(v) = {u | {u, v} ∈ E(G)} and the closed neighborhood of v is
NG[v] = {v} ∪ NG(v). The degree of vertex v is dG(v) = |NG(v)|. A split
graph is a graph G in which V (G) can be partitioned into two sets; a clique
K and an independent set I. A split graph is written as G = (K ∪ I, E),
where K is a maximal clique and I is an independent set. In a split graph,
for each vertex u in K, N I

G(u) = NG(u) ∩ I, dIG(u) = |N I
G(u)|, and for each

vertex v in I, NK
G (v) = N(v) ∩ K, dKG (v) = |NK

G (v)|. For each vertex u in K,
N I

G[u] = NG(u) ∩ I ∪ {u}, and for each vertex v in I, NK
G [v] = N(v) ∩ K ∪ {v}.

For a split graph G, ΔI
G = max{dIG(u)}, u ∈ K and ΔK

G = max{dKG (v)}, v ∈ I.

Definition 1. A split graph G = (K ∪ I, E) is called π-convex with convexity
on K if there is an associated structure π = (K,F) in K such that for each
vertex v ∈ I, its neighborhood NG(v) induces a connected subgraph in π.

Definition 2. A split graph G = (K∪I, E) is called π-convex with convexity on
I if there is an associated tree π = (I, F) in I such that for each vertex v ∈ K,
its neighborhood N I

G(v) induces a connected subgraph in π.

In general π can be any arbitrary structure. In this paper, We consider the
following structures for π; ”tree”, ”star”, ”triad”, ”path”, and ”cycle”.

118 A. Mohanapriya et al.

For STREE, we solve for the case R = I, and for all the other cases, we obtain
solutions using the following transformations and the algorithm for R = I.
Case 1: R = K or R ⊂ K.
For R = K or R ⊂ K, the Steiner set is an empty set.
Case 2: R ⊂ I.
For R ⊂ I, we transform the graph G to G′ and the solution to G is obtained
using G′. The transformation is defined as follows; G′ = G−I ′, where I ′ = I −R
and R′ = R.
Case 3: R ∩ K �= ∅ and R ∩ I �= ∅.
Similar to Case 2, we obtain the solution for this case using the following trans-
formation. Let W = R ∩ K and G′ = G − N I

G[W] − I ′ with I ′ = I − R. Let
R′ = I ′. Then the solution to (G,R) is obtained using (G′, R′).

2 STREE in Split Graphs with Convexity on I

When we refer to convex split graphs in this section, we refer to convex split
graphs with convexity on I. For STREE on split graphs with convexity on I,
we establish hardness results for star-convex and comb-convex split graphs, and
polynomial-time algorithms for path-convex, triad-convex, and circular-convex
split graphs.

2.1 Star-Convex Split Graphs

In this section, we establish a classical hardness of STREE in star-convex split
graphs by presenting a polynomial-time reduction from the Exact-3-Cover prob-
lem to STREE in star-convex split graphs with convexity on I.

The decision version of Exact-3-Cover problem (X3C) is defined below:

EXACT-3-COVER (X, C)
Instance: A finite set X with |X| = 3q and a collection C =
{C1, C2, . . . , Cm} of 3-element subsets of X.
Question: Is there a subcollection C′ ⊆ C such that for every x ∈ X, x
belongs to exactly one member of C′ (that is, C′ partitions X) ?

The decision version of Steiner tree problem is defined below:

STREE (G,R, k)
Instance: A graph G, a terminal set R ⊆ V (G), and a positive integer k.
Question: Is there a set S ⊆ V (G) \ R such that |S| ≤ k, and G[S ∪ R] is
connected ?

Theorem 1. For star-convex split graphs with convexity on I, STREE is NP-
complete.

P Versus NPC: Minimum Steiner Trees in Convex Split Graphs 119

Proof. STREE is in NP Given a star-convex split graph G with convexity on I
and a certificate S ⊆ V (G), we show that there exists a deterministic polynomial-
time algorithm for verifying the validity of S. Note that the standard Breadth
First Search (BFS) algorithm can be used to check whether G[S∪R] is connected.
It is easy to check whether |S| ≤ k. The certificate verification can be done in
O(|V (G)| + |E(G)|). Thus, we conclude that STREE is in NP.

STREE is NP-Hard It is known [11] that X3C is NP-complete. X3C can be
reduced in polynomial time to STREE in star-convex split graphs with convexity
on I using the following reduction. We map an instance (X, C) of X3C to the
corresponding instance (G,R, k) of STREE as follows: V (G) = V1 ∪ V2, V1 =
{ci | 1 ≤ i ≤ m}, V2 = {x1, x2, . . . , x3q, x3q+1}, E(G) = {{ci, xj} | xj ∈ Ci, 1 ≤
j ≤ 3q, 1 ≤ i ≤ m} ∪ {{x3q+1, ci} | 1 ≤ i ≤ m} ∪ {{ci, cj} | 1 ≤ i ≤ j ≤ m}.
Let R = V2, k = q. Note that G is a split graph with V1 being a clique and V2

being an independent set. Now we show that G is a star-convex split graph by
defining a star T on V2 as follows:
Let V (T) = V2 and E(T) = {{x3q+1, xi} | 1 ≤ i ≤ 3q}. We see that x3q+1 is the
root of the star T .
An illustration for X3C with X = {x1, x2, x3, x4, x5, x6} and C = {C1 =
{x1, x2, x3}, C2 = {x2, x3, x4}, C3 = {x1, x2, x5}, C4 = {x2, x5, x6}, C5 =
{x1, x5, x6}} and the graph G with R = I, k = 2 and imaginary star on I
rooted at x7 corresponding to X3C is shown in Fig. 1. For C′ = {C2, C5} and
k = 2, we see that S = {c2, c5} is the desired Steiner set.

c1

c2

c3

c4

c5

x1

x2

x3

x4

x5

x6

x7

x1 x2 x6
. . .

x7

KI

Clique on K(K5)

Imaginary star of G with respect to I

Fig. 1. Reduction: An instance of X3C to STREE in star-convex split graphs with
convexity on I

Claim. Exact-3-Cover (X, C) if and only if STREE (G,R, |X|
3)

Proof. Only if: If there exists C′ ⊆ C which partitions all elements of X, then
the set of vertices S = {ci ∈ V1 | Ci ∈ C′}, where ci is the vertex corresponding
to Ci, forms a Steiner set S with R = V2. Also, note that |S| = q.

120 A. Mohanapriya et al.

If: Assume that there exists a Steiner tree in G for R. Let S ⊆ V1 be the
Steiner set, |S| = q. We now construct a C′ = {Ci ∈ C | ci ∈ S} to X3C. Since
|S| = q, we have |C′| = q. Further, S is the Steiner set for the terminal set
R = {x1, . . . , x3q, x3q+1}. For any ci ∈ S, we have |N I

G(ci) \ {x3q+1}| = 3. Since
|S| = q, for all ci, cj ∈ S, i �= j, N I

G(ci) ∩ N I
G(cj) = {x3q+1}. Therefore, C′ is the

corresponding solution to X3C.
�
Therefore, STREE is NP-complete on star-convex split graphs with convexity
on I.
�
Corollary 1. STREE in tree-convex split graphs with convexity on I is NP-
complete.

Proof. Since star-convex split graphs are a subclass of tree-convex split graphs,
from Theorem 1 this result follows.
�
The study of parameterized complexity is concerned with designing algorithms
with complexity f(k)nO(1), where k is the parameter of interest, usually the
solution size, and n is the input size. In [12] it is shown that STREE in general
graphs is Fixed-parameter Tractable (FPT) if the parameter is the size of the
terminal set.

It is known [13] that STREE in general graphs with parameter |S| is W[2]-
hard. We now prove a similar result for our graph class.

Theorem 2. For star-convex split graphs with convexity on I, STREE is W[1]-
hard with parameter |S|.
Proof. It is known [14] that the Exact Cover problem (generalization of X3C)
with parameter |C′| is W[1]-hard. Note that the reduction presented in Theorem
1 maps (X, C) to (G,R, k = q), where q is |C′|. Hence the reduction is a parame-
terized reduction. Therefore, STREE in star-convex split graphs with convexity
on I is W[1]-hard.

2.2 Comb-Convex Split Graphs

To strengthen the NP-completeness result of STREE on tree-convex split graphs
with convexity on I, we show that on comb convex split graphs with convexity
on I, STREE is NP-complete. The polynomial-time reduction is from the vertex
cover problem on general graphs.

The decision version of Vertex Cover problem (VC) is defined below:

VC (G, k)
Instance: A graph G, a non-negative integer k.
Question: Does there exist a set S ⊆ V (G) such that for each edge e =
{u, v} ∈ E(G), u ∈ S or v ∈ S and |S| ≤ k ?

Theorem 3. For comb-convex split graphs with convexity on I, STREE is NP-
complete.

P Versus NPC: Minimum Steiner Trees in Convex Split Graphs 121

Proof. STREE is NP-Hard: It is known [15] that VC on general graphs is
NP-complete and this can be reduced in polynomial time to STREE in comb-
convex split graphs using the following reduction. We map an instance (G, k) of
VC on general graphs to the corresponding instance (G∗, R, k′ = k) of STREE
as follows: V (G∗) = V1 ∪ V2 ∪ V3,
V1 = {xi | vi ∈ V (G)},
V2 = {yi | ei ∈ E(G)},
V3 = {zi | ei ∈ E(G)}.
We shall now describe the edges of G∗,

E(G∗) = E1 ∪ E2 ∪ E3,

E1 = {{yi, xk}, {yi, xl}, | ei = {vk, vl} ∈ E(G), xk, xl ∈ V1, yi ∈ V2, 1 ≤ i ≤
m, 1 ≤ k ≤ n, 1 ≤ l ≤ n}
E2 = {{x, zi}} | x ∈ V1, zi ∈ V3, 1 ≤ i ≤ m}
E3 = {{xi, xj} | 1 ≤ i ≤ j ≤ n}.

We define K = V1, I = V2 ∪ V3, and imaginary comb T on I is defined with
V3 as the backbone and V2 as the pendant vertex set. That is, V (T) = I and
E(T) = {{y1, z1}, {y2, z2}, . . . , {yi, zi} | 1 ≤ i ≤ m}.

An example is illustrated in Fig. 2, the vertex cover instance G(V,E) with
k = 2 is mapped to STREE instance of comb-convex split graph G∗(V ∗, E∗)
with R = {y1, y2, y3}, k′ = 2.

v1 v2

v3

x1 x2

x3

e1
e2

e3

y1
y2

y3

z1 z2 z3

G

G∗

z1 z2 z3

y1 y2 y3

Imaginary comb of G∗ with respect to I

Fig. 2. An example: VC reduces to STREE.

Claim. G∗ is a comb-convex split graph with convexity on I.

Proof. For each xi ∈ V1, N I
G(xi) = V3 ∪ W, W ⊆ V2. By construction xi is

adjacent to all of V3. Therefore, the graph induced on V3 ∪W is a subtree in G∗.
Hence G∗ is a comb-convex split graph with convexity on I.
�

122 A. Mohanapriya et al.

Claim. (G, k) has a vertex cover with at most k vertices if and only if (G∗, R =
{yi | 1 ≤ i ≤ m}}, k′ = k) has a Steiner tree of size at most k′ = k Steiner
vertices.

Proof. (Only if) Let V ′ = {vi | 1 ≤ i ≤ k} is a vertex cover of size k in G.
Then we construct the Steiner set S of G∗ for R = {yi | 1 ≤ i ≤ m} as follows:
S = {xi | 1 ≤ i ≤ k, vi ∈ V ′, xi ∈ V (G∗)}. Since V ′ is a vertex cover, for
any edge ei = {vk, vl} ∈ E(G), vk or vl is in V ′. Hence S contains xk or xl.
Therefore, for each vertex yi, there exists a neighbor in S. Since V1 is a clique
by our construction, G[R ∪ S] is connected.
(If) For R in G∗, let S = {xi | 1 ≤ i ≤ k′} is a Steiner set of G∗ of size k′.
Then, we construct the vertex cover V ′ of size k in G as follows; V ′ = {vi |
xi ∈ S, vi ∈ V (G), 1 ≤ i ≤ k′}. We now claim that V ′ is a vertex cover in G.
Suppose that there is an edge ei = {vk, vl} ∈ E(G) for which neither vk nor vl is
in V ′. This implies that neither xk nor xl is in S. Since R contains yi, it follows
that N(yi) ∩ S = ∅. Thus S is not a Steiner set. A contradiction. Therefore, V ′

is a vertex cover of size k in G.
�
Therefore, STREE is NP-complete on comb-convex split graphs with convexity
on I.
�
A closer look at the reduction reveals that the presence of pendant vertices in the
comb makes the problem NP-hard. Therefore, we shall investigate the complexity
of STREE in a variant of comb-convex split graphs where there are no pendant
vertices in the comb which is precisely the class of path-convex split graphs.
Interestingly STREE in path-convex split graph is polynomial-time solvable,
which we establish in the next section.

2.3 Path-Convex Split Graphs

In this section, we show that STREE in path-convex split graphs is polynomial-
time solvable. Recall that a split graph G is called path-convex if there exists a
linear ordering of vertices in I such that for each u ∈ K, N(u) is a sequence of
consecutive vertices.

Let G be a path-convex split graph. Let the vertices in I be x1, . . . , xr and
let the vertices in K be w1, . . . , ws. We know that there exists an imaginary
path on I and for each vertex u ∈ K, N I

G(u) is a subpath in the imaginary
path. For each u ∈ K, l(u) is the least vertex in N I

G(u), and r(u) is the great-
est vertex in N I

G(u). For each vertex xi ∈ I, we define T (xi) = {u | u ∈
N(xi), and r(u) is maximum}. Let w(xi) be an arbitrary vertex from T (xi).

Steiner tree algorithm for path-convex split graphs identifies the vertex w ∈
K adjacent to x1 such that r(w) is maximum and we continue this from r(w).
This greedy approach is indeed optimum, which we establish in this section.

The following algorithm computes a minimum Steiner set for G.

P Versus NPC: Minimum Steiner Trees in Convex Split Graphs 123

Algorithm 1. STREE for path-convex split graphs with convexity on I.
1: Input: A connected path-convex split graph G with convexity on I and R = I.
2: Let a = x1, S = {}.
3: Let S = S ∪ {w(a)}.
4: if xr ∈ N(w(a)) then
5: Output S.
6: else
7: Let xj be r(w(a)).
8: Let a = xj+1 and continue from Step 3.
9: end if

By r(wi) � r(wj), wi, wj ∈ K, we mean that the vertex r(wi) appears before
r(wj). Let S = {u1, . . . up} be the Steiner vertices chosen by the algorithm. Note
that as per our algorithm r(u1) � r(u2) � . . . � r(up). Let S′ = {u1, . . . up} be
the Steiner vertices chosen by any optimal algorithm. Without loss of generality,
we arrange S′ such that r(v1) � r(v2) � . . . � r(vq).

Theorem 4. For 1 ≤ k ≤ q, let xj = r(uk), and xl = r(vk). Then, j ≥ l.

Proof. By mathematical induction k, k ≥ 1.
Base Case: For k = 1, Algorithm 1 has chosen u1. Since by Step 2 of the
algorithm, r(u1) � r(uj) for any uj ∈ N(u1). Therefore, r(u1) ≥ r(v1). Thus
j ≥ l is true for the base case.
Induction Hypothesis: Assume that for k ≥ 2, j ≥ l is true.
Induction Step: We prove that at k+1 iteration, k ≥ 2, j ≥ l. By our induction
hypothesis, we know that up to kth iteration j ≥ l. We know that xj = r(uk),
and xl = r(vk). The vertex chosen by the algorithm at (k + 1)th iteration be
uk+1. Since S′ is the optimal solution, let vk+1 be the (k + 1)th vertex in S′ such
that r(vk+1) is either less than or equal to xj or adjacent to xj+1.
Case 1: If r(vk+1) is less than or equal to xj and we know that at (k + 1)th

iteration r(uk+1) � xj , then r(uk+1) ≥ r(vk+1).
Case 2: Consider the case when r(vk+1) is adjacent to xj+1. We know that vk+1

is in S′ such that S′∩N(xj+1) �= ∅. Suppose that r(uk+1) � r(vk+1). At (k+1)th

iteration, according to Step 3, and Step 2 of the algorithm, w(xj+1) is included in
S. Hence uk+1 = w(xj+1). Recall that as per our definition of w(xj+1), it is the
vertex adjacent to xj+1 such that r(uk) is maximum. Thus r(uk+1) � r(vk+1) is
a contradiction. Therefore, r(uk+1) � r(vk+1), and at (k + 1)th iteration, j ≥ l.

�
Theorem 5. Algorithm 1 outputs a minimum Steiner set, that is p = q.

Proof. By Theorem 4, we know that r(uq) � r(vq), and hence |S| ≤ |S′|. Since
S′ is an optimal solution, |S| ≥ |S′|. By Step 3 of the algorithm we know that
xn ∈ N(uk). Therefore, |S| = |S′|, and p = q.
�
It is easy to see that Algorithm 1 runs in time O(mn).

124 A. Mohanapriya et al.

Now we see that for comb-convex split graph, STREE is NP-complete, whereas
for path-convex split graph, STREE is polynomial-time solvable. This clearly
brings out P-versus-NPC investigation of STREE in tree-convex split graphs.
This is one of the objectives of this research.

It is important to highlight that we can solve STREE on triad-convex and
circular-convex split graphs by using the algorithm of path-convex split graphs
as a black box.

3 STREE in Split Graphs with Convexity on K

Having analyzed P-versus-NPC status of STREE for convex split graphs with
convexity on I, we shall now analyze the same with respect to split graphs having
convexity on K.

3.1 Tree-Convex Split Graphs

In this section, we present a polynomial-time algorithm to find a minimum
Steiner tree in tree-convex split graphs. We solve for first the case R = I, and
using which we solve (i) R ⊂ I and (ii) R∩K �= ∅ and R∩I �= ∅. Let G(K∪I, E)
be a tree-convex split graph with a imaginary tree T .

To construct the Steiner tree for G, we use the following scheme. Initially
all vertices in the imaginary tree T is colored gray. The vertex colored gray is
changed white or black as per the following rules:
We recolor the gray colored vertex as white or black as per the following rules:
Rule 1:(Gray is colored white) A leaf vertex u ∈ T recolored white when there
does not exist a pendant vertex in N I

G(u).
Rule 2:(Gray is colored Black) A leaf vertex u ∈ T recolored white when there
exists a pendant vertex in N I

G(u).
The algorithm that computes Steiner tree for the case R = I works with imagi-
nary tree T .

The Steiner tree algorithm R = I starts from an arbitrary leaf vertex, say
u ∈ T . Check with respect to u which rule is applicable. If Rule 1 is applied, then
G is modified to G = G − u. If suppose Rule 2 is applied, then G is modified to
G = G − N I

G(u). We continue the process for |K| − 1 times. In this process the
vertices that are colored black are included in the solution and they are precisely
the Steiner set, which we prove in Theorem 6.

Theorem 6. The Steiner set S obtained using the above procedure is a mini-
mum Steiner set.

Proof. On the contrary, there exists a Steiner set S′ for G such that |S′| < |S|.
Since |S′| < |S|, the coloring obtained from the algorithm is not optimal. Hence
there exists a coloring such that number of white vertices are more, and the
number of black vertices are less compared to the coloring obtained from the
algorithm.

P Versus NPC: Minimum Steiner Trees in Convex Split Graphs 125

A gray colored leaf vertex u is colored black, when there exists a pendant vertex
x ∈ I adjacent to u in that instance. We know that G is a tree-convex split
graph with convexity on K, let u be a leaf vertex in T , and let v be a unique
vertex adjacent to u in T . Suppose that u is not adjacent to a pendant vertex
x ∈ I. Then N(u) ⊆ N(v). Hence including v in the Steiner set instead of u will
connect more number of vertices. Suppose that u is adjacent to a pendant vertex
x ∈ I. Then u is colored black. This is the invariant followed by the algorithm.

Hence the coloring having less number of black vertices compared to the
coloring obtained from our algorithm is not possible. Therefore, |S′| < |S| is a
contradiction and S is a minimal Steiner set.

Remarks: Since STREE in tree-convex split graphs with convexity K is
polynomial-time solvable, STREE is polynomial-time solvable on well known
special structures such as star, path, triad, and comb-convex split graphs with
convexity on K. It is important to note that the above approach can be used as
a black box for STREE on circular-convex split graphs.

Since Steiner set for convex split graphs S ⊆ K, we observe that S is also
DS, CDS, and TDS. The P-versus-NPC status of STREE for convex properties
discussed in this paper also holds true for DS, CDS, TDS.

Conclusion and Directions for Further Research:
We have shown the complexity of STREE, and domination and its variants
in tree-convex and circular-convex split graphs. The results presented in this
paper can be used as a framework for Steiner tree variants (Steiner path and
cycle) and domination problems (outer connected domination, Roman domina-
tion) restricted to split, and bipartite graphs.

References

1. Renjith, P., Sadagopan, N.: The Steiner tree in K1,r-free split graphs-a Dichotomy.
Discrete Appl. Math. 280, 246–255 (2020)

2. Müller, H., Brandstädt, A.: The NP-completeness of Steiner tree and dominating
set for chordal bipartite graphs. Theoretical Comput. Sci. 53(2–3), 257–265 (1987)

3. White, K., Farber, M., Pulleyblank, W.: Steiner trees, connected domination and
strongly chordal graphs. Networks 15(1), 109–124 (1985)

4. Joseph, A.W., Charles, J.C.: Steiner trees, partial 2-trees, and minimum ifi net-
works. Networks 13(2), 159–167 (1983)

5. Joseph, A.W., Charles, J.C.: Steiner trees in outerplanar graphs. In: Proceedings of
13th Southeastern Conference on Combinatorics, Graph Theory, and Computing,
pp. 15–22 (1982)

6. Chimani, M., Mutzel, P., Zey, B.: Improved steiner tree algorithms for bounded
treewidth. J. Discr. Algorith. 16, 67–78 (2012)

7. Mohanapriya, A., Renjith, P., Sadagopan, N., et al.: Steiner tree in k-star cater-
pillar convex bipartite graphs-a dichotomy. arXiv preprint arXiv:2107.09382, 2021

8. Pandey, A., Panda, B.S.: Domination in some subclasses of bipartite graphs. Discr.
Appl. Math. 252, 51–66 (2019)

http://arxiv.org/abs/2107.09382

126 A. Mohanapriya et al.

9. Chen, H., Lei, Z., Liu, T., Tang, Z., Wang, C., Xu, K.: Complexity of domination,
hamiltonicity and treewidth for tree convex bipartite graphs. J. Combin. Optim.,
1–16 (2015). https://doi.org/10.1007/s10878-015-9917-3

10. Damaschke, P., Müller, H., Kratsch, D.: Domination in convex and chordal bipar-
tite graphs. Inf. Proc. Lett. 36(5), 231–236 (1990)

11. Michael, R.G.: Computers and intractability: a guide to the theory of NP-
Completeness. WH Freeman and Co., (1979)

12. Stuart, E.D., Robert, A.W.: The Steiner problem in graphs. Networks 1(3), 195–
207 (1971)

13. Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through colors and ids.
In: International Colloquium on Automata, Languages, and Programming, pp.
378–389. Springer (2009). https://doi.org/10.1007/978-3-642-02927-1 32

14. Ashok, P., Kolay, S., Misra, N., Saurabh, S.: Unique covering problems with geo-
metric Sets. In: Xu, D., Du, D., Du, D. (eds.) Computing and Combinatorics.
COCOON 2015. LNCS, vol. 9198. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-21398-9 43

15. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms.
MIT Press (2009)

https://doi.org/10.1007/s10878-015-9917-3
https://doi.org/10.1007/978-3-642-02927-1_32
https://doi.org/10.1007/978-3-319-21398-9_43
https://doi.org/10.1007/978-3-319-21398-9_43

On cd-Coloring of {P5,K4}-free Chordal
Graphs

M. A. Shalu and V. K. Kirubakaran(B)

Indian Institute of Information Technology, Design and Manufacturing,
Kancheepuram, India

{shalu,mat19d002}@iiitdm.ac.in

Abstract. A k-cd-coloring of a graph G is a partition of the vertex set
of G into k independent sets V1, . . . , Vk, where each Vi is dominated by
some vertex of G. The least integer k such that G admits a k-cd-coloring
is called the cd-chromatic number, χcd(G), of G. We say that S ⊆ V (G)
is a subclique in G if dG(x, y) �= 2 for every x, y ∈ S. The cardinality
of a maximum subclique in G is called the subclique number, ωs(G), of
G. Given a graph G and k ∈ N, the problem cd-Colorability checks
whether χcd(G) ≤ k. The problem cd-Colorability is NP-complete
for K4-free graphs [Merounane et al., 2014], P5-free graphs, and chordal
graphs [Shalu et al., 2020]. In this paper, we show that the problem cd-
Colorability is O(n2)-time solvable in the intersection of the above
graph classes ({P5, K4}-free chordal graphs). The problem Subclique
takes a graph G and k ∈ N as inputs and checks whether ωs(G) ≥ k.
The Subclique problem is NP-complete for P6-free graphs and bipartite
gaphs [Shalu et al., 2017]. We prove that the problem Subclique is
O(n3)-time solvable in the class of P6-free chordal bipartite graphs (a
subclass of P6-free bipartite graphs). In addition, we show that the cd-
chromatic number and the subclique number are equal in these two graph
classes.

1 Introduction

A proper (vertex) coloring f of a graph assigns colors to its vertices such that adja-
cent vertices receive distinct colors. The set of vertices that receive the same color
is a color class. Graph coloring is one of the classical problems in the field of combi-
natorics. The problem aims at reducing the number of colors required for a proper
(vertex) coloring. The minimum number of colors required to color a graph G with
adjacent vertices receiving different colors is called the chromatic number of G,
denoted by χ(G). Another well-studied problem in this field is the dominating set
problem. We say that a subset D of the vertex set V of a graph G dominates V
if every vertex in V \ D is adjacent to some vertex in D. The cardinality of the
smallest dominating set in a graph G is called domination number, and is denoted
by γ(G). The dominator coloring problem [1,2,6,7] and the class domination col-
oring problem [11,16] are two emerging problems in graph theory involving both

M. A. Shalu—Supported by SERB(DST), MATRICS scheme MTR/2018/000086.

c© Springer Nature Switzerland AG 2022
N. Balachandran and R. Inkulu (Eds.): CALDAM 2022, LNCS 13179, pp. 127–139, 2022.
https://doi.org/10.1007/978-3-030-95018-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95018-7_11&domain=pdf
http://orcid.org/0000-0002-4399-0791
http://orcid.org/0000-0002-3057-457X
https://doi.org/10.1007/978-3-030-95018-7_11

128 M. A. Shalu and V. K. Kirubakaran

coloring and domination. In a vertex coloring f of a graph G, if each color class of
f is dominated by some vertex in G, then it is called a class domination coloring
(cd-coloring) of G [11,16]. The minimum number of colors required for cd-coloring
a graph G is called the cd-chromatic number, χcd(G), of G. If two vertices receive
the same color under some cd-coloring of G, then the distance between them in
G is two: i.e., any two vertices not at distance two will receive different colors in
any cd-coloring of G. This observation gives a lower bound for the cd-chromatic
number, called the subclique number. For a graph G, a subset S of the vertex set is
a subclique if no pair of vertices in S are at distance two from each other in G. The
cardinality of a maximum subclique in G is called the subclique number, ωs(G),
of G. Note that the cd-chromatic number of a graph G is at least the subclique
number of G, i.e., χcd(G) ≥ ωs(G). The computational version of the problems
cd-coloring and subclique are as follows.

cd-Colorability Subclique
Instance : A graph G and k ∈ N. Instance : A graph G and k ∈ N.
Question : Is G k-cd-colorable? Question : Is ωs(G) ≥ k?

The problem cd-Colorability is NP-complete for bipartite graphs [11],
K4-free graphs [11], P5-free graphs [15], and chordal graphs [15]. The problem
k-cd-Colorability is NP-complete for k ≥ 4 [11] and is O(n5)-time solvable for
k ≤ 3 [13]. Kiruthika et al. [8] gave an O(2nn4 log n)-time algorithm to find the
cd-chromatic number of a graph with n vertices. They also gave FPT algorithms
for general graphs and chordal graphs. Chen [3] proved that the cd-chromatic
number is hard to approximate within a factor of |V |(1−ε)+1

1.5 for every ε > 0.
Das and Mishra [5] proved (approximation) hardness results of the problem cd-
Colorability in chordal graphs and bipartite graphs. Shalu et al. [15] proved
that an optimal cd-coloring of split graphs, P4-free graphs, and claw-free graphs
can be found in poly-time. Applications of the cd-coloring problem can be found
in [3,9,14].

For a graph G, every clique in G is also a subclique in G, and thus ωs(G) ≥
ω(G). The Subclique problem is NP-complete for chordal graphs, bipartite
graphs, P6-free graphs, and H-free graphs where H is any graph on four or five
vertices other than P4 [14]. The problem is poly-time solvable for split graphs and
P4-free graphs [14]. In our previous work [12], we proved that the cd-chromatic
number and the subclique number are equal for trees and co-bipartite graphs.

In this paper, we prove that the cd-chromatic number and the subclique
number of a {P5,K4}-free chordal graph can be found in O(n2) time (see Sect. 3).
Also, a maximum subclique of a P6-free chordal bipartite graph can be found in
O(n3) time (see Sect. 4). In addition, we prove that for any graph G in one of
the above two graph classes, χcd(G) = ωs(G).

2 Preliminaries

We follow West [17] for terminology and notation. The number of vertices and
the number of edges in a graph are denoted by n and m, respectively. We denote

On cd-Coloring of {P5, K4}-free Chordal Graphs 129

a path with vertex set {x1, . . . , xk} and edge set {xixi+1 : 1 ≤ i ≤ k − 1} by
x1 · · · xk. A clique C of a graph G is a subset of the vertex set such that every
pair of vertices in C are adjacent. The clique number is the size of a largest clique
in G and is denoted by ω(G). For a graph G, we say that D ⊆ V (G) is a total
dominating set in G if every vertex of G has a neighbor in D. The cardinality of
a smallest total dominating set in G is called the total domination number of G,
denoted by γt(G). For Y ⊆ V (G), G[Y] denotes the induced subgraph of G with
vertex set Y . We denote the length of a shortest path joining x and y in G by
dG(x, y). For a vertex u ∈ V (G) and a subset W of the vertex set, dG(u,W) =
min{dG(u,w) |w ∈ W}. Given a graph H, we say that a graph G is H-free if
no induced subgraph of G isomorphic to H. For x ∈ V (G), the neighborhood
of x is defined as N(x) = {y ∈ V (G) |xy ∈ E(G)} and N [x] = {x} ∪ N(x) is
the closed neighborhood of x. Let A(x) = V (G) \ N [x]. For X,Y ⊆ V (G) and
X ∩ Y = ∅, we define [X,Y] to be the set of all edges in G with one end vertex
in X and the other end vertex in Y . A set D ⊆ V (G) is said to be a biclique in
G if D can be partitioned into two non-empty independent sets X and Y such
that every vertex in X is adjacent to each vertex in Y . We say that a graph H
is complete bipartite if V (H) is a biclique.

3 {P5,K4}-free Chordal Graphs

In this section, we show that for a {P5,K4}-free chordal graph G, χcd(G) =
ωs(G). Also, we prove that the cd-chromatic number and the subclique number
of G can be found in O(n2) time.

Observation 1. If G is a connected P5-free graph with a maximal clique N0,
then the vertex set can be partitioned as V (G) = N0 ∪ N1 ∪ N2 where Ni = {u ∈
V (G) | d(u,N0) = i} for i = 1, 2.

Proof of Observation 1 is omitted in this paper.

Observation 2. If G is a connected P5-free chordal graph with ω(G) = 2, then
G is a tree with a dominating edge and hence χcd(G) = ωs(G) = 2. (For an
example see Fig. 1)

Observation 3. Let G be a connected P5-free chordal graph with clique number
three. Also, let N0 = {x0, x1, x2} be a maximum clique in G and let V (G) be
partitioned as in Observation 1. Then the following holds.

1. Let Mi = {u ∈ N1 |N(u) ∩ N0 = {xi}} and Li = {u ∈ N1 |N(u) ∩ N0 =
N0 \ {xi}}. Then,
(i) [Mi,Mj] = ∅, for i 	= j, else G contains an induced C4.
(ii) [Li, Lj] = ∅, for i 	= j, otherwise G contains an induced C4.
(iii) [Mi, Li] = ∅, else G contains an induced C4.
(iv) For i = 0, 1, 2, Li is an independent set, otherwise G contains a K4.

Thus,
⋃2

i=0 Li is an independent set since [Li, Lj] = ∅.

130 M. A. Shalu and V. K. Kirubakaran

2. If u, v ∈ N1 such that uv is an edge in G, then N(u) ∩ N0 ⊆ N(v) ∩ N0 or
N(v) ∩ N0 ⊆ N(u) ∩ N0. Otherwise, G contains an induced C4.

Lemma 1. Let G be a connected P5-free chordal graph with ω(G) = 3. Let the
vertex set be partitioned as in Observation 1 where N0 is a maximum clique in
G, and N2 	= ∅. Then, (

⋃
x∈N2

N(x)) ∩ N1 is a clique of size one or two.

Proof of Lemma 1 is omitted in this paper.

Lemma 2. Let G be a connected P5-free chordal graph with ω(G) = 3. Let
N0 = {x0, x1, x2} be a clique in G, and let the vertex set be partitioned as in
Observation 1. Then, G has a minimal dominating clique C such that C ⊆
N0 ∪ N1 and C ∩ N0 	= ∅.
Proof.
Case 1: N2 is empty.
Then, V (G) is dominated by N0. Thus, a subset of N0 forms the minimal dom-
inating clique C.
Case 2: N2 is non-empty.
By Lemma 1, N2 is dominated by B = (

⋃
x∈N2

N(x)) ∩ N1 which induces an
edge or a vertex in G[N1]. Let C1 be a minimal subset of B that dominates N2.
Case 2.1: |C1| = 2.
Let C1 = {u, v} where uv ∈ E(G). Then, by Observation 3.2, N(u) ∩ N0 ⊆
N(v) ∩ N0 or N(v) ∩ N0 ⊆ N(u) ∩ N0. Without loss of generality, assume that
N(u) ∩ N0 ⊆ N(v) ∩ N0. Since u ∈ N1, u has a neighbor in N0. Let x0 ∈ N(u).
Then, x1, x2 /∈ N(u) because when x1u or x2u is an edge in G, {x0, x1, u, v} or
{x0, x2, u, v} induces a K4 in G. Note that x0v ∈ E(G) and {x0, u, v} induces a
triangle in V (G).

Claim 1: D = {x0, u, v} dominates V (G).
Clearly, the set N0 ∪ N2 ∪ {u, v} is dominated by D. Assume that there exists
a vertex y ∈ N1 not dominated by D. Since y ∈ N1, y has a neighbor in N0\D.
Let yx1 ∈ E(G). Then, {y, x1, x0, u, w} induces a P5 in G for some w ∈ N2 ∩
N(u) (since (

⋃
x∈N2

N(x)) ∩ N1={u, v}, yw /∈ E(G)), a contradiction. Thus, D
dominates V (G).

Claim 2: D is a minimal dominating set in G.
On the contrary, suppose that there exists a proper subset D′ of D that domi-
nates V (G). Since x0 does not dominate N2, u or v belongs to D′. Without loss
of generality, assume that u ∈ D′. If v /∈ D′, then u dominates N2, a contra-
diction to C1 = {u, v} being the minimal subset of B that dominates N2. This
implies that u, v ∈ D′. Therefore, x0 /∈ D′ because D′ is a proper subset of D
and u, v ∈ D′. This implies that D′ = {u, v} dominates N0. Also, we know that
N(u) ∩ N0 ⊆ N(v) ∩ N0. Thus, N0 ⊆ N(v). This implies that {x0, x1, x2, v}
induces a K4 in G, a contradiction. Thus, D is a minimal dominating clique.

Also, since x0 ∈ D, D ∩ N0 	= ∅ .

On cd-Coloring of {P5, K4}-free Chordal Graphs 131

Case 2.2: |C1| = 1.
Let C1 = {u} and D1 = N(u) ∩ N0. Since u ∈ N1, D1 	= ∅. Also, since G is
K4-free u has a non-neighbor in N0. Without loss of generality, assume that
x0 ∈ D1 and x1 /∈ D1.

Claim 3: C2 = D1 ∪ {u} dominates V (G).
Clearly, N0 ∪ N2 ∪ {u} is dominated by C2. Suppose that C2 does not dominate
V (G). Then, there exists a vertex y ∈ N1 not adjacent to any vertex in C2. Since
y ∈ N1, y has a neighbor in N0 \C2. Let x1 ∈ N(y). Then, {y, x1, x0, u, w} forms
an induced P5 for some w ∈ N2, a contradiction. Hence, C2 dominates V (G).

Thus, by Claim 3, there exists a subset C of C2 that dominates V (G). Since
x1 /∈ N(u), in order to dominate x1, C contains an element of N0.

From the above cases, it is evident that G has a minimal dominating clique
C such that C ⊆ N0 ∪ N1 and C ∩ N0 	= ∅. �

Corollary 1. For a connected P5-free chordal graph with clique number three,
a minimal dominating clique described in Lemma 2 can be found in O(n + m)
time.

Proof of Corollary 1 runs BFS with respect to some triangle in a connected
P5-free chordal graph to find the sets N0, N1 and N2, and the rest of the proof
follows from Lemma 2. A detailed proof is omitted in this paper.

In the following observations and lemmas, we study the subclique number
and the cd-chromatic number of a connected P5-free chordal graph with clique
number three based on the size of its minimal dominating clique. These obser-
vations and lemmas help us to prove our theorem (Theorem 2) on {P5,K4}-free
chordal graphs.

Observation 4.

1. If G is a graph with a universal vertex, then every subclique in G is also a
clique and every proper coloring of G is also a cd-coloring. Thus, χcd(G) =
χ(G) [15] and ωs(G) = ω(G) [14].

2. Let G be a graph. Then, for any subclique S in G, S ∩ N [u] (respectively S ∩
N(u)) is a clique for every vertex u ∈ V (G) since S ∩ N [u] (respectively S ∩
N(u)) is a subclique in the induced subgraph G[N [u]] (a graph with a universal
vertex u).

Theorem 1. [12] If G is connected graph with a dominating clique D, then for
any subclique S in G, the following statements are true.

(i) If D ∩ S 	= ∅, then |S| ≤ ω(G).
(ii) If D ∩ S = ∅, then |S| ≤ |D|(ω(G) − 1).

132 M. A. Shalu and V. K. Kirubakaran

y6 z4
z2

z3

z1

y3

y4

y2

y5

y1

Fig. 1. An edge dominated tree E4,6 with a dominating edge y6z4.

We denote a tree T with a dominating edge uv as Ep,q where p = |N(u)| and
q = |N(v)|. Clearly, E1,q

∼= K1,q. Figure 1 shows the edge-dominated tree E4,6.

Observation 5. A tree T is P5-free if and only if T ∼= Ep,q for some p, q ∈ N

or T ∼= K1 (see Observation 2).

Observation 6. Let G be a P5-free chordal graph with a universal vertex u and
ω(G) = 3. Then, χcd(G) = χ(G) = 3 = ω(G) = ωs(G) by Observation 4. Also,
since G \ u is a forest, every connected component of G \ u is isomorphic to K1

or Ep,q for some p, q ∈ N by Observation 5.

Observation 7. Let G be a P5-free chordal graph with ω(G) = 3. Then, G[N(u)]
is triangle-free for every vertex u ∈ V (G). Hence, G[N(u)] is a P5-free forest.

Lemma 3. Let G be a connected P5-free chordal graph with ω(G) = 3, and
let uv ∈ E(G) such that D = {u, v} is a minimal dominating set in G. Then,
χcd(G) = ωs(G).

Proof. Clearly, 3 = ω(G) ≤ ωs(G). By Theorem 1, ωs(G) ≤ 4. So, ωs(G) ∈
{3, 4}.

Case 1: ωs(G) = 3.

Claim 1: N(u) \ N(v) or N(v) \ N(u) is an independent set.
If not, let y1, y2 and z1, z2 be vertices in N(u)\N(v) and N(v)\N(u) respectively
such that y1y2, z1z2 ∈ E(G). Since ωs(G) = 3, {y1, y2, z1, z2} is not a subclique,
and thus at least two of the four vertices are at distance two from each other.
Without loss of generality, assume that d(y1, z1) = 2. Hence, y1 and z1 have
a common neighbor w in G. Note that w /∈ {u, v} because z1u, y1v /∈ E(G).
Since {y1, w, z1, u, v} does not induce a C5 nor its subsets induce a C4 in G,
uw, vw ∈ E(G). This implies that w /∈ {y1, y2, z1, z2}. Also, w is neither adja-
cent to y2 nor adjacent to z2 because G[N(u)] and G[N(v)] are triangle-free by
Observation 7. Also, yizj /∈ E(G) for all i, j ∈ {1, 2} (otherwise {yi, u, v, zj}
induces a C4 in G). Thus, {y2, y1, w, z1, z2} induces a P5 in G, a contradiction.
Therefore, N(u) \ N(v) or N(v) \ N(u) is an independent set.

Let N(v) \ N(u) be an independent set. By Observation 7, G[N(u)] is bipar-
tite. Let X ∪ Y be a partition of N(u) into independent sets. Then, V (G) =

On cd-Coloring of {P5, K4}-free Chordal Graphs 133

X∪Y ∪(N(v)\N(u)) is a 3-cd-coloring of G where color classes X and Y are dom-
inated by u and N(v)\N(u) is dominated by v. Thus, 3 = ωs(G) ≤ χcd(G) ≤ 3.
Hence, χcd(G) = ωs(G) = 3.

Case 2: ωs(G) = 4.
Clearly, χcd(G) ≥ 4. Then, N(u) \ N(v) and N(v) \ N(u) aren’t independent
sets (otherwise G admits a 3-cd-coloring as in Case 1).
Let X1 ∪ Y1 = N(u) and X2 ∪ Y2 = N(v) \ N(u) be bipartitions of graphs
G[N(u)] and G[N(v) \ N(u)], respectively. Then, V (G) = X1 ∪ X2 ∪ Y1 ∪ Y2 is
a 4-cd-coloring of G where vertices in X1 and Y1 are dominated by u and the
vertices in X2 and Y2 are dominated by v. Thus, 4 = ωs(G) ≤ χcd(G) ≤ 4. This
shows that χcd(G) = ωs(G) = 4. �

Observation 8. Let G be a connected P5-free chordal graph with a minimal dom-
inating clique {u, v} and ω(G) = 3. Then, finding the subclique number of G is
the same as checking whether N(u) \ N(v) and N(v) \ N(u) are independent sets
by Lemma 3 (Case 1 of Lemma 3 shows that if ωs(G) = 3 then at least one of
N(u)\N(v) and N(v)\N(u) is an independent set, and Case 2 of Lemma 3 shows
that if ωs(G) = 4 then neither N(u) \ N(v) nor N(v) \ N(u) is an independent
set). The latter problem can be solved in O(n2) time. Hence, the subclique number
and the cd-chromatic number of G can be found in O(n2) time.

Observation 9. Let N0 = {x0, x1, x2} be a minimal dominating clique in a
connected P5-free chordal graph G with ω(G) = 3. Also, let N1 = V (G) \ N0.
Then, for sets M0 and L2 defined as in Observation 3.1, [M0, L2] = ∅. In general,
[Mi, Lj] = ∅ for i, j ∈ {0, 1, 2} and i 	= j.

Observation 10. Let N0 = {x0, x1, x2} be a minimal dominating clique in a
connected P5-free chordal graph G with ω(G) = 3. Let N1 = V (G) \ N0. Then,
for u ∈ Mi and v ∈ Mj, d(u, v) 	= 2 where Mi’s are as in Observation 3.1 and
i 	= j.

Proof of Observations 9 and 10 are omitted.

For a graph G with clique number three and a dominating clique of size three,
ωs(G) ∈ {3, 4, 5, 6} by Theorem 1. We study the structure of G when ωs(G) = 3
in Observation 11 and in Observation 12 we discuss the structure of G when
ωs(G) = 4, 5, 6. These Observations help us to prove Lemma 4.

Observation 11. Let G be a connected P5-free chordal graph with ω(G) =
ωs(G) = 3. Let N0 = {x0, x1, x2} be a minimal dominating clique in G. Then,
χcd(G) = 3 and V (G) \ {x0, x1, x2} is an independent set.

Proof. Let N1 = V (G)\N0, and let Mi and Li be sets defined in Observation 3.1.
Claim 1: V (G) \ {x0, x1, x2} is an independent set.

Suppose that there is an edge u0v0 in V (G) \ {x0, x1, x2}. Then, by Obser-
vations 3.1 and 9, u0, v0 ∈ Mi for some i = 0, 1, 2. Without loss of gen-
erality, assume that u0, v0 ∈ M0. Since {x0, x1, x2} is a minimal dominat-
ing set in G, there exist vertices u1 ∈ N(x1) ∩ A(x0) ∩ A(x2) = M1 and

134 M. A. Shalu and V. K. Kirubakaran

u2 ∈ N(x2) ∩ A(x0) ∩ A(x1) = M2. Then, {u0, u1, u2, v0} forms a subclique
of size four (because d(u0, v0) = 1, d(uj , uk) 	= 2 and d(v0, uj) 	= 2 for
j, k ∈ {0, 1, 2} by Observation 10). This contradicts the fact that ωs(G) = 3.
Hence, V (G) \ {x0, x1, x2} is an independent set.

Let Xi = {xi+1} ∪ (N(xi) ∩ A(xi+1)) = {xi+1} ∪ Mi ∪ Li+1 for i = 0, 1, 2:
from here onwards in this section, we take all the subscripts of xi, Mi and Li to
be mod 3. Each Xi is an independent set since Mi ∪ Li+1 ⊆ V (G) \ {x0, x1, x2}
is an independent set and xi+1 is not adjcent to any vertex in Mi ∪ Li+1 by
definitions of Mi and Li+1.
Claim 2: V (G) = X0 ∪ X1 ∪ X2 is a 3-cd-coloring of G.
Let x ∈ V (G)\{x0, x1, x2}. Then, x ∈ N(xi) for some i = 0, 1, 2. If x ∈ A(xi+1),
then x ∈ N(xi) ∩ A(xi+1) ⊆ Xi. Else, xxi+1 ∈ E(G). Since {xi, xi+1, xi+2, x}
does not induce a K4, xxi+2 /∈ E(G). This implies that x ∈ N(xi+1)∩A(xi+2) ⊆
Xi+1. Thus, every vertex in G belongs to Xi for some i = 0, 1, 2. Also, by the
definitions of Mi and Li+1, each Xi is dominated by xi. Hence, V (G) = X0 ∪
X1 ∪ X2 forms a 3-cd-coloring of G. This implies that 3 = ωs(G) ≤ χcd(G) ≤ 3.
Thus, χcd(G) = ωs(G) = 3. �

Observation 12. Let G be a connected P5-free chordal graph with ω(G) = 3 and
ωs(G) = j for some j = 4, 5, 6. Let N0 = {x0, x1, x2} be a minimal dominating
clique in G. Then, there exists j − 3 integers i1, . . . , ij−3 ∈ {0, 1, 2} such that
V (G) \ (N(xi1) ∪ . . . ∪ N(xij−3)) is an independent set, and every connected
component of G[N(xi1)], . . . , G[N(xij−3)] is isomorphic to K1 or Ep,q for some
p, q ∈ N. Also, χcd(G) = j.

Proof of Observations 12 is omitted in this paper.

Lemma 4. Let G be a connected P5-free chordal graph with ω(G) = 3, and let
{x0, x1, x2} be a minimal dominating clique in G. Then, χcd(G) = ωs(G).

Proof. Since ω(G) ≤ ωs(G), it is clear that ωs(G) ∈ {3, 4, 5, 6} by Theorem 1.
The rest of the proof follows from Observations 11 and 12. �

Observation 13. The subclique number and the cd-chromatic number of a con-
nected P5-free chordal graph with clique number three and a minimal dominating
clique {x0, x1, x2} can be found in O(n2) time.

Observations 11 and 12 will prove Observation 13. A detailed proof of Observa-
tion 13 is omitted in this paper.

Theorem 2. Let G be a {P5,K4}-free chordal graph. Then, χcd(G) = ωs(G).
Also, the cd-chromatic number and the subclique number of G can be found in
O(n2) time.

Proof. Let G be a connected {P5,K4}-free chordal graph. Then, ω(G) ≤ 3. We
prove the theorem in the following three cases.

On cd-Coloring of {P5, K4}-free Chordal Graphs 135

Case 1: ω(G) = 1.
Then, G ∼= K1 and χcd(G) = ωs(G) = 1. This can be found in constant time.

Case 2: ω(G) = 2.
Then, by Observation 2, G is a P5-free tree and χcd(G) = ωs(G) = 2. This can
be found in constant time.

Case 3: ω(G) = 3.
By Lemma 2, G admits a minimal dominating clique, say C, and it can be
obtained in O(n2) time by Corollary 1. Then, the following statements are true.

1. If |C| = 1, then χcd(G) = ωs(G) = 3 by Observation 6. This result can be
obtained in constant time.

2. If |C| = 2, then χcd(G) = ωs(G) by Lemma 3. Also, χcd(G) and ωs(G) can
be found in O(n2) time by Observation 8.

3. If |C| = 3, then χcd(G) = ωs(G) by Lemma 4. Also, χcd(G) and ωs(G) can
be found in O(n2) time by Observation 13.

Thus, from the above cases, we can conclude the following.

1. For a connected {P5,K4}-free chordal graph G, χcd(G) = ωs(G).
2. The cd-chromatic number and the subclique number of a connected {P5,K4}-

free chordal graph G can be found in O(n2) time.

We know that for a disconnected graph H with connected components
G1, . . . , Gk, χcd(H) =

∑k
i=1 χcd(Gi) and ωs(H) =

∑k
i=1 ωs(Gi). Thus, the above

results hold for the class of {P5,K4}-free chordal graphs. �

4 P6-free Chordal Bipartite Graphs

A bipartite graph G is said to be chordal bipartite if every induced cycle of length
at least six has a chord in it. Clearly, a chordal bipartite graph G is Cn-free for
every n 	= 4. It is known that in the class P6-free trees, ωs −ω can be arbitrarily
large [12]. In this section, we prove that χcd(G) = ωs(G) when G is a P6-free
chordal bipartite graph. In addition, we show that a maximum subclique of a
P6-free chordal bipartite graph can be found in O(n3) time.

Theorem 3. [10] A graph G is {P6, C6,K3}-free if and only if every connected
induced subgraph of G has a dominating set that induces a complete bipartite
subgraph.

Theorem 4. Let G be a connected P6-free chordal bipartite graph. Then,
χcd(G) = ωs(G).

Proof. Clearly, G is a {P6, C6,K3}-free graph. Then, by Theorem 3, G has a dom-
inating set which induces a complete bipartite subgraph. Let D = {x1, . . . , xk, y1,
. . . , yl} be such a set of minimum cardinality. Let D = X ′ ∪ Y ′ be a parti-
tion of D into independent sets X ′ = {x1, . . . , xk} and Y ′ = {y1, . . . , yl}. Let

136 M. A. Shalu and V. K. Kirubakaran

X =
⋃l

j=1 N(yj) and Y =
⋃k

i=1 N(xi). Clearly, X ′ ⊆ X and Y ′ ⊆ Y . Since
G is triangle-free, X ∩ Y = ∅. Thus, X ∪ Y is a partition of V (G). We show
that X is independent set. If not, let w, z ∈ X such that wz ∈ E(G). Since
X =

⋃l
j=1 N(yj), there exist p, q ∈ {1, . . . , l} such that ypw, yqz ∈ E(G). Then,

either {yp, w, z, yq, x1} induces a C5 or one of its subsets induce a K3 in G, a
contradiction. Thus, X is an independent set. Similarly, we can show that Y is
an independent set. Since D is a minimum dominating biclique of G, for every
vertex xi (1 ≤ i ≤ k), there exists a vertex ui ∈ Y such that xiui ∈ E(G)
and xαui /∈ E(G) for every α ∈ {1, . . . , k} \ {i}. Similarly, for every vertex yj

(1 ≤ j ≤ l), there exists a vertex vj ∈ X such that yjvj ∈ E(G) and yβvj /∈ E(G)
for every β ∈ {1, . . . , l} \ {j}. Note that ui’s and vj ’s are pairwise distinct. Let
S = {u1, . . . , uk, v1, . . . , vl}. Clearly, |S| = k + l. The following claims prove that
S is a subclique.

Claim 1 : d(u1, u2) 	= 2.
By the definition of ui’s, x1u1, x2u2 ∈ E(G) and x2u1, x1u2 /∈ E(G). Contrary
to Claim 1, assume that d(u1, u2) = 2. Then, there exists a vertex a in V (G)
such that au1 and au2 are edges in G. Since u1 ∈ Y and Y is an independent
set, a /∈ Y . We claim that a /∈ X ′. If not, let a = xi for some i = 1, . . . , k. Then,
xiu1, xiu2 ∈ E(G) for some i = 1, . . . , k. We know that x1u1 ∈ E(G) and xαu1 /∈
E(G) for α ∈ {2, . . . , k}. Hence, a = x1. This implies that au2 = x1u2 ∈ E(G),
a contradiction to x1u2 /∈ E(G). Thus, a /∈ X ′. Hence, a ∈ X \ X ′.

Next, we show that the sets N(x1) and N(x2) are dominated by a. On
the contrary, suppose that there exists a vertex u ∈ N(x1) \ {u1} such
that au /∈ E(G). Then, {u, x1, u1, a, u2, x2} induces P6 or C6 in G (because
uu1, ua, uu2, x1a, x1u2, x1x2, u1u2, u1x2, ax2 are not edges in G). This implies
that every vertex in N(x1) is adjacent to a. Similarly, we can show that every
vertex in N(x2) is adjacent to a. Thus, a dominates the set N(x1)∪N(x2) ⊇ Y ′.
This implies that (D \ {x1, x2}) ∪ {a} is a biclique of size k + l − 1 dominating
V (G), a contradiction to the fact that D is a minimum dominating biclique.
Therefore, d(u1, u2) 	= 2.

Similarly, we can prove that for 1 ≤ i1 < i2 ≤ k, d(ui1 , ui2) 	= 2, and for
1 ≤ j1 < j2 ≤ l, d(vj1 , vj2) 	= 2.

Claim 2 : d(u1, v1) 	= 2.
Clearly, u1 ∈ Y and v1 ∈ X. Contrary to Claim 2, assume that d(u1, v1) = 2.
Thus, u1v1 /∈ E(G). In addition, there exists a vertex a in V (G) such that
au1, av1 are edges in G. Then, a /∈ X ∪ Y = V (G) because X and Y are inde-
pendent sets, a contradiction. This proves Claim 2.

Similarly, we can prove that d(ui, vj) 	= 2 for 1 ≤ i ≤ k and 1 ≤ j ≤ l.

By Claims 1 and 2, it is evident that S = {u1, . . . , uk, v1, . . . , vl} is a subclique
of size k + l in G. Therefore, ωs(G) ≥ k + l.

On cd-Coloring of {P5, K4}-free Chordal Graphs 137

Next, we produce a (k + l)-cd-coloring of G. Let U1 = N(x1), and Ui = N(xi) \
⋃i−1

α=1 N(xα) for 2 ≤ i ≤ k. Clearly, ui ∈ Ui and each Ui is dominated by
the vertex xi for 1 ≤ i ≤ k. Similarly, define V1 = N(y1), and Vj = N(yj) \
⋃j−1

β=1 N(yβ) for 2 ≤ j ≤ l. Clearly, vj ∈ Vj and each Vj is dominated by
the vertex yj for 1 ≤ j ≤ l. Also, since D dominates V (G), each vertex in
Y belongs to Ui for some i and each vertex in X belongs to Vj for some j.
Thus, V (G) = (

⋃k
i=1 Ui)

⋃
(
⋃l

j=1 Vj) is a (k + l)-cd-coloring of G. This implies
that χcd(G) ≤ k + l. Thus, we have, k + l ≤ ωs(G) ≤ χcd(G) ≤ k + l. Hence,
χcd(G) = ωs(G) = k + l. �

Remark 1.

1. A cycle on five vertices (C5) is a {P6, C6,K3}-free graph with ωs(C5) = 2
and χcd(C5) = 3. Since χcd(C5) 	= ωs(C5), the above theorem (Theorem 4)
on P6-free chordal bipartite graphs cannot be extended to {P6, C6,K3}-free
graphs.

2. Theorem 4 on P6-free chordal bipartite graphs cannot be extended to P7-free
chordal bipartite graphs. A P7-free chordal bipartite graph G with χcd(G) = 4
and ωs(G) = 2 is shown in Fig. 2.

Lemma 5. [4] The total dominating set problem in chordal bipartite graphs can
be solved in O(n2) time.

Theorem 5. [11] The cd-chromatic number of a triangle-free graph is equal to
its total domination number.

a b

c d

e f

ji

hg

l k

Fig. 2. A P7-free chordal bipatite graph G where {k, l, a, d, g, h} induces a P6. Here,
χcd(G) = γt(G) = 4 (see Theorem 5). Also, ωs(G) = 2: choose any two vertices
x, y ∈ V (G) such that d(x, y) �= 2, then for any other vertex z ∈ V (G), either d(x, z) = 2
or d(y, z) = 2.

Remark 2. If D is a total dominating set of size γ
t
(G) in a triangle-free graph

G, then Merouane et al.’s algorithm [11] produces a γt(G)-cd-coloring in O(n+m)
time. Thus, by Lemma 5 and Theorem 5, an optimal cd-coloring of a chordal
bipartite graph can be found in O(n2) time using Merouane et al.’s algorithm.

Lemma 6. Let G be a connected P6-free chordal bipartite graph. Then, every
total dominating set in G of size γt(G) is a biclique.

138 M. A. Shalu and V. K. Kirubakaran

Proof of Lemma 6 is omitted in this paper.

Corollary 2. A maximum subclique of a P6-free chordal bipartite graph can be
found in O(n3) time.

Proof. Let G be a connected P6-free chordal bipartite graph. Then, by Lemmas 5
and 6, a biclique D = {x1, . . . , xk, y1, . . . , yl} of size γ

t
(G) dominating V (G) can

be found in O(n2) time (here, γ
t
(G) = k + l). Since D is a minimum dominating

biclique of G, for every vertex xi (1 ≤ i ≤ k), there exists a vertex ui ∈ Y such
that xiui ∈ E(G) and xαui /∈ E(G) for every α ∈ {1, . . . , k} \ {i}. Similarly, for
every vertex yj (1 ≤ j ≤ l), there exists a vertex vj ∈ X such that yjvj ∈ E(G)
and yβvj /∈ E(G) for every β ∈ {1, . . . , l}\{j}. It is proved in Theorem 4 that the
set S = {u1, . . . , uk, v1, . . . , vl} is a maximum subclique in G. The set S can be
found by choosing exactly one vertex from each set X

′
i = N(xi) \ ⋃

1≤α≤k
α�=i

N(xα)

for i ∈ {1, . . . , k} and Y
′
j = N(yj) \ ⋃

1≤β≤l
β �=j

N(xβ) for j ∈ {1, . . . , l}. A set X
′
i

(respectively Y
′
j) can be found in O(n2) time and at most n such sets are found.

Thus, a maximum subclique of G can be found in O(n3) time.
From the above result, we can conclude that a maximum subclique in a

P6-free chordal bipartite graph can be found in O(n3) time because ωs(H) =
∑k

i=1 ωs(Gi) for a graph H with connected components G1, . . . , Gk. �

5 Conclusion

In this paper, we proved that the cd-chromatic number and the subclique number
are equal for the class of {P5,K4}-free chordal graphs and the class of P6-free
chordal bipartite graphs. In addition, we proved that the cd-chromatic number
and the subclique number of a {P5,K4}-free chordal graph can be found in
O(n2) time. Also, a maximum subclique in a P6-free chordal bipartite graph can
be found in O(n3) time.

Acknowledgement. We thank Cyriac Antony for proof-reading this paper. We thank
the reviewers of CALDAM 2022 whose suggestions improved the paper.

References

1. Arumugam, S., Bagga, J., Chandrasekar, K.R.: On dominator colorings in graphs.
Proc. Math. Sci. 122, 561–571 (2012). https://doi.org/10.1007/s12044-012-0092-5

2. Arumugam, S., Chandrasekar, K.R., Misra, N., Philip, G., Saurabh, S.: Algorithmic
aspects of dominator colorings in graphs. In: Iliopoulos, C.S., Smyth, W.F. (eds.)
Combinatorial Algorithms. IWOCA 2011. LNCS, vol. 7056. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-25011-8 2

3. Chen, Y.H.: The dominated coloring problem and its application. In: Murgante,
B., et al. (eds.) Computational Science and Its Applications. LNCS, vol. 8584.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09153-2 10

https://doi.org/10.1007/s12044-012-0092-5
https://doi.org/10.1007/978-3-642-25011-8_2
https://doi.org/10.1007/978-3-319-09153-2_10

On cd-Coloring of {P5, K4}-free Chordal Graphs 139

4. Damaschke, P., Muller, H., Kratsch, D.: Domination in convex and chordal bipar-
tite graphs. Inf. Proc. Lett. 36, 231–236 (1990). https://doi.org/10.1016/0020-
0190(90)90147-P

5. Das, S., Mishra, S.: Lower bounds on approximating some variations of vertex
coloring problem over restricted graph classes. Discrete Math. Algorith. Appl. 12
(2020). https://doi.org/10.1142/S179383092050086X

6. Gera, R., Horton, S., Rasmussen, C.: Dominator colorings and safe clique parti-
tions. Congressus Numerantium 181, 19–32 (2006)

7. Gera, R.M.: On dominator colorings in graphs. Graph Theory Notes of New York
LII, pp. 25–30 (2007)

8. Kiruthika, R., Rai, A., Saurabh, S., Tale, P.: Parametrized and exact algorithms
for class domination coloring. In: Proceedings of the 43rd Conference on Current
Trends in Theory and Practice of Computer Science, LNCS vol. 10139, pp. 336–349
(2017). https://doi.org/10.1007/978-3-319-51963-0 26

9. Klavžar, S., Tavakoli, M.: Dominated and dominator colorings over (edge) corona
and hierarchical products. Appl. Math. Comput. 390 (2021). https://doi.org/10.
1016/j.amc.2020.125647

10. Liu, J., Zhou, H.: Dominating subgraphs in graphs with some forbidden
structures. Discrete Math. 135, 163–168 (1994). https://doi.org/10.1016/0012-
365X(93)E0111-G

11. Merouane, H.B., Haddad, M., Chellali, M., Kheddouci, H.: Dominated colorings of
graphs. Graphs Combin. 31(3), 713–727 (2015). https://doi.org/10.1007/s00373-
014-1407-3

12. Shalu, M.A., Kirubakaran, V.K.: On cd-coloring of trees and co-bipartite graphs.
In: Mudgal A., Subramanian C.R. (eds.) Algorithms and Discrete Applied Mathe-
matics. LNCS, vol. 12601, pp. 209–221 (2021). https://doi.org/10.1007/978-3-030-
67899-9 16

13. Shalu, M.A., Sandhya, T.P.: The cd-Coloring of graphs. In: Govindarajan, S.,
Maheshwari, A. (eds.) Algorithms and Discrete Applied Mathematics. LNCS, vol.
9602. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29221-2 29

14. Shalu, M.A., Vijayakumar, S., Sandhya, T.P.: A lower bound of the cd-Chromatic
number and its complexity. In: Gaur, D., Narayanaswamy, N. (eds.) Algorithms
and Discrete Applied Mathematics. LNCS, vol. 10156. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-53007-9 30

15. Shalu, M.A., Vijayakumar, S., Sandhya, T.P.: On complexity of cd-coloring of
graphs. Discr. Appl. Math. 280, 171–185 (2020). https://doi.org/10.1016/j.dam.
2018.03.004

16. Swaminathan, V., Sundareswaran, R.: Color class domination in graphs. Narosa
Publishing House, Mathematical and Experimental Physics (2010)

17. West, D.B.: Introduction to Graph Theory. Second Edition, Pearson (2018)

https://doi.org/10.1016/0020-0190(90)90147-P
https://doi.org/10.1016/0020-0190(90)90147-P
https://doi.org/10.1142/S179383092050086X
https://doi.org/10.1007/978-3-319-51963-0_26
https://doi.org/10.1016/j.amc.2020.125647
https://doi.org/10.1016/j.amc.2020.125647
https://doi.org/10.1016/0012-365X(93)E0111-G
https://doi.org/10.1016/0012-365X(93)E0111-G
https://doi.org/10.1007/s00373-014-1407-3
https://doi.org/10.1007/s00373-014-1407-3
https://doi.org/10.1007/978-3-030-67899-9_16
https://doi.org/10.1007/978-3-030-67899-9_16
https://doi.org/10.1007/978-3-319-29221-2_29
https://doi.org/10.1007/978-3-319-53007-9_30
https://doi.org/10.1016/j.dam.2018.03.004
https://doi.org/10.1016/j.dam.2018.03.004

An Output-Sensitive Algorithm for All-Pairs
Shortest Paths in Directed Acyclic Graphs

Andrzej Lingas1, Mia Persson2(B), and Dzmitry Sledneu3

1 Department of Computer Science, Lund University, 22100 Lund, Sweden
Andrzej.Lingas@cs.lth.se

2 Department of Computer Science and Media Technology, Malmö University,
20506 Malmö, Sweden

mia.persson@mau.se
3 Malmö, Sweden

Abstract. First, we present a new algorithm for the single-source shortest paths
problem (SSSP) in edge-weighted directed graphs, with n vertices, m edges, and
both positive and negative real edge weights. Given a positive integer parameter
t, in O(tm) time the algorithm finds for each vertex v a path distance from the
source to v not exceeding that yielded by the shortest path from the source to
v among the so called t+light paths. A directed path between two vertices is
t+light if it contains at most t more edges than the minimum edge-cardinality
directed path between these vertices. For t = O(n), our algorithm yields an
O(nm)-time solution to SSSP in directed graphs with real edge weights matching
that of Bellman and Ford.

Our main contribution is a new, output-sensitive algorithm for the all-pairs
shortest paths problem (APSP) in directed acyclic graphs (DAGs) with positive
and negative real edge weights. The running time of the algorithm depends on
such parameters as the number of leaves in (lexicographically first) shortest-paths
trees, and the in-degrees in the input graph. If the trees are sufficiently thin on the
average, the algorithm is substantially faster than the best known algorithm.

Finally, we discuss an extension of hypothetical improved upper time-bounds
for APSP in non-negatively edge-weighted DAGs to include directed graphs with
a polynomial number of large directed cycles.

1 Introduction

The length of a path in an edge-weighted graph is the sum of the weights of edges on
the path. A shortest path between two vertices in a graph has minimal length among
all paths between these vertices. The distance between vertices v and u is the length of
a shortest path from v to u. If the graph is directed, the paths are supposed to be also
directed.

Shortest path problems, in particular the single-source shortest paths problem
(SSSP) and the all-pairs shortest paths problem (APSP), belong to the most basic and
important problems in graph algorithms [5,17]. There are several variants of SSSP and
APSP depending among other things on the restrictions on edge weights and the input
graphs. The input to these problems is a directed or an undirected edge-weighted graph.
c© Springer Nature Switzerland AG 2022
N. Balachandran and R. Inkulu (Eds.): CALDAM 2022, LNCS 13179, pp. 140–151, 2022.
https://doi.org/10.1007/978-3-030-95018-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95018-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-95018-7_12

An Output-Sensitive Algorithm for All-Pairs Shortest Paths 141

The output is a representation of shortest paths between the source and all other vertices
or between all pairs of vertices in the graph, respectively.

In the general case of directed graphs (without negative cycles), when both posi-
tive and negative real edge weights are allowed, the difference between the best known
asymptotic upper time-bounds for SSSP and APSP respectively is surprisingly small.
Namely, if the input directed graph has n vertices and m edges with real weights, then
the best known SSSP algorithm due to Bellman [3], Ford [7], and Moore [12] runs in
O(nm) while the APSP can be solved already in O(nm + n2 log n) time [11,17]. The
APSP solution uses Johnson’s O(nm)-time reduction of the general edge weight case
to the non-negative edge case and then it runs Dijkstra’s algorithm [6] n times [11,17].
The latter upper time-bound for APSP with arbitrary real edge-weights has been more
recently improved to O(nm + n2 log log n) by Pettie in [14]. Note that the aforemen-
tioned best asymptotic upper time bounds for SSSP and APSP are different only for
sparse graphs with o(n log log n) edges. Interestingly, when edge weights are integers,
the best known upper time-bound for APSP just in terms of n is n3/2Ω(

√
log n) [4].

The situation alters dramatically when the input directed graph is acyclic, i.e., when
it does not contain directed cycles. Then, a simple dynamic programming algorithm
processing vertices in a topologically sorted order solves the SSSP problem inO(n+m)
time [5], an O(n(n + m))-time solution to the APSP problem in this case follows.

In fact, Yen could use the aforementioned method for SSSP in DAGs iteratively in
order to improve the time complexity of Bellman-Ford algorithm for directed graphs by
a constant factor [15]. Bellman-Ford algorithm runs in n−1 iterations. In each iteration,
for each edge e, the current distance (from the source) at the head of e is compared to
the sum of the current distance at the tail of e and the weight if e. If the sum is smaller
the distance at the head of e is updated. To achieve the improvement, Yen imposes a
linear order on the vertices of the input directed graph which yields a decomposition of
the graph into two DAGs. Next, the SSSP method for DAGs is run on each of the two
DAGs instead of an iteration of Bellman-Ford algorithm [15]. Bannister and Eppstein
obtained a further improvement of the time complexity of Bellman-Ford algorithm by
a constant factor using a random linear order [2].

A pair of vertices in an edge weighted undirected or directed graph can be connected
by several paths, in particular several shortest paths. Beside the length of a path, the
number of edges forming it can be an important characteristic. For example, Zwick
provided several exact and approximation algorithms for all pairs lightest (i.e., having
minimal number of edges) shortest paths in directed graphs with restricted edge weights
in [18].

In this paper, first we consider t+light paths, i.e., directed paths that have at most
t more edges than the paths with the same endpoints having the minimal number of
edges. In part following [15], we iterate O(t) times the SSSP method for DAGs on two
implicit DAGs yielded by an extension of the BFS partial order to a linear order. The
iterations alternatively process the vertices in a breadth-first sorted order and the reverse
order. In result, we obtain path distances from the source to all other vertices that are
not greater than the corresponding shortest-path distances for t+light paths. It takes
O(tm) time totally. For t = n − 2, our method matches that of Bellman-Ford for SSSP
in directed graphs with real edge weights.

142 A. Lingas et al.

A vertex v is an ancestor (a direct ancestor, respectively) of a vertex u in a DAG if
there is a directed path (edge, respectively) from v to u in the DAG.

Our main result is a new, output-sensitive algorithm for the APSP problem in DAGs.
It runs in time O(min{nω, nm+n2 log n}+∑

v∈V indeg(v)|leaf(Tv)|), where n is the
number of vertices, m is the number of edges, ω is the exponent of fast n × n matrix
multiplication1, indeg(v) stands for the indegree of v, Tv is a tree of lexicographically-
first shortest directed paths from all ancestors of v to v, leaf(Tv) is the set of leaves
in Tv, and for a set X , |X| stands for its size. Note that if Tv is a path the term
O(indeg(v)|leaf(Tv)|) equals O(indeg(v)) while when Tv is a star with v as a sink
the term becomes O(indeg(v)|Tv|). Thus, the running time of the APSP algorithm can
be so low as O(nω) and so high as O(nω + nm). It follows also that if α is defined by
maxv∈V |leaf(Tv)| = O(nα) then the algorithm runs in O(nω +mnα) time. Similarly,

if β is defined by
∑

v∈V |leaf(Tv)|
n = O(nβ) then the algorithm runs in O(nω + n2+β)

time.
Finally, we provide an extension of hypothetical, improved upper time-bounds for

APSP in DAGs with non-negative edge weights to include directed graphs with a poly-
nomial number of large directed cycles.

In the full version [9], we additionally present experimental comparisons of our
SSSP algorithm with the Bellman-Ford one. They show that our SSSP algorithm con-
verges to the true shortest-path distances on dense edge-weighted pseudorandom graphs
faster than the Bellman-Ford algorithm does.

1.1 Paper Organization

In the next section, we provide our solution to the SSSP problem in directed graphs
with real edge weights based on the SSSP method for DAGs and the BFS partial order
in terms of t+light paths. Section 3 is devoted to our output-sensitive algorithm for the
APSP problem in DAGs with real edge weights and its analysis. In Sect. 4, we discuss
the extension of hypothetical, improved bounds for APSP in DAGs with non-negatively
weighted edges to directed graphs with a polynomial number of large directed cycles.
We conclude with Final remarks. A description of our experimental results can be found
in the full version [9].

2 An Application of DAG SSSP Method to Arbitrary Digraphs

The SSSP problem for directed acyclic graphs can be solved by topologically sort-
ing the DAG vertices and applying straightforward dynamic programming. For con-
secutive vertices v in the sorted order, the distance dist(v) of v from the source is
set to the minimum of dist(u) + weight(u, v) over all direct ancestors u of v, where
weight(u, v) stands for the weight of the edge (u, v). It takes linear (in the size of the
DAG) time. Yen used the dynamic programming method iteratively to improve the time
complexity of Bellman-Ford algorithm for directed graphs by a constant factor in [15].
Interestingly, we can similarly apply this method iteratively to determine shortest-path

1 ω is not greater than 2.3729 [1].

An Output-Sensitive Algorithm for All-Pairs Shortest Paths 143

distances among paths using almost the minimal number of edges. To formulate our
algorithm (Algorithm 1), we need the following definition and two procedures.

Definition 1. A directed path from a vertex u to a vertex v in a directed graph is lightest
if it consists of the smallest possible number of edges. A path from u to v is t+light if it
includes at most t more edges than a lightest path from u to v.

procedure SSSPDAG(G,D)
Input: A directed graph (V,E) with real edge weights, linearly ordered vertices
v1,, vn, and a 1-dimensional table D of size n with upper bounds on the distances
from v1 to all vertices in V.
Output: Improved upper bounds on the shortest-path distances from v1 to all vertices in
V in the table D.
for j = 2, ..., n do
For each edge (vi, vj) where i < j
D(vj) ← min{D(vj),D(vi) + weight(vi, vj)}
procedure reverseSSSPDAG(G,D)
Input and output: the same as in SSSPDAG(G,D)
for j = n − 1, ..., 1 do
For each edge (vi, vj) where i > j
D(vj) ← min{D(vj),D(vi) + weight(vi, vj)}
Algorithm 1
Input: A directed graph (V,E) with n vertices, real edge weights and a distinguished
source vertex s, and a positive integer t.
Output: Upper bounds on the shortest-path distances from s to all other vertices in V
not exceeding the corresponding shortest-path distances constrained to t+light paths.

1. Run BFS from the source s.
2. Order the vertices of G extending the BFS partial order according to the levels of the

BFS tree, i.e., s comes first, then the vertices reachable by direct edges from s, then
the vertices reachable by paths composed of two edges and so on. We may assume
w.l.o.g. that all vertices are reachable from s or alternatively extend the aforemen-
tioned order with the non-reachable vertices arbitrarily.

3. Initialize a 1-dimensional table D of size n, setting D(v1) ← 0 and D(vj) ← ∞
for 1 < j ≤ n

4. SSSPDAG(G,D)
5. for k = 1, ..., t do

(a) reverseSSSPDAG(G,D)
(b) SSSPDAG(G,D)

Theorem 1. Let G be a directed graph with n vertices, m real-weighted edges, and a
distinguished source vertex s. For all vertices v of G different from s, an upper bound
on their distance from the source vertex s, not exceeding the length of a shortest path
among t+light paths from s to v, can be computed in O((t + 1)(m + n)) total time.

144 A. Lingas et al.

Proof. Consider Algorithm 1 and in particular the ordering of the vertices specified in
its second step. We shall refer to an edge (vi, vj) as forward if i < j otherwise we
shall call it backward. Note that the vertices at the same level of the BFS tree can be
connected both by forward as well as backward edges. See also Fig. 1. Let � be the
number of (forward) edges in a lightest path from s to a given vertex v. It follows that
any path from s to v, in particular a shortest t+light one, has to have at least � forward
edges.

To see this, consider the BFS tree from the source s. Define the level of a vertex in
the tree as the number of edges on the path from s to the vertex in the tree. Thus, in
particular, level(s) = 0 while level(v) = �. Recall that the linear order extending the
partial BFS order used in Algorithm 1 is non-decreasing with respect of the levels of
vertices. Also, if (u,w) is a forward edge then level(u) ≤ level(w) ≤ level(u) + 1
and if (u,w) is a backward edge then level(u) ≥ level(w). Hence, any path from s to
v has to have at least � forward edges, each increasing the level by one.

Consequently, a shortest t+light path from s to v can have at most t backward edges.
Thus, it can be decomposed into at most 2t+1maximal fragments of consecutive edges
of the same type (i.e., forward or backward, respectively), where the even numbered
fragments consist of backward edges. Thus, the at most 2t + 1 calls of the procedures
SSSPDAG(G, s,D), reverseSSSPDAG(G, s,D) in the algorithm are sufficient to
detect a distance from s to v not exceeding the length of a shortest path among t+light
paths from s to v. The asymptotic running time of the algorithm is dominated by the
aforementioned procedure calls. Hence, it is O((t + 1)(m + n)). ��

Fig. 1.An example of a graph with a BFS vertex numbering and the two DAGs implied by forward
and backward edges, respectively.

An Output-Sensitive Algorithm for All-Pairs Shortest Paths 145

We can obtain a representation of directed paths achieving the upper bounds on the
distances from the source provided in Theorem 1 in a form of a tree of paths emanating
from the source by backtracking. By setting t = n − 2 in this theorem, we can match
the best known SSSP algorithm for directed graphs with positive and negative real edge
weights, i.e., the Bellman-Ford algorithm and its constant factor improvements [11,
17], running in O(nm) time. Similarly as in the case of Bellman-Ford algorithm, by
calling additionally reverseSSSPDAG(G,D) and SSSPDAG(G,D) after the last
iteration in Algorithm 1, we can detect the existence of negative cycles.

Comparing our algorithm with the Bellman-Ford one, note that if the lightest path
from the source to a vertex v has � edges then � + t iterations in the Bellman-Ford
algorithm may be needed to obtain an upper bound on the distance of v from the source
comparable to that obtained after O(t) iterations in Algorithm 1.

3 An Output-Sensitive APSP Algorithm for DAGs

The APSP problem in DAGs with both positive and negative real edge weights can
be solved in O(n(n + m)) time by running n times the SSSP algorithm for DAGs. It
is an intriguing open problem if there exist substantially more efficient algorithms for
APSP in edge-weighted DAGs. In this section, we make a progress on this question
by providing an output-sensitive algorithm for this problem. Its running time depends
on the structure of shortest path trees. Although in the worst-case it does not break the
O(nm) barrier it seems to be substantially more efficient in the majority of cases.

The standard algorithm for APSP for DAGs just runs the SSSP algorithm for DAGs
for each vertex of the DAG as a source separately. Our APSP algorithm (Algorithm
2) does everything in one sweep along the topologically sorted order. Its main idea
is for each vertex v to compute the tree of lexicographically-first shortest paths from
the ancestors u of the currently processed vertex v to v, in the topologically sorted
order. For each ancestor u of v, Algorithm 2 proceeds as follows. In case the tree
of lexicographically-first shortest paths from the already considered ancestors of v
includes u (as some intermediate vertex) then the algorithm is done as for u. Other-
wise, Algorithm 2 finds the direct ancestor of v on the lexicographically-first shortest
path P from u to v and adds an initial fragment of P to the tree. By the topologically
sorted order in which the ancestors u of v are considered, the latter situation can happen
only when u is a leaf of the (final) tree of lexicographically-first shortest paths from the
ancestors of v to v. Algorithm 2 finds the direct ancestor of v on P by comparing the
lengths of shortest paths from u to v with different direct ancestors of v as the next
to the last vertex on the paths in time proportional to the indegree of v. It also finds
the initial fragment of P to add by using the link to the lexicographically-first shortest
path from u to the direct ancestor of v that is on P. The correctness of the algorithm
is immediate. The issues are an implementation of these steps and an estimation of the
running time.

To specify our output-sensitive algorithm (Algorithm 2) more exactly, we need the
following definition.

Definition 2. Assume a numbering of vertices in an edge-weighted DAG extending the
topological partial order. A shortest (directed) path P from vk to vi in the DAG is first

146 A. Lingas et al.

in a lexicographic order if the direct ancestor vj of vi on P has the lowest number j
among all direct ancestors of vi on shortest paths from vk to vi and the subpath of
P from vk to vj is the lexicographically-first shortest path from vk to vj . For a vertex
vi in the DAG, the tree Tvi

of (lexicographically-first) shortest paths is the union of
lexicographically-first paths from all ancestors of vi to vi. Note that the vertex vi is a
sink of Tvi

. It is assumed to be the root of Tvi
and leaf(Tvi

) stands for the set of leaves
of Tvi

.

Algorithm 2
Input: A DAG (V,E) with real edge weights.
Output: For each vertex v ∈ V, the tree Tv of lexicographically-first shortest paths from
all ancestors of v to v given by the table NEXTv , where for each ancestor u of v,
NEXTv(u) is the direct successor of u in the tree Tv, (i.e., the head of the unique
directed edge having u as the tail in the tree).

1. Determine the source vertices, topologically sort the remaining vertices in V , and
number the vertices in V accordingly, assigning to the sources the lowest numbers.

2. Set n to |V | and r to the number of sources in G.
3. Initialize an n × n table dist by setting dist(u, u) = 0 and dist(u, v) = ∞ for

u, v ∈ V, u 	= v.
4. for i = r + 1, ..., n do

(a) Compute the set A(vi) of ancestors of vi.
(b) Initialize a 1-dimensional table NEXTvi

of size |A(vi)|,
setting NEXTvi(vj) to 0 for vj ∈ A(vi).

(c) for vk ∈ A(vi) in increasing order of the index k do
i. if NEXTvi

(vk) 	= 0 then proceed to the next iteration of the interior for
block.

ii. Determine a direct ancestor vj of vi that minimizes the value of
dist(vk, vj)+weight(vj , vi). In case of ties the vertex vj with the smallest
index j is chosen among those yielding the minimum.

iii. vcurrent ← vk

iv. while vcurrent 	= vj ∧ NEXT (vcurrent, vi) = 0 do
dist(vcurrent, vi) ← dist(vcurrent, vj) + weight(vj , vi)
NEXTvi

(vcurrent) ← NEXTvj
(vcurrent)

vcurrent ← NEXTvi
(vcurrent)

v. if NEXTvi
(vj) = 0 then dist(vj , vi) ← weigh(vj , vi) ∧

NEXTvi
(vj) ← vi

Lemma 1. Steps 4.c.iii-v add the missing fragments of a lexicographically shortest
path from vk to vi and set the distances from vertices in the fragments to vi in time
proportional to the number of vertices added to Tvi

.

Proof. Follow the path from vk to vj in Tvj
extended by (vj , vi) until a vertex vq ∈ Tvi

is encountered. This is done in Steps 4.c.iii-v. The membership of vcurrent in Tvi
is

verified by checking whether or not NEXTvi
(vcurrent) = 0. Also, if vcurrent is not

yet in Tvi
then its distance to vi is set by dist(vcurrent, vi) ← dist(vcurrent, vj) +

weight(vj , vi) and it is added to Tvi
by NEXTvi

(vcurrent) ← NEXTvj
(vcurrent) in

An Output-Sensitive Algorithm for All-Pairs Shortest Paths 147

Step 4.c.iv. By the inclusion of vq in Tvi
, a whole shortest pathQ from vq to vi is already

included in Tvi
by induction on the number of steps performed by the algorithm. We

claim that Q exactly overlaps with the final fragment of the extended path starting from
vq. To see this encode Q and the aforementioned fragment of the extended path by the
indices of their vertices in the reverse order. By our rule of resolving ties in Step 4.c.ii
both encodings should be first in the lexicographic order so we have an exact overlap.
For this reason, it is sufficient to add the initial fragment of the extended path ending at
vq to Tvi

and if necessary also the edge (vj , vi) to Tvi
, and to update the distances from

vertices in the added fragment to vi, i.e., to perform Steps 4.c.iii-v. ��
Theorem 2. The APSP algorithm for a DAG (V,E) with n vertices, m edges
and real edge weights (Algorithm 2) runs in time O(min{nω, nm + n2 log n} +∑

v∈V indeg(v)|leaf(Tv)|).
Proof. The sets of ancestors can be determined in Step 4.a by computing the transitive
closure of the input DAG in O(min{nω, nm}) time by using fast matrix multiplication
[13] or BFS [5], first. In fact, to implement the loop in Step4.c, we need the sets of
ancestors to be ordered according to the numbering of vertices provided in Step 1. If
the transitive closure matrix is computed such an ordered set of ancestors can be easily
retrieved in O(n) time. Otherwise, additional preprocessing sorting the unordered sets
of ancestors is needed. The total cost of the additional preprocessing is O(n2 log n).

All the remaining steps, excluding Steps 4.c.ii-v for vertices vk not yet in Tvi
, can

be done in total (i.e., over all iterations) time O(
∑

v∈V (1 + |A(v)|)) = O(n2), where
A(v) stands for the set of ancestors of v in the DAG. The time taken by Step 4.c.ii,
when vk is not yet in the current Tvi

, is O(indeg(vi)). Suppose that vk is not a leaf of
the final tree Tvi

. Then, there must exist some leaf vp of the final tree such that there is
path from vp via vk to vi in this tree. By the numbering of vertices extending the partial
topological order, we have p < k. We infer that the aforementioned path is already
present in the current Tvi

. Thus, in particular the vertex vk is in the current tree. Hence,
the total time taken by Step 4.c.ii isO(

∑
v∈V indeg(v)|leaf(Tv)|). Finally, the total time

taken by Steps 4.c.iii-v is O(
∑

v∈V (1 + |A(v)|)) by Lemma 1. ��
Note that the following inequalities hold:

∑

v∈V

indeg(v)|leaf(Tv)| ≤ mmax
v∈V

|leaf(Tv)|,

∑

v∈V

indeg(v)|leaf(Tv)| ≤ n2

∑
v∈V |leaf(Tv)|

n
.

They immediately yield the following corollary from Theorem 2.

Corollary 1. Let G = (V,E) be an n-vertex DAG with n vertices and m edges with
real edge weights. Suppose maxv∈V |leaf(Tv)| = O(nα) and∑

v∈V |leaf(Tv)|
n = O(nβ). The APSP problem for G is solved by Algorithm 2 in time

O(min{nω, nm + n2 log n} +min{mnα, n2+β}).

148 A. Lingas et al.

Observe that |leaf(Tv)| is equal to the minimum number of directed paths covering
the tree Tv. Hence, α < 1 if the maximum of the minimum number of paths covering
Tv over v is substantially sublinear. Similarly, β < 1 if the average of the minimum
number of paths covering Tv over v is substantially sublinear.

To illustrate the superiority of Algorithm 2 over the standard O(n(n + m))-time
method for APSP in DAGs, consider the following simple, extreme example.
Suppose M is a positive integer. Let D be a DAG with vertices v1, v2,...,vn, and edges
(vi, vj),where i < j, such that the weight of (vi, vj) is−1 if j = i+1 andM otherwise.
It is easy to see the tree Tvi

is just the path v1, v2, ..., vi and hence |leaf(Tvi
)| =

1. Consequently, Algorithm 2 on the DAG D runs in O(nω) time while the standard
method requires O(n3) time. If M = 1, one could also run Zwick’s APSP algorithm
for directed graphs with edge weights in {−1, 0, 1} on this example in O(n2.575) time
[16].

For a refinement of Theorem 2, see the full version [9].

4 A Potential Extension to Digraphs with Large Cycles

As we have already noted the APSP problem in DAGs with both positive and negative
real edge weights can be solved inO(n(n+m)) time. It is also an interesting open prob-
lem if one can derive substantially more efficient algorithms for APSP in DAGs than
the O(n(n + m))-time method in case of restricted edge weights, e.g., non-negative
edge weights etc. In this section, under the assumption of the existence of such substan-
tially more efficient algorithms for DAGs with non-negative edge weights, we show that
they could be extended to include directed graphs having a polynomial number of large
cycles.

The idea of the extension is fairly simple, see Fig. 2. We pick uniformly at random a
sample of vertices of the input directed graph that hits all the directed cycles with high
probability (cf. [16]). Here, we use the assumption on the minimum size of the cycles
and on the polynomially bounded number of the cycles. Next, we remove the vertices
belonging to the sample and run the hypothetical fast algorithm for APSP in DAGs on
the resulting subgraph of the input graph which is acyclic with high probability. In order
to take into account shortest path connections using the removed vertices, we run the
Dijkstra’s SSSP algorithm from each vertex in the sample on the original input graph
two times. In the second run we reverse the directions of the edges in the input graph.
Finally, we update the shortest path distances appropriately.

Algorithm 3
Input: A directed graph (V,E) with n vertices, m non-negatively weighted edges and
a polynomial number of directed cycles, each with at least d vertices.
Output: The shortest-path distances for all ordered pairs of vertices in V.

1. Initialize an n×n array D by setting all its entries outside the main diagonal to+∞
and those on the diagonal to zero.

2. Uniformly at random pick a sample S of O(n lnn/d) vertices from V.
3. Run the hypothetical APSP algorithm for DAGs on the graph

(V \ S, E ∩ {(u, v)|u, v ∈ V \ S}) and for each pair u, v ∈ V \ S, set D(u, v) to
the distance determined by the algorithm.

An Output-Sensitive Algorithm for All-Pairs Shortest Paths 149

Fig. 2. An example of a directed cycle that can be broken by removing the encircled vertex
belonging to the sample. To find shortest-path connections passing through this vertex two SSSP
from it are performed, in the original and the reversed edge directions, respectively.

4. For each s ∈ S, run the Dijkstra’s SSSP algorithm with s as the source in (V,E)
and for all v ∈ V \ {s} update the D(s, v) entries respectively.

5. For each s ∈ S, run the Dijkstra’s SSSP algorithm with s as the source on the
directed graph resulting from reversing the directions of the edges in (V,E), and for
all v ∈ V \ {s} update the D(v, s) entries respectively.

6. For all pairs u, v of distinct vertices in V \S, and for all vertices s ∈ S, setD(u, v) =
min{D(u, v),D(u, s) + D(s, v)}.

Theorem 3. Let t(n,m) be the time required by APSP in DAGs with n vertices and
m non-negatively weighted edges. Algorithm 3 solves the APSP problem for a directed
graph with n vertices, m non-negatively weighted edges and a polynomial number of
directed cycles, each with at least d vertices, in O(t(n,m) + n3 lnn/d) time with high
probability.

Proof. Suppose that the number of directed cycles in the input graph (V,E) is O(nc).
By picking enough large constant for the expression n lnn/d specifying the size of the
sample S, the probability that a given directed cycle in G is not hit by S can be made
smaller than n−c−1. Hence, the probability that the graph resulting from removing the
vertices in S is not acyclic becomes smaller than n−1. It follows that Algorithm 3 is
correct with high probability. It remains to estimate its running time. Steps 1, 2 can be
easily implemented in O(n2) time. Step 3 takes t(n,m) time. Steps 4, 5 can be imple-
mented in O((n lnn/d)×m+n2 ln2 n/d) time [5]. Finally, Step 6 takes O(n3 lnn/d)
time. ��

Note that because of the term n3 lnn/d in the upper time-bound given by
Theorem 3, the upper bound can be substantially subcubic only when d = Ω(nδ) for
some δ > 0.

5 Final Remarks

In the absence of substantial asymptotic improvements to the time complexity of basic
shortest-path algorithms, often formulated at the end of 50s, like the Bellman-Ford algo-
rithm and Dijkstra’s algorithm, the results presented in this paper should be of interest.
Our output-sensitive algorithm for the general APSP problem in DAGs possibly could

150 A. Lingas et al.

lead to an improvement of the asymptotic time complexity of this problem in the aver-
age case. A probabilistic analysis of the number of leaves in the lexicographically-first
shortest-path trees is an interesting open problem.

In the vast literature on shortest path problems, there are several examples of output-
sensitive algorithms. For instance, Karger et al. [8] and McGeoch [10] could orchestrate
the n runs of Dijkstra’s algorithm in order to solve the APSP problem for directed
graphs with non-negative edge weights in O(m∗n + n log n) time, where m∗ is the
number of (essential) edges that participate in shortest paths.

Finally, note that DAGs have several important scientific and computational appli-
cations in among other things scheduling, data processing networks, biology (phylo-
genetic networks, epidemiology), sociology (citation networks), and data compression.
For these reasons, efficient algorithms for shortest paths in DAGs are of not only theo-
retical interest.

References

1. Alman, J., Vassilevska Williams, V.: A refined laser method and faster matrix multiplication.
In: Proceeding of SODA (2021)

2. Bannister, M.J., Eppstein, D.: Randomized speedup of the Bellman-Ford algorithm. In: Pro-
ceedings of ANALCO (2011)

3. Bellman, R.: On a routing problem. Quarter. Appl. Math. 16(1), 87–90 (1958)
4. Chan, T.M., Williams†, R.: Deterministic APSP, orthogonal vectors, and more: quickly

derandomizing Razborov-Smolensky. In: Proceedings of 27th ACM-SIAM Symposium on
Discrete Algorithms, pp. 1246–1255 (2016)

5. Cormen, T., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms, 3rd edn. The
MIT Press (2009)

6. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik,
pp. 269–271 (1959)

7. Ford, L.R.: Network flow theory. The Rand Corporation, p. 923 (1956)
8. Karger, D.R., Koller, D., Phillips, S.J.: Finding the hidden path: time bounds for all-pairs

shortest paths. SIAM J. Comput. 22, 1199–1217 (1993)
9. Lingas, A., Persson, M., Sledneu, D.: An output-sensitive algorithm for all-pairs shortest

paths in directed acyclic graphs. CoRR abs/2108.03455 (2021)
10. McGeoch, C.C.: All-pairs shortest paths and the essential subgraph. Algorithmica 13, 426–

461 (1995)
11. Madkour, A., Aref1, W.G., Rehman, F.U., Rahman, M.A., Basalamah, S.: Shortest-path algo-

rithms. CoRR abs/1705.02044 (2017)
12. Moore, E.F.: The shortest path through a maze. In: Proceedings of an International Sympo-

sium on the Theory of Switching, 1957, Part II, pp. 285–292 (1959)
13. Munro, I.: Efficient determination of the transitive closure of a directed graph. Inf. Proc. Lett.

1(2), 56–58 (1971)
14. Pettie, S.: A new approach to all-pairs shortest paths on real-weighted graphs. Theoretical

Comput. Sci. 312(1), 47–74 (2004)
15. Yen, J.Y.: An algorithm for finding shortest routes from all source nodes to a given destina-

tion in general networks. Quarter. Appl. Math. 27(4), 526–530 (1970)
16. Zwick, U.: All Pairs Shortest Paths using bridging sets and rectangular matrix multiplication.

J. ACM 49, 289–317 (2002)

An Output-Sensitive Algorithm for All-Pairs Shortest Paths 151

17. Zwick, U.: Exact and approximate distances in graphs-a survey. In: Proceedings of 9th ESA,
pp. 33–48 (2001)

18. Zwick, U.: All pairs lightest shortest paths. In: Proceedings of the STOC, pp. 61–69 (1999)

Covering a Graph with Densest
Subgraphs

Riccardo Dondi1(B) and Alexandru Popa2

1 Università degli Studi di Bergamo, Bergamo, Italy
riccardo.dondi@unibg.it

2 University of Bucharest, Bucharest, Romania
alexandru.popa@fmi.unibuc.ro

Abstract. Finding densest subgraphs is a fundamental problem in
graph mining, with several applications in different fields. In this paper,
we consider two variants of the problem of covering a graph with k dens-
est subgraphs, where k ≥ 2. The first variant aims to find a collection of
k subgraphs of maximum density, the second variant asks for a set of k
subgraphs such that they maximize an objective function that includes
the sum of the subgraphs densities and a distance function, in order to
differentiate the computed subgraphs. We show that the first variant of
the problem is solvable in polynomial time, for any k ≥ 2. For the sec-
ond variant, which is NP-hard for k ≥ 3, we present an approximation
algorithm that achieves a factor of 2

5
.

1 Introduction

Identifying cohesive subgraphs is fundamental in graph mining and graph theory.
In several fields, from social networks analysis [18] to computational biology [9]
cohesive groups of elements are often related to functionalities of a complex
system and it is indeed a fundamental task to identify such cohesive subgraphs.

Several models of cohesive subraphs have been considered in the literature.
The first model to be studied has been clique [20], that is a complete graph. How-
ever several alternative definitions of cohesive subgraphs have been introduced
and studied in the literature (see for example the review in [16]), including dens-
est subgraph. This latter model asks for a subgraph that maximizes the ratio
between the number of edges and the number of vertices. Compared to other
models, densest subgraphs have the advantage that they can be found in poly-
nomial time [11,12,14] and also approximable in linear time within factor of 1

2
[2,5,15,17]. The computational tractability and the natural definition of density
have lead to a prominent position in graph mining [1,3,4,6,10,21,23,24,27].

The first goal of research in graph mining has been the identification of
a single cohesive subgraph, with few exceptions, for example the problem of
covering a graph with cliques [13]. In the last years, the interest has moved to the
identification of more than a dense subgraph inside a network [4,8,10,26], rather
than a single subgraph. This interest is motivated by new approaches to network
analysis that require in several cases the identification of the main cohesive
c© Springer Nature Switzerland AG 2022
N. Balachandran and R. Inkulu (Eds.): CALDAM 2022, LNCS 13179, pp. 152–163, 2022.
https://doi.org/10.1007/978-3-030-95018-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95018-7_13&domain=pdf
https://doi.org/10.1007/978-3-030-95018-7_13

Covering a Graph with Densest Subgraphs 153

groups of a network, rather than a single subgraph. Indeed, many real-world
networks contain several cohesive groups that may also share common elements,
like hubs, that usually belong to many communities [10,19]. Considering the
densest subgraph model, the proposed approaches in this direction ask for a
collection of dense subgraphs that may share vertices [4,10,21,25]. While the
approaches ask for a collection of k > 1 densest subgraphs, they differ in the
way the overlapping of the subgraphs is handled. Balalau et al. [4] define a hard
constraint for the overlapping, based on the Jaccard’s index, allowing only a
fraction of the vertices to be shared by two subgraphs. Galbrun et al. [10] do
not define a hard constraint on the overlapping of two subgraphs that can be
identical or very similar, but include a distance function in the objective function
to be maximized. Both versions of the problem are NP-hard [4,7], the second is
also known to be approximable within factor 1

2 [7,10].
In this paper, following an approach proposed by Rozenshtein et al. [22]

related to temporal graphs, we consider the problem of finding a collection of k
dense subgraphs that cover the input graph. Notice that when k = 1 the problem
is trivial, as the solution must be the input graph. Hence in the paper we focus
on the case k ≥ 2 and we consider two variants of the problem. In the first
variant, the objective function is the sum of the densities of the k subgraphs,
without any constraints except that they must cover the input graph. For the
second variant, similar to [7,10], the objective function includes both the sum of
the densities of the k subgraphs and a distance function, in order to differentiate
the subgraphs included in a solution. However, notice that the approximation
algorithms presented in [7,10] cannot be directly be applied to this variant of
the problem, as they may produce solutions that do not cover the input graph.

The paper is organized as follows. Next, in Sect. 2, we introduce the main
concepts and we give the formal definitions of the problems we are interested
into. In Sect. 3, we show that the first variant of the problem is solvable in
polynomial time, for any k ≥ 2, by showing that there exists an optimal solution
that consists of k − 1 densest subgraphs and the input graph. For the second
variant, which as we observe in Sect. 2 is NP-hard for k ≥ 3, we present an
approximation algorithm that achieves an approximation factor of 2

5 in Sect. 4.
In Sect. 5 we present conclusions and open problems.

Some of the proofs are omitted due to page constraint.

2 Definitions

We consider undirected and unweighted graphs. Given a graph G = (V,E), the
density of G, denoted by dens(G), is equal to dens(G) = |E|

|V | .
Given a graph G = (V,E) and a subset V ′ ⊆ V , we denote by G[V ′] =

(V ′, E′) the subgraph of G induced by V ′. Two subgraphs G1 = (V1, E1), G2 =
(V2, E2) of G = (V,E) are distinct if V1 �= V2.

We are now able to consider the first problem we are interested into, called
k-Densest Cover Subgraphs.

154 R. Dondi and A. Popa

Problem 1. k-Densest Cover Subgraphs
Input: A graph G = (V,E), an integer k, with 2 ≤ k ≤ |V |.
Output: A collection S = {G1 = (V1, E1), . . . , Gk = (Vk, Ek)} of k subgraphs of
G such that ∪k

i=1Vi = V and the profit p(S) of S,

p(S) =
k∑

i=1

dens(Gi)

is maximixed.

Notice that some subgraphs in S can be identical.
The second problem we consider asks for a set of k subgraphs that optimize

an objective function that includes a distance between subgraphs. We start by
defining the distance we consider. The distance function we define is inspired by
that proposed in [10], except that it has value in the range [0, 1] and not in range
[0, 2] (actually the distance function defined in [10] has value in [1, 2] when two
subgraphs are different).

Definition 1. Given a graph G = (V,E) and two subgraphs G[A], G[B], with
A,B ⊆ V , the distance function d : 2V × 2V → R+ between two sets A,B ⊆ V
that induce subgraph G[A] and G[B], respectively, is defined as follows:

d(A,B) = 1 − |A ∩ B|2
|A||B|

Notice that 0 ≤ d(A,B) ≤ 1. Indeed, if G[A] and G[B] are disjoint, that is if
A ∩ B = ∅, then d(A,B) = 1, while d(A,B) = 0 if G[A] and G[B] are the same
subgraph, that is A = B.

Now, we are able to define the second problem we are interested into, called
Top k-Cover-Densest Subgraphs.

Problem 2. Top k-Cover-Densest Subgraphs
Input: A graph G = (V,E), a parameter λ > 0, an integer k, with 2 ≤ k ≤ |V |.
Output: A set S = {G1 = (V1, E1), . . . , Gk = (Vk, Ek)} of k pairwise distinct
subgraphs, with Vi ⊆ V , 1 ≤ i ≤ k and

⋃k
i=1 Vi = V , that maximizes the

following value

p(S) =
k∑

i=1

dens(Gi) + λ
k−1∑

i=1

k∑

j=i+1

d(Si, Sj).

Notice that in Top k-Cover-Densest Subgraphs, since S is a set, the subgraphs
in S must be distinct, unlike in k-Densest Cover Subgraphs. The first term of p(S)
is called the density profit, while the second them of p(S) is called the distance
profit.

In [7] a similar problem, termed Top k-Densest Subgraphs, was proven to
be NP-hard. Using a similar reduction we can prove the NP-hardness of Top
k-Cover-Densest Subgraphs problem is NP-hard.

Corollary 1 (of Theorem 5 [7]). Top k-Cover-Densest Subgraphs problem is
NP-hard for k ≥ 3.

Covering a Graph with Densest Subgraphs 155

2.1 Algorithms for Densest Subgraph

The algorithms we will present are based on computing a densest subgraph of a
graph, that is the Densest Subgraph problem. Given a graph G = (V,E), Densest
Subgraph can be solved in polynomial time [11,12] via a reduction to Minimum
Cut, with a complexity of O(|V ||E| log |E|) or O(|V |3) [14].

We also consider the problem of computing a constrained densest subgraph,
that is a subgraph that is forced to contain a given set V ′ of vertices. The problem
can be solved in polynomial time, with essentially the same time complexity of
Goldberg’s Algorithm [27]. Given a graph G = (V,E) and a set U ⊆ V , we
denote by Densest(G,U) a densest subgraph of G that is forced to contain U . If
U consists of a single vertex u, we abuse the notation and write Densest(G, u).
If S is a set of subgraphs such that G[U] is not in S, then Densest(G,U,S) is
Densest(G,U), if this subgraph is not in S, else it is G[U].

3 A Polynomial Time Algorithm for the k-Densest Cover
Subgraphs

In this section we show a polynomial time algorithm that provides an optimal
solution to the k-Densest Cover Subgraphs problem. Our algorithm is very simple:
the optimal solution S = {G1 = (V1, E1), . . . , Gk = (Vk, Ek)} has G1 = G2 =
· · · = Gk−1 equal to the densest subgraph, while Gk = G, that is the entire input
graph. In what follows we prove the correctness of the algorithm.

We first prove an auxiliary lemma regarding the densest subgraph of a graph.

Lemma 1. Let Gd = (Vd, Ed) be a densest subgraph of a graph G = (V,E).
Let X ⊆ Vd, let Gx = (Vd − X,Ex) be the subgraph induced by Vd − X and let
Y = Ed − Ex. That is, Y is the set of edges that are removed from the densest
subgraph after removing the set of vertices X, or, in other words, the edges
between the vertices of X and the edges with one endpoint in X and another
endpoint in the set Vd − X. It holds that:

|Y |
|X| ≥ |Ed|

|Vd|
Proof. We know that:

|Ed|
|Vd| ≥ dens(Gx) =

|Ed| − |Y |
|Vd| − |X|

otherwise we can simply remove the set X of vertices and obtain a subgraph
denser than Gd. Then, we get that:

|Ed|(|Vd| − |X|) ≥ |Vd|(|Ed| − |Y |)

−|Ed||X| ≥ −|Vd||Y |

156 R. Dondi and A. Popa

|Ed||X| ≤ |Vd||Y |
|Ed|
|Vd| ≤ |Y |

|X|

�

We know that G1, G2, . . . , Gk must cover all the vertices of G. Now, we show
that there exists an optimal solution for the k-Densest Cover Subgraphs such that
all the graphs in the solution include a densest subgraph.

Lemma 2. There exists an optimal solution S = {G1 = (V1, E1), G2 =
(V2, E2), . . . , Gk = (Vk, Ek)} to the k-Densest Cover Subgraphs problem that
has the property that all the graphs Gi ∈ S, 1 ≤ i ≤ k, include a densest graph.

Proof. Assume by contradiction that there exists a densest subgraph Gd =
(Vd, Ed) and a graph Gi = (Vi, Ei) ∈ S such that Vd − Vi �= ∅. Let X = Vd − Vi

and let Y = Ed − Ei. According to Lemma 1:

|Y |
|X| ≥ |Ed|

|Vd|
By construction, Gi ∪Gd has at least |Y |+ |Ei| edges and precisely |X|+ |Vi|

vertices. We show that:

|Y | + |Ei|
|X| + |Vi| ≥ |Ei|

|Vi|
Indeed, from Lemma 1 and since Gd is a densest subgraph, it holds that

|Y |
|X| ≥ |Ed|

|Vd| ≥ |Ei|
|Vi|

thus
|Y | + |Ei|
|X| + |Vi| ≥

|Ei|
|Vi| |X| + |Ei|

|X| + |Vi| =
|Ei|
|Vi|

|X| + |Vi|
|X| + |Vi| =

|Ei|
|Vi|

�
An immediate consequence of Lemma 2 is the fact that the maximal densest

subgraph (a densest subgraph of maximum size) is unique. We use this property
later in the proof of Theorem 1.

Lemma 3. Given a graph G = (V,E), the maximal densest subgraph Gd =
(Vd, Ed) in G is unique.

Proof. Assume by contradiction that there exist two distinct maximal densest
subgraphs Gd = (Vd, Ed) and G′

d = (V ′
d , E′

d). Since Gd and G′
d are distinct, then

Vd − V ′
d �= ∅ and V ′

d − Vd �= ∅. Thus, we can apply the same argument as in
Lemma 2 and by taking the union of Vd, V ′

d we obtain another densest subgraph
that strictly includes both Gd and G′

d. Thus, we contradict the fact that Gd and
G′

d are maximal and the lemma follows.
�

Covering a Graph with Densest Subgraphs 157

Lemma 3 shows that there exists a unique maximal densest subgraph. Next,
we discuss how to compute it in polynomial time.

1. Compute a densest subgraph Gd = (Vd, Ed), using the Goldberg’s algorithm
of [12]

2. For each v ∈ V −Vd, by applying the algorithm presented in [27] (see Sect. 2.1),
compute in polynomial time G′

d(v) ← Densest(G,Vd∪{v}), a densest subgraph
in G that includes Vd ∪ {v}.

3. If no subgraph G′
d(v) is as dense as Gd, rteturn Gd

4. Else, for a subgraph G′
d(v) that is as dense as Gd, define Gd ← G′

d(v) and
iterate the algorithm from point 2.

From Lemma 2, we can conclude that there exists an optimal solution of k-
Densest Cover Subgraphs problem where all the subgraphs include the maximal
densest subgraph of G.

Corollary 2. There exists an optimal solution S = {G1 = (V1, E1), G2 =
(V2, E2), . . . , Gk = (Vk, Ek)} to the k-Densest Cover Subgraphs problem that has
the property that all the graphs Gi ∈ S, 1 ≤ i ≤ k, include the maximal densest
subgraph of G.

Next, we show a property of two subgraphs in an optimal solution of k-
Densest Cover Subgraphs, that will be useful us to prove the main result of this
section.

Lemma 4. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs in an optimal
solution of k-Densest Cover Subgraphs problem that satisfies Corollary 2 and let
Gu = G[V1 ∪ V2] and Gd be the maximal densest subgraph. Then:

dens(Gd) + dens(Gu) ≥ dens(G1) + dens(G2).

We now prove the main theorem of this section.

Theorem 1. There exists an optimal solution S = {G1, G2, . . . , Gk} to the k-
Densest Cover Subgraphs problem such that G1 = G2 = · · · = Gk−1 = Gd, where
Gd is the maximal densest subgraph and Gk = G.

Proof. Let S ′ = {G′
1, G

′
2, . . . , G

′
k} be an optimal solution to the k-Densest Cover

Subgraphs problem such that G′
k is not a densest subgraph. We show that we can

modify S ′ so that the resulting solution S = {G1, G2, . . . , Gk} has the following
properties: (1) G1 = G2 = · · · = Gk−1 = Gd, where Gd is the maximal densest
subgraph, and Gk = G, (2) dens(S) ≥ dens(S ′).

First, observe that both solutions S and S ′ cover all the vertices of G. Now,
assume that we have two graphs G′

i and G′
j in S ′ that are not identical to the

maximal densest subgraph Gd. Then, according to Lemma 4, we can replace G′
i

and G′
j with the maximal densest subgraph Gd and G′

i ∪ G′
j .

Thus, we can assume that there exists only one graph G′
� ∈ S ′ such that G′

�

is not the maximal densest subgraph of G. Assume without loss of generality
that � �= 1. G′

1 ∪ G′
� = G, as the input graph must be covered. Thus G′

� includes
G−Gd and, according to Corollary 2, G′

� includes Gd and therefore G′
� = G and

the theorem follows.

158 R. Dondi and A. Popa

4 An Approximation Algorithm for Top k-Cover-Densest
Subgraphs

In this section, we present an approximation algorithm for Top k-Cover-Densest
Subgraphs. The approximation algorithm outputs the set of k subgraphs having
largest profit between the sets of k subgraphs computed by two algorithms, called
Approx-Dens and Dist. Both Approx-Dens and Dist computes a set of k subgraphs
that cover G, but Approx-Dens aims at maximizing the density of the subgraphs,
while Dist aims at maximizing the distance between the subgraphs. We start by
presenting the Approx-Dens algorithm.

Approx-Dens

Approx-Dens computes a solution S of Top k-Cover-Densest Subgraphs. We assume
that k ≥ 3. Indeed, for k = 2, we can compute two distinct subgraphs that cover
G and that have maximum density by applying the algorithm of Sect. 3, as
described in the following. If we obtain two distinct subgraphs, we know that
they are two subgraphs of maximum density that cover G. If the algorithm of
Sect. 3 returns two identical subgraphs G1, G2, then they must be identical to the
input graph G. Then we can compute in polynomial time a densest subgraph
of G distinct from G1 by applying the modification of Goldberg’s Algorithm
described in [7].

Hence assume k ≥ 3. Approx-Dens first adds to S two densest distinct sub-
graphs of G, denoted by G1 = (V1, E1) and G2 = (V2, E2). G1 and G2 are
computed in polynomial time as follows:

– G1 = (V1, E1) is computed by applying Goldberg’s Algorithm [12] on G
– G2 is computed by applying the modification of Goldberg’s Algorithm

described in [7], with input G and V1.

We assume that |V1| ≥ |V2| and |V2| ≥ 2. Notice that if this latter condition
does not hold, |V2| = 1 and dens(G2) = 0, hence we can compute a solution
of Top k-Cover-Densest Subgraphs by computing any subgraph of G, since it
contains at least k − 1 subgraphs of density 0.

Starting with S = {G1, G2}, Approx-Dens computes the remaining subgraphs
with two phases (described later). The first phase is applied when there exists
at least one vertex of G that is not covered by S. In this phase, Approx-Dens
iteratively adds a subgraph Gi to S = {G[V1], . . . G[Vi−1]}, for 3 ≤ i ≤ k − 1.
In what follows, Ci−1 =

⋃i−1
j=1 Vj , that is Ci−1 is the set of vertices covered by

the subgraphs already in S. In the second phase, when Ci−1 = V , that is the
input graph is already covered, Approx-Dens adds k − i + 1 subgraphs, which
are computed depending on the size of G1. If Phase 2 is never executed, then
Approx-Dens adds subgraph Gk = G to S.

Phase 1. Let S = {G[V1], . . . G[Vi−1]}. If there exists u ∈ V − Ci−1, Gi ←
Densest(G, u).

Covering a Graph with Densest Subgraphs 159

Phase 2. If Ci−1 = V , then:

– If |V1| ≤ 2 log2 |V |, Gi, . . . , Gk are k − i distinct subgraphs among
Densest(G,V1 ∪ {u},S) and Densest(G,V2 ∪ {u},S), with u ∈ V − V1 − V2.
Notice that the algorithm computes, and possibly adds to S, these subgraphs
based on some ordering of the vertices in V − V1 − V2: it starts with the first
vertex of V − V1 − V2, then the second one, and so on until S contains k
subgraphs.

– If 2 log2 |V | ≤ |V1| ≤ |V | − log2 |V |, Gi, . . . , Gk are k − i densest distinct
subgraphs among G[V1 ∪ U], with U any subset of V − V1 of size at most
log2 |V |.

– If |V1| > |V |− log2 |V |, Gi, . . . , Gk are k− i densest distinct subgraphs among
G[V1−U], with U a subset of VMIN , where VMIN ⊆ V1 consists of the log2 |V |
vertices of V1 having smallest degree.

We recall that if Phase 2 is never executed, Gk = G. We start by showing
that Approx-Dens returns a feasible solution, that is a set of k subgraphs that
covers G.

Lemma 5. Approx-Dens returns a set of k subgraphs that cover G.

Next we show that Approx-Dens achieves an approximation factor of 2
3 for

the density profit.

Lemma 6. Each subgraph Gi, with 3 ≤ i ≤ k − 1, computed by Phase 1 of
Approx-Dens has density at least 2

3dens(G1).

Proof. Consider the subgraph G′ = G[V1 ∪ {u}]. By construction dens(Gi) ≥
dens(G′). Now, consider the density of G′, it holds that

dens(G′) ≥ |E1|
|V1| + 1

=
|E1|
|V1|

|V1|
|V1| + 1

.

Since |V1| ≥ 2, |V1|
|V1|+1 ≥ 2

3 , thus

dens(G′) ≥ |E1|
|V1|

|V1|
|V1| + 1

≥ 2
3
dens(G1).

It follows that dens(Gi) ≥ dens(G′) ≥ 2
3dens(Gi), thus concluding the proof.
�

Lemma 7. Each Gi, with 3 ≤ i ≤ k, computed by Phase 2 of Approx-Dens has
density at least 2

3dens(Gx), with x ∈ {1, 2}.
Proof. We consider the three cases of Phase 2.

Case 1. |V1| ≤ 2 log2 |V | Since |Vx| ≥ 2, with x ∈ {1, 2}, it follows that a
subgraph Gi = (Vi, Ei) has the following density:

|Ei|
|Vi| ≥ |Ex|

|Vx| + 1
=

|Ex|
|Vx|

|Vx|
|Vx| + 1

≥ 2
3

|Ex|
|Vx|

160 R. Dondi and A. Popa

Case 2. 2 log2 |V | ≤ |V1| ≤ |V | − log2 |V |. Consider a set Ui of vertices added to
V1. Since |Ui| ≤ log2 |V | and |V1| ≥ 2 log2 |V |, it holds that

|Ei|
|Vi| ≥ |E1|

|V1| + log2 |V | =
|E1|
|V1|

|V1|
|V1| + log2 |V | ≥ 2

3
|E1|
|V1| .

Case 3. |V1| > |V |−log2 |V |. Consider a set VMIN ⊆ V1, with |VMIN | = log2 |V |,
a set of vertices having smallest degree in G1. Let Ui, 3 ≤ i ≤ k, be a subset of
VMIN and Gi = G[V1 − Ui].

Let d be the average degree of vertices in G1, then by removing Ui from G1,
at most d|Ui| edges are removed from E1. Thus:

|Ei|
|Vi| ≥ |E1| − d|Ui|

|V1| =
|E1|
|V1| − d|Ui|

|V1| ≥ |E1|
|V1| − d

(
log2 |V |

|V | − log2 |V |
)

For |V | larger than a constant (|V | ≥ 37; notice that if |V | is a constant we can
solve the problem by brute force), since |E1|

|V1| ≥ 1
2d, it holds that

d

(
log2 |V |

|V | − log2 |V |
)

≤ 1
6
d ≤ 1

3
|E1|
|V1| .

It follows that |Ei|
|Vi| ≥ 2

3
|E1|
|V1|

thus concluding the proof.
�
Next, we show that Approx-Dens approximates the optimal density within a

factor of 2
3 .

Lemma 8. The subgraphs G1, . . . , Gk computed by Approx-Dens have density at
least 2

3OPT (Dens).

Proof. Consider an optimal solution consisting of subgrpahs G∗
1, . . . , G

∗
k. Since

G1, G2 are two densest subgraphs of G, it follows from Lemma 6 and Lemma 7
that for i with 3 ≤ i ≤ k − 1, dens(Gi) ≥ 2

3dens(G∗
i).

Now, consider the subgraphs G1, G2, Gk. Since G1, G2 are two densest sub-
graphs of G, it follows that

dens(G1) + dens(G2) ≥ 2
3

(dens(G∗
1) + dens(G∗

2) + dens(G∗
k))

thus

dens(G1) + dens(G2) + dens(Gk) ≥ 2
3

(dens(G∗
1) + dens(G∗

2) + dens(G∗
k))

and the lemma holds.
�

Covering a Graph with Densest Subgraphs 161

Dist

Dist starts with z = |V | subgraphs, each one containing a vertex of V and, while
k < z, merges any two of these subgraphs. Let D1, . . . , Dk be the subgraphs
returned by Dist.

Lemma 9. D1, . . . , Dk have maximum profit distance.

Proof. The lemma follows from the fact that D1, . . . , Dk are disjoint.
�
Now, we show that we achieve an approximation factor of 2

5 for Top k-Cover-
Densest Subgraphs. We denote by OPT the profit of an optimal solution S∗ of
Top k-Cover-Densest Subgraphs, by OPT (Dens) (by OPT (Dist), respectively)
the density profit (distance profit, respectively) of S∗.

Theorem 2. Let S = {G1, . . . Gk} be the solution returned by Approx-Dens and
let D = {D1, . . . Dk} be the solution returned by Dist. Then max(p(S), p(D) ≥
2
5OPT .

Proof. Recall that by Lemma 8, it holds that p(S) ≥ 2
3OPT (Dens), and by

Lemma 9 it holds that p(D) ≥ λOPT (Dist).
First, assume that λOPT (Dist) ≥ 2

3 OPT (Dens). Then

p(D) ≥ λOPT (Dist) ≥ 2
5
λOPT (Dist) +

3
5
λOPT (Dist) ≥

2
5
λOPT (Dist) +

2
5
OPT (Dens),

thus in this case Dist returns a solution having approximation factor 2
5 .

Assume that λOPT (Dist) < 2
3 OPT (Dens). Then

p(S) ≥ 2
3
OPT (Dens) ≥ 2

5
OPT (Dens) +

4
15

OPT (Dens) ≥
2
5
OPT (Dens) +

2
5
λOPT (Dist).

thus in this case Approx-Dens returns a solution having approximation factor 2
5 ,

concluding the proof.
�

5 Conclusions and Open Problems

We have considered two variants of the problem of covering a graph with k
densest subgraphs, where k ≥ 2. For the first variant, we have shown that it
is solvable in polynomial time, for any k ≥ 2. For the second variant, which is
NP-hard for k ≥ 3, we have presented an approximation algorithm that achieves
a factor of 2

5 .
There are some interesting open problems related to k-Densest Cover Sub-

graphs and Top k-Cover-Densest Subgraphs. It would be nice to study whether
the version k-Densest Cover Subgraphs that asks for k densest distinct subgraphs
that cover G is polynomial time solvable. A positive answer will help also to
improve the approximation of Top k-Cover-Densest Subgraphs.

162 R. Dondi and A. Popa

References

1. Andersen, R., Chellapilla, K.: Finding dense subgraphs with size bounds. In:
Avrachenkov, K., Donato, D., Litvak, N. (eds.) WAW 2009. LNCS, vol. 5427, pp.
25–37. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-95995-3 3

2. Asahiro, Y., Hassin, R., Iwama, K.: Complexity of finding dense subgraphs. Discret.
Appl. Math. 121(1–3), 15–26 (2002)

3. Bahmani, B., Kumar, R., Vassilvitskii, S.: Densest subgraph in streaming and
mapreduce. PVLDB 5(5), 454–465 (2012)

4. Balalau, O.D., Bonchi, F., Chan, T.H., Gullo, F., Sozio, M.: Finding subgraphs with
maximum total density and limited overlap. In: Cheng, X., Li, H., Gabrilovich, E.,
Tang, J. (eds.) Proceedings of the Eighth ACM International Conference on Web
Search and Data Mining, WSDM 2015, pp. 379–388. ACM (2015)

5. Charikar, M.: Greedy approximation algorithms for finding dense components in
a graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp.
84–95. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44436-X 10

6. Dondi, R., Hosseinzadeh, M.M., Guzzi, P.H.: A novel algorithm for finding top-k
weighted overlapping densest connected subgraphs in dual networks. Appl. Netw.
Sci. 6(1), 1–17 (2021). https://doi.org/10.1007/s41109-021-00381-8

7. Dondi, R., Hosseinzadeh, M.M., Mauri, G., Zoppis, I.: Top-k overlapping dens-
est subgraphs: approximation algorithms and computational complexity. J. Comb.
Optim. 41(1), 80–104 (2021)

8. Dondi, R., Mauri, G., Sikora, F., Zoppis, I.: Covering a graph with clubs. J. Graph
Algorithms Appl. 23(2), 271–292 (2019)

9. Fratkin, E., Naughton, B.T., Brutlag, D.L., Batzoglou, S.: Motifcut: regulatory
motifs finding with maximum density subgraphs. Bioinformatics 22(14), 156–157
(2006)

10. Galbrun, E., Gionis, A., Tatti, N.: Top-k overlapping densest subgraphs. Data Min.
Knowl. Discov. 30(5), 1134–1165 (2016)

11. Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algo-
rithm and applications. SIAM J. Comput. 18(1), 30–55 (1989)

12. Goldberg, A.V.: Finding a maximum density subgraph. Technical report, Berkeley,
CA, USA (1984)

13. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Proceedings of a Symposium on the Complexity of Com-
puter Computations, The IBM Research Symposia Series, pp. 85–103. Plenum
Press, New York (1972)

14. Kawase, Y., Miyauchi, A.: The densest subgraph problem with a convex/concave
size function. Algorithmica 80(12), 3461–3480 (2018)

15. Khuller, S., Saha, B.: On finding dense subgraphs. In: Albers, S., Marchetti-
Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part
I. LNCS, vol. 5555, pp. 597–608. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02927-1 50

16. Komusiewicz, C.: Multivariate algorithmics for finding cohesive subnetworks. Algo-
rithms 9(1), 21 (2016)

17. Kortsarz, G., Peleg, D.: Generating sparse 2-spanners. J. Algorithms 17(2), 222–
236 (1994)

18. Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling the web for
emerging cyber-communities. Comput. Netw. 31(11–16), 1481–1493 (1999)

https://doi.org/10.1007/978-3-540-95995-3_3
https://doi.org/10.1007/3-540-44436-X_10
https://doi.org/10.1007/s41109-021-00381-8
https://doi.org/10.1007/978-3-642-02927-1_50
https://doi.org/10.1007/978-3-642-02927-1_50

Covering a Graph with Densest Subgraphs 163

19. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in
large networks: natural cluster sizes and the absence of large well-defined clusters.
Internet Math. 6(1), 29–123 (2009)

20. Luce, R.D., Perry, A.D.: A method of matrix analysis of group structure. Psy-
chometrika 14(2), 95–116 (1949)

21. Nasir, M.A.U., Gionis, A., Morales, G.D.F., Girdzijauskas, S.: Fully dynamic algo-
rithm for top-k densest subgraphs. In: Lim, E., (eds.) Proceedings of the 2017
ACM on Conference on Information and Knowledge Management, CIKM 2017,
pp. 1817–1826. ACM (2017)

22. Rozenshtein, P., Bonchi, F., Gionis, A., Sozio, M., Tatti, N.: Finding events in
temporal networks: segmentation meets densest subgraph discovery. Knowl. Inf.
Syst. 62(4), 1611–1639 (2019). https://doi.org/10.1007/s10115-019-01403-9

23. Sozio, M., Gionis, A.: The community-search problem and how to plan a success-
ful cocktail party. In: Rao, B., Krishnapuram, B., Tomkins, A., Yang, Q. (eds.)
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Washington, DC, USA, 25–28 July 2010, pp. 939–948.
ACM (2010)

24. Tatti, N., Gionis, A.: Density-friendly graph decomposition. In: Gangemi, A.,
Leonardi, S., Panconesi, A. (eds.) Proceedings of the 24th International Conference
on World Wide Web, WWW 2015, Florence, Italy, 18–22 May 2015, pp. 1089–1099.
ACM (2015)

25. Valari, E., Kontaki, M., Papadopoulos, A.N.: Discovery of top-k dense subgraphs
in dynamic graph collections. In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012.
LNCS, vol. 7338, pp. 213–230. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31235-9 14

26. Zou, P., Li, H., Wang, W., Xin, C., Zhu, B.: Finding disjoint dense clubs in a social
network. Theor. Comput. Sci. 734, 15–23 (2018)

27. Zou, Z.: Polynomial-time algorithm for finding densest subgraphs in uncertain
graphs. In: Proceedings of Internation Workshop on Mining and Learning with
Graphs (2013)

https://doi.org/10.1007/s10115-019-01403-9
https://doi.org/10.1007/978-3-642-31235-9_14
https://doi.org/10.1007/978-3-642-31235-9_14

Computational Geometry

Coresets for (k, �)-Median Clustering
Under the Fréchet Distance

Maike Buchin and Dennis Rohde(B)

Faculty of Informatics, Ruhr University Bochum, Bochum, Germany
{maike.buchin,dennis.rohde-t1b}@rub.de

Abstract. We present an algorithm for computing ε-coresets for (k, �)-
median clustering of polygonal curves in R

d under the Fréchet distance.
This type of clustering is an adaption of Euclidean k-median clustering:
we are given a set of n polygonal curves in R

d, each of complexity (num-
ber of vertices) at most m, and want to compute k median curves such
that the sum of distances from the given curves to their closest median
curve is minimal. Additionally, we restrict the complexity of the median
curves to be at most � each, to suppress overfitting, a problem specific for
sequential data. Our algorithm has running time linear in n, sub-quartic
in m and quadratic in ε−1. With high probability it returns ε-coresets of
size quadratic in ε−1 and logarithmic in n and m. We achieve this result
by applying the improved ε-coreset framework by Langberg and Feldman
to a generalized k-median problem over an arbitrary metric space. Later
we combine this result with the recent result by Driemel et al. on the VC
dimension of metric balls under the Fréchet distance. Furthermore, our
framework yields ε-coresets for any generalized k-median problem where
the range space induced by the open metric balls of the underlying space
has bounded VC dimension, which is of independent interest. Finally, we
show that our ε-coresets can be used to improve the running time of an
existing approximation algorithm for (1, �)-median clustering.

Keywords: Clustering · Coresets · Median · Polygonal curves

1 Introduction

At the present time even efficient approximation algorithms are often incapable
of handling massive data sets, which have become common. Here, we need effi-
cient methods to reduce data while (approximately) maintaining the core proper-
ties of the data. A popular approach to this topic are ε-coresets; see for example
[14,27] for comprehensive surveys. An ε-coreset is a small (weighted) set that
aggregates certain properties of a given (massive) data set up to some small
error. ε-coresets are very popular in the field of clustering, cf. [11,19,20,22] and
they are becoming a topic in other fields, too, cf. [16,28]. The technique for
computing an ε-coreset for a given data set highly depends on the application
at hand, but mostly ε-coresets are computed by filtering the given data set.

c© Springer Nature Switzerland AG 2022
N. Balachandran and R. Inkulu (Eds.): CALDAM 2022, LNCS 13179, pp. 167–180, 2022.
https://doi.org/10.1007/978-3-030-95018-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95018-7_14&domain=pdf
http://orcid.org/0000-0002-3446-4343
http://orcid.org/0000-0001-8984-1962
https://doi.org/10.1007/978-3-030-95018-7_14

168 M. Buchin and D. Rohde

While ε-coresets can be computed efficiently for k-clustering of points in the
Euclidean space, less is known for clustering of curves. In particular, only little
effort (cf. [9]) has been made in designing methods for computing ε-coresets for
(k, �)-clustering of polygonal curves in R

d under the Fréchet distance. This type
of clustering, which has recently drawn increasing popularity due to a grow-
ing number of applications, see [4,5,8,12], is an adaption of the Euclidean k-
clustering: we are given a set of polygonal curves and seek to compute k center
curves that minimize either the maximum Fréchet distance (center objective),
or the sum of Fréchet distances (median objective), among the given curves and
their closest center curve. In addition, we restrict the complexity—the number of
vertices—of each center curve to be at most � to suppress overfitting, a problem
specific for sequential data. This means that input curves and center curves are
in general of different complexities, which is the reason why we need a specialized
algorithm for computing ε-coresets and can not apply ε-coreset algorithms for
discrete metric spaces (cf. [15]) on the input.

The Fréchet distance is a natural dissimilarity measure for curves that is a
pseudo-metric and can be computed efficiently [1]. Unlike other measures for
curves, like the dynamic time warping distance (or the discrete version of the
Fréchet distance), it takes the whole course of the curves into account, not only
the pairwise distances among their vertices. This can be particularly useful,
e.g. when the input consists of irregularly sampled trajectories, cf. [12]. Unfor-
tunately, since the Fréchet distance is a bottleneck distance measure, i.e., it
boils down to a single distance between two points on the curves, it is sensi-
tive to outliers, which may negatively affect its applications. In clustering, we
can counteract by choosing an appropriate clustering objective and indeed, the
(k, �)-median objective is a good choice, because the median is a robust mea-
sure of central tendency. However, the state of the art (k, �)-median clustering
algorithms (cf. [8,12]) have exponential running time dependencies and cannot
be used in practice, while the practical algorithms for (k, �)-clustering (cf. [4,5])
rely on the (k, �)-center objective, which is not robust and therefore amplifies
the sensitivity on outliers.

In this work, we present an algorithm for computing ε-coresets for (k, �)-
median clustering under the Fréchet distance and improve an (1, �)-median clus-
tering algorithm by Buchin et al. [7], using ε-coresets and rendering it much
more practical.

1.1 Related Work

(k, �)-clustering of polygonal curves was introduced by Driemel et al. [12]. They
developed the first approximation schemes for (k, �)-center and (k, �)-median
clustering of polygonal curves in R, which run in near-linear time. They proved
that both problems are NP-hard, when k is part of the input. Further, they
showed that the doubling dimension of the space of polygonal curves under the
Fréchet distance is unbounded, even when the curves are of bounded complex-
ity. Subsequently, Buchin et al. [4] presented a constant factor approximation
algorithm for (k, �)-center clustering of polygonal curves in R

d, with running

Coresets for (k, �)-Median Clustering Under the Fréchet Distance 169

time linear in the number of given curves and polynomial in their maximum
complexity. Also they showed that (k, �)-center clustering is NP-hard and NP-
hard to approximate within a factor of (1.5 − ε) for curves in R, respectively
(2.25 − ε) for curves in R

d with d ≥ 2, even for k = 1. Buchin et al. [5] pro-
vided practical algorithms for (k, �) clustering under the Fréchet distance and
thereby introduce a new technique, the so called Fréchet centering, for com-
puting better cluster centers. Also, Meintrup et al. [26] provided a practical
(1 + ε)-approximation algorithm for discrete (k, �)-median clustering under the
presence of a certain number of outliers. Buchin et al. [6] proved that (k, �)-
median clustering is also NP-hard, even for k = 1. Furthermore, they presented
polynomial-time approximation schemes for (k, �)-center and (k, �)-median clus-
tering of polygonal curves under the discrete Fréchet distance. Nath and Taylor
[29] gave a near-linear time approximation scheme for (k, �)-median clustering
of polygonal curves in R

d under the discrete Fréchet distance and a polynomial-
time approximation scheme for k-median clustering of sets of points from R

d

under the Hausdorff distance. Furthermore, they showed that k-median clus-
tering of point sets under the Hausdorff distance is NP-hard (for constant k).
Recently, Buchin et al. [8] developed an approximation scheme for (k, �)-median
clustering under the Fréchet distance with running time linear in the number
of curves and polynomial in their complexity, where the computed centers have
complexity up to 2� − 2.

Langberg and Schulman [25] developed a framework for computing rela-
tive error approximations of integrals over any function from a given family
of unbounded and non-negative real functions. In particular, this framework can
be used to compute ε-coresets for k-clustering of points in R

d with objective
functions based on sums of distances among the points and their closest center.
The idea of their framework is to sub-sample the input with respect to a certain
non-uniform probability distribution, which is computed using an approximate
solution to the problem. More precisely, the approximate solution is used to
compute an upper bound on the sensitivity of each data element. The sensitiv-
ity is the maximum fraction of cost that the element may cause for any possible
solution. It is a notion of the data elements importance for the problem and the
probability distribution is set up such that each element has probability propor-
tional to its importance. A sample of a certain size drawn from this distribution
and properly weighted, is an ε-coreset for the underlying clustering problem with
high probability. Feldman and Langberg [15] developed a unified framework for
approximate clustering, which is largely based on ε-coresets. They combine the
techniques by Langberg and Schulman [25] with ε-approximations, which stem
from the framework of range spaces and VC dimension developed in statistical
learning theory. As a result, they address a spectrum of clustering problems, such
as k-median clustering, k-line median clustering, projective clustering and also
other problems like subspace approximation. Braverman et al. [2] improved the
aforementioned framework by switching to (ε, η)-approximations, which leads to
substantially smaller sample sizes in many cases. Also, they simplified and further
generalized the framework and applied it to k-means clustering of points in R

d.

170 M. Buchin and D. Rohde

Following, Feldman et al. [16] improved this framework by switching to another
range space, thereby obtaining smaller coresets for k-means, k-line means and
affine subspace clustering.

1.2 Our Contributions

In this work we develop an algorithm for computing ε-coresets for (k, �)-median
clustering of polygonal curves in R

d under the Fréchet distance (where in the
following we assume k, � and d to be constant):

Theorem 1. There exists an algorithm that, given a set of n polygonal curves
in R

d of complexity at most m each and a parameter ε ∈ (0, 1), returns with
constant positive probability an ε-coreset for (k, �)-median clustering under the
Fréchet distance of size O(k2 log2(k)ε−2 log(m) log(kn)), in time

O(nm log(m) + nm3 log(m) + ε−2 log(m) log(n))

for k > 1 and

O(nm log(m) + m3 log(m) + ε−2 log(m) log(n))

for k = 1.

Also we show that ε-coresets can be used to improve the running time of an
existing (1, �)-median (5 + ε)-approximation algorithm [7], thereby facilitating
its application in practice.

We start by defining generalized k-median clustering, where input and centers
come from a subset (not necessarily the same) of an underlying metric space,
each, and then derive our ε-coreset result in this setting. This notion captures
(k, �)-median clustering under the Fréchet distance in particular, but the analysis
holds for any metric space. In doing so, we first give a universal bound on the so
called sensitivity of the elements of the given data set and their total sensitivity,
i.e., the sum of their sensitivities. The sensitivities are a measure of the data
elements importance, i.e., the maximum fraction of the cost an element might
cause for any center set, and later they determine the sample probabilities. Our
analysis is based on the analysis of Langberg and Schulman [25].

Next, we apply the improved ε-coreset framework by Feldman and Langberg
[15]. Here, our analysis is based on the analysis of Feldman et al. [16], but our
sample size depends on the VC-dimension of the range space induced by the open
metric balls. The open metric balls form a basis of the metric topology, hence it
is more natural to study the VC dimension of their associated range space in a
geometric setting. Indeed, for the �d

p spaces these range spaces have already been
studied [17, Theorem 2.2] and recently, results for the (continuous and discrete)
Fréchet, weak Fréchet and Hausdorff distance were obtained [13], enabling our
main result. Finally, we show how an existing (1, �)-median (5+ε)-approximation
algorithm [7] can be improved by means of our ε-coresets.

Coresets for (k, �)-Median Clustering Under the Fréchet Distance 171

Theorem 2. There exists an algorithm that, given a set T of n polygonal curves
of complexity at most m each, and a parameter ε ∈ (0, 1/2], computes a polygonal
curve c of complexity 2�−2, such that with constant positive probability, it holds
that

cost (T, {c}) =
∑

τ∈T

dF (τ, c) ≤ (5 + ε)
∑

τ∈T

dF (τ, c∗) = (5 + ε)cost (T, {c∗}) ,

where c∗ is an optimal (1, �)-median for T under the Fréchet distance. The algo-
rithm has running time

O
(
nm log(m) + m2 log(m) + m2�−1ε−2�d+2d−2 log2(m) log(n)

)
.

Theorems 1 and 2 will follow from Theorems 7 and 9, respectively. Note that
although we do not present algorithms for computing ε-coresets for the weak
and discrete Fréchet and Hausdorff distance, our results also imply the existence
of ε-coresets of similar size for these metrics.

1.3 Organization

In Sect. 2 we give the results for general metric spaces: we derive a universal
bound on the sensitivities in Sect. 2.1 and the ε-coreset result in Sect. 2.2. In
Sect. 3 we present the algorithm for computing ε-coresets for (k, �)-median clus-
tering. Finally, in Sect. 4 we demonstrate the use of ε-coresets in an existing
(5 + ε)-approximation algorithm for (1, �)-median clustering. All proofs can be
found in the full paper [10].

2 Coresets for Generalized k-Median Clustering
in Metric Spaces

In this section, we first derive general results for ε-coreset based on the sensitivity
sampling framework [15,25]. In the following d ∈ N is an arbitrary constant. By
‖·‖ we denote the Euclidean norm and for n ∈ N, we define [n] = {1, . . . , n}. For
a closed logical formula Ψ we define by 1(Ψ) the function that is 1 if Ψ is true
and 0 otherwise.

Let X = (X, ρ) be an arbitrary metric space, where X is any non-empty set
and ρ : X×X → R≥0 is a distance function. We introduce a generalized definition
of k-median clustering, where the input is restricted to come from a predefined
subset Y ⊆ X and the medians are restricted to come from a predefined subset
Z ⊆ X.

Definition 1. The generalized k-median clustering problem is defined as fol-
lows, where k ∈ N is a fixed (constant) parameter of the problem: given a finite
and non-empty set T = {τ1, . . . , τn} ⊆ Y , compute a set C of k elements from
Z, such that cost (T,C) =

∑
τ∈T minc∈C ρ(τ, c) is minimal.

172 M. Buchin and D. Rohde

We analyze the problem in terms of functions. This allows us to apply the
improved ε-coreset framework by Feldman and Langberg [15]. Therefore, given
a set T = {τ1, . . . , τn} ⊆ Y we define F = {f1, . . . , fn} to be a set of functions
with fi : 2Z \ {∅} → R≥0, C 	→ minc∈C ρ(c, τi). For each C ∈ 2Z \ {∅} we now
have cost (T,C) =

∑n
i=1 fi(C).

In the following, we bound the sensitivity of each τ ∈ T . That is the maximum
fraction of cost (T,C) that is caused by τ , for all C. To comply with the k-median
problem we only take into account the k-subsets C ⊆ Z.

2.1 Sensitivity Bound

First, we formally define the sensitivities of the inputs τ ∈ T in terms of the
respective functions.

Definition 2 ([15]). Let F be a finite and non-empty set of functions f : 2Z \
{∅} → R≥0. For f ∈ F we define the sensitivity with respect to F :

s(f, F) = sup
C={c1,...,ck}⊆Z∑

g∈F

g(C)>0

f(C)∑
g∈F

g(C)
.

We define the total sensitivity of F as S(F) =
∑

f∈F s(f, F).

We now prove a bound on the sensitivity of all f ∈ F , which then yields a
bound on the total sensitivity of F . Later, our coreset will be a weighted sample
from a distribution whose probabilities are determined by the derived bounds.
To compute the bounds, any (bi-criteria) approximate solution to the generalized
k-median problem can be used. Our analysis is an adaption of the analysis of
the sensitivities for sum-based k-clustering of points in R

d by Langberg and
Schulman [25]. We note that similar bounds have already been derived in the
literature, see e.g., [30].

Lemma 1. Let k′ ∈ N, C∗ = {c∗
1, . . . , c

∗
k} ⊆ Z with Δ∗ =

∑n
i=1 fi(C∗) minimal

and Ĉ = {ĉ1, . . . , ĉk′} ⊆ X with Δ̂ =
∑n

i=1 f(Ĉ) ≤ α · Δ∗ for an α ∈ [1,∞).
Breaking ties arbitrarily, we assume that every τ ∈ T has a unique nearest
neighbor in Ĉ and for i ∈ [k′], we define V̂i = {τ ∈ T | ∀j ∈ [k′] : ρ(τ, ĉi) ≤
ρ(τ, ĉj)} to be the Voronoi cell of ĉi and Δ̂i =

∑
τ∈V̂i

ρ(τ, ĉi) to be its cost. For
each i ∈ [k′] and τj ∈ V̂i it holds that

γ(fj) =

(
1 +

√
2k′

3α

) (
αρ(τj , ĉi)

Δ̂
+

2αΔ̂i

Δ̂|V̂i|

)
+

(
1 +

√
3α

2k′

)
2

|V̂i|
≥ s(fj , F)

and Γ =
∑

f∈F γ(f) = 2k′ + 2
√

6αk′ + 3α ≥ S(F).

Coresets for (k, �)-Median Clustering Under the Fréchet Distance 173

2.2 Coresets by Sensitivity Sampling

We apply the framework of Feldman and Langberg [15]. First, we formally define
ε-coresets for generalized k-median clustering.

Definition 3. Given ε ∈ (0, 1) and a finite non-empty set T ⊆ Y , a (multi-)set
S ⊆ X together with a weight function w : S → R>0 is a weighted ε-coreset for
k-median clustering of T , if for all C ⊆ Z with |C| = k it holds that

(1 − ε)cost (T,C) ≤ costw (S,C) ≤ (1 + ε)cost (T,C) ,

where costw (S,C) =
∑

s∈S w(s) · minc∈C ρ(s, c).

We define range spaces and the associated concepts.

Definition 4. A range space is a pair (X,R), where X is a set, called ground
set and R is a set of subsets R ⊆ X, called ranges.

The projection of a range space (X,R) onto a subset Y ⊆ X is the range
space (Y, {Y ∩ R | R ∈ R}). Furthermore, for each range space there exists a
complementary range space.

Definition 5. Let F = (X,R) be a range space. We call F = (X,R), the range
space over R = {X \ R | R ∈ R}, the complementary range space of F .

A measure of the combinatorial complexity of a range space is the VC dimen-
sion.

Definition 6. The VC dimension of a range space (X,R) is the cardinality of
a maximum cardinality subset Y ⊆ X, such that |{Y ∩ R | R ∈ R}| = 2|Y |.

Note that F and F have equal VC dimension and for any Y ⊆ X, the
projection of F onto Y has VC dimension at most the VC dimension of F , see
for example [18]. We define (ε, η)-approximations of range spaces.

Definition 7 ([21, Definition 2.3]). Let ε, η ∈ (0, 1) and (X,R) be a range
space with finite non-empty ground set. An (η, ε)-approximation of (X,R) is a
set S ⊆ X, such that for all R ∈ R

∣∣∣∣
|R ∩ X|

|X| − |R ∩ S|
|S|

∣∣∣∣ ≤
{

ε · |R∩X|
|X| , if |R ∩ X| ≥ η · |X|

ε · η, else.

The following theorem is useful for obtaining (ε, η)-approximations.

Theorem 3 ([21, Theorem 2.11]). Let (X,R) be a range space with finite
non-empty ground set and VC dimension D. Also, let ε, δ, η ∈ (0, 1). There is
an absolute constant c ∈ R>0 such that a sample of

c

η · ε2
·
(

D log
(

1
η

)
+ log

(
1
δ

))

elements drawn independently and uniformly at random with replacement from
X is a (η, ε)-approximation for (X,R) with probability at least 1 − δ.

174 M. Buchin and D. Rohde

We define open metric balls, which are the ranges used to derive our result.

Definition 8. For r ∈ R≥0, z ∈ Z and Y ⊆ X we denote by B(z, r, Y) = {y ∈
Y | ρ(y, z) < r} the open metric ball with center z and radius r. We denote the
set of all open metric balls by B(Y,Z) = {B(z, r, Y) | z ∈ Z, r ∈ R≥0}.

Now, we are ready to analyze the computation of the actual ε-coresets. We
use the reduction to uniform sampling, introduced by Feldman and Langberg [15]
and improved by Braverman et al. [2] (using Theorem 3). Preferably we would
apply Theorem 31 by Feldman et al. [16], which however is not possible since it
depends on a range space where each function f ∈ F may be assigned a distinct
scaling factor. This is incompatible with the range space induced by the open
metric balls we use to obtain our result. However, by adapting and modifying
the proof of their theorem we can derive the desired and more versatile result.
To handle necessary scaling factors still involved in the analysis, we incorporate
results by Munteanu et al. [28] for bounding the VC dimension. The proof can
be found in the full paper [10].

Theorem 4. For f ∈ F we let λ(f) =
⌈|F | · 2	log2(γ(f))

⌉
/|F |, Λ =

∑
f∈F λ(f),

ψ(f) = λ(f)
Λ and D be the VC dimension of the range space (Y,B(Y,Z)). Let

δ, ε ∈ (0, 1). A sample S of Θ
(
ε−2αk′(Dk log(k) log(αk′n) log(αk′) + log(1/δ))

)

elements τi from T , drawn independently with replacement with probability ψ(fi)
and weighted by w(fi) = Λ

|S|λ(fi)
is an ε-coreset with probability at least 1 − δ.

3 Coresets for (k, �)-Median Clustering Under
the Fréchet Distance

Now we present an algorithm for computing ε-coresets for (k, �)-median cluster-
ing of polygonal curves under the Fréchet distance. We start by defining polyg-
onal curves.

Definition 9. A (parameterized) curve is a continuous mapping τ : [0, 1] → R
d.

A curve τ is polygonal, iff there exist v1, . . . , vm ∈ R
d, no three consecutive on

a line, called τ ’s vertices, and t1, . . . , tm ∈ [0, 1] with t1 < · · · < tm, t1 = 0 and
tm = 1, called τ ’s instants, such that τ connects every two consecutive vertices
vi = τ(ti), vi+1 = τ(ti+1) by a line segment.

We call the segments v1v2, . . . , vm−1vm edges of τ and m the complexity of τ ,
denoted by |τ |.
Definition 10. Let H denote the set of all continuous bijections h : [0, 1] → [0, 1]
with h(0) = 0 and h(1) = 1, which we call reparameterizations. The Fréchet
distance between curves σ and τ is dF (σ, τ) = infh∈H maxt∈[0,1] ‖σ(t)−τ(h(t))‖.

Now we introduce the classes of curves we are interested in.

Coresets for (k, �)-Median Clustering Under the Fréchet Distance 175

Definition 11. For d ∈ N, we define by X
d the set of equivalence classes of

polygonal curves (where two curves are equivalent, iff they can be made identical
by a reparameterization) in ambient space R

d. For m ∈ N we define by X
d
m the

subclass of polygonal curves of complexity at most m.

Finally, we define the (k, �)-median clustering problem for polygonal curves.

Definition 12. The (k, �)-median clustering problem is defined as follows,
where k, � ∈ N are fixed (constant) parameters of the problem: given a set
T ⊂ X

d
m of n polygonal curves, compute a set of k curves C∗ ⊂ X

d
� , such that

cost (T,C∗) =
∑

τ∈T

min
c∗∈C∗

dF (τ, c∗) is minimal.

We bound the VC dimension of metric balls under the Fréchet distance by
showing that a result of Driemel et al. [13] holds also in our setting.

Theorem 5. The VC dimension of (Xd
m,B(Xd

m,Xd
�)) is O

(
�2 log(�m)

)
.

Proof. We argue that the claim follows from Theorem 18 by Driemel et al. [13].
First, in their paper polygonal curves do not need to adhere the restriction
that no three consecutive vertices may be collinear and they define X

d
m to be

the polygonal curves of exactly m vertices. However, our definitions match by
simulating the addition of collinear vertices to those curves in X

d
m with less than

m vertices.
Now, looking into their proof, we can slightly modify the geometric primitives

by letting Br(p) = {x ∈ R
d | ‖x−p‖ < r}, Dr(st) = {x ∈ R

d | ∃p ∈ st : ‖p−x‖ <
r}, Cr(st) = {x ∈ R

d | ∃p ∈ �(st) : ‖p − x‖ < r} and Rr(st) = {p + u | p ∈
st, u ∈ R

d, 〈t − s, u〉 = 0, ‖u‖ < r}, which does not affect the remainder of the
proof and thus yields the same bound on the VC dimension. ��

To compute ε-coresets for (k, �)-median clustering under the Fréchet distance,
we first need to compute the sensitivities and to do so, we utilize constant factor
approximation algorithms. We use [8, Algorithm 1], which only works for k = 1
but is very efficient in this case. For k > 1 we use Algorithm 1, a modification
of [12, Algorithm 3], which we now present. This algorithm uses (approximate)
minimum-error �-simplifications, which we now define.

Definition 13. An α-approximate minimum-error �-simplification of a polygo-
nal curve τ ∈ X

d is a curve σ ∈ X
d
� with dF (τ, σ) ≤ α · dF (τ, σ′) for all σ′ ∈ X

d
� .

The following lemma is useful to obtain simplifications.

Lemma 2 ([4, Lemma 7.1]). Given a curve σ ∈ X
d
m, a 4-approximate

minimum-error �-simplification can be computed in O(m3 log m) time, by com-
bining the algorithms by Alt and Godau [1] and Imai and Iri [23].

We now present the constant factor approximation algorithm.

176 M. Buchin and D. Rohde

Algorithm 1. Constant Factor Approximation for (k, �)-Median Clustering
1: procedure (k, �)-Median-96-Approximation(T = {τ1, . . . , τn})
2: for i = 1, . . . , n do
3: τ̂i ← approximate minimum-error �-simplification of τi

4: C ← Chen’s algorithm with ε = 0.5, λ = δ on {τ̂1, . . . , τ̂n} [11, Theorem 6.2]
5: return C

We prove the correctness and analyze the running time of Algorithm 1.

Theorem 6. Given δ ∈ (0, 1) and T = {τ1, . . . , τn} ⊂ X
d
m, Algorithm 1 returns

with probability at least 1 − δ a 109-approximate (k, �)-median solution for T in
time O(nm log(1/δ) log(m) + nm3 log(m)).

The proof can be found in the full paper [10]. We now present the algorithm
for computing weighted ε-coresets for (k, �)-median clustering.

Algorithm 2. Coresets for (k, �)-Median Clustering
1: procedure (k, �)-Median-Coreset(T = {τ1, . . . , τn}, δ, ε)
2: if k = 1 then
3: ĉ ← �-Median-34-Approximation(T, δ/2) [8, Algorithm 1]
4: Ĉ = {ĉ}
5: else
6: Ĉ = {ĉ1, . . . , ĉk} ← Algorithm 1(T, δ/2)

7: compute V̂1, . . . , V̂k, Δ̂1, . . . , Δ̂k and γ w.r.t. Ĉ (cf. Lemma 1)
8: compute λ, Λ w.r.t. γ and ψ w.r.t. λ (cf. Theorem 4)
9: S ← sample Θ(kε−2(d2�2k log(d�m) log(kn) log2(k) + log(1/(2δ))))

elements from T independently with replacement with respect to ψ
10: compute w w.r.t. λ, Λ and S (cf. Theorem 4)
11: return S and w

We prove the correctness and analyze the running time of Algorithm 2. Also,
we analyze the size of the resulting ε-coreset.

Theorem 7. Given a set T = {τ1, . . . , τn} ⊂ X
d
m and δ, ε ∈ (0, 1), Algorithm 2

computes a weighted ε-coreset of size O(ε−2(log(m) log(n)+log(1/δ))) for (k, �)-
median clustering with probability at least 1 − δ, in time

O(nm log(m) log(1/δ) + nm3 log(m) + ε−2(log(m) log(n) + log(1/δ)))

for k > 1 and

O(nm log(m)+m2 log(m) log2(1/δ)+m3 log(m)+ε−2(log(m) log(n)+log(1/δ)))

for k = 1.

We prove this theorem (in the full paper [10]) by combining Lemma 1,
Theorem 4, and Theorem 6, respectively [8, Corollary 3.1].

Coresets for (k, �)-Median Clustering Under the Fréchet Distance 177

4 Towards Practical (1, �)-Median Approximation
Algorithms

In this section, we present a modification of Algorithm 3 from [7]. Our modifi-
cation uses ε-coresets to improve the running time of the algorithm, rendering
it more tractable in a big data setting. We start by giving some definitions. For
p ∈ R

d and r ∈ R≥0 we denote by B(p, r) = {q ∈ R
d | ‖p − q‖ ≤ r} the closed

Euclidean ball of radius r with center p. We give a standard definition of grids.

Definition 14 (grid). Given a number r ∈ R>0, for (p1, . . . , pd) ∈ R
d we

define by G(p, r) = (�p1/r� · r, . . . , �pd/r� · r) the r-grid-point of p. Let P ⊆ R
d

be a subset of R
d. The grid of cell width r that covers P is the set G(P, r) =

{G(p, r) | p ∈ P}.
Such a grid partitions the set P into cubic regions and for each r ∈ R>0 and
p ∈ P we have that ‖p − G(p, r)‖ ≤ √

dr. The following theorem by Indyk [24]
is useful for evaluating the cost of a curve at hand.

Theorem 8 ([24, Theorem 31]). Let ε ∈ (0, 1] and T ⊂ X
d be a set of polyg-

onal curves. Further let W be a non-empty sample, drawn uniformly and inde-
pendently at random from T , with replacement. For τ, σ ∈ T with cost (T, τ) >
(1 + ε)cost (T, σ) it holds that Pr[cost (W, τ) ≤ cost (W,σ)] < exp

(−ε2|W |/64
)
.

The following theorem, which we combine with fine-tuned grids, allows us to
obtain low-complexity center curves.

Lemma 3 ([7, Lemma 4.1]). Let σ, τ ∈ X
d be polygonal curves. Let

vτ
1 , . . . , vτ

|τ | be the vertices of τ and let r = dF (σ, τ). There exists a
polygonal curve σ′ ∈ X

d with every vertex contained in at least one of
B(vτ

1 , r), . . . , B(vτ
|τ |, r), dF (σ′, τ) ≤ dF (σ, τ) and |σ′| ≤ 2|σ| − 2.

Finally, we present our improved modification of Algorithm 3 from [7]. This
algorithm uses ε-coresets every time it has to evaluate the cost of a center set.
The dramatic effect of this small modification is that we nearly lose the original
linear running time dependency on n in the most time consuming part of the
algorithm, rendering it practical in the setting where we have a lot of curves of
much smaller complexity than number (� < m � n).

178 M. Buchin and D. Rohde

Algorithm 3. (1, �)-Median by Simple Shortcutting and ε-Coreset
1: procedure (1, �)-Median-(5 + ε)-Approximation(T = {τ1, . . . , τn}, δ, ε)
2: ĉ ← (1, �)-Median-34-Approximation(T, δ/4) [8, Algorithm 1]
3: ε′ ← ε/67, P ← ∅
4: (T ′, w) ← (1, 2� − 2)-Median-Coreset(T, δ/4, ε′)
5: Δ ← costw(T ′, {ĉ}), Δu ← Δ/(1 − ε′), Δl ← Δ/((1 + ε′)34)
6: S ← sample

⌈−2(ε′)−1(ln(δ) − ln(4))
⌉

curves from T uniformly
and independently with replacement

7: W ← sample �−64(ε′)−2(ln(δ) − ln(�−8(ε′)−1(ln(δ) − ln(4))�))� curves
from T uniformly and independently with replacement

8: c ← arbitrary element from arg mins∈S cost (W, s)
9: for i = 1, . . . , |c| do

10: P ← P ∪ G(B (vc
i , (3 + 4ε′)Δu/n) , ε′Δl/(n

√
d)) (vc

i : ith vertex of c)

11: C ← set of all polygonal curves with 2� − 2 vertices from P
12: return arg minc′∈C costw(T ′, {c′})

We show the correctness and analyze the running time of Algorithm 3.

Theorem 9. Given two parameters δ ∈ (0, 1), ε ∈ (0, 1/2] and a set T =
{τ1, . . . , τn} ⊂ X

d
m of polygonal curves, with probability at least 1−δ Algorithm 3

returns a (5 + ε)-approximate (1, �)-median for T with 2� − 2 vertices, in time

O

(
nm log(m) + m2 log(m) log2(1/δ) + m2�−1 log(m) log(n) + log(1/δ)) log(m)

ε2�d−2d+2

)
.

We prove Theorem 9 (in the full paper [10]) by modifying the proof of [7,
Theorem 5.1].

5 Conclusion

We presented an algorithm for computing ε-coresets for (k, �)-median cluster-
ing of polygonal curves under the Fréchet distance and used these to improve
the running time of an existing approximation algorithm for (1, �)-median clus-
tering. Unfortunately, it was not possible to improve the existing (k, �)-median
approximation algorithms in [8,12] by means of ε-coresets. This is due to the
recursive approximation scheme used in these works, where the candidate center
sets are not necessarily evaluated against the input, but against subsets of the
input. Thus, we would need an ε-coreset for any subset of the input, which is not
practical. We note that, to the best of our knowledge, no (k, �)-median clustering
algorithm exists that do not employ this approximation scheme.

It is still an interesting open problem whether there exist sublinear size ε-
coresets for weighted sets of polygonal curves. To derive such a result one may
need a sublinear bound on the VC dimension of the range space of metric balls
under scaled Fréchet distances, which is not evident at the moment. We note
that such a result would enable the use of the iterative size reduction technique
recently introduced by Braverman et al. [3].

Coresets for (k, �)-Median Clustering Under the Fréchet Distance 179

References

1. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves.
Int. J. Comput. Geom. Appl. 5, 75–91 (1995)

2. Braverman, V., Feldman, D., Lang, H.: New Frameworks for Offline and Streaming
Coreset Constructions. CoRR abs/1612.00889 (2016)

3. Braverman, V., Jiang, S.H., Krauthgamer, R., Wu, X.: Coresets for clustering
in excluded-minor graphs and beyond. In: Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms, pp. 2679–2696. SIAM (2021)

4. Buchin, K., et al.: Approximating (k, l)-center clustering for curves. In: Proceedings
of the 2019 ACM-SIAM Symposium on Discrete Algorithms, pp. 2922–2938 (2019)

5. Buchin, K., Driemel, A., van de L’Isle, N., Nusser, A.: klcluster: center-based clus-
tering of trajectories. In: Proceedings of the 27th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pp. 496–499 (2019)

6. Buchin, K., Driemel, A., Struijs, M.: On the hardness of computing an average
curve. In: 17th Scandinavian Symposium and Workshops on Algorithm Theory.
LIPIcs, vol. 162, pp. 19:1–19:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2020)

7. Buchin, M., Driemel, A., Rohde, D.: Approximating (k, �)-Median Clustering for
Polygonal Curves. arXiv e-prints arXiv:2009.01488 (2020)

8. Buchin, M., Driemel, A., Rohde, D.: Approximating (k, �)-median clustering for
polygonal curves. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms, pp. 2697–2717. SIAM (2021)

9. Buchin, M., Rohde, D.: Coresets for (k, l)-clustering under the Fréchet distance. In:
Proceedings of the 35th European Workshop on Computational Geometry (2019)

10. Buchin, M., Rohde, D.: Coresets for (k, �)-Median Clustering under the Fréchet
Distance. CoRR abs/2104.09392 (2021)

11. Chen, K.: On coresets for k-median and k-means clustering in metric and euclidean
spaces and their applications. SIAM J. Comput. 39(3), 923–947 (2009)

12. Driemel, A., Krivosija, A., Sohler, C.: Clustering time series under the Fréchet
distance. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 766–785 (2016)

13. Driemel, A., Phillips, J.M., Psarros, I.: The VC dimension of metric balls under
Fréchet and Hausdorff distances. In: 35th International Symposium on Computa-
tional Geometry, pp. 28:1–28:16 (2019)

14. Feldman, D.: Introduction to Core-sets: an Updated Survey. CoRR abs/2011.09384
(2020)

15. Feldman, D., Langberg, M.: A unified framework for approximating and clustering
data. In: Proceedings of the 43rd ACM Symposium on Theory of Computing, pp.
569–578. ACM (2011)

16. Feldman, D., Schmidt, M., Sohler, C.: Turning big data into tiny data: constant-
size coresets for k-means, PCA, and projective clustering. SIAM J. Comput. 49(3),
601–657 (2020)

17. Goldberg, P.W., Jerrum, M.: Bounding the Vapnik-Chervonenkis dimension of
concept classes parameterized by real numbers. Mach. Learn. 18(2–3), 131–148
(1995)

18. Har-Peled, S.: Geometric Approximation Algorithms. American Mathematical
Society (2011)

19. Har-Peled, S., Kushal, A.: Smaller coresets for k-median and k-means clustering.
Discrete Comput. Geom. 37(1), 3–19 (2006). https://doi.org/10.1007/s00454-006-
1271-x

http://arxiv.org/abs/2009.01488
https://doi.org/10.1007/s00454-006-1271-x
https://doi.org/10.1007/s00454-006-1271-x

180 M. Buchin and D. Rohde

20. Har-Peled, S., Mazumdar, S.: On coresets for k-means and k-median clustering. In:
Proceedings of the 2004 ACM Symposium on Theory of Computing, pp. 291–300
(2004)

21. Har-Peled, S., Sharir, M.: Relative (p,ε)-approximations in geometry. Discrete
Comput. Geom. 45(3), 462–496 (2011)

22. Huang, L., Jiang, S.H., Li, J., Wu, X.: Epsilon-coresets for clustering (with out-
liers) in doubling metrics. In: 59th IEEE Annual Symposium on Foundations of
Computer Science, pp. 814–825. IEEE Computer Society (2018)

23. Imai, H., Iri, M.: Polygonal approximations of a curve - formulations and algo-
rithms. Mach. Intelligence Pattern Recogn. 6, 71–86 (1988)

24. Indyk, P.: High-dimensional Computational Geometry. Ph.D. thesis, Stanford Uni-
versity, CA, USA (2000)

25. Langberg, M., Schulman, L.J.: Universal epsilon-approximators for Integrals. In:
Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 598–607 (2010)

26. Meintrup, S., Munteanu, A., Rohde, D.: Random projections and sampling algo-
rithms for clustering of high-dimensional polygonal curves. In: Advances in Neural
Information Processing Systems 32, pp. 12807–12817 (2019)

27. Munteanu, A., Schwiegelshohn, C.: Coresets-methods and history: a theoreticians
design pattern for approximation and streaming algorithms. KI - Künstliche Intell.
32(1), 37–53 (2017). https://doi.org/10.1007/s13218-017-0519-3

28. Munteanu, A., Schwiegelshohn, C., Sohler, C., Woodruff, D.P.: On coresets for
logistic regression. In: Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, pp. 6562–6571
(2018)

29. Nath, A., Taylor, E.: k-median clustering under discrete Fréchet and Hausdorff
distances. In: 36th International Symposium on Computational Geometry. LIPIcs,
vol. 164, pp. 58:1–58:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

30. Varadarajan, K.R., Xiao, X.: On the sensitivity of shape fitting problems. In:
IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science. LIPIcs, vol. 18, pp. 486–497 (2012)

https://doi.org/10.1007/s13218-017-0519-3

Bounds and Algorithms for Geodetic
Hulls

Sabine Storandt(B)

University of Konstanz, 78464 Konstanz, Germany
sabine.storandt@uni-konstanz.de

Abstract. The paper is devoted to the study of geodetic convex hulls
in graphs from a theoretical and practical perspective. The notion of
convexity can be transferred from continuous geometry to discrete graph
structures by defining a node subset to be (geodetically) convex if all
shortest paths between its members do not leave the subset. The geodetic
convex hull of a node set W is the smallest convex superset of W . The
hull number of a graph is then defined as the size of the smallest node
subset S (called hull set) whose convex hull contains all graph nodes. In
contrast to the geometric setting, where the point subset on the boundary
of the convex hull can be computed in polynomial time, it is NP-hard
to decide whether a graph has a hull set of size at most s ∈ N. We
establish novel theoretical bounds for graph parameters related to convex
graph structures, and also design practical algorithms for upper and
lower bounding the hull number. We evaluate the quality of our bounds
as well as the performance of the proposed algorithms on road networks
and wireless sensor networks of varying size.

Keywords: Hull number · Graph contour · Geodetic iteration number

1 Introduction

There exist different notions of a hull of a graph. For embedded graphs, the
convex hull of the nodes [12] or the polygonal hull of the edges [14] are utilized
for applications such as clustering, shape recognition, or area-of-interest visual-
ization. In this paper, we focus on geodetic convex hulls, though, which do not
depend on any embedding but are based solely on the toplogy of the graph [13].
Here, given a connected, undirected and unweighted graph G(V,E), we denote
with I(a, b) the set of nodes on shortest paths between a ∈ V and b ∈ V . This
set is also called the interval of a and b. The interval of a node set S ⊆ V is the
union of the intervals of all pairs of nodes a, b ∈ S, that is, I[S] :=

⋃
a,b∈S I(a, b).

A set S is called convex if I[S] = S. This implies that all shortest paths between
nodes in S are fully contained in S. The (geodetic) convex hull h(W) of a node
set W ⊆ V is then defined as the smallest convex superset S of W . This notion
is inspired by the geometric concept of convexity, where a point set is convex if
and only if it contains all straight line segments between its members.
c© Springer Nature Switzerland AG 2022
N. Balachandran and R. Inkulu (Eds.): CALDAM 2022, LNCS 13179, pp. 181–194, 2022.
https://doi.org/10.1007/978-3-030-95018-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95018-7_15&domain=pdf
https://doi.org/10.1007/978-3-030-95018-7_15

182 S. Storandt

Similar to the geometric setting, a geodetic convex hull may be represented by
its extreme points. For a convex point set in the plane, an extreme point is a point
that does not lie on any open line segment between two other points in the set.
For a convex node set, a node is extreme if it is not contained as an inner node in a
shortest path between other extreme nodes. More formally, for a convex node set S
in a graph, we call a node set W a hull set of S if Ik[W] = S for some k ∈ N, where
Ik[W] = I[W] for k = 1 and I[Ik−1[W]] for k > 1. The other way around, for any
set W , its convex hull h(W) can be computed by applying this iterated interval
operation until Ik+1[W] = Ik[W] and hence Ik[W] = h(W) holds. The respec-
tive value of k is called the geodetic iteration number of W , denoted by gin(W).
Figure 1 illustrates the concept of iterated interval computation.

Fig. 1. Cutout of a road network with the geodetic convex hull of a set W of three
nodes (red). Each color encodes an iteration step in which nodes on shortest paths
between nodes in the current set W are added to W . The final set (obtained after
gin(W) = 7 iterations) contains 7886 nodes. (Color figure online)

The size of a smallest set S such that Ik[S] = V for some k ∈ N is called the
hull number of the graph, abbreviated as hn(G). For geometric convex hulls as
well as polygonal hulls, the set of extreme points or nodes on the boundary can
be computed in polynomial time.

Unfortunately, deciding whether hn(G) ≤ s for s ∈ N poses an NP-hard deci-
sion problem, even in several restricted graph classes as e.g. bipartite graphs [1].
Nevertheless, geodetic convex hulls and convex node sets have important appli-
cations in data structure design [11], connectivity analysis [15], route planning

Bounds and Algorithms for Geodetic Hulls 183

[20], and graph similarity assessment [6]. Moreover, the hull number and related
parameters are relevant for theoretical investigations as e.g. the characteriza-
tion of classes of chordal graphs [8] or parameterizability of certain optimization
problems [16].

The goal of this paper is to establish new (theoretical) bounds for the geode-
tic iteration number as well as the hull number, and to enable the efficient
computation of concise hull sets in practice.

1.1 Related Work

The computation of boundary nodes of a graph is relevant for a wide range
of applications. One particular well-studied application field is the analysis of
wireless sensor networks. Here nodes represent sensors which are able to detect
signals and communicate with other sensors in their proximity. These connec-
tions are then modelled as undirected egdes. The goal is typically to compute the
boundary of the network which inlcudes the detection of so called holes (areas
that are not well covered by sensors). A recent survey [5] discusses a rich set of
approaches for boundary detection. Most of these papers are focused on algo-
rithms that work well in practice, though, and rarely provide clear definitions
of boundary nodes or holes (or only ones that depend on selected thresholds).
While there are some approaches which come with quality guarantees [10,19],
those usually strongly depend on certain model assumptions.

Convexity structures and hull sets are well-defined in any graph and are
fundamental concepts in graph theory [7]. The hull number (the size of the
smallest hull set of a graph) turned out to be NP-hard to compute even in
bipartite graphs [1] and chordal graphs [2], though.

The boundary of the graph δ(G) and the contour of the graph Ct(G) (see
Sect. 2 for definitions) were both shown to constitute a (not necessarily minium
sized) hull set [4,17]. But they come with different geodetic iteration num-
bers. While gin(δ(G)) = 1 in all graphs, gin(Ct(G)) = 1 only holds in certain
graph classes (as e.g. chordal graphs) but examples with up to gin(Ct(G)) = 3
are known in general graphs [17]. It is an open question whether graphs with
gin(Ct(G)) > 3 exist. Further theoretical results and related notions of convexity
are discussed in a survey by Brevsat et al. [3] and a book by Pelayo [18].

1.2 Contribution

The following theoretical and practical results for hull computation in graphs
are presented in this paper:

– We first study the geodetic iteration number of a special node set, called the
graph contour Ct(G). It is known that the contour is always a hull set of the
graph, but it is also relevant to identify the value of k such that Ik[Ct(G)] =
V , that is, to compute gin(Ct(G)). We prove several new upper bounds for
k that relate the geodetic iteration number to the graph diameter as well as
the contour size.

184 S. Storandt

– For the hull number hn(G), we provide novel lower and upper bounding tech-
niques based on structural insights. The upper bound is based on a heuristic
that computes a feasible hull set (with bounded gin) in linear time.

– In the experimental evaluation, we demonstrate the quality of our bounds
as well as the applicability of our novel algorithms on road networks and
wireless sensor networks. As one important result, we show that our heuristic
for computing a hull set is fast in practice and produces solutions that are
significantly smaller than the graph contour.

2 Preliminaries

Throughout the paper, we assume to be given a connected, undirected and
unweighted graph G(V,E) with |V | = n nodes and |E| = m edges. With
d(v, w) we denote the minimum hop distance between nodes v ∈ V and w ∈ V .
For each node v ∈ V , the eccentricity ecc(v) is defined as the length of the
longest shortest path emerging from v. More formally, ecc : V → N with
ecc(v) = maxw∈V d(v, w). Based on this notion, we define the following graph
parameters and special node sets (see Fig. 2 for illustrations):

5 4

4 3 4

5

433

3
a

b

c
v

w

u

Fig. 2. Small graph with eccentricity values depicted in purple. The diameter is 5 and
the radius is 3. The contour is formed by the node set {a, b, c}, the boundary by all
nodes except of v. Note that this is an example of gin(Ct(G)) = 2 as w /∈ I[Ct(G)].
The path u, v, a is a trail in G. (Color figure online)

– The diameter diam(G) of a graph is the largest shortest path distance in G,
that is, diam(G) := maxv∈V ecc(v).

– The radius rad(G) of a graph is the smallest distance value such that some
node v can reach all other nodes in G with a shortest path of at most that
length, hence rad(G) := minv∈V ecc(v).

– The contour Ct(G) is the set of nodes with maximum eccentricity among
their neighbors: Ct(G) := {v ∈ V |∀w ∈ N(v) : ecc(v) ≥ ecc(w)} where
N(v) := {w ∈ V |{v, w} ∈ E}.

– A trail is a path p = v1, v2, . . . , vl in G with ecc(vi+1) = ecc(vi) + 1 for
i = 1, . . . , l − 1. The nodes v2, . . . , vl are then said to be on a trail from v1
and belong to the trail set tr(v1).

Bounds and Algorithms for Geodetic Hulls 185

For disambiguation, we further include the definition of the boundary δ(G) of a
graph: δ(G) := {v ∈ V |∃u ∈ V : ∀w ∈ N(v) : d(u,w) ≤ d(u, v)}. The boundary
is always a hull set of G with gin(δ(G)) = 1 and a superset of the contour [4].

3 Bounds for the Gin of the Graph Contour

The contour Ct(G) of a graph G always yields a hull set. The geodetic itera-
tion number of the contour gin(Ct(G)) denotes the smallest value k such that
Ik[Ct(G)] = V . It was conjectured for over a decade that gin(Ct(G)) ≤ 2 holds
in all graphs. But a counter-example with gin(Ct(G)) = 3 was provided in [17].
It still is an open question whether gin(Ct(G)) is a always a small constant. A
trivial upper bound is gin(Ct(G)) ≤ n as in each iteration at least one node
has to be added to the set. In the following, we prove several non-trivial upper
bounds for gin(Ct(G)) by establishing connections to the graph diameter and
the contour size.

Theorem 1. For any graph G, the geodetic iteration number of the contour
Ct(G) is upper bounded by diam(G) − rad(G).

Proof. We prove the following statement by induction over k:

Ik[Ct(G)] ⊇ {v ∈ V |ecc(v) ≥ diam(G) − k}

Hence after at most k = diam(G) − rad(G) iterations, all nodes v ∈ V are con-
tained in Ik[Ct(G)]. For k = 0, it is required that all nodes with an eccentricity
equal to the diameter of the graph are contained in the contour. This is true by
definition of the contour (as ecc(v) ≤ diam(G) for all v ∈ V). Next, we consider
Ik+1[Ct(G)] and a node v /∈ Ik[Ct(G)] with ecc(v) = diam(G) − (k + 1). As
from v /∈ Ik[Ct(G)] it follows v /∈ Ct(G), there has to exist a neighboring node
w ∈ N(v) with ecc(w) = ecc(v) + 1. Let z be a node with d(w, z) = ecc(w).
Then both, w and z, have a higher eccentricity than v and are hence contained
in Ik[Ct(G)] according to the induction hypothesis. As ecc(v) = ecc(w)−1, it fol-
lows that d(v, z) ≤ ecc(v) = ecc(w)− 1 and therefore d(w, v)+ d(v, z) ≤ d(w, z).
Obviously, the inequality has to be tight. It follows that v is on a shortest path
from w to z; and with w, z ∈ Ik[Ct(G)], we hence conclude that v ∈ Ik+1[Ct(G)].

Note that this bound is tight for the example graph in Fig. 2, as there we have
diam(G) − rad(G) = 2 = gin(Ct(G)).

Corollary 1. Theorem 1 in combination with the simple fact that rad(v) ≥
diam(G)/2 yields gin(Ct(G)) ≤ diam(G)/2.

We next want to prove connections between gin(Ct(G)) and the eccentricity of
the contour nodes as well as the size of the contour. Our proofs are based on a
lemma from Mezzini [17] which is rephrased below.

186 S. Storandt

Lemma 1. If I2[Ct(G)]
= V , then there exist nodes a1, . . . , a6 such that

– a1 ∈ V \ I2[Ct(G)]
– a2 ∈ tr(a1) ∩ Ct(G)
– a3 /∈ Ct(G), d(a2, a3) = ecc(a2)
– a4 ∈ tr(a3) ∩ Ct(G)

– a5 /∈ Ct(G), d(a4, a5) = ecc(a4)

– a6 ∈ tr(a5) ∩ Ct(G)

– ecc(a6) ≥ ecc(a1) + 3

Fig. 3. Schematic depiction of the relationship between the nodes described in
Lemma 1. The turquoise cycle illustrates the graph contour with nodes a2, a4 and
a6 being part of the contour. Straight lines indicate shortest paths between nodes, and
path sections with arrows correspond to trails on which the eccentricity of the nodes
increases by one along each directed edge.

An illustration of the configuration described in Lemma 1 is provided in Fig. 3.
We will next prove a generalization of this lemma.

Theorem 2. For any node a1 /∈ Ik[Ct(G)] for k ≥ 2, nodes a2, . . . , a6 with
properties as described in Lemma 1 exist.

Proof. Let a1 /∈ Ik[Ct(G)] for a k ≥ 2. Accordingly, a1 /∈ Ct(G) and hence a1 has
a neighboring node with eccentricity ecc(a1)+1. As this applies to all nodes that
are not part of the contour, there exists a path from any node v ∈ V \ Ct(G) to
a contour node such that the eccentricity of the nodes along the path increases
by one in each step. Therefore, a2 ∈ tr(a1) ∩ Ct(G) has to exist. Of course,
there needs to be a node a3 such that the eccentricity of a2 is realized, that
is, d(a2, a3) = ecc(a2). Now, we further conclude that there exists a shortest
path from a2 to a3 that traverses a1, as we know that d(a1, a3) ≤ ecc(a1) and
ecc(a1) = ecc(a2) − d(a2, a1) based on a2 ∈ tr(a1) and therefore d(a2, a1) +
d(a1, a3) ≤ ecc(a2). It follows that a3 cannot be part of the contour, as otherwise
a1 would be included in I[Ct(G)]. The node a4 exists for the same reasons as
a2, now based on a3 /∈ Ct(G). For node a5, we repeat the argument used to
show the existence of a3 but now a5 ∈ Ct(G) would lead to a1 ∈ I2[Ct(G)]
which still is a contradiction to the choice of a1. The node a6 then exists for
the same reasons as a2 and a4 based on the observation that a5 /∈ Ct(G). It

Bounds and Algorithms for Geodetic Hulls 187

remains to show that the nodes are all distinct and that ecc(a6) ≥ ecc(a1) + 3.
As a1 /∈ Ct(G) and a2 ∈ tr(a1) ∩ Ct(G), we clearly have ecc(a2) > ecc(a1) > 0
and with that also ecc(a2) ≥ 2. The latter excludes a3 = a2 and a3 = a1. The
node a4 then need to have a higher eccentricity than all nodes with smaller index
and is hence distinct from all of them. Analogue arguments apply to a5 and a6

and we conclude ecc(a6) > ecc(a5) ≥ ecc(a4) > ecc(a3) ≥ ecc(a2) > ecc(a1) > 0.
These inequalities imply that ecc(a6) ≥ ecc(a1) + 3.

Observation 1. It follows directly from the proof of Theorem 2 that a5 ∈
Ik[Ct(G)] implies a1 ∈ Ik+2[Ct(G)], because a2, a4 ∈ Ct(G), a3 is on a shortest
path between a4 and a5, and a1 is on a shortest path between a2 and a3.

Let now ξ(G) := minv∈Ct(G) ecc(v) be the minimum eccentricity of a contour
node in G. Then the following relationship holds.

Theorem 3. For any graph G, the geodetic iteration number of the contour
Ct(G) is upper bounded by diam(G) − ξ(G) + 1.

Proof. In the proof of Theorem 2, we observed that ecc(a5) > ecc(a2). With a2 ∈
Ct(G), we have ecc(a2) ≥ ξ(G). Based on Theorem 1, we can now conclude that
a5 ∈ Ik[Ct(G)] with diam(G)−k = ecc(a2)+1. Combined with Observation 1, we
have a1 ∈ Ik+2[Ct(G)] with k+2 = diam(G)−ecc(a2)+1 ≤ diam(G)−ξ(G)+1.

Again, the graph in Fig. 2 is a tight example, as there we have diam(G) −
ξ(G) + 1 = 5 − 4 + 1 = 2 = gin(Ct(G)). But Theorem 3 provides a stronger
upper bound than Theorem 1 whenever the minimum eccentricity of the contour
nodes is larger than the minimum eccentricity of all nodes plus one.

Theorem 4. For any graph G, the geodetic iteration number of the contour
Ct(G) is upper bounded by |Ct(G)|.
Proof. If there are only two contour nodes, the lemma is trivially true. Now let
c1, . . . , cs with s = |Ct(G)| ≥ 3 be the contour nodes, sorted increasingly by
eccentricity. Hence we have ecc(cs−1) = ecc(cs) = diam(G). We define the node
sets Ai for i = 1, . . . , s − 1 as Ai := {v ∈ V |ecc(ci) ≤ ecc(v) < ecc(ci+1)} as
well as A0 := {v ∈ V |ecc(v) < ecc(c1)} and As := {v ∈ V |ecc(v) ≥ ecc(cs)}.
We observe that all nodes in Ai for i ≥ s − 3 are contained in I2[Ct(G)] as for
a1 ∈ Ai there do not exist three contour nodes with higher and pairwise different
eccentricity that can take the roles of a2, a4 and a6 described in Lemma 1. Now
consider a1 ∈ Ai for any i < s − 3. Then the smallest possible indices of the
contour nodes a2, a4, a6 in the sorted order are i + 1, i + 2, i + 3. Based on
ecc(a5) ≥ ecc(a4), it follows that a5 has to be contained in set Aj for some j ≥
i + 2. Together with Observation 1, that tells us that a1 is added to the iterated
contour set at most two rounds after a5, we conclude that the nodes in any set
Ai≥0 are added after at most s iterations and hence gin(Ct(G)) ≤ |Ct(G)|.

4 Bounding the Hull Number

In this section, we investigate upper and lower bounds for the hull number of a
graph with a focus on bounds that can be efficiently computed in practice.

188 S. Storandt

Upper Bounds. Simple theoretical upper bounds for the hull number as hn(G) ≤
n − diam(G) + 1 were discussed in [7]. The size of the graph contour also con-
stitutes a valid upper bound (with unclear a priori gin(Gt(G)) value), and so
does the size of the boundary (with gin(δ(G)) = 1). But the computation of the
contour as well as the boundary requires the knowledge of all pairwise distances
between graph nodes and therefore takes time Θ(n2+nm) which is not practical
for large input networks. However, we can also compute an upper bound with
as single BFS run in O(n + m) as detailed out in the following observation.

Observation 2. For a given graph G(V,E) and any node v ∈ V the set S =
v ∪L(v), where L(v) denotes the set of leaves in a BFS-tree rooted at v, is a hull
set with gin(S) = 1.

v

s

Fig. 4. Example of BFS based hull set computation. Left image: The leaf nodes in
BFS tree from v (thick green edges) form together with v a hull set S (red nodes) with
gin(S) = 1. Middle image: In the BFS tree from s there are two paths which contain
three current hull nodes. Hence the middle nodes (purple) can be pruned. Right image:
Valid reduced hull set (red nodes) S with gin(S) ≤ 2. (Color figure online)

This simple observation also reveals a connection between hn(G) and the max-
imum leaf number ml(G), the largest number of leaves in any spanning tree of
G, which is used in FPT algorithm design of e.g. coloring problems [9].

Corollary 2. hn(G) ≤ ml(G) + 1

The bound is tight for complete graphs Kn with n ≥ 2 where hn(G) = n and
ml(G) = n − 1.

The BFS bound from Observation 2 may be further improved in practice
by iterating the following process: Select any node s ∈ S and compute the
respective BFS tree. If in an interval I(s, s′) with s′ ∈ S there are other nodes
from S, those can be pruned from S. Figure 4 shows a successful example of
this pruning strategy (with paths instead of intervals for clarity). We note, that
with every iteration of BFS based pruning the geodetic iteration number might
increase by at most 1. Hence, using B BFS runs in total, we get a running time
of O(B(n + m)) and end up with a valid hull set S with gin(S) ≤ B.

Lower Bounds. Clearly, for any graph with more than one node, hn(G) ≥ 2 has
to hold, as there need to be at least two nodes in a hull set S to ensure |I[S]| > 1.
In [1], it was proven that the hull number of a graph can be computed based on

Bounds and Algorithms for Geodetic Hulls 189

considering its two-connected components splitted at their cut nodes. To improve
on that, we will now consider general node subsets W ⊂ V together with their
set c(W) of cut nodes (the subset of W with a neighbor outside of W) and show
that under certain conditions, W has to contain a node from the hull set.

Lemma 2. If W \ h(c(W))
= ∅ for a node subset W of graph G, then every
hull set of G needs to contain at least one node from W .

Proof. Assume for contradiction that S is a hull set, S ∩ W = ∅ and W \
h(c(W))
= ∅. Based on S being a hull set, we know that h(S) ⊃ W . Obviously,
shortest paths between nodes a, b ∈ V \ W that intersect W have to enter and
exit W via nodes in c(W), and their intersections with W have to be shortest
paths as well. As S ∩ W = ∅, it follows that h(S) ∩ W ⊆ h(c(W)). But as we
know that W \h(c(W))
= ∅ this poses a contradiction to h(S) ⊃ W . Accordingly,
there has to exist a hull set node in S ∩ W .

Fig. 5. Node subset W (indicated by the turquoise box) and its cut nodes c(W) (large
black dots at the border of the box). The shortest paths between the cut nodes all
have length 2 and are drawn in green. The nodes on these paths belong to h(c(W)).
However, the red nodes are not on any shortest path between nodes in h(c(W)). Hence,
a valid hull set has to contain at least one of them. (Color figure online)

Figure 5 provides a small example instance for which the condition specified in
Lemma 2 is met. Based on this lemma, a lower bound for hn(G) can be obtained
by first selecting a set of pairwise intersection free induced subgraphs W1, . . . ,Wl

and then counting the Wi for which the lemma applies.

5 Experimental Results

Algorithms were implemented in C++. Experiments were conducted on a single
core of an Intel(R) i5-8250U CPU clocked at @1.60GHz with 32 GB of RAM.
We use two different graph types in the experiments: real-world road networks
and simulated sensor networks.

Road Networks. The road networks are connected subgraphs of the OSM Ger-
many graph1, which we consider as undirected and unweighted. We note, that
these graphs contain many nodes of degree-1 (dead-ends). This is very beneficial
for our hull set computation algorithms, as all of them need to be contained
1 https://i11www.iti.kit.edu/resources/roadgraphs.php

https://i11www.iti.kit.edu/resources/roadgraphs.php

190 S. Storandt

in any feasible hull set. Therefore, we also consider the corresponding network
instances in which we recursively delete all nodes of degree-1 until the minimum
degree in the graph is 2. Those should pose more difficult instances. Table 1
provides an overview of the characteristics of the used graphs.

Table 1. Road network benchmark data. The last column (δ1) denotes the percentage
of degree-1 nodes.

Name n m δ1

ROAD1≥1 99,127 105,517 7%

ROAD1≥2 73,185 79,575 0%

ROAD2≥1 290,659 300,967 8%

ROAD2≥2 180,875 191,183 0%

ROAD3≥1 990,732 1,057,821 6%

ROAD3≥2 783,079 850,168 0%

ROAD4≥1 3,638,604 3,794,477 8%

ROAD4≥2 2,530,393 2,686,266 0%

Sensor Networks. The sensor networks were obtained by choosing n random
node positions in the unit square and then connecting node pairs with an edge
if their Euclidean distance is at most r = c/

√
n for some constant c. We used

c = 2 and c = 3 to end up with sensor networks similar to those used in other
simulations. Figure 6 shows two examples of the resulting networks. We use the
following nomenclature for the generated graphs: SN[n]c[c]. Hence the two graphs
in Fig. 6 would be referred to as SN500c2 and SN500c3, respectively. Presented
results for sensor networks are always averaged over 10 random networks of the
specified size with the same c value.

Fig. 6. Sensor networks with 500 nodes together with heuristic hull sets (red). In the
sparser graph on the left (c = 2, average degree 6), a hull of size 50 is depicted. In the
denser graph on the right (c = 3, average degree 13), a hull set of size 37 is shown.
(Color figure online)

Bounds and Algorithms for Geodetic Hulls 191

5.1 Graph Hull Sets and Gin

We discussed two methods to compute a valid hull set for a given graph G:
computing the graph contour Ct(G) and a BFS-based heuristic.

Contour Computation. We first evaluate the size of the contour and other rel-
evant parameters on our benchmark instances. As their computation times are
quadratic in n, we only consider the two smaller road network instances here, as
well as sensor networks with up to 16,000 nodes (which already is a larger num-
ber of nodes than considered in most sensor network simulations). The results
are summarized in Table 2. Interestingly, for all our tested instances the value
gin(Ct(G)) turned out to be equal to 2. There are significant differences in the
quality of our upper bounds, though. For road networks, the diameter is rather
large and also significantly larger than the radius or ξ(G). Hence our bounds
turn out to be loose on such networks. But ξ(G) is also larger than the radius
by more than 1, showing that Theorem 3 indeed might provide stronger bounds
than Theorem 1. For the sensor networks, our bounds are better due to the sig-
nificantly smaller diameters. But we also see that ξ(G) is always very close to
the radius, hence Theorems 3 and 1 produce similar bounds.

Table 2. Experimental results for parameter and contour computation for selected
road and sensor networks.

Name diam(G) rad(G) ξ(G) |Ct(G)| Time

ROAD1≥1 1406 727 735 12614 30min

ROAD1≥2 1322 664 679 7567 16min

ROAD2≥1 2956 1487 1508 33991 5 h

ROAD2≥2 2898 1449 1486 11682 2 h

SN1000c2 28 15 17 183 0.1 s

SN1000c3 17 9 10 133 0.2 s

SN4000c2 55 28 29 630 2.9 s

SN4000c3 34 18 19 369 4.3 s

SN16000c2 112 56 57 2294 99.9 s

SN16000c3 67 34 35 1382 136.1 s

BFS-Based Heuristic. Next, we turn to our BFS-based heuristic, where the
running time is linear as long as the number of iterations B is kept constant.
We use B = 10 in the evaluation. The respective results for road networks are
summarized in Table 3. For sensor networks of varying size, the lower bound and
hull sizes are depicted in Fig. 7, once for c = 2 and once for c = 3.

192 S. Storandt

Table 3. LResults for heuristic hull set computation on the road network instances
with B = 10. Timings are in seconds.

Name LB HS apx Time

ROAD1≥1 7103 10381 1.5 0.72

ROAD1≥2 998 4239 4.2 0.40

ROAD2≥1 23218 30363 1.3 4.98

ROAD2≥2 1831 8306 4.5 1.86

ROAD3≥1 59514 98114 1.6 13.69

ROAD3≥2 8986 45910 4.9 8.54

ROAD4≥1 288324 409867 1.4 44.64

ROAD4≥2 23477 121278 5.2 18.72

For the road network instances, we observe that (as expected) the lower and
upper bound are much closer for the instances which include dead-ends. But
in these graphs also the hull set sizes are significantly larger. In the pruned
graphs, the quality guarantee is about a factor of 5. The computation time for
the lower bound was always comparable to that of the heuristic, and on average
over 60% of the investigated subgraphs (chosen as Voronoi cells induced by the
heuristic solution) that contributed to the lower bound value had a cut size of 3
or more. That means that without Lemma 2, the lower bounds would have been
significantly weaker. For sensor networks, we see that the hull set sizes for c = 2
are larger than for c = 3 but at the same time the lower bounds are much
better. This makes sense as with c = 3 induced subgraphs typically have many

Fig. 7. Results for heuristic hull set computation for sensor networks with B = 10 in
dependency of the number of nodes. Note the logscale on the y-axis.

Bounds and Algorithms for Geodetic Hulls 193

cut nodes, and given the high ambiguity of shortest paths in these networks, the
certificate from Lemma 2 is rarely issued. For c = 2, the quality guarantee ranges
from a factor of 3 to 12, showing that our computed hull sets are sensible. Note
that here 100% of the induced subgraphs that contributed to the lower bound
had a cut size of 3 or more. Hence without Lemma 2, we could not have gotten
a value larger than the trivial lower bound of 2.

Remarkably, across all instances - road networks and sensor networks alike -
the size of the BFS-based hull set is always significantly smaller than the contour
size. This is true even when we use B = 2 and thus have matching gin values.
There, we get reductions around 10%–50%. Accordingly, our heuristic is not only
significantly faster than the contour computation, but also yields better results
and further allows us to trade running time (and gin value) for solution size.

6 Conclusions and Future Work

We demonstrated in this paper that hull sets of good quality (with bounded gin)
can be computed efficiently even in large networks. It still would be interesting to
design or rule out approximation algorithms for the hull number. Furthermore,
our new upper bounds for the gin of the graph contour might help to search
for instances with gin(Ct(G)) > 3, which are currently unknown (to exist). The
established bounds imply, for example, that a graph with gin(Ct(G)) = 4 has
to have a contour of size at least 4 and a diameter of at least 8.

Acknowledgement. Funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) – Project-ID 50974019 – TRR 161.

References

1. Araujo, J., Campos, V., Giroire, F., Nisse, N., Sampaio, L., Soares, R.: On the hull
number of some graph classes. Theoret. Comput. Sci. 475, 1–12 (2013)

2. Bessy, S., Dourado, M.C., Penso, L.D., Rautenbach, D.: The geodetic hull number
is hard for chordal graphs. SIAM J. Discret. Math. 32(1), 543–547 (2018)

3. Brešar, B., Kovše, M., Tepeh, A.: Geodetic sets in graphs. In: Dehmer, M. (ed.)
Structural Analysis of Complex Networks, pp. 197–218. Springer, Boston (2011).
https://doi.org/10.1007/978-0-8176-4789-6 8

4. Cáceres, J., Puertas, M.L., Hernando, C., Mora, M., Pelayo, I.M., Seara, C.: Search-
ing for geodetic boundary vertex sets. Electron. Notes Discret. Math. 19, 25–31
(2005)

5. Das, S., DebBarma, M.K.: A review on coverage-hole boundary detection algo-
rithms in wireless sensor networks. Comput. Sist. 24(1), 121–140 (2020)

6. De Araújo, P.H.M., Campêlo, M., Corrêa, R.C., Labbé, M.: The geodesic classifi-
cation problem on graphs. Electron. Notes Theor. Comput. Sci. 346, 65–76 (2019)

7. Everett, M.G., Seidman, S.B.: The hull number of a graph. Discret. Math. 57(3),
217–223 (1985)

8. Farber, M., Jamison, R.E.: Convexity in graphs and hypergraphs. SIAM J. Alge-
braic Discrete Methods 7(3), 433–444 (1986)

https://doi.org/10.1007/978-0-8176-4789-6_8

194 S. Storandt

9. Fellows, M., Lokshtanov, D., Misra, N., Mnich, M., Rosamond, F., Saurabh, S.: The
complexity ecology of parameters: an illustration using bounded max leaf number.
Theory Comput. Syst. 45(4), 822–848 (2009)

10. Funke, S., Klein, C.: Hole detection or: “how much geometry hides in connectiv-
ity?”. In: Proceedings of the Twenty-Second Annual Symposium on Computational
Geometry, pp. 377–385 (2006)

11. Gallo, G.: An o (n log n) algorithm for the convex bipartite matching problem.
Oper. Res. Lett. 3(1), 31–34 (1984)

12. Green, P., Silverman, B.W.: Constructing the convex hull of a set of points in the
plane. Comput. J. 22(3), 262–266 (1979)

13. Harary, F., Nieminen, J.: Convexity in graphs. J. Differ. Geom. 16(2), 185–190
(1981)

14. Lalem, F., et al.: LPCN: least polar-angle connected node algorithm to find a
polygon hull in a connected euclidean graph. J. Netw. Comput. Appl. 93, 38–50
(2017)

15. Linial, N., Lovasz, L., Wigderson, A.: Rubber bands, convex embeddings and graph
connectivity. Combinatorica 8(1), 91–102 (1988)

16. Marcilon, T., Sampaio, R.: The P3 infection time is W[1]-hard parameterized by
the treewidth. Inf. Process. Lett. 132, 55–61 (2018)

17. Mezzini, M.: On the geodetic iteration number of the contour of a graph. Discret.
Appl. Math. 206, 211–214 (2016)

18. Pelayo, I.M.: Geodesic Convexity in Graphs. Springer, New York (2013). https://
doi.org/10.1007/978-1-4614-8699-2

19. Wang, Y., Gao, J., Mitchell, J.S.: Boundary recognition in sensor networks by
topological methods. In: Proceedings of the 12th Annual International Conference
on Mobile Computing and Networking, pp. 122–133 (2006)

20. Yan, D., Cheng, J., Ng, W., Liu, S.: Finding distance-preserving subgraphs in large
road networks. In: 2013 IEEE 29th International Conference on Data Engineering
(ICDE), pp. 625–636. IEEE (2013)

https://doi.org/10.1007/978-1-4614-8699-2
https://doi.org/10.1007/978-1-4614-8699-2

Voronoi Games Using Geodesics

Arun Kumar Das1(B), Sandip Das1, Anil Maheshwari2, and Sarvottamananda3

1 Indian Statistical Institute, Kolkata, India
arund426@gmail.com, sandipdas@isical.ac.in

2 Carleton University, Ottawa, Canada
anil@scs.carleton.ca

3 Ramakrishna Mission Vivekananda Educational and Research Institute,
Howrah, India

sarvottamananda@rkmvu.ac.in

Abstract. In this paper, we study the single-round geodesic Voronoi
games on various classes of polygons and polyhedra for two players. We
prove some tight bounds on the payoffs, that is, the number of clients
served by both the first player, Alice, and the second player, Bob, for
orthogonal convex polygons and polyhedra for the L1 metric.

Keywords: Facility location · Computational geometry ·
Combinatorial optimization · Voronoi game · Convex polygon ·
Orthogonal polygon · Rectilinear polygon · Orthogonal convex
polyhedron

1 Introduction

The competitive facility location problem is a fundamental geometric optimiza-
tion problem. The Voronoi games, introduced by Ahn et al. [1], are a subclass of
competitive facility location problems that deal with two or more players taking
turns in placing their facilities while optimizing their payoffs. A Voronoi game G
consists of a playing field M in which there is a client area C ⊆ M that demands
a service provided by two competitive players (named as Alice and Bob). In each
round of the game, Alice places a set of facilities in M at a time, followed by
Bob, to serve the clients. A client avails service from its nearest facility according
to the distance metric considered in the model.

In this paper, we consider a geodesic Voronoi game in the L1-space for a
polygon P and a fixed set of points C as clients in the plane. The polygonal
region of P is supposedly owned by Alice. The clients in C are represented by
points in the plane. Bob can only serve the clients in the exterior of the polygon
P using exterior geodesic paths. Since Bob can only serve the clients exterior
to the restricted region P, and hence compete only for these exterior clients, we
only consider the clients that are in the exterior of the polygon P. Therefore,
the metric for Bob is the external geodesic L1 distance. Here the interior and
exterior of the polygons and polytopes are closed unless specifically mentioned.

The focus of this paper is on the single-round Voronoi game, where both
the players place only one facility each. Alice places her facility A first in the
c© Springer Nature Switzerland AG 2022
N. Balachandran and R. Inkulu (Eds.): CALDAM 2022, LNCS 13179, pp. 195–207, 2022.
https://doi.org/10.1007/978-3-030-95018-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95018-7_16&domain=pdf
https://doi.org/10.1007/978-3-030-95018-7_16

196 A. K. Das et al.

interior of an orthogonal convex polygon P. A set S ⊆ R
d is orthogonal con-

vex if its intersection with any orthogonal line, i.e., axis-parallel line, is convex
[Unger [11]]. Then Bob places his facility in the exterior of P. Alice and Bob
serve the clients using unrestricted paths and external geodesic paths, respec-
tively, that are shortest in the L1 metric. The payoffs of Alice and Bob, denoted
by SA and SB, respectively, also called their scores, are the total number of
clients in their respective Voronoi regions. In case of a tie between the two near-
est facilities, the client is equally served by both the players and counted as half
in both the payoffs. The two optimization problems in the Voronoi game are to
maximize the payoffs of Alice and Bob.

We use several interesting combinatorial and geometric techniques to prove
the upper and lower bounds for the payoffs of Alice and Bob when the region
possessed by Alice are orthogonal convex polygons (see Fig. 1) and orthogonal
convex polyhedra in the L1-space.

1.1 Previous Results

Ahn et al. [1] described and solved the Voronoi game in line segments and
circles in which Alice and Bob place an equal number of facilities, in one or
more rounds, on line segments or circles. The payoff is the total length of their
respective Voronoi cells. Cheong et al. [8] solved the single-round Voronoi game
in a square in which Alice and Bob place multiple facilities at once, Alice before
Bob, and the payoff is the total area of their respective Voronoi cells. Later,
Fekete and Meijer [9] improved on the finer details of their solution and showed
the intractability of the Voronoi games in simple polygons with holes and the
payoff is the total polygonal area of their respective Voronoi cells.

Banik et al. [3] studied the discrete version of the Voronoi game on line
segments with a finite number of point clients, and the payoff is the total number
of clients in Alice and Bob’s individual Voronoi cells. They proved bounds on
the payoffs and designed optimal strategies for Alice and Bob. Banik et al. [2],
and later, de Berg et al. [7], proposed algorithms for the discrete version of the
single-round Voronoi game in R

1 in which Alice and Bob place multiple facilities
in a single round and the payoff is the number of clients. Banik et al. [4] studied
the discrete version of the single-round Voronoi game in R

2 in which Alice and
Bob place new facilities among their previously owned facilities, and the payoff
is the total number of clients in their respective Voronoi cells. They present
polynomial-time algorithms for an optimal placement for Alice and Bob for each
of the L1, L2 and L∞ metrics. Later, Banik et al. [6] studied the discrete version
of the single-round Voronoi game in a simple polygon in which the game arena
is the internal geodesic space of a simple polygon, and the payoff is the total
number of clients in their individual Voronoi cells. They devised polynomial-time
algorithms for an optimal placement of both Alice and Bob for this game.

Recently, Banik et al. [5], introduced the Voronoi game on a polygon in
which Alice and Bob play the Voronoi game on the boundary of simple or convex
polygons and polyhedra, the metrics are internal and external geodesic L2 metric,
and the payoff is the number of clients in their respective Voronoi regions. They

Voronoi Games 197

proved tight upper and lower bounds for the payoffs of both for the single-
round or k-round, simple or convex, polygons or polyhedra. They also devised
algorithms for the optimal placements for Alice and Bob for the single round
Voronoi game on a convex polygon.

1.2 New Results

In this paper, we study the same Voronoi game problems as in [5], termed the
geodesic Voronoi games, but for the L1 metric in place of the Euclidean met-
ric L2. The convexity is similarly replaced by orthogonal convexity. We take
up questions regarding the Voronoi game, such as if Alice and Bob are guaran-
teed some payoff, and if not, whether there exist some preconditions that may
guarantee a payoff, what are these preconditions, how much is the guaranteed
payoff, etc. We assume both the players play with their optimal strategies in
this model. We show that if the clients are only on the boundary of the given
convex orthogonal polygon, then Alice is always guaranteed to get at least half
of the clients in every case, whereas Bob can only ensure one-sixth of the total
number of clients in the worst case (Sect. 3). We also prove that this bound for
Alice is �n

4 � and for Bob is � n
24�, when we extend our model in 3-dimensional

space (Sect. 4). We also show examples to ensure the tightness of the bounds.
In addition, we outline several interesting properties of the Voronoi regions of
Alice and Bob in this metric space (Sect. 2).

2 Preliminaries

Bob’s maximization of his payoff in any single-round Voronoi game depends on
where Alice places her facility first. Hence Bob’s strategy is easier to understand.
Bob’s naive strategy will be to search among all possible feasible locations, say
F , and choose that location that maximizes his payoff. Alice’s maximization
of her payoff is comparatively more complex. Since Alice cannot predetermine
Bob’s choice afterwards, she has to preempt Bob’s choice and needs to choose
a location preparing for the worst; thus, she puts her facility among all possible
locations in F where her minimum payoff is maximized. It is easy to see that
the game, as described above is a constant-sum game, and hence the sum of the
payoffs of Alice and Bob is the total number of clients.

Observation 1. Let S∗
A and S∗

B denote the final scores of Alice and Bob respec-
tively in a single-round geodesic Voronoi game when they play optimally. Then,
S∗

A + S∗
B = n.

2.1 Orthogonal Convex Polygons for the L1 Metric

Let A and B denote the optimal placement of the facilities by Alice and Bob,
respectively, in the single-round geodesic Voronoi game G. Let P denote the
orthogonal convex polygon in the game. Let dA and dB be the distance metrics
for Alice and Bob defined as before. First, we mention a property of geodesic
paths on orthogonal polygons with the L1 metric, see Fig. 1.

198 A. K. Das et al.

Observation 2. The closed boundary of any orthogonal convex polygon can be
non-uniquely partitioned into at least two and at most four monotonic L1-paths
(staircases). The anti-clockwise boundary from the maximum x-coordinate to
the maximum y-coordinate, on the top right of P, is called the (++)-quadrant
∂P boundary. Likewise, we define the (-+)-quadrant ∂P, (+-)-quadrant ∂P and
(--)-quadrant ∂P boundaries. This partitioning can be proved by induction.

Fig. 1. An orthogonal convex polygon
P with the boundary divided into four
xy-monotonic parts.

Fig. 2. Bob can move along the path
BB∗ to the boundary ∂P to increase
his payoff.

Next, for geodesic Voronoi games, we make an important observation about
boundary and non-boundary geodesic paths similar to [10].

Lemma 1. Let s and t be any pair of points on the boundary ∂P of any orthog-
onal convex polygon P. There exists an external geodesic L1-path between s and
t that is a part of the boundary ∂P.

Proof. The external geodesic path can be deformed smoothly to a boundary
path of same length due to the orthogonal convexity of P and Observation 2.

Corollary 1. If an external geodesic path in the L1 metric, for an orthogonal
convex polygon, does not touch the boundary ∂P of the polygon then the path
length is the L1 distance between the end-points.

Thus there exists external geodesic paths that are either completely free from the
boundary ∂P of the orthogonal convex polygon P or contains only one connected
part of the boundary ∂P. Next, we characterize the optimal locations of Alice
and Bob that maximize their payoffs. We note that whenever Alice places her
facility in the region she owns, Bob has to place the facility as near to the region
as possible. By moving nearer, Bob can gain more clients.

Lemma 2. If Alice’s facility A is in the (closed) interior of the orthogonal con-
vex polygon P in the game G, then there exists a point B∗ on the boundary ∂P
of P that maximizes Bob’s payoff.

Voronoi Games 199

Proof. Let B be any point in the exterior of the polygon P. Without loss of
generality, we assume that B is on the top-right of P. We consider the geodesic
bisector of A and B using their respective distance metrics. Because of the stair-
case nature of the first quadrant boundary, we can show that B can be moved
successively vertically below or horizontally left, and then bottom-left direction
at an angle of π/4 towards P such that the Voronoi region of B enlarges or
remains the same. For example, in Fig. 2 Bob first moves vertically down and
then obliquely towards the bottom-left. ��
There are certain conditions when Alice has to place her facility in the orthogonal
convex polygon P. This happens when the clients are on the boundary of P.
The orthogonal convex hull of a set of points S is the smallest orthogonal convex
polygon that contains S. We state a more general condition below.

Lemma 3. There exists a point A∗, that maximizes Alice’s payoff, in the
(closed) interior of the orthogonal convex hull of C in the game G.

Proof. For any point A in the exterior of an orthogonal convex hull there exists
a point A′ on the hull such that the distance from any point in the hull to A
is not less than to A′ (A′ is the point nearest to A in one of the eight cardinal
directions). Thus A′ increases the payoff of Alice compared to A. An interior A∗

improves on A′. ��
Since the orthogonal convex hull of a set of points on the boundary of the
orthogonal convex polygon P is contained in P, we have the following lemma.

Lemma 4. If all the clients C are on the boundary of the orthogonal convex
polygon P in the game G, then there exists an optimal facility location of Alice,
that maximizes her payoff, in the (closed) interior of P.

The playing field M is partitioned by Alice and Bob by the clients that they
serve, respectively grouped in their Voronoi regions. We state some conditions
when these regions are connected or disconnected in the following lemmas. We
denote the Voronoi regions of Alice’s facility A and Bob’s facility B as vor(A)
and vor(B), respectively. We call them Alice’s and Bob’s Voronoi regions, respec-
tively. See Figs. 3 and 4.

Lemma 5. Let dA and dB be any two metrics over M. Let Alice and Bob follow
dA and dB metrics respectively for their payoffs. If dA(x, y) ≤ dB(x, y), for every
x, y ∈ M, then vor(B) is connected in the Voronoi diagram of the set {A,B}.
Proof. Assume vor(B) is not connected. B is in vor(B) as dB(B,B) = 0 and
dA(A,B) ≥ 0. We consider a point p ∈ vor(B) not in the connected region to
which B belongs. Since p ∈ vor(B), dB(B, p) ≤ dA(A, p). Next, we consider a
geodesic path π from B to p which connects the two disconnected regions of
vor(B) (and which may not be unique). We can select a point q in the path π
not in vor(B) due to the disconnectedness of vor(B). Then, dA(A, q) < dB(B, q).
From the premise, dA(p, q) ≤ dB(p, q). Using the geodesic path π, these inequal-
ities and the triangle inequality, we get dB(B, p) = dB(B, q) + dB(p, q) >
dA(A, q) + dA(p, q) ≥ dA(A, p), which leads to a contradiction. ��

200 A. K. Das et al.

Fig. 3. Bob’s Voronoi region is con-
nected in geodesic Voronoi game G in
L1. Bob’s Voronoi region on the bound-
ary ∂P is also connected.

Fig. 4. Alice Voronoi region is discon-
nected in (i) and Bob’s Voronoi region
on boundary of P is disconnected in (ii)
in G.

The premise of Lemma 5 holds true for any geodesic Voronoi game, therefore
Bob’s Voronoi region is connected in G. Alice’s Voronoi region is also connected
conditionally. Bob’s Voronoi region on the boundary ∂P is also connected when
Bob places his facility on the boundary. We state these facts below.

Lemma 6. Bob’s Voronoi region is connected in the geodesic Voronoi game G.

Proof. dA(x, y) ≤ dB(x, y), x, y ∈ R
2. ��

Lemma 7. If Alice’s facility A is in the interior of P in the geodesic Voronoi
game G then Alice’s Voronoi region is connected and may be disconnected oth-
erwise.

Proof. The proof is similar to the proof of Lemma 5 above if we exchange A and
B. However, the substituted premise dB(x, y) ≤ dA(x, y) does not hold for every
x, y ∈ M. We give the proof sketch below. We assume that A is in the interior
of P and vor(A) is disconnected. Let p ∈ vor(A) be disconnected from A. We
consider the geodesic path from A to p and the point q to be the last exit point of
that path from vor(B). dA(p, q) = dB(p, q) follows from Corollary 1 as both are
L1 distances. dA(A, p) = dA(A, q) + dA(p, q) = dB(B, q) + dB(p, q) ≥ dB(B, p),
which contradicts p ∈ vor(A). See Fig. 4 for an idea on how vor(A) might be
disconnected when Alice’s facility A isn’t in the interior of P. ��
Lemma 8. Let P be the orthogonal polygon in a geodesic Voronoi game G for
the L1 metric. If Bob’s facility B is on the boundary of P, then the Voronoi
region of Bob on the boundary, P ∩vor(B), is connected and maybe disconnected
otherwise.

Proof. If B is on the boundary, then for any point p ∈ P ∩ vor(B), the geodesic
path from B to p will be on the boundary and in P ∩ vor(B). Therefore P ∩
vor(B) will be connected. See Fig. 4 for an idea on how vor(B) on ∂P might be
disconnected when Bob’s facility B isn’t on the boundary. ��
We note that if Bob’s Voronoi region on the boundary of the L1-convex polygon
P is connected, Alice’s Voronoi region is also connected.

Voronoi Games 201

2.2 Orthogonal Convex Polyhedra for the L1 Metric

First, we make some observations on the structure of the axis-parallel orthogonal
convex polyhedra.

Observation 3. Similar to the case of plane, the surface ∂P of the axis parallel
orthogonal convex polyhedra can be divided into eight parts (staircase like) in
R

3. We call them (+++)-octant ∂P, (-++)-octant ∂P, . . . , (---)-octant ∂P
surfaces.

We consider a geodesic Voronoi game G for an axis parallel orthogonal convex
polyhedra P and clients C. In R

d>2, the condition that Alice’s optimal facility
location has to be inside the orthogonal convex hull of C does not hold. We
generalize Lemma 3 as following for R

d.

Observation 4. Any point A∗ that maximizes Alice’s payoff in a geodesic Voronoi
game G for an orthogonal convex polytope in R

d≥2 for L1, is in the (closed)
interior of the smallest hypercube that contains C.

We use the properties of the L1 metric to prove Observation 4. Contrary to our
expectations, even if Alice is in the interior of P, neither the optimal placement
of Bob that maximizes his payoff might be on ∂P nor the Voronoi region of
Alice on ∂P might be connected. See Fig. 5 where both Alice’s as well as Bob’s
optimal facility location is in the exterior.

Fig. 5. Both Bob’s and Alice’s opti-
mal facility location is at the corner
extended on the exterior in the geodesic
Voronoi game for L1 in R

3.

Fig. 6. Alice’s Voronoi region on the
surface ∂P is disconnected in the
geodesic Voronoi game for L1. Alice’s
facility A may be slightly below or
above the surface to be in the strict
interior or strict exterior, respectively.

Lemma 9. There exists a geodesic Voronoi game in R
d≥3 for an orthogonal

convex polytope P, such that there exists no optimal placement for Alice or Bob
on the surface ∂P, even if the clients C are on the surface ∂P.

202 A. K. Das et al.

Next, we consider the connectivity of the Voronoi regions of Alice and Bob.
We have already shown that Bob’s Voronoi region, if Bob is on the surface
∂P, is connected on the surface. However, since Bob’s optimal placement may
be on the exterior of the polytope, his Voronoi region on the surface might be
disconnected. Moreover, even if Bob is on the surface and Alice anywhere, Alice’s
Voronoi region on the surface may be disconnected (see Fig. 6).

Lemma 10. Alice’s Voronoi region may be disconnected on the surface ∂P of
the orthogonal convex polyhedron P in a geodesic Voronoi game in R

d≥3, whether
A is in the interior, exterior or on the boundary of P. This also holds for the
Alice’s optimal facility location A∗.

3 Bounds for Orthogonal Convex Polygons

Let Alice and Bob play a single-round Voronoi game in the L1 metric with a
set of n clients in the plane. First, we prove some bounds for the unrestricted
case in which Alice, like Bob, does not own any region. Subsequently, we prove
the bounds for the geodesic Voronoi games for orthogonal convex polygons with
the clients on the boundary. We note that the unrestricted case is sometimes
referred as the discrete Voronoi game in the literature.

Observe that in the unrestricted single-round Voronoi game in the L1 metric,
Bob is guaranteed to serve at least n

2 clients by placing his facility precisely at
the exact location as that of Alice’s. On the other hand, as shown in the lemma
below, Alice is also guaranteed to serve n

2 clients, if she places her facility at one
of her optimal locations, which are the intersections of vertical and horizontal
lines that contain at most �n

2 � clients in each of their open halves.

Lemma 11. In a single round Voronoi game in the L1 metric in the plane with
n clients, there exists a placement A∗ that ensures a payoff of n

2 for Alice.

Proof. Let us consider the horizontal and vertical lines that divide the clients
in half, i.e., the lines are such that each open half contains at most �n

2 � clients.
Let us assume that there is at most one point on both the lines for the sake of
simplicity. Alice places her facility on the intersection point. Let the number of
clients in four quadrants be x++, x+-, x-+ and x--. Then, x++ + x+- = x+- + x-- =
x-- + x-+ = x-+ + x++ = �n

2 �. The Voronoi region of Alice, wherever Bob places
his facility, will either contain two neighboring quadrants, contain one quadrant
and share its two neighboring quadrants or share all four quadrants. In either
case, it will ensure a payoff of n

2 , including the share of the client at the facility
location itself, if any. This follows from the equalities above. The case when there
are clients on the lines can be analyzed similarly. ��
Thus, in every Voronoi game in the plane for the L1 metric without restrictions,
the optimal payoff of Alice and Bob is always equal.

Theorem 1. The optimal payoffs of Alice and Bob in any single-round Voronoi
game in the plane for the L1 metric without restrictions for a set of n clients
is n

2 .

Voronoi Games 203

3.1 Orthogonal Convex Polygon with Clients on Boundary

Let G be a geodesic Voronoi game such that the clients in C are located on the
boundary ∂P of the orthogonal convex polygon P that Alice owns. The metric is
L1 as before. Alice and Bob can place their facilities anywhere in plane. However,
we have already shown in Lemma 4 that there always exists an optimal placement
of Alice inside P, so we only consider Alice’s placements inside P. On the other
hand, Bob can get any client only if he places his facility outside P, so we
only consider Bob’s placements outside P. We note that, since Bob’s distances
to clients are not less than the distances in the equivalent unrestricted game
without P. So, following Lemma 11, Alice naturally has a guaranteed payoff of
n
2 . Surprisingly, however, we can show that there exist games such that Alice
gets no more than n

2 clients. We prove this tight bound below.

Lemma 12. Alice’s optimal payoff is at least n
2 in any single-round geodesic

Voronoi game for orthogonal convex polygon P, clients C on ∂P and the L1

metric.

Proof. The proof follows from Lemma 11 and the fact that dA remains same
whereas dB increases in the argument there. ��
We next show that this bound is tight.

Lemma 13. There exists a single-round geodesic Voronoi game for a orthogonal
convex polygon P and n clients on ∂P in the L1 metric such that Alice’s optimal
payoff is n

2 .

Proof. We construct a game where Alice owns a square region. We place �n
2 �

clients on one vertex, the other �n
2 � clients on the diagonally opposite vertex

and a last remaining one client, if it exists, on one of the other two vertices.
Wherever Alice places her facility, Bob can get at least n

2 clients by placing a
facility on this last vertex (even if n is even and there is no remaining client). ��
Next, we show a non-trivial bound for Bob. See Figs. 7 and 8.

Fig. 7. Why Bob’s payoff is at least n
6
? Fig. 8. Bob’s payoff is at most �n

6
�.

204 A. K. Das et al.

Lemma 14. Bob’s optimal payoff is at least �n
6 � in any single-round geodesic

Voronoi game for any orthogonal convex polygon P and n clients on ∂P in the
L1 metric.

Proof. As a result of Lemma 4 we can assume that Alice’s location A∗ is in
the interior of P. We note that we can move the boundary of P together with
the clients and B∗ in each of the four quadrant boundaries mentioned previously
towards A∗ at an angle π/4 with axes, such that the distances to Bob from every
client remain same, but to Alice, it might decrease. We do not move the four
x and y extremes. We can show this using the properties of the L1 metric and
the geodesics. We move till the polygon remains simple, i.e., the boundaries do
not cross the other boundaries. If we show that Bob gets �n

6 � clients for this
new polygon then it gets �n

6 � clients for the polygon P. Let us rename the new
polygon as P for this proof. See Fig. 7 for an illustration.

We observe that out of the four quadrant boundaries of P, only two, and only
the opposite ones, can intersect the horizontal and vertical lines passing through
A∗. This is because we have two axes and four intersections around A∗ by
the orthogonal convex polygon boundary (we argue using a combined reasoning
of pigeon hole principle and partition function p(4) = 5). We consider Bob’s
placement in each quadrant boundary. If a quadrant boundary, ∂Q, intersects
both the axes, we can show that Bob’s best possible location for ∂Q gets at
least half of the clients in ∂Q. Otherwise, if a quadrant boundary, ∂Q, does not
intersect both the axes, Bob’s best possible location for ∂Q can get all the clients
in ∂Q, since ∂Q will be fully inside the Bob’s Voronoi region, i.e., ∂Q ∈ vor(B).
Thus, Bob has four candidate locations to consider optimality, at most two
candidates getting at least half, and at least two candidates getting all of their
respective quadrant boundary clients. This is because of the pigeonhole principle,
as each axis can intersect only two quadrant boundaries due to orthogonality.

The problem of maximizing Bob’s payoff can be written as a min-max
optimization problem: say, without loss of generality and in the worst case,
S∗

B ≥ minn++,n+-,n--,n-+
max{n++, n+-/2, n--, n-+/2}, where n+++n+-+n--+n-+ = n

and each n++, n+-, n--, n-+ ≥ 0. The numbers n++, n+-, n--, n-+ are the number
of clients in the respective quadrant boundaries (we assume for simplicity that
the boundaries do not share clients). We solve this optimization problem to get
S∗

B ≥ n
6 . Since Alice can be made not to touch any two quadrant boundaries at

the same time, by choosing quadrant boundaries carefully, then the best candi-
date of Bob, B∗, is in the shared boundary that does not have A∗ and contains
an odd number of clients. We can show, by counting, that Bob will have at least
one exclusive client. In such a case we can show that S∗

B ≥ �n
6 � in the above

maximization problem by a careful analysis. ��
In Fig. 8 we present an example to show that this bound is tight.

Lemma 15. There exists a single round geodesic Voronoi game for an orthog-
onal convex polygon P and n clients on ∂P in the L1 metric such that Bob’s
optimal payoff is �n

6 �.
We summarize the bounds in the theorem below.

Voronoi Games 205

Theorem 2. Alice’s optimal payoff is at least n
2 and Bob’s optimal payoff is at

least �n
6 � in any single-round geodesic Voronoi game G in the L1 metric for an

orthogonal convex polygon P and n clients on the boundary ∂P of the polygon.
Both the bounds are tight.

As the matters stand, we can also show that similar tight bounds hold if the
clients are unrestricted in the plane.

4 Bounds for Orthogonal Convex Polyhedra

This section extends the results on the bounds on orthogonal polygons to 3-space.
We observe that the geodesic Voronoi games for orthogonal convex polyhedra
differ significantly from the games for orthogonal polygons in the L1 metric.
Let G be a geodesic Voronoi game and let P and C be the orthogonal convex
polyhedra and the set of n clients, respectively.

In the unrestricted case, similar to the case of the plane, Alice is guaranteed
a fraction of clients, and dissimilar to the case of the plane, Alice wins only
a small fraction of clients. We compute the three orthogonal planes parallel to
xy-plane, yz-plane and xz-plane, respectively, that contain at most �n

2 � clients
in their open halves. Alice is guaranteed a payoff of �n

4 � if she puts her facility
at the intersection point of these three planes.

Theorem 3. Alice’s optimal payoff is at least �n
4 � and Bob’s optimal payoff is

at least n
2 in any single-round Voronoi game G in the L1 metric for n clients.

Both the bounds are tight.

Proof. We assume, for the sake of simplicity that the orthogonal planes contain
at the most one point. We can show that the eight quadrants have the number
of clients satisfying the following relations for some m: n+++ = n--- + m, n+-- =
n-++ +m, n-+- = n+-+ +m, and n--+ = n++- +m. The best placement for Bob will
be infinitesimal near Alice’s placement. Then vor(A) either shares whole space,
shares four octants and contains two, contains four octants on one side of one of
the three orthogonal planes mentioned in the discussion, or contains four octants
that are three neighbors of the remaining one. In either case, we can prove that
Alice wins at least �n

4 � clients.
We can construct an example where the bounds are tight such that m = �n

4 �.
We distribute equal number of clients at uniform intervals in four rays in four
quadrants x = y = z > 0, x = −y = −z > 0, −x = y = −z > 0 and
−x = −y = z > 0, and put at least one client at the origin, if n mod 4 = 0. ��

4.1 Orthogonal Convex Polyhedra with Boundary Clients

Consider the case of the geodesic Voronoi game when the clients are located on
the boundary of convex polyhedron P. We again analyze the intersection point
of orthogonal planes mentioned previously for Alice’s optimal location. From
those arguments, we have that Alice’s payoff is at least n

4 .

206 A. K. Das et al.

The lower bound is not tight. We construct a geodesic Voronoi game in which
Alice’s payoff is not more than � 11n

26 �, implying that the lower bound is not more
than � 11n

26 �. We state this in the following lemma.

Lemma 16. There exists a single round geodesic Voronoi game in the L1 metric
for a convex polyhedron P with n clients on the boundary ∂P such that Alice’s
optimal payoff is � 11n

26 �.
Proof. We prove this by distributing points (i.e., clients) on the center of faces of
a cube and its corners, forming a tetrahedral. We place 5n/26 clients on each of
the four tetrahedral corners and n/26 clients on each of the six centers of faces.
See, Fig. 9 for an illustration. ��

Fig. 9. Alice’s payoff is at most � 11n
26

�
in the geodesic Voronoi game for L1.

Fig. 10. Bob’s payoff is at most � n
24

�
in the geodesic Voronoi game for L1.

Next we show that Bob’s payoff is at least � n
24� in the lemma below.

Lemma 17. Bob’s optimal payoff is at least � n
24� in any single-round geodesic

Voronoi game for an orthogonal convex polyhedron P and n clients on the bound-
ary ∂P in the L1 metric.

Proof. Let Alice place her facility at A. We consider the eight octant surfaces
∂P of the orthogonal convex polyhedron P as mentioned in the Observation 3.
We can prove that three points on each octant surface ∂P are sufficient so that
∂P is included in vor(B)′s for any A. Thus a total of 24 B’s are sufficient to
cover the whole of ∂P in vor(B)’s. Bob places his facility in that location for
which vor(B) contains the maximum number of clients. ��
We also show that this lower bound of � n

24� is tight by constructing a geodesic
Voronoi game where Bob does not win more than � n

24� clients.

Lemma 18. There exists a single round geodesic Voronoi game in the L1 metric
for a convex polyhedron P with clients on the boundary ∂P such that Bob’s
optimal payoff is � n

24�.

Voronoi Games 207

Proof. We construct a cube with double hollowed corners along with a smaller
cube in the center and distribute n/48 clients each at the six corners nearer to
the center, as in Fig. 10. ��
We summarize our results on Voronoi games on orthogonal convex polyhedra
with boundary clients in the theorem below.

Theorem 4. Alice’s optimal payoff is at least �n
4 � and Bob’s optimal payoff

is at least � n
24� in any single round Voronoi game G in the L1 metric for an

orthogonal convex polyhedron P and n ≥ 2 clients on the boundary ∂P of P. The
lower bound of Bob’s optimal payoff is tight. Moreover, the tight lower bound of
Alice’s optimal payoff is at most � 11n

26 �.

References

1. Ahn, H.K., Cheng, S.W., Cheong, O., Golin, M., van Oostrum, R.: Competitive
facility location: the Voronoi game. Theoret. Comput. Sci. 310(1), 457–467 (2004)

2. Banik, A., Bhattacharya, B.B., Das, S.: Optimal strategies for the one-round dis-
crete Voronoi game on a line. J. Comb. Optim. 26(4), 655–669 (2012). https://doi.
org/10.1007/s10878-011-9447-6

3. Banik, A., Bhattacharya, B.B., Das, S., Das, S.: The 1-dimensional discrete Voronoi
game. Oper. Res. Lett. 47(2), 115–121 (2019)

4. Banik, A., Bhattacharya, B.B., Das, S., Mukherjee, S.: The discrete Voronoi game
in R2. Comput. Geom. 63, 53–62 (2017)

5. Banik, A., Das, A.K., Das, S., Maheshwari, A., Sarvottamananda, S.: Optimal
strategies in single round Voronoi game on convex polygons with constraints. The-
oretical Computer Science (to appear in the special issue of COCOA 2020) (TBA)

6. Banik, A., Das, S., Maheshwari, A., Smid, M.: The discrete Voronoi game in a
simple polygon. Theoret. Comput. Sci. 793, 28–35 (2019)

7. de Berg, M., Kisfaludi-Bak, S., Mehr, M.: On one-round discrete Voronoi games.
In: Lu, P., Zhang, G. (eds.) 30th International Symposium on Algorithms and
Computation (ISAAC 2019). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 149, pp. 37:1–37:17. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, Dagstuhl (2019)

8. Cheong, O., Har-Peled, S., Linial, N., Matousek, J.: The one-round Voronoi game.
Discrete Comput. Geom. 31(1), 125–138 (2004)

9. Fekete, S.P., Meijer, H.: The one-round Voronoi game replayed. Comput. Geom.
30(2), 81–94 (2005)

10. Lee, D.T., Preparata, F.P.: Euclidean shortest paths in the presence of rectilinear
barriers. Networks 14(3), 393–410 (1984)

11. Unger, S.H.: Pattern detection and recognition. Proc. IRE 47(10), 1737–1752
(1959)

https://doi.org/10.1007/s10878-011-9447-6
https://doi.org/10.1007/s10878-011-9447-6

Algorithms and Optimization

Approximation and Parameterized
Algorithms for Balanced Connected

Partition Problems

Phablo F. S. Moura1 , Matheus Jun Ota2(B) , and Yoshiko Wakabayashi3

1 Departamento de Ciência da Computação, Universidade Federal de Minas Gerais,
Belo Horizonte, Brazil
phablo@dcc.ufmg.br

2 Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, Canada

mjota@uwaterloo.ca
3 Instituto de Matemática e Estat́ıstica, Universidade de São Paulo, São Paulo, Brazil

yw@ime.usp.br

Abstract. For a given integer k ≥ 2, partitioning a connected graph
into k vertex-disjoint connected subgraphs of similar (or fixed) orders is
a classical problem that has been intensively investigated since late sev-
enties. A connected k-partition of a graph is a partition of its vertex set
into classes such that each one induces a connected subgraph. Given a
connected graph G = (V, E) and a weight function w : V → Q≥, the bal-
anced connected k-partition problem looks for a connected k-partition
of G into classes of roughly the same weight. To model this concept
of balance, we seek connected k-partitions that either maximize the
weight of a lightest class (max-min BCPk) or minimize the weight of
a heaviest class (min-max BCPk). These problems, known to be NP-
hard, are equivalent only when k = 2. We present a simple pseudo-
polynomial k

2
-approximation algorithm for min-max BCPk that runs in

time O(W |V ||E|), where W =
∑

v∈V w(v); then, using a scaling tech-

nique, we obtain a (polynomial) (k
2
+ ε)-approximation with running-

time O(|V |3|E|/ε), for any fixed ε > 0. Additionally, we propose a fixed-
parameter tractable algorithm for the unweighted max-min BCP (where
k is part of the input) parameterized by the size of a vertex cover.

Keywords: Balanced connected partition · Approximation algorithm ·
Parameterized algorithm

1 Introduction

The problem of partitioning a connected graph into a given number k ≥ 2 of
connected subgraphs with prescribed orders was first studied by Lovász [16] and

Research partially supported by grant #2015/11937-9, São Paulo Research Foundation
(FAPESP). Moura is supported by FAPEMIG (Proc. APQ-01040-21) and Pró-Reitoria
de Pesquisa da Universidade Federal de Minas Gerais. Wakabayashi is supported by
CNPq (Proc. 306464/2016-0 and 423833/2018-9).

c© Springer Nature Switzerland AG 2022
N. Balachandran and R. Inkulu (Eds.): CALDAM 2022, LNCS 13179, pp. 211–223, 2022.
https://doi.org/10.1007/978-3-030-95018-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95018-7_17&domain=pdf
http://orcid.org/0000-0002-8176-0874
http://orcid.org/0000-0002-3730-6420
http://orcid.org/0000-0002-8229-3139
https://doi.org/10.1007/978-3-030-95018-7_17

212 P. F. S. Moura et al.

Györi [15] in the late seventies. Let [k] denote the set {1, 2, . . . , k}, for every
integer k ≥ 1. A connected k-partition of a connected graph G = (V,E) is a
partition of V into nonempty classes {Vi}k

i=1 such that, for each i ∈ [k], the
subgraph G[Vi] is connected, where G[Vi] denotes the subgraph of G induced by
the set of vertices Vi.

We denote by (G,w) a pair consisting of a connected graph G = (V,E) and a
function w : V → Q≥ that assigns non-negative weights to the vertices of G. For
each V ′ ⊆ V , we define w(V ′) =

∑
v∈V ′ w(v). Furthermore, if G′ = (V ′, E′) is a

subgraph of G, we write w(G′) instead of w(V ′). If P = {Vi}i∈[k] is a connected
k-partition of G, then w+(P) stands for maxi∈[k] {w(Vi)}, and w−(P) stands for
mini∈[k] {w(Vi)}.

The concept of balance of the classes of a connected partition can be
expressed in different ways. In this work, we consider two related variants whose
objective functions express this concept.

Problem. Min-Max Balanced Connected k-Partition (min-max BCPk)
Instance: a connected graph G = (V,E), and a weight function w : V → Q≥.
Find: a connected k-partition P of G.
Goal: minimize w+(P).

Analogously, max-min BCPk has the same set of instances as min-max
BCPk, but it seeks a connected k-partition P that maximizes w−(P).

The problems min-max BCP2 and max-min BCP2 are equivalent, that is,
an optimal solution for one of the versions is also an optimal solution for the
other version (but they may have different optimal values). However, for k > 2,
equivalence do not hold for min-max BCPk and max-min BCPk.

For all problems mentioned here the input graph G is always simple and
connected (and possibly with further properties). We also use the convention
that n (resp. m) is the number of vertices (resp. edges) of the graph under
consideration.

Throughout this paper we assume that k ≥ 2. When k is in the name of
the problem, we are considering that k is fixed. The problems in which k is
part of the instance are denoted similarly but without specifying k in the name
(e.g. max-min BCP). The unweighted (or cardinality) versions of the prob-
lems refer to the case in which all vertices have equal weight, which may be
assumed to be 1. We denote the corresponding problems as 1-min-max BCPk,
1-max-min BCPk, 1-min-max BCP and 1-max-min BCP.

In this paper, we show approximation algorithms for min-max BCPk, but
mention approximation results for both min-max BCPk and max-min BCPk.
We observe that whenever we refer to an approximation algorithm, we mean
that it runs in polynomial time on the size of the instance. If an approximation
ratio α can be guaranteed for an algorithm, but it may run in pseudo-polynomial
time, we refer to it as a pseudo-polynomial α-approximation. This is not a usual
terminology, but it will be appropriate for our purposes.

Problems of finding balanced connected partitions can model a rich collec-
tion of applications in logistics, image processing, data base, operating systems,
cluster analysis and robotics [4,17,18,22].

Algorithms for Balanced Connected Partition Problems 213

Dyer and Frieze [12] proved that 1-max-min BCPk is NP-hard on bipartite
graphs. Furthermore, 1-max-min BCPk has been shown by Chleb́ıková [10] to
be NP-hard to approximate within an absolute error guarantee of n1−ε, for all
ε > 0. For the weighted versions, Becker et al. [3] proved that max-min BCP2

is NP-hard on grid graphs. Wu [21] showed that max-min BCPk is NP-hard on
interval graphs for every k. Chataigner et al. [7] proved that max-min BCPk

is strongly NP-hard, even on k-connected graphs. Hence, unless P = NP, the
problem max-min BCPk does not admit a fully polynomial-time approximation
scheme (FPTAS). They also showed that, when k is part of the instance, the
problem min-max BCP cannot be approximated within a ratio better than 6/5.

For max-min BCPk (resp. min-max BCPk), Perl and Schach [20] (resp.
Becker, Schach, and Perl [5]) designed polynomial-time algorithm when the input
graph is a tree. Also for trees, Frederickson [14] proposed linear-time algorithms
for both max-min BCPk and min-max BCPk. Polynomial-time algorithms were
also derived for max-min BCP2 on graphs with at most two cut-vertices [1,10].
For max-min BCPk on ladders, a polynomial-time algorithm was obtained by
Becker et al. [2].

Chleb́ıková [10] designed a (4/3)-approximation algorithm for max-min
BCP2. In 2020, Chen et al. [8] observed that the algorithm obtained by Chleb́ıková
has approximation ratio 5/4 for min-max BCP2 (but requires another analysis).
These authors also obtained approximation algorithms with ratio 3/2 and 5/3 for
min-max BCP3 and max-min BCP3, respectively. In 2012, Wu [21] designed a
FPTAS for max-min BCP2 restricted to interval graphs. When k is part of the
input, very recently Casel et al. [6] derived a very involved 3-approximation algo-
rithm for both max-min BCP and min-max BCP, based on the crown decom-
position of the graph. For recent exact algorithms based on mixed integer linear
programs for these problems we refer the reader to Miyazawa et al. [19].

1.1 Our Contribution

We show an approximation algorithm for min-max BCPk, k ≥ 3, that was
inspired by the k/2-approximation algorithm, designed by Chen et al. [9] for
(the unweighted version) 1-min-max BCPk. The algorithm we present here has
basically the same approximation ratio: namely, k/2 + ε, for any arbitrarily
small ε > 0. When the weights assigned to the vertices of the input graph are
bounded by a polynomial on the order of the graph, it achieves the ratio k/2.
The additional constant ε in the ratio k/2 comes from a scaling technique used
to deal with weights that might be very large. These results are presented in
Sect. 2. We note that a 3/2-approximation algorithm for min-max BCP3 was
obtained by Chen et al. [8], but its analysis and implementation are slightly
more complicated than the algorithm we show here.

In Sect. 3, we prove that 1-max-min BCP is fixed-parameter tractable when
the parameter is the size of a vertex cover of the input graph. The proposed
algorithm is based on an integer linear program that has a doubly exponential
dependency on the size of a vertex cover. To the best of our knowledge, no

214 P. F. S. Moura et al.

FPT algorithm for balanced connected partition problems is described in the
literature. We believe that the strategy used to model connected partitions may
be useful to show that other problems involving connectivity constraints are
fixed-parameter tractable when the parameter is the size of a vertex cover.

2 Approximation Algorithm for Min-Max BCPk

Chen et al. [9] devised an algorithm for 1-min-max BCPk with approximation
ratio k/2. This algorithm iteratively applies two simple operations, namely Pull
and Merge, to reduce the size of the largest class. In what follows, we show
how to generalize such operations for the weighted case to design a (k

2 + ε)-
approximation for min-max BCPk, for any ε > 0. First we discuss the algorithm
for the case k = 3, and then we show how to use the connected 3-partition
produced by this algorithm to obtain a connected k-partition for any k ≥ 4.

Throughout this section, (G,w) denotes an instance of min-max BCPk, as
defined previously. Moreover, we assume without loss of generality that w is an
integer-valued function (otherwise, we may simply multiply all weights by the
least common multiple of the denominators).

The following trivial fact is used to show the approximation ratio of the
algorithms for min-max BCPk proposed here. When convenient, we denote by
OPTk(I) the value of an optimal solution for an instance I of min-max BCPk.

Fact 1. Any optimal solution for an instance I = (G,w) of min-max BCPk

has value at least w(G)/k, that is, OPTk(I) ≥ w(G)/k.

For k ≥ 3, let Gk be the class of connected graphs G containing a cut-vertex v
such that G−v has at least k−1 components. We denote by c(H) the number of
components of a graph H. The next lemma provides a lower bound for the value
of an optimal solution of min-max BCPk on instances (G,w) with G ∈ Gk.

Lemma 1. Let I = (G,w) be an instance of min-max BCPk in which G ∈ Gk,
and v is a cut-vertex of G such that c(G − v) = � ≥ k − 1. Let C = {Ci}i∈[�] be
the set of the components of G − v. Suppose further that w(Ci) ≤ w(Ci+1) for
every i ∈ [� − 1]. Then every connected k-partition P of G satisfies w+(P) ≥
w(v) +

∑
i∈[�−k+1] w(Ci). In particular, OPTk(I) ≥ w(v) +

∑
i∈[�−k+1] w(Ci).

Proof. Consider a connected k-partition P of G, and let V ∗ be the class in P that
contains v. Let q∗ := |{C ∈ C : V (C) ⊆ V ∗}| and q := |{C ∈ C : V (C) � V ∗}|.

Hence, q∗ + q = � and q ≤ k − 1. Therefore, q∗ = � − q ≥ � − k + 1.
Since w(C1) ≤ w(C2) ≤ . . . ≤ w(C�), we conclude that w(V ∗) ≥ w(v) +∑

i∈[�−k+1] w(Ci), and thus, w+(P) ≥ w(V ∗). Clearly, it holds that OPTk(I) ≥
w(v) +

∑
i∈[�−k+1] w(Ci).

��
We now present an algorithm for min-max BCP3 that generalizes the algo-

rithm proposed by Chen et al. [9] for the unweighted version of this problem.

Algorithms for Balanced Connected Partition Problems 215

We adopt the same notation used by these authors to refer to the core opera-
tions of the algorithm. The strategy used in the algorithm is to start with an
arbitrary connected 3-partition and improve it by applying successively (while
it is possible) the operations Merge and Pull, defined in what follows.

We say that a connected 3-partition {V1, V2, V3} of G is ordered if w(V1) ≤
w(V2) ≤ w(V3). The input for Pull and Merge is an ordered connected
3-partition {V1, V2, V3}. As these operations may be applied several times, a
reordering of the classes is performed at the end, if necessary. In this context,
we say that an ordered 3-partition P = {V1, V2, V3} is better than an ordered
3-partition Q = {X1,X2,X3} if w(V3) < w(X3). Two classes Vi and Vj are
adjacent if there is an edge in G joining these classes. For X ⊂ V , we denote by
N(X) the set of vertices in G − X that are adjacent to a vertex of X.

– Merge(P)
– Input : an ordered connected 3-partition P = {V1, V2, V3} of G.
– Preconditions: (a) w(V3) > w(G)/2; (b) |V3| ≥ 2; (c) V1 and V2 are

adjacent.
– Output : a connected 3-partition {V1 ∪ V2, V

′
3 , V

′′
3 }, where {V ′

3 , V
′′
3 } is an

arbitrary connected 2-partition of G[V3]. Reorder the classes if necessary,
and return an ordered partition.

The 3-partition returned by Merge is better than the input partition
since w(V ′

3) < w(V3), w(V ′′
3) < w(V3) and w(V1) + w(V2) < w(G)/2 < w(V3).

Note that a depth-first search suffices to check the preconditions. Moreover,
a connected 2-partition of G[V3] can be easily obtained from any spanning tree
of this graph. Hence, Merge can be executed in O(|V | + |E|).

– Pull(P, U, i)
– Input : an ordered connected 3-partition P = {V1, V2, V3} of G, a

nonempty subset U of vertices, and i ∈ {1, 2}.
– Preconditions: (a) w(V3) > w(G)/2; (b) U � V3, G[Vi ∪ U] and G[V3 \ U]

are connected; (c) w(Vi ∪ U) < w(V3).
– Output : a connected 3-partition {Vj , Vi ∪U, V3 \U} where j ∈ {1, 2}\{i}.

Reorder the classes if necessary, and return an ordered partition.

Note that Pull(P, U, i) outputs a partition that is better than P = {V1, V2, V3},
since w(V3 \ U) < w(V3), w(Vj) < w(V3) and w(Vi ∪ U) < w(V3). Moreover,
it is only executed when a set U satisfying the preconditions is given. Thus,
this operation can be executed in O(|V |) time. One may show that the time
complexity to find such a set U � V3 (if it exists) is O(|V ||E|). Let us denote
by PullCheck the algorithm that receives as input an ordered connected 3-
partition P = {V1, V2, V3} of (G,w), and i ∈ {1, 2}, then outputs either a set
U ⊂ V3 that satisfies the preconditions of Pull w.r.t. i, or the empty set ∅ (if
no such U exists).

216 P. F. S. Moura et al.

Algorithm 1. Min-Max-BCP3

Input: An instance (G, w) of min-max BCP3

Output: A connected 3-partition of G
Routines: Merge, Pull and PullCheck.

1: procedure Min-Max-BCP3(G, w)
2: Let P = {V1, V2, V3} be an ordered connected 3-partition of G; W = w(G)
3: while w(V3) > W/2 do
4: if V1 and V2 are adjacent and |V3| ≥ 2 then
5: P ← Merge(P) # P = {V1, V2, V3}
6: else if PullCheck(P, i) returns a nonempty set U for i ∈ [2] then
7: P ← Pull(P, U, i) # P = {V1, V2, V3}
8: else
9: break
10: return P

Lemma 2. Algorithm 1 on input (G,w), where G = (V,E) and w is an integer-
valued function, finds a connected 3-partition of G in O(w(G)|V ||E|) time.

Proof (sketch). Each time a Merge or a Pull operation is executed, the weight
of the heaviest class decreases. Thus, at most w(G) calls of such operations are
performed by the algorithm. Note that both Merge and Pull operations take
O(|V | + |E|) time. The routine PullCheck has time complexity O(|V ||E|). It
follows that Algorithm 1 has time complexity O(w(G)|V ||E|). ��

It is clear that when Algorithm 1 halts and returns a partition P, one of
the two cases occurs: (a) either the loop condition in line 3 failed, and in this
case, P has value w+(P) ≤ w(G)/2, or (b) neither Merge nor Pull operations
could be performed (and w+(P) > w(G)/2). In what follows, we prove that in
case (b) the input graph has a particular “star-like” structure which allows us
to conclude that the solution produced by the algorithm is optimal.

Lemma 3. Let P = {V1, V2, V3} be an ordered connected 3-partition produced by
Algorithm 1, and let Gi = G[Vi], for i = 1, 2, 3. If |V3| ≥ 2 and w(V3) > w(G)/2,
the following hold:

(i) w(V1) < w(G)/4, and V1 and V2 are not adjacent; and
(ii) there exists u ∈ V3 such that u is a cut-vertex of G, {G1, G2} ⊆ C, w(C) ≤

w(V1) ≤ w(V2) for each C ∈ C \ {G1, G2}, where C is the set of components
of G − u. Moreover, if |C| = 3 then w(u) > w(G)/4.

Theorem 1. Algorithm 1 is a pseudo-polynomial approximation with ratio 3
2 for

min-max BCP3 which runs in O(w(G)|V ||E|) time on an instance (G,w), where
G = (V,E).

Proof. Let P = {V1, V2, V3} be an ordered 3-partition of G, returned by the
algorithm; and let Gi = G[Vi], for i = 1, 2, 3. By Lemma 2, P is indeed a
connected 3-partition of G and it can be computed in time O(w(G)|V ||E|).

Algorithms for Balanced Connected Partition Problems 217

If w(V3) ≤ w(G)/2, then it follows directly from Fact 1 that w+(P) = w(V3) ≤
3
2OPT3(G,w).

Suppose now that w(V3) > w(G)/2. If V3 is a singleton {u}, then w(u) ≤
OPT3(G,w) and P is optimal. Otherwise, the algorithm terminated because
neither Merge nor Pull operation can be performed on P. By Lemma 3(ii),
there exists u ∈ V3 such that u is a cut-vertex of G, {G1, G2} ⊆ C, and w(C) ≤
w(V1) ≤ w(V2) for each C ∈ C \ {G1, G2}, where C is the set of components
of G−u. By Lemma 1, we have w+(P) = w(V3) = w(u)+

∑
C∈C\{G1,G2} w(C) ≤

OPT3(G,w). Therefore, in this case the partition P produced by the algorithm
is an optimal solution for the instance (G,w) of min-max BCP3. ��

In what follows, we show how to extend the result obtained formin-max BCP3

to obtain results for min-max BCPk, for all k ≥ 4. For simplicity, we say that a
vertex u satisfying condition (ii) of Lemma 3 is a star-center. Moreover, when u
is a star-center, we label the � components of G − u as C = {C1, C2, . . . , C�},
where C� = G[V2], C�−1 = G[V1] and w(Ci) ≤ w(Ci+1) for all i ∈ [�−1]. The next
algorithm uses a routine called GetSingletons which receives as input a con-
nected graph G = (V,E), a connected k′-partition P of G, and an integer q ≥ 0
such that k′ + q ≤ |V |, then it produces a connected (k′ + q)-partition of G in
time O(|V ||E|) (where q of the classes in the partition are singletons).

Algorithm 2. Min-Max-BCPk (k ≥ 3)
Input: An instance (G = (V, E), w) of min-max BCPk, 3 ≤ k ≤ |V |
Output: A connected k-partition of G
Routines: Min-Max-BCP3, GetSingletons

1: procedure Min-Max-BCPk(G, w)
2: P ← Min-Max-BCP3(G, w) # P = {V1, V2, V3}
3: if w+(P) ≤ w(G)/2 or |V3| = 1 then
4: P ′ ← GetSingletons(G, w, k − 3, P)
5: else
6: Let u be the star-center and let C = {Ci}i∈[�] be the components of G − u.
7: if � > k − 1 then
8: Let t = � − k + 1 and V ′ = (

⋃
i∈[t] V (Ci)) ∪ {u}.

9: P ′ ← {V ′, V (Ct+1), . . . , V (C�−1), V (C�)}
10: else
11: P ← {{u}} ∪ {Ci}i∈[�]

12: P ′ ← GetSingletons(G, w, k − 1 − �, P)

13: return P ′

Theorem 2. For each integer k ≥ 3, Algorithm 2 is a pseudo-polynomial k
2 -

approximation for the problem min-max BCPk that runs in O(w(G)|V ||E|) time
on an instance (G,w), where G = (V,E).

Algorithm 2 is a (polynomial) k
2 -approximation if the weights assigned to

the vertices are bounded by a polynomial on the order of the graph. When

218 P. F. S. Moura et al.

the weights are arbitrary, we apply a scaling technique and use the previous
algorithm as a subroutine to obtain a polynomial algorithm for min-max BCPk

with approximation ratio (k
2 + ε), for any fixed ε > 0.

Algorithm 3. ε-Min-Max-BCPk (k ≥ 3)
Input: An instance (G = (V, E), w) of min-max BCPk, 3 ≤ k ≤ |V |
Output: A connected k-partition of G
Routine: A pseudo-polynomial α-approximation algorithm A for min-max BCPk

1: procedure ε-Min-Max-BCPk(G, w)
2: θ ← maxv∈V w(v)
3: λ ← εθ

|V |
4: for v ∈ V do
5: ŵ(v) ←

⌈
w(v)

λ

⌉

6: P ← A(G, ŵ)
7: return P

Theorem 3. Let k ≥ 3 be an integer, and let I = (G = (V,E), w) be an
instance of min-max BCPk. If there is a pseudo-polynomial α-approximation
algorithm A for min-max BCPk that runs in O(w(G)c|V ||E|) time for some
constant c, then Algorithm 3 is an α(1 + ε)-approximation for min-max BCPk

that runs in O(|V |2c+1|E|/εc) time.

Corollary 1. For each integer k ≥ 3 and ε′ > 0, there is a (k
2 + ε′)-

approximation for min-max BCPk that runs in O(|V |3|E|/ε′) time on a input
(G = (V,E), w).

Proof. The result follows from Theorem 3, by taking Algorithm 3 with ε =
ε′/(k/2) and Algorithm 2 as the routine A it requires. The approximation
ratio k/2 of Algorithm 2 is guaranteed by Theorem 2. ��

An algorithm analogous to Algorithm 3 can be designed for max-min BCPk.
In this case, change line 2 to θ ← minv∈V w(v), change line 5 to ŵ(v) ←⌊

w(v)
λ

⌋
, and consider a routine that is a pseudo-polynomial α-approximation

for max-min BCPk. Then, a theorem similar to Theorem 3 can be obtained for
max-min BCPk.

3 Parameterized Algorithm for 1-MAX-MIN BCP

This section is devoted to the design of a fixed-parameter tractable (FPT) algo-
rithm for 1-max-min BCP when parameterized by the vertex cover. In this
problem, we are given an unweighted graph G, a positive integer k, and a vertex
cover X of G. The objective is to find a connected k-partition of G that max-
imizes the size of the smallest class. Let us consider a fixed instance (G, k) of
1-max-min BCP and a vertex cover X of G.

Algorithms for Balanced Connected Partition Problems 219

Let us denote by I the stable set V (G) \ X. Recall that we assume k ≤
|V (G)| = |X| + |I|. If k > |X|, then there are at least k − |X| classes of size
exactly 1 contained in I, and so an optimal solution (which has value equal
to 1) can be easily computed. If |X| = 1, then G is a star, and so it is trivial
to compute an optimal solution. From now on, we assume that k ≤ |X| and
|X| ≥ 2.

Before presenting the details of the proposed algorithm, we show a lemma
that guarantees the existence of an optimal solution in which each class intersects
the given vertex cover X.

Lemma 4. Let (G, k) be an instance of 1-max-min-BCP and let X be a vertex
cover of G. Then, there exists an optimal connected k-partition {Vi}i∈[k] of G
such that Vi ∩ X �= ∅ for all i ∈ [k].

We remark that the proof of the above lemma follows from the fact that, if
there exists an optimal solution for 1-max-min-BCP where a class is contained
in V (G) \ X, then the cost of such a solution is 1. Therefore, any connected
k-partition of G is an optimal solution. However, the same observation is not
valid for 1-min-max-BCP as one may easily construct a (bipartite) graph G
and a vertex cover X of G such that every optimal 3-connected partition of G
has a class which does not intersect X.

We next use hypergraphs to model the constraints of our ILP formulation
for 1-max-min BCP. A hyperpath of length m between two vertices u and v in
a hypergraph H is a set of hyperedges {e1, . . . , em} ⊆ E(H) such that u ∈ e1,
v ∈ em, and ei ∩ ei+1 �= ∅ for each i ∈ {1, . . . , m − 1}. A set of hyperedges F ⊆
E(H) is a (u, v)-cut if there is no hyperpath between u and v in H − F .

For each S ⊆ X, we define I(S) = {v ∈ I : N(v) = S}. Let u, v ∈ X be a pair
of non-adjacent vertices in G, and let ΓX(u, v) be the set of all separators of u
and v in G[X]. Consider a separator Z ∈ ΓX(u, v), and denote by C(Z) the set of
components of G[X \Z]. Let HZ denote the hypergraph with vertices C(Z) such
that, for each S ⊆ X with I(S) �= ∅, there is a hyperedge {C ∈ C(Z) : S∩V (C) �=
∅} in HZ . We denote by ΛZ(u, v) the set of all (Cu, Cv)-cuts in HZ , where Cu

and Cv are the components of G[X \ Z] containing u and v, respectively.
Suppose that u and v belong to a same class of a connected partition of G.

Hence, there exists a path P linking u and v in G. Note that either P intersects Z
(i.e. V (P)∩Z �= ∅), or P contains a vertex in the stable set I (i.e. V (P)∩I �= ∅).
In the latter case, one may easily see that P guarantees the existence of a hyper-
path Q which connects the vertices Cu and Cv in the hypergraph HZ . Therefore,
the hyperedges of Q must cross every (Cu, Cv)-cut in HZ . The hypergraph HZ

is illustrated in Fig. 1.
For each v ∈ X and i ∈ [k], there is a binary variable xv,i that equals 1 if and

only if v belongs to the i-th class of the partition. Moreover, for every S ⊆ X and
i ∈ [k], there is an integer variable yS,i that equals the amount of vertices in I(S)
that are assigned to the i-th class. The intuition behind the y-variables is that all
vertices in I(S), for a fixed S ⊆ X, play essentially the same role in a connected
partition. The idea of using integer variables to count indistinguishable vertices
in a stable set appeared before in Fellows et al. [13].

220 P. F. S. Moura et al.

Fig. 1. Illustration of the hypergraph construction. Continuous lines indicate the com-
ponents in C(Z). Subsets S of X are represented with dashed lines and their corre-
sponding vertices I(S) are depicted with squares. In this example, {S1, S2} and {S3}
are (Cu, Cv)-cuts in HZ .

Let η = 2|X| (number of subsets of X), and let B(G,X, k) be the set of
vectors in R(|X|+η)k that satisfy the following inequalities (1)–(7). To shorten
the description of inequalities (3) in the next ILP, we denote by Ψ the set

{(uv, Z, F) : {u, v} ⊆ X,uv /∈ E,Z ∈ ΓX(u, v), and F ∈ ΛZ(u, v)}.

∑

v∈X

xv,i +
∑

S⊆X

yS,i ≤
∑

v∈X

xv,i+1 +
∑

S⊆X

yS,i+1 ∀i ∈ [k − 1], (1)

∑

i∈[k]

xv,i = 1 ∀v ∈ X, (2)

xu,i + xv,i −
∑

z∈Z

xz,i −
∑

S∈F

yS,i ≤ 1 ∀(uv, Z, F) ∈ Ψ, i ∈ [k], (3)

yS,i ≤ |I(S)|
(

∑

v∈S

xv,i

)

∀S ⊆ X, i ∈ [k], (4)

∑

i∈[k]

yS,i = |I(S)| ∀S ⊆ X, (5)

xv,i ∈ {0, 1} ∀v ∈ X and i ∈ [k], (6)
yS,i ∈ Z≥ ∀S ⊆ X and i ∈ [k]. (7)

Inequalities (1) establish a non-decreasing ordering of the classes according
to their sizes. Inequalities (2) and (5) guarantee that every vertex of the graph
belongs to exactly one class (i.e. the classes define a partition). Due do Lemma 4,
we may consider only partitions such that each of its classes intersects X. Thus,

Algorithms for Balanced Connected Partition Problems 221

whenever a vertex in the stable set I is chosen to belong to some class, at least
one of its neighbors in X has to be in the same class. This explains the meaning
of inequalities (4). Inequalities (3) guarantee that each class of the partition
induces a connected subgraph. The following lemma shows that the formulation
correctly models the problem.

Lemma 5. Let G be a connected graph, let k ≥ 2 be an integer, and let X be a
vertex cover of G. The problem 1-max-min BCP on instance (G, k) is equivalent
to

max

⎧
⎨

⎩

∑

v∈X

xv,1 +
∑

S⊆X

yS,1 : (x, y) ∈ B(G,X, k)

⎫
⎬

⎭
.

An instance of an Integer Linear Programming problem consists of a
matrix A ∈ Zp×q, a vector b ∈ Zp and a vector c ∈ Zq. The objective is to find a
vector x ∈ Zq that satisfies Ax ≤ b, and maximizes cT x. Let us denote by L the
size of the binary representation of an instance (A, b, c) of the problem. We next
present the maximization version of the theorem showed by Cygan et al. [11]
on the existence of an FPT algorithm for an Integer Linear Programming
problem parameterized by the number of variables.

Theorem 4 (Cygan et al. [11]). Let I = (A, b, c) be an instance of an Inte-
ger Linear Programming problem with size L and q variables. Then I can
be solved using O(q2.5q+o(q) · (L+log Mx) log(MxMc)) arithmetic operations and
space polynomial in L + log Mx, where Mx is an upper bound on the absolute
value a variable can take in a solution, and Mc is the largest absolute value of a
coefficient in the vector c.

Theorem 5. The problem 1-max-min BCP, parameterized by the size of a
vertex cover of the input graph, is fixed-parameter tractable.

Proof. Let (G, k) be an instance of 1-max-min BCP, and X a vertex cover
of G. From Lemma 5, we have that max{∑

v∈X xv,1 +
∑

S⊆X yS,1 : (x, y) ∈
B(G,X, k)} is equivalent to solving instance (G, k). Note that the size of the
corresponding ILP is 22

O(|X|)
log |V (G)|. By Theorem 4, this ILP can be solved

in time 22
O(|X|) |V (G)|O(1). Therefore, 1-max-min BCP is fixed parameter-

tractable when parameterized by the size of a vertex cover of the input graph.
��

4 Concluding Remarks

Problems on balanced connected partitions of graphs have been largely investi-
gated since late seventies. Many variants of these problems, either of existential
or optimization nature (with different objective functions), have been considered,
most of them known to be computationally hard.

One of these intriguing existential problems, in which the input graph is k-
connected and one is interested in finding a connected k-partition into classes

222 P. F. S. Moura et al.

of prescribed sizes, was solved by Lovász [16] and Györi [15]. It has been shown
that such a partition does exist, but it has not been settled whether it can be
found in polynomial time.

The variants we have considered here (min-max BCPk andmax-min BCPk),
and the corresponding versions in which the number of classes k is part of the input,
have gained much attention more recently in terms of approximation algorithms.
We note that, although for the latter variant an inapproximability threshold (of
6/5) has been proved in 2007, for the variants in which k is fixed such thresholds
are not known. The parameterized algorithm shown here seems to be the first of
this nature for this class of problems.

References

1. Alimonti, P., Calamoneri, T.: On the complexity of the max balance problem. In:
Argentinian Workshop on Theoretical Computer Science (WAIT 1999), pp. 133–
138 (1999)

2. Becker, R., Lari, I., Lucertini, M., Simeone, B.: A polynomial-time algorithm for
max-min partitioning of ladders. Theory Comput. Syst. 34(4), 353–374 (2001).
https://doi.org/10.1007/s00224-001-0008-8

3. Becker, R.I., Lari, I., Lucertini, M., Simeone, B.: Max-min partitioning of grid
graphs into connected components. Networks 32(2), 115–125 (1998)

4. Becker, R.I., Perl, Y.: Shifting algorithms for tree partitioning with general weight-
ing functions. J. Algorithms 4(2), 101–120 (1983)

5. Becker, R.I., Schach, S.R., Perl, Y.: A shifting algorithm for min-max tree parti-
tioning. J. ACM 29(1), 58–67 (1982)

6. Casel, K., Friedrich, T., Issac, D., Niklanovits, A., Zeif, Z.: Balanced crown decom-
position for connectivity constraints. In: Mutzel, P., Pagh, R., Herman, G. (eds.)
29th Annual European Symposium on Algorithms (ESA 2021). Leibniz Inter-
national Proceedings in Informatics (LIPIcs), vol. 204, pp. 26:1–26:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl (2021)

7. Chataigner, F., Salgado, L.R.B., Wakabayashi, Y.: Approximation and inapprox-
imability results on balanced connected partitions of graphs. Discret. Math. Theor.
Comput. Sci. 9(1), 177–192 (2007)

8. Chen, G., Chen, Y., Chen, Z.-Z., Lin, G., Liu, T., Zhang, A.: Approximation algo-
rithms for the maximally balanced connected graph tripartition problem. J. Comb.
Optim. 1–21 (2020). https://doi.org/10.1007/s10878-020-00544-w

9. Chen, Y., Chen, Z.-Z., Lin, G., Xu, Y., Zhang, A.: Approximation algorithms for
maximally balanced connected graph partition. Algorithmica 83(12), 3715–3740
(2021). https://doi.org/10.1007/s00453-021-00870-3

10. Chleb́ıková, J.: Approximating the maximally balanced connected partition prob-
lem in graphs. Inf. Process. Lett. 60(5), 225–230 (1996)

11. Cygan, M., et al.: Miscellaneous. In: Parameterized Algorithms, pp. 129–150.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3 6

12. Dyer, M., Frieze, A.: On the complexity of partitioning graphs into connected
subgraphs. Discret. Appl. Math. 10(2), 139–153 (1985)

13. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph
layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H.,
Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-92182-0 28

https://doi.org/10.1007/s00224-001-0008-8
https://doi.org/10.1007/s10878-020-00544-w
https://doi.org/10.1007/s00453-021-00870-3
https://doi.org/10.1007/978-3-319-21275-3_6
https://doi.org/10.1007/978-3-540-92182-0_28

Algorithms for Balanced Connected Partition Problems 223

14. Frederickson, G.N.: Optimal algorithms for tree partitioning. In: Proceedings of
the Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1991,
pp. 168–177. Society for Industrial and Applied Mathematics, USA (1991)

15. Györi, E.: On division of graph to connected subgraphs. In: Combinatorics (Proc.
Fifth Hungarian Colloq., Koszthely, 1976). Colloq. Math. Soc. János Bolyai, vol.
18, pp. 485–494 (1978)

16. Lovász, L.: A homology theory for spanning tress of a graph. Acta Mathematica
Academiae Scientiarum Hungarica 30, 241–251 (1977)

17. Lucertini, M., Perl, Y., Simeone, B.: Most uniform path partitioning and its use
in image processing. Discret. Appl. Math. 42(2), 227–256 (1993)

18. Maravalle, M., Simeone, B., Naldini, R.: Clustering on trees. Comput. Stat. Data
Anal. 24(2), 217–234 (1997)

19. Miyazawa, F.K., Moura, P.F., Ota, M.J., Wakabayashi, Y.: Partitioning a graph
into balanced connected classes: formulations, separation and experiments. Eur. J.
Oper. Res. 293(3), 826–836 (2021)

20. Perl, Y., Schach, S.R.: Max-min tree partitioning. J. ACM 28(1), 5–15 (1981)
21. Wu, B.Y.: Fully polynomial-time approximation schemes for the max-min con-

nected partition problem on interval graphs. Discrete Math. Algorithms Appl.
04(01), 1250005 (2012)

22. Zhou, X., Wang, H., Ding, B., Hu, T., Shang, S.: Balanced connected task alloca-
tions for multi-robot systems: an exact flow-based integer program and an approx-
imate tree-based genetic algorithm. Expert Syst. Appl. 116, 10–20 (2019)

Algorithms for Online Car-Sharing
Problem

Xiangyu Guo1 and Kelin Luo2(B)

1 Department of Computer Science and Engineering, University at Buffalo,
Buffalo, NY, USA

xiangyug@buffalo.edu
2 Department of Mathematics and Computer Science,

Eindhoven University of Technology, Eindhoven, The Netherlands
k.luo@tue.nl

Abstract. In the online car-sharing (a.k.a. ride-sharing) problem, we
are given a set of m available car, and n requests arrive sequentially in
T periods, in which each request consists of a pick-up location and a
drop-off location. In each period, we must immediately and irrevocably
assign free cars to serve arrived requests, such that two requests share
one car. The goal is to find an online algorithm to process all requests
while minimizing the total travel distance of cars.

We give the first algorithm for this problem under the adversarial
model and the random arrival model. For the adversarial model, we give
a 2T + 1/2-competitive algorithm, then we show this can be further
improved to 2T -competitive by a carefully designed edge cost function.
This almost matches the known 2T − 1 lower bound in this model. For
the random arrival model, our algorithm is 3HT −1/2+o(1)-competitive,
where HT is the T -th harmonic number. All the above three results are
based on one single algorithm that runs in O(n3) time.

Keywords: Car-sharing · Online matching · Competitive analysis

1 Introduction

In a car-sharing system, a company offers cars to customers in which each car
serves at most two requests (see [17]). A typical scenario is the following: There
are a number of available cars with current location information, and requests
with pick-up and drop-off locations arrive over time. The car-sharing company
has to serve these requests with available cars. The company wishes to minimize
the total driving distance because it reflects the costs (serving time or fuel con-
sumption) of serving requests. From a societal point of view, this objective also
helps to reduce emissions and protect the environment.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sk�lodowska-Curie grant agreement number
754462.

c© Springer Nature Switzerland AG 2022
N. Balachandran and R. Inkulu (Eds.): CALDAM 2022, LNCS 13179, pp. 224–236, 2022.
https://doi.org/10.1007/978-3-030-95018-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95018-7_18&domain=pdf
https://doi.org/10.1007/978-3-030-95018-7_18

Algorithms for Online Car-Sharing Problem 225

Formally, the online car-sharing (OCS) problem can be described as follows:
Given a set C of cars {ck : k = 1, 2, ..., |C|}, with car k initially at location ck;
Each customer request i consists of a pick-up location si and a drop-off location
ti. The request set R is revealed online in T different time periods; During the d-
th period, a subset of requests is revealed together as a group, and the algorithm
must immediately and irrevocably pair them and assign each request pair {i, j}
to an unmatched car k. The travel distance of car k serving requests i and j, is
the minimum distance of starting from location ck to visit the locations si, sj ,
ti, and tj , such that si is visited before ti and sj is visited before tj . The goal of
the online algorithm is to minimize the total travel distance of cars involved in
the assignment.

Related Work. The offline car-sharing problem. if T = 1, the online car-
sharing problem becomes the offline car-sharing problem. All requests in R are
revealed at once. The objective is to assign all requests to the cars such that
each car serves exactly two requests while minimizing total travel distance. Bei
and Zhang [2] first studied this problem and proved that the offline car-sharing
problem is NP-hard, and they also gave a 2.5-approximation algorithm. Recently,
Luo and Spieksma [11] gave a new algorithm with an improved approximation
ratio of 2; For the special case where the pick-up and drop-off location coincides,
their algorithm achieves 7/5-approximation. Similar problems have also been
studied in the data mining community under various contexts: one closest is the
work by [8] where the problem is called”food delivery problem”, with flow time
objective.

The Online Minimum Metric Bipartite Matching Problem. Set T = n/2
in our problem, i.e. request pairs arrive one by one. If the pick-up and drop-off
locations of any two requests in a pair are the same, then our problem is reduced
to the online minimum metric bipartite matching problem. For the adversarial
model, Kalyanasundaram and Pruhs [9] proved that no deterministic algorithm
can achieve a competitive ratio better than 2T − 1, which implies a same lower
bound for our problem in the adversarial model. Furthermore, they gave an
optimal algorithm, Permutation algorithm, matching this lower bound. In the
restricted version when all locations are on a line, Koutsoupias and Nanavati [10]
showed that the work function method has a competitive ratio between O(log T)
and O(T). Later, Nayyar and Raghvendra [12] gave an input-sensitive analysis
of the algorithm in [14]. They showed that for any metric space M and car
locations in S, the competitive ratio of the algorithm is O(μM(S) log2 T) where
μM(S) is the maximum ratio of the traveling salesman tour and the diameter of
a subset of cars among all subsets of S. In particular, if S is a set of points on
a line, then the competitive ratio is O(log2 T). For the random arrival model,
Raghvendra [14] came up with a 2HT −1+o(1)-competitive algorithm, matching
the lower bound. This lower bound also directly implies a 2T − 1 lower bound
for our problem in the random arrival model.

The Dial-a-Ride Problem (DaRP). Let λ ∈ N>0 be an input parameter,
if each car can carry up to λ requests, and can be reused unlimited times,

226 X. Guo and K. Luo

then the car-sharing problem becomes the classical dial-a-ride problem. The
DaRP has been studied extensively in both the online and offline setting [1,
3–7,13]. Most research works focused on the single-vehicle case though: The
best offline algorithm achieves approximation ratio min{Õ(

√
n), Õ(

√
λ)} [4,7],

while the best online algorithm has competitive ratio 4 (with exponential-time
computation) [3]. It would be interesting to extend our algorithm to the case
when each car can serve λ > 2 requests. On the application side, DaRP has been
studied extensively by the operation research and data mining communities.
Some recent results are [15,16,18], where they give algorithms solving large-
scale DaRP with various constraints or objectives. Notably, the algorithm of
[18] also has approximation guarantee matching the best theoretical results [4,7]
mentioned before.

Our Results. We consider two models: the adversarial model and the random
arrival model.

– The (adaptive) adversarial model. In this model, at each period d the
adversary can choose any request subset from the remaining of R to release
as the arriving group, based on all the decisions the algorithm has made up to
that period. We use competitive ratio α ≥ 1 to measure the performance of
our algorithm. Let W (M) be our algorithm’s assignment cost and let W (M∗)
be the minimum-possible cost (in other words, M∗ is an optimal offline assign-
ment). If W (M) ≤ αW (M∗) for any C and R and the arrival order in R,
then we say our algorithm is α-competitive in the adversarial model.

– The random arrival model. In this model, the adversary got to choose
the requests for all groups at the very beginning, but the groups will arrive in
an uniformly random order. If E[W (M)] ≤ αW (M∗) for any C and R (with
expectation taken on the arrival order of R), then we say our algorithm is
α-competitive in the random arrival model.

Motivated by the Permutation algorithm [9] and Match-and-Assign algo-
rithm [2], we give an O(n3)-time algorithm named Online-Match-and-Assign
(OMA) that works in both the adversarial model and the random arrival model.
The algorithm essentially computes two matchings: it first pairs arrived requests
by computing a minimum-cost matching on them, then assigns these request
pairs to cars by computing another minimum-cost matching. By carefully choos-
ing the cost function used when computing the two matchings, we obtain the
following results:

1. For the adversarial model, we first show that the OMA algorithm achieves
2T + 1/2-competitiveness with a natural cost function defined by the met-
ric. When T = 1, the result matches the approximation ratio 2.5 of the
offline car-sharing problem [2]. We then tweak the cost function and show
that OMA achieves an improved ratio of 2T . Note that this also implies a
2-approximation algorithm for the offline car-sharing problem, matching the
best approximation ratio so far [11].

Algorithms for Online Car-Sharing Problem 227

2. For the random arrival model. We show the OMA algorithm is 3HT − 1/2 +
o(1)-competitive (HT is the T th harmonic number), while the tightest known
lower bound is 2HT − 1 − o(1) [14].

Lastly, we point out that our algorithm can be easily adapted to allow exclu-
sive requests (e.g. customers that don’t want to share ride with others): we can
create a virtual request co-locating with each exclusive request, and pair them
together. Then the above competitive ratios still hold.

2 Preliminaries

2.1 Problem Setting and Notations

We now define the Car-Sharing Problem formally. We are given a metric space
(X , dist). There is a set C of m cars numbered from 1 to m, each of capacity 2,
and the k-th car is identified by its initial location ck ∈ X . There is also a set R
of n rider requests. The i-th request is denoted as a tuple (si, ti) ∈ X ×X , where
si is the pick-up location and ti is the drop-off location of the rider. R is further
partitioned into T groups G1, . . . , GT , where each group Gd(d ∈ [T]) contains
requests arrived in a same short time period and should be handled separately
from those in other groups. We shall use Rd =

⋃
i∈[d] Gi to denote the set of all

requests seen till period d.
Now we describe the desired output for the Car-Sharing Problem. Without

loss of generality, we can assume in each group there are an even number of
requests. We want to assign cars to requests in a way that minimizes the number
of cars used as well as the total distance all cars travel. Specifically, a solution
for the Car-Sharing problem can be represented as two matchings (MR,M):
MR =

⊎
d∈[T] Qd ⊂ R × R is a perfect matching over all requests R, and it is

also the disjoint union of Qd, d ∈ [T], where Qd ∈ Gd ×Gd is a perfect matching
on Gd. MR represents a pairing of requests: every request pair (i, j) ∈ MR will
share a car. The second matching M ∈ C × MR represents an assignment from
cars to paired requests. We can w.l.o.g. assume all pairs in MR are matched, i.e.,
every request pair has its exclusive car.

We can now define the cost of a solution. Let (a1, a2, . . . , aK) ∈ X K be
any sequence of locations in X , we use dist(a1, a2, . . . , aK) := dist(a1, a2) +
dist(a2, a3) + · · · + dist(aK−1, aK) to denote the total travel distance of mov-
ing a1 to aK and visit each ai in order. Then suppose requests i, j are assigned
to car k, the travel distance w(k, {i, j}) for car k to serve request pair {i, j} is
defined as

w(k, {i, j}) := min{dist(ck, si, ti, sj , tj), dist(ck, si, sj , ti, tj),
dist(ck, si, sj , tj , ti), dist(ck, sj , tj , si, ti),
dist(ck, sj , si, tj , ti), dist(ck, sj , si, ti, tj)}. (1)

Now the cost of a solution (MR,M) can be denoted as

W (M) =
∑

(k,{i,j})∈M

w(k, {i, j}), (2)

228 X. Guo and K. Luo

and the goal for the Car-Sharing Problem is to find a solution with the minimum
W (M).

In the Online Car-Sharing (OCS) problem, the set C of cars is known a
priori, while the request set R is revealed sequentially in T periods: in the d-th
period the group Gd arrives, and we need to assign some cars to serve this group
immediately and irrevocably. We will also use OCSs=t to denote the special
version when every request only has one location, i.e. ti = si for every request i.

Summary of notations. We use notation vk,i := dist(ck, si) to denote the
distance between car k and request i. We define uij to be the shortest path
length that starts at si and serves request pair {i, j}:

uij = min{dist(si, ti, sj , tj), dist(si, sj , ti, tj), dist(si, sj , tj , ti)}. (3)

Similarly, uji is the shortest length of such paths starting at sj . Usually uij �= uji,
but in the special case OCSs=t we always have uij = uji = dist(si, sj).

Proposition 1. For u, v, w defined as above, we have

1a w(k, {i, j}) = min{vk,i + uij , vk,j + uji}
1b For any two requests i and j, we have

max{uij , uji} − min{uij , uji} ≤ dist(si, sj)

1c For any assignment (k, {i, j}), we have

min{vk,i, vk,j}+min{uij , uji} ≤ w(k, {i, j}) ≤ max{vk,i, vk,j}+min{uij , uji}
1d For any assignment (k, {i, j}), w.l.o.g, suppose uij ≥ uji, we have

w(k, {i, j}) = min
{

vk,i +
uij − uji

2
, vk,j − uij − uji

2

}

+
uij + uji

2

Table 1 gives an overview of important notations used in this paper.

Table 1. Overview of important notations

Notation Definition

C, |C| = m Set of cars

ck Initial location of car k ∈ C

R, |R| = n Set of requests

(si, ti) Pick-up location and drop-off location for the ith request

T The total number of periods

Rd The set of all requests arrived till period d ∈ [T]

MR Pairing of requests

M Assignment from C to MR

w(k, {i, j}) The min travel distance of serving request i, j using car k

W (M) The sum of travel distances W (M) =
∑

(k,{i,j})∈M w(k, {i, j})

vk,i vk,i := dist(ck, si) for k ∈ C and i ∈ R

uij (resp. uji) Length of shortest path that serves request i, j, see (3)

Algorithms for Online Car-Sharing Problem 229

2.2 τ -Net-Cost Augmenting Path

One building block for our algorithm is the τ -net-augmenting path proposed by
Raghvendra [14]. Consider a complete bipartite graph G with non-negative edge
costs w, and let F be a matching on this graph. An alternating path (or cycle)
is a simple path (resp. cycle) with edges alternating between those in F and
outside F . Suppose there are some vertices unmatched by F (which we call free
vertices). An augmenting path P is an alternating path starting from one free
vertex and ending at another free vertex. Given any such P , we can enlarge F
by letting F = F ⊕ P (the symmetric difference of F and P). In the minimum
cost matching problem, we want to match more vertices while having less edge
cost. To characterize the cost incurred by augmenting F with P , we define the
τ -net-cost as:

Φτ (F, P,w) = τ
∑

e∈P\F

w(e) −
∑

e∈P∩F

w(e), (4)

where τ ≥ 1 is a parameter. When τ = 1, this is just the net cost of augmenting F
with P , and the well-known Hungarian algorithm augments F by implicitly com-
puting the path with minimum 1-net-cost. For τ > 1, Raghvendra [14] showed
that one can still find the augmenting path with minimum τ -net-cost efficiently.
We generalize [14]’s idea to finding a set of augmenting paths with small total
τ -net-cost: let P be a set of augmenting paths and define the τ -net-cost of this
set to be

Φτ (F,P, w) =
∑

P∈P
Φτ (F, P,w). (5)

In Sect. 3 we give an algorithm to find an augmenting path set P with minimum
Φτ , and use it to guide the search for a good assignment.

3 The Online-Match-and-Assign Algorithm

In this section, we describe our main algorithm for the online car-sharing prob-
lem: Online Match-and-Assign algorithm (OMA). OMA consists of two steps in
each period: in the first step, the algorithm pairs the requests, and in the second
step, run the min-tau-net-cost algorithm which assigns the request pairs to the
cars. Both of the two steps are essentially computing minimum-cost matchings
w.r.t. different edge cost functions. The algorithm is summarized in Algorithm 1.
We give a brief explanation here.

The OMA algorithm maintains two matchings at every period d: an offline
matching M ′

d serving as an approximation for the optimal, and the actual online
matching Md. The algorithm updates these two matchings iteratively. Recall Rd

is the set of all requests present till period d. In the first step, the algorithm
computes a minimum-cost pairing Γd on newly arrived requests Gd w.r.t. the
following edge cost v1 : Gd × Gd 	→ R≥0:

v1({i, j}) := min{uij , uji} (6)

230 X. Guo and K. Luo

where uij is defined in (3). The cost v1({i, j}) can be viewed as the short-
est travel distance needed to serve request pair {i, j}. Let MRd be the pairing
on Rd after this step, we see that MRd = MRd−1 ∪ Γd. We use v1(MRd) :=∑

{i,j}∈MRd
v1({i, j}) to denote the total cost of edges in pairing MRd. We also

have the following simple proposition on the pairing cost:

Proposition 2. For any feasible pairing MR∗
d until period d,

v1(MRd) ≤ v1(MR∗
d).

After all newly arrived requests are paired up with each other, we run algo-
rithm min-tau-net-costτ,v2 (see Algorithm 2) with parameter τ and edge cost
function v2 to assign cars to the new request pairs Γd. Here τ is the coefficient
in τ -net-cost Φτ (M,P, v2), and v2 ∈ R

C×(R×R)
≥0 is a cost measure for a car k to

serve a request pair {i, j}. Specifically, for different arrival models we will choose
different v2 ∈ {α, β, γ} where:

α(k, {i, j}) = min{vk,i, vk,j} (7)

β(k, {i, j}) = min
{

vk,i +
uij − uji

2
, vk,j − uij − uji

2

}

(assuming uij > uji)

(8)

γ(k, {i, j}) = max{vk,i, vk,j} (9)

Among the three edge cost functions above, α can be understood as the distance
of edge between a car k and a request pair {i, j}, while β can be thought as α
compensated by the travel distance needed to serve i and j. We’ll use v2 = α or
β for the adversarial arrival model, and v2 = γ for the random arrival model.

Algorithm 1. Online match and assign algorithm (OMAτ,v2).
Parameters: τ ≥ 1, v2 ∈ {α, β, γ}
1: MR0 ← ∅ � request pairing
2: M0 ← ∅ � the online matching
3: M′

0 ← ∅ � the offline matching
4: for requests that arrive in period d do
5: Γd ← minimum-cost matching on Rd \ Rd−1 w.r.t. cost v1
6: MRd ← MRd−1 ∪ Γd � current request pairing
7: (M ′

d, Md) ← min-tau-net-costτ,v2(C ∪ MRd, M ′
d−1, Md−1) � See Algorithm 2

8: end for
9: return MR = MRT , M ′ = M ′

T , M = MT

The min-tau-net-cost algorithm is similar to the online minimum metric bipar-
tite matching algorithm in [9,14]. The main difference here is that we need to
compute multiple augmenting paths simultaneously while in [9,14] they only
need one path at a time. In period d, we compute the minimum-τ -net-cost aug-
menting path set P w.r.t. the offline matching M ′

d−1, and update the offline

Algorithms for Online Car-Sharing Problem 231

Algorithm 2. min-tau-net-costτ,v2(C ∪ MRd,M
′
d−1,Md−1).

Parameters: τ ≥ 1, v2 ∈ {α, β, γ}
1: Compute the augmenting paths P with min Φτ (M ′

d−1, P, v2)
2: Update the offline matching with P: M ′

d ← M ′
d−1 ⊕ P.

3: Assign each request pair {i, j} in MRd \ MRd−1 to its corresponding endpoint
(free car) k along the augmenting path P ∈ P starting from {i, j}. Let Υd be the
assignment of request pairs in MRd \ MRd−1.

4: Update the online matching: Md ← Md−1 ∪ Υd.
5: return M ′

d and Md

matching M ′
d ← M ′

d−1 ⊕ P; Then we assign the new request pairs using P: each
{i, j} ∈ MRd \ MRd−1 is assigned to its corresponding endpoint (free car) k
along the augmenting path P ∈ P starting from {i, j}. Raghvendra [14] gave a
polynomial-time algorithm for the |P| = 1 case, and we generalize it to get the
following theorem:

Theorem 1. For every d ∈ [T] and any τ ≥ 1, edge cost v2, Step 1 of Algo-
rithm 2 can be computed in O(n3) time to get a set P of augmenting paths such
that

1a |P| = |MRd \ MRd−1| and all paths in P are (node-)disjoint with each other.
1b Among all augmenting path sets that satisfy condition (1a), P is the one with

minimum Φτ (M,P, v2).

We note the main technical difficulty of the car-sharing problem: unlike in
the metric bipartite matching problem [9,14] where the cost of assigning a car
to a request is naturally defined by the distance between them, in our problem,
the “distance” from a car to a request pair is not well-defined; That’s one reason
why our problem is inherently harder than matching: recall even the offline car-
sharing is already NP-hard. Although we have designed some edge cost functions
(e.g., (7) (8) (9)), they don’t necessarily satisfy the triangle inequality, which
poses additional difficulty in the analysis.

In the next section, we analyze the algorithm performance with different τ
and v2. For the adversarial arrivals model in Sect. 4.1, we use τ = 1, v2 ∈ {α, β}
and the whole algorithm is referred to as OMA1,α or OMA1,β , respectively; while
for the random arrival model in Sect. 4.2, we use some τ > 1 and v2 = γ, with
the algorithm referred to as OMAτ,γ .

4 Algorithm Analysis

In this section, we analyze the performance of the OMA algorithm in the adver-
sarial model and the random arrival model.

232 X. Guo and K. Luo

4.1 Adversarial Order of Arrivals

In this section, we will present a detailed analysis of the (2T + 1/2)-competitive
algorithm OMA1,α. Using β in place of α we can slightly improve the competitive
ratio to 2T . The analysis of OMA1,β is overall identical but technically more
involved, so to keep a better flow of presentation we leave it to the supplementary.

In OMA1,α, we run the OMA algorithm with v2 = α (see Algorithm 1): in
each period d, we compute the augmenting paths P with min Φ1(M ′

d−1,P, α),
then update the offline matching to M ′

d = P ⊕ M ′
d−1. First, we claim

that M ′
d is a minimum perfect matching in the weighted bipartite graph

G = (C ∪ MRd, v2(k, {i, j})): because an alternating path set P minimizing
Φ1(M ′

d−1,P, v2) also minimizes Φ1(M ′
d−1,P, v2) +

∑
(k,{i,j})∈M ′

d−1
v2(k, {i, j}),

which is exactly
∑

(k,{i,j})∈M ′
d
v2(k, {i, j}). Therefore, we have the following

proposition.

Proposition 3. For any edge set M , let v2(M) :=
∑

(k,{i,j})∈M v2(k, {i, j})
denote the total v2 for M . Let M̃∗ be an optimal assignment for request pairing
MR with respect to cost function v2 ∈ {α, β}. Then for any period d ≥ 1, we
have

v2(M ′
d) ≤ v2(M ′) = v2(M̃∗).

Recall now the cost α for car k to serve request pair {i, j} is defined to be
α(k, {i, j}) = min{vk,i, vk,j}. Although α doesn’t satisfy the triangle inequality,
the following lemma shows that α can still be bounded by alternating path length
plus the pairing cost.

Lemma 1. Let α(M) :=
∑

(k,{i,j})∈M α(k, {i, j}) for any matching M . In
period d, we have

α(Md \ Md−1) ≤ α(M ′
d−1) + α(M ′

d) +
∑

{i,j}∈MRd−1

dist(si, sj).

Let M∗ be an optimal assignment and MR∗ be the corresponding pairing.
The following lemma shows that the pairing MR used by our algorithm actually
induces a good matching when using α as the edge cost function.

Lemma 2. (Lemma 4 in [2]) Let M̃∗ be the minimum perfect matching in
the weighted bipartite graph G = (C ∪ MR, α(k, {i, j})) where α(k, {i, j}) =
min{vk,i, vk,j}. We have:

α(M̃∗) ≤
∑

(k,{i,j})∈M∗

vk,i + vk,j

2
.

Now we can prove the competitive-ratio for OMA1,α.

Theorem 2. For OCS in the adversarial model, OMA1,α algorithm is (2T +
1/2)-competitive.

Algorithms for Online Car-Sharing Problem 233

Proof. According to definition (2), we have:

W (M) =
∑

(k,{i,j})∈M

w(k, {i, j}) ≤
∑

(k,{i,j})∈M

(max{vk,i, vk,j} + min{uij , uji})

≤
∑

(k,{i,j})∈M

(min{vk,i, vk,j} + dist(si, sj) + min{uij , uji})

≤
∑

d∈[T]

∑

(k,{i,j})∈Md\Md−1

(min{vk,i, vk,j} + dist(si, sj))

+
∑

{i,j}∈MR

min{uij , uji}.

The first inequality is by Proposition 1c and the second one is by triangle inequal-
ity. Then, by Lemma 1 and the definition of α, we have,

∑

(k,{i,j})∈Md\Md−1

min{vk,i, vk,j} ≤ α(M ′
d−1) + α(M ′

d) +
∑

{i,j}∈MRd−1

dist(si, sj).

Recall that v1({i, j}) := min{uij , uji} and v1(MR) :=
∑

{i,j}∈MR v1({i, j}), thus

W (M) ≤
∑

d∈[T]

⎛

⎝α(M ′
d−1) + α(M ′

d) +
∑

{i,j}∈MRd

dist(si, sj)

⎞

⎠ + v1(MR).

By Proposition 3 we have α(M ′
d) ≤ α(M ′) = α(M̃∗); Furthermore, by defini-

tion for all 1 ≤ d ≤ T there is
∑

{i,j}∈MR dist(si, sj) ≥ ∑
{i,j}∈MRd

dist(si, sj).
Combine the two we get

W (M) ≤(2T − 1)α(M̃∗) + T
∑

{i,j}∈MR

dist(si, sj) + v1(MR)

≤(2T − 1)
∑

(k,{i,j})∈M∗

vk,i + vk,j

2
+ T

∑

{i,j}∈MR

dist(si, sj) + v1(MR)

≤(2T − 1)
∑

(k,{i,j})∈M∗
(min{vk,i, vk,j} + dist(si, sj)/2)

+ T
∑

{i,j}∈MR

dist(si, sj) + v1(MR)

≤(2T − 1)
∑

(k,{i,j})∈M∗
min{vk,i, vk,j} + ((2T − 1)/2 + T + 1)v1(MR∗)

≤(2T + 1/2) W (M∗).

The second inequality follows from Lemma 2. The third inequality follows from
the triangle inequality. The fourth inequality holds because min{uij , uji} ≥
dist(si, sj) and v1(MR∗) ≥ v1(MR) ≥ ∑

{i,j}∈MR dist(si, sj) (by Proposition 2
and triangle inequality). The last inequality follows from Proposition 1c. �

234 X. Guo and K. Luo

Replacing the edge cost function α with β (see (8)), we can remove the
additive 1/2 to get a 2T -competitive algorithm, matching the best known offline
(T = 1) approximation ratio. The analysis of OMA1,β is quite similar to OMA1,α.

Theorem 3. For OCS in the adversarial model, the OMA1,β algorithm is 2T -
competitive.

For the special case where each request’s pick-up location si coincides with
its drop-off location ti, we can show a slightly tighter ratio.

Theorem 4. For OCSs=t in the adversarial model, OMA1,α algorithm is (2T −
1/2)-competitive.

Kalyanasundaram and Prushs [9] proved that, for the minimum metric bipartite
matching problem no deterministic algorithm can achieve a competitive ratio
smaller than 2T − 1. This directly implies a 2T − 1 lower bound for OCS and
OCSs=t, because online minimum metric bipartite matching problem is a special
case of OCSs=t. Also note that when T = 1, OCS becomes the offline car-sharing
problem, and we get a competitive ratio of 2, which is also the best-known
approximation ratio so far [11].

4.2 Random Order of Arrivals

In this section, we analyze the performance of OMAτ,γ for OCS in the random
arrival model. As in OMA1,α, we augment M ′

d−1 by finding a set of augmenting
paths P, and let M ′

d = P ⊕ M ′
d−1. The main differences from the adversarial

model are: (1) we use a different edge cost function v2(k, {i, j}) = γ(k, {i, j}) =
max{vk,i, vk,j}, and (2) M ′

d (d ≥ 2) is not necessarily the minimum weight
perfect matching in the weighted graph G = (C ∪ MRd, γ(k, {i, j})). We first
bound the increased cost by the augmenting path length.

Lemma 3. Let γ(M) :=
∑

(k,{i,j})∈M γ(k, {i, j}) for any assignment M . In
period d, let P be the alternating paths with respect to M ′

d−1, we have

γ(Md \ Md−1) ≤ γ(P \ M ′
d−1) + γ(P ∩ M ′

d−1).

We also have the following lemma from [14] that relates the matching cost
with the total τ -net-cost of augmenting paths produced over time:

Lemma 4. (Lemma 7. (ii) in [14]) Let τ > 1. Let P1,P2,,PT be the aug-
menting path sets computed by our algorithm in that order. Then, the τ -net-cost
of these paths relates to the cost of the online matching as follows:

T∑

d=1

Φτ (Pd) ≥ τ + 1
2

γ(M ′) +
τ − 1

2
γ(M).

Now we prove the competitive ratio for OMAτ,γ .

Algorithms for Online Car-Sharing Problem 235

Theorem 5. In the random arrival model, the OMAτ,γ algorithm is 3HT −1/2+
o(1)-competitive.

There also exists a 2Hn − 1 − o(1) lower bound for the minimum metric
bipartite matching problem in the random arrival model [14]. Like in the case
of adversarial model, this implies a same 2HT − 1 − o(1) lower bound for OCS
and OCSs=t in the random arrival model.

5 Conclusion

We gave the first algorithm for the online car-sharing problem in the adaptive
adversarial model and the random arrival model. Our algorithm achieves near-
optimal competitive ratio in both models. One immediate open problem is to
allow each car to serve λ > 2 requests. It’s natural to think along the same
approach of this paper: i.e., first “cluster” the requests according to some crite-
ria, then assign cars to the resulted clusters by solving certain min-cost match-
ing. However, the competitive ratio will likely depend on λ: one feature that
makes our problem hard is the rigid requirement that every car serves exactly λ
requests, and this often implies solving hard problems like λ-dimensional match-
ing. Another direction worth exploration is to consider different objectives, e.g.,
customer waiting time (a.k.a. flow time), which has apparent practical impor-
tance.

References

1. Ascheuer, N., Krumke, S.O., Rambau, J.: Online dial-a-ride problems: minimizing
the completion time. In: Annual Symposium on Theoretical Aspects of Computer
Science, pp. 639–650 (2000)

2. Bei, X., Zhang, S.: Algorithms for trip-vehicle assignment in ride-sharing. In: McIl-
raith, S.A., Weinberger, K.Q. (eds.) Proceedings of the Thirty-Second AAAI Con-
ference on Artificial Intelligence, (AAAI-18), the 30th Innovative Applications of
Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, 2–7
February 2018, pp. 3–9. AAAI Press (2018)

3. Bienkowski, M., Kraska, A., Liu, H.H.: Traveling repairperson, unrelated machines,
and other stories about average completion times. In: International Colloquium on
Automata, Languages and Programming (ICALP) (2021)

4. Charikar, M., Raghavachari, B.: The finite capacity dial-a-ride problem. In: Pro-
ceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.
98CB36280), pp. 458–467 (1998)

5. Feuerstein, E., Stougie, L.: On-line single-server dial-a-ride problems. Theoret.
Comput. Sci. 268(1), 91–105 (2001)

6. Gørtz, I.L., Nagarajan, V., Ravi, R.: Minimum makespan multi-vehicle dial-a-ride.
ACM Trans. Algorithms (TALG) 11(3), 1–29 (2015)

7. Gupta, A., Hajiaghayi, M., Nagarajan, V., Ravi, R.: Dial a ride from k-forest. ACM
Trans. Algorithms (TALG) 6(2), 1–21 (2010)

236 X. Guo and K. Luo

8. Joshi, M., Singh, A., Ranu, S., Bagchi, A., Karia, P., Kala, P.: Batching and match-
ing for food delivery in dynamic road networks. In: 2021 IEEE 37th International
Conference on Data Engineering (ICDE), pp. 2099–2104. IEEE (2021)

9. Kalyanasundaram, B., Pruhs, K.: Online weighted matching. J. Algorithms 14(3),
478–488 (1993)

10. Koutsoupias, E., Nanavati, A.: The online matching problem on a line. In: Solis-
Oba, R., Jansen, K. (eds.) WAOA 2003. LNCS, vol. 2909, pp. 179–191. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24592-6 14

11. Luo, K., Spieksma, F.C.R.: Approximation algorithms for car-sharing problems.
In: Kim, D., Uma, R.N., Cai, Z., Lee, D.H. (eds.) COCOON 2020. LNCS, vol.
12273, pp. 262–273. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
58150-3 21

12. Nayyar, K., Raghvendra, S.: An input sensitive online algorithm for the metric
bipartite matching problem. In: Umans, C. (ed.) 58th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, 15–17 October
2017, pp. 505–515. IEEE Computer Society (2017)

13. de Paepe, W., Lenstra, J.K., Sgall, J., Sitters, R.A., Stougie, L.: Computer-aided
complexity classification of dial-a-ride problems. INFORMS J. Comput. 16(2),
120–132 (2004)

14. Raghvendra, S.: A robust and optimal online algorithm for minimum metric bipar-
tite matching. In: Jansen, K., Mathieu, C., Rolim, J.D.P., Umans, C. (eds.) Approx-
imation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, APPROX/RANDOM 2016, 7–9 September 2016, Paris, France. LIPIcs,
vol. 60, pp. 18:1–18:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)

15. Ta, N., Li, G., Zhao, T., Feng, J., Ma, H., Gong, Z.: An efficient ride-sharing
framework for maximizing shared route. IEEE Trans. Knowl. Data Eng. 30(2),
219–233 (2017)

16. Tong, Y., Zeng, Y., Zhou, Z., Chen, L., Ye, J., Xu, K.: A unified approach to route
planning for shared mobility. Proc. VLDB Endowment 11(11), 1633 (2018)

17. Uber: How uberpool works (2021). https://www.uber.com/nl/en/ride/uberpool/
18. Zeng, Y., Tong, Y., Chen, L.: Last-mile delivery made practical: an efficient route

planning framework with theoretical guarantees. Proc. VLDB Endowment 13(3),
320–333 (2019)

https://doi.org/10.1007/978-3-540-24592-6_14
https://doi.org/10.1007/978-3-030-58150-3_21
https://doi.org/10.1007/978-3-030-58150-3_21
https://www.uber.com/nl/en/ride/uberpool/

Algebraic Algorithms for Variants
of Subset Sum

Pranjal Dutta1(B) and Mahesh Sreekumar Rajasree2

1 Chennai Mathematical Institute, Chennai, India
pranjal@cmi.ac.in

2 Indian Institute of Technology, Kanpur, India
mahesr@cse.iitk.ac.in

Abstract. Given (a1, . . . , an, t) ∈ Z
n+1
≥0 , the Subset Sum problem

(SSUM) is to decide whether there exists S ⊆ [n] such that
∑

i∈S ai = t.
Bellman (1957) gave a pseudopolynomial time dynamic programming
algorithm which solves the Subset Sum in O(nt) time and O(t) space.

In this work, we present search algorithms for variants of the Sub-
set Sum problem. Our algorithms are parameterized by k, which is a
given upper bound on the number of realisable sets (i.e. number of solu-
tions, summing exactly t). We show that SSUM with a unique solution
is already NP-hard, under randomized reduction. This makes the regime
of parametrized algorithms, in terms of k, very interesting.

Subsequently, we present an Õ(k·(n+t)) time deterministic algorithm,
which finds the hamming weight of all the realisable sets for a subset sum
instance. We also give a poly(knt)-time and O(log(knt))-space determin-
istic algorithm that finds all the realisable sets for a subset sum instance.
Our algorithms use analytic and number-theoretic techniques.

Keywords: Subset sum · Power series · Isolation lemma · Hamming
weight · Interpolation · Logspace · Newton’s identities

1 Introduction: Variants of Subset Sum

The Subset Sum problem (SSUM) is a well-known NP-complete problem [1,
p. 226], where given (a1, . . . , an, t) ∈ Z

n+1
≥0 , the problem is to decide whether

there exists S ⊆ [n] such that
∑

i∈S ai = t. In the recent years, provable-secure
cryptosystems based on SSUM such as private-key encryption schemes [2], tag-
based encryption schemes [3], etc. have been proposed. There are numerous
improvements made in the algorithms that solve the SSUM problem in both
the classical [4–8] and quantum world [9–11]. One of the first algorithms was
due to Bellman [12] who gave a O(nt) time (pseudo-polynomial time) algorithm
which requires Ω(t) space. One can ask for a search version of this problem,

The full version is available at this link.
P. Dutta—Supported by Google PhD Fellowship.
M. S. Rajasree—Supported by Prime Minister’s Research Fellowship.

c© Springer Nature Switzerland AG 2022
N. Balachandran and R. Inkulu (Eds.): CALDAM 2022, LNCS 13179, pp. 237–251, 2022.
https://doi.org/10.1007/978-3-030-95018-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95018-7_19&domain=pdf
https://drive.google.com/file/d/1FKf-aegD91TIn9B3LLsFx258CvKpXyZW/view?usp=sharing
https://doi.org/10.1007/978-3-030-95018-7_19

238 P. Dutta and M. S. Rajasree

i.e. to output all the solutions. Since there can be exponentially many solutions,
it could take exp(n)-time (and space), to output them. This motivates our first
problem defined below.

Problem 1 (k−SSSUM). Given (a1, . . . , an, t) ∈ Z
n+1
≥0 , the k-solution SSUM(k−

SSSUM) problem asks to output all S ⊆ [n] such that
∑

i∈S ai = t provided with
the guarantee that the number of such subsets is at most k.

� Remark. We denote 1 − SSSUM as unique Subset Sum problem (uSSSUM).
In stackexchange, a more restricted version was asked where it was assumed that
k = 1, for any realizable t. Here we just want k = 1 for some fixed target value
t and we do not assume anything for any other value t′.

Now, we consider a different restricted version of the k − SSSUM, where
we demand to output only the hamming weights of the k-solutions (we call it
Hamming − k − SSSUM, for definition see Problem 2). By hamming weight of
a solution, we mean the number of ai’s in the solution set (which sums up to
exactly t). In other words, if �a · �v = t, where �a = (a1, . . . , an) and �v ∈ {0, 1}n,
we want |v|1, the �1-norm of the solution vector.

Problem 2 (Hamming − k − SSSUM). Given an instance of the k − SSSUM,
say (a1, . . . , an, t) ∈ Z

n+1
≥0 , with the promise that there are at most k-many

S ⊆ [n] such that
∑

i∈S ai = t, Hamming − k − SSSUM asks to output all the
hamming weights (i.e., |S|) of the solutions.

It is obvious that solving k−SSSUM solves Problem 2. Importantly, the deci-
sion problem, namely the HWSSUM is already NP-hard. The HWSSUM problem
is : given an instance (a1, . . . , an, t, w) ∈ Z

n+2
≥0 , decide whether there is a solu-

tion to the Subset Sum with hamming weight equal to w. Note that, there is a
trivial Cook’s reduction from the SSUM to the HWSSUM: SSUM decides ‘yes’ to
the instance (a1, . . . , an, t) iff at least one of the following HWSSUM instances
(a1, . . . , an, t, i), for i ∈ [n] decides ‘yes’. Therefore, the search-version of HWS-
SUM, the Hamming−k−SSSUM problem, is already an interesting problem and
worth investigating.

In this work, we give various deterministic algorithms for Problem 1-2. Our
algorithms are algebraic and number theoretic in nature and mainly build upon
the previous power series techniques, by Jin and Wu [6] and sparse interpola-
tion [13].

1.1 Main Results

In this section, we briefly state our main results. The leitmotif of this paper is
to give efficient algorithms for variants of SSUM, with a promise of a bounded
number of solutions. Our first theorem gives an efficient pseudo-linear Õ(n + t)
time deterministic algorithm for Problem 2, for constant k.

Theorem 1 (Algorithm for hamming weight). There is a Õ(k(n+t))-time
deterministic algorithm for Hamming − k − SSSUM.

https://cstheory.stackexchange.com/questions/42502/subset-sum-problem-with-at-most-one-solution-for-any-target

Algebraic Algorithms for Variants of Subset Sum 239

� Remark (Optimality). We emphasize the fact that Theorem 1 is likely to be
near-optimal for bounded k, due to the following argument. An O(t1−ε) time
algorithm for Hamming−1−SSSUM can be directly used to solve 1−SSSUM, as
discussed above. By using the randomized reduction (Theorem 3), this would give
us a randomized nO(1)t1−ε-time algorithm for SSUM. But, in [14] the authors
showed that SSUM does not have nO(1)t1−ε time algorithm unless the Strong
Exponential Time Hypothesis (SETH) is false.

Theorem 2 (Algorithms for finding solutions in low space). There is a
poly(knt)-time and O(log(knt))-space deterministic algorithm which solves k −
SSSUM.

� Remark. When considering low space algorithms outputting multiple values,
the standard assumption is that the output is written onto a one-way tape which
does not count into the space complexity; so an algorithm outputting kn log n
bits (like in the above case) could use much less working memory than kn log n;
for a reference see McKay and Williams [15].

� Comparison with the Trivial Algorithm. Consider the usual search-to-decision
reduction for subset sum: First try to include a1 in the subset, and if it is
feasible then we subtract t by a1 and add a1 into the solution, and then
continue with a2, and so on. This procedure finds a single solution, but if
we implement it in a recursive way then it can find all the k solutions in
k · n · (time complexity for decision version) time; we can think about an n-level
binary recursion tree where all the infeasible subtrees are pruned.

Theorem 1 Is Better than the Trivial. Since number of solutions is bounded by k,
choosing a prime p > n+t+k suffices in [6], to make the algorithm deterministic.
Thus, the time complexity of the decision version is Õ((n+ t) log k). Hence, from
the above, the search complexity is Õ(kn(n+t)) which is worse than Theorem 1.

Theorem 2 Is Better than the Trivial. For solving the decision problem in low
space, we simply use Kane’s O(log(nt))-space poly(nt)-time algorithm [16]. As
explained (and improved) in [7], the time complexity is actually O(n3t) and the
extra space usage is Õ(n) for remembering the recursion stack. Thus the total
time complexity is O(kn4t) and it takes Õ(n) + O(log t) space. While Theorem
2 takes O(log(knt)) space and poly(knt) time. Although our time complexity is
worse1, when k ≤ 2O((n log t)1−ε), for ε > 0, our space complexity is better.

1.2 Technical Overview

All the algorithms presented in this paper consider that the number of solutions
is bounded by a parameter k. This naturally raises the question whether the
SSUM problem is hard, even when the number of solutions is bounded. We will
show that this is true even for the case when k = 1, i.e., uSSSUM is NP-hard
under randomized reduction.
1 Thm. 2 is not about time complexity; as long as it is pseudopolynomial time it’s ok.

240 P. Dutta and M. S. Rajasree

Theorem 3 (Hardness of uSSSUM). There exists a randomized reduction
which takes a SSUM instance M = (a1, . . . , an, t) ∈ Z

n+1
≥0 , as an input, and

produces multiple SSUM instances SS� = (b1, . . . , bn, t(�)), where � ∈ [2n2], such
that if

– M is a YES instance of SSUM =⇒ ∃� such that SS� is a YES instance of
uSSSUM;

– M is a NO instance of SSUM =⇒ ∀�,SS� is a NO instance of uSSSUM.

Proof. The core of the proof is based on the Lemma 1 (Isolation lemma). The
reduction is as follows. Let w1, . . . , wn be chosen uniformly at random from
[2n]. We define bi = 4n2ai + wi,∀i ∈ [n] and the �th SSUM instance as SS� =
(b1, . . . , bn, t(�) = 4n2t+ �). Observe that all the new instances are different only
in the target values t(�).

Suppose M is a YES instance, i.e., ∃S ⊆ [n] such that
∑

i∈S ai = t. Then,
for � =

∑
i∈S wi, the SS� is a YES instance, because

∑

i∈S

bi − t(�) = 4n2

(
∑

i∈S

ai − t

)

−
(

� −
∑

i∈S

wi

)

= 0 .

If M is a NO instance, consider any � and S ⊆ [n]. Since M is a NO instance,
4n2(

∑
i∈S ai − t) is a non-zero multiple of 4n2, whereas |� − ∑

i∈S wi| < 4n2,
which implies that

4n2(
∑

i∈S

ai − t) − (� −
∑

i∈S

wi) �= 0 =⇒
∑

i∈S

bi �= t(�) .

Hence, SS� is also a NO instance.
We now show that if M is a YES instance, then one of SS� is a uSSSUM.

Let F contain all the solutions to the SSUM instance M, i.e. F = {S|S ⊆
[n],

∑
i∈S ai = t}. Since wi’s are chosen uniformly at random, Lemma 1 says

that there exists a unique S ∈ F , such that w(S) =
∑

i∈S wi, is minimal with
probability at least 1/2. Let us denote this minimal value w(S) as �∗. Then,
SS�∗ is uSSSUM because S is the only subset such that

∑
i∈S wi = �∗. 	

Proof idea of Theorem 1. First we sketch the idea for k = 1. Suppose, we
have a uSSSUM instance such that the hamming weight of the unique solution
is w. Choose a prime q = O(n+k+ t) and a primitive root μ, i.e. ordq(μ) = q−1
(for definition, see Definition 2). We can find them efficiently in Õ(n + k + t)
time.

Now, consider the following important polynomial f(x) =
∏n

i=1(1 + μ · xai).
Observe that the coefficient of xt in f is μw. Therefore, by using Lemma 6, we
can find μw from f(x) and extract w, since ordq(μ) = q−1 > n ≥ w. This solves
Hamming − 1 − SSSUM.

This idea can be extended to general k-SSSUM instance. Observe that, we
cannot directly use the above trick, for a single polynomial f(x), since, in this

Algebraic Algorithms for Variants of Subset Sum 241

case, the coefficient of xt is
∑

i≤k λi · μwi , where wi are the hamming weights of
the solution, which occur λi times. Eventually, we want to create a polynomial
whose roots are of the form μwi , so that we can first find the roots μwi (over
Fq), and from them we can find wi. To achieve that, we work with k-many
polynomials fj :=

∏n
i=1(1 + μj · xai), for j ∈ [k]. Note that the coefficient of xt

in fj is of the form
∑

i≤k λi · μjwi (Claim 2). By Newton’s Identities (Lemma 3)
and Vieta’s formulas (Lemma 4), we can now efficiently construct a polynomial
whose roots are μwi . For details, see Sect. 3.

Proof idea of Theorem 2. The above polynomial method fails to give a low
space algorithm, since Lemma 6 requires Ω(t) space (eventually it needs to store
all the coefficients mod xt+1). Therefore, our proof idea of Theorem 2 is com-
pletely different from that of Theorem 1. Here, we work with a multivariate poly-
nomial f(x, y1, . . . , yn) =

∏n
i=1(1 + yix

ai) over Fq, for a large prime q = O(nt)
and its multiple evaluations f(α, c1, . . . , cn), where (α, c1, . . . , cn) ∈ F

n+1
q .

Observe that, the coefficient of xt in f is a multivariate polynomial
pt(y1, . . . , yn); each of its monomial carries the necessary information of a solu-
tion, for the instance (a1, . . . , an, t). More precisely, S is a realisable set of
(a1, . . . , an, t) ⇐⇒ ∏

i∈S yi is a monomial in pt. And, the sparsity (number
of monomials) of pt is at most k.

Therefore, it boils down to find the multivariate polynomial pt. How easy
it is to find pt? Note that we cannot expect to find pt, just by trivial multipli-
cation as it would take Õ(2nt) time! Instead, our algorithm is a reconstruction
algorithm, which efficiently reconstructs pt, from multiple evaluations points
f(α, c1, . . . , cn), for α ∈ F

∗
q . Eventually, we will use sparse interpolation [13]

(see Theorem 6), which requires evaluations of the polynomial pt(y1, . . . , yn) at
multiple (polynomially many) points (c1, . . . , cn) ∈ F

n
q . To find pt(c1, . . . , cn), we

use Kane’s identity (Lemma 2) which uses the evaluations f(α, c1, . . . , cn), for
α ∈ [1, q − 1]. Finding pt(c1, . . . , cn) can be efficiently done in logspace. The rest
(to reconstruct pt) requires a brief space complexity analysis of [13]. For details,
refer to Sect. 4.

1.3 Prior Works and Their Limitations

Before going into the details, we briefly review the state of the art of the prob-
lems (& its variants). After Bellman’s O(nt) dynamic solution [12], Pisinger [17]
first improved it to O(nt/ log t) on word-RAM models. Recently, Koiliaris and
Xu gave a deterministic algorithm [18,19] in time Õ(

√
nt), which is the best

deterministic algorithm so far. Bringmann [5] & Jin and Wu [6] later improved
the running time to randomized Õ(n + t). All these algorithms require Ω(t)
space. Moreover, most of the recent algorithms solve the decision versions. Here
we remark that Abboud et al. [14] recently showed that SSUM has no t1−εnO(1)

time algorithm for any ε > 0, unless the Strong Exponential Time Hypothesis
(SETH) is false. Therefore, the Õ(n+ t) time bound is likely to be near-optimal.

In [18] (also see [19, Lemma 2]), the authors gave a deterministic Õ(nt) algo-
rithm that finds all the hamming weights for all realisable targets less than equal

242 P. Dutta and M. S. Rajasree

to t. Their algorithm does not depend on the number of solutions for a particular
target. Compared to this, our Theorem 1 is faster when k = o(n/(log n)c), for
a large constant c. Similarly, with the ‘extra’ information of k, we give a faster
deterministic algorithm (which even outputs all the hamming weights of the
solutions) compared to Õ(

√
nt) decision algorithm in [18,19] (which outputs all

the realisable subset sums ≤ t), when k = o(
√

n/(log n)c), for a large constant c.
Here we remark that the O(nt)-time dynamic programming algorithm [12] can
be easily modified to find all the solutions, but this gives an O(n(k + t))-time
(and space) algorithm solution.

On the other hand, there have been quite some work on solving SSUM in
LOGSPACE. Lokshtanov and Nederlof [20], and Kane [16] (2010) gave O(log nt)
space poly(nt)-time deterministic algorithm, which have been very recently
improved to Õ(n2t)-time and poly log(nt) space. On the other hand, Bringmann
[5] gave a nt1+ε time, O(n log t) space randomized algorithm, which have been
improved to O(log n log log n + log t) space in [7]. Again, most of the algorithms
are decision algorithms and do not output the solution set. In contrast to this,
our algorithm in Theorem 2 uses only O(log(knt)) space and outputs all the
solution sets, which is near-optimal.

Finally, we remark that in the proof of Theorem 1, we extend analytic tools
from [6] to our advantage (see Lemma 6), yet our algorithm for Theorem 1 is
deterministic (unlike in [6]).

2 Preliminaries and Notations

Notations. Z and Q denotes the set of all integers and rationals, respectively.
For any integer n > 0, [n] denotes the set {1, 2, . . . , n}, while 2[n] denotes the set
of all subsets of [n]. log denotes log2. We also denote Õ(g) to be g · poly(log g).

Sparsity of a polynomial f(x1, . . . , xn) ∈ F[x1, . . . , xn] over a field F, denotes
the number of nonzero terms in f .

A weight function w : [n] −→ [m], can be naturally extended to a set
S ∈ 2[n], by defining w(S) :=

∑
i∈S w(i).

Definition 1 (Subset Sum problem (SSUM)). Given (a1, . . . , an, t) ∈ Z
n+1
≥0 ,

the subset sum problem is to decide whether t is a realisable target with respect
to (a1, . . . , an), i.e., there exists S ⊆ [n] such that

∑
i∈S ai = t. Here, n is called

the size, t is the target and any S ⊆ [n] such that
∑

i∈S ai = t is a realisable set
of the subset sum instance.

Assumptions. Throughout the paper, we assume that t ≥ max ai for simplicity.
Also, we work in the Turing model where basic operations like addition and
multiplication over Fp are not unit-cost unlike Word Ram model considered
in [6], for simplicity; in the word RAM model our results will give slightly better
result shaving one log p factor.

Lemma 1 ([21, Isolation Lemma]). Let n and N be positive integers, and
let F be an arbitrary family of subsets of [n]. Suppose w(x) is an integer weight

Algebraic Algorithms for Variants of Subset Sum 243

given to each element x ∈ [n] uniformly and independently at random from [N].
The weight of S ∈ F is defined as w(S) =

∑
x∈S w(x). Then, with probability at

least 1 − n/N , there is a unique set S′ ∈ F that has the minimum weight among
all sets of F .

Lemma 2 (Kane’s Identity [16]). Let f(x) =
∑d

i=0 cix
i be a polynomial of

degree at most d with coefficients ci being integers. Let Fq be the finite field of
order q = pk > d + 2. For 0 ≤ t ≤ d, define

rt =
∑

x∈F∗
q

xq−1−tf(x) = −ct ∈ Fq

Then, rt = 0 ⇐⇒ ct is divisible by p.

Lemma 3 (Newton’s Identities). Let X1, . . . , Xn be n ≥ 1 variables. Let
Pm(X1, . . . , Xn) =

∑n
i=1 Xm

i , be the m-th power sum and Em(X1, . . . , Xn)
be the m-th elementary symmetric polynomials i.e. Em(x1, . . . , xn) =∑

1≤j1≤...≤jm≤n Xj1 · · · Xjm
, then

m · Em(X1, . . . , Xn) =
m∑

i=1

(−1)i−1Em−i(X1, . . . , Xn) · Pi(X1, . . . , Xn) .

Lemma 4 (Vieta’s formulas). Let f(x) =
∏n

i=1(x − ai) be a
monic polynomial of degree n. Then, f(x) =

∑n
i=0 cix

i where cn−i =
(−1)iEi(a1, . . . , an),∀1 ≤ i ≤ n and cn = 1.

Lemma 5 (Polynomial division with remainder [22, Theorem 9.6]).
Given a d-degree polynomial f and a linear polynomial g over a finite field Fp,
there exists a deterministic algorithm that finds the quotient and remainder of f
divided by g in Õ(d log p)-time.

Definition 2 (Order of a number mod p). The order of a (mod p), denoted as
ordp(a) is defined to be the smallest positive integer m such that am ≡ 1 mod p.

Note that when p is prime, ordp(a) is clearly finite since ap−1 ≡ 1 mod p,
from Fermat’s Little Theorem. Emil Artin (1927, see [23]) conjectured that for
any non-square a ∈ Z\{−1}, there exist infinitely many primes p such that a is a
primitive root modulo p, i.e. ordp(a) = p− 1. There has been impressive amount
of work done to understand behaviour and distribution of ordp(a) [24–26]. In
particular, we have the following.

Theorem 4 ([27]). There exists a Õ(p1/4+ε) time algorithm to determinstically
find a primitive root over Fp.

Theorem 5 ([28]). For n ≥ 25, there is a prime in the interval [n, 6/5 · n].

Here is the most important lemma, which is an extension of [6, Lemma 4],
where the authors considered the simplest form. In this paper, we need the
extensions for the ‘robust’ usage of this lemma (in Sect. 3).

244 P. Dutta and M. S. Rajasree

Lemma 6 (Coefficient Extraction Lemma). Let A(x) =
∏

i∈[n](1 + W b ·
xai), for any non-negative integers ai, b and W ∈ Z. Then, for a prime p >
t, one can compute coefxr (A(x)) mod p for all 0 ≤ r ≤ t, in time Õ((n +
t log(Wb)) log p).

3 Proof of Theorem 1

We present an Õ(k(n + t))-time deterministic algorithm for outputting all
the hamming weight of the solutions, given a Hamming − k − SSSUM
instance i.e. there are only at most k-many solutions to the SSUM instance
(a1, . . . , an, t) ∈ Z

n+1
≥0 .

Proof of Theorem 1. We start with some notations that we will use throughout
the proof.

� Basic notations. Assume that the SSUM instance (a1, . . . , an, t) ∈ Z
n+1
≥0 has

exactly m (m ≤ k) many solutions, and they have � many distinct hamming
weights w1, . . . , w�; since two solutions can have same hamming weight, � ≤ m.
Moreover, assume that there are λi many solutions which appear with hamming
weight wi, for i ∈ [�]. Thus,

∑
i∈[�] λi = m ≤ k.

� Choosing prime q and a primitive root μ. We will work with a fixed q in this
proof, where q > n + k + t := M (we will mention why such a requirement
later). We can find a prime q in Õ(n + k + t) time, since we can go over every
element in the interval [M, 6/5 · M], in which we know a prime exists (Theorem
5) and primality testing is efficient [29]. Once we find q, we choose μ such that
μ is a primitive root over Fq, i.e. ordq(μ) = q − 1. This μ can be found in
Õ((n + k + t)1/4+ε) time using Theorem 4. Thus, the total time complexity of
this step is Õ(n + k + t).

� The polynomials. Define the k-many univariate polynomials as follows:

fj(x) :=
∏

i∈[n]

(1 + μjxai) , ∀ j ∈ [k] .

We remark that we do not know � apriori, but we can find m efficiently.

Claim 1 (Finding the exact number of solutions). Given a Hamming−k−SSSUM
instance, one can find the exact number of solutions, m, deterministically, in
Õ((n + t) log(q)) time.

Proof. Use [6] (see Lemma 6, for the general statement) which gives a determin-
istic algorithm to find the coefficient of xt of

∏
i∈[n] (1 + xai) over Fq; this takes

time Õ((n + t) log(q)). 	

Since we know the exact value of m, we will just work with fj for j ∈ [m],
which suffices for our algorithmic purpose. Here is an important claim about
coefficients of xt in fj ’s.

Algebraic Algorithms for Variants of Subset Sum 245

Claim 2. Cj = coefxt(fj(x)) =
∑

i∈[�] λi · μjwi , for each j ∈ [m].

Proof. If S ⊆ [n] is a solution to the instance with hamming weight, say w, then
this will contribute μjw to the coefficient of xt of fj(x). Since, there are � many
weights w1, . . . , w� with multiplicity λ1, . . . , λ�, the claim easily follows. 	

Using Lemma 6, we can find Cj mod q for each j ∈ [m] in Õ((n+t log(μj)) log q)
time, owing total Õ(k(n+t)), since q = O(n+k+t), μ ≤ q−1, and

∑
j∈[m] log j =

log(m!) ≤ log(k!) = Õ(k).
Using the Newton’s Identities (Lemma 3), we have the following relations,

for j ∈ [m]:

Ej (µ
w1 , . . . , µw�) ≡ j−1 ·

⎛
⎝

j∑
i=1

(−1)i−1 Ej−i (µ
w1 , . . . , µwk) · Pi (µ

w1 , . . . , µw�)

⎞
⎠ mod q .

(1)

In the above, by Ej(μw1 , . . . , μw�), we mean Ej(μw1 , . . . , μw1

︸ ︷︷ ︸
λ1 times

, μw2 , . . . , μw2

︸ ︷︷ ︸
λ2 times

,

. . . , μw� , . . . , μw�

︸ ︷︷ ︸
λ� times

), and similar for Pj . Since q > k, j−1 mod q exists, and thus

the above relations are valid. Here is another important and obvious observation,
just from the definition of Pj ’s:

Observation 1. For j ∈ [k], Cj ≡ Pj (μw1 , . . . , μw�) mod q.

Note that we know E0 = 1 and Pj ’s (and j−1 mod q) are already com-
puted. To compute Ej , we need to know E1, . . . , Ej−1 and additionally we need
O(j) many additions and multiplications. Suppose, T (j) is the time to compute
E1, . . . , Ej . Then, the trivial complexity is T (m) ≤ Õ(k2 log q)+Õ(k(n+t)). But
one can do better than Õ(k2 log q) and make it Õ(k log q) (i.e. solve the recur-
rence, using FFT), owing the total complexity to T (m) ≤ Õ(k(n + t)) (since
q = O(n + k + t)).

Once, we have computed Ej , for j ∈ [m], define a new polynomial

g(x) :=
m∑

j=0

(−1)j · Ej(μw1 , . . . , μw�) · xj .

Using Lemma 4, it is immediate that g(x) =
∏�

i=1(x−μwi)λi . Further, by defini-
tion, deg(g) = m. From g, now we want to extract the roots, namely μw1 , . . . , μw�

over Fq. We do this, by checking whether (x − μi) divides g, for i ∈ [n] (since
wi ≤ n). Using Lemma 5, a single division with remainder takes Õ(k log q),
therefore, the total time to find all the wi is Õ(nk log q) = Õ(nk).

Here, we remark that we do not use the determinstic root finding or factoring
algorithms (for e.g. [30,31]), since it takes Õ(mq1/2) = Õ(k · (k + t)1/2) time,
which could be larger than Õ(k(n + t)).

246 P. Dutta and M. S. Rajasree

� Reason for choosing q and μ. In the hindsight, there are three important prop-
erties of the prime q that will suffice to successfully output the wi’s using the
above described steps:

1. Since, Lemma 6 requires to compute the inverses of numbers upto t, hence,
we would want q > t.

2. While computing Ej(μw1 , . . . , μwk) using Lemma 3 in the above, one should
be able to compute the inverse of all j’s less than equal to m. So, we want
q > m,.

3. To obtain wi from μwi mod q, we want ordq(μ) > n (for definition see Def-
inition 2). Since, wi ≤ n, this would ensure that we have found the correct
wi.

Here, we remark that we do not need to concern ourselves about the ‘large-
ness’ of the coefficients of Cj and make it nonzero mod q, as required in [6]. For
the first two points, it suffices to choose q > k + t. Since μ is a primitive root
over Fq, this guarantees that ordq(μ) = q − 1 > n and thus we will find wi from
μwi correctly.

� Total time complexity. The time complexity to find the correct m, q and μ
is Õ(n + k + t). Finding the coefficients of g takes Õ(k(n + t)) time and then
finding wi from g takes Õ(nk log q) time. Thus, the total time complexity remains
Õ(k(n + t)). 	

Remark 1. The above algorithm can be extended to find the multiplicities λi’s
in Õ(k(n + t) + k3/2) time by finding the largest λi, by binary search, such that
(x − μwi)λi divides g(x). Finding each λi takes Õ(m log q log(λi)) time over Fq,
for the same q as above, since the polynomial division takes Õ(m log q) time and
binary search introduces a multiplicative O(log(λi)) term. Since,

∑
i∈[�] log(λi) =

log
(∏

i∈[�] λi

)
, using AM-GM,

∏
i∈[�] λi ≤ (m/�)�, which is maximized at � =

√
m ≤ √

k, implying
∑

i∈[�] log(λi) ≤ O(
√

k log k). Since, m ≤ k, this explains
the additive k3/2 term in the complexity.

4 Proof of Theorem 2

In this section, we will present a low space algorithm for finding all the real-
isable sets for k − SSSUM. Our low space algorithms build upon a fundamen-
tal number-theoretic identity [16], and efficient sparse multivariate polynomial
reconstruction [13].

Proof of Theorem 2. Here are some notations that we will follow throughout
the proof.
� Basic Notations. Let us assume that there are exactly m (m ≤ k) many
realisable sets S1, . . . , Sm, each Si ⊆ [n]. We remark that for our algorithm we
do not need to apriori calculate m.

Algebraic Algorithms for Variants of Subset Sum 247

� The Multivariate Polynomial. For our purpose, we will be working with the
following (n + 1)-variate polynomial:

f(x, y1, . . . , yn) :=
∏

i∈[n]

(1 + yix
ai) .

Since, we have a k − SSSUM instance (a1, . . . , an, t), coefxt(f) has the following
properties.

1. It is an n-variate polynomial pt(y1, . . . , yn) with sparsity exactly m.
2. pt is a multilinear polynomial in y1, . . . , yn, i.e. individual degree of yi is at

most 1.
3. The total degree of pt is at most n.
4. if S ⊆ [n] is a realisable set, then yS :=

∏
i∈S yi, is a monomial in pt.

In particular, the following is an immediate but important observation.

Observation 2. pt(y1, . . . , yn) =
∑

i∈[m] ySi
.

Therefore, it suffices to know the polynomial pt. However, we cannot treat yi

as new variables and try to find the coefficient of xt since the trivial multipli-
cation algorithm (involving n + 1 variables) takes exp(n)-time. This is because,
f(x, y1, . . . , yn) mod xt+1 can have 2n · t many monomials as coefficient of xi,
for any i ≤ t can have 2n many multilinear monomials.

However, if we substitute yi = ci ∈ Fq, for some prime q, we claim that we
can figure out the value pt(c1, . . . , cn) from the coefficient of xt in f(x, c1, . . . , cn)
efficiently (see Claim 3). Once we have figured out, we can simply interpolate
using the following theorem to reconstruct the polynomial pt. Before going into
the technical details, we state the sparse interpolation theorem below; for sim-
plicity we consider multilinearity (though [13] holds for general polynomials as
well).

Theorem 6 ([13]). Given a black box access to a multilinear polynomial g(x1, . . . ,
xn) of degree d and sparsity at most s over a finite field F with |F| ≥ (nd)6, there is
a poly(snd)-time and O(log(snd))-space algorithm that outputs all the monomials
of g.

Remark. We represent one monomial in terms of indices (to make it consistent
with the notion of realisable set), i.e. for a monomial x1x5x9, the corresponding
indices set is {1, 5, 9}. Also, we do not include the indices in the space complexity,
as mentioned earlier.

� Brief Analysis on the Space Complexity of [13]. Klivans and Spielman [13], did
not explicitly mention the space complexity. However, it is not hard to show
that the required space is indeed O(log(snd)). [13] shows that substituting xi =
yki−1 mod p, for some k ∈ [2s2n] and p > 2s2n, makes the exponents of the new
univaraite polynomial (in y) distinct (see [13, Lemma 3]); the algorithm actually
tries for all k and find the correct k. Note that the degree becomes O(s2nd).

248 P. Dutta and M. S. Rajasree

Then, it tries to first find out the coefficients by simple univariate interpolation
[13, Section 6.3]. Since we have blackbox access to g(a1, . . . , an), finding out
a single coefficient, by univariate interpolation (which basically sets up linear
equations and solve) takes O(log(snd)) space and poly(snd) time only. In the
last step, to find one coefficient, we can use the standard univariate interpolation
algorithm which uses the Vandermonde matrices and one entry of the inverse of
the Vandermonde is log-space computable2.

At this stage, we know the coefficients (one by one), but we do not know
which monomials the coefficients belong. However, it suffices to substitute xi =
2yki−1 mod p. Using this, we can find the correct value of the first exponent in the
monomial. For e.g. if after the correct substitution, y10 appears with coefficient
say 5, next step, when we change just x1, if it does not affect the coefficient 5, y1 is
not there in the monomial corresponding to the monomial which has coefficient
5, otherwise it is there (here we also use that it is multilinear and hence the
change in the coefficient must be reflected). This step again requires univariate
interpolation, and one has to repeat this experiment wrt each variable to know
the monomial exactly corresponding to the coefficient we are working with. We
can reuse the space for interpolation and after one round of checking with every
variable, it outputs one exponent at this stage. This requires O(log(snd)-space
and poly(snd) time.

With a more careful analysis, one can further improve the field requirement
to |F| ≥ (nd)6 only (and not dependent on s); for details see [13, Thm. 5 & 11].

Now we come back to our subset sum problem. Since we want to reconstruct
an n-variate m sparse polynomial pt which has degree at most n, it suffices to
work with |F| ≥ n12. However, we also want to use Kane’s identity (Lemma
2), which requires q > deg(f(x, c1, . . . , cn)) + 2, and deg(f(x, c1, . . . , cn)) ≤ nt.
Denote M := max(nt+3, n12). Thus, it suffices to we work with F = Fq where q ∈
[M, (6/5) · M], such prime exists (Theorem 5) and easy to find deterministically
in poly(nt) time and O(log(nt)) space using [29]. In particular, we will substitute
yi = ci ∈ [0, q − 1].

Claim 3. Fix ci ∈ [0, q − 1], where q ∈ [M, (6/5) · M]. Then, there is a poly(nt)-
time and O(log(nt)) space algorithm which computes pt(c1, . . . , cn) over Fq.

Proof. Note that, we can evaluate each 1+cix
ai , at some x = α ∈ Fq, in Õ(log nt)

time and O(log(nt)) space. Multiplying n of them takes Õ(n log(nt))-time and
O(log(nt)) space.

Once we have computed f(α, c1, . . . , cn) over Fq, using Kane’s identity
(Lemma 2), we can compute pt(c1, . . . , cn), since

pt(c1, . . . , cn) = −
∑

α∈F∗
q

αq−1−tf(α, c1, . . . , cn) .

2 In fact Vandermonde determinant and inverse computations are in TC0 ⊂
LOGSPACE, see [32].

Algebraic Algorithms for Variants of Subset Sum 249

As each evaluation f(α, c1, . . . , cn) takes Õ(n log(nt)) time, and we need q −
1 many additions, multiplications and modular exponentiations, total time to
compute is poly(nt). The required space still remains O(log(nt)). 	

Once, we have calculated pt(c1, . . . , cn) efficiently, now we try different values
of (c1, . . . , cn) to reconstruct pt using Theorem 6. Since, pt is a n-variate at most
k sparse polynomial with degree at most n, it still takes poly(knt) time and
O(log(knt)) space. This finishes the proof. 	

5 Conclusion

This work introduces some interesting search versions of variants of SSUM prob-
lem and gives efficient algorithms for each of them. This opens a variety of
questions which require further rigorous investigations.

1. Can we improve the time complexity of Theorem 2? Because of using Theorem
6, the complexity for interpolation is already cubic. Whether some other
algebraic (non-algebraic) techniques can improve the time complexity, while
keeping it low space, is not at all clear.

2. Can we use these algebraic-number-theoretic techniques, to give a determin-
istic Õ(n + t) time algorithm for decision version of SSUM?

3. Can we improve Remark 1 to find both the hamming weights wi as well as
the multiplicities λi, in Õ(k(n + t)) time?

References

1. Lewis, H.R.: Computers and Intractability. A Guide to the Theory of NP-
Completeness (1983)

2. Lyubashevsky, V., Palacio, A., Segev, G.: Public-key cryptographic primitives
provably as secure as subset sum. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 382–400. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2 23

3. Faust, S., Masny, D., Venturi, D.: Chosen-ciphertext security from subset sum. In:
Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS,
vol. 9614, pp. 35–46. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49384-7 2

4. Bringmann, K., Wellnitz, P.: On near-linear-time algorithms for dense subset
sum. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 1777–1796. SIAM (2021)

5. Bringmann, K.: A near-linear pseudopolynomial time algorithm for subset sum.
In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 1073–1084. SIAM (2017)

6. Jin, C., Wu, H.: A simple near-linear pseudopolynomial time randomized algorithm
for subset sum. arXiv preprint arXiv:1807.11597 (2018)

7. Jin, C., Vyas, N., Williams, R.: Fast low-space algorithms for subset sum. In:
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 1757–1776. SIAM (2021)

https://doi.org/10.1007/978-3-642-11799-2_23
https://doi.org/10.1007/978-3-642-11799-2_23
https://doi.org/10.1007/978-3-662-49384-7_2
https://doi.org/10.1007/978-3-662-49384-7_2
http://arxiv.org/abs/1807.11597

250 P. Dutta and M. S. Rajasree

8. Esser, A., May, A.: Low weight discrete logarithm and subset sum in 20. 65n with
polynomial memory. Memory 1, 2 (2020)

9. Bernstein, D.J., Jeffery, S., Lange, T., Meurer, A.: Quantum algorithms for the
subset-sum problem. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp.
16–33. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-9 2

10. Helm, A., May, A.: Subset sum quantumly in 1.17∧ n. In: 13th Conference on
the Theory of Quantum Computation, Communication and Cryptography (TQC
2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

11. Li, Y., Li, H.: Improved quantum algorithm for the random subset sum problem.
arXiv preprint arXiv:1912.09264 (2019)

12. Bellman, R.E.: Dynamic Programming (1957)
13. Klivans, A.R., Spielman, D.: Randomness efficient identity testing of multivariate

polynomials. In: Proceedings of the Thirty-Third Annual ACM Symposium on
Theory of Computing, pp. 216–223 (2001)

14. Abboud, A., Bringmann, K., Hermelin, D., Shabtay, D.: Seth-based lower bounds
for subset sum and bicriteria path. In: Proceedings of the Thirtieth Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 41–57. SIAM (2019)

15. McKay, D.M., Williams, R.R.: Quadratic time-space lower bounds for comput-
ing natural functions with a random oracle. In: 10th Innovations in Theoretical
Computer Science Conference (ITCS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik (2018)

16. Kane, D.M.: Unary subset-sum is in logspace. arXiv preprint arXiv:1012.1336
(2010)

17. Pisinger, D.: Linear time algorithms for knapsack problems with bounded weights.
J. Algorithms 33(1), 1–14 (1999)

18. Koiliaris, K., Chao, X.: Faster pseudopolynomial time algorithms for subset sum.
ACM Trans. Algorithms (TALG) 15(3), 1–20 (2019)

19. Koiliaris, K., Xu, C.: Subset sum made simple. arXiv preprint arXiv:1807.08248
(2018)

20. Lokshtanov, D., Nederlof, J.: Saving space by Algebraization. In: Proceedings of
the Forty-Second ACM Symposium on Theory of Computing, pp. 321–330 (2010)

21. Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix inver-
sion. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of
Computing, pp. 345–354 (1987)

22. Von Zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge Univer-
sity Press, Cambridge (2013)

23. Moree, P.: Artin’s primitive root conjecture-a survey. Integers 12(6), 1305–1416
(2012)

24. Gupta, R., Ram Murty, M.: A remark on Artin’s conjecture. Inventiones Math.
78(1), 127–130 (1984)

25. Erdös, P., Ram Murty, M.: On the order of a (mod p). In: CRM Proceedings and
Lecture Notes, vol. 19, pp. 87–97 (1999)

26. Chinen, K., Murata, L.: On a distribution property of the residual order of a (mod
p). J. Number Theory 105(1), 60–81 (2004)

27. Shparlinski, I.: On finding primitive roots in finite fields. Theoret. Comput. Sci.
157(2), 273–275 (1996)

28. Nagura, J.: On the interval containing at least one prime number. Proc. Jpn. Acad.
28(4), 177–181 (1952)

29. Agrawal, M., Kayal, N., Saxena, N.: Primes is in p. Ann. Math. 160, 781–793
(2004)

https://doi.org/10.1007/978-3-642-38616-9_2
http://arxiv.org/abs/1912.09264
http://arxiv.org/abs/1012.1336
http://arxiv.org/abs/1807.08248

Algebraic Algorithms for Variants of Subset Sum 251

30. Shoup, V.: On the deterministic complexity of factoring polynomials over finite
fields. Inf. Process. Lett. 33(5), 261–267 (1990)

31. Bourgain, J., Konyagin, S., Shparlinski, I.: Character sums and deterministic poly-
nomial root finding in finite fields. Math. Comput. 84(296), 2969–2977 (2015)

32. Maciel, A., Therien, D.: Threshold circuits of small majority-depth. Inf. Comput.
146(1), 55–83 (1998)

Hardness and Approximation Results
for Some Variants of Stable Marriage

Problem

B. S. Panda and Sachin(B)

Department of Mathematics, Indian Institute of Technology Delhi,
New Delhi 110016, India

{bspanda,maz198086}@maths.iitd.ac.in

Abstract. We study several key variants of SMTI - Stable Marriage
problem in which the preference lists may contain ties and may be
incomplete. A matching is called weakly stable unless there is a man
and a woman such that they are currently not matched with each other
but if they get matched with each other, then both of them become
better off. The COM SMTI problem is to decide whether there exists
a complete (in which all men and women are matched) weakly sta-
ble matching in an SMTI instance. It is known that the COM SMTI
problem is NP-complete. We strengthen this result by proving that this
problem remains NP-complete even for the instance SMTI-C, instance
where members in each preference list are consecutive with respect to
some orderings of the set of men and set of women. On the positive
side, we give a polynomial time algorithm for COM SMTI problem for
the instance SMTI-STEP, where the preference lists admit step-property,
that is, preference list of every man mi is the set of all women wj such
that j ≤ i for some ordering of men and some ordering of women. Further,
DECIDE MAX SMTI (resp. DECIDE MIN SMTI) is the decision ver-
sion of MAX SMTI (resp. MIN SMTI), the problem of finding a weakly
stable matching of maximum (resp. minimum) cardinality in an SMTI
instance. Both DECIDE MAX SMTI and DECIDE MIN SMTI problems
are known to be NP-complete. We improve these results by showing that
DECIDE MAX SMTI and DECIDE MIN SMTI problems remain NP-
complete even for the case where the preference lists admit inclusion
ordering and even for the case where the preference lists admit step-
property, respectively. Finally, we present a 3/2-approximation algorithm
for the MIN SMTI problem with inclusion ordering.

Keywords: Stable matching · Polynomial time algorithm ·
NP-complete · Approximation algorithm

1 Introduction

An instance of the Stable Marriage problem (SM) consists of n men, n women,
and their preference lists. A preference list of a man (resp. woman) is a set con-
taining all women (resp. men) in strict order of preference. We denote preference
c© Springer Nature Switzerland AG 2022
N. Balachandran and R. Inkulu (Eds.): CALDAM 2022, LNCS 13179, pp. 252–264, 2022.
https://doi.org/10.1007/978-3-030-95018-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95018-7_20&domain=pdf
https://doi.org/10.1007/978-3-030-95018-7_20

Hardness and Approximation Results for Some Variants of SMTI 253

list of a member a by P(a). The task is to pair the men and women together
such that there are no two individuals of the opposite sex who would both prefer
each other over their current partners. When there are no such pairs, the set of
marriages is said to be stable. Furthermore, a tie is a set of individuals which
are preferred equally by some person. We use SMT to denote the variant of
SM that may contain ties in the preference lists. Note that the preference lists
are considered to be complete in SM as well as in SMT. Further, we use SMI
to denote the variant of SM where preference lists may be incomplete, whereas
SMTI stands for the variant of SM where the preference lists may be incomplete
as well as may contain ties. An ordering of men (resp. women) is said to be
consecutive ordering if members in each woman’s (resp. man’s) preference list
are consecutive. An SMTI instance having consecutive ordering of men as well
as of women is said to be consecutive, denoted by SMTI-C. An SMTI instance
I is said to be inclusive, denoted by SMTI-INC, if the members of one of the
two sets, say men, can be linearly ordered, i.e., m1, m2, . . . , mn such that, for i,
j = 1 to n, P (mi) ⊆ P (mj) if i < j. Furthermore, an SMTI instance satisfying
the step property, that is, for all mi ∈ M, P (mi) = {wj ∈ W |j ≤ i} for some
ordering of men and some ordering of women, is denoted by SMTI-STEP.

Three notions of stability namely weak, strong, and super are established in
the literature [4] when ties are allowed in the preference lists. A matching is
called weakly stable if there is no man and woman such that they are currently
not matched with each other but if they get matched together, then both of them
would strictly improve. A matching is called strongly stable if there is no man and
woman such that they are currently not matched with each other but if they get
matched together, then one of them is better off and the other is not worse off. A
matching is called super stable if there is no man and woman such that they are
currently not matched with each other but if they get matched together, then
both of them are not worse off. We define these notions formally in the next
section. However, of three notions of stability in the literature, weak stability
has received most attention till now. In this paper, we are solely concerned with
weakly stable matching. Henceforth for the rest of the paper, in presence of ties,
the terms stability and stable matching will be considered as weak stability and
weakly stable matching, respectively, unless stated otherwise. Based on these
variants, the following decision problems are identified in the literature.

COM SMTI
Instance: An SMTI instance, i.e., n men, n women, and their preference lists.
Question: Does there exists a stable matching in which all men and women are
matched?
DECIDE MAX (resp. DECIDE MIN) SMTI
Instance: n men, n women, their preference lists, and an integer k ∈ Z

+.
Question: Does there exists a stable matching of cardinality atleast (resp.
atmost) k in the given instance?

MAX SMTI and MIN SMTI, the optimisation versions of DECIDE MAX
SMTI and DECIDE MIN SMTI, respectively, are known to be NP-hard [6,8].

254 B. S. Panda and Sachin

These problems remain NP-hard even if the ties are present at the end of pref-
erence lists and on one side only, each tie is of size (length) 2, and there is at
most one tie per list [8]. Furthermore, COM SMTI is known to be NP-complete
[6,8]. Also, COM SMTI remains NP-complete for the case when each preference
list is of size at most 3 and ties occur on one side only [5]. It also implies the
NP-hardness of MAX SMTI for this restricted case. Regarding the approxima-
bility results, 3/2-approximation algorithm is known for MAX SMTI [7,9], but
for MIN SMTI, no constant factor approximation has been identified in the lit-
erature. Halldórsson et al. [2] proposed a (1 + t(I)

OPT (I))-approximation algorithm
for MIN SMTI, where t(I) is the number of preference lists that contain ties in
the instance I of SMTI and OPT(I) is the optimal solution size of I, i.e., the
cardinality of minimum size stable matching.

In this paper, we present the first ever study of the Stable Marriage prob-
lem involving ties and incomplete lists solely based on analyzing the pattern of
preference lists. The following list summarizes our key contributions.

1. We strengthen the NP-completeness result of COM SMTI problem by estab-
lishing that this problem remains NP-complete for SMTI-C instance.

2. We present O(n2) time algorithm for COM SMTI-STEP problem.
3. We improve the NP-completeness result of DECIDE MAX SMTI problem by

showing that DECIDE MAX SMTI-INC is NP-complete.
4. Further, we prove that DECIDE MIN SMTI-STEP is NP-complete, strength-

ening the NP-completeness of DECIDE MIN SMTI problem.
5. Finally, we propose a 3/2-approximation algorithm for the MIN SMTI-INC

problem.

2 Preliminaries

We define stable matching formally. Let M = {m1,m2,m3, . . . ,mn} and W =
{w1, w2, w3, . . . , wn} be two sets, each of cardinality n, consisting of men and
women, respectively. Each member of M and W has a preference list in which
he/she ranks the members of opposite set in a decreasing order of preference.
We say that a pair (m,w) is admissible if w is present in m’s preference list
and m is present in w’s preference list. A matching M

′
is a subset of M × W

such that |M ′
(mi)| ≤ 1 for all mi ∈ M and |M ′

(wj)| ≤ 1 for all wj ∈ G, where
M

′
(mi) denotes the set of women matched with mi and M

′
(wj) denotes the

set of men matched with wj in M
′
. Note that |M ′

(a)| can be either 0 or 1. If
|M ′

(a)| = 1, i.e., M
′
(a) = {b} where b is a person of opposite sex, then we say

that a is matched with b in M
′
. Otherwise, if |M ′

(a)| = 0, then we say that
a is unmatched in M

′
. A complete matching is a matching in which all men

and women are matched. A blocking pair of a matching M
′

is an admissible
man-woman pair (mi, wj) ∈ (M ×W)\M

′
such that mi is unmatched or prefers

wj to his current partner, i.e., M
′
(mi) and wj is unmatched or prefers mi to

her current partner, i.e., M
′
(wj). A matching M

′
is said to be stable if it has no

blocking pair. The existence of a stable matching in SM is implied by the classical

Hardness and Approximation Results for Some Variants of SMTI 255

Gale-Shapley algorithm [1] given in 1962. The above definition can be extended
to the case where preference lists may contain ties. A tie of an individual m’s
preference list is a set of individuals whom m prefers equally, and the preference
list of m is a strict order of ties. We say that m strictly prefers w1 to w2 (denoted
by w1 >m w2), if w1 is in tie T1 and w2 is in tie T2 in m’s preference list, and m
ranks T1 before T2. We write w1 =m w2, if w1 and w2 are present in the same
tie or if w1 and w2 are the same person. We say that m weakly prefers w1 to w2,
if w1 =m w2 or w1 >m w2 holds, and write w1 ≥m w2. When ties are involved,
three notions of stability named weak, strong, and super are identified in the
literature [4].

A weak blocking pair for a matching M
′

is an admissible pair (m,w) /∈ M
′

such that w ≥m M
′
(m) and m ≥w M

′
(w). A super stable matching is a matching

that admits no weak blocking pair.
A strong blocking pair for amatchingM

′
is an admissible pair (m,w) /∈ M

′
such

that either w ≥m M
′
(m) and m >w M

′
(w) or w >m M

′
(m) and m ≥w M

′
(w).

A strongly stable matching is a matching that admits no strong blocking pair.
A super blocking pair for a matching M

′
is an admissible pair (m,w) /∈

M
′

such that w >m M
′
(m) and m >w M

′
(w). A weakly stable matching is

a matching that admits no super blocking pair. Since we are concerned with
weakly stable matching in presence of ties, henceforth, for the rest of the paper,
by a blocking pair, we mean a super blocking pair unless stated otherwise.

A consecutive ordering of men is an ordering α =< m1,m2, . . . ,mn > of
the members of M such that for all w ∈ W, the men in the preference list
of w are consecutive. Consecutivity of women can be defined analogously. An
SMTI instance is said to be consecutive, denoted by SMTI-C, if it admits a
consecutive ordering of men as well as of women. Next, I is said to be inclusive
if the members of one set, say men, can be linearly ordered, that is, m1, m2, . . . ,
mn such that P (m1) ⊆ P (m2) ⊆ · · · ⊆ P (mn). An ordering < m1,m2, . . . ,mn,
w1, w2, . . . , wn > of M ∪ W is called an inclusion ordering if P (m1) ⊆ P (m2) ⊆
· · · ⊆ P (mn) and P (w1) ⊇ P (w2) ⊇ · · · ⊇ P (wn). Further, an SMTI instance I
is said to possess step property if for all mi ∈ M, P (mi) = {wj ∈ W |j ≤ i} for
some ordering of men and some ordering of women. An SMTI instance satisfying
the step property is denoted by SMTI-STEP.

3 Complete Stable Matching in SMTI-C and SMTI-STEP

In this section, we show that the problem of finding a complete stable matching
in an SMTI-C instance is NP-complete, whereas the same problem is O(n2) time
solvable for an SMTI-STEP instance.

3.1 COM SMTI-C Problem

We prove that COM SMTI-C is NP-complete by giving a polynomial reduction
from the EXACT-MM problem for bipartite graphs which asks whether, given
a graph G and a positive integer k, there exists a maximal matching of size

256 B. S. Panda and Sachin

exactly k in G. The NP-completeness of EXACT-MM problem for bipartite
graphs follows from MIN MM-D which is known to be NP-complete for bipartite
graphs [10], where MIN MM-D is the decision version of MIN MM, the problem of
finding a minimum cardinality maximal matching in a graph. Note that one can
obtain a polynomial time reduction from the MIN MM-D problem to EXACT-
MM problem by making use of the fact that maximal matchings satisfy the
interpolation property, i.e., G has a maximal matching of size s, for mmin ≤ s ≤
mmax, where mmin and mmax are the sizes of minimum maximal matching and
maximum matching in G, respectively.

Theorem 1. The COM SMTI-C problem is NP-complete.

Proof. Given a matching M of an SMTI-C instance, it can be easily verified in
polynomial time whether M is complete and stable or not. Hence COM SMTI-
C problem is in NP. We give a polynomial reduction from the EXACT-MM
problem which remains NP-complete for bipartite graphs.

Let IE = (G,k), where G = (X ∪ Y , E) is a bipartite graph with X =
{x1, x2, x3, . . . , xp} and Y = {y1, y2, y3, . . . , yq}, be an EXACT-MM instance. If
k > min{p, q}, then the EXACT-MM instance would not admit any maximal
matching of size exactly k. Therefore, we assume that k ≤ min{p, q}.

We construct an instance IC of COM SMTI-C problem by using following
steps.

1. Let X ∪Z ∪{m} and Y ∪W ∪{w} be the set of men and women, respectively,
where Z = {z1, z2, z3, . . . , zq−k} and W = {w1, w2, w3, . . . , wp−k}.

2. Let Yi (resp. Xj) be the set of vertices in Y (resp. X) which are adjacent to
xi ∈ X (resp. yj ∈ Y). Create preference list for each person as follows:
Men: m : w

(1 ≤ i ≤ q − k) zi : (Y)
(1 ≤ i ≤ p) xi : (Yi) (W) w (Y \Yi)

Women: w : (X) m
(1 ≤ j ≤ q) yj : (Xj) (Z) (X\Xj)
(1 ≤ j ≤ p − k) wj : (X)

In a preference list, the symbol (T) denotes a tie consisting of all members
of T. Clearly, this constrution can be completed in polynomial time. Further
since, < m,x1, x2, . . . , xp, z1, z2, . . . , zq−k > is a consecutive ordering of men
and < w, y1, y2, . . . , yq, w1, w2, . . . , wp−k > is a consecutive ordering of women
in IC . Therefore, IC is an instance of COM SMTI-C problem. An illustration of
the construction of instance IC from a bipartite graph G is shown in Fig. 1.

Claim. G has a maximal matching of size exactly k iff IC has a complete stable
matching.

Proof. Let M be a maximal matching of size exactly k in G. Define Mc = M
∪ {(m,w)} ∪ {(xai

, wi) | 1 ≤ i ≤ p − k}∪ {(zj , ybj) | 1 ≤ j ≤ q − k} where
xai

’s (resp. ybj ’s) are the men (resp. women) who are unmatched w.r.t. M with

Hardness and Approximation Results for Some Variants of SMTI 257

x1

x2

x3

y1

y2

y3

y4

m : w
x1 : (y1 y2 y3) w1 w y4

x2 : y2 w1 w (y1 y3 y4)

x3 : (y1 y3 y4) w1 w y2

z1 : (y1 y2 y3 y4)

z2 : (y1 y2 y3 y4)

w : (x1 x2 x3) m

y1 : (x1 x3) (z1 z2) x2

y2 : (x1 x2) (z1 z2) x3

y3 : (x1 x3) (z1 z2) x2

y4 : x3 (z1 z2) (x1 x2)

w1 : (x1 x2 x3)

G IC (k = 2)

Fig. 1. An illustration of the construction of instance IC from a bipartite graph G.

a1 < a2 < ... < ap−k (resp. b1 < b2 < ... < bq−k). We show that Mc is complete
stable matching in IC . Since all men and women are matched in Mc, so Mc is
complete. Further, since m, zj(1 ≤ j ≤ q − k), and xi ∈ M are matched to
their first choice woman, so none of them can form a blocking pair in Mc. So, let
(xu, yv) be a blocking pair of Mc for some xu which is unmatched with respect to
M and yv ∈ Yu. But such a yv ∈ Yu is already matched with her first preference,
as M is maximal. Therefore, such a blocking pair is not possible. Hence no man
can participate in any blocking pair of Mc. Therefore, Mc is a stable matching.

Conversely, suppose Mc is a complete stable matching in I. Note that m must
be matched with w in Mc as Mc is complete. Also, note that no xi(1 ≤ i ≤ p)
can match with any woman in Y \Yi because if it is so, then (xi, w) blocks
Mc. Define M = Mc\M1 where M1 = {(zj , ygj

) | 1 ≤ j ≤ q − k}∪ {(xhi
, wi)

| 1 ≤ i ≤ p − k}∪ {(m,w)}, where ygj
(resp. xhi

) is the woman (resp. man) who
is matched with man zj (resp. woman wi) in Mc. Note that |M | = |Mc|−|M1| =
(p+q−k+1)−((q−k)+(p−k)+1) = k. Further, we show that the matching M is
maximal in G. Assume M is not maximal in G. Then M ∪{(xr, ys)} is a matching
in G for some (xr, ys) ∈ E with xr ∈ X and ys ∈ Y . Hence (zβ , ys) ∈ Mc for
some zβ ∈ Z and (xr, wα) ∈ Mc for some wα ∈ W because Mc is complete.
But this implies (xr, ys) is a blocking pair of Mc, a contradiction. Hence M is
maximal in G. �	

Hence, the theorem is proved. �	

3.2 COM SMTI-STEP Problem

We present a polynomial time algorithm to find a complete stable matching in
an SMTI-STEP instance, if it exists.

Theorem 2. Algorithm 1 gives a complete stable matching in an SMTI-STEP
instance or reports that no such matching exists in O(n2) time.

Proof. First note that the orderings < x1, . . . , xn > and < y1, . . . , yn > can
be found by arranging the men (resp. women) in decreasing (resp. increasing)
order of the size of their preference lists. This can be done by using bucket sort

258 B. S. Panda and Sachin

Algorithm 1. COM SMTI-STEP
Input: An SMTI-STEP instance I containing n men x1, x2, . . . , xn and n women
y1, y2, . . . , yn.
Output: A complete stable matching in I or report that none exists.
begin

1: M= φ ;
2: for i = 1 to n do

M = M ∪ {(xi,yi)};
3: end for
4: Check whether M is stable;

If yes, output M.
Else, output no complete stable matching.

end

algorithm in atmost O(n2) time. Further let the instance I has a complete stable
matching M1. Note that M1 must be unique and M1 = {(xi, yi)|1 ≤ i ≤ n}.
Because if xi is matched with some woman other than yi in M1, then there
exists atleast one pair of man and woman who are unmatched in M1 and are
not admissible to each other. Hence M1 will not be complete.

Claim. Algorithm 1 outputs M1.

Proof. After completing step 2, the algorithm constructs matching M which is
same as M1, and since M1 is stable, so is M . Therefore, following step 3, the
algorithm outputs M which is same as M1. �	

Now, suppose I has no complete stable matching. This implies {(xi, yi)| 1 ≤
i ≤ n} must not be stable as this is the only complete matching in I. Therefore,
step 4 of algorithm reports that no complete weakly stable matching exists.

Note that the algorithm clearly terminates. Also, step 1 and 2 take O(1)
and O(n) time, respectively. Further we can check whether a matching is sta-
ble or not in O(n2) time. Therefore, overall time complexity for the algorithm
is O(n2). �	

4 Maximum Stable Matching in SMTI-INC Problem

Theorem 3. The DECIDE MAX SMTI-INC problem is NP-complete.

Proof. Given a matching S of an SMTI-INC instance and a positive integer k1, it
can be easily verified in polynomial time whether S is stable and |S| ≥ k1. Hence
DECIDE MAX SMTI-INC is in NP. To show NP-hardness, we give a polynomial
reduction from the MIN MM-D problem which is known to be NP-complete for
subdivision graphs of cubic graphs [3]. Note that the subdivision graph of a graph
H is a graph G obtained by replacing each edge of H with a 2-length path. Let
Imin = (G, k), where G is a subdivision graph (and hence a bipartite graph)
of some cubic graph H, be a MIN MM-D instance. Let G = (X ∪ Y,E), where

Hardness and Approximation Results for Some Variants of SMTI 259

X = {x1, x2, x3, ..., xp}, and Y = {y1, y2, y3, ..., yq}. Without loss of generality,
suppose k ≤ min{p, q}.

We construct an instance Imax of DECIDE MAX SMTI-INC by using fol-
lowing steps.

1. Let X
′
= {xp+1, xp+2, ..., xp+q} and Y

′
= {yq+1, yq+2, ..., yq+p}. Suppose the

set of men and women in Imax be X ∪ X
′
and Y ∪ Y

′
, respectively.

2. In G, let Yi be the set of vertices in Y that are adjacent to xi ∈ X and let
Xj be the set of vertices in X that are adjacent to yj ∈ Y . Create preference
list for each person as follows:
Men: (1 ≤ i ≤ p) xi : (Yi) yq+i yq+i−1 yq+i−2 ... yq+1 (Y \Yi)

(p + 1 ≤ i ≤ p + q) xi : yi−p (Y \{yi−p})
Women: (1 ≤ j ≤ q) yj : (Xj) xp+j (X

′\{xp+j}) (X\Xj)
(q + 1 ≤ j ≤ q + p) yj : xj−q xj−q+1 xj−q+2 ... xp

Clearly, this constrution can be completed in polynomial time. Since,
N(xp+1) ⊆ N(xp+2) ⊆ ... ⊆ N(xp+q) ⊆ N(x1) ⊆ N(x2) ⊆ ... ⊆ N(xp) and
N(y1) ⊇ N(y2) ⊇ ... ⊇ N(yq) ⊇ N(yq+1) ⊇ N(yq+2) ⊇ ... ⊇ N(yq+p). There-
fore, this is an instance of DECIDE MAX SMTI-INC problem, with parameter
k1 = p+q−k (let). An illustration of the construction of instance Imax from the
bipartite graph G which is the subdivision graph of a cubic graph H is shown
in Fig. 2.

y1 y2 y3 y4

x1 x2 x3 x4 x5 x6

y2 y4

y1 y3

x1 : (y1 y2) y5 (y3 y4)
x2 : (y1 y3) y6 y5 (y2 y4)
x3 : (y3 y4) y7 y6 y5 (y1 y2)
x4 : (y2 y4) y8 y7 y6 y5 (y1 y3)
x5 : (y2 y3) y9 y8 y7 y6 y5 (y1 y4)

y1 : (x1 x2 x6) x7 (x8 x9 x10) (x3 x4 x5)
y2 : (x1 x4 x5) x8 (x9 x10 x7) (x2 x3 x6)
y3 : (x2 x3 x5) x9 (x10 x7 x8) (x1 x4 x6)
y4 : (x3 x4 x6) x10 (x7 x8 x9) (x1 x2 x5)

x6 : (y1 y4) y10 y9 y8 y7 y6 y5 (y2 y3)
x7 : y1 (y2 y3 y4)
x8 : y2 (y3 y4 y1)
x9 : y3 (y4 y1 y2)
x10 : y4 (y1 y2 y3)

y5 : x1 x2 x3 x4 x5 x6

y6 : x2 x3 x4 x5 x6

y7 : x3 x4 x5 x6

y8 : x4 x5 x6

y9 : x5 x6

y10 : x6

H

G Imax

Fig. 2. An illustration of the construction of instance Imax from the bipartite graph G
which is the subdivision graph of a cubic graph H.

Claim. G has a maximal matching of size atmost k iff Imax has a stable matching
of size atleast k1.

Proof. The proof is omitted due to space constraint.

Hence, the theorem is proved. �	

260 B. S. Panda and Sachin

5 Minimum Stable Matching in SMTI-STEP Instance

Theorem 4. The DECIDE MIN SMTI-STEP problem is NP-complete.

Proof. Given a matching S of an SMTI-STEP instance and a positive integer
k1, we can easily verify in polynomial time whether S is stable and |S| ≤ k1.
Hence DECIDE MIN SMTI-STEP problem is in NP. To show hardness, we give
a polynomial reduction from DECIDE MAX SMTI-INC problem which we have
shown to be NP-complete. Let Imax = (Me ∪Wo, k) be a DECIDE MAX SMTI-
INC instance with parameter k, that consists of n men, n women, and their
preference lists. So, let Me = {m1,m2,m3, ...,mn}, Wo = {w1, w2, w3, ..., wn}
and < m1,m2, . . . ,mn, w1, w2, . . . , wn > be the inclusion ordering. Without loss
of generality, we can assume that k ≤ n, otherwise the DECIDE MAX SMTI-
INC instance would result in a ’no’ instance.

We construct an instance Imin of DECIDE MIN SMTI-STEP as follows.

1. Corresponding to each man mi ∈ Me and each woman wj ∈ Wo in Imax,
we create a man xn+i and a woman yj , respectively, in Imin. So, let X ∪ M

′
e

and W
′
o ∪ Y be the set of men and women, respectively, in Imin, where X =

{x1, x2, x3, ..., xn}, M
′
e = {xn+1, xn+2, ..., x2n}, W

′
o = {y1, y2, y3, ..., yn}, and

Y = {yn+1, yn+2, ..., y2n}. Note that M
′
e and W

′
o are created from Me and

Wo, respectively.
2. Let Mi (resp. Wj) be the preference list of man mi (resp. woman wj) in Imax.

Let M
′
i denote the list obtained by changing each wk present in Mi to yk.

Also, let W
′
j denote the list obtained by changing each ml present in Wj to

xn+l. Create preference lists for each person in Imin as follows:

xi : yi yi−1 ... y1 (1 ≤ i ≤ n)
xn+i : M

′
i yn+i yn+i−1 yn+i−2 ... yn+1 (W

′
o\M

′
i) (1 ≤ i ≤ n)

yj : W
′
j xj xj+1 xj+2 ... xn (M

′
e\W

′
j) (1 ≤ j ≤ n)

yn+j : xn+j xn+j+1 xn+j+2 ... x2n (1 ≤ j ≤ n)

Clearly, this construction can be completed in polynomial time. Also we can
easily note that the above created instance is a DECIDE MIN SMTI-STEP
instance, with parameter k1 = 2n − k (let). An illustration of the construction
of instance Imin from the instance Imax is shown in Fig. 3.

Claim. Imax has a stable matching of size atleast k iff Imin has a stable matching
of size atmost k1.

Proof. The proof is omitted due to space constraint.

Hence, the theorem is proved. �	

Hardness and Approximation Results for Some Variants of SMTI 261

m1 : w1
m2 : w1 w2 (w3 w4)
m3 : w1 (w2 w3) w4
m4 : (w1 w2 w3 w4)

w1 : m2 m1 m3 m4
w2 : m3 m4 m2
w3 : m3 m4 m2
w4 : m4 m3 m2

x1 : y1
x2 : y2 y1
x3 : y3 y2 y1
x4 : y4 y3 y2 y1

y1 : x6 x5 x7 x8 x1 x2 x3 x4
y2 : x7 x8 x6 x2 x3 x4 x5
y3 : x7 x8 x6 x3 x4 x5
y4 : x8 x7 x6 x4 x5

x5 : y1 y5 (y2 y3 y4)
x6 : y1 y2 (y3 y4) y6 y5
x7 : y1 (y2 y3) y4 y7 y6 y5
x8 : (y1 y2 y3 y4) y8 y7 y6 y5

y5 : x5 x6 x7 x8
y6 : x6 x7 x8
y7 : x7 x8
y8 : x8

Imax Imin

Fig. 3. An illustration of the construction of instance Imin from the instance Imax in
the proof of Theorem 4.

6 Approximation Algorithm for MIN SMTI-INC

In this section, we present a 3/2-approximation algorithm for the MIN SMTI-
INC problem, as the NP-hardness of this problem clearly follows from the MIN
SMTI-STEP problem.

Algorithm 2. MIN SMTI-INC APPROX
Input: An SMTI-INC instance I containing n men x1, x2, . . . , xn and n women
y1, y2, . . . , yn.
Output: A stable matching of size atmost 3/2 times the cardinality of minimum
size stable matching in I.
begin

1: Find an inclusion ordering < m1, . . . , mn, w1, . . . , wn > in I.

Let I
′

be the instance obtained after finding the inclusion ordering of men and
women in I and changing their preference lists accordingly.

2: If ∃ a tie T = (wα1, wα2, . . . , wαp) in any man mi’s list in I
′
, then

break the tie in the following way: mi prefers wαg to wαh if αg <
αh.

If ∃ a tie T
′
= (mβ1, mβ2, . . . , mβq) in any woman wj’s list in I

′
,

then break the tie in the following way: wj prefers mβu to mβv if βu

> βv.
Let I

′′
be the modified instance resulted from above breaking of ties in I

′
.

3: Apply Gale-Shapley algorithm in I
′′

to find a stable matching, say M1.
4: In M1, change the corresponding m’s to x’s and w’s to y’s as in the

original instance I, which were changed in step 1.

Name the matching containing x ’s and y ’s obtained by this transformation of m’s
to x ’s and w ’s to y ’s as M .

5: return M
end

Theorem 5. Algorithm 2 outputs a stable matching of size at most 3
2 · |MOPT |

in an SMTI-INC instance in O(n2) time, where MOPT is the minimum size
stable matching.

262 B. S. Panda and Sachin

Proof. Since the Gale-Shapley algorithm always returns a stable matching in an
SMI instance in polynomial time, the matching M returned by algorithm 2 is
stable.

Let MOPT be an optimal matching, that is, minimum size stable matching
of the instance I. Let G = (V,E) be the corresponding bipartite graph of I

′′
.

Now each component of G[M
MOPT] is either a path or an even cycle (having
equal number of edges from M and MOPT). We denote any MOPT -augmenting
path of length 3 as 3AP. Note that any 3AP contains two edges of M and one
edge of MOPT . We prove that G[M
MOPT] has no 3AP .

Claim. G[M
MOPT] has no 3AP .

Proof. Note that 3AP can be of four types as shown in Fig. 4, where the black
edges and blue edges are from M and MOPT , respectively as MOPT is a minimum
size stable matching.

mi

mi+k

mimi mi

mi+k

mi+kmi+k

wj wj

wj wj

wj+l wj+l wj+l wj+l

Type I Type II Type III Type IV

Fig. 4. Types of MOPT -augmenting paths of length 3.

We will show that none of these four types of 3AP are possible.
First assume that G[M
MOPT] has a Type I 3AP. Then wj does not prefer

mi over mi+k else MOPT will not be stable. Due to similar reason, mi+k does
not prefer wj+l over wj , else (mi+k,wj+l) will be a blocking pair for MOPT , a
contradiction. Also, if both wj and mi+k prefer each other over mi and wj+l,
respectively, then the matching M reported by algorithm will not be stable.
Hence either (i) wj prefers mi+k over mi, and mi+k is tied between wj and wj+l

or (ii) wj is tied between mi and mi+k, and mi+k prefers wj over wj+l, or (iii)
wj is tied between mi and mi+k, and mi+k is tied between wj and wj+l.
Case I: wj prefers mi+k over mi, and mi+k is tied between wj and wj+l.

After step 2 of algorithm, mi+k prefers wj over wj+l, as j < j + l. This
implies (mi+k,wj) is a blocking pair of M , a contradiction.
Case II: wj is tied between mi and mi+k, and mi+k prefers wj and wj+l.

After step 2 of algorithm, wj prefers mi+k over mi, as i+k > i. This implies
(mi+k,wj) is a blocking pair of M , a contradiction.
Case III: wj is tied between mi and mi+k, and mi+k is tied between wj and
wj+l.

After step 2 of algorithm, wj prefers mi+k over mi, and mi+k prefers wj over
wj+l. This implies (mi+k,wj) is a blocking pair of M , a contradiction.
Therefore, Type I 3AP is not possible.

Hardness and Approximation Results for Some Variants of SMTI 263

Next assume that Type II 3AP is possible. Since P (mi) ⊆ P (mi+k), so
(mi+k,wj) edge must be in G and hence this edge blocks MOPT , a contradiction.

Assume that Type III 3AP is possible. Since P (mi) ⊆ P (mi+k), so
(mi+k,wj+l) blocks MOPT , a contradiction.

Assume that Type IV 3AP is possible. Since P (wj+l) ⊆ P (wj), so (mi,wj)
edge must be in G and hence this edge blocks MOPT , a contradiction.

Hence G[M
MOPT] has no 3AP . �	
Also, any other MOPT -augmenting path in M
MOPT will have length at least
5 (containing two edges of MOPT and three edges of M).

Claim. |M | ≤ 3
2 · |MOPT |.

Proof. Let d1, d2, . . . , dr be the components of G[M
MOPT] which are MOPT -
augmenting paths. Let mi (1 ≤ i ≤ r) be the number of edges of MOPT in di.
This implies number of edges of M in di are mi + 1. Further, let c1, c2, . . . , cs

be other components of M
MOPT which contribute equally to both M and
MOPT . Let nj (1 ≤ j ≤ s) be the number of edges of MOPT , and hence of M,
in cj . By above claim, mi ≥ 2 ∀i = 1 to r, so

|M |
|MOPT | =

∑r
i=1(mi + 1) +

∑s
j=1 nj

∑r
i=1 mi +

∑s
j=1 nj

= 1 +
r

∑r
i=1 mi +

∑s
j=1 nj

≤ 1 +
1
2
.

�	
Furthermore, each of step of the algorithm takes atmost O(n2) time. There-

fore, the running time of the algorithm is O(n2). Hence, the theorem is
proved. �	

7 Conclusion

We have proposed a first ever study of SMTI problem by analysing the pattern of
the involved preference lists. We have strengthened the NP-completeness result
of COM SMTI problem by showing that this problem remains NP-complete
for SMTI-C instance. Also, we have improved the NP-completeness result of
DECIDE MAX SMTI problem by establishing that DECIDE MAX SMTI-INC
problem is NP-complete. Furthermore, for an SMTI-STEP instance, we have
shown that the problem of finding minimum size stable matching is NP-hard
whereas the problem of finding a complete stable matching is polynomial time
solvable. Finally, we have proposed the first constant factor approximation algo-
rithm linked with MIN SMTI problem by presenting a 3/2-approximation algo-
rithm for the MIN SMTI-INC problem. It remains open to further improve the
approximability bounds for the MIN SMTI problem.

264 B. S. Panda and Sachin

References

1. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Mon. 69(1), 9–15 (1962)

2. Halldórsson, M.M., et al.: Approximability results for stable marriage problems
with ties. Theoret. Comput. Sci. 306(1–3), 431–447 (2003)

3. Horton, J.D., Kilakos, K.: Minimum edge dominating sets. SIAM J. Discret. Math.
6(3), 375–387 (1993)

4. Irving, R.W.: Stable marriage and indifference. Discret. Appl. Math. 48(3), 261–
272 (1994)

5. Irving, R.W., Manlove, D.F., O’Malley, G.: Stable marriage with ties and bounded
length preference lists. J. Discrete Algorithms 7(2), 213–219 (2009)

6. Iwama, K., Miyazaki, S., Morita, Y., Manlove, D.: Stable marriage with incomplete
lists and ties. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP
1999. LNCS, vol. 1644, pp. 443–452. Springer, Heidelberg (1999). https://doi.org/
10.1007/3-540-48523-6 41

7. Király, Z.: Linear time local approximation algorithm for maximum stable mar-
riage. Algorithms 6(3), 471–484 (2013)

8. Manlove, D.F., Irving, R.W., Iwama, K., Miyazaki, S., Morita, Y.: Hard variants
of stable marriage. Theoret. Comput. Sci. 276(1–2), 261–279 (2002)

9. Paluch, K.: Faster and simpler approximation of stable matchings. Algorithms
7(2), 189–202 (2014)

10. Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl. Math.
38(3), 364–372 (1980)

https://doi.org/10.1007/3-540-48523-6_41
https://doi.org/10.1007/3-540-48523-6_41

On Fair Division with Binary Valuations
Respecting Social Networks

Neeldhara Misra(B) and Debanuj Nayak

Indian Institute of Technology, Gandhinagar, India
neeldhara.m@iitgn.ac.in, debanuj.nayak@alumni.iitgn.ac.in

Abstract. We study the computational complexity of finding fair allo-
cations of indivisible goods in the setting where a social network on the
agents is given. Notions of fairness in this context are “localized”, that
is, agents are only concerned about the bundles allocated to their neigh-
bors, rather than every other agent in the system. We comprehensively
address the computational complexity of finding locally envy-free and
Pareto efficient allocations in the setting where the agents have binary
valuations for the goods and the underlying social network is modeled by
an undirected graph. We study the problem in the framework of param-
eterized complexity.

We show that the problem is computationally intractable even in fairly
restricted scenarios, for instance, even when the underlying graph is a
path. We show NP-hardness for settings where the graph has only two
distinct valuations among the agents. We demonstrate W-hardness with
respect to the number of goods or the size of the vertex cover of the under-
lying graph. We also consider notions of proportionality that respect the
structure of the underlying graph.

Keywords: Fair division · Social networks · Envy-freeness ·
Parameterized complexity

1 Introduction

The problem of fairly allocating resources among a set of agents with (possibly
distinct) interests in said resources is a fundamental problem with important
and varied practical applications. We focus on the problem of allocating indivis-
ible items: in this setting, we have n agents and m resources, and every agent
expresses their utilities for the resources, either as a ranking over the resources
or by specifying a valuation function. The goal is to determine an allocation of
the items to the agents that respects some notion of “fairness” and “efficiency”.
We use the term bundle to refer to the set of items that an agent receives in an
allocation.

Envy-freeness is one of the most widely used notions of fairness. Given an
allocation, an agent envies another if it perceives the bundle of the other agent
to be more valuable than her own. An allocation is envy-free if no agent envies
c© Springer Nature Switzerland AG 2022
N. Balachandran and R. Inkulu (Eds.): CALDAM 2022, LNCS 13179, pp. 265–278, 2022.
https://doi.org/10.1007/978-3-030-95018-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95018-7_21&domain=pdf
https://doi.org/10.1007/978-3-030-95018-7_21

266 N. Misra and D. Nayak

another. Note that the trivial allocation that leaves every agent empty-handed
is always envy-free. Therefore, one is typically interested in fair allocations that
also satisfy some criteria of economic efficiency, such as completeness (every good
should be allocated to some agent), non-wastefulness (no agent receives a piece
of cake that is worth nothing to her and worth something to another agent),
or Pareto-efficiency (there is no other feasible agreement that would make at
least one agent strictly better off while not making any of the others worse
off). We remark here that just as there are trivial allocations that are fair, it is
also possible to trivially achieve efficiency if we had no fairness considerations
involved: for instance, the allocation that gives all goods to a single agent is
Pareto-efficient assuming that the agent has a strictly monotonic utility function
over the items.

The question of finding allocations that respect fairness and efficiency
demands simultaneously is non-trivial: in particular, such allocations may not
exist (if there are two agents and one good, and both agents have positive utility
for this single resource), and can be computationally hard to find (for instance,
the problem of finding a complete envy-free allocation between even two agents
who hold identical valuations over m goods is equivalent to the Partition prob-
lem).

The focus of this work is the notion of local envy-freeness. In this setting, the
agents are related by a graph, which might be thought of as modeling a social
network over the agents, and we explore notions of fairness that account for the
structure of this network. For instance, the notion of envy is now restricted: it
only manifests between agents who are friends in the network. This is a com-
pelling model of fairness, since agents are likely to not envy agents about whom
they have little or no information. We note that the problem of fair division
respecting a social network generalizes the classical notion, which can be cap-
tured by considering a complete graph on the agents. Thus, the problem of find-
ing allocations that are “locally fair” is a generalization of the classical allocation
problem.

1.1 Related Work

The model of local envy-freeness has been proposed and considered in several
recent lines of work. Some of the earliest considerations for incorporating a graph
structure on the agents were made in the context of the cake-cutting prob-
lem, which is the closely related setting of allocating a divisible resource among
agents [1,4]. Abebe et al. [1] consider both directed and undirected graphs and
focus on characterizing the structure of graphs that admit algorithms with cer-
tain bounds. They also consider the issue of the price of envy-freeness in this
setting, which compares the total utility of an optimal allocation to the best
utility of an allocation that is envy-free. Bei et al. [4], on the other hand, pro-
pose a moving-knife algorithm that outputs an envy-free allocation on trees and
an algorithm for computing a proportional allocation on descendant graphs.

We now turn to the literature in the context of indivisible items. Beynier
et al. [5] study the fair division problem in the setting of “house allocation”:

On Fair Division with Binary Valuations Respecting Social Networks 267

here agents have (strict) preferences over items, and each agent must receive
exactly one item. An agent envies another in this setting if she prefers the item
received by the other agent over her own. In the case of a complete network,
for an allocation to be envy-free, each agent must get her top object, and this
assignment is automatically Pareto-efficient as well. This motivates the setting of
local envy-freeness with respect to a graph on the agents. The authors consider
the case when the underlying graph is undirected, and they also consider a
variant of the problem where agents themselves can be located on the network by
the central authority. These problems turn out to be computationally intractable
even on very simple graph structures.

Bredereck et al. [10] consider the problem of graph-based envy-freeness in the
context of directed graphs and for various classes of valuations: including binary,
identical, additive, and even valuations that are both identical and binary. They
also consider the complexity of the allocation problem in the framework of param-
eterized complexity.1 Somewhat surprisingly, it turns out that finding complete
envy-free allocations in the setting of a graph is NP-hard even when the valuations
are binary and identical. Note that in this setting, every agent in every strongly
connected component must get the same number of items: thus, the allocation
problem is trivial for directed graphs that are strongly connected, but NP-hard for
general directed graphs. Also, it turns out that for general binary preferences, the
problem of finding a complete envy-free allocation is NP-hard even when the graph
is strongly connected. The problem is also tractable for DAGs: indeed, allocating
all resources to a single source agent (corresponding to a vertex with no incoming
arcs) is both complete and locally envy-free since nobody can envy a source agent,
and empty-handed agents have no envy for each other.

More recently, Eiben et al. [13] consider the problem of finding locally envy-
free allocations and envy-free allocations that are additionally proportional in
the setting of directed graphs in the framework of parameterized complexity, and
specifically considering parameters such as treewidth, cliquewidth, and vertex
cover — all of these reflect the structure of the underlying network. It turns out
that the problem of finding fair and efficient allocations is tractable for networks
that have bounded values for these parameters with some additional assumptions
that bound the number of item types or the size of the largest bundle received by
an agent. The authors also show hardness results in both the parameterized and
classical settings. For instance, the authors show that finding a locally envy-free
allocation is NP-hard even when the underlying network is a star, but we note
that this is in the setting of general utilities.

The work of Bredereck et al. [8,9] demonstrates that the problem of find-
ing fair and efficient allocations in various settings (including graph-based con-
straints) is fixed-parameter tractable in the combined parameter “number of
agents” and “number of item types” for general utilities. In contrast, our work
here focuses on smaller parameters for the special case of binary utilities.

In [11], Chevaleyre, Endriss, and Maudet consider distributed mechanisms
for allocating indivisible goods, in which agents can locally agree on deals to

1 The terminology relevant to this framework is introduced in the next section.

268 N. Misra and D. Nayak

exchange some of the goods in their possession. This study focuses on conver-
gence properties for such distribution mechanisms both in the context of the
classical setting and the setting involving social constraints coming from an
underlying undirected graph. Here, the notions of fairness localized according to
the graph, and the network also constraints the exchanges that can take place —
agents can engage in an exchange only if they are friends in the network. There
are also some lines of work that suggest eliminating envy by some mechanism
for hiding information [14].

1.2 Our Contributions

Our focus in this paper is on the setting when agents have binary valuations
over the goods and the underlying social network is modeled by an undirected
graph. Our focus is on exploring the computational complexity of finding locally
envy-free allocations that are also Pareto efficient (EEF) in the framework of
parameterized complexity, building most closely on the works of [6,10,13].

Bounded Agent Types. We begin by noting that the setting of undirected graphs
can be significantly different from their directed counterparts: indeed, recall that
finding a complete and locally envy-free allocation was NP-hard for even identical
binary valuations for directed graphs, but the analogous question is easily seen
to be tractable for undirected graphs (indeed, observe that the notions of strong
connectivity and connectivity coincide). This motivates the question of whether
the problem of finding locally EEF allocations is easier for undirected graphs
with a bounded number of agent types. We answer this question in the negative
by showing that the problem of determining locally envy-free allocations is NP-
hard even when there are only two distinct binary valuations among the agents
by a reduction from a graph separation problem called Cutting � Vertices
(Theorem 1).

Sparse and Dense Graphs. In contrast with the result for DAGs, we show that
finding locally envy-free allocations that are Pareto efficient (EEF) is NP-hard
even when the underlying graph is a path (Theorem 4 and Corollary 1). Although
Beynier et al. [5] also show hardness results for very sparse graphs, we note that
our methods are significantly different since the models for the valuations are
different and additionally, the allocations we seek need not give every agent
exactly one item. Moving away from sparsity, we recall that finding complete
envy-free allocations for binary valuations is known to be NP-hard even for
complete graphs [3,14], which justifies the need for using additional parameters2

in the XP3 algorithm for finding locally envy-free allocations shown by [13,
Theorem 10].

2 The algorithm referred to is XP in the cliquewidth of the underlying graph, the
number of agent types and item types.

3 XP is the class of parameterized problems that can be solved in time nf(k) for some
computable function f.

On Fair Division with Binary Valuations Respecting Social Networks 269

Structural Parameters I: Treewidth and Cliquewidth. Informally speaking, the
parameters treewidth and cliquewidth of graphs quantitatively capture the spar-
sity and density of the graph by measuring their “likeness” to trees and complete
graphs. The results we have already for sparse and dense graphs demonstrate
that these parameters being bounded alone is not enough to obtain tractable
algorithms. On the other hand, the results of [13] imply that the problem of
finding complete and locally envy-free allocations admits XP algorithms when
parameterized by either the treewidth or cliquewidth of the underlying graph
jointly with the number of item types and agent types. Since their model allows
for bidirectional edges, these results apply to the setting of undirected graphs as
well. We note that the algorithms described in [13] focus on complete allocations,
but can be adapted to account for Pareto efficiency as well.

Structural Parameters II: Vertex Cover and Twin Cover. In the setting of
directed graphs and general utilities, we note that the problem of finding a com-
plete and locally envy-free allocation is NP-hard even when the underlying graph
is a star. In particular, this demonstrates hardness on graphs with a constant-
sized vertex cover.4 It is not clear if this is the case for undirected graphs and
binary utilities. We show that the problem of finding locally EEF allocations
is W[1]-hard when parameterized by the vertex cover number (Theorem 3). We
remark that a stronger hardness result can be observed for the closely related
parameter of twin cover5 —indeed, the known NP-hardness of finding envy-free
allocations for binary valuations on complete graphs [3,14] implies hardness for
graphs that have a twin cover of size zero.

Few Resources or Agents. We also consider the cases where the number of goods
or the number of agents are relatively small. When considering these parameters,
the work of Bliem et al. [6] shows that the computation of EEF allocations is FPT
when parameterized by the number of goods or the number of agents for additive
0/1 valuations. In contrast, we show that finding EEF allocations respecting the
structure of an underlying undirected graph is W[1]-hard when parameterized
by the number of goods (Theorem 2). On the other hand, the FPT algorithm
when parameterized by the number of agents can be extended to account for the
graph constraints (noted in Observation 1 in the full version [15]).

Other Notions of Fairness. Finally, we also consider notions of proportionality
in the context of graphs — we refer to these as local and quasi-global propor-
tionality concepts, representing the extent to which the definitions account for
the underlying graph. We demonstrate that computing a locally proportional
allocation is NP-hard (Theorem 5), while computing a proportional allocation
that is quasi-global is tractable (Theorem 6). Notions of local proportionality

4 A vertex cover of a graph is a subset of vertices that contains at least one endpoint
of every edge. A graph with a bounded vertex cover also has bounded treewidth.

5 A twin cover of a graph is a subset of vertices S such that G\S is a disjoint union
of cliques, and further, every pair of vertices u, v in any clique of G\S are “twins”,
that is, N[v] = N[u].

270 N. Misra and D. Nayak

have been proposed and studied in several of the papers that were summarized
in the previous section.

2 Preliminaries

We use standard terminology from graph theory and fair division. Unless men-
tioned otherwise, the graphs we consider are simple and undirected. For a graph
G = (V,E), consisting of a set V of vertices and a set E of edges, by N(v) we
denote the neighborhood of vertex v ∈ V , i.e., the set W ⊂ V of vertices such
that for each vertex w ∈ W there exists an edge e = (v,w) ∈ E. The closed
neighborhood of a vertex v is N(v) ∪ {v} and is denoted N[v]. The degree of a
vertex v, denoted d(v), is |N(v)|. A clique is a subset of vertices which are pair-
wise adjacent. An independent set is a subset of vertices, no two of which are
adjacent. For X ⊆ V, the induced subgraph G[X] denotes the subgraph whose
vertex set is X and the edge set consists of all edges whose both end points are
in X.

An instance of fair division for indivisible goods consists of n agents A =
{1, . . . ,n} and m goods (also called items or resources), R = {o1, . . . ,om}. Fur-
ther, we are also given valuations (also called preference functions or utilities)
ν� : 2R → Z for every agent � ∈ A. We will assume throughout that the val-
uation functions are additive, i.e., for each agent � ∈ A and any set of goods
S ⊆ R, ν�(S) :=

∑
o∈S ν�({o}). A 0/1 valuation is a function that takes values

in {0, 1}, while valuations are said to be identical if every agent has the same
preference function. In the context of 0/1 valuations, we say that an agent values
or approves a good if her utility for the good is 1. We will use V to denote the
valuations of the agents A over R. When considering fair division in the context
of social networks, we are also given an undirected graph G over the agents A.

Every subset S ⊆ R is called a bundle. An allocation is a function π : A → 2R

mapping each agent to the bundle she receives, such that π(i) ∩ π(j) = ∅ when
i 	= j because the items cannot be shared. When

⋃
a∈A π(a) = R, the allocation

π is said to be complete, otherwise it is partial. An allocation is non-wasteful if
every good is allocated to an agent that assigns positive utility to it.

An allocation π′ dominates π if for all � ∈ A it holds that ν�(π(�))) �
ν�(π

′(�)) and for some aj ∈ A it holds that νaj
(π(aj))) < νaj

(π′(aj)). An
allocation π is Pareto-efficient if there exists no allocation π′ that dominates π.
In the case of 0/1 preferences, we note that an allocation is Pareto-efficient if and
only if it is complete and non-wasteful, assuming that each resource provides a
value of 1 to at least one agent.

Given an instance of fair division (A,R,G = (A,E),V) as described above,
we now introduce the following fairness notions:

� Graph Envy-Freeness (GEF). We call allocation π graph-envy-free if for
each pair of (distinct) agents i, j ∈ A such that j ∈ N(i), it holds that
νi(π(i)) � νi(π(j)).

� Quasi-Global Proportionality (QP). We say that an allocation π achieves
quasi-global proportionality if for each agent � ∈ A, νi(π(i)) � 1

d(�)+1νi(R).

On Fair Division with Binary Valuations Respecting Social Networks 271

� Local Proportionality (LP). We say that an allocation π achieves local
proportionality if for each agent � ∈ A, νi(π(i)) � 1

d(�)+1

∑
j∈N[i] νi(π(j)).

Note that the graph versions of variants of envy-freeness (such as EF1 or
EFX) can be defined analogously in a straightforward manner. It is easy to
see that any graph envy-free allocation is also locally proportional and that if
the underlying graph is complete, then local proportionality coincides with the
standard notion of proportionality. For the problems we consider, we are typically
given an instance of fair division on a graph, and the goal is to determine if
there exists an allocation that satisfies some notion of fairness and efficiency.
For instance, consider the following problems:

Graph Envy-Free Allocation (E-GEFA)
Input: An instance of fair division on a graph
(A,R,G = (A,E),V).
Question: Does there exist an envy-free, Pareto-efficient allocation?

Locally Proportional Allocation (E-LPA)
Input: An instance of fair division on a graph
(A,R,G = (A,E),V).
Question: Does there exist a Pareto-efficient allocation that achieves
local proportionality?

For any efficiency concept (X) and fairness notion (Y), the X-YA problem
is defined in a similar fashion. Although our questions are posed as decision
versions, we note that most of our algorithms can be easily adapted to handle the
natural “search” version of these problems. We refer the reader to the books [7,
16] and the article [11] for additional background on fair division.

A problem parameterized by k is fixed-parameter tractable if it is solvable in
f(k)|I|O(1) time for some computable function f and the input size |I| according
to the problem’s encoding. Informally, W-hard problems are presumably not
fixed-parameter tractable. The problem of finding a clique on at least k vertices
is W[1]-hard when parameterized by k. We call a problem para-NP-hard if it
is NP-hard even for a constant value of the parameter. For a comprehensive
introduction to the paradigm of parametrized complexity and algorithms, we
refer the reader to the book [12].

3 Envy-Freeness

3.1 NP-Hardness for Two Agent Types

In this section, we show that finding E-GEFA allocations is NP-hard even in the
setting of near-identical binary valuations: in particular, when all agents have
one of two possible utilities over the items. Note that in the setting of identical

272 N. Misra and D. Nayak

binary valuations when the graph G is connected, it is easy to see that all agents
must value all goods without loss of generality, and that desirable allocations are
the ones that allocates the same number of goods to each agent, where the goods
themselves may be arbitrarily chosen. Indeed, it is clear that an allocation with
equal bundle sizes is E-GEFA. On the other hand, consider a E-GEFA allocation
that does not allocate bundles of equal size to all agents. Let ai and aj be two
agents that receive bundles of different size. We can always find two adjacent
agents on a path from ai to aj who have received bundles of different sizes,
contradicting envy-freeness.

We now show that even a slightly more general situation is computationally
intractable — in particular, if all agents have one of two valuations over the
goods, the problem of identifying E-GEFA allocations is NP-hard. Due to lack
of space, the proof is deferred to the full version [15].

Theorem 1. The E-GEFA problem is NP-complete even when there are two
agent types, and further, agents have 0/1 valuations over the goods.

3.2 W-Hardness Parameterized by Goods

In this section, we demonstrate the hardness of finding E-GEFA allocations even
when the number of goods is bounded by showing that the problem is W[1]-hard
when parameterized by the number of goods.

Theorem 2. The E-GEFA problem is W[1]-hard when parameterized by the
number of goods, even when agents have 0/1 valuations over the goods.

We describe a reduction from the W[1]-hard problem Clique, given a graph
G and an integer k, does there exist a clique on k vertices in G. Let I = (G,k)
be an instance of clique, where G = (V,E) and further, V = {v1, . . . , vn} and
E = {e1, . . . , em}. We assume, without loss of generality, that m �

(
k
2

)
, since we

can always return a trivial No-instance when this is not the case. We begin by
describing the construction of the reduced instance JI := (A,R,H = (A, F),V).
We define the set of goods R as follows:

R = {q1, . . . ,q�,p1, . . . ,pk,d1, . . . ,d�+1} ,

where � =
(
k
2

)
. For ease of discussion, we call the first � goods popular and

the next k goods specialized. The remaining are dummy items. We now define
the set of agents as A = V ∪ E ∪ S ∪ W, where:

S := {s1, . . . , s�+1} and W := {wij | i ∈ [n], j ∈ [� + 1]}.

We indulge in a mild abuse of notation and use vi to refer to both an element
of V from the clique instance and an agent of A in the reduced instance (similarly
for edges). The edges of H are as follows:

� e = (u, v) ∈ E is adjacent to all vertices of S and u, v.
� vi ∈ V is adjacent to all vertices wij for j ∈ [� + 1].
� For each 1 � i � n, H[∪�+1

j=1wij] induces a clique.

On Fair Division with Binary Valuations Respecting Social Networks 273

wi1, · · · ,wi(�+1) W

v1, v2, · · · , vi, · · · , vj, · · · , vn V

e1, e2, · · · , et, · · · , em E

s1, s2, · · · , s�, s�+1 S

Fig. 1. A sketch of the reduced
instance based on an instance G =

(V,E),k of Clique. Recall that �

denotes
(

k
2

)
, and only some vertices of

W are shown for clarity. The shaded
vertices induce a complete subgraph.
The edge et = (vi, vj) is adjacent only
to vi and vj among vertices in V.

The preferences of the agents are as
follows:

� All agents have an utility of 1 for the
popular goods.

� All agents in V have an utility of 1 for
the specialized goods.

� The agent si ∈ S has an utility of 1 for
di, for all i ∈ [� + 1].

This completes the construction of the
instance (Fig. 1). Note that the number of
goods is a function of k alone. We now
turn to the argument for equivalence, a
clique X ⊆ V, of size k exists in G iff,
there is an GEF allocation for the instance
constructed JI := (A,R,H = (A, F),V).

Proof. In the forward direction, let X ⊆ V

be a clique in G and let Y := G[X] ⊆ G.
Consider now the following allocation π.
We let each agent corresponding to Y

receive one popular item, each agent cor-
responding to X receive one specialized
item, and finally allocate the item di to
si for all i ∈ [� + 1]. It is straightforward to verify that the allocation π is
Pareto-efficient and envy-free with respect to H.

This concludes our description of a fair and complete allocation strategy
given a clique in G. We now turn to the reverse direction, where we are given an
allocation π that is Pareto-efficient and envy-free with respect to H. It is useful
to make the following observation about π to begin with.

Claim. Let H be defined as above, and let π be an allocation that is Pareto-
efficient and envy-free with respect to H. Then, any popular good is assigned by
π to an agent from E. Further, no agent in E can receive more than one popular
good in the allocation π.

Since π is non-wasteful, the specialized goods must be distributed among
agents corresponding to V. The following is easy to see.

Claim. Let H be defined as above, and let π be an allocation that is Pareto-
efficient and envy-free with respect to H. No agent in V can receive more than
one specialized good in the allocation π.

Let X ⊆ V be the subset of k agents that receive at least one specialized item
and let Y ⊆ E be the subset of � agents that receive at least one popular item

274 N. Misra and D. Nayak

with respect to π. We claim that G[X] is a clique. In particular, we claim that
every edge of Y has both its endpoints in X. Indeed, suppose not, and let e ∈ Y

be an edge with at least one endpoint (say v) outside X. Then, v envies e, which
contradicts our assumption about π being envy-free with respect to H.
�

3.3 W-Hardness Parameterized by Vertex Cover

Recall that a vertex cover of a graph G = (V,E) is a subset S ⊆ V such that G\S

is an independent set (i.e., for any pair of vertices u, v ∈ G\S, (u, v) /∈ E). In the
setting of directed graphs with arbitrary utilities, finding E-GEFA allocations is
NP-hard even for graphs that have a constant-sized vertex cover. Here, we show
that in the setting of binary utilities, finding a E-GEFA allocation is W[1]-hard
when parameterized by the vertex cover of the underlying graph. Due to lack of
space, the proof is deferred to the full version [15].

Theorem 3 (�). The E-GEFA problem is W[1]-hard when parameterized by
the vertex cover of the underlying graph, even when agents have 0/1 valuations
over the goods.

3.4 NP-Hardness on Paths

To show the hardness of E-GEFA even when the underlying graph is a path,
we reduce from a variant of SAT called Linear SAT (abbreviated LSAT).
In an LSAT instance, each clause has at most three literals, and further the
literals of the formula can be sorted such that every clause corresponds to at
most three consecutive literals in the sorted list, and each clause shares at most
one of its literals with another clause, in which case this literal is extreme in
both clauses. The hardness of LSAT was shown in [2]. In fact, by studying the
reduced instance, one may assume that a “hard” instance of LSAT has the
following structure: the first 2q clauses have two literals each and are of the
following form:

Ai = {si, �i},Bi = {�i, ti}; 1 � i � q,

where si, �i, and ti denote literals, while the remaining p clauses have three
literals each and are mutually disjoint from each other as well as the first 2q
clauses. For ease of description, we will assume that the LSAT formula that
we reduce from has this particular structure. We are now ready to describe our
reduction — in the interest of simplicity, our proof is designed to address the
case when the graph is a disjoint union of paths, although it is easy to “stitch”
these components into a single, longer path, as we will explain later.

Theorem 4. The E-GEFA problem is NP-complete even when the graph
induced by the agents is a disjoint union of paths, and further, agents have 0/1
valuations over the goods.

On Fair Division with Binary Valuations Respecting Social Networks 275

Membership in NP is straightforward to check. We focus here on the reduction
demonstrating hardness. Let φ be an instance of LSAT over variables X̂ :=
{x1, . . . , xn} and clauses:

C := {A1,B1, . . . ,Aq,Bq,C1, . . . ,Cp},

as described above. We refer to the first 2q clauses as the coupled clauses
and the remaining as isolated clauses. We now turn to the construction of the
reduced instance Jφ := (V,R,H,V). We define the set of goods R as RX̂ ∪ RC,
where:

RX̂ = {y1, . . . ,yn, x1, . . . , xn, x1, . . . , xn, } ,

and:
RC = {g1, . . . ,gq,d1, . . . ,dp} .

The set of agents V is given by X ∪ C ∪ Y ∪ G ∪ D, where C is denoted
in the same way as in the LSAT instance, and further:

X = {X1, . . . ,Xn},Y = {Y1, . . . ,Yn},

G = {G1, . . . ,Gq} and D = {D1, . . . ,Dp}.

We now simultaneously describe the structure of the graph H and the pref-
erences of the agents.

Yi

yi

Xi

yi xi xi

Di

di

Ci

di j1 j2 j3

Gi

gi

Ai

gi si ti �i

Bi

si ti

Fig. 2. A schematic of the reduced
instance in the proof of Theorem 4,
which is a disjoint union of paths. j1
j2 j3 are the literals of clause Ci

Assignment Gadgets. For each 1 � i �
n, add an edge between Xi and Yi. The
agent Xi values {xi, xi,yi}, while Yi values
the good yi (and nothing else).

Isolated Clause Gadgets. For each 1 �
i � p, we add an edge between agents Ci

and Di. The agent Ci values the literal � if
and only if � ∈ Ci along with di, while Di

values the good di (and nothing else).

Coupled Clause Gadgets. For each 1 �
i � q, we add an edge between agents Ai

and Bi, and also an edge between Gi and Ai.
The agent Gi values the good gi (and noth-
ing else). Agents Ai and Bi value, respec-
tively, the goods {gi, si, ti, �i} and {si, ti}.

This completes the description of the
construction (Fig.2). We defer the proof of
equivalence to the full version [15] due to lack of space.

We remark that it is possible to combine the connected components in the
reduced instance above by simply introducing “dummy connector agents” that
each value a corresponding dummy item and nothing else, leading to the following
consequence.

276 N. Misra and D. Nayak

Corollary 1. The E-GEFA problem is NP-complete even when the graph
induced by the agents is a path, and further, agents have 0/1 valuations over
the goods.

4 Proportionality for Graphs

4.1 Local Proportionality: NP-hardness

Theorem 5. The E-LPA problem is NP-complete on undirected graphs, even
when all agents have 0/1 valuations over the resources.

Proof. We defer the proof to the full version [15] due to lack of space.
�

4.2 Quasi-Global Proportionality: Efficient Algorithms

To obtain efficient algorithms for finding Pareto-efficient allocations that respect
quasi-global proportionality, We model the problem of finding Pareto-efficient
allocations respecting quasi-global proportionality using an integer linear pro-
gram (ILP) with a structured constraint matrix. In particular, it is well-known
that if the constraint matrix of an ILP is totally unimodular,6 then the corre-
sponding instance can be solved in polynomial time. We turn to an explanation
of our encoding.

Theorem 6. The problem of finding a Pareto-efficient allocation that is quasi-
globally proportional with respect to an underlying undirected graph on the agents
can be solved in polynomial time if all agents have 0/1 valuations.

Proof. Let us assume there are n agents and m goods. We will introduce a vari-
able xij which indicates whether agent i gets good j, and aij indicates whether
agent i likes good j. These constraints are as follows.

� We encode the fact that the allocation defined by x is well-defined by intro-
ducing the following constraint for each good j:

� For each agent i, let si be the number of items that have utility 1 for agent
i. For each agent i, introduce the following proportionality constraint:

∀j

n∑

i=1

xij � 1 and ∀i

m∑

j=1

aijxij � si

(di + 1)

We let the objective function be
∑n

i=1 aijxij. Note that any assignment for
which this function achieves a value of m is complete and non-wasteful, and
also respects quasi-global proportionality. It is straightforward to verify that
the constraint matrix for the ILP described above is totally unimodular for any
underlying graph H.
�
6 A unimodular Matrix is a square integer matrix having determinant +1 or −1. A

totally unimodular matrix is a matrix for which every square non-singular submatrix
is unimodular.

On Fair Division with Binary Valuations Respecting Social Networks 277

We remark that the problem of assigning goods in a proportional fashion (for
any of the notions of proportionality that we have introduced) beyond 0/1 valu-
ations is NP-hard even when there are only two agents with identical valuations,
by a standard reduction from Partition, with the graph being a singe edge on
two agents.

Acknowledgments. The first author is grateful to SERB for their support of this
project through the ECR grant ECR/2018/002967.

References

1. Abebe, R., Kleinberg, J.M., Parkes, D.C.: Fair division via social comparison. In:
Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Sys-
tems, AAMAS, pp. 281–289 (2017)

2. Arkin, E.M., et al.: Choice is hard. In: Elbassioni, K., Makino, K. (eds.) ISAAC
2015. LNCS, vol. 9472, pp. 318–328. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48971-0 28

3. Aziz, H., Gaspers, S., Mackenzie, S., Walsh, T.: Fair assignment of indivisible
objects under ordinal preferences. Artif. Intell. 227, 71–92 (2015)

4. Bei, X., Qiao, Y., Zhang, S.: Networked fairness in cake cutting. In: Proceedings of
the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI,
pp. 3632–3638 (2017)

5. Beynier, A., Chevaleyre, Y., Gourvès, L., Lesca, J., Maudet, N., Wilczynski, A.:
Local envy-freeness in house allocation problems. In: Proceedings of the 17th Inter-
national Conference on Autonomous Agents and MultiAgent Systems, AAMAS,
pp. 292–300 (2018)

6. Bliem, B., Bredereck, R., Niedermeier, R.: Complexity of efficient and envy-free
resource allocation: few agents, resources, or utility levels. In: Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp.
102–108 (2016)

7. Brams, S.J., Taylor, A.D.: Fair Division - from Cake-Cutting to Dispute Resolution.
Cambridge University Press, Cambridge (1996)

8. Bredereck, R., Kaczmarczyk, A., Knop, D., Niedermeier, R.: High-multiplicity fair
allocation using parametric integer linear programming. CoRR arXiv:2005.04907
(2020)

9. Bredereck, R., Kaczmarczyk, A., Knop, D., Niedermeier, R.: High-multiplicity fair
allocation: Lenstra empowered by n-fold integer programming. In: Proceedings
of the 2019 ACM Conference on Economics and Computation. Association for
Computing Machinery (2019)

10. Bredereck, R., Kaczmarczyk, A., Niedermeier, R.: Envy-free allocations respect-
ing social networks. In: Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS, 2018, pp. 283–291 (2018)

11. Chevaleyre, Y., Endriss, U., Maudet, N.: Distributed fair allocation of indivisible
goods. Artif. Intell. 242, 1–22 (2017)

12. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

13. Eiben, E., Ganian, R., Hamm, T., Ordyniak, S.: Parameterized complexity of envy-
free resource allocation in social networks. In: Proceedings of the Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI, pp. 7135–7142. AAAI Press
(2020)

https://doi.org/10.1007/978-3-662-48971-0_28
https://doi.org/10.1007/978-3-662-48971-0_28
http://arxiv.org/abs/2005.04907
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3

278 N. Misra and D. Nayak

14. Hosseini, H., Sikdar, S., Vaish, R., Wang, H., Xia, L.: Fair division through infor-
mation withholding. In: Proceedings of the Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI, pp. 2014–2021 (2020)

15. Misra, N., Nayak, D.: On fair division with binary valuations respecting social
networks - full version. CoRR arXiv:2111.11528 (2021)

16. Robertson, J.M., Webb, W.A.: Cake-Cutting Algorithms - Be Fair If You Can. A
K Peters, Natick (1998)

http://arxiv.org/abs/2111.11528

Parameterized Intractability of Defensive
Alliance Problem

Ajinkya Gaikwad, Soumen Maity(B), and Shuvam Kant Tripathi

Indian Institute of Science Education and Research, Pune, India
{ajinkya.gaikwad,tripathi.shuvamkant}@students.iiserpune.ac.in,

soumen@iiserpune.ac.in

Abstract. The Defensive Alliance problem has been studied exten-
sively during the last twenty years. A set R of vertices of a graph is a
defensive alliance if, for each element of R, the majority of its neighbours
are in R. The problem of finding a defensive alliance of minimum size
in a given graph is NP-hard. Fixed-parameter tractability results have
been obtained for the solution size and some structural parameters such
as the vertex cover number and neighbourhood diversity. For the param-
eter treewidth the problem is W[1]-hard. However, for the parameters
pathwidth and feedback vertex set, the question of whether the problem
is FPT has remained open. In this work we prove that (1) the Defensive
Alliance problem is W[1]-hard when parameterized by the pathwidth
of the input graph, (2) the Exact Defensive Alliance problem is
W[1]-hard parameterized by a wide range of fairly restrictive structural
parameters such as the feedback vertex set number, pathwidth, treewidth
and treedepth and (3) a generalization of the Defensive Alliance prob-
lem is W[1]-hard parameterized by the size of a vertex deletion set into
trees of height at most 6.

Keywords: Defensive alliance · Parameterized complexity · FPT ·
W[1]-hard · Treewidth

1 Introduction

Alliances in graphs were introduced first in 2000 by Kristiansen, Hedetniemi, and
Hedetniemi [12]. The purpose is to form coalitions of vertices able to defend each
other from attacks of other vertices (in the case of defensive alliances) or able
to collaborate to attack non-allied vertices (in the case of offensive alliances).
Alliances can be formed between nations in a security context, between com-
panies in a business context, or between people wishing to gather by affin-
ity. The alliance problems have been studied extensively during last fifteen

The first author gratefully acknowledges support from the Ministry of Human Resource
Development, Government of India, under Prime Minister’s Research Fellowship
Scheme (No. MRF-192002-211).
The second author’s research was supported in part by the Science and Engineering
Research Board (SERB), Govt. of India, under Sanction Order No. MTR/2018/001025.

c© Springer Nature Switzerland AG 2022
N. Balachandran and R. Inkulu (Eds.): CALDAM 2022, LNCS 13179, pp. 279–291, 2022.
https://doi.org/10.1007/978-3-030-95018-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95018-7_22&domain=pdf
https://doi.org/10.1007/978-3-030-95018-7_22

280 A. Gaikwad et al.

years [2,7,15,17,18], and generalizations called r-alliances are also studied [16].
Throughout this article, G = (V,E) denotes a finite, simple and undirected
graph of order |V | = n. The subgraph induced by S ⊆ V is denoted by G[S].
For a vertex v ∈ V , we use NG(v) = {u : (u, v) ∈ E(G)} to denote the (open)
neighbourhood of vertex v in G, and NG[v] = NG(v) ∪ {v} to denote the closed
neighbourhood of v. The degree dG(v) of a vertex v ∈ V (G) is |NG(v)|. For a
subset S ⊆ V (G), we define its closed neighbourhood as NG[S] =

⋃
v∈S NG[v]

and its open neighbourhood as NG(S) = NG[S] \ S. For a non-empty subset
S ⊆ V and a vertex v ∈ V (G), NS(v) denotes the set of neighbours of v in S,
that is, NS(v) = {u ∈ S : (u, v) ∈ E(G)}. We use dS(v) = |NS(v)| to denote the
degree of vertex v in G[S]. The complement of the vertex set S in V is denoted
by Sc.

Definition 1. A non-empty set R ⊆ V is a defensive alliance in G = (V,E) if
dR(v) + 1 ≥ dRc(v) for all v ∈ R.

A vertex v ∈ R is said to be protected if dR(v)+1 ≥ dRc(v). A set R ⊆ V is a defen-
sive alliance if every vertex in R is protected. In this paper, we considerDefensive
Alliance and Exact Defensive Alliance under structural parameters. We
define the problems as follows:

Defensive Alliance
Input: An undirected graph G = (V,E) and an integer r ≥ 1.
Question: Is there a defensive alliance R ⊆ V such that |R| ≤ r?

Exact Defensive Alliance
Input: An undirected graph G = (V,E) and an integer r ≥ 1.
Question: Is there a defensive alliance R ⊆ V such that |R| = r?

For standard notations and definitions in graph theory and parameterized
complexity, we refer to West [19] and Cygan et al. [3], respectively. The graph
parameters we explicitly use in this paper are feedback vertex set number, path-
width, treewidth and treedepth.

Definition 2. For a graph G = (V,E), the parameter feedback vertex set is the
cardinality of the smallest set S ⊆ V (G) such that the graph G − S is a forest
and it is denoted by fvs(G).

We now review the concept of a tree decomposition, introduced by Robertson
and Seymour in [14]. Treewidth is a measure of how “tree-like” the graph is.

Definition 3. [4] A tree decomposition of a graph G = (V,E) is a tree T together
with a collection of subsets Xt (called bags) of V labeled by the vertices t of T
such that

⋃
t∈T Xt = V and (1) and (2) below hold:

1. For every edge uv ∈ E(G), there is some t such that {u, v} ⊆ Xt.
2. (Interpolation Property) If t is a vertex on the unique path in T from t1 to

t2, then Xt1 ∩ Xt2 ⊆ Xt.

Parameterized Intractability of Defensive Alliance Problem 281

Definition 4. [4] The width of a tree decomposition is the maximum value of
|Xt| − 1 taken over all the vertices t of the tree T of the decomposition. The
treewidth tw(G) of a graph G is the minimum width among all possible tree
decomposition of G.

Definition 5. If the tree T of a tree decomposition is a path, then we say that
the tree decomposition is a path decomposition, and use pathwidth in place of
treewidth.

A rooted forest is a disjoint union of rooted trees. Given a rooted forest F ,
its transitive closure is a graph H in which V (H) contains all the nodes of the
rooted forest, and E(H) contain an edge between two vertices only if those two
vertices form an ancestor-descendant pair in the forest F .

Definition 6. The treedepth of a graph G is the minimum height of a rooted
forest F whose transitive closure contains the graph G. It is denoted by td(G).

For the standard concepts in parameterized complexity, see the recent textbook
by Cygan et al. [3].

1.1 Our Main Results

The goal of this paper is to provide new insight into the complexity of Defensive
Alliance parameterized by the structure of the input graph. In this paper, we
prove the following results:

– the Defensive Alliance problem is W[1]-hard parameterized by the path-
width of the input graph.

– the Exact Defensive Alliance problem is W[1]-hard parameterized by
any of the following parameters: the feedback vertex set number, treedepth
and pathwidth of the input graph.

– a generalization of the Defensive Alliance problem is W[1]-hard parame-
terized by the size of a vertex deletion set into trees of height at most 6.

1.2 Known Results

Fernau and Raible showed in [6] that the defensive, offensive and powerful
alliance problems and their global variants are fixed parameter tractable when
parameterized by solution size k. Kiyomi and Otachi showed in [10], the prob-
lems of finding smallest alliances of all kinds are fixed-parameter tractable when
parameteried by the vertex cover number. The problems of finding smallest
defensive and offensive alliances are also fixed-parameter tractable when parame-
teried by the neighbourhood diversity [8]. Enciso [5] proved that finding defensive
and global defensive alliances is fixed parameter tractable when parameterized
by domino treewidth. Bliem and Woltran [1] proved that deciding if a graph con-
tains a defensive alliance of size at most k is W[1]-hard when parameterized by
treewidth of the input graph. This puts it among the few problems that are FPT
when parameterized by solution size but not when parameterized by treewidth
(unless FPT = W[1]).

282 A. Gaikwad et al.

2 Hardness Results of Defensive Alliance

In this section we prove the following theorems:

Theorem 1. The Defensive Alliance problem is W[1]-hard parameterized
by the pathwidth of the input graph.

Theorem 2. The Exact Defensive Alliance problem is W[1]-hard param-
eterized by any of the following parameters: the feedback vertex set number,
treedepth and pathwidth of the input graph.

We introduce several variants of Defensive Alliance that we require in our
proofs. The problem Defensive AllianceF generalizes Defensive Alliance
where some vertices are forced to be outside the solution; these vertices
are called “forbidden” vertices. This variant can be formalized as follows:

Defensive AllianceF

Input: An undirected graph G = (V,E), an integer r and a set V� ⊆ V .
Question: Is there a defensive alliance R ⊆ V such that (i) |R| ≤ r, and (ii)
R ∩ V� = ∅?

Defensive AllianceFN is a further generalization that, in addition, requires
some “necessary” vertices to be in R. This variant can be formalized as follows:

Defensive AllianceFN

Input: An undirected graph G = (V,E), an integer r, a set V� ⊆ V , and a
set V� ⊆ V (G).
Question: Is there a defensive alliance R ⊆ V such that (i) |R| ≤ r, (ii)
R ∩ V� = ∅, and (iii) V� ⊆ R?

While the Defensive Alliance problem asks for defensive alliance of
size at most r, we also consider the Exact Defensive Alliance
problem that concerns defensive alliance of size exactly r. Analogously,
we also define exact versions of the two generalizations of Defensive
Alliance presented above. To show W[1]-hardness of Defensive Alliance,
we consider the Multidimensional Subset Sum (MSS) problem.

Multidimensional Subset Sum (MSS)
Input: An integer k, a set S = {s1, . . . , sn} of vectors with si ∈ N

k for every
i with 1 ≤ i ≤ n and a target vector t ∈ N

k.
Parameter: k
Question: Is there a subset S′ ⊆ S such that

∑

s∈S′
s = t?

We introduce two variants of MSS that we require in our proofs. In the Multi-
dimensional Relaxed Subset Sum (MRSS) problem, an additional inte-
ger k′ is given (which will be part of the parameter) and we ask whether
there is a subset S′ ⊆ S with |S′| ≤ k′ such that

∑

s∈S′
s ≥ t. It is known

Parameterized Intractability of Defensive Alliance Problem 283

that MRSS is W[1]-hard when parameterized by the combined parameter
k + k′, even if all integers in the input are given in unary [9]. For Exact
MRSS problem, both the input as well as the parameters are the same as in
the case of MRSS however one now asks whether there is a subset S′ ⊆ S
with |S′| = k′ such that

∑

s∈S′
s ≥ t. This variant can be formalized as

Exact Multidimensional Relaxed Subset Sum (Exact MRSS)
Input: An integer k, a set S = {s1, . . . , sn} of vectors with si ∈ N

k for every
i with 1 ≤ i ≤ n and a target vector t ∈ N

k.
Parameter: k, k′

Question: Is there a subset S′ ⊆ S with |S′| = k′ such that
∑

s∈S′
s ≥ t?

Lemma 1. Exact MRSS is W[1]-hard when parameterized by the combined
parameter k + k′, even if all integers in the input are given in unary.

This follows from the fact that the MRSS problem is W[1]-hard even if all integers
in the input are given in unary. We now show that the Defensive AllianceFN

problem is W[1]-hard parameterized by a vertex deletion set to trees of height at
most four, i.e., a subset D of the vertices of the graph such that every component
in the graph, after removing D, is a tree of height at most four.

Lemma 2. The Defensive AllianceFN problem is W[1]-hard parameterized
by the size of a vertex deletion set into trees of height at most 4.

Proof. To prove this we reduce from MRSS, which is known to be W[1]-hard
when parameterized by the combined parameter k+k′ [9]. Let I = (k, k′, S, t) be
an instance of MRSS. We construct an instance I ′ = (G, r, V�, V�) of Defen-

sive AllianceFN the following way. See Fig. 1 for an illustration. First, we
introduce a set of k new vertices U = {u1, u2, . . . , uk}. For every ui ∈ U , we
create a set Vui� of

∑

s∈S

s(i) one degree forbidden vertices and a set Vui� of

2
(∑

s∈S

s(i) − t(i)
)

one degree necessary vertices; and make ui adjacent to every

vertex of Vui� ∪ Vui�. For each vector s = (s(1), s(2), . . . , s(k)) ∈ S, we intro-
duce a tree Ts into G. Define max(s) = max

i
{s(i)}. We introduce two vertices

xs and ys, and introduce two sets of new vertices As = {as
1, . . . , a

s
max(s)} and

Bs = {bs
1, . . . , b

s
max(s)}. For each i ∈ {1, 2, . . . , k} and for each s ∈ S, we make

ui adjacent to exactly s(i) many vertices of As in an arbitrary manner. Next,
for every vertex as ∈ As, we add a set V �

as of |NU (as)| + 3 many one degree
forbidden vertices adjacent to as. The vertex set of tree Ts is defined as follows:

284 A. Gaikwad et al.

Fig. 1. The reduction from MRSS to Defensive AllianceFN in Lemma 2. Note that
the edges between the vertices in U and As are not shown. Gadgets in the green square
correspond to vectors in set S.

V (Ts) = As ∪ Bs

⋃

as∈As

V �
as

⋃ {
xs, ys

}
. We now create the edge set of Ts,

E(Ts) =
{

(xs, α), (ys, β), (xs, ys) | α ∈ As, β ∈ Bs

}

⋃

as∈As

{
(as, α) | α ∈ V �

as

}
.

Next, two vertices a, b are introduced into G. Make a adjacent to all the vertices

of
⋃

s∈S

As ∪ Bs and also make a adjacent to b. We define V� =
k⋃

i=1

Vui�
⋃{a} ∪

U , V� = {b} ⋃

s∈S

⋃

as∈As

V �
as

k⋃

i=1

Vui�, and set r =
k∑

i=1

2
(∑

s∈S

s(i) − t(i)
)

+

n∑

i=1

max(si) + k + k′ + 1. Observe that if we remove the set U ∪ {a} of k + 1

vertices from G, each connected component of the resulting graph is a tree with
height at most 4.

Parameterized Intractability of Defensive Alliance Problem 285

Formally, we claim that I is a yes-instance if and only if I ′ is a yes-instance.
Let S′ ⊆ S be such that |S′| ≤ k′ and

∑

s∈S′
s ≥ t. Then we claim that the set

R = V�
⋃

s∈S′
As ∪ {xs}

⋃

s∈S\S′
Bs =

k⋃

i=1

Vui�
⋃{a} ∪ U

⋃

s∈S′
As ∪ {xs}

⋃

s∈S\S′
Bs is

a defensive alliance in G such that |R| ≤ r, V� ⊆ R, and V� ∩ R = ∅. Let x be
an arbitrary element of R.
Case 1: If x = ui ∈ U , then

dR(ui) =
∑

s∈S′
s(i) + |Vui�| =

∑

s∈S′
s(i) + 2

∑

s∈S

s(i) − 2t(i)

=
(∑

s∈S′
s(i) − t(i)

)
+

(∑

s∈S

s(i) − t(i)
)

+
∑

s∈S

s(i)

≥
(∑

s∈S

s(i) − t(i)
)

+
∑

s∈S

s(i)

=
∑

s∈S\S′
s(i) +

(∑

s∈S′
s(i) − t(i)

)
+

∑

s∈S

s(i)

≥
∑

s∈S\S′
s(i) +

∑

s∈S

s(i) =
∑

s∈S\S′
s(i) + |Vui�|

= dRc(ui)

Therefore, we have dR(ui) + 1 ≥ dRc(ui), and hence ui is protected.
Case 2: If x = as ∈ As, then dR(as) = |NU (as)| + |{a, xs}| = |NU (as)| + 2 and
dRc(as) = |V �

as | = |NU (as)| + 3. Therefore, we have dR(as) + 1 ≥ dRc(as).
Case 3: If x = a, then NR(a) =

⋃

s∈S′
As

⋃

s∈S\S′
Bs and NRc(a) =

⋃

s∈S′
Bs

⋃

s∈S\S′
As ∪ {b}. As |As| = |Bs|, we have dR(a) + 1 ≥ dRc(a).

For the rest of the vertices in R, it is easy to see that they have more neighbours
in R than in Rc. Therefore, I ′ is a yes-instance.

For the reverse direction, suppose that G has a defensive alliance R of size at
most r such that V� ⊆ R and V� ∩ R = ∅. From the definition of V�, we have

U ⊆ R. We know V� contains 1+k+
k∑

i=1

2
(∑

s∈S

s(i) − t(i)
)

vertices; thus besides

the vertices of V�, there are at most
n∑

i=1

max(si)+ k′ vertices in R. Since a ∈ R,

it must have at least
n∑

i=1

max(si) many neighbours in R from the set
⋃

s∈S

As ∪Bs.

We also observe that if a vertex as from the set As is in the solution then xs

also lie in the solution for the protection of as. This shows that at most k′ many
sets of the form As contribute to the solution as otherwise the size of solution
exceeds r. Therefore, any arbitrary defensive alliance R of size at most r can be
transformed to another defensive alliance R′ of size at most r as follows:

R′ = V�
⋃

xs∈R

As ∪ {xs}
⋃

xs∈V (G)\R

Bs.

286 A. Gaikwad et al.

We define a subset S′ =
{

s ∈ S | xs ∈ R′
}

. Clearly, |S′| ≤ k′. We claim that
∑

s∈S′
s(i) ≥ t(i) for all 1 ≤ i ≤ k. Assume for the sake of contradiction that

∑

s∈S′
s(i) < t(i) for some i ∈ {1, 2, . . . , k}. Then, we have

dR′(ui) =
∑

s∈S′
s(i) + |Vui�| =

∑

s∈S′
s(i) + 2

∑

s∈S

s(i) − 2t(i)

=
∑

s∈S′
s(i) − t(i) +

∑

s∈S

s(i) − t(i) +
∑

s∈S

s(i)

<
∑

s∈S

s(i) − t(i) +
∑

s∈S

s(i)

=
∑

s∈S\S′
s(i) +

(∑

s∈S′
s(i) − t(i)

)
+

∑

s∈S

s(i)

<
∑

s∈S\S′
s(i) +

∑

s∈S

s(i) =
∑

s∈S\S′
s(i) + |Vui�|

= dR′c(ui)

and we also know that ui ∈ R′, which is a contradiction to the fact that R′ is a
defensive alliance. This shows that I is a yes-instance. 	

Corollary 1. The Defensive AllianceFN problem is W[1]-hard parameter-
ized by the size of a vertex deletion set into trees of height at most 5, even when
|V�| = 1.

Proof. Given an instance I = (G, r, V�, V�) of Defensive AllianceFN,
we construct an equivalent instance I ′ = (G′, r′, V ′

�, V ′
�) of Defensive

AllianceFN where |V ′
�| = 1. See Fig. 2 for an illustration. Let v1, v2, . . . , v�

be vertices of V�. We introduce a necessary vertex x and make x adjacent to all
the vertices in V�. We introduce a set Vx� of �+1 one degree forbidden vertices
adjacent to x. For every vi ∈ V�, add a degree one forbidden vertex v�

i adjacent
to vi. We define V ′

� = {x} and V ′
� = Vx� ∪V�

⋃

vi∈V�
v�

i . We define G′ as follows:

V (G′) = V (G) ∪ {x} ∪ Vx�
⋃

vi∈V�

v�
i

and
E(G′) = E(G)

⋃
{(x, α), (x, v), (v, v�) | α ∈ Vx�, v ∈ V�}.

Let H be a set with at most k vertices in G such that G − H is a forest with
trees of height at most 4. Clearly, the set H ∪ {x} is of size at most k + 1 and
G′ − (H ∪ {x}) is a forest with trees of height at most 5. It is easy to see that I
and I ′ are equivalent instances. 	

We can get an analogous result for the exact variant.

Parameterized Intractability of Defensive Alliance Problem 287

x

v1 v2

v�
2v�

1

vl

v�
l

V �
x

Fig. 2. An illustration of the gadget to reduce the number of necessary vertices to one.

Corollary 2. The Exact Defensive AllianceFN problem is W[1]-hard
when parameterized by the size of a vertex deletion set into trees of height
at most 5, even when |V�| = 1.

Corollary 3. The Defensive AllianceFN problem is W[1]-hard when
parameterized by pathwidth and treedepth of the input graph.

Proof. To prove this we reduce from MRSS, which is known to be W[1]-hard
when parameterized by the combined parameter k + k′ [9]. Let I = (k, k′, S, t)
be an instance of MRSS. We construct an instance I ′ = (G, r, V�, V�) of Defen-

sive AllianceFN as in Lemma 2. Note that the pathwidth and treedepth of a
tree are at most its height. We claim that as G has a k + 1 size vertex deletion
set D = U ∪{a} into trees of height at most 4, then G has a path decomposition
with pathwidth at most k + 4. First, we get a path decomposition of trees of
height at most 4, it has pathwidth at most 3; then add k + 1 vertices of D to all
the bags to get a path decomposition of G. This implies that the pathwidth of
G is bounded by k + 4. To compute treedepth of G, note that G \ D is a rooted
forest where the trees are of height at most 4. We add paths of length at most
k + 1 at the roots, covering the vertices of D, such that the resulting forest is a
transitive closure of G. The height of the resulting forest is at most k + 5. This
implies that the treedepth of G is bounded by k + 5. 	

Lemma 3. The Exact Defensive AllianceF problem is W[1]-hard param-
eterized by the size of a vertex deletion set into trees of height at most 5.

Proof. To prove this we reduce from Exact Defensive AllianceFN when
|V�| = 1, which is W[1]-hard when parameterized by the size of a vertex deletion
set into trees of height at most 5. See Corollary 1. Let I = (G, r, V�, V�) with
|V�| = 1 be an instance of Exact Defensive AllianceFN. Let n = |V (G)|,
r ≤ n and V� = {x}. We construct an instance I ′ = (G′, r′, V ′

�) of Exact

Defensive AllianceF problem the following way. See Fig. 3 for an illustration.
We introduce a set of vertices H = {h1, h2, . . . , h2n} and a vertex x′. We

also add a set Hx of one degree forbidden vertices adjacent to x. Similarly, we

288 A. Gaikwad et al.

a

b
c

x′x

h1

h2n

hx
1

hx
2n

hx′
1

hx′
2n

Fig. 3. An illustration of the reduction of necessary vertices in Exact Defensive

AllianceFN to Exact Defensive AllianceF. The vertex x may have additional
neighbours in G.

add a set Hx′
of one degree forbidden vertices adjacent to x′. We add three new

forbidden vertices a, b and c. All the vertices in set H are adjacent to x, x′, a, b
and c. We define G′ as follows:

V (G′) = V (G) ∪ H ∪ Hx ∪ Hx′ ∪ {a, b, c, x′}
and

E(G′) = E(G)
⋃

h∈H

{(x, h), (x′, h), (a, h), (b, h), (c, h)}
⋃

hx∈Hx

(x, hx)
⋃

hx′ ∈Hx′
(x′, hx′

).

We define V ′
� = V� ∪ Hx ∪ Hx′ ∪ {a, b, c} and set r′ = r + 2n + 1. Suppose for

G the size of a vertex deletion set into trees of height at most 4, is k. Deleting
that set along with vertices {x, x′, a, b, c}, we get a vertex deletion set into trees
of height at most 4. The size is clearly bounded by k + 5.

We claim that I is a yes-instance if and only if I ′ is a yes-instance. Suppose
there is a defensive alliance R of size exactly r in G such that x ∈ R and
V� ∩ R = ∅. It is easy to check that R′ = R ∪ H ∪ {x′} is a defensive alliance of
size r + 2n + 1 such that V ′

� ∩ R′ = ∅. This implies that I ′ is a yes-instance.
To prove the reverse direction of the equivalence, suppose there is a defensive

alliance R′ of size r′ such that V ′
� ∩ R′ = ∅. We claim that x ∈ R′. For the sake

of contradiction, suppose x /∈ R′. Then no vertex from the set H is part of R′

as dR′(h) ≤ 2 and dR′c(h) ≥ 4 for each h ∈ H. This implies that |R′| ≤ n < r′,
a contradiction. Therefore x ∈ R′. Observe that at least one vertex from H
must be part of R′ for protection of x in R′. Without loss of generality assume
that h1 ∈ R′. We see that the protection of h1 requires x′ to be inside the
solution. Therefore, x′ is in R′. Now, the protection of x′ requires 2n many
vertices which can only be contributed by H. It implies that H ⊆ R′. We claim
that R = R′ \ {H,x} forms a defensive alliance of size exactly r in G. Since
R′ ∩ V (G) = {x}, we only need to show that x is protected R. This is true since
x looses 2n neighbours from inside and outside the solution in G′. This shows
that I is a yes-instance. 	

In [1], Bliem and Woltran proved that Defensive AllianceF problem is
W[1]-hard when parameterized by the treewidth of the input graph by giving a
reduction from Defensive AllianceFN problem which again they showed to

Parameterized Intractability of Defensive Alliance Problem 289

be W[1]-hard when parameterized by the treewidth of the graph. Since we have
a stronger result that the Defensive AllianceFN is W[1]-hard when parame-
terized by the pathwidth of the input graph, we now prove that the Defensive

AllianceF problem is W[1]-hard when parameterized by the pathwidth of the
input graph. We obtain the following hardness results using the reduction of
Lemma 5 given in [1] and see that the resulting graph has bounded pathwidth.

Lemma 4. The Defensive AllianceF problem is W[1]-hard when parame-
terized by the pathwidth of the graph.

Now we give an FPT reduction to get rid of forbidden vertices. The same reduc-
tion holds for the exact version of the problem as well.

2.1 Proof of Theorem 1

Proof. To prove Theorem 1 we reduce from the Defensive AllianceF prob-
lem, which is W[1]-hard when parameterized by the pathwidth of the input
graph. See Lemma 4. Let I = (G, r, V�) be an instance of the Defensive

AllianceF problem. We construct an instance I ′ = (G′, r′) of Defensive
Alliance problem the following way. We set r′ = r. For every vertex u ∈ V�,
we introduce a set Vu = {u1, u2, . . . , u2r+2} of 2r + 2 many vertices adjacent to
u. We also add a new vertex t which is adjacent to all the vertices in

⋃

u∈V�
Vu.

Clearly, we can see that the pathwidth of G′ is at most the pathwidth of G plus
two. We claim that I is a yes-instance if and only if I ′ is a yes-instance. Suppose
there is a defensive alliance R of size at most r in G such that V� ∩ R = ∅.
Clearly R′ = R is also a defensive alliance of size at most r′ = r in G′. This
implies that I ′ is a yes-instance.

To prove the reverse direction of the equivalence, suppose there is a defensive
alliance R′ in G′ of size at most r′ = r. We observe that any defensive alliance
in G′ containing a vertex from the set V�

⋃

u∈V�
Vu ∪ {t} is of size at least r + 1.

Since |R′| ≤ r′ = r, this implies that R′ ∩ (V�
⋃

u∈V�
Vu ∪ {t}) = ∅. We see that

R = R′ is a defensive alliance of size at most r such that R∩V� = ∅. This shows
that I is a yes-instance. 	

2.2 Proof of Theorem 2

Proof. To prove Theorem 2 we reduce from Exact Defensive AllianceF

problem, which is W[1]-hard when parameterized by the vertex deletion set into
trees of height at most 4 of the input graph. See Lemma 3. The reduction here
is the same as in the proof of Theorem 1. Therefore, the Exact Defensive
Alliance problem is W[1]-hard when parameterized by the vertex deletion
set into trees of height at most 6. Clearly trees of height at most 6 are triv-
ially acyclic. Moreover, it is easy to verify that such trees have pathwidth [11]

290 A. Gaikwad et al.

treedepth [13] at most 6, which implies the Exact Defensive Alliance prob-
lem is W[1]-hard when parameterized by any of the following parameters: the
feedback vertex set, pathwidth, treewidth and treedepth of the input graph. 	

Corollary 4. The Defensive AllianceN problem with exactly one necessary
vertex is W[1]-hard when parameterized by the size of a vertex deletion set into
trees of height at most 6.

Proof. To prove this we reduce from Defensive AllianceFN problem with
|V�| = 1, which is W[1]-hard when parameterized by the size of a vertex deletion
set into trees of height at most 5. See Corollary 1. The reduction here is the same
as in the proof of Theorem 1. 	

3 Conclusions

In this paper, we have proved that the Defensive Alliance problem is W[1]-
hard when parameterized by the pathwidth of the input graph and the Exact
Defensive Alliance problem is W[1]-hard parameterized by a wide range of
fairly restrictive structural parameters such as the feedback vertex set number,
pathwidth, treewidth and treedepth of the input graph. The parameterized com-
plexity of the Defensive Alliance problem remains unsettled when parame-
terized by the feedback vertex set number, pathwidth and treedepth of the input
graph. It would also be interesting to consider the parameterized complexity with
respect to twin cover and modular width.

References

1. Bliem, B., Woltran, S.: Defensive alliances in graphs of bounded treewidth. Discret.
Appl. Math. 251, 334–339 (2018)

2. Chellali, M., Haynes, T.W.: Global alliances and independence in trees. Discuss.
Math. Graph Theory 27(1), 19–27 (2007)

3. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

4. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York
(2012)

5. Enciso, R.: Alliances in graphs: parameterized algorithms and on partitioning series
-parallel graphs. Ph.D. thesis, USA (2009)

6. Fernau, H., Raible, D.: Alliances in graphs: a complexity-theoretic study. In: Pro-
ceeding Volume II of the 33rd International Conference on Current Trends in The-
ory and Practice of Computer Science (2007)

7. Fricke, G., Lawson, L., Haynes, T., Hedetniemi, M., Hedetniemi, S.: A note on
defensive alliances in graphs. Bull. Inst. Combin. Appl. 38, 37–41 (2003)

8. Gaikwad, A., Maity, S., Tripathi, S.K.: Parameterized complexity of defensive and
offensive alliances in graphs. In: Goswami, D., Hoang, T.A. (eds.) ICDCIT 2021.
LNCS, vol. 12582, pp. 175–187. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-65621-8 11

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-030-65621-8_11
https://doi.org/10.1007/978-3-030-65621-8_11

Parameterized Intractability of Defensive Alliance Problem 291

9. Ganian, R., Klute, F., Ordyniak, S.: On structural parameterizations of the
bounded-degree vertex deletion problem. Algorithmica 83, 297–336 (2020)

10. Kiyomi, M., Otachi, Y.: Alliances in graphs of bounded clique-width. Discret. Appl.
Math. 223, 91–97 (2017)

11. Kloks, T. (ed.): Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994). https://
doi.org/10.1007/BFb0045375

12. Kristiansen, P., Hedetniemi, M., Hedetniemi, S.: Alliances in graphs. J. Comb.
Math. Comb. Comput. 48, 157–177 (2004)

13. Nešetřil, J., Ossona de Mendez, P.: Sparsity. AC, vol. 28. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-27875-4

14. Robertson, N., Seymour, P.: Graph minors. III. planar tree-width. J. Comb. Theor.
Ser. B 36(1), 49–64 (1984)

15. Rodŕıguez-Velázquez, J., Sigarreta, J.: Global offensive alliances in graphs. Elec-
tron. Notes Discrete Math. 25, 157–164 (2006)

16. Sigarreta, J., Bermudo, S., Fernau, H.: On the complement graph and defensive
k-alliances. Discret. Appl. Math. 157(8), 1687–1695 (2009)

17. Sigarreta, J., Rodŕıguez, J.: On defensive alliances and line graphs. Appl. Math.
Lett. 19(12), 1345–1350 (2006)

18. Sigarreta, J., Rodŕıguez, J.: On the global offensive alliance number of a graph.
Discret. Appl. Math. 157(2), 219–226 (2009)

19. West, D.B.: Introduction to Graph Theory. Prentice Hall (2000)

https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/978-3-642-27875-4

On the Approximability of Path
and Cycle Problems in Arc-Dependent

Networks

Piotr Wojciechowski1, K. Subramani1(B), Alvaro Velasquez2,
and Matthew Williamson3

1 LDCSEE, West Virginia University, Morgantown, WV, USA
{pwojciec,k.subramani}@mail.wvu.edu

2 Information Directorate, Air-Force Research Laboratory, Rome, NY, USA
alvaro.velasquez.1@us.af.mil

3 Marietta College, Marietta, OH, USA
williamm@marietta.edu

Abstract. In the field of transportation planning, it is often insufficient
to model transportation networks by using networks with fixed arc costs.
There may be additional factors that modify the time or cost of a single
trip. These include turn prohibitions, fare rebates, and transfer times.
Each of these factors causes the cost of a portion of the trip to depend
directly on the previous portion of the trip. This dependence can be
modeled using arc-dependent networks. In an arc-dependent network, the
cost of an arc a depends upon the arc used to enter a. In this paper, we
study the approximability of a number of negative cost cycle problems in
arc-dependent networks. In a general network, the cost of an arc is a fixed
constant and part of the input. Arc-dependent networks can be used to
model several real-world problems, including the turn-penalty shortest
path problem. Previous literature established that corresponding path
problems in these networks are NP-hard. We extend that research by
providing inapproximability results for several of these problems. In [7], it
was established that a more general form of the shortest path problem in
arc-dependent networks, known as the quadratic shortest path problem,
cannot be approximated to within a constant factor. In this paper, we
strengthen that result by showing NPO PB-completeness.

1 Introduction

This paper studies the inapproximability of several problems associated with
negative cost cycles in arc-dependent networks. Recall that in a traditional net-
work G = 〈V,E〉, we have a set of vertices V = {v1, v2, . . . , vn}, a set of directed
arcs E = {e1, e2, . . . , em}, and a cost function c : E → R. The cost of an arc
is a fixed constant. This is in contrast to arc-dependent networks in which the
cost of an arc depends upon the arc taken to enter it. The inapproximability
results obtained in this paper are stronger than similar results obtained for the
quadratic shortest path problem [7].

c© Springer Nature Switzerland AG 2022
N. Balachandran and R. Inkulu (Eds.): CALDAM 2022, LNCS 13179, pp. 292–304, 2022.
https://doi.org/10.1007/978-3-030-95018-7_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95018-7_23&domain=pdf
https://doi.org/10.1007/978-3-030-95018-7_23

Path and Cycle Problems in Arc-Dependent Networks 293

In addition, the shortest paths do not necessarily need to be simple. Recall
that a simple path is a path without repeated vertices or repeated arcs. In fact, in
some cases, non-simple paths are actually shorter than simple paths depending
on the path taken. In [13], an O(m2 ·n2·k−1) algorithm is provided for solving the
path-dependent shortest path problem, where k is the number of predecessors
used to determine the arc cost. Our work, however, focuses exclusively on simple
paths. Our problem is NP-complete even when the cost of an arc depends on
only one predecessor [14].

Our problem is a restricted version of the quadratic shortest paths prob-
lem (QSPP) [7,8]. QSPP cannot be approximated to within any constant factor
unless P = NP [7]. This result applies even if an arc’s cost only depends on
adjacent arcs. However, in this paper, we are able to obtain stronger inapprox-
imability results.

This paper is also concerned with the detection of negative cost cycles in
arc-dependent networks. In this problem, the goal is to find a simple cycle NC
such that the cost of NC is negative. Note that the cost of e1, the first arc in
NC, depends on ek, the last arc in NC. Thus, the negative cost of the cycle
depends only on the cycle itself and not on how the cycle was reached initially.
The negative cost cycle (NCC) problem in general is one of the more widely-
studied problems in theoretical computer science and operations research due to
its wide applicability in a number of domains.

The study of arc-dependent networks is motivated by several applications
including highway engineering. It is desirable to find optimal routes between
points in a city or even a freeway network. These optimal routes are often mea-
sured in terms of the time or distance to travel from one point to one or more
other points. There already exist efficient algorithms for finding such optimal
routes [2,5]. However, these algorithms assume that there are no restrictions or
delays at intersections. If there were delays at intersections, it could alter the
intended optimal routes [16]. This introduces the notion of “turn penalties” at
each intersection [3]. These penalties can increase the time and/or distance of
a route based on which turn is taken at intersections. Turn penalties can be
modeled in arc-dependent networks by having the cost of an arc depend on the
turn taken from an intersection.

Arc-dependent networks also have applications in public transportation sys-
tems. It is common for travelers to receive rebates when transferring from one
service line to another [12,13]. These fare rebates introduce an additional layer
of complexity in public transportation. Some routes may result in a discount,
while other routes might not have a discount. If we use standard shortest path
algorithms, the optimal route might not be optimal when fare discounts are
included.

The principal contributions of this paper are as follows:

1. Establishing that the shortest negative cost cycle problem is NPO PB-
complete (see Sect. 3).

2. Establishing that the longest negative cost cycle problem is NPO PB-
complete (see Sect. 3).

294 P. Wojciechowski et al.

3. A fixed-parameter tractable algorithm for the shortest path problem in terms
of the number of arcs in the path (see Sect. 4).

4. Showing that the shortest path problem does not admit a kernel whose size
is polynomial in the number of arcs in the path (see Sect. 5).

2 Statement of Problems

In this section, we describe the structure of arc-dependent networks. We also
present the network optimization problems that are studied in this paper.

Let G = 〈V,E,C〉 denote a directed network. V is the vertex set with n
vertices, and E = {e1, e2, . . . , em} is the set of arcs. Let s ∈ V be the source
vertex. The cost structure is represented by the matrix C, where entry C[ei, ej]
stores the cost of arc ej assuming that ej was entered through arc ei. The matrix
C has (m + 1) rows and m columns. The (m + 1)th row of C contains the cost
of arcs that do not have any incoming arcs. We use the phantom arc e0 entering
s to account for these costs. We refer to G as an arc-dependent network.

Let Pi denote a path (e1 −e2 −e3 −· · ·−ek), where e1 is an arc leaving some
vertex s, ek is an arc entering some vertex t, and i is a positive integer to help
label the unique path from s to t using arcs e1 to ek. It should be noted that there
can be more than one path from s to t. Note that C[ej , ek] only matters when
the head of arc ej is the tail of arc ek. Otherwise, ej cannot be the predecessor
of ek. In cases where the head of ej is not the tail of ek, we define C[ej , ek] = 0.
As a result, we note that C does not represent the connectivity of G. The cost
of a path Pi between two vertices is given by: cost(Pi) = C[e0, e1] + C[e1, e2] +
· · · + C[ek−1, ek].

In this paper, we explore the following optimization problem:

Definition 1. Shortest Path (SP) problem: Given an arc-dependent network G,
source vertex s, and target vertex t, what is the arc-dependent simple path from
s to t in G with the least cost?

We also explore the problem of finding simple negative cost cycles in arc-
dependent networks. We call this problem the negative cost cycle problem, and
it is defined as follows:

Definition 2. Negative Cost Cycle (NCC) problem: Given an arc-dependent
network G, does G contain a simple cycle NC consisting of arcs e1 through
ek such that:

C[ek, e1] +
k∑

i=2

C[ei−1, ei] < 0?

Note that the cost of e1, the first arc in NC, depends on ek, the last arc in
NC. Thus, the negative cost of the cycle depends only on the cycle itself and
not on how the cycle was reached initially.

In this paper, we study several variants of the NCC problem. These are the
following:

Path and Cycle Problems in Arc-Dependent Networks 295

1. Shortest Negative Cost Cycle (SNCC) problem: Given an arc-dependent net-
work G, what is the simple arc-dependent negative cycle in G with the fewest
arcs?

2. Longest Negative Cost Cycle (LoNCC) problem: Given an arc-dependent net-
work G, what is the simple arc-dependent negative cycle in G with the most
arcs?

3 Computational Complexity of SNCC and LoNCC

In this section, we show that the shortest negative cost cycle (SNCC) and longest
negative cost cycle (LoNCC) problems in arc-dependent networks are NPO
PB-complete [10]. This is done by a reduction from the Minimum Ones and
Maximum Ones problems respectively.

Definition 3. Minimum Ones: Given a 3CNF formula Φ, what is the minimum
number of variables assigned to true in any satisfying assignment to Φ?

Definition 4. Maximum Ones: Given a 3CNF formula Φ, what is the maximum
number of variables assigned to true in any satisfying assignment to Φ?

Both the Minimum Ones and Maximum Ones problems are known to be
NPO PB-complete [9]. Let Φ be a 3CNF formula with n variables and m
clauses. From Φ, we create an arc-dependent network G as follows:

1. Create the vertices x0 and z0.
2. For each variable xi in Φ:

(a) Create the vertex xi, the vertices y+
i,1 through y+

i,m+(n+2)·(m+1), and the
vertices y−

i,1 through y−
i,m.

(b) Create the arcs (xi−1, y
+
i,1) and (xi−1, y

−
i,1) with cost 0.

(c) Create the arc (y+
i,1, y

+
i,2) with cost 0 if the preceding arc is (xi−1, y

+
i,1)

and cost 1 otherwise, and the arc (y−
i,1, y

−
i,2) with cost 0 if the preceding

arc is (xi−1, y
−
i,1) and cost 1 otherwise.

(d) For each j = 3 . . . m, create the arc (y−
i,j−1, y

−
i,j) with cost 0 if the preced-

ing arc is (y−
i,j−2, y

−
i,j−1) and cost 1 otherwise.

(e) Create the arc (y−
i,m, xi) with cost 0 if the preceding arc is (y−

i,m−1, y
−
i,m)

and cost 1 otherwise.
(f) For each j = 3 . . . (m + (n + 2) · (m + 1)), create the arc (y+

i,j−1, y
+
i,j) with

cost 0 if the preceding arc is (y+
i,j−2, y

+
i,j−1) and cost 1 otherwise.

(g) Create the arc (y+
i,m+(n+2)·(m+1), xi) with cost 0 if the preceding arc is

(y+
i,m+(n+2)·(m+1)−1, y

+
i,m+(n+2)·(m+1)) and cost 1 otherwise.

3. Create the arc (xn, z0) with cost 0.
4. For each clause φj in Φ:

(a) Create the vertex zj .

296 P. Wojciechowski et al.

(b) For each literal xi in φj , create the arc (zj−1, y
−
i,j) with cost 0 and the

arc (y−
i,j , zj) with cost 0 if the preceding arc is (zj−1, y

−
i,j) and cost 1

otherwise.
(c) For each literal ¬xi in φj , create the arc (zj−1, y

+
i,j) with cost 0 and the

arc (y+
i,j , zj) with cost 0 if the preceding arc is (zj−1, y

+
i,j) and cost 1

otherwise.
5. Create the arc (zm, x0) with cost −1.

We construct G so that the only arc with negative cost is (zm, x0). Thus, a
negative cost cycle must consist of the arc (zm, x0) and a 0-cost path from x0

to zm. The arc costs in a negative cost cycle are defined in a manner such that
the only possible path uses the vertices x1 through xn followed by the vertices
z0 through zm, with additional intermediate vertices.

Between each pair of vertices xi−1 and xi, there are two possible 0-cost paths.
The first path uses (m + 1 + (n + 2) · (m + 1)) arcs and corresponds to setting
the variable xi to true. The second path uses (m + 1) arcs and corresponds to
setting the variable xi to false. Thus, the path from x0 to xn uses (n · (m+1)+
k · (n + 2) · (m + 1)) arcs, where k is the number of true variables.

Between each pair of vertices zj−1 and zj , there are up to three possible 0-
cost paths each with two arcs. These paths are constructed such that only paths
corresponding to true literals can be used in a simple cycle. Thus, the path from
z0 to zm uses (2 · m) arcs. With the additional arcs (xn, z0) and (zm, x0), the
cycle will use a total of (k + 1) · (n + 2) · (m + 1) arcs.

We construct G such that any negative cost cycle in G corresponds to choos-
ing a truth assignment to each variable in Φ and ensuring that each clause has
a true literal. We show that for any k, Φ has a satisfying assignment in which
k variables set to true if and only if there is a simple negative cycle in G with
(k + 1) · (n + 2) · (m + 1) arcs.

Lemma 1. Let Φ be a 3CNF formula with n variables and m clauses. Let G be
the corresponding network for Φ. For any k, Φ has a satisfying assignment with
k variables set to true if and only if there is a simple negative cycle in G with
(k + 1) · (n + 2) · (m + 1) arcs.

Proof. First assume that Φ has a satisfying assignment in which k variables are
set to true. Let x be such a satisfying truth assignment to Φ. From x, we con-
struct a cycle NC in G as follows:

We examine each variable xi ∈ x. If xi = true, add the arcs (xi−1, y
+
i,1),

(y+
i,1, y

+
i,2), . . ., (y+

i,m+(n+2)·(m+1), xi) to NC. This adds (m+1+(n+2) · (m+1))
arcs to NC. If xi = false, add the arcs (xi−1, y

−
i,1), (y−

i,1, y
−
i,2), . . ., (y−

i,m−1, y
−
i,m),

(y−
i,m, xi) to NC. This adds (m + 1) arcs to NC. NC now contains a total of

(n · (m + 1) + k · (n + 2) · (m + 1)) arcs. We then add the arc (xn, z0) to NC.
We next examine each clause φj ∈ Φ. Since x is a satisfying assignment, at least

one literal in φj is set to true. If this true literal is xi, then add the arcs (zj−1, y
−
i,j)

and (y−
i,j , zj) to NC. Since xi is true, the vertex y−

i,j is not already on NC. If this

Path and Cycle Problems in Arc-Dependent Networks 297

true literal is ¬xi, then add the arcs (zj−1, y
+
i,j) and (y+

i,j , zj) to NC. Since xi is
false, the vertex y+

i,j is not already on NC. We then add the arc (zm, x0) to NC.
This means NC now has a total of (k + 1) · (n + 2) · (m + 1) arcs.

By construction ofG and NC, the only arc in NC with non-zero cost is (zm, x0)
with cost −1. Thus, NC is a negative cycle with (k + 1) · (n + 2) · (m + 1) arcs.

Now assume that G has a simple negative cycle NC. From NC, we construct
an assignment x to Φ as follows: For each variable xi, if the arc (xi−1, y

+
i,1) is in

NC, then set xi = true. Otherwise, set xi = false. By construction, the only
negative cost arc in G is (zm, x0). Since (zm, x0) has cost −1, NC cannot include
any arcs with cost 1.

Since NC contains an arc entering x0, NC must contain an arc leaving x0. For
each i = 1, . . . , n, the only arcs leaving xi−1 are (xi−1, y

+
i,1) and (xi−1, y

−
i,1). If

NC uses the arc (xi−1, y
+
i,1), then the only way to avoid arcs of cost 1 is to use the

arcs (xi−1, y
+
i,1), (y

+
i,1, y

+
i,2), . . ., (y

+
i,m+(n+2)·(m+1), xi). Similarly, if NC uses the arc

(xi−1, y
−
i,1), then the only way to avoid arcs with cost 1 is to use the arcs (xi−1, y

−
i,1),

(y−
i,1, y

−
i,2), . . ., (y−

i,m−1, y
−
i,m), (y−

i,m, xi). Thus, for each i = 1, . . . , n, the cycle NC
uses the vertex xi. In particular, NC must contain an arc leaving xn.

The only arc leaving xn is (xn, z0). This arc must be on NC. Since NC
contains an arc entering z0, NC must contain an arc leaving z0. For each j =
1, . . . ,m, the only arcs leaving zj−1 are (zj−1, y

−
i,j) for literals xi in φj and

(zj−1, y
+
i,j) for literals ¬xi in φj .

If NC uses the arc (zj−1, y
+
i,j), then NC could not have used the arc

(xi−1, y
+
i,1) previously. Thus, xi = false and the clause φj is satisfied. Addi-

tionally, the only way to leave y+
i,j without using an arc with cost 1 is to use the

arc (y+
i,j , zj).

If NC uses the arc (zj−1, y
−
i,j), then NC must have used the arc (xi−1, y

+
i,1)

previously. Thus, xi = true and the clause φj is satisfied. Additionally, the only
way to leave y−

i,j without using an arc with cost 1 is to use the arc (y−
i,j , zj).

Therefore, x is a satisfying assignment to Φ. As previously shown, the number
of arcs in NC is (k + 1) · (n + 2) · (m + 1), where k is the number of variables
set to true by x. ��

Using Lemma 1, we can show that both the SNCC and LoNCC problems for
arc-dependent networks are NPO PB-complete.

Theorem 1. The SNCC problem for arc-dependent networks is NPO PB-
complete.

Proof. First, we establish that a PTAS reduction [11] exists from the minimum
ones problem to the SNCC problem for arc-dependent networks. This will be
done by establishing the existence of the functions f , g, and α.

1. The function f : Earlier in this section, we provided a method for constructing
an arc-dependent network G from a 3CNF formula Φ in polynomial time. This
forms the function f required for the PTAS reduction.

298 P. Wojciechowski et al.

2. The function g: In the proof of Lemma 1, we provided a method to take a
simple negative cost cycle NC in G and construct a satisfying assignment to
Φ. This forms the function g required for the PTAS reduction.

3. The function α: Let k∗ be minimum number of true variables in any satisfying
assignment to Φ. From Lemma 1, G has a negative cost simple cycle with
(k∗ + 1) · (n + 2) · (m + 1) arcs. Additionally, if G has a simple negative cost
cycle with fewer arcs, then Φ would have a satisfying assignment with fewer
true variables. Thus, the SNCC of G has (k∗ + 1) · (n + 2) · (m + 1) arcs. Let
α(ε) = ε−1

2 .
Let NC be a simple negative cost cycle in G with (k + 1) · (n + 2) · (m +
1) arcs. The function g produces a satisfying assignment to Φ with k true
variables. Since we can determine if Φ is satisfied by the all false assignment
in polynomial time, we can assume without loss of generality that k∗ ≥ 1. If
(k+1)·(n+2)·(m+1)
(k∗+1)·(n+2)·(m+1) ≤ 1 + α(ε) = ε+1

2 , then:

k

k∗ =
2 · k

2 · k∗ ≤ 2 · (k + 1)

k∗ + 1
=

2 · (k + 1) · (n + 2) · (m + 1)

(k∗ + 1) · (n + 2) · (m + 1)
≤ 2 · (ε + 1)

2
= 1 + ε.

Thus, we have a PTAS reduction from the minimum ones problem to the
SNCC problem for arc-dependent networks.

Since the minimum ones problem is NPO PB-complete [9], the SNCC
problem for arc-dependent networks is NPO PB-hard. As argued previously,
the SNCC problem for arc-dependent networks is in NPO PB. Thus, the SNCC
problem for arc-dependent networks is NPO PB-complete. ��
Theorem 2. The LoNCC problem for arc-dependent networks is NPO PB-
complete.

The proof of Theorem 2 is similar to the proof of Theorem 1. Note that the
SNCC problem is a restricted version of QSPP in which the cost of each arc
depends only on the previous arc and the path must go from a vertex to itself.
Thus, the inapproximability result for the SNCC problem also applies to QSPP.
As a result, we have the following corollary:

Corollary 1. QSPP is NPO PB-hard.

4 Fixed-Parameter Algorithm for SP

In this section, we present a Fixed-Parameter Tractable (FPT) algorithm for
finding a shortest path p in an arc-dependent network G. This algorithm uses
k, the number of arcs in p, as its parameter.

4.1 Intuition

Observe that if k is small, then it is easy to enumerate all possible paths and
then return the shortest path found. Thus, the length of the path is a natural

Path and Cycle Problems in Arc-Dependent Networks 299

parameter for this problem. Let G be an arc-dependent network with initial
vertex s and target vertex t. Our approach for solving this problem proceeds as
follows: First, we design a randomized algorithm (Algorithm 4.1) that randomly
partitions the vertices of G into (k − 1) sets. Then we find the shortest path
from s to t that uses at most one intermediate vertex from each set.

Note that if the shortest path has k edges, then it has (k − 1) intermediate
vertices. Thus, it is possible to construct a partition that assigns each inter-
mediate vertex to a different set. In Sect. 4.3, we prove that this happens with
probability at least 1

ek−1 . We then derandomize the algorithm by proving that
only a limited number of partitionings need to be tested. This results in the
desired FPT algorithm.

4.2 Randomized Algorithm

Let G be an arc-dependent network with initial vertex s and target vertex t.
The algorithm proceeds by first partitioning the vertices of G into the sets
S1, . . . , Sk−1. Then, the algorithm finds the shortest path p such that for each
set of vertices S ∈ {S1, . . . , Sk−1}, at most one vertex from S is on p. We refer
to such a path as a partitioned path. Note that every partitioned path is simple
and that every simple path of length k can be made into a partitioned path by
assigning every intermediate vertex in p to a different set. For a given vertex vi

in G, let S(vi) ∈ {S1, . . . , Sk−1} be the set containing the vertex vi.
Let us consider a method that constructs the partitioned path backwards,

starting from the destination t. Finding the shortest one-arc path to t can be done
by simply looking at the costs of the arcs going into t. We can then look further
back to consider all two-arc partitioned paths to t. As we continue backtracking,
we need to keep track of the sets containing the intermediate vertices so that we
do not use multiple vertices from the same set.

Suppose, for vertices vi and vj and H ⊆ {S1, . . . , Sk−1} \ {S(vi), S(vj)}, we
know the shortest partitioned path p from vi to t with predecessor vj such that
p uses at most one vertex from each set in H. Then, from the perspective of
further backtracking, it does not matter what order the vertices are visited by
p. We only need to know that the vertices in the sets in H cannot be used for
further backtracking. Thus, we only need to know the shortest partitioned path
for each starting vertex, predecessor vertex, and H ⊆ {S1, . . . , Sk−1}. This leads
us to a dynamic programming based algorithm.

Let P (vi, vj ,H) be the least cost of any path from vi to t with predecessor vj

and set of used partitions H. Note that the cost of any path from vi to t depends
only on the vertex vj that precedes vi. Thus, P (vi, vj ,H) is well defined. If there
are no intermediate vertices, then the only possible path from vi to t is the arc
(vi, t). Thus, P (vi, vj , ∅) = C[(vj , vi), (vi, t)]. We will now show that

P (vi, vj ,H) = min
vr:S(vr)∈H

{
C[(vj , vi), (vi, vr)] + P (vr, vi,H \ {S(vr)})

}
.

300 P. Wojciechowski et al.

Theorem 3. Let G = 〈V,E,C〉 be an arc-dependent network. For each vi, vj ∈
V and each H ⊆ {S1, . . . , Sk−1} \ {S(vi), S(vj)},

P (vi, vj ,H) = min
vr:S(vr)∈H

{
C[(vj , vi), (vi, vr)] + P (vr, vi,H \ {S(vr)})

}
.

Proof. If |H| = 1, then there is only one set S ∈ H. By definition of P , the only
intermediate vertex between vi and t must belong to S. Thus, the partitioned
path from vi to vt is of the form (vi, vr) − (vr, t), where S(vr) = S. The cost of
this path is

P (vi, vj ,H) = C[(vi, vr), (vr, t)] + C[(vj , vi), (vi, vr)]
= C[(vj , vi), (vi, vr)] + P (vr, vi, ∅).

Now assume that this holds true for all sets H of size h. Let H ′ be a set of
size (h+1). Let p be the shortest partitioned path from vi to t with predecessor
vj and set of used partitions H ′. We know that some vr such that S(vr) ∈ H ′

immediately follows vi on p. Thus, p can be broken up into the arc (vi, vr)
and a path p′ from vr to t. Note that p′ has H ′ \ {S(vr)} as its set of used
partitions and has vi as its predecessor. This means that the cost of p′ is at least
P (vr, vi,H \ {S(vr)}).

If there is a partitioned path p∗ from vr to t with set of used partitions
H ′ \ {S(vr)} and predecessor vi that is shorter than p′, then the path consisting
of the arc (vi, vk) followed by p∗ is a partitioned path from vi to t with set used
partitions H ′ that is shorter than p. Since this violates the optimality of p, p′

must be the shortest path from vk to t with set of used partitions H ′ \ {S(vr)}
and predecessor vi. Therefore, the cost of p′ is P (vk, vi,H \{S(vr)}). This means
that :

P (vi, vj ,H
′) = min

vr:S(vr)∈H′

{
C[(vj , vi), (vi, vr)] + P (vr, vi,H

′ \ {S(vr)})
}

.

��
From Theorem 3, P (vi, vj ,H) can be found in O(n) time once P is known

for every pair of vertices and every subset of H. Note that we only need to find
P (vi, vj ,H) when (vj , vi) ∈ E. Thus, there are O(m · 2k) possible inputs to P .
This means that P can be computed in O(m · n · 2k) time using a dynamic
program. Once P is computed, it is easy to see that the shortest partitioned
path from s to t in G has cost minH⊆{S1,...,Sk−1} P (s, ,H), where implies that
s does not have a preceding arc in the shortest partitioned path from s to t.

We now provide a randomized algorithm for finding the shortest simple path
in an arc-dependent network G. This is represented by Algorithm 4.1. Algorithm
4.1 uses a similar color-coding technique to the one introduced in [1]. Recall that
P can be computed in O(m ·n ·2k) time. Thus, Algorithm 4.1 runs in O(m ·n ·2k)
time.

Path and Cycle Problems in Arc-Dependent Networks 301

SP Rand (arc-dependent network G, integer k)

1: Create the sets S1 through Sk−1.

2: for (each vertex vi in V \ {s, t}) do

3: Randomly assign vi to a set S(vi) ∈ {S1, . . . , Sk−1}.
4: Create the function P (vi, vj , H) and define P (vi, vj , ∅) = C[(vj , vi), (vi, t)] for each

pair of vertices vi, vj .

5: for (each pair of vertices vi, vj and each H ⊆ {S1, . . . , Sk−1} \ {S(vi), S(vj)}) do

6: P (vi, vj , H) = minvr :S(vr)∈H{C[(vj , vi), (vi, vr)] + P (vr, vi, H \ {S(vr)})}.
7: return minH⊆{S1,...,Sk−1} P (s, , H).

Algorithm 4.1: Randomized SP Algorithm for Arc-Dependent Networks

4.3 Proof of Correctness

We now show that if Algorithm 4.1 returns L, then G has a simple path from
s to t with total cost L using at most k arcs. We also show that if the shortest
simple path from s to t in G with at most k arcs has total cost L, then Algorithm
4.1 returns L with probability at least 1

ek−1 .

Theorem 4. If Algorithm 4.1 returns L, then G has a simple path from s to t
with total cost L using at most k arcs.

Proof. Assume Algorithm 4.1 returns L. This means that there exist sets S1

through Sk−1 such that there exists a partitioned path p from s to t in G with
total cost L. Note that p is a simple path. Additionally, p has at most (k + 1)
vertices (s, t, and at most one vertex from each of the (k − 1) partitions). Thus,
p is a simple path from s to t of total cost L with at most k arcs. ��
Theorem 5. If a shortest simple path from s to t in G with at most k arcs has
total cost L, then Algorithm 4.1 will return L with probability at least 1

ek−1 .

Proof. Let p be a shortest simple path from s to t in G with at most k arcs.
Note that p has total cost L. Observe that if the sets S1 through Sk−1 are chosen
so that p is a partitioned path, then by Theorem 3, Algorithm 4.1 will return L.
We want to find the probability that p is a partitioned path. p is a partitioned
path if each intermediate vertex vi is assigned to a different set S(vi). Note that
there are (k−1)k−1 different ways to assign the (k−1) intermediate vertices of p
to the sets S1 through Sk−1. Additionally, there are (k − 1)! ways to assign each
vertex to a unique partition. Therefore, the probability of p being a partitioned
path is (k−1)!

(k−1)k−1 > 1
ek−1 . ��

4.4 Derandomization

To obtain an FPT algorithm for finding a shortest path, we will derandomize
Algorithm 4.1 as described in [4]. This derandomization utilizes (m, k)-perfect
hash families which are defined as follows:

302 P. Wojciechowski et al.

Definition 5. Let S be a set of size m. An (m, k)-perfect hash family is a family
U of functions F that partition S into S1 through Sk such that for any set R ⊆ S
of size k, there exists a function that assigns each element of R to a different
partition.

Let p be a shortest path in G that uses at most k arcs. Note that p has (k−1)
intermediate vertices. Let U be an (n−2, k−1)-perfect hash family of V\{s, t}.
Then, for some F ∈ U , every intermediate vertex vi used by p is assigned to
a different set S(vi). Note that we can construct an (n − 2, k − 1)-perfect hash
family for V\{s, t} of size ek−1 ·(k−1)O(log k) ·log(n−2) in O(ek ·kO(log k) ·n·log n)
time [4].

Thus, given P , finding the shortest path from s to t in G with at most k arcs
can be done as follows:

1. Construct an (n − 2, k − 1)-perfect hash family U for V \ {s, t}. Note that U
contains ek−1 · (k − 1)O(log k) · log(n − 2) partitions of V \ {s, t}. This can be
done in O(ek · kO(log k) · n · log n) time.

2. For each F ∈ U , check if G has a partitioned path from s to t. Using the
method described previously, this takes O(m · n · 2k) time for each of the
ek−1 · (k − 1)O(log k) · log(n − 2) elements of U .

This algorithm runs in O((2 · e)k · kO(log k) · m · n · log n) time. Thus, this is an
FPT algorithm for finding a shortest simple path in an arc-dependent network.

Note that Algorithm 4.1 can be easily modified to find partitioned negative
cycles. Applying the same derandomization technique will result in FPT algo-
rithms for the SNCC and LoNCC problems when parameterized by the number
of arcs in the cycle.

5 Lower Bound on Kernel Size for the SP Problem

In this section, we show that the SP problem for arc-dependent networks does
not have a kernel whose size is polynomial in k, where k is the number of arcs
in the path. This is done through the use of an OR-distillation [6].

Definition 6. Let P and Q be a pair of problems and let t : N → N \ {0} be a
polynomially bounded function. A t-bounded OR-distillation from P into Q
is an algorithm that for every s, given as t(s) input strings x1, . . . , xt(s) with
|xj | = s for all j:

1. Runs in polynomial time, and
2. Outputs a string y of length at most t(s) · log s such that y is a yes instance

of Q if and only if xj is a yes instance of P for some j ∈ {1, . . . , t(s)}.
If any NP-hard problem has a t-bounded OR-distillation, then coNP ⊆

NP/poly [6]. If coNP ⊆ NP/poly, then ΣP
3 = ΠP

3 [15]. Thus, the polynomial
hierarchy would collapse to the third level.

Path and Cycle Problems in Arc-Dependent Networks 303

Theorem 6. The SP problem for arc-dependent networks does not have a poly-
nomial sized kernel unless coNP ⊆ NP/poly.

Proof. We will prove this by showing that if the SP problem for arc-dependent
networks has a polynomial sized kernel, then there exists a t-bounded OR-
distillation from the SP problem for arc-dependent networks into itself.

For each j, let Gj be an arc-dependent network with n vertices and m arcs
such that, for pair of arcs (vi, vj) and (vj , vr), |C[(vi, vj), (vj , vr)]| ≤ Cmax for a
fixed integer Cmax. Note that s = |Gj | = m · (m + log Cmax).

Assume that for some constant c, the SP problem has a kernel of size kc. Let
t(s) = sc. Note that t(s) is a polynomial.

For each j = 1 . . . t(s), let Gj be an arc-dependent network with n vertices
and m arcs such that |Gj | = s. From these networks, we can create a new arc-
dependent network G with (t(s) · (n−2)+2) vertices and t(s) ·m arcs such that
G is a disjoint union of G1, ...,Gt(S) except the vertices s and t in G are used
to represent the vertices s and t respectively in each Gj .

Observe that no arc in G corresponding to an arc in Gj shares vertices with
an arc in G corresponding to an arc in Gj′ , where j′ �= j. Thus, any path in G
corresponds to a path in Gj for some j ∈ {1, . . . , t(s)}. Consequently, G has a
path from s to t with total cost L if and only if Gj has a has path from s to t
with total cost L for some j ∈ {1, . . . , t(s)}.

Let G′ be a kernel of G such that |G′| ≤ kc. Since k ≤ m ≤ s, |G′| ≤ kc ≤
sc = t(s). Additionally, G′ has a path from s to t with total cost L if and only
if Gj has a path from s to t with total cost L for some j ∈ {1, . . . , t(s)}. Thus,
we have a t-bounded OR-distillation from the SP problem for arc-dependent
networks to itself. This cannot happen unless coNP ⊆ NP/poly. ��

Note that the same t-bounded OR-distillation technique will work for the
SNCC and LoNCC problems. This gives us the following result:

Theorem 7. The SNCC and LoNCC problems for arc-dependent networks do
not have polynomial sized kernels unless coNP ⊆ NP/poly.

6 Conclusion

In this paper, we presented inapproximability results for several negative cost
cycle detection problems in arc-dependent networks. Specifically, we discussed
detecting negative cost cycles in arc-dependent networks with the fewest arcs and
the most arcs. We showed that the shortest and longest negative cost cycle prob-
lems are NPO PB-complete. We also designed a Fixed-Parameter Tractable
algorithm for finding a shortest path in arc-dependent networks. Finally, we
showed that the shortest path problem in arc-dependent networks is unlikely to
admit a kernel whose size is polynomial in the number of arcs in the path. The
inapproximability results in this paper strengthen the inapproximability results
established for QSPP in [7].

304 P. Wojciechowski et al.

References

1. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
2. Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton

(1957)
3. Caldwell, T.: On finding minimum routes in a network with turn penalties. Com-

mun. ACM 4(2), 107–108 (1961)
4. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.

org/10.1007/978-3-319-21275-3
5. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.

1, 269–271 (1959)
6. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Theory of Parameterized

Preprocessing. Cambridge University Press, Kernelization (2019)
7. Hu, H., Sotirov, R.: Special cases of the quadratic shortest path problem. J. Comb.

Optim. 35(3), 754–777 (2017). https://doi.org/10.1007/s10878-017-0219-9
8. Hao, H., Sotirov, R.: On solving the quadratic shortest path problem. INFORMS

J. Comput. 32(2), 219–233 (2020)
9. Kann, V.: On the approximability of NP-complete Optimization Problems. Ph.D.

thesis, Royal Institute of Technology Stockholm (1992)
10. Kann, V.: Polynomially bounded minimization problems that are hard to approx-

imate. Nordic J. Comput. 1(3), 317–331 (1994)
11. Orponen, P., Mannila, H.: On approximation preserving reductions: complete prob-

lems and robust measures. Technical report, Department of Computer Science,
University of Helsinki (1987)

12. Schöbel, A., Urban, R.: Cheapest paths in public transport: properties and algo-
rithms. In: Huisman, D., Zaroliagis, C.D. (eds.) 20th Symposium on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2020), vol. 85. OpenAccess Series in Informatics (OASIcs), pp. 13:1–13:16. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl (2020)

13. Tan, J., Leong, H.W.: Least-cost path in public transportation systems with fare
rebates that are path- and time-dependent. In: Proceedings, The 7th Interna-
tional IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No.
04TH8749), pp. 1000–1005, October 2004

14. Wojciechowski, P., Williamson, M., Subramani, K.: On finding shortest paths in
arc-dependent networks. In: Bäıou, M., Gendron, B., Günlük, O., Mahjoub, A.R.
(eds.) ISCO 2020. LNCS, vol. 12176, pp. 249–260. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-53262-8 21

15. Yap, C.K.: Some consequences of non-uniform conditions on uniform classes. The-
oret. Comput. Sci. 26(3), 287–300 (1983)

16. Ziliaskopoulos, A.K., Mahmassani, H.S.: A note on least time path computation
considering delays and prohibitions for intersection movements. Transp. Res. Part
B Methodol. 30(5), 359–367 (1996)

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/s10878-017-0219-9
https://doi.org/10.1007/978-3-030-53262-8_21
https://doi.org/10.1007/978-3-030-53262-8_21

Approximation Algorithms in Graphs
with Known Broadcast Time of the Base

Graph

Puspal Bhabak and Hovhannes A. Harutyunyan(B)

Department of Computer Science and Software Engineering, Concordia University,
Montreal, QC H3G 1M8, Canada

haruty@cs.concordia.ca

Abstract. Broadcasting is an information dissemination problem in a
connected network in which one node, called the originator, must dis-
tribute a message to all other nodes of the network by placing a series of
calls along the communication lines of the network. The broadcast time
of a vertex is defined to be the minimum number of time units required
to broadcast the message to all vertices of the graph (network) from that
vertex. Finding the broadcast time of any vertex in an arbitrary graph
is NP-complete. The polynomial time solvability is shown only for cer-
tain tree-like graphs. In this paper we study the broadcast problem in
graph of trees where broadcast algorithms for the base graph is known.
In such graphs we design a linear time constant approximation algorithm
to determine the broadcast time of any originator in general case. In a
particular case when the base graph is the hypercube or another min-
imum broadcast graph (graph with minimum possible broadcast time
having the smallest number of edges) containing one tree we present a
linear time exact algorithm to find the broadcast time of any originator
vertex. When the base graph is the hypercube graph we improve the
known result by presenting a 1.5-approximation algorithm to find the
broadcast time of the whole graph which runs in linear time instead of
known quadratic algorithm.

1 Introduction

In today’s world, due to massive parallel processing, processors have become
faster and more efficient. In recent years, a lot of work has been dedicated to
studying properties of interconnection networks in order to find the best com-
munication structures for parallel and distributed computing. One of the main
problems of information dissemination investigated in this research area is broad-
casting. The broadcast problem is one in which the knowledge of one processor
must spread to all other processors in the network. For this problem we can view
any interconnection network as a connected undirected graph G = (V,E), where
V is the set of vertices (or processors) and E is the set of edges (or communi-
cation lines) of the network. According to [13], the broadcast time problem was

c© Springer Nature Switzerland AG 2022
N. Balachandran and R. Inkulu (Eds.): CALDAM 2022, LNCS 13179, pp. 305–316, 2022.
https://doi.org/10.1007/978-3-030-95018-7_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95018-7_24&domain=pdf
https://doi.org/10.1007/978-3-030-95018-7_24

306 P. Bhabak and H. A. Harutyunyan

introduced in 1977 by Slater, Cockayne and Hedetniemi. Large sources of infor-
mation about broadcasting and related problems are survey articles [6,13,14],
book [15] and book chapter [9].

Formally, broadcasting is the message dissemination problem in a connected
network in which one informed node, called the originator, must distribute a
message to all other nodes by placing a series of calls along the communication
lines of the network. The informed nodes aid the originator in distributing the
message. This is assumed to take place in discrete time units. The broadcasting
is to be completed as quickly as possible subject to the following constraints:

– Each call requires one unit of time.
– A vertex can participate in only one call per unit of time.
– Each call involves only two adjacent vertices, a sender and a receiver.

Given a connected graph G and a message originator, vertex u, the natural
question is to find the minimum number of time units required to complete
broadcasting in graph G from vertex u. We define this number as the broadcast
time of vertex u, denoted b(u,G) or b(u). The broadcast time b(G) of the graph
G is defined as max{b(u)|u ∈ V }. It is easy to see that for any vertex u in a
connected graph G with n vertices, b(u) ≥ �log n� (all log’s in the paper are
base 2), since during each time unit the number of informed vertices can at most
double. Determining b(u) for an arbitrary originator u in an arbitrary graph G
has been proved to be NP-complete in [22]. The problem remains NP-Complete
even for 3-regular planar graphs [18] and for split graphs, the graphs whose
vertex set can be partitioned into a clique and an independent set [16]. The best
theoretical upper bound is obtained by the approximation algorithm in [4] which
produces a broadcast scheme with O(log(|V |)

log log(|V |)b(G)) rounds. Research in [21] has
showed that the broadcast time cannot be approximated within a factor 57

56 − ε.
This result has been improved within a factor of 3− ε in [4]. As a result research
has been made in the direction of finding approximation or heuristic algorithms
to determine the broadcast time in arbitrary graphs (see [1,2,4,5,7,8,17,19,20]).

Since the broadcast problem in general is very difficult, another direction is
to design polynomial algorithms for some classes of graphs. The first result in
this direction was a linear algorithm to determine the broadcast time of any
tree [22]. Recent research shows that there are polynomial time algorithms for
the broadcast problem in tree-like graphs where two cycles do not intersect -
unicyclic graphs, tree of cycles, or in graphs containing no intersecting cliques -
fully connected trees and tree of cliques [10–12]. No other results are known in
this area. The broadcasting problem becomes very difficult when graphs contain
intersecting cycles. The exception is of course the complete graph, where all
edges are available to broadcast optimally.

In this paper we consider broadcasting in so called graph of trees, where
every vertex of the base graph is the root of a tree. Polynomial time broadcast-
ing algorithms in such graphs becomes approachable when there is a polynomial
time broadcast algorithm for the base graph. In Sect. 2 we generalize the existing

Approximation Algorithms in Graphs with Known Broadcast Time 307

result on hypercube of trees for any minimum broadcast graph with dimensional
broadcast scheme, and present an exact algorithm which runs in linear time. In
Sect. 3 we improve an earlier result on hypercube of trees by reducing the algo-
rithm complexity from quadratic to linear, and also improve the approximation
ratio from 2 to 1.5. In Sect. 4 we design a linear time constant approximation
algorithm to determine the broadcast time of any originator for the graph of
trees when the broadcast algorithm for the base graph is known.

2 Exact Algorithm When the Base Graph is a k-Regular
mbgs with One Tree

In this section we generalize the result presented in [3] for Hypercube of trees with
one tree, and present a linear algorithm for any minimum broadcast graph (mbg)
on 2k vertices with one tree. Our new algorithm and the proof of correctness are
different from the algorithm and correctness proof presented in [3].

Let Gk be a minimum broadcast graph (mbg) on 2k vertices. Recall that
mbg is a graph on n vertices with broadcast time �log2 n� containing minimum
possible number of edges. There are three non-isomorphic mbgs known in the
literature; hypercube H(k), Knödel graph Wk,2k and regular circulant graph
C(4, 2k) (see for example [9]). All the three graphs share some graph-theoretic
and communication properties. In our algorithm below we will use some of these
properties. All the three graphs are k-regular, with 2k vertices, broadcast time
equal to k and diameter upper bounded by k. Another property that all the
three graphs share is the dimensionality, which will be used in our algorithm.

Property 1. [9]: In any minimum time broadcast scheme there are no idle vertices
i.e. every vertex that receives the message at time i, 0 ≤ i ≤ k−1 has to send the
message to its neighbors during time units i + 1, ..., k. Moreover if one informed
vertex stays idle at time unit i, for any i, 2 ≤ i ≤ k, then the other 2k−1 vertices
can finish broadcasting in k + 1 time units for any 2 ≤ i ≤ k.

Let G be one of the three mbgs on 2k vertices described above and denoted
by Hk where r is the root of a tree T . The remaining 2k − 1 root vertices
do not contain any tree. One can assume that these 2k − 1 trees are empty
trees, containing only the root of the trees. Let us also assume that r has m
neighbors in T , vertices v1, v2, ..., vm. vi is the root of the subtree Ti, 1 ≤ i ≤ m.
Let us consider b(vi, Ti) = ti and without loss of generality we assume that
t1 ≥ t2 ≥ ... ≥ tm. Then it follows from [22] that b(r, T) = max{i + ti}, where
1 ≤ i ≤ m. Let b(r, T) = τ and τ ≥ 1 (see Fig. 1). Let us consider the largest
index j such that τ = tj + j for 1 ≤ j ≤ m.

2.1 Broadcast Algorithm When Originator is r

Consider two cases depending on the relationship between τ and k, the dimension
of the mbg in G (the broadcast time of mbg). Let all the root vertices will be

308 P. Bhabak and H. A. Harutyunyan

informed by τ(r) time units. The algorithm A calls another algorithm Broadcast-
mbg which returns τ(r). When a tree vertex is informed then it follows the
well-known broadcast algorithm in trees from [22].

The algorithm below is given for Knödel graph Wk,2k . Similar algorithm for
regular circulant graph C(4, 2k) is easy present, but we will skip it because of
the space limitation. For hypercube Hk the simple algorithm is presented in [3]
(Fig. 2).

Hk

H0
k-1 H1

k-1

r

T

v1
v2

vm

T1

T2

Tm

Fig. 1. G is one of three mbgs where r is the root of a tree T . In this case mbg is a
k-dimensional hypercube

H

v Ti

r

vi

v1

vm

u1 ui uj
uz

H1

Hi

Hj
Hz

T1

Tm

G'

Fig. 2. G with originator v. The subtree Ti is separated from the rest of graph G′

Recall that Knödel graph on 2k vertices is a k-regular graph with vertex set
V = {0, 1, ..., 2k − 1} and set of edges E = {(i, j)|i + j = 2p − 1 mod 2k, for all
p = 1, 2, ..., k}.

Approximation Algorithms in Graphs with Known Broadcast Time 309

Broadcast Algorithm A:
INPUT: G = (V,E), originator r, b(r, T) = τ , m, t1 ≥ t2 ≥ ... ≥ tm
OUTPUT: Broadcast time bA(r) and broadcast scheme for G
BROADCAST-SCHEME-A(G, r, τ , m, t1 ≥ t2 ≥ ... ≥ tm)

0. τ = max{i + ti}, where 1 ≤ i ≤ m
1. If τ ≤ k

1.1. r informs another root vertex r1 in the first time unit.
1.2. τ(r) = BROADCAST-MBG(G, r1, 1).
1.3. For each time unit i = 2 to m + 1

1.3.1. r informs tree vertex vi−1.
2. If τ > k

2.1. If τ ≥ k + m
2.1.1. For each time unit i = 1 to m
2.1.1.1. r informs tree vertex vi.

2.1.2. For each time unit i = m + 1 to m + k
2.1.2.1. an informed root vertex informs another uninformed root

vertex using any shortest path.
2.2. If k + m − 1 ≥ τ ≥ k + 1

Let j be the largest index such that τ = tj + j
2.2.1. For each time unit i = 1 to j
2.2.1.1. r informs tree vertex vi.

2.2.2. At time unit j + 1, r informs another root vertex r1.
2.2.3. τ(r) = BROADCAST-MBG(G, r1, j + 1).
2.2.4. For each time unit i = j + 2 to m + 1
2.2.4.1. r informs tree vertex vi−1.

2.2.5. If Hk is informed by time τ
then OUTPUT: bA(r)
else FOLLOW steps 1.1 to 1.3

3. TREE-BROADCAST(vi, Ti) for 1 ≤ i ≤ m.

Broadcast-mbg: Knodel graph Wk,2k

INPUT: G = (V,E), originator r1, time at which r1 is informed: tr1
OUTPUT: τ(r)
BROADCAST-MBG(G, r1, tr1)

1. Assume r1 = 2k − 1
2. For each time unit i = tr1 + 1 to tr1 + k − 1

2.1. For all 0, 1, ..., 2k − 2 do in parallel
2.1.1. i sends to 2l − 1 − i mod 2k, for l = 1, 2, ..., k − 1

3. For all 0, 1, ..., 2k − 2 except 2k − 1 do in parallel
3.1. i sends the message to 2k − 1 − i mod 2k

4. Return tr1 + k

Algorithm Complexity:
Broadcast-mbg takes O(log 2k) = O(k) time to inform the root vertices.

310 P. Bhabak and H. A. Harutyunyan

Algorithm A: Step 0 takes m time to calculate τ . Steps 1.1 and 1.3 take constant
time to run. Step 2.1.2 can be completed in O(k) time. Also steps 2.1.1 and
2.2 run in constant time. Again, the tree broadcast algorithm in step 3 takes
O(|V | − 2k) = O(|VT |) time to run, where |VT | is the number of tree vertices in
G. Thus, complexity of algorithm is O(|VT | + k) = O(|V |).
Theorem 1. Algorithm A always generates the minimum broadcast time b(r).

Proof. The proof is easy for τ ≤ k and for τ ≥ m + k. When τ ≤ k then line 1.2
will require k more time after time 1 to broadcast within the mbg, and following
line 1.3 it will take τ more time units after time 1, to complete broadcasting
within the tree T . Since, τ ≤ k the algorithm will output bA(r) = k + 1. From
Property 1 it follows that b(r,G) ≥ k + 1.

If τ ≥ m+k, by line 2.1. vertex r makes no delay in broadcasting within tree
T , thus, all vertices of T will be informed by time τ . By line 2.1.2 of algorithm
A all mbg vertices will be informed by time m + k. Since τ ≥ m + k then the
algorithm outputs bA(r) = τ . But b(r) ≥ τ is an obvious lower bound on b(r).

It remains to consider the case k + 1 ≤ τ ≤ m + k − 1. Following the
algorithm, the originator r informs the tree vertices at time units 1, ..., j, j+2, j+
3, ...,m + 1 and informs a root vertex at time unit j. The algorithm completes
broadcasting in mbg graph at time units j + 1, j + 2, ..., j + k + 1. Then, vertex
r completes broadcasting in tree T in bA(r, T) = max{t1 + 1, ..., tj + j, tj+1 +
(j + 2), ..., tm + (m + 1)}. Since j was the maximum value for which tj + j = τ ,
then tj+1 + (j + 2) ≤ τ , tj+2 + (j + 3) ≤ τ , ... tm + (m + 1) ≤ τ}. Therefore,
bA(r, T) = max{t1 + 1, ..., tj + j, tj+1 + (j + 2), ..., tm + (m + 1) = τ}. Thus,
bA(r,G) = max{j + k + 1, τ}. If τ ≥ j + k + 1 then bA(r,G) = τ , which is
an obvious lower bound on b(r) = b(r,G). The last case, if τ ≤ j + k then the
algorithm will generate broadcast time bA(r,G) = τ + 1. To prove the lower
bound b(r,G) ≥ τ + 1 in this case, assume by contradiction that b(r,G) = τ .
Then, originator r had to inform its j neighbors in tree T , then inform all its
neighbors in mbg to be able to complete broadcasting in G within j + k time
units. It follows then that r does not have more neighbors in T , and so m = k.
Then, since b(r,G) = τ = j+k = m+k. However, when τ = m+k the algorithm
follows line 2.1 considered above. Thus, b(r,G) = τ is impossible in this case.
Therefore, b(r,G) ≥ τ + 1, which is the output of algorithm A. ��

Broadcasting from a Root Vertex Other Than r: Let us assume that a
root vertex u is at a distance d from vertex r, where k ≥ d ≥ 1. The algorithm D
in G starts by informing along the path ur (the shortest among all paths between
u and r). r receives the message at time d, and then it sends the message to the
tree attached to it.

Broadcast Algorithm D:
INPUT: G = (V,E), originator u, b(r, T) = τ
OUTPUT: Broadcast time bD(u) and broadcast scheme for G
BROADCAST-SCHEME-D(G, u, τ)

Approximation Algorithms in Graphs with Known Broadcast Time 311

1. u informs along the path ur (the shortest among all paths between u and
r) in the first time unit.

2. u continues to inform the other root vertices using any shortest path.
r receives the message at time d.

3. TREE-BROADCAST(r, T).

Complexity Analysis:
Steps 1 and 2 can be completed in O(k) time. The tree broadcast algorithm
in step 3 takes O(|VT |)time to run. Complexity of algorithm is O(|VT | + k)=
O(|V |).
Broadcasting from a Tree Vertex: Broadcast algorithm Q is similar to algo-
rithm above, and the broadcast tree of G′ originated at vertex r will be obtained
from algorithm A.

Broadcast Algorithm Q:
INPUT: G′, originator v in subtree Ti, r, τm−1, m − 1, t1 ≥ t2 ≥ ... ≥ tm−1

OUTPUT: Broadcast time bQ(v) and broadcast scheme for G
BROADCAST-SCHEME-Q(G′, v, Ti, τm−1, m − 1, r, t1 ≥ t2 ≥ ... ≥ tm−1)

1. TG′ = BROADCAST-SCHEME-A(G′, r, τm−1, m − 1, t1 ≥ t2 ≥ ... ≥
tm−1)

2. Attach TG′ with Ti by the bridge (r, vi) and let the resulting tree be
labelled as Tv.
3. TREE-BROADCAST(v, Tv).

Algorithm Complexity: Finding the broadcast time of a tree vertex in an
arbitrary mbg of trees with one tree is equivalent to solving two problems: (1)
Finding the broadcast time of a root vertex in an mbg of trees with one tree.
As discussed before the complexity of this algorithm is linear. (2) Finding the
broadcast time of a tree vertex in a tree which is also linear.

The correctness of the above two cases are similar to the proof of Theorem 1.

3 Linear Time 1.5-Approximation Algorithm for General
Hypercube of Trees

Recall that [4] presents a O(|V |) time 2-approximation algorithm for arbitrary
originator vertex in any hypercube of trees G = (V,E) containing up to 2k trees
rooted at the vertices of the k-dimensional hypercube. It is clear that to get a
2-approximation algorithm of the whole hypercube of trees G we have to run the
O(|V |) algorithm |V | times from any originator, and then take the maximum of
all broadcast times. The obtained algorithm will be 2 approximation and will
run in O(|V |2) time. In this section we will present a O(|V |) algorithm which
gives 1.5-approximation for the broadcast time of any hypercube of trees G.

312 P. Bhabak and H. A. Harutyunyan

Our improvement in this section is twofold, we improve the complexity from
O(|V |2) to O(|V |) and we improve the approximation ratio from 2 to 1.5.

Assume graph G is an arbitrary hypercube of 2k trees Ti rooted at ri, i =
1, 2, ..., 2k, where the base graph is forming a hypercube of dimension k, Hk.
Denote by hi the height of tree Ti rooted at ri for all i = 1, 2, ..., 2k. Denote the
maximum value of the heights of all 2k trees by h, and the maximum value of
the trees rooted at the hypercube vertices by t. More formally, h = max{hi|1 ≤
i ≤ 2k}, and t = max{b(ri, Ti)|1 ≤ i ≤ 2k}. Our algorithm is very simple, for
all 1 = 1, 2, ..., 2k we find both, its height hi and the broadcast time b(ri, Ti) in
O(|V |) time using well-known)(|V |) time algorithm for trees. And then in the
same O(|V |) time we will find the values of k, h and t defined above.

Theorem 2. Broadcast time of graph G, b(G) ≤ h + k + t, the above algorithm
has 1.5-approximation ratio and runs in (|V |) time.

Proof. The fact that our algorithm runs in O(|V |) is easy to see. Now, let’s first
prove that the broadcast time of any originator u in graph G is upper bounded
by h+k+ t, b(u,G) ≤ h+k+ t. Assume vertex u is in tree Tj , then broadcasting
from u will inform rj , the root of Tj by time unit hj . Then within the next
k time units rj will inform all 2k vertices of the hypercube Hk. Thus, after at
most hj +k time units all hypercube vertices will be informed. Then, in the next
t = max{b(ri, Ti)|1 ≤ i ≤ 2k} time units the hypercube vertices will inform all
vertices in their respective trees. Thus, b(u,G) ≤ hj + k + t ≤ h + k + t. Note
that, 0 ≤ hj ≤ h and 0 ≤ b(rj , TJ) ≤ t, and the bound is correct for the cases
hj = 0 or b(rj , TJ) = 0. This covers the case when the originator is rj or a tree
Tj is empty with b(rj , TJ) = 0.

To get a lower bound on b(u,G) note that if originator u belongs to a tree
Ti with height h then any broadcast scheme from originator u will take at least
h + k time units, b(u,G) ≥ h + k. Also, if the originator w is a root vertex rl
which has distance k from the root of tree Tp with b(rp, Tp) = t, then clearly
b(w,G) ≥ k + t. Combining these two inequalities and applying b(G) ≥ b(u,G)
and b(G) ≥ b(w,G) we get 2b(G) ≥ h + k + k + t. Thus, b(G) ≥ k + 1

2 (h + t).
If h + t ≤ 2k, then 2k = h + t + 2x for some x ≥ 0, and we get that

bA(G)
b(G) ≤ h+k+t

k+ 1
2 (h+t)

= k+2k−2x
k+ 1

2 (2k−2x)
= 3k−2x

k+k−x ≤ 3k−1.5x
2k−x = 3

2 .
If h + t > 2k, then consider broadcasting from originator u which is in a tree

Ts and dist(u, rs) = h. Then, b(u,G) ≥ h + t since broadcasting from vertex u
has to go through vertex rs and all vertices of a tree Tj with b(rj , Tj) = t must
get informed by time b(u,G). Thus, since b(u,G) ≤ b(G) for any originator u we

will get bA(G)
b(G) ≤ h+k+t

h+t ≤ h+t+h+t
2

h+t = 3
2 . ��

4 Linear Time Constant Approximation Algorithm
in Graph of Trees with Known Broadcast Time
of the Base Graph

Assume that we have an arbitrary graph H where its vertices are the roots of
some trees. We call the resulting graph arbitrary graph of trees G (see Fig. 3).

Approximation Algorithms in Graphs with Known Broadcast Time 313

Definition 1. Consider an arbitrary graph H = (VH , EH) where k of its ver-
tices, denoted as Vr are the roots of the trees Ti = (Vi, Ei) for 1 ≤ i ≤ k and
k ≤ |VH |. We define the arbitrary graph of trees, G = (V,E), to be a graph where
V = V1 ∪ V2 ∪ ... ∪ Vk ∪ (VH − Vr) and E = E1 ∪ E2 ∪ ... ∪ Ek ∪ EH . The vertices
in H denoted as ri will be called root vertices, where 1 ≤ i ≤ |VH |. The rest of
the vertices will be called tree vertices.

H

r1

r2
r3

r4 r5

r6

T1

T2

T3

T4

Fig. 3. Arbitrary graph of trees G

The first approximation algorithm is simple. When the originator is a root
vertex r, then our algorithm S in G starts by informing all the vertices of H.
When all the vertices in H are informed, each root vertex informs the tree
attached to it.

When the originator vertex w belongs to some tree, then the algorithm S
in G starts by informing along the path wr. When r receives the message, the
scheme informs all the vertices of H. When a tree vertex is informed then it
follows the well known broadcast algorithm in trees [22], called AT .

Tree Broadcast Algorithm AT :
INPUT: originator ri and tree rooted at ri: Ti

OUTPUT: Broadcast time bAT
(ri, Ti)

TREE-BROADCAST(ri, Ti)
1. ri informs a child vertex in Ti that has the maximum broadcast time in the
subtree rooted at it.

2. Let α1,..., αf be the broadcast times of the f subtrees rooted at ri and
α1 ≥ ... ≥ αf . Then, bAT

(ri, Ti) = max{j + αj} for 1 ≤ j ≤ f .
Approximation Algorithm S:
INPUT: G = (V,E) and any originator x
OUTPUT: Broadcast time bS(x) and broadcast scheme for G
BROADCAST-SCHEME-S(G, x)

1. If x = w
1.1. w broadcasts along the shortest path wr in time unit 1.

314 P. Bhabak and H. A. Harutyunyan

r gets informed at time d.
1.2. Starting at time d + 1 onwards inform all the vertices in H.

2. If x = r
2.1. Inform all the vertices in H.

3. TREE-BROADCAST(ri, Ti) for 1 ≤ i ≤ m. (m is the degree of r in tree T)

Algorithm Complexity:
Steps 1.2 and 2.1 take O(m) time to inform the vertices in H. In steps 1.1
and 3, the tree broadcast algorithm takes O(|V | − m) = O(|VT |) time to run.
Complexity of the algorithm is O(|VT | + m) = O(|V |).
Proposition 1. If there is an exact algorithm for broadcast time from any orig-
inator of graph H, then algorithm S is a 2-approximation in graph G.

Proof. We skip the proof of the proposition because it is very similar to the
proof of Theorem 3 presented next.

Theorem 3. If there is a c-approximation algorithm for the broadcast time prob-
lem in H from any originator for some constant c > 1, then algorithm S is a
2c-approximation for any originator in graph G.

Proof. When the broadcast originator u is in base graph H, u = r0:
Following our algorithm S originator u will follow the c-approximation algorithm,
call it C, within the base graph H, then by time unit bC(u,H) all vertices of
base graph H will be informed, and they will complete broadcasting within their
respective trees by time unit bC(u,H) + max{b(ri, Ti)|i = 1, 2, ..., |VH |}. Let us
assume that max{b(ri, Ti) = t, then we have bS(u,G) ≤ bC(u,H) + t. On the
other hand, it is obvious that bS(u,G) ≥ b(H) and also bS(u,G) ≥ t since all
the vertices of graph H or the vertices of the tree, say Tj with b(Tj) = t, must
be informed by the time unit bS(u,G). Thus, bS(u,G) ≥ b(H)+t

2 , and we get,
bS(u,G)
b(u,G) ≤ bC(u,H)+t

b(u,H)+t
2

= 2 bC(u,H)+t
b(u,H)+t ≤ 2 cb(u,H)+ct

b(u,H)+t = 2c since c > 1 and also

algorithm C was a c-approximation algorithm in the base graph H.

When the originator u is a vertex in tree Ti rooted at vertex ri ∈ VH :
As above, following algorithm S the originator u from the tree Ti first will
inform its root vertex ri by direct path of length, say hi, then will follow the
c-approximation algorithm within the base graph H, and then starting at time
unit hi+bC(ri,H) all vertices of the base graph H will start broadcasting within
their respective trees. Thus, bC(u,G) ≤ hi + bC(ri,H) + max{b(rj , Tj)|j =
1, 2, ..., |VH |}. Similarly, for the lower bounds, it is clear that bS(u,G) ≥
hi + bC(ri,H) and bS(u,G) ≥ hi + max{b(rj , Tj)|j = 1, 2, ..., |VH |}. Suppose
that max{b(rj , Tj)|j = 1, 2, ..., |VH |} = t.

Thus, bS(u,G) ≥ hi + b(ri,H)+t
2 , and finally we get that bS(u,G)

b(u,G) ≤
hi+bC(ri,H)+t

hi+
b(ri,H)+t

2

≤ 2 chi+cb(ri,H)+ct
2hi+b(ri,H)+t ≤ 2c, since algorithm C is a c-approximation

algorithm for base graph H, and c > 1. ��

Approximation Algorithms in Graphs with Known Broadcast Time 315

Observation: Theorem 3 and Proposition 1 can be applied to many graphs
known in the literature. In particular, for m-dimensional butterfly network BFm

[14], the m-dimensional shuffle-exchange graph SEm [14] and the m-dimensional
DeBruijn graph DBm, constant approximation algorithms are known. Proposition
1 can be applied to hypercube [3], cube-connected cycle [14] and fully connected
tree [12].

5 Conclusion and Future Work

The broadcast problem, more precisely, finding the broadcast time of any ver-
tex in an arbitrary connected graph is very difficult. It remains NP-complete
even for 3-regular planar graphs and for split graphs, graphs whose vertex set
can be partitioned into a clique and an independent set. The broadcast problem
is shown to be NP-hard to approximate within a factor 3 − ε. The best known
approximation for broadcasting in general graphs is O(log(|V |)

log log(|V |)). A long stand-
ing open problem is to present a constant approximation algorithm or to prove
that it is NP-hard to approximate within a constant factor. Polynomial time
algorithms for the broadcast problem are only known for some tree like graphs.
In particular, there exist linear algorithms for trees, tree of cycles and necklace
graphs, more generally in graphs where two cycles intersect in at most one ver-
tex. Tree of cliques is the only graph where two cycles intersect in many vertices
but there is a O(n log log n) algorithm. However, it is a special case since in the
clique all edges are available to be used for optimal broadcasting.

In this paper we consider graph of trees for which the exact or approxima-
tion broadcast algorithm for the base graph is known. First, we generalize the
existing result on hypercube of trees for any minimum broadcast graph, and
present an exact algorithm which runs in linear time. Next, we improve an ear-
lier result on hypercube of trees by reducing both the algorithm complexity and
the approximation ratio. The last result is a linear time 2-approximation algo-
rithm to determine the broadcast time of any originator for the graph of trees
when the broadcast algorithm for the base graph is known.

The immediate future work will be to generalize the result for mbgs on 2k

vertices to any broadcast graph (bg) on any number of vertices. Here the main
difficulty is to prove a property similar to Property 1 from Sect. 2. Recall that
bg on n vertices is graph with broadcast time �log n� from any originator.

References

1. Bar-Noy, A., Guha, S., Naor, J., Schieber, B.: Multicasting in heterogeneous net-
works. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of
Computing, STOC’98, pp. 448–453. ACM (1998)

2. Beier, R., Sibeyn, J.F.: A powerful heuristic for telephone gossiping. In: Proceed-
ings of the 7th International Colloquium on Structural Information Communication
Complexity, SIROCCO’00, pp. 17–36 (2000)

3. Bhabak, P., Harutyunyan, H.A.: Broadcast problem in hypercube of trees. In:
Chen, J., Hopcroft, J.E., Wang, J. (eds.) FAW 2014. LNCS, vol. 8497, pp. 1–12.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08016-1 1

https://doi.org/10.1007/978-3-319-08016-1_1

316 P. Bhabak and H. A. Harutyunyan

4. Elkin, M., Kortsarz, G.: Combinatorial logarithmic approximation algorithm for
directed telephone broadcast problem. In: Proceedings of the Thirty-Fourth Annual
ACM Symposium on Theory of Computing, STOC’02, pp. 438–447. ACM (2002)

5. Elkin, M., Kortsarz, G.: Sublogarithmic approximation for telephone multicast:
path out of jungle (extended abstract). In: Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA’03, pp. 76–85. Society for
Industrial and Applied Mathematics (2003)

6. Fraigniaud, P., Lazard, E.: Methods and problems of communication in usual net-
works. Discrete Appl. Math 53, 79–133 (1994)

7. Fraigniaud, P., Vial, S.: Approximation algorithms for broadcasting and gossiping.
J. Parallel Distrib. Comput. 43(1), 47–55 (1997)

8. Fraigniaud, P., Vial, S.: Comparison of heuristics for one-to-all and all-to-all com-
munication in partial meshes. Parallel Process. Lett. 9, 9–20 (1999)

9. Harutyunyan, H.A., Liestman, A.L., Peters, J.G., Richards, D.: Broadcasting and
gossiping. In: Handbook of Graph Theory, 2nd edn., pp. 1477–1494. Chapman and
Hall/CRC (2013)

10. Harutyunyan, H., Maraachlian, E.: Linear algorithm for broadcasting in unicyclic
graphs. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 372–382. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-73545-8 37

11. Harutyunyan, H.A., Maraachlian, E.: On broadcasting in unicyclic graphs. J.
Comb. Optim. 16(3), 307–322 (2008)

12. Harutyunyan, H.A., Maraachlian, E.: Broadcasting in fully connected trees. In:
Proceedings of the 2009 15th International Conference on Parallel and Distributed
Systems, ICPADS’09, pp. 740–745. IEEE Computer Society (2009)

13. Hedetniemi, S.T., Hedetniemi, S.M., Liestman, A.L.: A survey of gossiping and
broadcasting in communication networks. Networks 18(4), 319–349 (1988)

14. Hromkovic, J., Klasing, R., Monien, B., Peine, R.: Dissemination of information in
interconnection networks. In: Du, D.Z., Hsu, D.F. (eds.) Combinatorial Network
Theory, pp. 125–212 (1996). https://doi.org/10.1007/978-1-4757-2491-2 5

15. Hromkovic, J., Klasing, R., Pelc, A., Ruzicka, P., Unger, W.: Dissemination of
Information in Communication Networks: Broadcasting, Gossiping, Leader Elec-
tion, and Fault-Tolerance. Texts in Theoretical Computer Science, An EATCS
Series. Springer, Heidelberg (2005). https://doi.org/10.1007/b137871

16. Jansen, K., Muller, H.: The minimum broadcast time problem for several processor
networks. Theor. Comput. Sci. 147, 69–85 (1995)

17. Kortsarz, G., Peleg, D.: Approximation algorithms for minimum time broadcast.
SIAM J. Discrete Math 8(3), 401–427 (1995)

18. Middendorf, M.: Minimum broadcast time is NP-complete for 3-regular planar
graphs and deadline 2. Inf. Process. Lett. 46, 281–287 (1993)

19. Ravi, R.: Rapid rumor ramification: approximating the minimum broadcast time.
In: Proceedings of the 35th Annual Symposium on Foundations of Computer Sci-
ence, FOCS’94, pp. 202–213. IEEE Computer Society (1994)

20. Scheuermann, P., Wu, G.: Heuristic algorithms for broadcasting in point-to-point
computer networks. IEEE Trans. Comput. 33(9), 804–811 (1984)

21. Schindelhauer, C.: On the inapproximability of broadcasting time. In: Jansen, K.,
Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 226–237. Springer, Heidel-
berg (2000). https://doi.org/10.1007/3-540-44436-X 23

22. Slater, P.J., Cockayne, E.J., Hedetniemi, S.T.: Information dissemination in trees.
SIAM J. Comput. 10(4), 692–701 (1981)

https://doi.org/10.1007/978-3-540-73545-8_37
https://doi.org/10.1007/978-1-4757-2491-2_5
https://doi.org/10.1007/b137871
https://doi.org/10.1007/3-540-44436-X_23

Author Index

Anil, Arun 48
Antony, Cyriac 78

Barros, Bruno José S. 91
Bensmail, Julien 3
Bhabak, Puspal 305
Bok, Jan 22
Brewster, Richard 22
Buchin, Maike 167

Chandran S. V., Ullas 36
Changat, Manoj 48

Das, Arun Kumar 195
Das, Sandip 195
Dondi, Riccardo 152
Dutta, Pranjal 237

Feder, Tomás 22
Francis, P. 15

Gaikwad, Ajinkya 279
Guo, Xiangyu 224

Harutyunyan, Hovhannes A. 305
Hell, Pavol 22
Hocquard, Hervé 3

Jain, Sparsh 103
Jedličková, Nikola 22

Kirubakaran, V. K. 127
Kloks, Ton 65

Lajou, Dimitri 3
Lingas, Andrzej 140
Luo, Kelin 224

Maheshwari, Anil 195
Maity, Soumen 279
Misra, Neeldhara 265
Mohanapriya, A. 115
Moura, Phablo F. S. 211

Nayak, Debanuj 265

Ochi, Luiz Satoru 91
Ota, Matheus Jun 211

Pallathumadam, Sreejith K. 103
Panda, B. S. 252
Pandey, Arti 65
Paul, Kaustav 65
Persson, Mia 140
Pinheiro, Rian Gabriel S. 91
Popa, Alexandru 152
Prashant, Athmakoori 15

Raj, S. Francis 15
Rajasree, Mahesh Sreekumar 237
Rajendraprasad, Deepak 103
Renjith, P. 115
Rohde, Dennis 167

Sachin 252
Sadagopan, N. 115
Sarvottamananda 195
Shalu, M. A. 78, 127
Sledneu, Dzmitry 140
Sopena, Éric 3
Souza, Uéverton S. 91
Storandt, Sabine 181
Subramani, K. 292

Thomas, Elias John 36
Tripathi, Shuvam Kant 279
Tripathi, Vikash 65
Tuite, James 36

Velasquez, Alvaro 292

Wakabayashi, Yoshiko 211
Wang, Hung-Lung 65
Williamson, Matthew 292
Wojciechowski, Piotr 292

	 Preface
	 Organization
	Abstracts of Invited Talks
	 All-Pairs Shortest Paths and Fine-Grained Complexity
	 Linear Programming and its Uses in Algorithm Design
	 Approximation Algorithms for Some Geometric Optimization Problems
	 Contents

	Graph Theory
	A Proof of the Multiplicative 1-2-3 Conjecture
	1 Introduction
	2 Proof of Theorem 1
	References

	Chromatic Bounds for Some Subclasses of (P3P2)-free graphs
	1 Introduction
	2 Preliminaries
	3 {P3P2, (K1K2)+Kp}-free graphs
	4 {P3P2, 2K1+Kp}-free graphs
	References

	List Homomorphisms to Separable Signed Graphs
	1 Motivation and Background
	2 Path-Separable Signed Graphs
	3 Cycle-Separable Signed Graphs
	4 Conclusions
	References

	Some Position Problems for Graphs
	1 Introduction
	2 The Smallest Graph with Given mp- and gp-Numbers
	3 The Largest Size of Graphs with Given Order and Position Numbers
	4 The Diameters of Graphs with Given Order and mp-Number
	References

	Comparability Graphs Among Cover-Incomparability Graphs
	1 Introduction
	2 Ptolemaic Graph
	3 Cograph and Distance-Hereditary Graph
	4 Bisplit Graphs
	5 Composition of C-I Graphs
	References

	Graph Algorithms
	Complexity of Paired Domination in AT-free and Planar Graphs
	1 Introduction
	2 Preliminaries
	2.1 Basic Notations and Definitions
	2.2 AT-free Graphs

	3 Approximation Algorithm
	4 Exact Polynomial-Time Algorithm
	5 Paired Domination in Planar Graphs
	6 Concluding Remarks
	References

	The Complexity of Star Colouring in Bounded Degree Graphs and Regular Graphs
	1 Introduction
	2 Definitions
	3 Bounded Degree Graphs
	3.1 4-Star Colouring
	3.2 5-Star Colouring

	4 Regular Graphs
	5 Conclusion
	References

	On Conflict-Free Spanning Tree: Algorithms and Complexity
	1 Introduction
	2 Preliminaries
	3 Computational Complexity
	References

	B0-VPG Representation of AT-free Outerplanar Graphs
	1 Introduction
	1.1 Literature
	1.2 Terminology and Notation

	2 Linear Outerplanar Graphs
	3 B0-VPG Representation of 2-connected Linear Outerplanar Graphs
	4 Concluding Remarks
	References

	P Versus NPC: Minimum Steiner Trees in Convex Split Graphs
	1 Introduction
	2 STREE in Split Graphs with Convexity on I
	2.1 Star-Convex Split Graphs
	2.2 Comb-Convex Split Graphs
	2.3 Path-Convex Split Graphs

	3 STREE in Split Graphs with Convexity on K
	3.1 Tree-Convex Split Graphs

	References

	On cd-Coloring of {P5,K4}-free Chordal Graphs
	1 Introduction
	2 Preliminaries
	3 {P5,K4}-free Chordal Graphs
	4 P6-free Chordal Bipartite Graphs
	5 Conclusion
	References

	An Output-Sensitive Algorithm for All-Pairs Shortest Paths in Directed Acyclic Graphs
	1 Introduction
	1.1 Paper Organization

	2 An Application of DAG SSSP Method to Arbitrary Digraphs
	3 An Output-Sensitive APSP Algorithm for DAGs
	4 A Potential Extension to Digraphs with Large Cycles
	5 Final Remarks
	References

	Covering a Graph with Densest Subgraphs
	1 Introduction
	2 Definitions
	2.1 Algorithms for Densest Subgraph

	3 A Polynomial Time Algorithm for the k-Densest Cover Subgraphs
	4 An Approximation Algorithm for Top k-Cover-Densest Subgraphs
	5 Conclusions and Open Problems
	References

	Computational Geometry
	Coresets for (k,)-Median Clustering Under the Fréchet Distance
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions
	1.3 Organization

	2 Coresets for Generalized k-Median Clustering in Metric Spaces
	2.1 Sensitivity Bound
	2.2 Coresets by Sensitivity Sampling

	3 Coresets for (k,)-Median Clustering Under the Fréchet Distance
	4 Towards Practical (1,)-Median Approximation Algorithms
	5 Conclusion
	References

	Bounds and Algorithms for Geodetic Hulls
	1 Introduction
	1.1 Related Work
	1.2 Contribution

	2 Preliminaries
	3 Bounds for the Gin of the Graph Contour
	4 Bounding the Hull Number
	5 Experimental Results
	5.1 Graph Hull Sets and Gin

	6 Conclusions and Future Work
	References

	Voronoi Games Using Geodesics
	1 Introduction
	1.1 Previous Results
	1.2 New Results

	2 Preliminaries
	2.1 Orthogonal Convex Polygons for the L 1 Metric
	2.2 Orthogonal Convex Polyhedra

	3 Bounds for Orthogonal Convex Polygons
	3.1 Orthogonal Convex Polygon with Clients on Boundary

	4 Bounds for Orthogonal Convex Polyhedra
	4.1 Orthogonal Convex Polyhedra with Boundary Clients

	References

	Algorithms and Optimization
	Approximation and Parameterized Algorithms for Balanced Connected Partition Problems
	1 Introduction
	1.1 Our Contribution

	2 Approximation Algorithm for Min-Max BCPk
	3 Parameterized Algorithm for 1-MAX-MIN BCP
	4 Concluding Remarks
	References

	Algorithms for Online Car-Sharing Problem
	1 Introduction
	2 Preliminaries
	2.1 Problem Setting and Notations
	2.2 -Net-Cost Augmenting Path

	3 The Online-Match-and-Assign Algorithm
	4 Algorithm Analysis
	4.1 Adversarial Order of Arrivals
	4.2 Random Order of Arrivals

	5 Conclusion
	References

	Algebraic Algorithms for Variants of Subset Sum
	1 Introduction: Variants of Subset Sum
	1.1 Main Results
	1.2 Technical Overview
	1.3 Prior Works and Their Limitations

	2 Preliminaries and Notations
	3 Proof of Theorem 1
	4 Proof of Theorem 2
	5 Conclusion
	References

	Hardness and Approximation Results for Some Variants of Stable Marriage Problem
	1 Introduction
	2 Preliminaries
	3 Complete Stable Matching in SMTI-C and SMTI-STEP
	3.1 COM SMTI-C Problem
	3.2 COM SMTI-STEP Problem

	4 Maximum Stable Matching in SMTI-INC Problem
	5 Minimum Stable Matching in SMTI-STEP Instance
	6 Approximation Algorithm for MIN SMTI-INC
	7 Conclusion
	References

	On Fair Division with Binary Valuations Respecting Social Networks
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 Preliminaries
	3 Envy-Freeness
	3.1 NP-Hardness for Two Agent Types
	3.2 W-Hardness Parameterized by Goods
	3.3 W-Hardness Parameterized by Vertex Cover
	3.4 NP-Hardness on Paths

	4 Proportionality for Graphs
	4.1 Local Proportionality: NP-hardness
	4.2 Quasi-Global Proportionality: Efficient Algorithms

	References

	Parameterized Intractability of Defensive Alliance Problem
	1 Introduction
	1.1 Our Main Results
	1.2 Known Results

	2 Hardness Results of Defensive Alliance
	2.1 Proof of Theorem 1
	2.2 Proof of Theorem 2

	3 Conclusions
	References

	On the Approximability of Path and Cycle Problems in Arc-Dependent Networks
	1 Introduction
	2 Statement of Problems
	3 Computational Complexity of SNCC and LoNCC
	4 Fixed-Parameter Algorithm for SP
	4.1 Intuition
	4.2 Randomized Algorithm
	4.3 Proof of Correctness
	4.4 Derandomization

	5 Lower Bound on Kernel Size for the SP Problem
	6 Conclusion
	References

	Approximation Algorithms in Graphs with Known Broadcast Time of the Base Graph
	1 Introduction
	2 Exact Algorithm When the Base Graph is a k-Regular mbgs with One Tree
	2.1 Broadcast Algorithm When Originator is r

	3 Linear Time 1.5-Approximation Algorithm for General Hypercube of Trees
	4 Linear Time Constant Approximation Algorithm in Graph of Trees with Known Broadcast Time of the Base Graph
	5 Conclusion and Future Work
	References

	Author Index

