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1  �Addressing Biodigital Convergence in Theory and Practice

‘Biodigital convergence and its various implications, from biotechnology to bioecon-
omy, seem to promise a Copernican shift in our current way of life,’ say the editors 
of this volume (Peters et al. 2021a: 6). The biodigital is ‘an emerging configuration’ 
(Peters et al. 2021b). The editors also speak to the notion of a ‘postdigital’ age, taking 
up an idea first contemplated by Nicholas Negroponte (1998): ‘Its literal form, [digi-
tal] technology, is already beginning to be taken for granted’. Soon, ‘like air and 

B. Cope (*)
College of Education and College of Engineering, University of Illinois,  
Champaign, IL, USA
e-mail: billcope@illinois.edu

M. Kalantzis 
College of Education, University of Illinois, Champaign, IL, USA
e-mail: marykalantzis@illinois.edu

C. Zhai · D. Searsmith 
College of Engineering, University of Illinois, Champaign, IL, USA
e-mail: czhai@illinois.edu; dsearsmi@illinois.edu 

A. Krussel 
Washington University School of Medicine, St. Louis, MO, USA
e-mail: krussela@wustl.edu 

D. Ferguson 
College of Veterinary Medicine, University of Illinois, Champaign, IL, USA
e-mail: dcf@illinois.edu 

R. Tapping · Y. Berrocal 
University of Illinois College of Medicine, Peoria, Peoria, IL, USA
e-mail: berrocal@uic.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95006-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-95006-4_8#DOI
https://orcid.org/0000-0003-2129-395X
https://orcid.org/0000-0002-6552-3780
https://orcid.org/0000-0002-6434-3702
https://orcid.org/0000-0002-7823-8671
https://orcid.org/0000-0002-4970-1604
https://orcid.org/0000-0002-5913-9694
https://orcid.org/0000-0002-1089-6563
mailto:billcope@illinois.edu
mailto:marykalantzis@illinois.edu
mailto:czhai@illinois.edu
mailto:dsearsmi@illinois.edu
mailto:krussela@wustl.edu
mailto:dcf@illinois.edu
mailto:berrocal@uic.edu


134

drinking water, being digital will be noticed only by its absence, not its presence… 
Computers will be a sweeping yet invisible part of our everyday lives: We’ll live in 
them, wear them, even eat them. A computer a day will keep the doctor away.’

If we are to take ‘postdigital’ at its word, we have become so thoroughly ‘in’ the 
digital that we have become ‘post’ by virtue of its barely noticeable ubiquity. 
However, like other ‘posts’, we need to suspect sweeping assertions of rupture, as if 
for instance the ‘postmodern’ were not a variant of the modern, and the ‘posthuman’ 
not a variant of the human. The digital, after all, is not so new, beginning perhaps 
with Claude Shannon’s insight that electrical switches could represent two num-
bers—on and off; zero and one; which in turn could represent Boolean logic 
(Shannon 1938). In any event, underlying algorithmic processes are binary, and at 
most only partly and secondarily digital. And we can never be ‘post’ to the extent 
that the meanings can only be partially represented and calculated with quantifying 
media—bodily meanings and medical conditions, for instance. Our Fitbits do not 
erase the difference between body and its calculability. The bio and the digital do 
not become each other. The digital and the bio are fundamentally and irreducibly 
different from each other. The digital is no more than a quantitative, conceptual 
representation of limited features of the bio. Hence, Jandrić et al. (2018: 895) con-
clude: ‘The postdigital is hard to define; messy; unpredictable; digital and analog; 
technological and non-technological; biological and informational. The postdigital 
is both a rupture in our existing theories and their continuation.’

Inspired by the themes of this volume, the chapter that follows speaks both philo-
sophically and technically, and theoretically as well as practically. Philosophically, 
we want to speak to theoretical limits as well as the enormous potentials of algorith-
mic reason. Practically and technically, we want to describe a project in which we 
have been developing knowledge graph software to support medical education and 
electronic health records. This project has been supported by a series of three grants 
from Jump Applied Research through Community Health through Engineering and 
Simulation (ARCHES) program, a partnership between Jump Simulation and 
Education Center at OSF HealthCare and the Health Care Engineering Systems 
Center in the Grainger College of Engineering at the University of Illinois.

Our thesis is as follows: the biodigital is today both ubiquitous, as evidenced in 
rapidly expanding use of computable information in modern medicine, and an oxy-
moron, because the bio and the digital are irreducibly different things. As a conse-
quence, our focus is the relation between these two.

Elsewhere, two of the research team have developed a metaontology centered 
around the idea of ‘transposition’ or movements in meaning appliable to digitally-
mediated representation and communication (Cope and Kalantzis 2020; Kalantzis 
and Cope 2020). Here we have identified four transpositions between the qualities 
of biolife and the quantities in which they may be calculable (Cope et al. 2020). 
These are as follows.

Namability: the character collocations of medical labels can be tracked for similar-
ity by search and other forms of text mining—the terms in a medical ontology, 
for instance—but computers can have no conception of what these labels mean.
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Countability: instances of labelled things can be counted, but counting is always 
limited by the criterial features of a label, losing in the process irreducible mate-
riality of the singular referrent and the subtleties of its context. This is an intrinsic 
limitation if population-based medical science, whatever its undoubted benefits.

Measurability: clines of progression can be measured, often now with automated 
sensors (temperatures, heart rates, pharmacology etc.), but such numbers are 
mostly limited to linear vectors.

Renderability: digital capture tools can render medical images on a two-dimensional 
plane, and 3D printing can construct three-dimensional medical models and even 
prosthetic body parts, but the materiality of rendered image and object is always 
fundamentally different from its referent.

These four things, and no more, can be performed by the mechanics of the digital. 
These are what the digital offers us, sometimes a miraculous servant for the cure of 
our bodies, but these transpositions also set its absolute limits. The limits of the digi-
tal are the limits of the transposability of qualitative biomeanings into quantity.

2  �Ontologies, in Philosophy and Medical Practice

Theoretically, this chapter works at two levels, applying the concept ‘ontology’ 
philosophically at one level, and technically at another. Philosophically, the term 
‘ontology’ connects material being with the immaterial of its understanding, our 
viscerally experienced lives and bodies connected with models or schemas of spe-
cialized medical understanding. In traditional philosophical terms, ontology is a 
relation between the material (bodies) and the ideal (medical reason). Technically, 
in the digital era ontologies perform the same function, as schemas that represent 
and model the material world. In our case, medical ontologies to describe bodies 
and their ailments. They transpose the ideal and the material through a backwards-
and-forwards play between conceptualization and practice. In our case, the medical 
understandings captured in medical ontologies are connected in medical practice 
with the biomedical materiality of bodies. One of many such connections is that 
between bodies in a qualitative experiential sense and their quantitative calculabil-
ity. This is the extent of ‘biodigital convergence’.

On the question of calculability, the relation of the ideal of the calculability with 
the material of the world to which it refers, Gottfried Leibniz led the modern charge. 
Here he is, writing in 1666:

I have found an astonishing thing, which is, that we can represent all sorts of truths and 
consequences by Numbers … [T]here are certain primitive Terms which can be posited if 
not absolutely, at least relatively to us, and then all the results of reasoning can be deter-
mined in numerical fashion, and even with respect to those forms of reasoning in which the 
given data do not suffice for an absolute answer to the question, we could still determine 
mathematically the degree of probability… and where there are disputes among persons, 
we can simply say, Let us calculate, without further ado, in order to see who is right. 
(Leibniz 1951: 50–51)

Maps of Medical Reason: Applying Knowledge Graphs and Artificial Intelligence…
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Chris Anderson, editor of Wired magazine, was still saying a version of this in 2008.

Out with every theory of human behavior, from linguistics to sociology. Forget taxonomy, 
ontology, and psychology … This is a world where massive amounts of data and applied 
mathematics replace every other tool that might be brought to bear … With enough data, the 
numbers speak for themselves. (Anderson 2008)

We disagree, for the reasons that we lay out in this chapter. Of course, we live in an 
era of ‘big data’, of massively networked and integrated information. But purely 
algorithmic reason only works by leveraging human reason. One such leveraging is 
the process of inference in statistical text mining (Zhai and Massung 2016). Text 
consists of stings of characters which in combination reference things and ideas. 
Computers can never be intelligent in the sense of understanding ideas, but they can 
point to repetitions in strings of characters that come together into words that may 
make sense to humans. Statistical work with text can only point to latent semantics 
(Landauer et al. 2007). After the patterns of textual characters are counted, the lim-
its of this process are the limits of natural language with its baffling ambiguities, 
infinitely variable context dependencies, and polysemy that even the best of diction-
aries find hard to disentangle. Supervised machine learning helps, where humans 
supplement numerical or textual meaning with labels that are meaningful to them. 
This helps the machine detect future such patterns; and unsupervised machine 
learning where the machine finds statistical clusters or outliers that may warrant 
labelling. In both cases, the thinking can never be smarter than the labels that 
humans apply.

So, on top of the laborious but otherwise dumb calculation of frequencies of 
alphanumeric characters, the textual labels are crucial. Folksonomy is common-
sense, ad hoc and frequently spontaneous labelling, of which hashtags have become 
a prominent example in the era of social media (Guy and Tonkin 2006). Taxonomy 
(hierarchical) and ontology (multidimensional) have become crucial tools for repre-
sentation of meaning in the digital era.

In their basic functions, taxonomy and ontology are as old as the human mind—
beginning with the extraordinarily complex totemic, kinship, and natural classifica-
tion systems of First Peoples (Kalantzis and Cope 2020: 42–47). For modernity, 
Immanuel Kant proposed a ‘categorical imperative’, or the process by which mind 
applies its categories of meaning to the material world encountered by the human 
body. In our utilitarian twenty-first century, digitized ontologies are pervasive. Kant 
could be proud of the rigorous intent of the categorical systems insisted upon by the 
medical insurance companies in order to argue the cost of medical interventions.

An example: Intelligent Medical Objects (IMO) is a company in the Research 
Park at the University of Illinois that teases out the nuances of how human bodies 
work, or don’t so well in the case of illness and death. ‘Object’ is a revealing word, 
because the manner of relating of concepts is digital ontologies are not merely con-
ceptual; they purport reference objects of the material world, in this case manifest 
physiological conditions. These are not mere ideas or figures of cognition. They are 
‘objects’, arranged in some sort of order, and this order is a series of determinate 
relations. Though not a commercial concern for the IMO company, this is where the 
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philosophical notion of ontology meets the technical one. The medical labels dwell 
in the realm of the ideal, but they oriented to the realm of the material, peo-
ple’s bodies.

‘Clinicians are asked to see 6–10 patients per hour & do all the documentation’, 
says the PowerPoint presentation that is used to sell the IMO software product. ‘The 
most expensive resource in the healthcare ecosystem is currently being used to do 
the bulk of documentation via the Electronic Health Record (EHR). How do you 
extract maximal value for your investment?’

IMO offers a standardized classification scheme by means of which medical 
vendors can share electronic records about a patient’s medical condition, preserving 
‘the truth of clinical intent’. Not only is there a problem of accurate coding. There 
are two main classification schemes, ICD (the International Statistical Classification 
of Diseases and Related Health Problems1) and SNOMED (Systematized 
Nomenclature of Medicine2). ICD exists in a succession of versions, older records 
in ICD-9, and newer records in ICD-10 and after that, ICD-11. IMO provides apps, 
accessible on computers and phones, for looking up the terminology associated 
with different medical conditions across ICD-9, ICD-10, ICD-11, SNOMED, and 
other specialized medical ontologies.

IMO also analyzes synonyms that emerge in medical practice and maps these to 
the standard ontologies. For instance, IMO has a term ‘abnormal excitement’, which 
maps to ICD version 9 code 799.29, ‘other symptoms involving emotional state’. 
Version 10 of ICD codes this R45.0, ‘nervousness’. SNOMED codes it 247006004, 
‘Over-excitement’, or ‘Uncontrollable excitement’. At this point, medical classifi-
cations begin to run into another life-defining ontology, the Diagnostic and Statistical 
Manual of Mental Disorders.3

The historians of ICD trace the origins of formal classification of medical condi-
tions to registrations of the causes of death from Italy in the mid-fifteenth century 
and England in the mid-sixteenth. ICD had its beginnings in the International 
Statistical Congress, which first met in Brussels in 1853, when the ‘CD’ part of the 
acronym stood for ‘causes of death’. At the 1860 meeting in Paris, Florence 
Nightingale used death classification statistics to show the causes of hospital deaths 
and how they could be reduced (Bostridge 2008: 11–12).

The first version of the International List of Causes of Death was adopted at the 
Chicago congress of 1893 (Moriyama et al. 2011: 11–12). Since then, ICD has gone 
through eleven major versions, including digitization in the third quarter of the 
twentieth century. The title ‘Causes of Death’ was changed to ‘Classification of 
Diseases’ in 1949 when the World Health Organization took responsibility for it. 
WHO now hosts periodical revision conferences and manages the revision process. 
ICD-10 was released in 1994, ICD-11  in 2018. ICD-11 expands the number of 

1 See https://www.who.int/standards/classifications/classification-of-diseases. Accessed 1 
October 2021.
2 See https://www.snomed.org/. Accessed 1 October 2021.
3 See https://www.psychiatry.org/psychiatrists/practice/dsm. Accessed 1 October 2021.
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codes available to 55,000, up from the 14,400 in ICD-10. Meanwhile, SNOMED, in 
development since 1965 and now controlled by a London-based not-for-profit, was 
created to describe a range of pathologies and clinical processes—311,000  in 
total—not all of which are adequately captured in ICD.

Nobody could conceivably remember or be able to speak more than a few of 
55,000 or 311,000 things, which is why IMO created the look-up app as a textual 
prosthesis for medical professionals. ICD-10 is a carefully ordered classification 
scheme, divided into in sections that are marked auspiciously with roman numerals. 
It has sections on various bodily systems: IX ‘circulatory’, X ‘respiratory’, XI 
‘digestive’, IV ‘endocrine’. Then there are some strange system conjunctions: XIII 
the ‘musculoskeletal system’, and XIV ‘genitourinary system’—muscles are very 
different from bones and reproduction very different from urinating, but in the body, 
these things work together or are near each other.

Ontologies connect the objects of their reference in a number of kinds of relation. 
For instance, one thing may be a kind of another, or it may be an instance of another. 
‘Malignant neoplasm of the breast’ is a kind of ‘neoplasm’. This is type of coher-
ence can be visualized taxonomically: one thing is an instance of concept that hap-
pens more than once, such as a single case of breast cancer. More broadly 
encompassing concepts can group subsets of narrower concepts. Ontologies can 
also represent things that are parts of another. For example, ‘Sprain and strain of 
ankle’ involves joints and ligaments, constituent parts of ankles. They can represent 
patterns of action in chains of cause and effect. ‘Whooping cough due to Bordetella 
pertussis’ is different by dint of its cause from ‘Whooping cough due to Bordetella 
parapertussis’.

The coherence of ontologies is also just as much a matter of relations of differ-
ence, where as much importance is afforded to: not-a-kind of; not-a-part-of; does 
not have certain properties; or does not cause. In medicine, differential diagnosis is 
the process of distinguishing the ‘is’ from the ‘is-not’, even though the symptoms 
may have created initial uncertainty. Medicine then becomes a practice of weighing 
evidence in order to make categorical judgment. Differentials in medicine are close 
but nevertheless important differences. And there are differences that are just irrel-
evancies, or informational ‘noise’.

No two relations are the same. We can use ‘kind of’, ‘part of’, ‘property of’, and 
‘cause of’ as rough heuristics for relations. But muscles do not connect with bones 
in the same way that the environmental conditions of bodies and brains connect to 
emotional states.

This irreducible specificity of relations is also the reason we need big lists of 
things, codified and the subject of general agreement in the digital era. As well as 
describing the body and its ailments, GeoNames4 is for places, Ethnologue5 for 
languages, Chemical Markup Language6 for chemistry, product numbering and 

4 See http://www.geonames.org/. Accessed 1 October 2021.
5 See https://www.ethnologue.com/. Accessed 1 October 2021.
6 See https://www.xml-cml.org/. Accessed 1 October 2021.
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classification systems for purchasable things.7 The list of lists in digital modernity 
is long, covering billions of the most useful and important things that can be meant, 
many of which, as it happens, may impact medical conditions. More meaning is to 
be found in the unique configurations of relations in these lists than can be found in 
purely algorithmic or logical work of so-called ‘artificial intelligence’.

Of course, even the most fastidiously organized ontologies are rough and inde-
terminate in places. In the case of ICD, some are internal to bodies, some external, 
but nevertheless objects of very different orders: organs or parts of the anatomy such 
as VIII ‘eyes’, VII ‘ears’, XII ‘skin’; acquired conditions such as I ‘infectious dis-
eases’ and II ‘neoplasms’ (cancers); external effects such as XIX ‘injuries’; condi-
tions that may have been inherited in the form of XVII ‘congenital malformations’; 
conditions that may not even be medical, at least in their origins, but which might 
now be classified as V ‘mental or behavioral disorders’; and stuff that happens in 
XXI ‘contact with health systems’. Cross-classification clarifications are offered in 
the form of inclusions and exclusions. XVI ‘perinatal conditions’, we are told, 
includes conditions whose origins are in pregnancy even though the baby dies later, 
but they exclude congenital malformations.

For all its agonizing order, and after a century and a half of institutional agoniz-
ing about its ordering, ICD still has the appearance of a ramshackle list. This is not 
because our medical thinking is flawed, but because the material world is endlessly 
varied and complex. The list is as ramshackle as the particularities and relations of 
biolife itself. And it is as fallible as the politics of the construction of the medical 
self, where old maladies such as homosexuality are no longer that, and new condi-
tions appear, such as post-traumatic stress disorder. ‘Classification systems’, say 
Bowker and Star (2000: 61), ‘simultaneously represent the world “out there,” the 
organizational context of their application and the political and social roots of that 
context. Many of these concepts are matters of judgment and thus contention. 
‘Excitement’, ‘nervousness’, and ‘emotional states’ traverse vast territories of 
human experience, and the point at which these become a medical condition as 
distinct from healthy life may at times become a contentious matter between 
patients, doctors, and insurance companies.

Then there is the frequently-appearing but nevertheless disquieting notion of 
‘other’—‘other infectious diseases’, ‘unspecified mental disorder’, ‘neoplasms of 
uncertain or unknown behavior’, ‘other ill-defined and unspecified causes of mor-
tality’, ‘provisional assignment of new diseases of uncertain etiology or emergency 
use’, to mention just a few labels for uncertainty in ICD-10. If an ontology is to 
encompass all possibilities in a domain, it has to countenance as-yet or in-the-
moment unknown possibilities.

In the professional domain of medicine, the historically evolved ontology of ICD 
speaks an un-natural language. For all the open-ended possibilities of medical sci-
ence, the aim of an ontology is to reference the world—in this case, the human body 

7 See https://www.gs1.org/standards/barcodes/ean-upc. Accessed 1 October 2021.
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and its maladies—in ways that are more precise than the natural language of every-
day or vernacular experience of sickness and health.

How, then, do digitally represented labels arrayed in conceptual schemas connect 
with the bodies they are labelling? At this point, we come to rely on the philosophi-
cal notion of ontology. This is our twenty-first century replacement for metaphysics, 
tracing the relations between the material and the ideal. The material of ontology is 
the immanent if complex order in the world, in nature, society and history. The ideal 
of ontology is the conceptualization of these meanings, not only by means of the 
artifact of language, but with other tools of representation including image, space 
and embodied feeling. The ideal is integrally connected with the material, but the 
one is never a straightforward reflection of the other. The ideal can exceed the mate-
rial, in conjecture and imagination, in the service of a medical diagnosis or scientific 
hypothesis, for instance. And the material exceed the ideal, for example in the as-yet 
undiscovered but eventually knowable (Cope and Kalantzis 2020: 280–303).

Returning now to the specifics of medical ontologies. The labels are ideal in the 
sense that they are ideational constructs, and the bodies to which they refer are 
material. The two are of course connected. There is no label in a medical ontology 
without a material reference to which it can point in the body, brain, or behavioral 
manifestations of mind—either retrospectively or potentially. There is no meaning-
ful material body without our making sense of it. But the ideal and the material are 
not mirror reflections of each other. The material can exceed the ideal—things that 
are as yet unexplained, for instance, in a particular case or in medical science. And 
the ideal can exceed the material—diagnoses about the causes of illness, or progno-
ses about progression and the effects of treatment. Ontology is a complex dialectic, 
a play between the ideal and the material (Cope and Kalantzis 2020: 302–10).

3  �Knowledge Graphs, in Theory and Practice

Digital ontologies can be represented visually as concept maps or knowledge 
graphs. The concepts of an ontology can be represented as labelled containers, 
joined by lines to indicate one kind of relation or another: something that is a part 
of something else; something that is a kind of something else; something that has a 
namable property; or something that is a cause of something else. Medical ontolo-
gies can be represented taxonomically, as tree diagrams showing parent/child and 
sibling relations. Knowledge graphs, however, allow endless complexity where 
each node can be represented in multiple relations with other nodes, and different 
kinds of relations between nodes can be specified as labels for the arrows that con-
nect them. To agree on labels and relations for a domain like medicine, as we have 
seen in the case of the history of ICD, is a long historical and open-ended social 
process.

The emergence of the social web has led to a shift in meaning making in the 
direction of more collective endeavors, of which ICD online is an example. This 
process can be found in present-day representation of large-scale collections of 
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knowledge with emphasis on aggregation and integration, utilizing standardized 
schemes for scalability, structure, identity, relationship, and provenance. This phe-
nomenon is clearly evidenced by the rise of large-scale knowledge graphs and their 
growing importance to sense making at scale.

The knowledge graph is not a novel development in knowledge representation or 
automated reasoning. In early AI research expert systems employed various math-
ematical logics and rule-based reasoners to represent knowledge and perform infer-
ence—with emphasis on capturing human expertise to approximate human level 
reasoning. Knowledge was thought of as ‘descriptions, relationships, and proce-
dures’ (Hayes-Roth 1983). Semantic networks were used as visual representations 
of first order predicate logic (FOPL) where nodes represented entities and links 
were thought of as predicate relationships (Dietterich and Michalski 1983). 
Reasoning was performed by applying logic rules over typed entities to generate 
new entity relationships and attributes.

The current day graph database systems evolved gradually, in response to 
improvements in hardware performance and storage of ever-increasing amounts of 
data—including curated stores, and evolution of mature standards of data identity, 
semantics, and federation. Outside of academia, prior to the 1980s, data was stored 
in customized hierarchical structures largely influenced by hardware limitations and 
with a premium placed on efficiency of insertion and retrieval.

The 1980s through the end of the century saw the development of relational 
database technologies, based on the relational algebra. These technologies also 
emphasized data operational efficiencies over the leveraging the power of the data 
itself (i.e., relations between data elements were limited), with tables of columnar 
data types joined to other tables via key fields and queried using the Structured 
Query Language (SQL). Triple stores (RDF) and No-SQL technologies developed 
soon after which allowed data of any shape to be stored in key value systems, and 
relational knowledge of data entities could be represented at a finer grain. Graph 
database technologies in general use began to emerge around 2010 and have been 
improving over the last decade. The graph database systems of today allow relations 
as first-class objects with reasoning engines that fully realize the knowledge graph 
at scale. In general terms, Gosnell and Broecheler characterize the historical evolu-
tion as database from hierarchical models, to relational, to NoSQL, and in the 2020s, 
graph thinking (Fig. 1).

The widespread currency of the contemporary knowledge graph can in large part 
be traced Google’s application of the technology to its search. Launched in 2012, 
Knowledge Graph presents summary text and images about a search topic in a panel 
on the right side of the screen. A search on the musician ‘Taj Mahal’ works because 
Knowledge Graph knows the difference between the singer, the tomb in Agra, and 
Donald Trump’s failed casino in Atlantic City. Google knows enough about you 
from your search history and the history of searchers like you to decide which Taj 
Mahal you are most likely to be interested in. This is because the string of characters 
‘Taj Mahal’ has been classified into a number of different meanings across multiple 
ontologies.

Maps of Medical Reason: Applying Knowledge Graphs and Artificial Intelligence…



142

‘Things, not strings’, has become the Google Knowledge Graph mantra (Singhal 
2012). Behind Knowledge Graph is a repository, Knowledge Vault. Unlike previ-
ous, text-based extraction, which can be very noisy, Knowledge Vault ‘combines 
extractions from Web content… with prior knowledge derived from existing knowl-
edge repositories’ (Dong et al. 2014). Such knowledge repositories have been hand-
curated and over a long period of time—medical ontologies, for instance. Google is 
secretive about its Knowledge Graph technology (Paulheim 2017: 2), but one sus-
pects that its power lies in Knowledge Vault, where the copying of a huge amount 
of web content, including previously hand-curated ontologies, is at least as powerful 
and probably more powerful than data mining of unstructured text.

‘Defined abstractly’, says Kerjriwal (2019), ‘a knowledge graph is a graph-
theoretic representation of human knowledge such that it can be ingested with 
semantics by a machine’. However, graph conceptualizations of the world are infi-
nite, capable of generating too much information to the point where they are practi-
cally unreadable. Each graph needs to be selective, a small and germane collocation 
of nodes and specified relations—whether these are machine suggestions, or 
machine-readable human suggestions (Cañas et al. 2015). These may function ped-
agogically or to support thinking, as advance concept organizers (Ausubel 2000), 
concept maps (Novak 2010), or learning progressions (Shi et al. 2020).

Gutiérrez and Sequeda argue that today, data represents a commodity, tied to bits 
and formats, devoid of any meaning in and of itself. Knowledge, on the other hand, 
has been thought of as a ‘paradigmatic immaterial’ object living only in people’s 
minds and language. Over the decades computer scientists have gradually devel-
oped the techniques and systems to ‘materially support knowledge’. The fusion of 
knowledge and data thus creates meaning, and knowledge graphs are a manifesta-
tion of this vision at scale (Gutiérrez and Sequeda 2021: 104).

The life sciences have been early adopters of semantic web technologies (Chen 
et al. 2013), and as such they are also heavily involved in advancing knowledge 
graph research and application. One challenge of knowledge graphs in the life sci-
ences is the integration of disparate knowledge and data sources into one cohesive 
graph. The Covid-19 Community is a project funded by National Science Foundation 

Fig. 1  Evolution of database technologies (Gosnell and Broecheler 2020: 3)
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(NSF) to integrate ‘environmental datasets to help researchers analyze the interplay 
between host, pathogen, the environment, and COVID 19’ (Rose et al. 2020). The 
project is using the Neo4j graph database software to integrate disparate data sources 
to enable reasoning and search in the domain of Covid-19. Over eighteen such data-
sets are utilized spanning diverse domains such as geography (GeoNames),4 
Covid-19 data resources like the Covid-19 Data Repository by the Center for 
Systems Science and Engineering at Johns Hopkins University (Covid-19 Data 
Repository),8 and general medical resources like the Disease Ontology (Disease 
Ontology11). The graph contains over ten million nodes and thirty-three million 
relationships. At a high level, these knowledge sources can be broken down into the 
following categories: metadata; biological data and literature; locations, epidemio-
logical data; and population characteristics.

The network is updated nightly via a staged workflow. Public data sources are 
ingested (caching reduces redundant processing), and analytics process the data to 
produce node and relationship data which is integrated into the knowledge graph. 
To facilitate better integration, the project added their own metadata in the form of 
nodes and relationships. This is type information used to label data elements. For 
example, node types like ‘strain’, ‘gene’, and ‘city’ are used to provide type infor-
mation and to link types via relationships in a graph wide manner. Data provenance 
was also added by including data source nodes that identify the origin of various 
data elements.

Another important feature for interoperability across various resources is the use 
of unique identifiers. The European Union has developed a resolution service called 
identifiers.org which maintains unique identifiers in the form of compact URIs for 
over 700 life science resources. This is of critical importance to integrate and link 
concepts from the various data sources. In other instances where no such service is 
available, custom identifiers were constructed using attributes of the data elements. 
Challenges that were encountered in constructing this resource included the sheer 
variety of file formats, data types, and modalities of data access. Additionally, the 
sheer volume of the data to be processed while it is changing in real-time was a chal-
lenge for synchronization and machine resources. Data inconsistencies also require 
strategies for bridging gaps, detecting file format errors and the like. There was also 
a need for domain knowledge to bridge gaps in knowledge representations across 
domains and at differing scales.

In the following sections we describe the work we have been doing to apply 
medical ontologies to medical education and health records.

8 See https://www.openicpsr.org/openicpsr/covid19. Accessed 1 October 2021.
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4  �Medical Informatics: Where Algorithmic Reason Meets 
the Semantics of the Body

The research and development we have been undertaking addresses some method-
ological questions for evidence-based medical science that go to the very heart of its 
information systems. Leading computer scientist, Judea Pearl, questions the limits 
of purely statistical and correlational approaches to data, recommending they should 
be supplemented by ‘causal models [that] facilitate the evaluation of the effect of 
novel actions… that were unanticipated during the construction of the model’ (Pearl 
2009: 307). He makes a distinction between an actual cause (in a single event) and 
general cause in populations (type-level) (309–310). His conclusion is that ‘to 
achieve human level intelligence, learning machines need the guidance of a model 
of reality’ (Pearl 2018). In the medical domain, ontologies offer such models of 
reality. The statistical processes of artificial intelligence depend on the precision of 
the labels applied to data and used to model reality.

In a single medical case, millions, even potentially billions of highly specified 
concepts might be available to model causal reality. In the specialized medical 
domain, there are a number of widely used models, some with long and storied 
histories. Some we have already mentioned in this chapter, others we mention now 
to expand this picture: The International Statistical Classification of Diseases and 
Related Health Problems (ICD);1 the International Classification of Functioning, 
Disability and Health (ICF);9 the Systematized Nomenclature of Medicine 
(SNOMED);2 Logical Observation Identifiers Names and Codes (LOINC);10 and 
The Drug Ontology (DRON).11 Then there are ontologies of everyday non-medical 
things capable of identifying, with a high degree of precision, contextual variables 
that may be highly relevant to a clinical case, including place (GeoNames),4 time 
and event (iCal),12 demographic profile (age, gender, race/ethnicity etc.), occupa-
tional classification (SIC: Standard Occupational Classification),13 or objects in the 
form of identifiable products (IAN: International Article Number).7 Transmission of 
an infectious disease, for instance, might be identified at the conjunction of a pre-
cisely specified place, event, occupation, demographic, or product.

The key characteristic of these ontologies—their millions of classifiers and the 
billions of data points classified in standardized schemas with unique identifiers—is 
their semantic precision. Their model of reality is much more finely specified than 
natural language, with far less potential ambiguity. They can also be arrayed in taxo-
nomic or knowledge graph structures where term-to-term relations (e.g. parent/

9 See https://www.who.int/standards/classifications/international-classification-of-functioning-
disability-and-health. Accessed 1 October 2021.
10 See https://loinc.org/. Accessed 1 October 2021.
11 See https://www.ebi.ac.uk/ols/ontologies/dron. Accessed 1 October 2021.
12 See https://icalendar.org/. Accessed 1 October 2021.
13 See https://www.bls.gov/soc/. Accessed 1 October 2021.
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child, sibling, and other relations) offer insights into the basic components and rela-
tionships of a given model of reality (Cope et al. 2011; Sowa 2000).

Purely algorithmic, text mining approaches to artificial intelligence rely to a 
large degree on statistical analysis of natural language where meaning is principally 
limited to character collocations in ‘stemmed’ words (Brown et al. 1991; Kalantzis 
and Cope 2020). Meanings are subsequently inferred in processes of ‘latent seman-
tic analysis’ (Landauer et al. 2007). As powerful as these analyses have become, 
they can be all-the-more powerful when AI is applied to processes of semantic 
modeling.

The main questions for our project are, how can ontologies deepen processes of 
artificial intelligence, and how can machine learning generated from human interac-
tion with knowledge graphs add detail and depth to those graphs? In prior research, 
Zhai and colleagues have used the ConceptNet knowledge base to add supplemen-
tary semantics to text mining (Kotov and Zhai 2012). They have leveraged public 
domain knowledge graphs to improve text-based prediction (Jiang et al. 2018). In 
the broad area of bioinformatics, they have developed a schema of entity relation 
semantics for insects for a project researching the genetics of bees (He et al. 2010). 
The lessons that we have learned from these previous studies are that ontologies can 
enhance artificial intelligence in multiple ways including facilitating human-in-the-
loop collaboration with AI, improving explainability, and addressing the challenge 
of data sparseness in supervised machine learning. All these benefits are especially 
important in medical informatics and can be realized via developing innovative 
technologies for creating, updating, and maintaining comprehensive domain-
specific ontologies.

The final two sections of this chapter address the specific development objectives 
and application testing processes in our current projects.

5  �Application Project 1: Medical Education

In a first phase of our current research, we have web-based developed knowledge 
graph software called CGMap (Common Ground Map), applicable across a number 
of domains.14 The medical application of this software we have called MedMap. In 
the current phase, we are applying and testing this software in two domains: map-
ping of clinical cases in medical education (MedMap Application 1), and electronic 
health records (MedMap Application 2).

In the MedMap clinical case application, the web-based environment that we 
have been developing has been designed to contribute to medical education by sup-
porting holistic, critical, and problem-based learning. In a review of the literature on 
critical clinical thinking, Benner, Hughes and Sutphen adopt a definition of critical 
thinking as ‘purposeful, self-regulatory judgment that uses cognitive tools such as 

14 See https://newlearningonline.com/cgscholar/projects/medlang. Accessed 1 October 2021.
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interpretation, analysis, evaluation, inference, and explanation of the evidential, 
conceptual, methodological, criteriological, or contextual considerations on which 
judgment is based’. Applying this to the context of medical practice, they point out 
that ‘the growing body of research, patient acuity, and complexity of care demand 
higher-order thinking skills. Critical thinking involves the application of knowledge 
and experience to identify patient problems and to direct clinical judgments and 
actions that result in positive patient outcomes.’ As they argue,

clinicians and medical scientists alike need multiple thinking strategies, such as critical 
thinking, clinical judgment, diagnostic reasoning, deliberative rationality, scientific reason-
ing, dialogue, argument, and creative thinking, and so on. In particular, clinicians need 
forethought and an ongoing grasp of a patients health status and care needs trajectory, 
which requires an assessment of their own clarity and understanding of the situation at 
hand, critical reflection, critical reasoning, and clinical judgment. (Benner et al. 2008)

Mukherjee (2015) describes his training as a physician in these terms: ‘The pro-
fusion of facts obscured a deeper and more significant problem: the reconciliation 
between knowledge (certain, fixed, perfect, concrete) and clinical wisdom (uncer-
tain, fluid, imperfect, abstract)’. Gambrill (2012) notes that evidence-based clinical 
practice is rooted in a willingness to recognize the intrinsic uncertainty of clinical 
decision-making. Research by Bordage and colleagues demonstrate that critical 
clinical thinking requires the analysis of systematic semantic patterns (Bordage and 
Lemieux 1991; Bordage 2007). Failing to teach clinicians about clinical uncertainty 
has been referred to as ‘the greatest deficiency of medical education’ (Djulbegovic 
2004). Evidence-based medicine (EBM) requires the skillset to develop answerable 
questions relevant to a case, and to answer these questions with an honest and open 
appraisal of research findings (Braddock et al. 1999). Learning by doing is empha-
sized in EBM and evaluation of clinical cases provides such practice.

Individual or exemplary case analysis is a key aspect of clinical problem-solving 
and medical learning. If used early and with appropriate scaffolding, it has the 
potential to demonstrate the relevance of the ‘pre-clinical’ subjects within a medical 
curriculum. Clinical case study can serve as an important supplement to the acquisi-
tion of medical content knowledge by learners. The societal need we are attempting 
to address is the education of medical professionals who make sound judgments 
based on clinical evidence, using a variety of human and data sources to make these 
judgments. Such habits should be encouraged as early as possible and not left to less 
structured fast-paced clinical training periods.

For the purposes of medical education and training, the individual cases analyzed 
by students may be hypothetical, created by an instructor or instructional designer, 
or real cases found in the literature of medical science. The disciplinary challenge is 
differential diagnosis, or to develop the capacity to distinguish a particular medical 
condition from others that may have similar features, and to apply and monitor 
appropriate therapy.

The challenge for evidence-based medicine is that symptomatic and contextual 
information is necessarily limited, and incomplete and multiple conditions may be 
present. As a consequence, diagnosis is a matter of professional judgment. 
Furthermore, paradigms of medical knowledge are changing, where the focus is not 
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only the generic individual whose physiology is assumed to be universally replica-
ble, but where enormous variation is also recognized based on finely determined 
environmental context, genetic profile, and demographic variables (Wilson and 
Cleary 1995). Greenhalgh et al. (2014) address what they consider to be a crisis of 
evidence-based medicine where ‘contemporary healthcare’s complex economic, 
political, technological and commercial context has tended to steer the evidence-
based agenda towards populations, statistics, risk, and spurious certainty’. As a 
counterbalance they recommend the exercise of ‘judgment not rules’ in relation to 
individual patients, and, in medical education, the development of ‘clinical skills, 
understanding and applying research evidence, and reflecting and deliberating about 
complex cases’.

This occurs through a process that can formally be characterized as argumenta-
tion, involving hypothesis, claims supported by evidence, rebuttal of potential 
counter-claims, and preliminary professional judgment (Cope et al. 2013; Gillies 
and Khan 2009; Toulmin 2003; van Eemeren et al. 2002). Typical media for clinical 
case analysis are case textbooks (Geha and Notarangelo 2016), project-based learn-
ing (Greeno 1998), team-based learning (Michaelsen and Sweet 2008), and oral-
discussion of cases in situ in medical contexts. Each of these media has its 
limitations: textbooks tend to transmit knowledge more than encourage active prob-
lem solving and professional collaboration (Boulos et  al. 2006); project-based 
learning is difficult and expensive to assess given the complexity of the artifacts 
created, and often the lack of explicit clarity in their documentation (Kreijns et al. 
2003); and in-situ oral engagements are ephemeral where most interactions are 
invisible to the instructor, and leaving few analyzable traces of the participants’ 
thinking processes (Artino et al. 2014).

MedMap, is a web-browser ontology-suggestion, diagramming, and visualiza-
tion tool that offers a way to document the features of a medical case using tags 
from widely used medical ontologies. It supports students as they determine the 
connections between these features such as possible causal relations or to create a 
decision tree to plan treatment. MedMap leverages medical and other contextually 
relevant ontologies, suggesting labels with a high degree of semantic precision. It 
adds semantic awareness to the electronic text of a case analysis, by: (1) making 
coding suggestions that add a layer of formal semantics to the clinical case analysis; 
(2) offering a concept visualization or mapping tool for deeper analysis of the 
underlying medical logic of a clinical case; (3) providing opportunities for peers, 
self, and instructors to code annotations with formalized medical vocabulary, 
thereby also training the system using machine learning methods.

User mappings are automatically analyzed, contributing to the knowledge 
embodied in the system via mechanisms of supervised machine learning. The sys-
tem also offers conjectures about possible labels, in processes of unsupervised or 
semi-supervised machine learning. In computer science, this project supplements 
the algorithmic power of machine and deep learning with under-exploited areas of 
data modelling, formalized ontologies, and rigorously defined and structured 
semantics. MedMap’s user interface takes the form of a concept map visualization 
(Novak 2010; Olmanson et al. 2016; Schroeder et al. 2018; Tergan 2005; Villalon 
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and Calvo 2011). In Fig. 2, the left side of the case creator’s screen is a multimodal 
documentation space. When the user highlights elements of text or media on the 
left, the system suggests possible matches for terms specified in one or more ontolo-
gies in a smart suggestion system. If selected by the creator, a node will appear in 
the right panel of the screen. The creator can then begin a concept map connecting 
nodes according to standard medical relations. This builds a second, semantically 
formalized, diagrammatic layer of meaning into the case documentation, or what 
we have called ‘explain protocols’, an extension of the ‘think-aloud’ protocols 
(Ericsson and Simon 1993).

Machine learning and artificial intelligence processes are validated in a collab-
orative peer review process by: (1) peer reviewers, and (2) by the case creator when 
they accept a peer reviewer’s recommendation. Once validated, the ontology will 
have been trained to a higher level of machine intelligence to make suggestions for 
subsequent cases. By these means, users add a rich multidimensionality to the 
essentially two-dimensional taxonomic structures of legacy ontologies.

The project emphasizes problem-based learning and critical clinical thinking, 
supporting the documentation of hypothetical or actual clinical cases with tagging 

Fig. 2  Clinical case study report, written up on the left side of the screen by the student, and on 
the right side, a knowledge graph created to explain the condition and provide diagnosis. Left side: 
Multimodal case documentation with color-coded annotations according to ontology items in the 
visualization. Each color represents a different ontology. Right side: A medical logic model visu-
alization, where each node and relation is linked to standard medical ontologies: e.g. International 
Statistical Classification of Diseases (ICD); the International Classification of Functioning, 
Disability and Health (ICF); the Systematized Nomenclature of Medicine (SNOMED); Logical 
Observation Identifiers Names and Codes (LOINC); and The Drug Ontology (DRON). Nodes are 
identified in an easy look-up and suggestion tool—highlighting a part of the data on the left, gener-
ates node suggestions for the visualization on the right
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from structured medical vocabularies. The objective of this project is to develop in 
medical students critical, holistic and evidence-based thinking. In support of these 
objectives, MedMap makes suggestions based on standard medical and other ontol-
ogies. MedMap calls for explicit clinical reasoning mapped in a standards, ontology-
based case visualization. By leveraging user interactions and inputs, the system 
captures new knowledge and improve system performance in a synergistic machine-
user relationship. For instance: when users connect terms to be found in multiple 
ontologies or synonyms; when they annotate a patient-friendly vernacular term with 
a concept from an ontology; or when a user connects a related term not immediately 
suggested by the taxonomic relationships already present within the ontology. In 
other words, users by their concept selection and medical logic mappings become 
involved in training the system, validating its semantics, and thereby, progressively 
develop its semantic intelligence and the value of its suggestions to subsequent stu-
dent or researcher users.

In supervised machine learning, users identify semantically precise nodes and 
draw visualizations of clinical logic models. In unsupervised machine learning, the 
system offers label suggestions and node connections based on the semantic struc-
ture of the supporting ontologies and the previous actions of users. Suggestions vary 
depending upon the focus of case analysis (e.g. establishing diagnosis), its reason-
ing (e.g. hypotheses, pathophysiology, evidence, etc.) or its treatment (e.g. linkage 
between clinical problems and therapeutic choices).

We have been testing the online, cloud-based software module with students and 
faculty at the University of Illinois College of Medicine, Peoria, and graduate stu-
dents at Washington University School of Medicine in St. Louis. Students are being 
presented with cases framed in a clinical case documentation. An online peer review 
process applies and extends medical knowledge through collaborative clinical anal-
ysis: case documentation > peer review > revision based on feedback > publication 
to the student’s e-portfolio. Key aspects of this innovation and testing include:

	1.	 A web-based multimodal clinical case documentation space, where data, image, 
video, 3D imaging, ambiently collected case data, and other media offering sup-
porting empirical evidence, are embedded within the case narrative.

	2.	 A lookup system where, in support of the process of documentation, the medical 
case creator can identify concepts from standardized medical and other ontolo-
gies. The case creator highlights the media item or text and connects with the 
concept.

	3.	 A suggestion system that ‘reads’ the case during the process of documentation, 
suggesting on-the-fly annotations from medical and other ontologies, as well as 
connections that the machine has gleaned from other users’ case documentation 
via machine learning processes.

	4.	 The creator then maps a case logic model in the form of a concept visualization. 
They can also write unstructured comments to support their thinking processes, 
or leave open questions for consideration during later stages in the documenta-
tion process or by peers during the review process. (The white boxes in Fig. 2 are 
self-annotations by the case creator.)
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	5.	 The case is then submitted to multiple peers for review, who in a new version 
suggest changes including different or additional markup and a revised visual-
ization based on a different extended logic models. (The brown boxes in Fig. 2 
are comment annotations by peer reviewers.)

	6.	 Synthesizing feedback from peers, the case creator revises their case and updates 
their logic model visualization, ready for publication by the instructor to the 
student’s e-portfolio and possibly also to the class online community.

6  �Application Project 2: Electronic Health Records

It is widely agreed that the health industry is destined to be revolutionized by AI 
(Reddy et al. 2019). Evidence-based medicine is increasingly data-centric, involv-
ing a symbiotic relationship between humans and machines. AI can play an impor-
tant role in detecting patterns in individual cases, as well as detecting variation 
across multiple cases. However, Himmelstein et al. (2010) show that while hospital 
computing increases overall costs, it only modestly improves process measures of 
quality. A great deal of work still needs to be done to develop user-facing medical 
informatics systems that attain impacts for patient care promised by AI.

In the era of ‘big data’ and progressively more comprehensive systems for devel-
oping and sharing medical records, variability by case is increasingly visible, and 
indeed essential for precision medicine. Greenhalgh et al. (2014) address what they 
consider to be a crisis of evidence-based medicine where ‘contemporary health-
care’s complex economic, political, technological and commercial context has 
tended to steer the evidence-based agenda towards populations, statistics, risk, and 
spurious certainty’. As a counter-balance they recommend the exercise of ‘judg-
ment not rules in relation to individual patients, and the development of ‘clinical 
skills, understanding and applying research evidence, and reflecting and deliberat-
ing about complex cases’.

Moreover, paradigms of medical knowledge are changing, where the focus is not 
only the generic individual whose physiology is assumed to be universally replica-
ble, but where enormous variation is also recognized based on finely determined life 
history, genetic profile, environmental context, and demographic variables (Wilson 
and Cleary 1995). The relevance of MedMap solution lies in: (1) the precision of 
documentation of cases with the support of standards-based and ontology-originated 
medical and everyday concepts; (2) tying these concepts together into a medical 
logic model in support of clinical reasoning and tracing the thinking underlying 
decision pathways.

A key question then for our ongoing research is to create a more precise record 
of the particularities of case-to-case differences. To address this question, MedMap 
is a web-browser semantic suggestion, tagging, and visualization tool that docu-
ments the features of a medical case with precision. It leverages medical and every-
day life ontologies, and the data they contain, suggesting labels with a high degree 
of semantic precision for supervised machine learning, and offers conjectures about 
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possible labels in the case of unsupervised machine learning. MedMap supports 
research scientists, students, trainees, practitioners, and data analysts as they make 
connections between these features such as possible causal relations or the creation 
of decision trees to plan treatment.

The prototype we have been developing aligns with the Precision Medicine 
Initiative, a US government effort involving the National Institutes of Health, aimed 
at leveraging new opportunities in access, aggregation, and analysis of health data. 
This initiative has two major foci, both of which are addressed in this project: (1) to 
develop personalized approaches to patient care; (2) to support researchers to make 
new discoveries. Our particular interest in ‘precision’ is the detection of semantic 
configurations in single or small numbers of cases. To give the example of a novel 
pathogen, this may begin in a localized context and a unique configuration of events. 
Then, in the first critical stages of transmission, there were only a few cases. Once 
the pathogen spreads across a wider population, the course of the disease may pres-
ent differently from patient to patient, depending on a unique configuration in of 
medical history, genetic propensities, environment, and other factors. While sharing 
detectable and statistically measurable features, every subsequent case is unique, 
and every medical outcome causally related to a unique configuration of circum-
stances. A key question for this work is to put a more precise record of the particu-
larities of case-to-case differences into practice.

Although the focus of this research is single cases or small numbers of cases, and 
the varied presentation of subsequent cases, the semantic processes we are advocat-
ing also enrich big data and AI across populations at any scale by making data 
points smaller, more precise, and their relations specified with less ambiguity. 
Cross-mapping between ontologies yields further precision.

This project addresses four specific areas of need in AI-supported medical infor-
matics in medical case documentation:

	1.	 Efficient and effective medical communication and error-free collaboration, 
where medical records accurately represent case histories and provide useful 
information to a range of specialist team members. The Intelligent Medical 
Record tool offers suggestions informed by standardized medical and other 
ontologies as well as AI comparisons with similar, de-identified records.

	2.	 Explicit clinical reasoning and decision tree mapped in a standards (ontology)-
based case visualization or map.

	3.	 Sharing of deidentified data in the service of public health and precision medi-
cine. The system we are proposing will offer a lightweight yet standards-based 
mechanism for interoperability across different professional and personal health 
record and data systems.

	4.	 Early ontology and AI-supported detection of a single case or small numbers of 
cases, and variation in the course of a clinical condition across cases.

The focus of this project is the detection of patterns of significance in a single 
case based on intelligent suggestions and the mapping of clinical reasoning. For the 
purposes of development of a prototype in this project, we are using the source 
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OpenEHR.15 However, we are not suggesting that health providers should change 
their medical records systems. Rather, we are proposing an intelligent overlay over 
any medical records system in the form of either:

	1.	 a ‘private’ web browser window for data mirroring side-by-side with the existing 
system, or

	2.	 a shadow box browser overlay for secure simultaneous double entry, or
	3.	 automatic export/import between the current medical records and the proposed 

intelligent record.

We have attempted to minimize the effort required to learn and use the system and 
limit it to a single, browser- based screen with a simple drag-and-drop user inter-
face, as illustrated in Fig. 3.

This particular project uses leverages MedMap to create an intelligent medical 
record. The left side of the screen features a medical record, illustrated above with 
a screenshot of an EPIC record and the right side is the case annotation and clinical 
reasoning tool. In this design, the medical practitioner highlights a term or label on 
the left, and the annotation tool suggests possible terms from multiple ontologies. 
The practitioner then builds a logic model or clinical reasoning visualization on the 

15 See https://www.openehr.org/. Accessed 1 October 2021.

Fig. 3  Case annotation and clinical reasoning tool. The left side of the screen is the case material, 
for the purposes of illustration here consisting of a screenshot of an EPIC electronic medical 
record, followed by plain text in our proof-of concept tool. The case documented on the left has 
annotations color-coded according to ontology items in the visualization. Right side: annotations 
drawn from medical ontologies, linked by clinical reasoning and decision tree relations. White 
boxes are unstructured notes to self; brown boxes are unstructured notes from others
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right side of the screen. We are currently testing our hypothesis, which is that the 
proposed tool will improve: (1) diagnosis and decision support; (2) precision iden-
tification of clinical conditions; (3) anonymized data sharing across a distributed 
medical informatics system.

Interoperability and the ownership of medical record data have been identified as 
a key challenge for the future evolution of medical informatics and personalized 
medicine. With varying data models and overlapping ontologies, considerable chal-
lenges are raised for the exchange of data (Benson and Grieve 2016; Garde et al. 
2007; McGuire 2018; Reis et al. 2017). A related challenge is the question of own-
ership of medical data (Zhu et  al. 2012). In our proposed intelligent record, we 
address these problems by creating a connected but independent layer of data.

Addressing both these challenges, on 9 March 2020, the U.S.  Department of 
Health and Human Services announced a requirement that both public and private 
organizations in the health industry should establish systems to share information, 
while positioning the patient so they are in control of that data.16 This points to new 
openings and opportunities for the approach we are proposing now. The potential 
benefits of the Intelligent Medical Record system we are developing are:

	1.	 Standards-based suggestions—supporting medical students, trainees, and pro-
fessionals as they document a case in both classroom and clinic.

	2.	 Case logic model visualization—making clinical reasoning and decision trees 
explicit to self and colleagues.

	3.	 A highly granular, standards-based markup of the clinical case—supporting dis-
covery and machine analysis across multiple cases.

	4.	 A widely distributed medical knowledge system, where broad range of medical 
practitioners can contribute the development of medical datasets and scientific 
knowledge with the support of ontology- based knowledge scaffolds and explan-
atory logic models.

	5.	 AI applications—Unsupervised machine learning processes will detect associa-
tions across multiple cases, identifying patterns of similarity which, although 
uniquely configured, may share features pointing to causality and potential 
implications across populations, small and large. By these mechanisms, ontolo-
gies can be supplemented and become ‘smarter’ the more they are used.

Together, these benefits offer patients more personalized medical care, with more 
accurate diagnosis and customized decision support. Through the development of 
MedMap, we aim to develop of a new generation of medical informatics and learn-
ing environments for medical students and practitioners.

In developing MedMap, the team is employing agile development strategies with 
short, focused release cycles. This approach is a lightweight and highly collabora-
tive process that is well suited to research-based software development and lightly 
structured for diverse project teams (Stober and Hansmann 2009). This method 

16 See https://www.healthit.gov/topic/health-it-and-health-information-exchange-basics/what-hie. 
Accessed 1 October 2021.
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emphasizes rapid, flexible evolution of software that is put into user hands at an 
early stage for frequent evaluation and feedback. This is being collected in highly 
controlled, small-group cognitive labs. At the end of each cycle a new functional 
evolution of the prototype is released, and the next development cycle build upon 
that work. In terms of software architecture, the approach of this project has been to 
develop three system layers:

	1.	 A metaontology layer (Cope and Kalantzis 2020) encompassing all widely used 
medical and related ontologies and capable of creating an overarching frame-
work for patient information the medical domain. For trials, we are applying 
MedMap to OpenEHR.

	2.	 An interlanguage layer, to address schema synonyms, inter-schema overlaps and 
cross-schema connections (Cope et al. 2011).

	3.	 A permissions layer, offering patients a range of options, including for instance: 
allowing identified data to be shared across medical providers with whom they 
might need to engage; and sharing de-identified data for the benefit of other 
patients, including in the case of this proposal, the intelligent record suggestion 
system. Patients could also grant permission for sharing their data from personal 
health apps and records, ambient intelligent sensors, and implanted devices 
(Patterson 2013; Roehrs et al. 2019). Permission to share geolocation data, for 
instance, might offer insights into the communication of pathogens—not unlike 
the aggregated data now used to offer traffic density reports in map apps. This 
would be accompanied by privacy and security guarantees for all users, includ-
ing those who have not opted into data sharing (Dagher et al. 2018; Staudigel 
et al. 2017).

We are teaming with the Institute for Informatics at Washington University 
School of Medicine in St. Louis to test the feasibility of the MedMap overlay with 
residents and fellows from different specialties and subspecialties. Physicians and 
informaticians will test and use the software to document clinical cases. For this 
project, we will overlay Open EHR medical records. Following the trial, partici-
pants will fill out surveys and participate in interviews and focus group sessions to 
determine feasibility of this system. The software will then be revised based on trial 
performance and user feedback.

As a web application that supports case or project documentation that uses struc-
tured vocabularies for semantic parsing, author suggestions, formative and summa-
tive assessments, and semantically aware data mining and meta-analysis, we believe 
MedMap may have the potential to transform the ways in which clinicians and 
researchers interact with the electronic health record and patient data.

B. Cope et al.
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7  �Reconciling the Bio and the Digital in Bioinformation

In this chapter we have attempted to explore the connections between the bio and 
the digital, because nowadays the digital serves our understanding of biolife and 
supports remedies for our bodily maladies.

Postdigital? The digital may slip from our consciousness as it ubiquitously invei-
gles itself into our lives, but it seems a perverse use of the Latin word for ‘after’ 
when the mechanics of the digital impacts our lives more and more.

Biodigital? Yes, to the degree that we increasingly use digital machines to master 
biolife. But this is hardly a singular reality when the bio and the digital are irreducibly 
different. The bio is material, where the digital entails a transposition of the meaning of 
the material into calculable quantity. However, as we have argued in this chapter, there 
are absolute limits to the transposability of the bio and digital meanings.

The focus of this chapter has been the explore the potentials of the bridge between 
the material of bodies and the ideal of their understanding by applying the philo-
sophical and technical notion of ‘ontology’.

Philosophically, this is a dialectic where, although the ideal and the material are 
integrally related, the ideal of conceptualization can sometimes exceed the immedi-
ately material (hence, modelling, conjecture, prognosis), and the material can exceed 
the immediately comprehensible (hence, uncertainty, discoverability, and diagnosis). 
Ontologies are models of material reality, and although the models are derived from 
material experience, in their immaterial ideality they are quite different. The ideal side 
of ontology is the paradigmatic, immaterial representation of reality, with degrees of 
latitude in the connection between the ideal and the material: hence uncertainty, 
absence, and the role of imagination in the discovery of the as-yet unknown. Such is 
the dialectic of knowledge. This ontology in the philosophical sense.

Technically, the ontologies of computer science model the world of experience 
for the purposes of systemic and scientifically-grounded labelling in digital infor-
mation systems. Where the tables of databases were two-dimensional, knowledge 
graphs are multidimensional, and for this reason support complex semantics more 
effectively. Moreover, the limits of these systems are not merely digital; they are the 
limits of language, and beyond that the struggle of classification to make sense of 
the biomaterial world.

In this chapter, we have played out these ideas in the area of medical ontologies, 
arguing that purely algorithmic AI needs to be supplemented by human reasoning in 
the form of semantically-grounded data models.

Translating these ideas into practice, we have described two projects in which 
users represent ontologies visually and conceptually in the form of knowledge 
graphs. Our research questions are entirely practical. Can medical students’ clinical 
reasoning be deepened by the use of knowledge graphs representing medical ontol-
ogies? And, can knowledge graphs support medical practitioners’ thinking as a 
supplement to electronic health records? This is a work in progress, and we await 
empirical evidence.

Maps of Medical Reason: Applying Knowledge Graphs and Artificial Intelligence…
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