)

Check for
updates

Mapping the Problem-Solving Strategies
of Novice Programmers to Polya’s Framework:
SWOT Analysis as a Bottleneck Identification
Tool

Pakiso J. Khomokhoana® and Liezel Nel®)

Department of Computer Science and Informatics, University of the Free State,
Bloemfontein, South Africa
{khomokhoanap,nell}@ufs.ac.za

Abstract. The development of problem-solving skills continues to be a challenge
in various disciplines including Computer Science. In this study, we used the prin-
ciples of the Decoding the Disciplines (DtDs) paradigm to better understand the
mental processes that novice programmers follow when answering source code
comprehension (SCC) related questions. This understanding can be fundamental
in helping novices to overcome problem-solving related challenges. While focus-
ing on step 1 of the DtDs paradigm, the aim of this study was threefold. Firstly,
we explored the problem-solving strategies utilised by novice programmers while
they were attempting to answer SCC related questions. Secondly, the identified
problem-solving strategies were mapped onto Polya’s four problem-solving steps.
Finally, we utilised a SWOT analysis as a tool to identify problem-solving related
learning bottlenecks. This study utilised an integrated methodological approach
where data was collected by means of asking questions, observations, and artefact
analysis. Thematic analysis of the collected data revealed a range of problem-
solving strategies that these novice programmers utilised while performing vari-
ous SCC tasks. These strategies were then mapped onto Polya’s problem-solving
steps. Based on a SWOT analysis of these strategies, we identified six problem-
solving bottlenecks that point to difficulties that are not sufficiently addressed in
introductory CS courses.

Keywords: Decoding the disciplines - Problem-solving - Source code
comprehension - Novice programmers - Computer Science education - Polya’s
framework - SWOT analysis

1 Introduction

High dropout rates in introductory computer programming courses remain a major con-
cern for higher education educators across the world [1, 20, 22]. Computer programming
is a complex and multi-faceted task as it requires not only conceptual and procedural
knowledge but also skills to create, modify and comprehend computer code [13, 35, 38]
in order to solve programming problems. Numerous studies [2, 19, 34] have identified a

© Springer Nature Switzerland AG 2022
W.S. Leung et al. (Eds.): SACLA 2021, CCIS 1461, pp. 132-148, 2022.
https://doi.org/10.1007/978-3-030-95003-3_9


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95003-3_9&domain=pdf
http://orcid.org/0000-0003-3642-1248
http://orcid.org/0000-0002-6739-9285
https://doi.org/10.1007/978-3-030-95003-3_9

Mapping the Problem-Solving Strategies 133

lack of problem-solving skills as one of the biggest challenges that novice programmers
experienced. Another major challenge (which has been researched extensively) relates
to how novice programmers comprehend (or interpret) pieces of source code [10, 18].
Lister et al. [18] regard the skill of source code comprehension (SCC) as a prerequisite
to problem solving. While Conn and McLean [9] argue that novice programmers’ lack
of problem-solving skills stems from how problem solving is taught in schools, Belski
[3] blames university educators for failing to properly develop this skill in students. This
failure has been attributed to educators’ tendency to focus on the teaching of syntactical
and conceptual programming knowledge, and paying less (or no) attention to the strategic
knowledge needed to appropriately and effectively solve programming problems [7, 19,
41]. This tendency is not exclusive to the Computer Science (CS) discipline. Middendorf
and Shopkow [24] (p. 2) note that while educators (as practitioners) are familiar with the
“approaches, techniques, and applications” of their specific academic disciplines, “they
tend to organise their courses around specific contents rather than around the mental
moves they want students to make”.

The Decoding the Disciplines (DtDs) paradigm — formulated by Middendorf and
Pace [23] — recognises that each discipline has its own unique ways of thinking that
students need to master to succeed in their higher-level studies. As part of the initial step in
the seven-step DtDs process, educators are encouraged to identify specific points where
their students’ learning are interrupted [11]. These points (referred to as bottlenecks) are
likely to prevent students from mastering the basic disciplinary ways of thinking. Only
once these bottlenecks have been identified can educators continue with the remaining
DtDs steps of designing, implementing, and evaluating specific strategies to address
the bottlenecks that their students are experiencing [26]. There are several examples
of approaches that educators used to identify bottlenecks. These include educators’
personal experiences in teaching a specific course [24, 28], problems discovered while
grading student assignments [26], problems observed while watching students’ attempts
to solve a given problem [17], and clarification questions asked by students regarding
assignment specifications [39]. A tool that could potentially also be used in this regard
is a SWOT analysis [16]. Although mostly used in business environments, this strategic
planning tool can help to analyse and position any situation in four regions: strengths,
weaknesses, opportunities, and threats [36]. By analysing the mental moves novice
programmers make while solving SCC problems, a SWOT analysis could potentially be
used to, not only identify the problem-solving steps that students are performing well,
but also the areas (potential bottlenecks) where students are not following the correct
problem-solving steps.

The foundation of most modern problem-solving strategies (both general and in the
field of CS) can be traced back to George Polya’s [30] four basic problem-solving steps:
understand the problem, devise a plan, carry out the plan, and evaluate the effectiveness
of the plan. Since problem solving is a skill that is used daily by all human beings, it can
be argued that the natural (unenhanced) problem-solving strategies followed by novice
programmers should in theory show some resemblance to the original steps of Polya’s
framework. By mapping the problem-solving strategies followed by novice programmers
while trying to answer an SCC question, it should be possible to identify shortcomings



134 P. J. Khomokhoana and L. Nel

in their strategies. This, in turn, could point to potential learning bottlenecks that CS
educators must specifically address.
This paper therefore attempts to answer the following three questions:

1. What are the problem-solving strategies utilised by novice programmers during
SCC?

2. How do these strategies relate to Polya’s four basic problem-solving steps?

3. How cana SWOT analysis of the SCC problem-solving strategies followed by novice
programmers be used as a learning bottleneck identification tool?

In the remainder of this paper, a theoretical framework guiding this study together
with a review of relevant background literature are presented in Sect. 2. This is followed
by a discussion of the research design and methods in Sect. 3, and a presentation and
interpretation of the results in Sect. 4. A SWOT analysis of the identified SCC strategies
is presented in Sect. 5, followed by bottleneck identification in Sect. 6. Conclusions and
recommendations for future research are presented in Sect. 7.

2 Theoretical Framework

Polya’s [30] problem-solving framework provides the theoretical framework for this
study. In the following sub-sections, the four basic steps of Polya’s framework, together
with examples of how these steps are typically executed by computer programmers
during SCC tasks, are discussed in more detail.

2.1 Understand the Problem

It is impossible to solve a problem if the problem is not understood first. Polya [30]
provides several questions that can be asked by the problem solver while trying to
understand or comprehend a problem: Do you understand all the words used in the
problem statement? What are you asked to find or show? Can you restate the problem in
your own words? Can you think of a picture or diagram that might help you understand
the problem? Is there enough information to enable you to find a solution?

As part of the understanding process, Chi et al. [8] suggest organising information
around important concepts. As part of understanding a given problem, programmers typ-
ically apply strategies that include reading or re-reading problem requirements and/or
related lines of code, and reasoning aloud [14, 25]. Other strategies such as highlighting
or colouring some lines of code or text [31], writing comments [37], and making draw-
ings or annotations (doodles) [18] are often utilised by programmers to gain a better
understanding of the problem at hand. For SCC tasks, expert programmers will often
scan the code from top to bottom to get a quick overview of the problem [40], while
also making notes on important information. They can then easily refer to these notes
(if needed) at a later stage [33].



Mapping the Problem-Solving Strategies 135

2.2 Devise a Plan

Polya [30] suggests several of strategies for devising a problem-solving plan. These
include guess and check, look for a pattern, make an orderly list, draw a picture, eliminate
possibilities, solve a simpler problem, use symmetry, use a model, consider special
cases, work backwards, use direct reasoning, use a formula, solve an equation, and be
ingenious. In resonance with Polya [30], the Mathematics students in the study by Malloy
and Jones [21] exhibited planning strategies that included drawing a picture or diagram,
using patterns, making lists or charts, guessing and checking, working backward, using
logical deduction, disregarding extra (unnecessary) data, as well as using multiple or a
combination of strategies and logical deduction.

The problem-solving plan helps to arrange ideas together, which in turn helps a
problem solver to gain an even better understanding of the problem [5]. With regard to
SCC, Fitzgerald et al.’s [14] respondents recognised that one SCC question resembled
other questions seen previously (pattern recognition) and, therefore, made assumptions
based on previous answers. During the planning stage of SCC, programmers tend to
identify possible test cases [25] to use in the execution of their plan. This helps them to
avoid carrying out infinite tests. Similar to understanding a problem, programmers also
make notes (annotations/doodles) on how their plan will be executed [18]. Ultimately,
devising a plan will typically involve working through different scenarios and gauging
the good as well as the bad points of each alternative [33]. During this process, a problem
solver justifies all the decisions he/she arrives at [15]. This also enables problem solvers
to remember important information that may be useful during the remainder of the
problem-solving process [5].

2.3 Carry Out the Plan

When it comes to carrying out the plan, Polya [30] suggests that the chosen plan should
be followed. If the plan does not work, it should be discarded, and another alternative
plan should be selected. The decision to either discard or continue with the selected plan
can only be made if the problem solver is continuously monitoring the plan — a task that
requires metacognitive abilities [5]. Inherently, a lot of thinking and analysing are in
operation during this problem-solving step [4]. In addition to applying surface thinking,
the problem solver also needs to think critically and creatively while integrating prior
knowledge as part of the process [12]. In carrying out a plan, the problem solver usually
considers limited details that are only relevant to the selected plan [33]. Interestingly,
Fitzgerald et al. [14] note that some of their participants would start from scratch with
an SCC task whenever they were becoming confused.

2.4 Evaluate the Effectiveness of the Plan

To evaluate the effectiveness of the selected plan, Polya [30] suggests that the problem
solver should take the time to reflect and look back at what has been done, what worked,
and what did not work. This step emphasises the importance of assessing and possibly
even re-assessing the identified solution to any programming or SCC related problem
[12]. This will typically be an iterative process during which the programmer may



136 P. J. Khomokhoana and L. Nel

discover even more knowledge about the problem and/or solution [19]. It is also not
uncommon for programmers to document their reflections on a completed SCC task
[37].

3 Research Methods

3.1 Design

The design of this study was narrative in nature and followed an integrated-methods
research approach based on Plowright’s [29] Frameworks for an Integrated Methodol-
ogy (FraIM). Within this framework, both narrative and numeric data were collected
by means of observations, asking questions, and artefact analysis. The study population
consisted of final-year undergraduate CS students from a selected South African univer-
sity. After participating in an SCC activity (as part of an earlier phase of this multi-phase
research project), students who incorrectly answered the three most difficult questions
(as determined during the earlier phase) were invited to take part in this phase of the
study. The purposeful and convenient sample [27] consisted of the 10 students who
agreed to partake in this part of the study. The purposefulness of the sample was based
on the fact that the students had already completed four programming modules. How-
ever, they could still be regarded as novice programmers since they did not have any
professional programming experience. Based on their underperformance in the men-
tioned SCC activity, it was highly likely that they were experiencing some bottlenecks
in their learning. The sample was also convenient since the students were affiliated with
the same department as the researchers.

3.2 Data Collection

The research activity consisted of individual sessions during which each participant had
to use a think-aloud technique [32] to verbally explain his/her thinking processes while
answering three selected SCC questions. These questions — C# versions of question 3
(Q3), question 6 (Q6) (see Appendix), and question 8 (Q8) from Lister et al.’s [18]
study — were the same three questions that the selected participants were unable to
answer correctly during an earlier phase of this research project. This data collection
strategy can be regarded as a means of “asking questions” [29]. Time slots of 45 min
were scheduled for each of the individual sessions. The first author (principal researcher)
played the role of the interviewer by asking probing questions when required (i.e. in case
of no progress or silence). Where deemed necessary, the interviewer also recorded some
observations as an additional data collection strategy. The proceedings of each session
were audio recorded with permission from the relevant participant.

3.3 Data Analysis

Since the participants had to verbalise their thoughts as part of the think-aloud process, the
transcripts contained numerous illogical and repeated statements. We therefore cleansed
the data, after which we familiarised ourselves with the data [6]. This was achieved



Mapping the Problem-Solving Strategies 137

by listening to the audio records numerous times as well as intensively and repeatedly
reading the transcripts. This helped us to decide on a coding plan where the analysis
would be guided by the data as it relates to our research questions. At this stage, we
imported the 10 validated transcripts into NVivo 12 Professional for Microsoft Windows.
After this, we developed the necessary codes (by creating several nodes) according to our
research questions. We coded the data by highlighting and/or underlining text within the
domain of the stated units of analysis. We then populated the created codes by moving
the necessary text into them. We continuously revised the names of the codes and the
relevant themes until recurrent themes were emerging. For each theme developed, the
NVivo-generated frequencies of occurrence were used.

4 Results and Interpretation

The discussion in this section focuses on the problem-solving strategies identified
from the data collected during the 10 think-aloud sessions. The discussion is grouped
according to Polya’s four problem-solving steps (see Sect. 2).

4.1 Understand the Problem

Analysis of both the think-aloud data and the interviewer’s observations revealed that
the participants utilised two main strategies to help them understand the problem.

Read Instructions and Identify Important Concepts or Terms. The typical first step
in understanding the problem is to read the instructions or the problem statement [30].
This strategy was utilised by all the participants with a total of 35 occurrences observed.
It is also key that the problem solver, while reading through the instructions, identifies
important concepts and/or terms [8]. In the 75 occurrences of this strategy, the partici-
pants mentioned and/or underlined specific programming concepts and terms that they
would have to understand in order to answer the given questions. These included Boolean
values, parameters, initialisation, nested loops, arrays, array indexes, and the use of post-
and pre-increment operators. By identifying all these concepts, participants were trying
to form an initial understanding of crucial parts of the provided programming code.

Interpret the Problem Details. As part of understanding the problem [30], all the par-
ticipants (29 occurrences) also tried to interpret more specific details from the provided
SCC questions. As part of this interpretation process, they conducted a more thorough
examination of specific pieces of source code and tried to explain the meaning thereof in
an attempt to increase their level of understanding. At this stage, it also became apparent
that the flawed interpretations made by some of the participants were likely to have a
negative impact on their ability to ultimately solve the problem. Due to his misinter-
pretation of the combined index in the statement b[x[1]]1= true; from Q3, P10
incorrectly concluded that “the second for loop resets everything from the first for
loop back to true”. By failing to recognise from the start that only the first three values
in array b would be set to true, he was eventually unable to identify option B as the
correct answer.



138 P. J. Khomokhoana and L. Nel

4.2 Devise a Plan

It was noted that none of the participants in this study attempted to formulate a definitive
plan for solving the various SCC questions. They did, however, follow some of the
strategies outlined in Sect. 2.2.

Eliminate Possibilities. After a quick look at the source code of Q6, P1 eliminated
option C as the possible missing piece of source code. She said: “Let me understand
option C... if the index of an array at position 1 is bigger than the index of 1 + 1, 1
must return false, else return b which is already false. There is no way of returning
true, so it is totally wrong, it can’t be the missing source code”. This meant that
she was left with only four options to consider, which simplified the remainder of the
problem-solving process for her.

Make Notes. As part of devising a plan during the problem-solving process [30], prob-
lem solvers typically make various types of notes while they work through the problem
[31, 37]. Seven participants utilised this strategy (with 24 occurrences). As part of his
attempt to answer Q3, PS5 made notes on the answer sheet to keep track of the values
assigned to array b. While working through the second for loop he said: “Set that
value to true. So that is going to mean that 1, 2 and 3 is going to be true”. He then
scratched out the three relevant false values in the notes he originally made when he
was working through the first for loop. Although he did not make any further written
notes, he continued to reference the written down values while he was working through
the third £or loop to determine the final value of the variable count. It should, however,
be noted that note-making instances were also observed with the participants during the
three other steps of the problem-solving process.

Use Test Cases. Indevising a plan during problem solving, a problem solver can identify
some test cases [25] to avoid conducting infinite tests. Four occurrences of this strategy
were observed with three of the participants. As evidence that P6 used test cases, she
said: “Let me just eliminate this one for now, so that I don’t waste time on irrelevant
things ... [Interviewer: You have created a long array!] ... yeah it was quite long”. In
formulating test cases for Q3, P2 decided to draw a trace table as part of his planning
and reasoning. He later referred to this table when he had to determine his final answer,
where he said: “Since 1 is equal to 4, our value is 5. So, our answer here should be
5 according to this table”. P10 also created his own array and started adding values as
he went through his reasoning for Q6: “Well, I made my array and I just changed the
values so that I can better understand what I was sorting out”. It is evident that these
participants not only identified possible test cases, but specifically used these values
during the execution of their problem-solving plans.

Work Backwards. While devising a plan, problem solvers can also work backwards to
check or confirm some of their initial interpretations [30], and then take corrective actions
if needed. Ten occurrences of this strategy were identified with six of the participants.
While attempting to interpret the second for loop from Q3, P6 exhibited several signs
of confirming initial understanding: ... meaning zexro is less than 5, yeah 5, wait... 5
... yeah, it’s 5... I think my answer is going to be B, wait... x[1] is 1, then 2... okay



Mapping the Problem-Solving Strategies 139

wait that’s zero, that’s 1. So now let’s see, 1 is O ... eish, what do we call this step?
Initialising? Yeah, I think so ... [Interviewer: Which one?] ... the one with b[x[1]]...
[Interviewer: You are assigning another value. |, Yeah, assigning it to t rue”. Itis evident
from this excerpt that while P6 attempted to confirm his initial understanding, he also
resorted to seeking confirmation or clarification from the interviewer. He specifically
wanted to confirm whether he was using the correct terminology while attempting to
interpret the statement b[x[1]]= true; which is an example of an assignment
and not an initialisation statement. It can therefore be deduced that although he was
attempting to link whatever he was doing to known disciplinary concepts [8], there were
still some gaps in his knowledge of basic programming terminology.

Pattern Recognition. Another strategy that problem solvers often utilise during the
devising-a-plan step is pattern recognition. During SCC, this happens when the problem
solver recognises similarities between different pieces of source code that allow for code
sections to be considered collectively [14]. The pattern recognition strategy was observed
with eight participants (20 occurrences). While looking at the initialisation of array x
in Q3, P8 said: “I am looking at the pattern for this, what was declared of x ... so now
by judging from the pattern that I see here, it’s 1, 2 and then it becomes constant”. By
“constant”, P8 was referring to the value of 3 that was assigned to the last three elements
of the x array. P6 also noticed a pattern in the headers of the first two for loops in Q3:
“The second for loop is still the same as the first one, but instead of taking the b length
we take the x length, so all these are the same”. While P2 recognised the same pattern
as P6, he also noted that there were actually similarities between the headers of all three
for loops in Q3: “All these loop statements look a little bit the same because all of them
startat 1 = 0 ... and 1i++, so they are all correct here”. Identification of a pattern or
range of patterns [21, 30] helps to reduce cognitive load as the problem solver is left
with fewer unique possibilities to concentrate on [5].

4.3 Carry Out the Plan

In carrying out their plans, participants corrected their earlier misinterpretations and
acknowledged areas where they experienced difficulties.

Correct Earlier Misinterpretations. Incarrying outa plan, problem solvers can correct
the misinterpretations they might have made in the previous problem-solving steps. This
strategy was observed with three participants (five occurrences). After reviewing the
pencil notes she made earlier in the problem-solving process, P9 realised that she had
labelled the array indexes incorrectly: “Coming back to A again, int, I have... (erasing
on the answer sheet)... I am just writing down the numbers again as well as their
corresponding position on top because I forget that they are not numbered 1, 2, 3.
They are numbered 0, 1, 2, 3”. Through a critical review [12] of her initial notes, this
participant was able to recognise her earlier mistake and take the necessary corrective
action.

Acknowledge When Lost. While Polya [30] encourages problem solvers to discard
their original plans in favour of alternative plans (if the original plans are not working), the



140 P. J. Khomokhoana and L. Nel

participants in this study could not always devise an alternative. Eight of the participants
(25 occurrences) acknowledged at some point during this problem-solving step that they
were either lost or confused. While tracing through the second for loop of Q3, P8
said: “That’s the part where I am really stuck—the second loop”, while P6 said: “So
this second for loop is the one that is freaking me out”. Both participants got lost at
this point because they were unable to interpret the combined index in the statement:
b[x[1]]1= true;. As another example of this strategy, P4 correctly identified option
C as the answer to Q3, but when asked why he thought the answer was C, he was neither
sure of himself nor of his answer. Instead, he was quick to acknowledge the limitations
of his general programming skills: “Like I said, I am not the best at these programming
subjects”. He then attempted to explain his reasoning which consequently resulted in him
selecting option A (which was incorrect) as his final answer. Although this participant
was able to identify the correct answer, he could not explain his reasoning. This could
imply that his original selection of option C was a guess rather than a definitive answer.

4.4 Evaluate a Solution

At this stage, the participants had already identified answers to the questions. Instances
of personal reflections were observed when the participants attempted to justify these
answers.

Defend an Incorrect Answer. During the evaluation of their final answers, six partic-
ipants (21 occurrences) remained confident while attempting to defend their incorrect
answers. While P9 completely ruled out option C (the correct answer) as a possible
answer to Q3 (“so option C does not work”), P2 remarked as follows on his answer for
Q3: “So the answer here, I think it should be 4 [option D] because this statement says,
if 1isless than b.Length, and b.Length is 5, we will increment it”. Although
P3 performed a thorough analysis and followed a reasoning strategy to answer Q6, he
ended up saying: “I believe, 1 am taking option A” while option B was the correct
answer. The interviewer did ask him to further explain why he thought option A was
the correct option, but he still ended up giving the same incorrect answer. Although all
the participants mentioned here attempted to assess or re-assess their answers, they just
repeated the same flawed reasoning to arrive at the same incorrect answers. This serves
as a further indication that several of the participants lacked some basic programming
knowledge.

Verify Answer. While reflecting on their final answers, six participants (18 occurrences)
attempted to verify or justify their selected answers while some also elaborated on their
reasons for not selecting any of the other answer options. As part of the process to verify
his selection of option B as the correct answer for Q6, P3 also provided justification
for why he thought some of the other options were incorrect: “Option D is totally
wrong because it says if this number, in my example, 2 is greater than 3, therefore it is
ascending, which is false. Then I have this one [pointing at the values on his written
down example], so it’s true and it returns false. Then it will go and take the second
value, check and increment and check the other one”. P3 followed a similar strategy



Mapping the Problem-Solving Strategies 141

while reflecting on choosing option B as the correct answer for Q3: “Okay, this one
[scribbling and looking at his written down example] will be wrong because j starts
from zero, and here in this example, you don’t check the numbers that are behind - you
only check the numbers that are after that position. So, options A and B in this particular
example will be out”. Both of these excerpts illustrate the level of critical thinking [12]
that P3 applied during the problem-solving process. These excerpts also illustrate how
problem solvers can reuse some of the strategies from earlier steps (e.g., make notes,
use test cases, and eliminate possibilities) while evaluating their solutions.

5 SWOT Analysis

Our next step was to perform a SWOT analysis of the SCC problem-solving strategies
identified in Sect. 4 (see Table 1). Strengths refer to strategies that the participants
performed well during their problem-solving processes, while the weaknesses are aspects
that were lacking from their skills sets and need to be improved. The opportunities
are strategies that educators can include when modelling a more ideal SCC problem-
solving strategy to their students. The threats are unfavourable strategies practised by
the participants that could lead to an overwhelmingly flawed problem-solving process.

Table 1. SWOT analysis of problem-solving strategies.

Strengths Weaknesses
* Read through instructions * Self-doubt in own programming abilities
* Identify important concepts and/or terms * Misinterpret basic code syntax
* Acknowledge when lost * Fail to understand the working of basic
* Eliminate incorrect answer options at an programming structures
early stage * Reluctant to change line of thinking when
* Make notes for future reference lost
« Utilise test cases « Struggle to interpret nested concepts
* Confirm initial understanding * Fail to recognise all coding patterns
* Recognise coding patterns * Incorrect use of programming terminology

Express confidence in devised solution
* Verify final answer

Opportunities Threats

* Realise value of devising an actual » Disregard earlier interpretations or notes
problem-solving plan * Content to provide answers to all the

* Emphasise importance of using correct questions (regardless of correctness)
programming terminology » Look at sections of code in isolation

* Identify specific gaps in programming * Ignore “difficult” pieces of code completely

knowledge * Resort to guessing when reasoning fails




142 P. J. Khomokhoana and L. Nel

6 Bottleneck Identification

By considering the identified weaknesses and threats (see Table 1), we identified six main
learning bottlenecks that could prevent novice programmers from mastering problem
solving in the CS discipline.

Bottleneck 1: Students Ignore Previously Understood Information at Later Stages
of the Problem-Solving Process. Many of the examples illustrated in the students’
excerpts (see Sect. 4) indicate the inconsistencies they exhibited while answering the
given questions. It seems as if students were forgetting the correct understanding they
previously had, unless they were, in the first place, not even convinced that their original
understanding was correct. In this way, the students’ original thinking and analysis [4]
were not necessarily helping them during the entire problem-solving process.

Bottleneck 2: Students Regard Their Working Notes as a Non-crucial Component
of the Problem-Solving Process. Although many of the students made conscious efforts
to demonstrate how they were going about answering the questions and making their
thinking logic as explicit as possible, many of the markings, comments, notes, and
underlinings [18, 31, 37] they made were either overly rough or unreadable. Some of the
participants also ignored their initial notes in later stages of the problem-solving process.

Bottleneck 3: Students Doubt Their Own Programming Abilities. From many of the
excerpts presented in Sect. 4, it was evident that the students were not always confident
of themselves. A level of doubt was observed not only with concepts they struggled
to understand, but also with concepts they seemed to find fairly easy to comprehend.
Consequently, they resorted to gathering fragmented pieces of information in their minds,
hence making it difficult to make usable mental connections. This type of reasoning
makes it difficult for one to gain a proper understanding of the question [5], and often
results in guessing the answers.

Bottleneck 4: Students Are Unable to Comprehend Nested Concepts. Although all
the students identified the crucial terms or concepts of computer programming, some
of them were unable to fully comprehend even the most basic of these concepts and/or
terms when these were combined within other programming structures. Consequently,
some students were unable to organise their continuous understanding of the question
around these basic concepts [8], and therefore resorted to viewing pieces of code in
isolation.

Bottleneck 5: Students Are Unable to Easily Change Their Viewpoints During
the Problem-Solving Process. Although some students were able to change their initial
understanding, others struggled to find alternative avenues of reasoning when they got
lost or stuck. Although these students attempted to make logical deductions [21], they
still were unable to correctly interpret the given source code.

Bottleneck 6: Students Are More Focused on the Answer Than the Process of Arriv-
ing at the Answer. The ultimate goal of most of the students was to get to the
final answer. Consequently, many of their problem-solving steps were unclear, and the



Mapping the Problem-Solving Strategies 143

expected direct reasoning [30] steps did not come to the fore. It can therefore be deduced
that they regarded their final answers as more important than the actual problem-solving
process. There were also instances where some students arrived at the correct answer
either using flawed reasoning or displaying a lack of comprehension of the relevant
programming concepts.

7 Conclusions and Future Work

The lack of problem-solving skills remains a challenge to undergraduate CS students.
Comprehension of the mental moves made by students during problem solving can be
essential in helping them to overcome related challenges. By focusing on Step 1 of
the seven-step DtDs framework (identifying places in a course where many students
consistently fail to master crucial material), this study aimed to (1) explore the problem-
solving strategies utilised by novice programmers during SCC; (2) relate these strategies
to Polya’s four basic problem-solving steps; and (3) utilise a SWOT analysis of these
strategies for the identification of problem-solving bottlenecks experienced by novice
programmers. Thematic analysis of data collected by means of asking questions, obser-
vations, and artefact analysis revealed that the novice programmers in this study did not
necessarily follow a well-defined problem-solving process. We were, however, able to
link the specific strategies they employed to all four of Polya’s basic problem-solving
steps. While some of the identified strategies could be mapped to a single step, several
strategies were utilised repeatedly in different stages of the problem-solving process. A
SWOT analysis of the identified strategies provided further insight regarding strategies
that the novices performed well (strengths), and the aspects that were lacking from their
skills sets (weaknesses). We also identified several undesirable strategies (threats) that
could hamper their problem-solving attempts. The listed observations point to strategies
that educators could utilise to assist students in improving their problem-solving skills.

This study also illustrated a novel approach in utilising a SWOT analysis as a learning
bottleneck identification tool. By considering the identified strengths and weaknesses,
we formulated six bottlenecks that could prevent novice programmers from mastering
problem solving in the CS discipline. The fact that these bottlenecks were identified from
the problem-solving attempts of final-year undergraduate students further highlights the
problem-solving difficulties that are currently not effectively addressed in introductory
CS courses. Further research is needed to investigate how the identified problem-solving
bottlenecks can be addressed through the application of the remaining six steps of the
DtDs framework [23].



144 P. J. Khomokhoana and L. Nel

Appendix

Question 3
Consider the following source code fragment:

int[] x = {1, 2, 3, 3, 3};
bool[] b = new bool[x.Length];

for (int 1 = 0; i1 < b.Length; ++1i)
b[i] = false;

for (int 1 = 0; 1 < x.Length; ++1i)
b[x[1]] = true;

int count = 0;

for (int 1 = 0; 1 < b.Length; ++i)
{
if (b[i] == true)

++count;

After this source code is executed, count contains:

Question 6
The following method i sSorted should return t rue if the array is sorted in ascending
order. Otherwise, the method should return false:

public static bool isSorted (int[] x)
{

//missing source code goes here

Which of the following is the missing source code from the method isSorted?



b)

)

d)

e)

Mapping the Problem-Solving Strategies

bool b = true;
for (int 1 = 0; i < x.Length - 1; 1i++)
{

if (x[1] > x[1 + 11)

b = false;
else
b = true;

}

return b;

for (int 1 = 0; 1 < x.Length - 1; i++)
{
if (x[1] > x[1 + 11)
return false;

}

return true;

bool b = false;
for (int 1 = 0; 1 < x.Length - 1; i++)
{
if (x[1] > x[1 + 11)
b = false;
}

return b;

bool b = false;
for (int 1 = 0; 1 < x.Length - 1; i++)
{
if (x[1] > x[1 + 17)
b = true;
}

return b;

for (int 1 = 0; 1 < x.Length - 1;i++)
{
if (x[1] > x[1 + 17)
return true;

}

return false;

145



146

P. J. Khomokhoana and L. Nel

References

10.

11.

12.

13.

14.

15.

16.
17.

. Alturki, R.A.: Measuring and improving student performance in an introductory programming

course. Inf. Educ. 15(2), 183-204 (2016). https://doi.org/10.15388/infedu.2016.10
Anyango, J.T., Suleman, H.: Teaching programming in Kenya and South Africa: what is
difficult and is it universal ? In: Proceedings of the 18th Koli Calling International Conference
on Computing Education Research, pp. 1-2. ACM, New York (2018). https://doi.org/10.1145/
3279720.3279744

. Belski, I.: Teaching thinking and problem solving at university: a course on TRIZ. Creativity

Innov. Manag. 18(2), 101-108 (2009). https://doi.org/10.1111/j.1467-8691.2009.00518.x
Bransford, J., Brown, A., Cocking, R.: How People Learn: Brain, Mind, Experience, and
School (Expanded). National Academy Press, Washington, D.C. (2000). https://doi.org/10.
4135/9781483387772.n2

Bransford, J.D., Stein, B.S.: The Ideal Problem Solver: A Guide for Improving Thinking,
Learning, and Creativity, 2nd edn. W.H. Freeman, New York (1993)

Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol. 3, 77-101
(2006). https://doi.org/10.1191/1478088706qp0630a

Cheah, C.S.: Factors contributing to the difficulties in teaching and learning of computer
programming: a literature review. Contemp. Educ. Tech. 12(2), 1-14 (2020). https://doi.org/
10.30935/cedtech/8247

Chi, M., Glaser, R., Rees, E.: Expertise in problem solving. In: Sternberg, R. (ed.) Advances
in the Psychology of Human Intelligence, vol. 1, pp. 7-75. Lawrence Erlbaum Associates
Inc, New Jersey (1982)

Conn, C., McLean, R.: Bulletproof Problem Solving: The One Skill That Changes Everything.
Wiley, Hoboken (2019)

Cunningham, K., Blanchard, S., Ericson, B., Guzdial, M.: Using tracing and sketching to solve
programming problems: Replicating and Extending an Analysis of What Students Draw. In:
Proceedings of the 2017 ACM Conference on International Computing Education Research,
pp- 164-172. ACM, New York (2017). https://doi.org/10.1145/3105726.3106190

Diaz, A., Middendorf, J., Pace, D., Shopkow, L.: The history learning project: a department
“decodes” its students. J. Am. Hist. 94(4), 1211-1224 (2008). https://doi.org/10.2307/250
95328

Egbert, J.: Methods of Education Technology: Principles, Practice, and Tools. Pearson, New
Jersey (2017). https://opentext.wsu.edu/tchlrn445/

Fedorenko, E., Ivanova, A., Dhamala, R., Bers, M.U.: The Language of programming: a
cognitive perspective. Trends Cogn. Sci. 23(7), 525-528 (2019). https://doi.org/10.1016/j.
tics.2019.04.010

Fitzgerald, S., Simon, B., Thomas, L.: Strategies that students use to trace code: an analysis
based in grounded theory. In: Proceedings of the 1st International Workshop on Computing
Education Research, pp. 69—80. ACM, New York (2005). https://doi.org/10.1145/1089786.
1089793

Herrmann, J.W.: Rational decision making. In: Balakrishnan, N., Colton, T., Everitt, B.,
Piegorsch, W., Ruggeri, F., Teugels, J.L. (eds.) Wiley StatsRef: Statistics Reference Online,
pp. 1-9. Wiley, New York (2017). https://doi.org/10.1002/9781118445112.stat07928
Humphrey, A.S.: SWOT analysis. Long Range Plan. 30, 46-52 (2005)

Khomokhoana, P.J., Nel, L.: Decoding source code comprehension: bottlenecks experienced
by senior computer science students. In: Tait, B., Kroeze, J., Gruner, S. (eds.) SACLA 2019.
CCIS, vol. 1136, pp. 17-32. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-356
29-3 2


https://doi.org/10.15388/infedu.2016.10
https://doi.org/10.1145/3279720.3279744
https://doi.org/10.1111/j.1467-8691.2009.00518.x
https://doi.org/10.4135/9781483387772.n2
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.30935/cedtech/8247
https://doi.org/10.1145/3105726.3106190
https://doi.org/10.2307/25095328
https://opentext.wsu.edu/tchlrn445/
https://doi.org/10.1016/j.tics.2019.04.010
https://doi.org/10.1145/1089786.1089793
https://doi.org/10.1002/9781118445112.stat07928
https://doi.org/10.1007/978-3-030-35629-3_2

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Mapping the Problem-Solving Strategies 147

. Lister, R., et al.: A multi-national study of reading and tracing skills in novice programmers.

ACM SIGCSE Bull. 36(4), 119-150 (2004). https://doi.org/10.1145/1041624.1041673
Loksa, D., Ko, A.J., Jernigan, W., Oleson, A., Mendez, C.J., Burnett, M.M.: Programming,
problem solving, and self-awareness: effects of explicit guidance. In: Proceedings of the 2016
CHI Conference on Human Factors in Computing Systems, pp. 1449-1461. ACM, New York
(2016). https://doi.org/10.1145/2858036.2858252

Malik, S.I., Coldwell-Neilson, J.: Impact of a new teaching and learning approach in an
introductory programming course. J. Educ. Comput. Res. 55(6), 789-819 (2017). https://doi.
org/10.1177/0735633116685852

Malloy, C.E., Jones, M.G.: An investigation of African American students’ Mathematical
problem solving. J. Res. Math. Educ. 29(2), 143-163 (1998)

Margulieux, L.E., Morrison, B.B., Decker, A.: Reducing withdrawal and failure rates in
introductory programming with subgoal labeled worked examples. Int. J. STEM Educ. 7(1),
1-16 (2020). https://doi.org/10.1186/s40594-020-00222-7

Middendorf, J.K., Pace, D.: Decoding the disciplines: a model for helping students learn
disciplinary ways of thinking. New Dir. Teach. Learn. 98, 1-12 (2004). https://doi.org/10.
1002/t1.142

Middendorf, J., Shopkow, L.: Overcoming Student Learning Bottlenecks: Decode Your
Disciplinary Critical Thinking. Stylus Publishing LLC, Sterling (2018)

Moore, D., Zabrucky, K., Commander, N.E.: Validation of the metacomprehension scale.
Contemp. Educ. Psychol. 22(4), 457-471 (1997). https://doi.org/10.1006/ceps.1997.0946
Pace, D.: The Decoding the Disciplines Paradigm: Seven Steps to Increased Student Learning.
Indiana University Press, Bloomington (2017)

Patton, M.Q.: Qualitative Research & Evaluation Methods: Integrating Theory and Practice,
4th edn. SAGE, Thousand Oaks (2015)

Pinnow, E.: Decoding the disciplines: an approach to scientific thinking. Psychol. Learn.
Teach. 15(1), 94-101 (2016). https://doi.org/10.1177/1475725716637484

Plowright, D.: Using Mixed Methods: Frameworks for An Integrated Methodology. SAGE,
Thousand Oaks (2011)

Polya, G.: How to Solve It: A New Aspect of Mathematical Method. Doubleday, University
of Michigan (1957)

Powell, N., Moore, D., Gray, J., Finlay, J., Reaney, J.: Dyslexia and learning computer
programming. ACM SIGCSE Bull. 36(3), 242 (2004). https://doi.org/10.1145/1026487.100
8072

Praveen, A.: Program comprehension and analysis. Int. J. Eng. Appl. Comput. Sci. 1(01),
17-21 (2016). https://doi.org/10.24032/ijeacs/0101/04

Preece, J., Rogers, Y., Sharp, H.: Interaction Design: Beyond Human-Computer Interaction,
4th edn. Wiley, New York (2015)

Rahmat, M., Shahrani, S., Latih, R., Yatim, N.FE.M., Zainal, N.F.A., Rahman, R.A.: Major
problems in basic programming that influence student performance. Proc. Soc. Behav. Sci.
59, 287-296 (2012). https://doi.org/10.1016/j.sbspro.2012.09.277

Renumol, V., Jayaprakash, S., Janakiram, D.: Classification of cognitive difficulties of students
to learn computer programming. Indian Institute of Technology (2009). http://dos.iitm.ac.in/
publications/LabPapers/techRep2009-01.pdf

Samejima, M., Shimizu, Y., Akiyoshi, M., Komoda, N.: SWOT analysis support tool for verifi-
cation of business strategy. In: IEEE International Conference on Computational Cybernetics,
pp. 631-635. IEEE, Talinn (2006). https://doi.org/10.1109/ICCCYB.2006.305700
Scalabrino, S., et al.: Improving code readability models with textual features. In: Proceedings
of the 24th IEEE International Conference on Program Comprehension, pp. 1-10. IEEE,
Austin (2016). https://doi.org/10.1109/ICPC.2016.7503707


https://doi.org/10.1145/1041624.1041673
https://doi.org/10.1145/2858036.2858252
https://doi.org/10.1177/0735633116685852
https://doi.org/10.1186/s40594-020-00222-7
https://doi.org/10.1002/tl.142
https://doi.org/10.1006/ceps.1997.0946
https://doi.org/10.1177/1475725716637484
https://doi.org/10.1145/1026487.1008072
https://doi.org/10.24032/ijeacs/0101/04
https://doi.org/10.1016/j.sbspro.2012.09.277
http://dos.iitm.ac.in/publications/LabPapers/techRep2009-01.pdf
https://doi.org/10.1109/ICCCYB.2006.305700
https://doi.org/10.1109/ICPC.2016.7503707

148

38.

39.
40.

41.

P. J. Khomokhoana and L. Nel

Scherer, R., Siddiq, F., Sdnchez Viveros, B.: A meta-analysis of teaching and learning com-
puter programming: effective instructional approaches and conditions. Comput. Hum. Behav.
109(106349), 1-18 (2020). https://doi.org/10.1016/j.chb.2020.106349

Shopkow, L.: How many sources do I need? Hist. Teach. 50(2), 169-200 (2017)

Uwano, H., Nakamura, M., Monden, A., Matsumoto, K.I.: Analyzing individual performance
of source code review using reviewers’ eye movement. In: Proceedings of the 2006 Sympo-
sium on Eye Tracking Research & Applications, pp. 133-140. ACM, New York (2006).
https://doi.org/10.1145/1117309.1117357

Yurdugiil, H., Askar, P.: Learning programming, problem solving and gender: a longitudi-
nal study. Proc. Soc. Behav. Sci. 83, 605-610 (2013). https://doi.org/10.1016/j.sbspro.2013.
06.115


https://doi.org/10.1016/j.chb.2020.106349
https://doi.org/10.1145/1117309.1117357
https://doi.org/10.1016/j.sbspro.2013.06.115

	Mapping the Problem-Solving Strategies of Novice Programmers to Polya’s Framework: SWOT Analysis as a Bottleneck Identification Tool
	1 Introduction
	2 Theoretical Framework
	2.1 Understand the Problem
	2.2 Devise a Plan
	2.3 Carry Out the Plan
	2.4 Evaluate the Effectiveness of the Plan

	3 Research Methods
	3.1 Design
	3.2 Data Collection
	3.3 Data Analysis

	4 Results and Interpretation
	4.1 Understand the Problem
	4.2 Devise a Plan
	4.3 Carry Out the Plan
	4.4 Evaluate a Solution

	5 SWOT Analysis
	6 Bottleneck Identification
	7 Conclusions and Future Work
	Appendix
	References




