- .
~a E
e =
-
-

Wai S”z\eji_éu"ng‘:’__-"fi‘ ‘
- Marijke Coetzee

Dwﬁm‘\

ﬂon Cotterrell (Eds.) -

Communications in Computer and Information Science 1461

50th Annual Conference of the Southern African
Computer Lecturers' Association, SACLA 2021
Johannesburg, South Africa, July 16, 2021
Revised Selected Papers

@ Springer

Communications
in Computer and Information Science 1461

Editorial Board Members
Joaquim Filipe
Polytechnic Institute of Setiibal, Setiibal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Raquel Oliveira Prates
Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0002-7128-4974

More information about this series at https://link.springer.com/bookseries/7899

https://springerlink.bibliotecabuap.elogim.com/bookseries/7899

Wai Sze Leung - Marijke Coetzee -
Duncan Coulter - Deon Cotterrell (Eds.)

ICT Education

50th Annual Conference of the Southern African
Computer Lecturers’ Association, SACLA 2021
Johannesburg, South Africa, July 16, 2021
Revised Selected Papers

@ Springer

Editors

Wai Sze Leung Marijke Coetzee

University of Johannesburg University of Johannesburg
Johannesburg, South Africa Johannesburg, South Africa
Duncan Coulter Deon Cotterrell

University of Johannesburg University of Johannesburg
Johannesburg, South Africa Johannesburg, South Africa
ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science

ISBN 978-3-030-95002-6 ISBN 978-3-030-95003-3 (eBook)

https://doi.org/10.1007/978-3-030-95003-3

© Springer Nature Switzerland AG 2022

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-9015-6329
https://orcid.org/0000-0001-9218-4844
https://orcid.org/0000-0002-9157-3079
https://orcid.org/0000-0001-5656-1809
https://doi.org/10.1007/978-3-030-95003-3

Preface

This volume contains selected and revised papers from the 50th Annual Conference of
the Southern African Computer Lecturers’ Association (SACLA 2021), held on July 16,
2021. The conference was held under the auspices of the Academy for Computer Science
and Software Engineering at the University of Johannesburg, South Africa. This is the
5th post-proceedings of SACLA published in Springer’s CCIS series. The conference
was initially planned to be hosted at the University of Johannesburg, South Africa, but
was successfully held online due to the COVID-19 restrictions. Furthermore, due to
the open nature of the online conference, university students and other non-presenting
delegates were allowed to register at no cost leading to a virtual attendance of more than
80 delegates. SACLA 2021 celebrated 50 years of the continued existence of SACLA
with invited talks by Andre Calitz on 50 years of SACLA and by Basie von Solms on
the past and future of computing.

The conference theme “Post Pandemic Pedagogy” focused on coordination and
resilience-building efforts to ensure education systems’ continued sustainability and
equity in the COVID-19 pandemic, which has led to unparalleled disruptions in tertiary
education. SACLA 2021 invited national and international submissions focussing on
practical experiences and successes in computing education. The topic areas addressed
included classroom innovations and their impact, novel tools, or novel use of existing
tools, and general research in aspects of computing education. In addition, an invited
panel discussion with panellists from across the world gave perspectives on online
teaching in COVID-19 environments.

The International Program Committee consisted of 22 members, whereby almost half
were international (from outside southern Africa). In total, 22 submissions were received
from authors around the world, along with one invited submission. A rigorous double-
blind refereeing process was followed for all submissions, where each submission was
reviewed by at least three Program Committee members. Reviewers were asked to bid
on the papers they wanted to review. Then, an automated process allocated papers to
each reviewer according to their preferences. After reviews were submitted, the Program
Committee accepted 10 full papers based on the review process results. The acceptance
rate for the conference was 43%. At the conference, authors of the accepted papers
received constructive criticism from the audience to improve the papers before inclusion
in this CCIS proceedings.

We want to thank IITPSA for its continued support of SACLA. Many thanks to the
members of the International Program Committee, who provided extensive and insightful
reviews, and the staff of Springer, who made this CCIS publication possible. We hope

vi Preface

that readers will find this volume insightful and look forward to the continuation of the
SACLA series in the following years.

November 2021 Marijke Coetzee
Wai Sze Leung
Duncan Coulter
Deon Cotterrell

General Chair

Wai Sze Leung

Organization

Academy of Computer Science and Software

Engineering, South Africa

Program Committee Co-chairs

Marijke Coetzee

Wai Sze Leung

Academy of Computer Science and Software

Engineering, South Africa

Academy of Computer Science and Software

Engineering, South Africa

Local Arrangements and Additional Support

Duncan Coulter

Deon Cotterrell

Academy of Computer Science and Software

Engineering, South Africa

Academy of Computer Science and Software

Engineering, South Africa

SACLA Publications Chair and CCIS Post-proceedings Co-editor

Marijke Coetzee Academy of Computer Science and Software
Engineering, South Africa

Program Committee

Shirley Atkinson Plymouth University, UK

Shaun Bangay Deakin University, Australia

Frans Blauw University of Johannesburg, South Africa
Alan Chalmers University of Warwick, UK

Charmain Cilliers
Thomas Clemen

Sue Conger
Stephen Flowerday
Patricia Gouws
Jean Greyling
Barry Irwin

Nelson Mandela University, South Africa

Hamburg University of Applied Sciences,
Germany

University of Dallas, USA

Rhodes University, South Africa

University of South Africa, South Africa

Nelson Mandela University, South Africa

Noroff University College, Norway

viii Organization

Janet Liebenberg
Hugo Lotriet
Jan Mentz
Francois Mouton

Liezel Nel
Jacques Ophoft
Rayne Reid
Karen Renaud
Aslam Safla

Ian Sanders
Hussein Suleman

North-West University, South Africa
University of South Africa, South Africa
University of South Africa, South Africa

Council of Scientific and Industrial Research,
India

University of the Free State, South Africa

Abertay University, UK

Noroff University College, Norway

University of Strathclyde, UK

University of Cape Town, South Africa

University of South Africa, South Africa

University of Cape Town, South Africa

Contents

Past, Present and Future

The 50 Year History of SACLA and Computer Science Departments
in South AfTiCao 3
Andre P. Calitz

Teaching Innovation

Minimising Tertiary Inter-group Connectedness Over Successive Rounds 27
Andrew Broekman and Linda Marshall

Teaching in a Time of Uncertainty — A Practical Guide 43
Geaoffrey Dick

Utilizing Computational Thinking in Programming to Reduce Academic
Dishonesty and Promote Decolonisationc.ccovveiiiiina... 51
Suné van der Linde and Janet Liebenberg

Project-Based Learning Guidelines for IT Higher Education 67
J. T. Janse van Rensburg

Teaching Methods and Strategies

Mapping Computational Thinking Skills to the South African Secondary
School Mathematics Curriculumi i, 85
Karen Bradshaw and Shannon Milne

Common Code Writing Errors Made by Novice Programmers:
Implications for the Teaching of Introductory Programming 102
Mokotsolane Ben Mase and Liezel Nel

Ten Years in the Trenches of a Doubtful Science: An Autoethnographic
Investigation of Five Challenges of Teaching in Information Systems 118
Daniel B. le Roux

Mapping the Problem-Solving Strategies of Novice Programmers
to Polya’s Framework: SWOT Analysis as a Bottleneck Identification Tool 132
Pakiso J. Khomokhoana and Liezel Nel

X Contents

Understanding the Significance of Enterprise Resource Planning Education
in Zambia: A Case of an ERP Short Course at University of Zambia
Mampi Lubasi and Lisa F. Seymour

Author Index

Past, Present and Future

®

Check for
updates

The 50 Year History of SACLA and Computer
Science Departments in South Africa

Andre P. Calitz®0

Department of Computing Sciences, Nelson Mandela University, Port Elizabeth, South Africa
Andre.Calitz@Mandela.ac.za

Abstract. The Southern African Computer Lecturers’ Association (SACLA) is
a formal association of academics involved in education, lecturing and teaching
of Computer Science (CS), Information Systems (IS) and related Information
Technology (IT) subjects at universities and other Higher Education Institutions
throughout Southern Africa. SACLA celebrated 50 years of existence in 2021.
The main activity of SACLA is an annual conference, where issues relating to CS,
IS and IT education, teaching and research in Southern Africa are presented and
discussed. Departments of Computer Science were established at several univer-
sities in South Africa during the period 1969 to 1970. SACLA started in 1971 as
an initiative of IBM to “Teach the Teacher”. The 50-year history of SACLA is
presented in this paper, and academics involved in the first SACLA 4-day confer-
ences shared memories and documentation. The paper presents an overview of the
50 conferences hosted, related activities at conferences and the future of SACLA.

Keywords: SACLA History - TECLA - CSLA - Computer Science Departments

1 South African Computer Science Departments

Computer Science as a discipline began in the 1950s and early 1960s. The world’s first
Computer Science degree programme, namely The Cambridge Diploma in Computer
Science, began at the University of Cambridge Computer Laboratory in the United
Kingdom in 1953. The term Computer Science was created by George Forsythe, a
numerical analyst. The first Department of Computer Science was formed at Purdue
University in 1962 [16]. The first person to receive a PhD from a Computer Science
department was Richard Wexelblat, at the University of Pennsylvania in December
1965.

The first FORTRAN compiler was developed in April 1957. LISP, a list-processing
language for artificial intelligence programming, was invented in 1958 [16]. New pro-
gramming languages, such as BASIC was invented in the 1960s, and during this time,
we saw the rise of automata theory and the theory of formal languages. A rigorous math-
ematical basis for the analysis of algorithms began with the work of Donald E. Knuth,
author of a 3-volume treatise entitled The Art of Computer Programming [16]. The 1970s
saw advances in databases’ theory, and Edgar F. Codd made significant contributions to
relational databases.

© Springer Nature Switzerland AG 2022
W. S. Leung et al. (Eds.): SACLA 2021, CCIS 1461, pp. 3-23, 2022.
https://doi.org/10.1007/978-3-030-95003-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95003-3_1&domain=pdf
http://orcid.org/0000-0002-2555-9041
https://doi.org/10.1007/978-3-030-95003-3_1

4 A. P. Calitz

In South Africa, several Computer Science departments were established during the
late 1960s and early 1970s. At the University of Stellenbosch, the Department of Math-
ematics in 1969 introduced a one year course in Computer Science and in 1970, the
Department of Computer Science was established with Professor George Murray as its
first head of department (HOD) [6]. Professor D. G. Parkyn was head of the Applied
Mathematics department at the University of Cape Town (UCT) until 1970 when he
became acting head of the newly formed Computer Science Department. The computer
hardware in 1970 at UCT consisted of an IBM 1130 with 16k memory, two 512k disk
drives and a graph plotter. The first Computer Science I course at UCT included mod-
ules on machine organisation, Assembler and FORTRAN programming techniques and
Information Structures and applications. The Computer Science Ilin 1971 included mod-
ules on Systems analysis, COBOL, ALGOL, Operating systems, Compiler construction
and Formal languages. A lecturer at Glasgow University, Professor Ken MacGregor
was appointed as Senior Lecturer at UCT in 1973. Professor Sonia Berman joined the
department in 1982, and Professor Pieter Kritzinger joined in 1986 and became HOD in
1988 [17].

Professor A.P.J. der Walt was appointed in 1970 as Chairman of the Department of
Computer Science at the Rand Afrikaans University (RAU) (Fig. 1). The Rand Afrikaans
University, today called the University of Johannesburg (UJ), installed an IBM 1130 in
October 1969, shown in Fig. 1.

Mr Smit (IBM) sponsored Prof van der Walt Prof A. P.). van der Walt
1971 IFIP Congress conference travel expenses First HOD: Department of Computer Science 1970
Rand Afrikaans University

First IBM 1130 computer installed in October 1969 at R.A.U.

Fig. 1. RAU first HOD and the IBM 1130.

In 1971, IBM sponsored Professor van der Walt’s travelling expenses to attend two
international conferences related to Computer Science. The first was the “International
Symposium on the Theory of Machines and Computations”, which took place in Haifa,
Israel and the second, the “IFIP Congress 71, was held in Ljubljana, Yugoslavia. It was

The 50 Year History of SACLA 5

the first time a representative of a South African university participated in one of three
annual computer conferences [5].

In 1967, the University of South Africa (UNISA) was the first South African uni-
versity to offer Human-Computer Interaction (HCI) courses at the under-graduate and
post-graduate levels. It instituted a course to train students in the field of Computer Sci-
ence. The Department of Computer Science in 1970 included Prof R.H. Venter (HOD),
Prof C.H. Bornman and Mr G. de V. de Kock and Dr G.J. Joubert as Senior Lectur-
ers. In 1970, UNISA received a grant of R40,000 from International Computers South
Africa PTY. Ltd. (ICL) to establish a fellowship scheme to alleviate the country’s severe
shortage of computer scientists [9]. During 1973, the number of first-year Computer Sci-
ence students grew to 1,821. At his inaugural lecture in 1975, Prof Chris Borman stated
that “The computing education provided by the universities is inadequate to the needs of
industry. The Computer Science graduates had learned too much about Numerical Meth-
ods Theories of computation, and they were fluent in every computer language except
English. However, they did not know how to apply the concepts they had learned to the
typical commercial environment” [9]. In 1980 a new course, COBOL (Commercial Pro-
gramming Course), was introduced to produce professional, well-trained programmers
ready to enter the job market.

Rhodes University (RU) acquired its first computer in 1966, and Computer Science
was first introduced as a major subject under the auspices of the Department of Applied
Mathematics in 1970, and a separate Computer Science department was established in
1980 [20]. Professor Pat Terry was the first HOD for the Computer Science department
(Fig. 2).

At the University of the Free State (UFS), Computer Science was first presented in
1973 as a course in the Department of Statistics. In 1980, The Department of Computer
Science and Information Systems was established with Professor T.H.C. Smith appointed
as HOD (Fig. 2). In 1983, the HOD was Professor Theo Mc Donald until 1987 when
Professor Hans Messerschmidt was appointed HOD [7].

In 1969, after completing his PhD at the University of California, Berkeley, Professor
Roelf van den Heever (Fig. 2) returned to South Africa to establish what has grown into
the Department of Computer Science at the University of Pretoria (UP) [12]. In those
days, Computer Science was presented under the auspices of the Department of Statistics.
However, in 1975 it broke away to form an independent entity within the Faculty of
Natural and Agricultural Sciences. Professor van der Heever was HOD from 1969 to
1997. The first graduates received their BSc Honours degrees in Computer Science in
1971 [10].

The North-West University (NWU), formerly known as the Potchefstroom Univer-
sity for Christian Higher Education, installed an IBM 1130 in September 1967 in the
Computer Center. A second IBM 1130 was purchased in 1970/1971, and the Depart-
ment of Computing Science was established. The first Computer Science courses at the
second-year level were presented in 1971, with Professor Hannes de Beer appointed as
HOD. In 1973 a Computer Science Honours degree was introduced, followed by MSc
and PhD degrees in 1974 [18].

The North-West University (NWU), formerly known as the Potchefstroom Univer-
sity for Christian Higher Education, installed an IBM 1130 in September 1967 in the

6 A. P. Calitz

Prof Theuns Smith Prof Gerrit Wiechers

First HOD: Department of Computer Science 1980 First HOD: Department of Computer Science 1970

University of the Free State University of Port Elizabeth

o i
&
Prof Pat Terry

First HOD: Department of Computer Science 1980
Rhodes University

Prof Roelf van den Heever
First HOD: Department of Computer Science 1975
University of Pretoria

Fig. 2. Departments of Computer Science HODs

Computer Center. A second IBM 1130 was purchased in 1970/1971, and the Depart-
ment of Computing Science was established. The first Computer Science courses at the
second-year level were presented in 1971, with Professor Hannes de Beer appointed as
HOD. In 1973 a Computer Science Honours degree was introduced, followed by MSc
and PhD degrees in 1974 [18].

The first call for establishing a Computer Science department at the University of Port
Elizabeth (UPE), now known as the Nelson Mandela University (NMU), was made in
1968 by Professor Gerrit Wiechers, Head of the Department of Applied Mathematics, in
aspeech during a Senate meeting (Fig. 2). In 1969, the Council of UPE agreed to establish
a Computer Center; after that, a Computer Science Department was approved for subsidy
purposes. A contract was signed for the lease of an ICL 1901A mainframe computer
at R1200 per month. This computer was used for administrative, research and teaching
purposes [13]. The first HOD of Computer Science was Professor Gerrit Wiechers. He
was the only lecturer, teaching 18 first-year students and two honours students in 1970.
In 1975, Professor Gideon de Kock was appointed as HOD and remained for 30 years.

2 SACLA First Meetings

International seminars on the teaching of Computer Science were an initiative that arose
from an initiative by the then Director of the Computing Laboratory at Newcastle Univer-
sity [11], Professor Ewan Page, who had attended a similar, but once-off event organised
by IBM in Paris in 1968. These annual four-day seminars continued for 34-years at the
University of Newcastle [11]. They brought together an invited audience of senior UK
and European computing academics to hear a series of presentations from distinguished

The 50 Year History of SACLA 7

international speakers. Each seminar concentrated on a particular theme (Fig. 4), usually
a major Computer Science research domain. A small group of speakers each gave one
or more lectures reviewing their own and other contributions to the development of the
Computer Science curricula. The 4-day seminars at the Newcastle University, 1968—
1971 included speakers, such as Niklaus Wirth, Ed Coffman, Don Knuth and Edsger
Dijkstra. The topics covered by different presenters mainly focused on the teaching of
Computer Science (Fig. 4). Links to the seminar topics, presenters and the papers for
the period 1968 to 2001 are provided on the University of Newcastle website [11].

The Southern African Computer Lecturers’ Association (SACLA) [14] was estab-
lished 50 years ago by academics and IBM, an industry computer mainframe supplier. Ini-
tially, the association was called the Computer Science Lecturers’ Association (CSLA).
The CSLA documents published in 1982 and 1983 (Fig. 7) displayed the CSLA name;
however, in 1984, the conference was called SACLA.

Die 1.B.M. 1130 Rekenoutomaat wat aan die cinde van Oktober 1969 deur die R.A.U. i
vebruik pen /

Fig. 3. IBM 1130 mainframe and Ewan Page, guest speaker and lecturer 1970-1973.

The South African academics involved with the first CSLA meetings were Roelf van
den Heever [19] and the late Dewald Roode. CSLA was initially an informal association
of academics involved in education, lecturing, and teaching Computer Science. The main
activity of CSLA was an annual conference, which started in 1973.

In the 1970s, IBM in South Africa started an initiative called “Teach the Teachers”,
where they brought out lecturers from the UK to give a week’s classes to everyone
who was embarking at that time on teaching Computer Science. In 1970, RAU, NWU
and UCT were using an IBM 1130 mainframe computer with punch cards (Fig. 3).
The first CSLA Conferences (4-day meetings) focused on Computer Science curricula,
presentation methods and practical work [2].

The first three CSLA seminars were held in the Engineering building of Stellenbosch
University, where the Department of Computer Science is now housed [2]. The CSLA
seminars followed a similar format as the “Teach the Teachers” initiative presented at
Newcastle University and was sponsored by IBM. The four-day conference consisted
mainly of lectures presented by Professor Ewan Page and other academics from the UK,

8 A. P. Calitz

including Professor David Barron from Southampton University. He spoke on program-
ming languages PL360, a system programming language designed by Nicklaus Wirth
in the 1960s [2]. The conference delegates were “everyone who was embarking at that
time on teaching Computer Science” [2].

Newcastle International Seminars - On The Teaching Of Computing Science: 1968—2001
1968 — Computer Science 1970 — The Teaching of Programming at

University Level

D. T. Ross Data Structure and Storage E. W. Dijkstra The Art of Programming
Management

N. Wirth Teaching Compiler Design — D. E. Knuth The Analysis of Algorithms
Outline of a Proposed Course

D. N. Freeman A Study of Stack Architecture in | K. E. Iverson The Use of APL in Teaching

Control Program Design

J. du Masle Software Teaching and Research | M. A. Jackson The Construction of Algorithms
at the University of Grenoble in a Commercial Programming
Environment
E. S. Page Constraints on Teaching in W. C. Lynch The Creation of Systems

Programmers
1975 — Computers and the Educated Individual

Computing Science
1969 — On the Teaching of the Design of Large
Software Systems

Large On-Line System

B. W. Arden Multi-Processing Systems W. A. Clark The Basis of Present Computer
Design
A. B. Cleaver Systems Evaluation P. C. Goldberg The Future of Programming for
Non-Programmers
C.J. Bell Information Systems F.J. M. Laver Computers and Society
E. G. Coffman Jr Formalism in Computer System P. Naur An Adaptable course of
Design — Models of Parallelism Elementary, University Level,
and Concurrency Computer Science
K. I. McKenzie The Problem of Debugging the A. W. Holt Formal Methods in System

Analysis

Fig. 4. Speakers and topics presented 1968—1975.

Figure 5, supplied by Professor Judith Bishop [2], shows the 1972 CSLA conference
representatives. First, seated in front are Professor Page and other IBM representatives.
Next, standing sideways, Professor Judith Bishop and Professor Basie von Solms are to
the right in the picture. Forty-eight delegates attended the 1972 conference.

The first 15 years of CSLA conference organisers are shown in Fig. 6. Professor
Page was the guest speaker at the first three seminars that focused on Computer Science
curricula, teaching programming and computer design. The sponsors of the first SACLA
conferences were mainly IBM; however, in later years, other sponsors were Burroughs,
ICL, NCR and Univac (Fig. 6). The late Professor Dewald Rhoode and Professor Roelf
van den Heever from the University of Pretoria were responsible for organising the
conferences at Golden Gate from 1974 to 1976 [8].

The first 15 years of CSLA conference organisers are shown in Fig. 6. Professor
Page was the guest speaker at the first three seminars that focused on Computer Science
curricula, teaching programming and computer design. The sponsors of the first SACLA
conferences were mainly IBM; however, in later years, other sponsors were Burroughs,
ICL, NCR and Univac (Fig. 6). The late Professor Dewald Rhoode and Professor Roelf
van den Heever from the University of Pretoria were responsible for organising the
conferences at Golden Gate from 1974 to 1976 [8].

Professor Roelf van den Heever [19] indicated that many SA universities started
Computer Science programs in the early 1970s. Computer Science was a brand-new

The 50 Year History of SACLA 9

Fig. 5. Attendees at CSLA meeting in 1972 (Source: Judith Bishop).

Year University Chair(S)

1971
1972
Ewan Page 1972

1974 R Venter

D Roode
1975 R Venter

D Roode
1976 John Shochot
1977 John Shochot
1978 Ken MacGregor
1979 Judy Bishop
1980 Judy Bishop
1981
1982 Dennis Rordan
1983 Edwin Anderson

Henry Lucas 1984

Prof IS: MIT 1985 Stef Postma

Alan Sartori-Angus

HISTORY OF SACLA

Guest Speaker Sponsor(S) Venue

Ewan Page 1BM Jan Smuts
Ewan Page I1BM Senator, Bellville
Ewan Page 1BM

1BM Golden Gate

Burroughs Golden Gate

Univac Golden Gate
David Barron ICL Hunter's Rest, Rustenburg
B Mittman CcDC Hunter's Rest, Rustenburg
Univac Golden Gate
Univac Golden Gate

Burroughs Gordon's Bay
Henry Lucas ICL

C Wogrin CDC Transkei Holiday Inn
Univac Hluhluwe
NCR Kimberley

Wigwam, Rustenburg

Dewald Roode: UP

Ken MacGregor: UCT

Denis Riordan: Rhodes|

Fig. 6. First SACLA conferences and organisers 1970-1985.

field, as witnessed by introducing the first model curriculum, called “CURRICULUM
68 Recommendations for Academic Programs in Computer Science”. This was a report
of the ACM curriculum committee on Computer Science. The workshops organised
by IBM during 1970, 1971, and the start of 1973 were well received and significant
interest in cooperation and collaboration amongst SA computer scientists was a natural
consequence. In 1973, Roelf van den Heever approached IBM for financial assistance
for the Golden Gate gathering of 26 interested CS leaders from all SA universities.
Roelf got in touch with Dewald Roode (RAU) and Gerrit Wiechers (UNISA) to form a

coordinating committee [19].

10 A. P. Calitz

The final session at the 1974 Golden Gate conference was under the chairmanship
of Derek Henderson [19]. The purpose was to plan further activities. The following
decisions were made:

o Dewald Roode, Roelf van den Heever and Gerrit Wiechers were elected to form an
Executive Committee;

e George Murray (US) was given the task of determining the minimum requirements
for Computer Science education and verifying that these agreed with what the outside
world was expecting;

e Rolf Braae (Rhodes) was tasked with putting forward proposals for new topics that
should be covered in the Computer Science curriculum; and

o Gerrit Wiechers (UNISA) was tasked with taking care of the general duties of liaison,
including the investigation of extension courses, liaison with colleges of advanced
technology and liaison with the Department of Education.

Here are some quotes from notes that were taken during the concluding session [19]:

o “Will teaching staff, as well as heads of Computer Centres at Universities, be eligible
for membership of our group?”

e “The executive committee will give more details on who will be eligible for member-
ship. We ought to give attention to giving the group a name but must be careful so
that nobody would be excluded from future enhancement of the group.”

The meeting decided to postpone a decision on a name for the Group until the third
sub-committee had met with the Computer Society. For the time being, the Group will go
under the name of “Work Group for Computer Education” — Afrikaans: “Werkgroep vir
Rekenaaropleiding”. Concluding remarks by chairman Henderson: “I should like very
much to express on behalf of all of us our enormous appreciation of IBM’s willingness
to sponsor this conference we have had at Golden Gate. Secondly, I should like to thank
Professors Wiechers, Roode and van den Heever for their initiative, enthusiasm and
work. We owe an enormous amount of gratitude to these people.”

The Chair of the 1978 CSLA conference was the late Professor Ken MacGregor from
the University of Cape Town (Fig. 6). In 1979, Don Cowan was at Waterloo University,
Canada, an expert on WatFOR — a fast Fortran compiler for IBMs. Professor Bishop
states, “He was a great speaker and helped many students after that. However, the topic
was slightly controversial as Wits was using Pascal!” [2]. In 1982 Professor Henry Lucas,
a Professor in Information Systems at MIT was the guest speaker. The author contacted
him via email. However, he indicated that after 50 years, he could not recall the topic.
He remembered that Jonathan Miller from the UCT Business School invited him.

The conference chair in 1982 was Professor Denis Riordan from Rhodes University,
the HOD from 1980 to 1981, who later left to go to Canada in the 1990s. Professor Alan
Sartori-Angus, conference chair in 1984, was at Rhodes for several years in the 1990s

[3].

The 50 Year History of SACLA 11

3 CSLA News Publications 1982 and 1983

Edwin Anderson [1], the Chairman of the Computer Science Lecturers’ Association
(CSLA) in 1983, provided copies of the CSLA News published from 1982 to 1983, as
shown in Fig. 7. The newsletters contained conference news, news relating to different
departments, and the results of an annual survey of mainframe equipment used in one
issue. In addition, student access to micro-computers and other facilities, such as scan-
ners, etc., was included. The publication also included the conference programme and a
list of all universities and technikons, including all personnel working in Computer Sci-
ence and other related departments. The November 1982 edition focused on curriculum
design and listed each university and the programmes offered. The March 1983 issue
focused on the conference and included a list of the prescribed books used for different
courses by universities and technikons.

The newsletter also contained information relating to departments; for example,
the September 1982 letter indicated that Professor Judy Bishop from WITS Computer
Science department reported an R100 000 donation to purchase a VAX-370 system
with 12 terminals for use by personnel and senior students. Professor Trevor Crossman,
WITS Business Information Systems Department, was promoted, and WITS changed
their Business Information Systems course from two years to three years. Professor
Theuns Smith returned after seven months of database research at the University of
Pennsylvania; Professor Sartori-Angus from Rhodes joined the University of Natal.
These four publications have been professionally scanned and placed on the SACLA
website [14].

The newsletter provided a list of SACLA members, academics working in the dif-
ferent departments at various universities from 1983 to 1984. One hundred delegates
attended the 1983 conference. Professor Sonja Bergman, conference chair in 1986, is
listed as a Junior Lecturer at UCT, together with the late Professor Ken MacGregor and
Professor Keith Mattison, then a Senior Lecturer. Staff were listed from universities, such
as Fort Hare, Natal, University of the North, Potchefstroom, UPE, RAU, US, WITS and
Rhodes. Professor Philip Machanick was a junior lecturer at WITS.

NEWS

Maart 1983 March

NUUS

Rekenaarwetenskap-
dosentevereniging

Computer Computer
Science Science
Lecturers’ Lecturers’
Association Association

NEWS

Junie 1983 June

NUUS

Rekenaarwetenskap-
dosentevereniging

Fig. 7. CSLA 1983 news. Picture of Edwin Anderson.

12 A. P. Calitz

4 TECLA and HEICTA

The CSLA March 1983 newsletter indicated that two topics would be discussed at
the 1983 annual conference: each department’s approach to research and the future
development of Computer Science and the role of universities and technikons. The
conference programme indicated that each department had to send a representative to
present the department’s research areas. Professor Roelf van den Heever and Professor
Denis Riordan were the two speakers to summarise the research conducted in South
Africa. The conference programme also indicated that Professor Dewald Roode (UP)
would provide an overview of the role of Computer Science at universities, and Mr
Hennie Groenewald (Pretoria Technikon) would lead the discussion from a Technikon
viewpoint.

At the SACLA conference AGM in 1984, held in Hluhluwe, Natal, South Africa,
a heated debate between academics from universities offering CS degree programmes
and technikons offering IT diploma programmes. Professor Rossouw von Solms [23]
indicated that the technikons at that time only had observer status at SACLA without
any voting rights. This discussion at the AGM resulted in the academic members from
the Technikons in South Africa being disassociated from SACLA.

Professor Rossouw von Solms initiated the formation of an independent body
with similar aims to SACLA, namely the Technikon Computer Lecturers Association
(TECLA), in 1989, and he was the first President of TECLA [4, 23]. The primary purpose
of TECLA was to have an annual conference where the Technikon academics discussed
the various IT diploma programmes and curriculum content in South Africa. However,
TECLA ceased to exist when the South African Government introduced new university
structures in 2005 and amalgamated six technikons and specific universities, forming
six comprehensive universities and creating eight Universities of Technology.

A new body, Higher Education Information and Communication Technology Asso-
ciation (HEICTA), was established in 2006 and was also involved with industry liaison
and diploma programme curriculum topics. For several years, it provided collaboration
among IT departments offering IT diplomas and liaised with the industry. However,
HEICTA gradually ceased to exist. Professor Bennett Alexander of CPUT was the pres-
ident of HEICTA. Documentation on the functioning of HEICTA was found by the
authors dating back to 2013 [4]. After then, HEICTA members have not met annually,
and currently, all academics from all universities involved in IT education in Southern
Africa are members of SACLA. All institutions offering IT diplomas are now responsi-
ble for registering their qualifications with the South African Qualifications Authority
(SAQA).

The minutes of the SACLA AGM on 28 June 2002, organised by Rhodes University,
indicated that “Kevin Johnston proposed that the current SACLA committee contact
TECLA to initiate a merger. It was also proposed that the 2003 SACLA committee
invite TECLA members to attend the conference in June 2003”. The minutes of the
AGM held at Pilanesberg National Park on 1 July 2003, Chaired by Tom Addison from
WITS University, again indicated under point 9 - Technikon Considerations that “The
idea of inviting technikons (and other institutions) needs to be explored. The changing
status of technikons might negate the issue. After some discussion on the advantages and
disadvantages of inviting technikons, it was decided that there would be no specific drive

The 50 Year History of SACLA 13

to invite them, but that there would be no problem with their attending. The committee
should look at universities more generally/holistically”. A discussion to invite TECLA
members were again included at the 2006 AGM. A resolution was adopted at the 2014
AGM that Technikon staff were included in the membership body.

5 SACLA Hosting Universities 1980 to Present

The Chair of the 1985 SACLA conference, held in Kimberley, South Africa, was Profes-
sor Stef Postma. Professor Sonja Bergman from the Department of Computer Science
at the University of Cape Town was the conference chair for the 1986 conference held
at the Amatola Sun, close to Bisho in the Eastern Cape, shown in Fig. 8. The 1988
SACLA conference chair was Professor Peter Warren from the University of Port Eliza-
beth, now the Nelson Mandela University and the 1992 conference chair was Professor
Judith Bishop. The conference was held in Rustenburg, South Africa, and this was the
third time Judith acted as conference chair. The sponsors during these years included
ISM (IBM in SA), Unisys and Persetel.

University/ .
Year Dept ty Chair(S) Guest Speaker Sponsor(S) Venue
1984 Alan Sartori-Angus Univac Hluhluwe
.
Niklaus Wirth 1985 Stef Postma NCR Kimberley Sonja Bergman
Designed several programming 1986 Sonja Berman Persetel Amatola Sun, Bisho -
languages, induding Pascal g0 Gavin Finnie Niklaus Wirth 1BM palms, Pretoria
1988 Peter Warren Unisys Wilderness T
1989 P J Bruwer NCR Dikhololo
1990 J P du Plessis Siltek Thaba Nchu y
1991 Mike Linck Ed Koffman ISM Overberg, Caledon
Vint Cerf Peter Warren
1992 Judy Bishop o Persetel .
Austin Melton Safari, Rustenburg
1993 Martha Pistorius Unidata Hunter's Rest, Rustenburg
L. R Olivetti and
1994 Hiemie Ossthuizen .
Digital SA Magoebaskloof
Rhodes, Dept
p— 'z €5 tep Peter Clayton, Dexel and .
©) omputer Peter Wentworth . Digital SA Judy Bishop
Tim Fossum Science Tim Fossum Katberg, Eastern Cape
CS - Potsdam

Fig. 8. SACLA hosting 1986 to 1995

In 1987, the guest speaker was Niklaus Wirth, a Swiss computer scientist. He has
designed several programming languages, including Algol and Pascal. He also worked
in the field of Software Engineering, and in 1984, he received the Association for Com-
puting Machinery (ACM) Turing Award for the development of various computer pro-
gramming languages. In 1991, the guest speaker was Ed Koffman from the Mathematics
Research Center of Bell Laboratories. Ed was the author of various Computer Science
textbooks and received the SIGCSE Outstanding Contribution Award in 2009, specifi-
cally for “helping to shape Computer Science education”. Finally, Tim Fossum from the
Computer Science Department at the University of Wisconsin was the keynote speaker
in 1995 (Fig. 8).

14 A. P. Calitz

Year gre\:/tersrtyl Chair(S) Guest Speaker Sponsor(S) Venue
A 26 1996 J D Roode U Ngwenyama, Lybrand, Digital SA, Bakubung, North West
¢ M De Rijke Dexel Province
27 1997 UPE Andre Calitz Peter Clayton, UPE, Unisys, Intekom, Wilderness
Peter Clayton Gregory Compustat, SAP,
Williams Maskew Millar
.L Longman
28 1998 US Regg Dodds Stellenbosch
29 1999 UOFS T McDonald, P J Jan Paredaens Sun, ABSA, PQ Golden Gate
Blignaut Africa
30 2000 Stan Shear Microsoft, Oracle, Golden Gate
ABSA Pieter Blignaut
31 2001 UP Nicolet Ros Sarah Douglas Microsoft, Oracle, Sizanani, Bronkhorstspruit '
ABSA
32 2002 Rhodes John McNeil L Scott- Microsoft, Oracle, Fish River, Eastern Cape) |
Williams, W du ABSA i l
2 Plessis, A Marais L]
Herman Venter 33 2003 Wits Tom Addison H Venter, M Microsoft, Oracle, Manyane Camp, Pilansburg ~ Derek Smith
Coppin Gentron Computers, Hemate 2009
Wits
Microsoft, Antalis,
CKB, Sechaba
Technology Services,
Pearson Education,
Oracle

Fig. 9. SACLA hosting 1996 to 2003.

The 1996 conference was chaired by the late Professor Dewald Rhoode, his third
time as conference chair (Fig. 9). The author’s first time as conference chair was in 1997
when SACLA 1997 was held in the Wilderness. Professor Peter Clayton from Rhodes
was the guest speaker, and Professor Reg Dodds chaired the 1998 conference. Professor
Pieter Blignaut was conference chair in 1999, and the guest speaker was Professor Jan
Paredaens from the University of Antwerp in Belgium. He was the author of various
books on programming languages, data structures and relational databases.

The first AGM minutes stored on the SACLA website (Fig. 10) were the Minutes of
the 2001 AGM. Professor Derrick Kourie from UP chaired the meeting. The financial
report indicated that R160 000 was obtained in sponsorships from Microsoft, Oracle and
ABSA. The treasurer for the conference was Dr Linda Marshall from the Department
of Computer Science at UP.

The 2002 conference was held at the Fish River Sun and was organised by RU. One
hundred and ten delegates attended the conference. Professor Herman Venter, formally
an academic in the Department of CS&IS at UPE, was the guest speaker at the SACLA
2003 conference. Tim Addison was the conference chair, and the conference took place
in Pilanesberg nature reserve, South Africa (Fig. 9).

UKZN hosted the 2004 conference. At the 2005 conference, the guest speaker at the
Mowana Safari Lodge in Botswana was Professor Frank Youngman, who specialised in
adulteducation. The AGM minutes dated 5 July 2005 indicated that 34 delegates attended
the AGM. The AGM minutes indicated that the Technikons do not exist anymore and
“SACLA has removed all impediments in the way of Technikons so that Technikon
academics can submit any number of their papers”. It was further suggested that a body
be formed to represent the interest of academia.

The 50 Year History of SACLA 15

5. Financial report

2 S S ST
v v Income

Southern African Computer Lecturers’ “ Fram oG R 1800000
=~z 2001 From SACLA 2000 R 15,000.00
Association =~z SAC LA oz Conference Fees R 10,420.00
[/ N Other R 1,000.00
SACLA 2001 TOTAL R 186,420.00

ZaN ZaN ZaN ZaNZaN

Expenditure

Accomodation, meals and dinner R 55,968.81
N . Printed Matter R 10,598.89
of the A | Gifts, wine etc R 2110054
held at 14:30 on 29 June 2001 at Sizanani Entertainment R2500.00
. Transport R 1,400.00
== Support Staff R 23,000.00
1. Attendance Donation to Sizanani Trust R 10,000.00
Other R 4,950.00
bout fourty delegates atten To SACLA 2002 R 15,000.00
Roundal ded the AGM. TOTAL R144,518.24
2. Welcome A Difference (Income - Expenditure) R 41,901.76
Prof Derrick Kourie from the Department of Computer Science, welcomed everyone Current Balance R 41,996.00

present on behalf of the organising committee. (No interest or service fees have been taken into account)

3. Minutes of SACLA 2000 AGM Prepared by Linda Marshall - 2110672002

6. General

The minutes of the AGM for SACLA 2000 were distributed and adopted.
Al m»dees supported a motion to especially thank the UP team for a very well-

4. Chairman’s report orgnised and successful conference.

7. 2002C and C

Prof Kourie thanked the organising committee for their hard work and the sponsors,

\ Ut Rhodes University will host the SACLA 2002 conference but John Roberts will first
Microsoft, Oracle and ABSA, for their generous contributions. confirm this with his colleagues since he is the only Rhodes representative at SACLA

2001. The IS department of Wits will serve as “backup host”.
A question was raised with regard to i i ittee did not ¢ 1S depa e = P

need to ask for sponsors, since they were contacted by them well in advance. During 8. Closing
December 2000, Microsoft had already committed to support SACLA 2001.

Prof Kourie wished everybody a safe journey home and declared the meeting closed.

Fig. 10. SACLA 2000 AGM minutes with Chair Professor Derrick Kourie.

Year University/ Chair(S) Guest Speaker Sponsor(S) Venue
[~ Dept
- 34 2004 UKZN Manoj Maharaj Simon Tumer Hewlitt-Parkard, Rob Roy Hotel, Botha's Hil

’ Wiley Publishers,
Eclipse Networks,
Telkom, ETA

1}‘ Audiovisual
35 2005 Univ of Sampson Asare Prof F Univ of Botswana, Kasane, Botswana
Prof F. Youngman Botswana Youngman Botswana dept of IT,
Botswana Unlv Ministry of Comm, Jean-Paul Van Bell

Science, Tech, Air
Botswana, ICL,
Botswana
Technology Centre,
Microsoft, DCDM
Consulting, Botswana
dept of Tourism

36 2006 UCT Jeann-Paul van Belle Viola Manuel BULL, Microsoft, Somerset West Irene Govender
Oracle, NBN)
37 2007 Univ Bayeza Mangena Michael Luck Microsoft Elephant Hills, Zimbabwe r °‘|
Zimbabwe | |
38 2008 UNISA Berg-en-Dal | |
39 2009 Rhodes John MacNeil Derek Smith ABSA, Microsoft, Mpekweni Beach Resort [;
1S and CS Cengage Learning [i
40 2010 UPIS Pieter Joubert Heikki Topi Oracle, Microsoft and Zebra Country Lodge (S
Cengage Learning /} \\
Heikki Topi 41 2011 UKZN | Govender Fairmont Zimbali Resort k " ((\ 0
42 2012 UFSISand CS Eduan Kotze Johannes Cronje Microsoft, Dell, Black Mountain Leisure & Eduan Kotze
Oracle, UFS Conference centre
43 2013 Univ of cancelled

Fig. 11. SACLA hosting 2004 to 2013.

UCT and Professor Jean-Paul van Belle hosted the 2006 conference as the conference
chair (Fig. 11). The minutes of the 2006 AGM included the agenda item “Establish
a more permanent/formal SACLA body”. Tom Addison initiated this discussion by
highlighting the problems experienced with the current SACLA modus operandi. He
mentioned that he had been observing problems with organising SACLA conferences
over the last few years. Most of these were due to the lack of continuity when a new

16 A. P. Calitz

host university assumed the role of Chairman and executive committee. The concerns
raised included “Delays of 11 months in receiving the previous year’s minutes and seed
money”, ignorance on hosting a conference, no forward plan for future hosting and
“Every new host has to open a new bank account”.

Tom Addison proposed a three-person executive committee, Chair of the incoming
host, a nominee of the outgoing committee and one other member. He informed the meet-
ing that the constitution of SACLA stipulates a 3-person Exco, but this has never been
implemented. It was agreed that an Exco was formed at the meeting, and the following
members were elected unanimously: Tom Addison, Jean-Paul Van Belle (SACLA 2006)
and Mthulisi Velimpini (SACLA 2007). A competition to create a standardised SACLA
logo was also proposed, and a permanent SACLA bank account was created.

The 2007 conference at the Victoria Falls, Zimbabwe, was attended by 9 South
African delegates, namely . Brown, V. Midze, R. von Solms, B. von Solms, J. Greyling,
V. Pieterse, L. Goosen, W. Nel and J. van Biljon. The guest speaker was Professor.
Michael Luck, a computer scientist, based at the Department of Computer Science,
King’s College London, England. His research includes intelligent agents and multi-
agent systems, and he has over 300 publications.

The guest speaker at the 2009 conference held at the Mpekweni Beach Resort in
the Eastern Cape was Professor Derek Smith from UCT. John McNeill was conference
chair, and 50 delegates attended from 14 institutions. The theme of the conference was
“Connecting Students to the Future”. Thirty-three members attended the AGM, and the
discussions included the publication of the conference proceedings in a journal. It was
agreed that the editor of SACJ, Lucas Venter, would be approached.

The UP Department of Informatics hosted the SACLA 2010 conference from 3 to 5
June 2010 at Zebra Country Lodge just north of Pretoria, and the theme of the conference
was “Scoring IT Education Goals in 2010”. The keynote speaker was Professor Heikki
Topi from Bentley University, who spoke on the newly published IS2010 Changing the
Course for Undergraduate IS Model Curricula.

Professor Irene Govender chaired the 2011 SACLA conference from the University
of Kwazulu Natal, and Professor Eduan Kotze (UFS) chaired the 2012 conference. The
2012 conference was held at the Black Mountain Leisure and Conference Hotel. Thirty-
two delegates attended the AGM, and it was recommended that Botswana University
host the 2013 conference. However, the sponsors indicated that they could not sponsor
SACLA if it is situated outside the RSA borders, and Botswana will have to find their
sponsors (Fig. 11).

The 2013 SACLA conference was cancelled; thus, no official handover was made to a
2014 organising committee, leaving the future of SACLA uncertain. Having realised the
cancellation of the 2013 conference, Andre Calitz, Brenda Scholtz, and Clayton Burger
from NMU decided to host the 2014 conference. Arrangements were made to obtain the
seed money from the Botswana University, and steps were taken to start putting more
formal structures in place.

Twenty-one full papers and four short papers were presented at the 2014 conference,
held in the Summestrand Hotel, Port Elizabeth. Professor Steve Burges from the NMU
Business School was the keynote speaker. Ten sponsors, including book publishers, sup-
ported the conference. The conference also awarded the first Best Paper Award. Professor

The 50 Year History of SACLA 17

Year University/ Chair(S) Guest Speaker Sponsor(S) Venue
Dept
f 43 2014 NMMU Dept Andre Calitz, Steve Burges Microsoft, Oracle, Summerstrand Inn, Port
¢ A of Computing Brenda Scholtz, SAP, Imbizo-events, Elizabeth
. 8 Clayton Burger Syspro, BeX, Telkom,
Steve Burges &ﬂ Korbitek, Pearson,
& - Wiley

2015 Wits Emma Coleman Denise Wood ~ Microsoft, SAP, The Maboneng Precinct
Info Sys Universities
Alliances, Oracle,
KPMG, Deloitte, AOS,

Wits Scool of
Economic and
Business Science
2016 UP Linda Marshall Martin Olivier, IITPSA, Univ Pretoria Cullinan
Comp Science Bob Travics
[FirstJournal publication
2017 NWU Estelle Taylor Garndon Gill Adapt IT, IITPSA, IBM, Magaliesberg
Comp Science Oracle, SAP
and Info Sys
2018 UCT Lisa Seymour Richard Oracle, IITPSA, SAP Gordon's Bay
Lisa Seymore Comp Science Baskerville, Estelle Taylor
and Info Sys Mark Horner

Fig. 12. SACLA hosting 2013 to 2018.

Janet Wesson from the Department of Computing Sciences at NMMU announced the
SACLA 2014 Best Paper. The SACLA 2014 Best Paper Award went to Romeo Botes
and Imelda Smit of North-West University for their paper titled “Renewal of a typical
database systems module with NoSQL data stores”.

The first HOD Colloquium was organised, bringing HODs together for discussions
regarding the running of departments, staffing and common challenges experienced.
Eleven HODs attended the colloquium with the assistance of 3 facilitators (Fig. 13).

The WITS Department of Information Systems hosted the 2015 conference, and Dr
Emma Coleman was the conference chair. Guillaume Nel and Liezel Nel won the CS best
paper award with their paper titled “Improving Program Quality: The Role of Process
Measurement Data”, and Thabang Serumola and Lisa F Seymour won the IS best paper
award with their paper entitled “Factors Affecting Students Changing their Major to
Information Systems”. Dr Linda Marshall was the 2016 conference chair, and the first
papers were selected for the journal publication that year. Professor Stefan Gruner from
Pretoria assisted with the first Springer journal publication.

Professor Estelle Taylor from NWU chaired the 2017 conference, and Professor Mar-
tin Olivier (UP) was the guest speaker at the conference, speaking about computer foren-
sics. Professor Lisa Seymour from UCT chaired the 2018 conference, held in Gordon’s
Bay. Seventy-seven papers were submitted, and 47 papers were accepted. Douglas Parry
and Daniel Le Roux from Stellenbosch University received the conference’s Best Paper
Award for their “Off-task Media Use in Lectures: Towards a Theory of Determinants”.

The 2019 conference took place at the Alpine Heath Resort in the Drakensberg,
South Africa. Professor Mac van der Merwe was the conference chair [21]. The con-
ference proceedings were compiled by Professor Bobby Tait and Professor Jan Kroeze.
Three workshops were offered before the main conference, Academic Writing for Junior
Informaticians and Computer Scientists, a South African Computer Accreditation Board

18 A. P. Calitz

Back: Prof Jan Kroeze (UNISA), Prof Elize Ehlers (UJ), Prof Greg Foster (Rhodes)
Middle: MJ Matjuda (UL), Antoinette Lombard (VUT); Prof Bennet Alexander (UWC), Manoj Lall (TUT)
Front: Ntosh Wayi (UFH), Prof Lisa Seymour (UCT IS), Prof Jean Greyling (NMU), Prof Andre Calitz
(NMU), Prof Jane Nash (Rhodes)

Fig. 13. First HOD Colloquium held in 2014

meeting and the Amazon Web Services- Educate and Academy Programs. Susan Cam-
pher, the previous SACLA Treasurer, facilitated registering SACLA as a non-profit
organisation, which was why a Money Market account was opened as it was a require-
ment. SACLA is now aregistered non-profit organisation with Registration No: 231-955
NPO.

SACLA 2020 was the first SACLA virtual conference, chaired by Professor Karen
Bradshaw and Dr Ingrid Sieborger from RU. The 2020 conference had initially been
planned from the 6th to 8 July at the Mpekweni Beach Resort in the Eastern Cape.
However, in April 2020, the organisers realised that it would not be possible to hold an
in-person conference due to the COVID-19 pandemic starting with arrangements for a
virtual conference (Fig. 15). The conference organisers presented various awards at the
end of the virtual conference, “Person who participated the most”, “Delegate who asked
the most questions” and Kudzai Katsidzira and Professor Lisa Seymour (UCT) won the
Best Paper Award, with their paper entitled “Factors Impacting Using the Internet for
Learning: The Digital Divide in South African Secondary Schools” [3] (Fig. 14).

SACLA celebrated 50 years of existence in 2021. The Academy of Computer Science
hosted the SACLA 50th virtual conference and Software Engineering from UJ. The con-
ference co-chairs were Professor Marijke Coetzee and Professor Wai Sze (Grace) Leung
from UJ. The conference theme was Post Pandemic Pedagogy and focused on paper
submissions that provided practical experiences and successes in computing education
at a tertiary level to help CS, IS, and IT academics overcome challenges faced during the

The 50 Year History of SACLA 19

Year University/ Chair(S) Guest Speaker Sponsor(S) Venue

Dept

2019 UNISA Mac van der Merwe Dolf Steyn Alphine Resort, Northern

Mac van der Merwe Drakensberg "

2020 Rhodes Karen Bradshaw, Helen Purchase, IITPSA, Rhodes Univ, Online c arijke Coetzee
Comp Science Ingrid Sierborger Charles Young Pearson CORONAVIRUS
and Info Sys o

2021 UJ Academy Wai Sze Leung, Basie von Solms, IITPSA, Univ of Online
of'Compu(er Marijke Coetzee Andre Calitz Johannesburg N ccggr!;?w'guvs Richard Bamett
Science and
Software
Engineering

2022 US Richard Barnett

2023 NWU Estelle Taylor

2024 NMMU Jean Greyling

2025 UFS Eduan Kotze

Wai Sze L:ung
Estelle Taylor

Fig. 14. SACLA hosting 2019 to 2025.

COVID-19 pandemic. Professor Basie von Solms presented the Keynote address entitled
‘Computer Science — from then till now and into the future [22]. The conference was
sponsored by the Institute for Information Technology Professionals from South Africa
(IITPSA). In the IITPSA address at the conference, a call was made that the IITPSA
consider a membership category for academics, called Professional Academic Member.

RHODES UNIVERSITY

Where leaders learn / “TLIDR - Teaching the New Generation?

Ethics and Professionalism \
oviD-19 ©

CORONAVIRUS 200m / . o 3 cus |

=T = ¥ 5 5 =

zuzwmmwsz zuzwm’mzz& zozwmmzvza zozwkuzw znz«momzue znzm’mmm zozwmmzszv zuzwmuzess

TonyPary s

g 1] g g 1] 9
...... - o .
i K | /
. v

0200707143315, 20200707 15131, 2020707145139, 20200707_145142. znznowum 0200707150107, 20200708 065458, 20200708.090020, 20200708 090103, 20200708 090146 20200708 093519, 20200708 093556, 20200708 093757. 20200708 101323,
i i i i 9 i i i ig i i i3 i

ERNEREARLINREOSESE

0200708101330, 20200708 113403, 20200708 135903, 20200709 084044, 20200709 085627, 20200709 091604, 20200709 093443, zazm‘mmzm 2000709102822, 2020709102832, 20200709_ 105945, 20200709 152722, 20200709_152902. 20200709 152907.
i i i i 1) 9 9 i i i i i3 i

1

Fig. 15. SACLA 2020 virtual conference.

20 A. P. Calitz

6 SACLA Paper Review Process, Publications and Conference
Themes

The first call for papers for an annual SACLA conference usually takes place eight
to nine months before the conference in the winter recess period in July each year.
Full research papers and short papers are invited and are submitted using a double-
blind peer-review process. Full papers and short papers, and position papers accepted
after review are presented at the conference. SACLA conference proceedings with an
IBSN number have been produced after the conference. At the 2009 conference AGM,
delegates discussed the possibility of publishing selected papers in a journal and decided
that the editor of SACJ, Professor Lukas Venter, would be approached. Since 2016, the
SACLA conference organisers have produced two publications annually, namely:

e The SACLA Conference proceedings: Selected papers that are not included in the
journal publication are published in the conference proceedings; and

e A Springer Journal publication: Communications in Computer and Information Sci-
ence (CCIS Vol. 730) were selected top papers (up to 20%) presented at SACLA are
published in the journal.

The themes of conferences are presented in Table 1, and the number of papers
accepted and a number of attendees is presented in Table 2.

Table 1. SACLA conference themes

Year | University | Themes

2009 | Rhodes Connecting Students to the Future

2010 | UP Scoring IT education goals in 2010

2012 | UFS Educating in a changing environment

2014 | NMU ICT Education in the Cyber World

2015 | WITS IS Renewing ICT teaching and learning: Building on the past to create new
energies

2016 | UPCS Achieving Brilliance in ICT Education

2017 |NWU Keeping Education Relevant: Infinite possibilities

2019 | UNISA Computing Matters of Course!
2020 | Rhodes TL; DR: Teaching the New Generation!
2021 |UJ Post-Pandemic Pedagogy

Table 2. Publications

Year | Total received | Accepted | Springer journal | Proceedings |Short | Attendees
2012 |23 19 (83%) 9 (47%) 10 33 (AGM)
2014 30 25 (83%) 21 (84%) 4 56

(continued)

The 50 Year History of SACLA 21

Table 2. (continued)

Year | Total received | Accepted | Springer journal | Proceedings |Short | Attendees

2017 63 40 (63%) |22 (35%) 18 (29%) 0 39 (AGM)
2018 |77 47 (61%) |23 (30%) 24 31%) 0 35 (AGM)
2019 |59 27 (46%) | 16 (27%) 11 (19%) 4 58

2020 |53 20 38%) | 13 (24%) 8 (15%) 6 110 virtual
2021 |23 10 (43%) |10 (43%) 0 72 virtual

7 SAICSIT and SACLA

The South African Institute for Computer Scientists and Information Technologists
(SAICSIT) was established in 1982 [15]. The main aims of SAICSIT (2021) are to:

Enhance research and development collaboration with other professional bodies;
Support education and training;

e Seek solutions to technical and socio-economic problems in South Africa by means
of research and development projects; and

Strive for professionalism and excellence.

A primary strategic activity of SAICSIT has been the annual conference, which
started in 1981 (predating the formation of the Institute). SAICSIT founded and man-
aged the South African Computer Journal (SACJ). SACJ is an accredited specialist IT
academic journal, publishing research articles, technical reports and communications in
the Computer Science and Information Systems domains. A more significant number of
academics belong both to SAICSIT and SACLA. The SACLA President is a member of
the SAICSIT council. Both organisations request academics to support both conferences
annually.

At the 2012 SACLA AGM, a proposal was discussed to host the SAICSIT and
SACLA conferences at the same venue, one after the other, not in parallel. Delegates
agreed that each conference must retain its own identity. The AGM minutes indicate,
“We do not want to combine the conferences because the purposes are different”.

8 The Social Side of SACLA

The SACLA conferences included welcome functions and gala dinners. The gala din-
ners included the Best Paper Award and an auction, started in 2014, by Professor Jean
Greyling from the Nelson Mandela University, called “Conference with a conscious”.
The ‘Conference with a conscious’ idea was to identify a charity, obtain some sponsored
and purchased artefacts, and have the delegates bid for an artefact. The proceeds would
then be donated to the charity.

The late Professor Derick Smith was the guest speaker at SACLA 2009, and the
delegates included Rhodes Chris Upfold, John McNeill and Karen Bagshaw (Fig. 16).

22 A. P. Calitz

2009

MPEKWENI BEACH RESORT

[.
20 JUNE - | VLY 2009

o A
ADsa Microsoft ORACLE' masterskil

€

Project Management Lessons from
the 1997 British Lions Rugby Tour
aka
Developing Leadership Skills for our

Information Systems Students

= D C Smith
Information Systems
University of Cape Town
9

In the top middle photo is Professor Jan Kroeze (UNISA), the late Pieter Joubert (Sr,
UP), Sonja Visagie (neé Cloete, UP) and Riana Steyn (UP). Professor Mike Hart attended
with UCT delegates. Delegates from NMU included Professors Jean Greyling, Brenda
Scholtz and Charmain Cilliers.

SACLA 2019 was held in the Alpine Heath Resort, Drakensberg, Natal. The Best
Paper Award was presented to Pakiso Khomokhoana and Liezel Nel from NWU (Fig. 17).
The gala evening was well supported, with delegates supporting the conference with a
conscious fundraiser and later group dancing.

Fig. 16. SACLA 2009 attendees

SACLA 2019 d fi- P 25k v,
15 — 17 July 2019
in the Northern Drakensberg at

Alpine Heath

. SACLA 2019 conference

9

The 50 Year History of SACLA 23

Future of SACLA

The Covid-19 pandemic has changed the format of the past two SACLA conferences,
the SACLA 2020 and SACLA 2021 conferences were both virtual conferences. Future
SACLA conferences will have to cater for face-to-face presentations and possibly include
virtual presentations. The pandemic has introduced a new era of on-line and hybrid
teaching approaches, examining and research supervision challenges, which will shape
the future trajectory of SACLA conference themes. The SACLA 2022 conference is
being hosted by the University of Stellenbosch in July 2022 in Cape Town, followed by
North-West University in 2023.

References

&

—

13.

14.
15.

16.
17.
18.
19.
20.
21.
22.

23.

m O 0N

Anderson, B.: SACLA history (2021)

. Bishop, J.: First years of SACLA. Department of Computer Science, University of Stekllen-

bosch (2021)

Bradshaw, K.: Computer Science Department, Rhodes University, South Africa (2021)
Calitz, A.P., Cowley, L., Petratos, S.: A proposed structure for managing IT diplomas’ pro-
gramme content in South Africa. In: SACLA 2020 Conference, South Africa, 6-8 July 2020
(2020)

Coetzee, M.: RAU Rapport No. 2, 3 September 1969 (2021)

Fischer, B.: Science faculty centenary yearbook (2021)

Kotze, E.: University of Free State Computer Science (2021)

Kourie, D.: University of Pretoria Computer Science (2021)

Kroeze, J.H.: School of Computing History - UNISA (2021)

Marshall, L.: University Pretoria Computer Science Department (2021)

Newcastle University: Computing Science History Seminars (2021). https://www.ncl.ac.uk/
computing/about/history/seminars/

Olivier, M.: Department Computer Science University Pretoria (2021)

Rautenbach, T.: History of the Department of Computing Sciences at the Nelson Mandela
University (2017). Unpublished publication

SACLA: Southern African Computer Lecturer’s Association (2021). http://www.sacla.org.za/
SAICSIT: The South African Institute for Computer Scientists and Information Technologists
(2021). www.SAICSIT.org

Shallit, J.: A Very Brief History of Computer Science (1995). https://cs.uwaterloo.ca/~sha
1lit/Courses/134/history.html

Suleman, H.: Computer Science at UCT: 1970-1990 (2021)

Taylor, E.: PU vir CHO — Rekenaarwetenskap (2021)

Van den Heever, R.: Workgroup for Computer Education Report of a Conference held at the
Golden Gate National Park, 29-30 November 1973 (2021)

Wells, G.: Rhodes University Department of Computer Science (2021)

Van der Merwe, M.: Department of Information Systems, UNISA, South Africa (2020)

Von Solms, B.: Computer science — from then till now and into the future. In: SACLA 2021
Conference, 15-16 July 2021 (2021)

Von Solms, R.: TECLA: Teams meeting 2 September 2021 (2021)

https://www.ncl.ac.uk/computing/about/history/seminars/
http://www.sacla.org.za/
http://www.SAICSIT.org
https://cs.uwaterloo.ca/~shallit/Courses/134/history.html

Teaching Innovation

®

Check for
updates

Minimising Tertiary Inter-group Connectedness
Over Successive Rounds

Andrew Broekman®) @® and Linda Marshall

Department of Computer Science, University of Pretoria, Pretoria, South Africa
andrew.broekman@up.ac.za, lmarshall@cs.up.ac.za

Abstract. Rocking the boat is a teaching strategy to rapidly teach tertiary com-
puter science students the required group and communication skills for software
engineering. This strategy proposes the introduction of high-risk factors into the
group dynamics over short time periods. Group instability is regarded as a risk
factor. It is introduced by reshuffling groups between successive rounds. The main
examples of allocation methods applied during reshuffling include random allo-
cation, academic standing, participation level and Belbin roles. The reshuffling of
groups should ensure that subsequent groups remain heterogeneous with regards
to contact between students, that is minimise the inter-group connectedness. Cur-
rent group formation methods and related software do not focus on the inter-group
connectedness over successive group allocations. The construction and tracing of
groups by hand to ensure a minimum inter-group connectedness is time-consuming
and prone to error. This paper provides a genetic algorithm from the subset of evo-
lutionary algorithms to minimise inter-group connectedness. The proposed algo-
rithm reduces the time and error in constructing groups based on random allocation
over successive rounds.

Keywords: Group formation - Teaching teamwork - Evolutionary algorithms -
Genetic algorithm - Optimisation

1 Introduction

Enrolled B.Sc. Computer Science (CS) students at the University of Pretoria are required
to complete a Software Engineering (SE) module in their final year. The mentioned
module aims to equip students with the required skills to execute the development of a
software system based on SE principles. Each year industry is invited to submit project
proposals to be implemented by students as a capstone project, also known as Project-
Based Learning (PBL). The capstone project requires a group' of five students to iterate
through the Software Development Life Cycle (SDLC) with their choices of software
development teaching strategy, such as agile, scrum, or eXtreme Programming (XP).
Students are expected to proffer a working software system with all associated software
artefacts at the end of the academic year. A non-exhaustive list of artefacts includes Uni-
fied Object Modelling (UML) diagrams, Software Requirement Specifications (SRS),

1 For this paper, the word team can be used interchangeably for group.

© Springer Nature Switzerland AG 2022
W. S. Leung et al. (Eds.): SACLA 2021, CCIS 1461, pp. 27-42, 2022.
https://doi.org/10.1007/978-3-030-95003-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95003-3_2&domain=pdf
http://orcid.org/0000-0003-0338-4567
http://orcid.org/0000-0002-5270-243X
https://doi.org/10.1007/978-3-030-95003-3_2

28 A. Broekman and L. Marshall

Software Configuration Items (SCI), Project Management (PM) with the necessary
Continuous Integration (CI) and Continuous Deployment (CD) on a version-controlled
repository.

Working together in the same group for a year presents students with various social,
behavioural, and emotional challenges. The Rocking The Boat (RTB) teaching strategy
provides students with the requisite skill set. The strategy requires the introduction
of high-risk factors into group dynamics. Skills are taught by necessitating students to
confront and resolve conflict caused by the introduced risk factors. In the aforementioned
SE module, this is accomplished by requiring students to abruptly iterate through the
SDLC and implement a software system under high stress with a low-stake approach in
terms of their assessment. This approach is presented to students through a mini-project
[11, 16-18].

The mini-project is a medium to large scope project prepared by the lecturing staff
and presented during the first six weeks of the academic year. Students are expected to
iterate through the SDLC using the waterfall software development methodology.

RTB introduces various risk factors, one of which is instability [16, 18]. A change in
the membership structure of a group causes this instability. For multiple rounds (alloca-
tions) in an evaluation period, the contact between group members should be minimal,
thus keeping the long-term effect of negative group dynamics at a minimum. Peer review
and self-reflection after a round enable students to vent any negative emotions and learn
from the experience. Minimal contact between members ensures high instability in
the groups. This paper introduces an evolutionary algorithm to minimise the contact
between individuals over an evaluation period. For this paper, the focus is on automating
group allocations and not on the specific evolutionary algorithm. The presented approach
focuses on random group allocation using a Genetic Algorithm. It can be extended to
automate other allocation methods. Automating group formation in the context of RTB
decreases administrative overhead and error.

Section 2 presents the reader with an overview of RTB teaching strategy. Section 3
highlights the effort needed to manually construct groups for the application of this
strategy. An overview of Genetic Algorithms (GA) is provided in Sect. 4. Section 5
presents the implementation with an outline of future work in Sect. 6, and concluding
remarks are presented in Sect. 7.

2 Rocking the Boat (RTB)

In2011 Pieterse et al. [16] introduced RTB, after acquiring ethical clearance, as a teaching
strategy to teach tertiary CS students the required group and communication skills for
SE. The strategy introduces high-risk factors over a short period into the group. A short
period is specifically selected to ensure that there are no lasting effects. Students learn
the required skills practically by needing to solve group conflicts to accomplish a stated
academic goal [16, 18].

2.1 Theory

To successfully teach group dynamics, the group needs to experience four stages: (a)
Forming—Initial boundaries are determined by familiarising oneself with the group; (b)

Minimising Tertiary Inter-group Connectedness Over Successive Rounds 29

Storming—Group hierarchy and division of roles are established through conflict; (c)
Norming—Rules of engagement and group cohesion are established through the resolu-
tion of conflict; and (d) Performing—Functioning as a single unit to accomplish a com-
mon goal. Iteration through the first three stages is a prerequisite to reaching the final per-
forming stage [16, 22]. RTB aims to introduce multiple storming and norming stages to
accelerate the process of learning the skill set required for performing in a group [16, 18].
Students learn group management, communication and conflict resolution skills at arapid
pace because of the introduced risk factors.

RTB risk factors include: (a) Large group—Small groups should not exceed five
members; (b) Instability—Frequent changes to the group membership structure; (c)
Large project scope—Requiring the completion of a complex goal in minimal time;
(d) Academic diversity—Ensuring the group is composed of students with varying aca-
demic skills; and (e) Lack of experience—Execution of a goal in a context where the
group has little or no experience [11, 16, 18].

2.2 Participation Levels

The level of engagement of a member within a group is referred to as the participation
level. The Ringelmann effect refers to the negative correlation between group size and
the level of engagement [7]. RTB identifies four types of participation levels: (a) Diligent
isolate—"‘An individualistic member that relies only on himself/herself to complete the
tasks at hand”; (b) Insightful shaper—“A member who takes great responsibility to
ensure that the required work gets done and usually works harder than is expected”; (c)
Compliant worker—‘An individual who is likely to accept the decision of others without
consideration”; and (d) Social loafer—*“An individual whose contribution is perceived
to be inferior to that of others in a team” [11, 16, 18].

2.3 Group Allocations

Section 2.1 provided an overview of various risk factors. Instability is introduced by
changing the group members in a group [8, 18]. Two parties that have worked together
in a group is said to have had contact. Contact between two members should ideally
only occur at most once. Placing members together who had prior contact reduces the
instability of the group [11].

RTB presents various group allocation strategies, namely random allocation, par-
ticipation levels, academic standing and Belbin roles, discussed below. There is no
requirement that the same allocation method is used across different group formations
over the rounds.

Random Allocation. Members are randomly allocated to groups. Random allocation
ensures that an equal probability exists for the group to be functional or dysfunctional. It
is explicitly stated that other factors might contribute to dysfunction in the group. Only
factors that the lecturing staff can control is taken into consideration [16].

Participation Levels. Group members are allocated based on participation level as mea-
sured by some instrument, possibly peer review on a previous round. Students can either

30 A. Broekman and L. Marshall

be grouped on the same participation level; that is to say, all diligent isolates are placed
together in groups, followed by social loafers, insightful shapers and lastly, compliant
workers [16]. An alternative allocation strategy is to ensure inter-group balance where
the group is composed of a balanced allocation of participation levels [15].

Academic Standing. Academic diverse groups are constructed by ranking the marks
of the cohort from highest to lowest. How academic marks are combined per student
is outside the scope of this paper. Upon completion of ranking the students, the top n
students are allocated to n different groups. This process is repeated until all students
have been allocated to groups. After group formation, the average and standard deviation
for each group are calculated using the marks of the individual group members. Members
may be moved between groups to ensure a similar average and standard deviation across
groups.

Alternatively, academically similar groups can be constructed. After students have
been ranked based on academic marks, the top n students are allocated to the first group,
whereafter the process is repeated until all students are divided into groups [11, 15, 18].

Belbin Roles. Belbin’s theory focuses on the behaviour of individuals when present in
a group and the role that they fulfil with the group hierarchy. Groups can be constructed
in such a way as to be Belbin balanced, implying that the group organisation satis-
fies Belbin’s recommendations. Alternatively, groups can be constructed to be Belbin
unbalanced [11].

Hybrid Allocations. Hybrid allocations make use of a combination of the above allo-
cation strategies. An example strategy is to classify students using two orthogonal clas-
sifiers. The first axis is based on participation and is divided into three quadrants corre-
sponding to leader, worker or slacker. The second orthogonal axis is based on academic
ability and is again divided into three quadrants corresponding to strong, average, and
weak [16, 18].

2.4 Application

The mini-project is presented using an adaptation of the waterfall approach due to time
constraints. The project proposal is prepared by the lecturing staff, who assumes the role
of the client during the lifetime of the mini-project.

A presentation is presented to students that describe various aspects of the project.
Aspects that are covered include, but is not limited to, the vision, mission, purpose,
target audience, platforms and proposed technologies. Students are requested to elicit
requirements from the client after the presentation.

The staff proceeded to allocate students into groups larger than five students using
one of the allocation strategies. This large group size is the first risk factor being intro-
duced. The first round requires students to submit a Software Requirements Specification
(SRS) document created in LaTeX. The document should only provide information on the
functional requirements of the proposed software system. The submitted SRS document
should contain the following concepts: (a) Introduction—How the group understands the

Minimising Tertiary Inter-group Connectedness Over Successive Rounds 31

system; (b) Functional requirements—Functional requirements of the system including
use-cases; (¢) User characteristics—Users who will engage with the system; (d) Trace-
ability matrix—Ensuring coverage of the requirements by the identified use-cases; and
(e) Class diagram—Proposed syntactically correct UML class diagram. The large scope
of work is the second risk factor being introduced.

Second group allocations and instructions for the round are released twenty-four
hours before the first round deadline. Groups are reshuffled for the second round. The
reshuffling of groups introduces the third risk factor of instability. Groups are expected
to create a new SRS document from their collective first submissions. The newly created
SRS document is to include the non-functional requirements of the system, namely: (a)
Quality requirements—Discuss and quantify the non-functional quality requirements
required by the system; (b) Architecture patterns and constraints—Discuss the choice
of patterns; (c) Actor-system interaction models; (d) Deployment model—Discussion
in addition to a syntactically correct UML deployment diagram; and (e) Technology
choice—Discuss mapping of the technology-neutral solution to a technology stack.

Upon completion of the second round, the lecturing staff release the model solution
SRS document. During the subsequent lecture, students are provided with the differences
between software development and SE. A high-level outline of enterprise software archi-
tectures and frameworks is also provided. After the presentation, students are afforded
the opportunity to ask the lecturing staff about the provided model solution.

For the final phase students are divided into a two-tier grouping, depending on head-
count. The first tier represents the virtual organisation for which the students will work.
The second tier represents the subsystems identified by the lecturing staff. An integration
group is constructed out of students who achieved the highest marks in the prerequisite
modules, namely Software Modelling and Data Structures and Algorithms. The integra-
tion group oversees the virtual organisation. The integration group has two functions
namely: (a) Facilitate communication across subsystem groups; and (b) Required to
implement the web and mobile application. The web and mobile application is built in
a hybrid technology such as Ionic Angular.

2.5 2021 Group Allocation Requirements

In the 2021 academic year, the students received the following brief: CrowdBook is a
crowd-sourcing book application that will allow people to search for books, be alerted
when selected books are placed on the platform enabling them to rent or buy books.
The current market of online booksellers is catering to individuals who only want to
purchase new books or are too scared to buy second-hand books because it is difficult to
establish the book’s quality remotely. This application hopes to target book lovers from
all walks of life who still loves the feel and smell of a book on a lazy Sunday afternoon
relaxing in a hammock.

During the requirement elicitation, the client stated that the platform would use the
Bitcoin Testnet [21] to facilitate payment between parties. More specifically, the software
system was functioning as an escrow account, and that the blockchain should be moni-
tored directly by the software in question. That is no external Application Programming
Interface (API) should be used to interrogate the blockchain.

32 A. Broekman and L. Marshall

For the Crowdbook system the following subsystems were identified and presented
to the students: (a) Book subsystem; (b) Notification subsystem; (c) Payment subsystem;
(d) Recommendation subsystem; (e) Reporting subsystem; (f) Shipping subsystem; and
(g) User subsystem.

Table 1. Student numbers for SE module. Table 2. Table illustrating the various
group allocation parameters over the aca-
Year Student numbers demic years of 2020 and 2021.
2011 64 -
Round | Activity Year
2012 59
2020 | 2021
2013 54
Round 1 | Number of 22 19

2014 56 groups
2015 o8 Group size 6 8
2016 75 Round 2 | Number of 17 19
2017 96 groups
2018 81 Group size 8 8
2019 79 Round 3 | Number of 3 3
2020 123 major groups
2021 153 Integration 6 6

group size

Number of 6 7

subsystems

Subsystem 7 6
group size

Total groups |21 24

The lecturing staff required group allocations for three rounds. The first and second-
round groups were to be of size eight and allocated using the random group allocation
method. For round three, a two-tier division is required due to the class size. The class
is divided into three development groups, namely Alpha, Beta and Gamma, referred to
as the first tier. For the second tier, each of the first-tier development groups is further
divided into eight groups—seven subsystems and an integration group. Each of these
groups comprises six members. The integration group should be constructed using the
balanced academic standing group allocation method. The remaining group are allocated
using the random group allocation method. Table 1, read in conjunction with Table 2,
highlights the complexity of constructing and tracing groups by hand.

3 Allocating Groups

Various software systems [2, 3, 24] exist, and papers have been published on group
allocation algorithms. Examples of such algorithms include ant colony optimisation
[4], evolutionary algorithms [6, 12, 13, 25], particle swarm optimisation [10, 26] and

Minimising Tertiary Inter-group Connectedness Over Successive Rounds 33

those using more traditional mathematical constructs [2]. Limited literature on automat-
ing group allocation such that the inter-group connectedness over successive rounds is
minimised exists.

3.1 Automation

For the presented SE module at the University of Pretoria the allocation of students is
done manually. This allocation involves the manual tracing of students, either using pen
and paper or a spreadsheet with complex formulae taking many hours, to ensure that
contact is minimised over rounds. While a manual approach can be used for smaller
groups, the SE module has seen an increase in student numbers from 2020 (refer to
Table 1)?. This increase in student numbers presents the lecturing staff with a scaling
problem.

Round 1 Round 2 Round 3

Fig. 1. Visual example showing group allocations over successive rounds with an inter-
connectedness value of one.

3.2 Inter-group Connectedness

Suppose a class of nine students, indicated by the letters a — i, in Fig. 1, need to be
allocated to three rounds with each group comprising of three students. The first-round
students are divided into groups as indicated by the container named Round 1. Coloured
circles indicate the respective group allocations. For the second round, students need to
be divided, with the constraint that if two students have worked together in Round 1,
they may not work together again in Round 2. Similarly, for Round 3, students need to
be allocated again such that students have not previously worked together in Round 1
or Round 2.

2 Student numbers for the years 2011-2013 (inclusive) is obtained from literature [11]. Figures
from 2014-2020 (inclusive) refer to the student numbers at the end of the module. The figure
for 2021 is as at the fourth round of the mini-project.

34 A. Broekman and L. Marshall

When two students work together in a Round, say students d & e in Round 1, then
such students are said to be connected. If overall rounds, any two students only had
contact once, then such a group allocation is said to have an inter-connectedness value
of one, the minimum value for any group allocation. This paper seeks to minimise
inter-connectedness, ideally to a value of one.

Formally to partition a class C into a set of rounds R = {R{, Ry, R3, ..., R,;} where
n € N, n > 0. Each round R; distinctly partitions the class C such that R;; N R; N Ri3 N
...N Ry, = 3,1 <i <n,Vm, where i, m € N and m > 0. Furthermore, each round,
R; partitions the class C uniquely such that once two elements x,y € C co-occur in a
group R;;,j € N, j > 0, they never co-occur in another group Ry, Vk, p with i # k.

4 Genetic Algorithms

GAs is a subset of Evolutionary Algorithms (EA), which are metaheuristic optimisation
algorithms inspired by biological evolution. GAs are based on the theory of evolu-
tion—Survival of the fittest—from Charles Darwin. GAs operates on a population of
individuals, where each individual represents a possible solution. Each subcontract will
be discussed to promote understanding in the subsequent sections. Various biological
subconstructs are mimicked during each iteration of the algorithm, such as reproduction,
mutation, crossover, and selection, each discussed in greater detail in subsequent sec-
tions. To drive the algorithm towards a candidate solution, a fitness function is employed
[1, 20].

4.1 Representation

The representation of the solution plays a critical role in the design and functioning of
the genetic algorithm. Representation is concerned with the encoding of the arguments
which constitute the solution parameters. A representation is problem-dependent. The
design of a good representation takes the constructs of crossover and mutation into
account. Various representation formats are commonly used which include, arrays, bit
representations, strings [20] and even more complex structures like graphs [5, 14] or
Artificial Neural Networks (ANN) [9, 23].

4.2 Crossover and Mutation Operators

The canonical definition of a GA defines crossover operators as global operators. The
crossover operators are used to ensure that the solution space is thoroughly explored. The
crossover operators are concerned with how the representation of two or more selected
individuals can be combined to produce new offspring. It is this recombination that
provides the algorithm with the ability to explore the solution space [20].

Mutation operators exploit a given area of the fitness landscape to determine the
most optimal solution by operating on the constituent parts of the individual [20].

Minimising Tertiary Inter-group Connectedness Over Successive Rounds 35

4.3 Selection

Two stages in the canonical GA require the selection of individuals. The first stage
occurs when several individuals need to be selected for the crossover operator [20]. It is
mentioned explicitly that the number of individuals selected must be equal to the number
of individuals required by the operator. The second stage of selection occurs when a new
population must be created for the next epoch (generation) of the algorithm [20]. Some
implementations of GAs do not select a new population, but rather cull the entire current
population and replace it with the newly created offspring. The argument against this
approach is that good genetic material may be lost in the culling process as offspring
are not guaranteed to be fitter than their parents because of the stochastic nature of the
algorithm. The alternative is to combine the current population and offspring into a new
cohort and apply a selection method to the newly combined cohort.

The selection algorithm is one of the mechanisms to control the convergence rate in
the GA. The convergence rate refers to the rate that the GA transitions from exploration of
the solution space to the exploitation of the solution space to finally produce a candidate
solution [19, 20]. When searching for solutions by using artificial intelligence or machine
learning, there is an interplay where the solution space should be explored at the start
of the algorithm. As the algorithm progresses towards the end, the algorithm should
ideally have found a “good” solution, possibly the global optimum, and start to exploit
that region to obtain the best candidate solution.

Selection policies can be ordered on a spectrum by the speed at which the GA
converges. Random selection policy is the slowest selection policy in which an individual
is selected randomly from the population without any regard to fitness [20]. The effect
of this approach is that the algorithm will either converge extremely slowly or never.
The lack of convergence is because the best genetic material is not carried forward to
the subsequent populations. On the other end of the spectrum, with the elitism selection
policy, only the fittest individuals are selected [20]. This causes the GA to converge
extremely quick in most cases, called premature convergence. Premature convergence
causes the algorithm not to explore the solution space sufficiently often, causing one not
to find a “good” candidate solution, according to the fitness function.

The selection policy tournament selection is located between the two previously
mentioned selection policies. Tournament selection proceeds to select a subgroup from
the cohort of size N, where N is called the arity of the tournament selection. Once the
subgroup has been selected, the fittest individual is then selected from this group [20].
The arity controls the convergence of the algorithm, also known as the convergence
pressure. If the arity is equal to one, tournament selection becomes random selection,
whereas if the arity is equal to the cohort, it becomes the elitist selection.

4.4 Termination

GAs have no idea as to whether a global optimum solution has been reached. A mecha-
nism is required to determine when the algorithm should be terminated. One approach
is to observe whether evolution has taken place for the past N generations. The value of
N would be problem dependent. If no evolution has occurred, it can be concluded that
the algorithm has obtained a candidate solution. An alternative approach might limit the

36 A. Broekman and L. Marshall

algorithm to a prespecified number of generations or to a predetermined execution time.
The disadvantage of this approach is that one does not necessarily know the required
number of generations or time for a candidate solution to be found beforehand. An alter-
native is to terminate the algorithm when a fit enough individual has been found. For
some problems, it might be easy to determine what this value should be, while for other
problems, it is unknown beforehand what the threshold value should be [20].

4.5 Fitness Function

The fitness function is critical to the success of the GA as it guides the algorithm in finding
a candidate solution [20]. The fitness function might be easily determined and computed
for some problems, such as a set of simultaneous equations. For other problems, it might
be intractable or computationally expensive to calculate the fitness, such as wind tunnel
simulations for motorbike frames or building plans for an office skyscraper.

S Application of a GA for Inter-group Connectedness

The approach taken to implement the 2021 group allocation requirements (Sect. 2.5)
using a GA is given using an example with mock data to demonstrate the algorithm.

5.1 Data Overview

A Comma Separated Value (CSV) file is used to feed the required input data into the
GA. The file is obtained from the University of Pretoria’s student database record sys-
tem and is combined with the marks for prerequisite modules. Data points for the file
include: (a) Emplid—The students’ employee identifier on the human resources system.
Functions as a “student number”; (b) Last Name—The family name of the student as
captured by the human resources system; (c) Initials (Name)—The given name includ-
ing the initials of the student as captured by the human resources system; (d) Zitle—The
title of the student as captured by the human resources system; (e) Email Address—The
email address of the students as submitted in enrollment for the year by the student; (f)
COS212—Prerequisite Data structures and Algorithms module; (g) COS214—Prereq-
uisite Software Modelling module; and (h) Total—An external weighted column which
was skewed 60% towards the Data structures and Algorithms module with the Software
Modelling module contributing 40% towards the weighted average.

5.2 Methodology

The strongest students of the group, based on previous year marks, to be represented
in the various “organisations” integration groups is required. For this reason, the prob-
lem is approached by first allocating the last round and working towards allocating the
groups for the second and then the first round. The allocation for the third round is
done programmatically by ranking students based on the weighted marks from high to
low. The top three students are selected and allocated to the Alpha, Beta, and Gamma
integration groups respectively. Thereafter the following three students are allocated to

Minimising Tertiary Inter-group Connectedness Over Successive Rounds 37

the respective integration groups. This process is continued until each integration group
is composed out of six students. The remaining students are randomly allocated to the
respective seven subsystem groups. After allocation, three students remained, which
were equally distributed between the larger first-tier groups. Each of the remaining stu-
dents was however randomly allocated to one of the seven subsystems. The reason for
allocating the last round in this programmatic way was to minimise the solution space
that the GA had to search.

Visual Paradigm Standard(Andrew Broekman(University of Pretoria).

Partition Student
-fitness : Integer -employeeld : String
+getFitness() : Integer -lastName : String
+setFitness(fitness : Integer) ~firstName : String
+getAssignments() : List<Assignments> title : String
-email : String
1 -grade : Double
-groupAssignments : List<String>
assignments: List<Assignments> +getEmployeeld() : String
+setEmployeeld(employeeld : String)
1.* +getLastName() : String
ASSighment +setlLastName(lastName : String)
+getFirstName() : String
-hame : String +setFirstName(firstName : String)
-isProtected : Boolean +getTitle() : String
-groups : Map<String, List<Student>> +setTitle(title : String)
+getName() : String getEmail() : String
+setName(name : String) +setEmail(email : String)
+isProtected() : Boolean +getGrade() : Double
+setProtected(aProtected : Boolean) +setGrade(grade : Double)
+getGroups() : Map<String, List<Student>> +getGroupAssignments() : List<String>

Fig. 2. UML class diagram illustrating the design used to represent the individuals in the GA

For the GA an individual is represented by containing a list of three assignments
which contains a Boolean flag, representing whether the groups in the assignment can be
mutated. Each assignment has a map of groups, which maps the group to a list of students.
For a visual reader, refer to the attached class diagram in Fig. 2. The Partition class
represents the individual in the algorithm. For each round a corresponding Assignment
class is created together with a Student class to represent students.

Consider two randomly shuffled class lists, Cy and C,, upon which a crossover oper-
ator is applied. A single point crossover operator will select a random index. This random
index will function as the pivot point around which the two lists will be recombined.
Class lists C; and C, will be split to obtain four parts namely C1 = {C;y, C12} and
Cy = {Cy1, Cy}. After which the crossover operator will produce two new class lists,
namely C3 = {C21, C12} and C4 = {C11, Ca2}.

Since the lists C; and C; are randomly shuffled, the newly constructed lists, C3 and
C4, will be corrupt, that is students will be duplicated while others are missing.

38

A. Broekman and L. Marshall

C. | Sudentb C. | Sudent a
1] Sudent ¢ 3] Sudent b
11 X 4 21
“ Vs
’
Fivot Point._ * J
~ | student a * g Sudent a
A
A2
C12 X C12
s ®
Vs A Y
A Y
C. | Sudenta ,' sC | Sudentb
2 | sudent b K *, 4] Sudent ¢
. .
14
C21 Y C11
Pivot Point
" [student ¢ Student ¢
CZ2 C22

Fig. 3. Visual depiction of one point crossover operator corrupting student class lists

Figure 3 depicts the above-explained scenario visually. The figure indicates how
Student a is appearing twice in class list C3 while Student c is missing. A similar scenario
is observed in class list C4, where the Student b is duplicated and Student a is missing.

To correct an error in an individual would involve comparing the students in the list
against some reference list. This would involve a multi-step process: (a) determine the
set difference between each assignment and the reference list of students; (b) determine
which students are duplicate; (c) removing duplicate students; (d) determine the set
difference again between each assignment and the reference list; and (e) adding the
calculated set difference back into the list of students for each assignment. For this
reason, all crossover operations are removed from the algorithm; in other words, only
mutation operators were utilised.

Two mutation operators were defined, namely (a) Removes a random student from
the selected group and place them into a random target group; and (b) Removes a random
student from a randomly selected target group and adds them into the currently selected
group.

For this paper, a combination of three termination policies was used: (a) no evolution;
(b) generation limit; and (c) fitness threshold value.

5.3 Mock Data Example

A class list with 20 mock students was prepared. The parameters used during the run
for this example are as follows: (a) Number of assignments: 3; (b) Group size—4; (c)
Population Size—50; (d) Mutation Probability—0.10; and (e) Tournament Arity—50.
The stated requirement for this example is to divide students randomly into groups of

Minimising Tertiary Inter-group Connectedness Over Successive Rounds 39

size four, such that the inter-group connectedness is minimised over three successive
rounds. The group sets for each round is displayed in the following example:

Class

Rounds

Round 1

Round 2

Round 3

{ 01, 02, 03, 04, 05, 06, 07, 08, 09, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20}

{ Round 1, Round 2, Round 3 },

{ Group 1, Group 2, Group 3, Group4, Group5 },

{ {05,09, 13, 20}, {02, 04, 15, 19}, {01, 08, 14, 17},
{03, 10, 16, 18}, {06, 07, 11, 12}},

{ Group 1, Group 2, Group 3, Group4, Group 5},

{ {01, 02, 11, 13}, {04, 07, 08, 16}, {09, 10, 17, 19},
{03, 06, 15, 20}}, {5, 12, 14, 18}}

= { Group 1, Group2, Group 3, Group4, Group 5},

{ {01, 07, 18, 19}, {02, 05, 06, 10}, {09, 14, 15, 16},
{04, 11, 17, 20}, {03, 08, 12, 13}}

Table 3 provides a visual investigation into the connectedness between students.
A 10% grayscale background indicates the groups for the first round, a 40% grayscale
background indicates the second round, while a 70% grayscale background indicates the
last round. The count indicated in the table indicates the number of times that there was

Table 3. Table displaying the inter-group connectedness visually over three successive rounds.
The first round is indicated in 10% grayscale, the second in 40% grayscale and the third in 70%

grayscale.

01]02] 03

04|05 06 070809 | 10|11)12 13 |14 [15|16| 17|18

01 1
02| 1
03 |
04 1
05

1 1 1|1 1
1 1 1 1

06
07
08| 1

09

10

111]1

12

13|]1]1

14| 1

15 1

16

17 |

18

19 1
20

BN cE
s —
—
Il
—

— —
bt | bt | | -
i

—
—

— | —
b—

—

—

40 A. Broekman and L. Marshall

contact between the two students over different rounds. As can be noted from the table,
all students had precisely only one interaction with each other. It is stated that the table is
symmetrical around the diagonal, as is expected. If student 2 and 3 work together, then
students 3 and 2 also work together. When plotting the connectedness between students,
it is only necessary to plot the upper or lower quadrants. For this paper, both the upper
and lower quadrants of the triangle were completed.

Either the row or column of a student in question can be used to lookup with which
other students in other groups they have contact. To understand with whom student 08
has contact in Round 1, the row or column corresponding to student 08 is used for the
lookup. Round 1 corresponds to all students coloured in 10% grayscale, thus {01, 14, 17}.
All students coloured in 40% grayscale correspond to Round 2 which is {04, 07, 16},
while the group of students for Round 3 is provided by {03, 12, 13} with a 70% grayscale
background.

6 Future Work

Due to corrupting the student lists crossover operators were removed. If a traditional
crossover operator is used, a repair mechanism would need to be run after crossover to
repair the integrity of student lists. Future work needs to investigate how crossover oper-
ators could be defined for the lists to reduce the convergence time by searching a more
extensive solution space while not corrupting the integrity of the lists. If a crossover oper-
ator cannot be defined, how would a repair mechanism function? Would the introduced
overhead of such a repair mechanism justify the additional solution space searched?

Further work is also to be undertaken in expanding the capability of the GA to allow
for more complex optimisations such as using varying group allocation strategies over
different rounds as being able to understand, interpret and allocate students according
to various personality frameworks such as Belbin roles and Briggs Myers personality
types. Moreno et al. [12] proposed a GA to group students on characteristics for a single
round. This work can be considered for extension to allow for the grouping of students
over different rounds with various characteristics while ensuring the inter-connectedness
is minimised.

Migration patterns [11] will be investigated at the completion of the mini-project.
Once groups for the capstone project have been formed, an investigation into the migra-
tion patterns will take place to compare the current academic year migration patterns to
those presented in previous years. It is believed that these patterns could assist lecturers
in identifying at-risk groups using automated software.

7 Conclusion

This paper presented the reader with a high-level overview of the Rocking The Boat
teaching strategy and Genetic Algorithms. With the increase in student numbers experi-
enced by the lecturing staff of the Software Engineering module, an alternative solution
was required to construct groups that still satisfy the instability risk mandated by the
strategy. This paper proposed using genetic algorithms to construct groups by using a

Minimising Tertiary Inter-group Connectedness Over Successive Rounds 41

random allocation strategy while ensuring that the inter-connectedness across succes-
sive rounds is minimised. This approach was successfully used to construct groups for
the 2021 academic year. The mini-project for 2021 experienced an increase in student
numbers and a higher administrative burden than the previous academic years due to
the COVID-19 pandemic. The tool assisted in reducing the time and errors for group
allocations.

References

10.

11.

13.

14.

15.

16.

. Bick, T., Schwefel, H.P.: An overview of evolutionary algorithms for parameter optimisation.

Evol. Comput. 1(1), 1-23 (1993)

Bekele, R.: Computer-assisted learner group formation based on personality traits. Ph.D.
thesis, University of Hamburg, January 2006

Christodoulopoulos, C.E., Papanikolaou, K.A.: A group formation tool in an e-learning con-
text. In: 19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI
2007), vol. 2, pp. 117-123 (2007)

Graf, S., Bekele, R.: Forming heterogeneous groups for intelligent collaborative learning sys-
tems with ant colony optimization. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) Intelligent
Tutoring Systems, vol. 4053, pp. 217-226. Springer, Heidelberg (2006). https://doi.org/10.
1007/11774303_22

Hou, E.S., Ansari, N., Ren, H.: A genetic algorithm for multiprocessor scheduling. IEEE
Trans. Parallel Distrib. Syst. 5(2), 113-120 (1994)

Hwang, G.J., Yin, P.Y., Hwang, C.W., Tsai, C.C.: An enhanced genetic approach to composing
cooperative learning groups for multiple grouping criteria. Educ. Technol. Soc. 11, 148-167
(2008)

. Ingham, A.G., Levinger, G., Graves, J., Peckham, V.: The Ringelmann effect: studies of group

size and group performance. J. Exp. Soc. Psychol. 10(4), 371-384 (1974)

Koppenhaver, G.D., Shrader, C.B.: Structuring the classroom for performance: cooperative
learning with instructor-assigned teams. Decis. Sci. J. Innov. Educ. 1(1), 1-21 (2003)
Kulaksiz, A.A., Akkaya, R.: A genetic algorithm optimised ANN-based MPPT algorithm for
a stand-alone PV system with induction motor drive. Sol. Energy 86(9), 23662375 (2012)
Lin, Y.T., Huang, Y.M., Cheng, S.C.: An automatic group composition system forcomposing
collaborative learning groups using enhanced particle swarm optimization. Comput. Educ.
55(4), 1483-1493 (2010)

Marshall, L., Pieterse, V., Thompson, L., Venter, D.M.: Exploration of partici-pation in student
software engineering teams. ACM Trans. Comput. Educ. (TOCE) 16(2), 1-38 (2016)

. Moreno, J., Ovalle, D.A., Vicari, RM.: A genetic algorithm approach for group formation

in collaborative learning considering multiple student characteristics. Comput. Educ. 58(1),
560-569 (2012)

Nand, R., Sharma, A., Reddy, K.: Skill-based group allocation of students for project-
based learning courses using genetic algorithm: weighted penalty model. In: 2018 IEEE
International Conference on Teaching, Assessment, and Learning for Engineering (TALE),
pp. 394-400. IEEE (2018)

Paliwal, A., et al.: Reinforced genetic algorithm learning for optimising computation graphs.
In: International Conference on Learning Representations (2020)

Pieterse, V., Thompson, L.: Academic alignment to reduce the presence of ‘social loafers’
and ‘diligent isolates’ in student teams. Teach. High. Educ. 15(4), 355-367 (2010)

Pieterse, V., Thompson, L., Marshall, L.: Rocking the boat. In: Proceedings of the Southern
African Computer Lecturers’ Association (SACLA 2011) (2011)

https://doi.org/10.1007/11774303_22

42

17.

18.

19.

20.

21.
22.
23.

24.

25.

26.

A. Broekman and L. Marshall

Pieterse, V., Thompson, L., Marshall, L., Venter, D.M.: An intensive software engineer-
ing learning experience. In: Proceedings of Second Computer Science Education Research
Conference, pp. 47-54 (2012)

Pieterse, V., Thompson, L., Marshall, L., Venter, D.M.: Participation patterns in student teams.
In: Proceedings of the 43rd ACM Technical Symposium on Computer Science Education,
pp. 265-270 (2012)

Shukla, A., Pandey, H.M., Mehrotra, D.: Comparative review of selection techniques in genetic
algorithm. In: 2015 International Conference on Futuristic Trends on Computational Analysis
and Knowledge Management (ABLAZE), pp. 515-519. IEEE (2015)

Sivanandam, S.N., Deepa, S.N.: Genetic algorithms. In: Sivanandam, S.N., Deepa, S.N. (eds.)
Introduction to Genetic Algorithms, pp. 15-37. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-73190-0_2

Testnet. https://en.bitcoin.it/wiki/Testnet. Accessed 12 June 2021

Tuckman, B.W.: Developmental sequence in small groups. Psychol. Bull. 63(6), 384 (1965)
Unal, M., Onat, M., Demetgul, M., Kucuk, H.: Fault diagnosis of rolling bearings using a
genetic algorithm optimised neural network. Measurement 58, 187-196 (2014)

Wang, D.Y., Lin, S.S., Sun, C.T.: DIANA: a computer-supported heterogeneous grouping
system for teachers to conduct successful small learning groups. Comput. Hum. Behav. 23(4),
1997-2010 (2007)

Yannibelli, V., Amandi, A.: A deterministic crowding evolutionary algorithm to form learning
teams in a collaborative learning context. Expert Syst. Appl. 39(10), 8584-8592 (2012)
Zheng, Z., Pinkwart, N.: A discrete particle swarm optimisation approach to compose hetero-
geneous learning groups. In: 2014 IEEE 14th International Conference on Advanced Learning
Technologies, pp. 49-51. IEEE (2014)

https://doi.org/10.1007/978-3-540-73190-0_2
https://en.bitcoin.it/wiki/Testnet

®

Check for
updates

Teaching in a Time of Uncertainty — A Practical
Guide

Geoffrey Dick®?

St. John’s University, Queens, NY 11439, USA
gfdick@aol.com

Abstract. In March of 2020, many of us were required to move our classes to
an online mode — often with very little notice. For many faculty and students this
was the first time we found ourselves in a learning environment that was not only
unexpected but for many, not what they wanted. Special measures were called
for, and unfortunately, it seems very possible we may need to continue to move
between face-to-face and online classes as the pandemic ebbs and flows. Drawing
on many years of diverse experience in online teaching, this paper provides some
guidance for those inexperienced in online teaching in regards to the pedagogical
changes that are necessary — what can work and what is likely to be problematic.
The paper is written in two sections — the first is focused on using the Learning
Management System to facilitate a quick move to online learning and the second
part covers some of the longer-term difficulties that should be considered as we
progress or move to the new environment.

Keywords: Online classes - Pedagogy - LMS - Online assessment - Pandemic -
covid19

1 Introduction

Like many of my colleagues all around the world in March of 2020, I had to move my
current classes in New York City online — with less than a week’s notice. I consider that
I know quite a bit about online classes — I have been teaching that way for 20 years on
at least six different Learning Management Systems (LMS) platforms, in countries as
far apart as Mexico and Malaysia, from Australia to the US and Singapore to Norway;
teaching students at all levels from those starting their university studies up to those
finishing graduate programs, and taught in at least 6 different major topic areas. But this
was different — in the past, almost all of my online students had been there because they
chose to be, this time they were there because they were given no choice, the pandemic
ruled. And, to compound the difficulty, many of us were well aware that the current need
for urgent action was at least possible to be short-lived as university administrations
searched for ways to bring students back to the classroom. Now, as positive tests rise
and subside in many countries, the future of many online classes remains in limbo.
This inevitably raised the question “How much effort should I put into what may be a
stop-gap solution?” In trying to relate my experiences over those twenty years to that

© Springer Nature Switzerland AG 2022
W. S. Leung et al. (Eds.): SACLA 2021, CCIS 1461, pp. 43-50, 2022.
https://doi.org/10.1007/978-3-030-95003-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95003-3_3&domain=pdf
http://orcid.org/0000-0002-2945-4482
https://doi.org/10.1007/978-3-030-95003-3_3

44 G. Dick

time I learned some things. It is those “somethings” that I would like to share with you,
particularly those of you who are new to online teaching or have only limited experience.

The paper looks first at a central element in online classes — the LMS and the under-
pinning technology. The second part of the paper considers some issues that instructors
might like to consider after getting started.

2 Setting Up the LMS

The role of the LMS has been much studied [1] but its role changed significantly in March
2020. Rather than being a repository for material and supplementing the classroom, it
assumed the public face of classes around the world. For most face-to-face classes
we tend to use a folder structure with separate compartments for course documents
such as a syllabus or outline, another for presentations, another for quizzes and exams,
another for readings, etc., and we expect the students to extract the relevant or require
information from these folders as they progress through the course. From a pedagogical
viewpoint, this works well (in my opinion) as it gives the impression of the whole course
being a composite artifact with all parts inter-relating and building on each other. For
most of my online classes, I have used this structure, in the face of opposition from
the instructional designers. Instructional designers [2] (among others) have argued that
a better approach for facilitating learner control in the online environment is for the
course to be structured into modules each containing everything that is needed for work
in the course in a particular time period — usually a week. The point about user control
is a good one in the current environment where we are encouraging students to engage.

For my classes this Spring, I changed my mind, not for pedagogical reasons, but for
enabling the students to feel more in control and cope better with the exigencies of online
classes, into which they had been drafted. It is important, I think, to remember that most
of them didn’t sign up for this. I once wrote a paper claiming that online classes were
not for all of the people, all of the time [3]. In these last few months, most of us have
been thrust into a situation where online classes are for all of the people (professors and
students alike) and for all of the time — or at least for most of last semester and probably,
for some at least, well into the future. Many students were not well equipped to adapt to an
environment that required them to be independent learners with the underlying necessary
characteristics of being motivated, disciplined, and good at time management.

A survey I conducted at the end of the last term included an open-ended question
along the lines of “what did you like about this course?” Many students commented on
the module arrangement — these two quotes reflect the general themes expressed:

“I like how once we were fully online, that you created modules for completion
which made it a lot easier to see the work we had to do”, and

“The “modules” that you uploaded that clearly told us which assignments where
due on what date exactly, AND that we can see weeks ahead so if something were
to come up we have time to do the assignments early and not miss out.”

Figure 1 below provides a screenshot showing the module approach from a recent
course of mine.

https://doi.org/10.1007/978-3-030-95003-3_1

Teaching in a Time of Uncertainty 45

I Work to be Completed by April 19

BUSINESS (IT-1011-0-
13136-202010)
Build Content Assessments Tools Partner Content

Home Page ®
Syllabus []

. D .
Modules for Online Cours¢@® =] Chapter 13 and 14 Presentations
Completion o

Final

Presentations

Readings

Assignments

~—\ Disruption and eBusiness
Content o

Choose a disruptive technology that might have relevance to your industry. Explain how that technology could
change the way in which you might do business.... cover some of new markets, new products, cost reduction,
introduction of substitute products, protection or exploitation of customer privacy and rights, societal issues.
Anything else that comes to mind?

Discussions
Midterm
Information @ @
Groups

Reminder !!
Tools

A K A
Help Assignment 6 is due this week..... April 16.

Fig. 1. A learning module

We need to bear in mind that students usually take several classes and each professor

does things differently (a version of “academic freedom” perhaps?) — putting everything

to

be done in one place does make it easier for students to complete the work due.
One step that could be taken then, is to set up the LMS in modules — they will still

work satisfactorily if the students come back to the classroom, and are probably better for
online, should it continue. However, whether you go with the more traditional approach
or the module approach, here are some guidelines to aid you in setting up your class,
assuming you are largely left to your own devices:

a)

b)

Don’t get hung up on the technology. In other words, it has to be there, but it
won’t make your course successful by itself. Remember that many students have
limited resources and that most technology has a learning curve. Also, at least for
now, students are likely to be taking several classes online and it is generally seen
as beneficial if they don’t have to deal with several different ways in which to
participate. Try and keep it simple for them.

Remember that many of your students will not have access to the software and
fast, reliable, internet connection that you do — you do not want them to become
disillusioned with your course because they are unable to download a file or stream
avideo. As students vie with other members of the family for computer resources they
will try to cope by using their "phones. In most cases, small file sizes for formatting
video or audio are quite acceptable, particularly when viewed on a small screen.
Test it out — there is a big difference in download time, often with no discernable
difference in quality. It is important that you try and discern what communications
difficulties and costs your students may be experiencing in the operational domain
and adjust your expectations and demands accordingly. This is particularly so in
countries where there may be widespread access issues but almost all of my classes
have had some students who have similar problems at the individual level.

46

c)

d)

)

h)

i)

k)

G. Dick

Always make sure you can see the LMS the way the students see it. Most allow
a “student view”, but these do not always cover everything; some allow dummy
students (in my view the best possible approach but increasingly being phased out,
apparently due to copyright and fraudulent use issues ... I am skeptical). I ask a
student to log on and share screens with me, at least for the initial set-up. Getting
students to help like this is beneficial in another way too — it promotes student
engagement and lets them see that you care about doing things right.

Keep the pages uncluttered and reserve the opening page for announcements and a
short menu.

Remember that at this time many students will be under severe stress — and dealing
with several different classes, perhaps offered in different ways. Find a way to
ensure that students can easily determine if there is anything to which they need
to be paying attention — “Announcements” that appear on the home page for the
course (in the student view) are good but students need to be able to readily discern
if there is anything new — I use a colour-coding system, announcements with a title
in red appeared in the last few days. Some LMS allow you to show the most recent
announcements at the top of a home page.

One document at the top of the menu should be something like “Read this first” and
it should provide a brief and succinct overview of the steps to be taken to get started
and how best to contact you. You might even consider a short video of a screen
capture with you moving through the LMS in the student view.

Decide if you would like to run “office hours”. If so make it clear in the “Read this
first” document how this will work. You have many options here from a WebEx
meeting room to a chat session or even a discussion board. Typically, I do not run
office hours as such, (apart from one or two sessions early in the course, when many
students are unsure about what is expected of them) but I do mostly respond to
messages or emails very quickly, even if just to say “I will get back to you”. If you
don’t want to respond promptly to messages, “office hours” are essential.

Decide on the traditional or module approach and stick to it — it will cause great
confusion if you change horses midstream.

Decide on how you would like to make material available. I am an advocate of the
principle that apart from the textbook, everything needed for the course (apart from
outside research) should be available on or through the LMS. Pdfs, video links,
quizzes, assignment or project submissions, external readings, library links etc., all
fall into the category of “everything”. Some like to use a shared drive — but I believe
the one-stop-shop makes it simpler and easier for them to cope.

Many LMS provide extensive statistics for analysis related to your course — who
has watched your presentations and for how long, how many times students have
accessed certain sections, grading statistics etc. They can be a useful tool in iden-
tifying underperforming or “at-risk” students — an essential task in online classes
with involuntary enrolment. Make sure you know what is possible (some of these
have to be set up in advance) and decide if you would like to use them. A simpler
way could be to set a short quiz each week and monitor completion — a great “early
warning” system for identifying students likely to fall into trouble.

Try and stay at least a couple of weeks ahead, ideally set up all of the main items
(presentations, assignments, readings) at the beginning of term. It does not create a

Teaching in a Time of Uncertainty 47

good impression to be loading material a day or so before you expect the students to
be working on it. On the other hand, there is really no need to put all the presentations
up at the beginning — of it can be seen that a place for them is available, that will be
sufficient. This may save some effort should we return to the classroom mid-semester.

1) If youmake an amendment to the syllabus, course outline or schedule, draw attention
to it as an Announcement. If it is important, send an email as well.

3 Getting the Class Moving

Once we have the LMS and technology in place there are a few more central issues that
we can address relatively quickly and take action to promote student engagement and
learning.

3.1 Discussions

Discussions on an LMS platform are intended to provide a forum to replicate in-class
discussion. But do not look to the discussion board to provide a substitute for the sort of
question you might ask during a presentation to ensure that the students are following
your drift. The synchronicity doesn’t work. On the other hand, in my experience they can
provide a useful base for developing ideas further and having the students build on each
other in the development of ideas or comprehension — this is probably the best part of the
course for the students to learn from each other. However, there is at least some evidence
that discussions do not contribute much to course satisfaction and student achievement
[4].

As an aside the discussion board can provide a useful resting place for Frequently
Asked Questions — have the students post their questions there along with your answers,
although in my experience this works well only for the first couple of weeks. After that,
they revert to asking directly, rather than bothering to look at the FAQs.

To use the discussion board effectively:

a) You must be prepared to comment frequently on the student postings. If you do not
do so, it will not take them long to assume you are not interested in what they have
to say. For my small class last Spring I tried to make some short comments on each
student’s post, for my larger one I put together a summary at the end of the discussion
period, where I mentioned several contributors by name and chose the odd quote
made by one or more to illustrate a point. Feedback to the students, making them
feel they are appreciated is very important in times of stress.

b) Forlarge classes (say more than 20) it is probably impractical to expect every student
to read every post. And dozens of posts and comments on posts are difficult for you
to stay on top of too. I like to break the class into groups of about 8 and appoint one
person for each topic to write a summary of the postings on that topic at the end of
the discussion period (for grade points). It can be a nice review exercise to have the
students compare the summaries across groups.

¢) In order to ensure postings keep coming, you will almost certainly have to use the
heavy hand of grading — (and here is the difficult bit) in a way that reflects student

48 G. Dick

effort but does not necessarily provide them with a “checklist” of things they have to
do to get full points — post by a particular date, comment on the posts of two others,
write 100 words etc. I usually try and provide individual feedback about halfway
through the term as to the value I have seen in their postings to date — the key point
to get across is that you want to see they have been thinking about the issues, rather
than checking boxes.

d) If your LMS allows it, think about the desirability of not allowing students to see
other posts on a topic before they make their initial one.

e) Shut off the discussions at the end of the discussion period and do not give credit
for late submissions — no one is going to go back and reread old discussions. Point
out that these are not assignments or projects, they are in fact “discussions”.

3.2 Group Work

Group work is particularly problematic in online classes, although in the Spring of 2020
at least all of my students had had some contact with each other. Many students detest it as
they feel it only adds an extra degree of difficulty to a task. Communicating with people
they don’t know, organizing work allocation, subsequent workflows and task completion,
and carrying non-performing team members are all potential frustrations, particularly
in times of external stress. On the other hand, we want the students to experience group
work as it enables more meaningful tasks to be set and assessed, we need to demonstrate
to the accrediting agencies and potential employers of our students that they are equipped
to work in teams and it gives them experience in working in spatially- and time-distant
environments — surely what they will experience in the workplace. And it can reduce
our grading load.
My suggestions for group work include:

a) Keep it to a minimum. This clearly depends on the learning objectives for the course
and what you are trying to achieve, but I usually don’t set more than one significant
group assignment as part of the course assessment. Group work is good to share — a
team that has not performed well is seen as a team, not individuals, and this, in turn,
can raise group performance, rather than disillusioning one student.

b) In allocating students to teams in online classes we usually have little choice but to
do it randomly. For some projects it makes sense for the students to identify their
strengths and skills and be allocated so that these are spread out among teams — |
would encourage that if you can. Another possible allocation route is to ask all the
students to introduce themselves and have them use this to pick their teammates.
Still, some are likely to get left behind.

c) Tusually form groups at the beginning of the semester and set tasks, discussion board
contributions etc., within those groups. Such tasks can be quite small (a short paper
or video presentation) but provide a chance to “get to know” each other and see each
other’s work.

d) Most LMS allow for multiple submissions of student work — you will probably save
yourself a lot of hassles if you allow groups to make several submissions. Most
students leave work (or least some of it) to the deadline and confusion often arises

Teaching in a Time of Uncertainty 49

over last-minute edits and changes. I allow 2 or 3 submissions, and tell them this,
but also tell them I only consider the last submitted.

e) For the assessment of group work I include in my syllabus, and draw attention to it
in the wording of the assessment task, that I retain the right to conduct a peer review
where the group members assess each other’s contribution and amend the grades
accordingly. Over the years, I have not had to carry out this threat very often.

f) Try and set a date, several weeks before the due date, by which at least one member
of each group has to report on progress and work allocation — hopefully, this will
provide an early warning of problems that might be encountered.

3.3 Ethics

Somehow, I am more likely to see students as individuals in an online class as opposed
to a “student body” in the classroom. In addition, while the resources available in the
classroom and on campus are there for all to use, that is clearly not the same for those
taking a class off-campus. Some students will have a quiet, private place to work at
home, with a high-speed, reliable, internet connection, a modern laptop and printer and
all the software that might be useful. Others will have none of these things and try and
do their work on outdated equipment, or in the local library, or on their’phone. Again
these issues take on particular importance in circumstances such as those we are facing
now.

Accordingly, I worry constantly about the ethics that surround my online teaching.
Because I am focused on establishing a rapport with the students and treating them
as individuals who matter, I find it very easy to commit ethical transgressions such as
affording special consideration (such as late acceptance of work) to one and not others,
taking circumstances (inability to watch a video for example) into account for one but
not know if similar circumstances apply to others, developing an expectation that all
students should have access to appropriate technology because I do, or even taking
personal requests into account more than I would normally.

My suggestions here are first, be aware of what you are doing and all the decisions
you take; secondly, document what you are doing and why you took the decision you
did — the very need to document an action makes us think about its acceptability; and
thirdly, discuss how you run your class and these kinds of issues with your colleagues
and assess whether what you are doing is in keeping with their practice.

3.4 Testing and Assessment

This is too complex an area to be covered in detail here, but a few lessons I have learned
over the years might be helpful to some. If you are fortunate enough to have a small class,
your knowledge of the students’ work will provide you with good guidance as to the
grade well ahead of any final. Should this be out of line with a test performance that may
ring some alarm bells? The second part of the solution is to set exams that are similar to
what we know as “take-home exams” where we ask the students to apply course concepts
to given scenarios or cases. The downside of course is that these are more difficult to
set and time-consuming to grade. A colleague of mine uses case presentations produced
as a major assignment during the term, makes them available to the students on the

50 G. Dick

LMS for the exam and asks them to choose one and evaluate it in accordance with the
course material — I think I will try this. Other ways to conduct assessment include, at the
beginning of a test, drawing students’ attention to the penalties for cheating, looking for
wording or phrases that don’t sound like the student’s expression and checking for them
online, using proctored exams where possible, setting short time limits for multiple-
choice questions, random delivery and questions sets. None of these is foolproof and I
believe that this area remains a challenge for the acceptance of online classes.

4 In Conclusion

The way you run your online classes will probably largely be up to you. Remember that
most students at the undergraduate level did not anticipate taking online classes when
they enrolled — at least not as many as they are facing now. In the end-of-term survey, I
ran at the end of Spring, 2020, less than 10% of the students did not “agree” or “strongly
agree” with the statement “I really hope we are back on campus next term”. Although
the analysis of this survey data is ongoing as part of a larger study, it seems that this
desire was largely driven by satisfaction with the courses, which in turn was based on
a preferred way of learning and the self-efficacy necessary to do so. Specific problems
were reported in the areas of a room to study in, broadband, time management, and
access to hardware and software. Not unexpected, perhaps.

I am hopeful that the issues raised above have gone some way to mitigate some of the
concerns reported by the students in that survey — things like a standard platform and non-
complex technology, regular feedback and being available when they have a problem,
organized workflow and task completion, easily accessible course materials, and attempts
to minimize stress. Itis important to remember that the face-to-face environment provides
some level of inherent discipline which is largely absent online. Somehow, if we want our
students to succeed, we need to find ways to keep those dedicated and inquiring minds
on board. What I have outlined above are modifications to procedures that we might
otherwise introduce to make the task a little more manageable for them, and indeed,
manageable for us. None of the suggestions I believe, are onerous and can easily be
transferred back into the face-to-face teaching environment. I hope that you will find
some of it useful.

References

1. Eom, S.B.: Effects of LMS, self-efficacy, and self-regulated learning on LMS effectiveness in
business education. J. Int. Educ. Bus. 5(2), 129-144 (2012)

2. Stansfield, M., Mclellan, E., Connolly, T.: Enhancing student performance in online learning
and traditional face-to-face class delivery. J. Inf. Technol. Educ. Res. 3, 173-188 (2004)

3. Dick, G.N.: Teaching online: what price student satisfaction? In: AMCIS 2003 Proceedings.
p-399 (2003). http://aisel.aisnet.org/amcis2003/399

4. Cho, M.H., Tobias, S.: Should instructors require discussion in online courses? Effects of online
discussion on community of inquiry, learner time, satisfaction, and achievement. Int. Rev. Res.
Open Distrib. Learn. 17(2) (2016)

http://aisel.aisnet.org/amcis2003/399

®

Check for
updates

Utilizing Computational Thinking
in Programming to Reduce Academic
Dishonesty and Promote Decolonisation

Suné van der Linde®™ @ and Janet Liebenberg

School of Computer Science and Information Systems, North-West University,
Potchefstroom, South Africa
{sune.vanderlinde, janet.liebenberg}@nwu.ac.za

Abstract. Higher education in South Africa has been in the spotlight in the past
few years with calls for decolonisation of the curriculum and other matters. We
teach a first-year programming module that is challenging to decolonise since
the origin of programming languages is inherently Western. Students often do
not resonate with some examples used, let alone abstract concepts of program-
ming in general. During COVID-19, emergency remote teaching and learning
were adopted and we had to be mindful of various limitations, such as data usage
and bandwidth. We experienced difficulty expanding each student’s frame of refer-
ence. Furthermore, increased academic dishonesty occurrences were encountered.
This paper focuses on contextualising the module content, promoting computa-
tional thinking, and reducing academic dishonesty. This was achieved in an action
research cycle through enriching our assessment practices by creating a weekly
assignment where the principles of computational thinking were applied within
a problem-solving learning environment. It was found that most students had
positive perceptions about the intervention and their views and experiences are
reported.

Keywords: Assessment in programming - Academic misconduct -
Decolonisation - Introductory programming - Computational thinking -
Assessment - Action research

1 Introduction

Calls for decolonisation in education in South Africa have become prominent [9, 16,
20, 28]. Programming languages and textbooks are predominantly written in English
with Western examples depicting measurement systems and currencies unfamiliar in the
South African context. Decolonising the programming curriculum is already a challenge
in classrooms; therefore even more so during remote emergency teaching and learning.

During remote emergency teaching and learning, we faced a new world of teaching
programming to students who had enrolled for face-to-face teaching and learning. We
found ourselves in a situation where videos only covered concepts because of limitations,
such as data and bandwidth. We had less opportunity to broaden the frame of reference

© Springer Nature Switzerland AG 2022
W. S. Leung et al. (Eds.): SACLA 2021, CCIS 1461, pp. 51-66, 2022.
https://doi.org/10.1007/978-3-030-95003-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95003-3_4&domain=pdf
http://orcid.org/0000-0002-3431-4054
http://orcid.org/0000-0001-7021-757X
https://doi.org/10.1007/978-3-030-95003-3_4

52 S. van der Linde and J. Liebenberg

for our students as we normally would in class. An alarming rate of academic dishonesty
was also recorded which endangers the integrity of our assessments and the quality of
our degree.

In this paper, we explore and report on students’ perceptions about an intervention
that we used to allow students to bring their context to the learning environment, to pro-
mote computational thinking and to reduce academic dishonesty. We use computational
thinking as a foundation for our instructional design and interventions planned within a
programming module.

2 Conceptual Framework

2.1 Computational Thinking and Programming

Computational thinking is an approach used to solve problems using specific concepts,
such as abstraction, recursion and iteration. This approach is used to create artefacts
across disciplines through the processing and analysis of data [2, 14]. Computational
thinking is defined as a conceptual foundation necessary to solve problems effectively and
reusable in different contexts [31]. Berland and Wilensky [5] posit that computational
thinking embodies the idea of solving problems using a computer. In this study, we
resonate most with the following definition of Gonzalez [11:2438], since the link with
computer science concepts is evident here: “CT involves the ability to formulate and solve
problems by relying on the fundamental concepts of computing, and using logic-syntax
of programming languages: basic sequences, loops, iteration, conditionals, functions
and variables.”.

Five core skills of computational thinking are applicable within computer science,
namely problem solving, building algorithms, debugging, simulation and socialising
[15]. In a review of 45 computational thinking research papers, the most common com-
ponents or skills of computational thinking are decomposition, abstraction, algorithms
and debugging, with the addition of iteration and generalisation [30].

2.2 A Problem-Solving Learning Environment (PSLE)

Lye and Koh [19] developed a computational thinking instructional design based on the
review of 27 computational thinking papers. In their review of papers, 20 out of the
27 papers were within the context of higher education. The instructional design essen-
tially promotes a PSLE in order to foster computational thinking skills. The envisioned
environment (PSLE) should expose students to authentic problems, activities based on
cognitive constructivism, scaffolding and reflection. A PSLE is a comprehensive strategy
based on the views of many leading authors in the field (Table 1).

2.3 Decolonisation of the Programming Curriculum

Calls for the decolonisation of education in South Africa are prominent [9, 16, 20, 28].
The institution where this study was conducted also made explicit statements regarding
the consideration of the transformation agenda in teaching, learning and assessment mat-
ters [25]. Furthermore, the institution’s stance in terms of teaching and learning is that

Utilizing Computational Thinking in Programming 53

Table 1. PSLE components for instructional design, adapted from Lye and Koh [19]

PSLE component Description

Authentic problems Problems should be set within a context with regard to the students.
Students tend to be more engaged on an intellectual level in the
learning process when the problem is relevant to them

Information Processing | Computational concepts are acquired through
information-processing techniques that focus on mental model
constructions (constructivism)

Scaffolding Scaffolding the program construction into smaller more manageable
tasks. This step is based on the constructionism process where
meaningful products are built for themselves or others as a result of
continuous knowledge construction

Reflection Students reflect on computational processes and their programming
process, either by self-reflection or peer-reflection

decolonised teaching and learning practices should “inspire students to think critically
on and engage with issues, such as discrimination, racism, inequality, poverty, colo-
nialism, alienation, inclusion and ethical conduct. Furthermore, decolonised teaching
and learning allows students to interpret curriculum content based on their own expe-
riences, according to their cultural norms, personal belief systems, preferences and
backgrounds, and to share their interpretations with fellow students as valid and valued
real-life experiences.” [24:4].

Gumbo [12] posits that many educators ignore pedagogical perspectives that would
allow recognition of indigenous learners in their teaching. This might lead to passive
learning when learners cannot relate to the content and teaching strategies [17]. The
problem worsens when curricula and learning material does not contain indigenous
knowledge, or simply contains content and examples that are not always relevant to the
particular students [12, 22]. In the programming classroom, textbooks are mostly from
a western origin, with western examples to which not all students can relate [12, 22].
Integration of students’ background knowledge and experiences is necessary to follow
a culturally responsive setting in the classroom [12].

2.4 Academic Dishonesty in Programming

Academic integrity is vital for the reputation and credibility of educational institutions,
regardless of their teaching modality [27]. Cheating or academic dishonesty occurs when
a student engages in dishonest behaviour and gains an unfair advantage, misrepresenting
his/her ability and knowledge within the course [1]. Liebenberg and Botes [18] found
in their study at the same university where this study was conducted that 44.4% of the
students admitted to plagiarism and 59.4% admitted to sharing their code. Academic
dishonesty in programming courses usually entails students copying solutions from one
another, and sometimes slightly changing names of variables in the source code, and
other times not even changing anything. Students could also copy the source code of the

54 S. van der Linde and J. Liebenberg

internet and sometimes they find the repository of solutions online for the textbook in
use [18].

Higher education’s necessitous switch to remote teaching and learning brought about
by Covid-19 precipitated many anxieties about education in a fully remote environment.
In his reflection on academic integrity during Covid-19, Scurr [29] highlighted four
features: 1) a belief that cheating would automatically increase in an entirely remote
environment; 2) a growth in the dividing perspectives on how to deal with or penalise
academic misconduct; 3) an ultra-consciousness of contract cheating and file-sharing
sites; and 4) a shift in how to best validate student work.

According to Adzima [1], academic dishonesty can be caused by the lack of face-
to-face sessions and the challenges that come with learning in an online environment.
Some of these motivations include the lack of personal connection between student and
lecturer [21].

3 Research Design

In this study, action research (AR) is used as a tool to enquire and bring about social
change through the improved understanding of social practice (teaching and learning to
program), as well as to improve the practice (teaching and learning to program) itself
[3, 4, 13]. AR is an iterative process that improves understanding of the problem with
each iteration and includes the phases illustrated in Fig. 1:

DIAGNOSING

SPECIFYING LEARNING Client-system
Identifing general findings infrastructure

L EVALUATING ACTION TAKING J
Studying the consequences .

Selecting a course of action

of an action

Fig. 1. The action research cycle [8]

In this paper, a specific intervention used in one AR cycle (cycle 8) of a longitudinal
study focussing on using critical systems to improve the programming skills of students
through the explicit use of computational thinking is reported on. A PSLE grounded in
computational thinking is used, but the scope of this paper is focused on a specific element
of the PSLE, namely authentic problems (Table 1). In terms of the evaluation phase of
AR, students’ feedback regarding action taking were gathered, using a mixed methods
approach. Tashakkori and Creswell [32:4] describe mixed methods as: “Research in

Utilizing Computational Thinking in Programming 55

which the investigator collects and analyses data, integrates the findings, and draws
inferences using both qualitative and quantitative approaches or methods in a single
study or programme of inquiry”. Creswell and Clark [6] suggested four major types
of mixed methods design: (1) triangulation; (2) embedded; (3) explanatory; and (4)
exploratory. In this study, the type of mixed methods research was explanatory, as the
objective of the qualitative investigation was to supplement the quantitative investigation
and to better understand and explain the observations of the quantitative investigation. For
the evaluation phase of AR, the quantitative data was collected through the use of a survey
and the qualitative data was acquired through the comments of survey respondents.
In the next section the steps followed during action research are covered.

4 Action Research

This section is discussed in terms of the AR phases for AR cycle eight.

4.1 Diagnosis

The evaluation and specify learning phases of AR cycle seven is important to inform
the diagnosis of AR cycle eight. In AR cycle seven, an emergency remote teaching
and learning approach was followed in response to national lockdowns in South Africa
due to the COVID-19 pandemic. The basic instructional design followed in AR cycle
seven included completing the required reading, watching a tutorial video, completing
a concept quiz for learning, completing two to three textbook programming exercises
(Fig. 2), and reflection upon reaching the outcomes.

A painting company has determined that for every 115 square feet of wall space, 1 gallon of paint
and 8 hours of labour will be required. The company charges $20.00 per hour for labour. Create
an application that allows the user to enter the square feet of wall space to be painted and the
price of the paint per gallon. The program should display the following data:

e The number of gallons of paint required

e The hours of labour required s Program3_12 - o X
e The cost of the paint
e The labour charges Square feet of wall space: | 200

R L
The total cost of the paint job Péoe of paint pergalon: [100

The program should make use of:
e named constants The number of gallons of paint required: 1.74
. . The hour of labor required: 13.91
® exception handl'"g The cost of the paint: R173,91
¢ the Round() method of the Math class The labor charges: R278.26

The total cost of the paint job: R452,17

Fig. 2. Textbook exercise example

56 S. van der Linde and J. Liebenberg

The programming exercises used are out of the prescribed textbook which can be
viewed as a Western textbook with examples that assume a certain background. The
reality is that South African students studying at the North-West University have very
diverse backgrounds. As an example, the original text in Fig. 2 uses terms, such as feet,
gallons, and dollars — unfamiliar and outlandish terms for our students.

After reflecting on the findings of AR cycle seven, two main problems were identified
with the current approach:

An Alarming Number of Academic Misconduct and Dishonesty Occurrences.
Moving to remote online teaching and learning during COVID-19 brought challenges
for all involved. Students were overwhelmed, and it seemed as if they were complet-
ing assignments in a panic mode, working from one deadline to the next, which might
have hindered deep learning. We found a major increase in academic misconduct and
dishonesty.

Students Did Not Have Enough Opportunities to Bring Their Context Into
the Learning Environment. Incorporating authentic and relatable problems has been
a challenge. In previous AR cycles, we incorporated one group project that allowed for
social interaction at the end of the semester with a variety of possible scenarios. During
the national lockdown in South Africa, we found it too problematic to attempt giving a
group project for this module, because of connectivity issues, issues with demonstrations
of the projects, and the trustworthiness of the projects.

4.2 Action Planning and Action Taking

The two lecturers realised that they would have to rethink assignments and assessment.
The planning process was in the form of telephone conversations where possibilities
of how to intervene in order to lower the number of academic dishonesty occurrences
within the framework of computational thinking were discussed.

One lecturer mentioned that the only way to address academic dishonesty was to
have all students work on different assignments weekly and it was decided that a weekly
project (referred to as a creative assignment) where students are provided with a rubric,
but not a scenario might work well.

Students were encouraged to apply knowledge learned through concept videos and
other online learning material, by solving problems within their local community and
environment.

The first two weeks of the semester students received the traditional “guided text-
book exercises”, but then the instructional design was amended to where students would
complete one to two textbook exercises with specific instructions, and in addition, com-
plete a creative assignment with a rubric (Fig. 3) over a period of nine more weeks until
the end of the semester.

Utilizing Computational Thinking in Programming 57

The aim of this assignment is for you to apply higher order thinking skills to showcase your ability to
reach the outcomes of this study unit. This assignment is project based. This means that you'll receive
some minimum requirements for developing your own application. You'll need to come up with a
concept, design the graphical user interface, and write the code.

I. Project SU4 |

MINIMUM REQUIREMENTS MARK
INPUT Three (3) variables in total |
One (1) constant variable
PROCESSING | One () while-loop 2

Validate at least one (1) input using TryParse (including else
statements with informative dialogues regarding invalid input)
OUTPUT Format output accordingly, displayed neatly

CONTROLS | Appropriate controls used for input

One () CheckBox control

OTHER Apply simple exception handling

Neat and organised appearance
Compile and Run

TOTAL 10

Fig. 3. Creative assignment example

4.3 Evaluating and Specifying Learning
4.3.1 Participants

The programming course that forms part of this study is User Interface Programming 1
within the BSc in Information Technology degree. This course utilizes the C# program-
ming language to achieve the outcomes. It is usually presented by two lecturers at two
different campuses of the North-West University (NWU), situated in Potchefstroom and
Vanderbijlpark which are about 120 kms apart in South Africa. In addition, the course
is offered as a distance-learning course. The module content, assessments and contact
time are aligned.

In the second semester of 2020, the course was offered as an emergency remote
online course because of Covid-19 and the 632 students were taught by two lecturers.
The students of the Potchefstroom campus and the distance students were taught by the
one lecturer and the remaining students were taught by the lecturer on the Vanderbijlpark
campus.

4.3.2 Instrument, Data Collection and Analysis

In this study, a questionnaire regarding the creative assignments of the course was devel-
oped. Students entered their biographic data in the first section. Six questions (Table
2) were developed for section two, of which four focussed on the students’ percep-
tions on whether the completion of creative activities reduced plagiarism, empowered
students to solve problems within a community, promoted higher-order thinking skills,
and improved performance. Two questions focussed on whether students relate with,
and comprehend textbook scenarios. The questions in the second section were accom-
panied by a five-point Likert response scale from 1 (Strongly disagree) to 5 (Strongly

58 S. van der Linde and J. Liebenberg

agree). Lastly, two open-ended questions asked: “What did you like about completing
creative projects? (where you choose your own scenario)’ and “What didn’t you like

about completing creative projects?”.

After the final assessment, but before the final marks were released, a link to the
anonymous online questionnaire was sent via the e-learning system to the students taking
the course. 509 usable responses to the online questionnaire were received, indicating

an overall response rate of 80.5%.

Table 2. Profile of respondents (n = 509)

Criteria Categories Number (%) of students
Group Potchefstroom 283 (55.6%)
Vanderbijlpark 160 (31.4%)
Distance 66 (13%)
Gender Male 352 (69.2%)
Female 157 (30.8%)
Ethnic background African/Black 251 (49.3%)
White 215 (42.2%)
Coloured 14 (2.8%)
Indian/Asian 13 (2.6%)
I don’t wish to say 16 (3.1%)
Academic performance 75%—-100% 213 (41.8%)
60%—74% 160 (31.5%)
50%-59% 79 (15.5%)
Below 50% 57 (11.2%)
I mainly used the following device | Desktop computer 74(14.5%)
to write my C# programs Laptop computer 411 (80.7%)
Minicomputer (Netbook) 8 (1.6%)
Mobile phone with Internet 16 (3.1%)
access
Wi-Fi access at home Yes 286 (56.2%)
No 223 (43.8%)

For this course, the gender profile is typical of most programming classes with
only 30.8% of the respondents being women. Based on the ethnic background, it is
clear that it is a diverse group of students with distinct cultural norms, personal belief
systems, preferences and backgrounds. Within the African/Black cohort, the students on
the Vanderbijlpark Campus are mainly Sesotho-speaking, whereas the Potchefstroom

students are Setswana-speaking [23].

Utilizing Computational Thinking in Programming 59

It was reported by 41.8% of these students that they expect to obtain a distinction for
this course. Although students had to endure emergency remote teaching and learning,
the self-reported academic performance of the students had increased in comparison with
previous years — this phenomenon can probably be attributed to academic dishonesty
and not necessarily improved learning [7]. More than 80% of the students used a laptop
to write their programs and 43.8% reported that they do not have wireless Internet access
at home — by June 2020 the NWU had spent approximately R22 million on devices and
data for its students during lockdown [26].

Analysis of the quantitative data (Biographical info and six Likert-scale questions)
was done in SPSS Statistics 27. Frequencies were calculated and basic analysis was
done by calculating the mean values and standard deviation of each of the items. For
the analysis of the qualitative data (Two open-ended questions), ATLAS.ti 9.0 was used.
Content analysis was conducted on all responses open-ended questions and thematic
analysis was utilized to categorise responses. The data was coded according to six themes
that were derived from the six questionnaire questions (Table 3) as well as the themes
that emerged during the content analysis. Since the product of qualitative research is
richly descriptive, some results are presented in the form of quotes from the participant
comments.

5 Results and Discussion

5.1 Quantitative Results

The statistical results for section one (Biographical info) and section two (six questions)
of the questionnaire are summarised in Table 3 and Fig. 4. Table 3 shows that the mean
values of all six items in the questionnaire are relatively high (with 3.0 being neutral).

Table 3. Items and descriptive statistics (n = 509)

Criteria Mean* | St. dev.

Plagiarising during the completion of creative activities is harder than 3.78 0.950
completing a textbook activity where the scenario is provided. (Plagiarism)

I always relate to the scenarios of the programming problems in the 3.55 0.994
textbook. (Relate)

I always understand the scenarios of the programming problems in the 3.73 0.925
textbook. (Comprehension)

Since I could choose my own scenario for my creative project, I feel 3.69 1.078
empowered to solve problems within my local community. (Empowered)

My higher-order thinking skills were developed by completing creative 4.04 0.959
projects. (Thinking)

The completion of creative projects helped me to improve my 3.83 1.078
performance in assessments (tests). (Achievement)

*Likert-style responses were ranked from 1 to 5 respectively

60 S. van der Linde and J. Liebenberg

Itis clear from Fig. 4 that the students in this study had an overall positive experience
with the creative assignments since the majority of participants agreed and strongly
agreed with the six questions in Sect. 2.

Creative assignments

0 L d
Strongly Disagree Neutral Agree Strongly agree
disagree
==@= Relate e & == Comprehension e==® == Plagiarism
e & == Thinking === Empowered ¢+ & ¢+ Achievement

Fig. 4. Frequency of selections

In this following section, the quantitative data presented above, in conjunction with
the qualitative data relating to the question “What did you like about completing creative
projects? (where you choose your own scenario)” will be discussed.

5.2 Qualitative Results — “Likes”

Plagiarism and academic misconduct
The students reported in the questionnaire that the completion of creative activities
reduced the potential for plagiarism and one of the students commented:

It’s brilliant. I had my initial concerns with plagiarism after last semester’s
CMPGI11. I hypothesised that there would be many false positives since we all
used the same logic provided in the textbooks to solve the same problems that we
were presented with. With the "creative" approach it cleverly mitigates this prob-
lem. The probability of students submitting the exact same project is significantly
lower. I consider it a win for both the student and the lecturer. Thank you.

Interestingly enough, one student commented in the dislikes part of the questionnaire:
The fact that it was hard to copy anyone else’s work.

Relate
The question with the lowest mean was if the students always relate to the scenarios
of the programming problems in the textbook. However, the students were extremely

Utilizing Computational Thinking in Programming 61

positive about how the creative assignments allowed them to relate to their real-world
experiences.

I could integrate my hobbies for example Formula 1 into programming that was
very fun. The places where my mind went with programming is mind-boggling.

They stimulated a lot of creation from my own mind and hands. Which opened me
up to a lot of possibilities for problem solving larger issues in the world.

That we could imagine problems we would love to solve around us.

Comprehension

The group of students did not feel excessively optimistic about their comprehension of
the scenarios of the programming problems in the textbook, but some commented on
how the creative assignments aided in the comprehension of their work.

It forced me to make sure that I fully understand the concept. And required a lot
of thinking, which is useful in the learning process.

Solving my own complex problems helped me enhance my skills and helped with
the understanding of the work.

Empowered
The students reported that they felt quite empowered and they are able to solve problems
within their local community.

I'would feel like I am making programs that could actually be beneficial to myself
and other people around me.

I sometimes felt like I was part of a company where we needed to develop apps.
Made me feel like a programmer even though I’m just a first-year student.

I was able to self-identify where my strengths and weaknesses lie.

Thinking and learning

The question with the highest mean in the questionnaire was if students think that their
higher-order thinking skills were developed by completing creative projects. In addition,
students commented on their thinking and learning:

My high order thinking were increased, I had to think to the core and I really enjoy
tapping into my inner strength and being able to solve the projects I did not think
I could solve.

Achievement
The students reported positively through the questionnaire and open-ended question
that the completion of creative projects helped them to improve their performance in
assessments.

1 got an opportunity to apply my learned coding skill to a level beyond just means
to pass an exam.

62 S. van der Linde and J. Liebenberg

I liked that I could choose my own solution to a problem. I didn’t lose marks
because my coding wasn’t exactly like the memo, unlike with the programs where
scenarios were provided.

Creativity, freedom and thinking out of the box
For the majority of the students, the fact they liked the most was that they could be
creative, think out of the box and had the freedom to express themselves.

It helped me to be a bit creative. STEM doesn’t always leave room for creativity,
and by creating my own projects I felt more familiar with the work and it felt like
I was doing something that peeked my interest. It was never boring and made a
subject that I was unfamiliar with really fun.

It feels more enjoyable to create instead of “answering”. Promotes creative
thinking.
I could put in my own jenesiqua to my programs and format them as far as humanly

possible for me. Therefore I could express myself and my way of thinking and
programming in multiple everyday scenarios.

Challenge and accomplishment
Students felt challenged and they liked the sense of accomplishment when completing
the creative projects.

1 liked the challenge they gave me and how they kept me on my toes. I enjoyed
every project I successfully completed.

It made me feel really smart being able to program my own scenario and it working.

Nothing
About 40 of the 509 students indicated that there was nothing they liked about the creative
assignments and they found them repetitive and stressful.

I did not enjoy the creative projects and would have preferred more complex
problems that was given to us. In a working environment you will almost always
be given a spec of something to complete.

1 didn’t like them at all. They felt repetitive.
Nothing, they were stressful.

In the following section, the qualitative data relating to the question “What didn’t
you like about completing creative projects?” will be discussed.
5.3 Qualitative Results — “Dislikes”

Nothing
In contrast with the 40 odd students indicating that there was nothing they liked, more than
60 students declared that there was nothing they disliked about the creative assignments.

Utilizing Computational Thinking in Programming 63

Nothing: They were GREAT!

Nothing, i think it’s a good thing that you are given the choice on how to write
your assignments.

There is absolutely nothing that I did not like about creative projects.

Time
The most common complaint was that the students found the creative assignments to be
time-consuming.

They are time consuming because you spend a lot of time trying to think of what
to code. It would be easier if we were given projects to code.

It takes time to think of a problem and i do not see why i should be able to create
a problem and not just solve one.

It always took me a long time to come up with a problem to solve with my program
every week.

Difficulties
Students experienced difficulties with a number of issues.

It was difficult to come up with an idea, to create codes on your own, thinking
about an idea that was both practical and which could fulfil the criteria of the
project, to understand and complete some of the projects, and to think creatively
under pressure.

It’s when you don’t know something to code and when you search it on other
sources it becomes difficult because every source is not reliable.

Requirements
Students were very vocal regarding the requirements set out in the rubric (see Fig. 3) of
the creative assignment.

1 felt very restricted in the codes that I wrote. I'd sometimes add functions that
weren’t necessary but just to meet the criteria that was given, and that I'd write
bad code just to appeal to the criteria.

...discouraging when you know you can, for example, generate a random number,
but have no idea how to make that useful.

Achievement/Marking

It is common knowledge that students are always concerned about their marks and how
their assignments are marked. The student assistants who marked the weekly assignments
might have missed a few things, since all the programs they are marking look different.

[think the marking criteria has to be clarified a little more. I often found myself
having to bother people that were clearly already very busy to query marks and in
most cases it turned out that the marker had interpreted the requirements differently
and erroneously marked me down.

64 S. van der Linde and J. Liebenberg

If you implemented a concept not known to the “rubric” that does the same work
as the rubric requirement you would still lose marks because it is not the way the
rubric is looking for. For me it feels that it takes away creative problem solving a
certain problem with “unorthodox solutions”

No problem solving
Some students were of the view that they do not develop their problem-solving skills
and that the creative assignments were superficial exercises.

1 like solving problems, not finding the problem to what the solution is supposed
to resemble.

1 did not like those projects at all, because one will never have to write such a
program for a client. The client usually will come to the developer with a problem,
and a desired destination/outcome.

Feelings
Some students expressed feelings of isolation and disappointment:

You are on your own with no little help besides you, it is hard to create a structure
specially drafted by you.

They made me feel stupid because I'm not a creative person.

5.4 Reflection

From the perspectives of the lecturers (also the researchers) that presented the course,
the use of creative assessments was beneficial in terms of encouraging students to utilize
higher-order thinking skills to solve problems according to the rubric criteria. The cre-
ativity shown in projects were encouraging, but not all students enjoyed the challenge
of creating a problem and solving it. The creative assessments promoted decolonisation
by encouraging students to bring their context into the classroom and it seems that they
enjoyed this aspect as one participant mentions “I would feel like I am making programs
that could actually be beneficial to myself and other people around me.”. The lecturers
and markers noticed that plagiarism occurrences have lowered dramatically, and partic-
ipants mentioned that it was hard to plagiarize when completing a creative assignment.
Finally, the creative assignment was received well by students and it accomplished
its goal of reducing plagiarism and allowing students to extend their context into the
classroom. We will address concerns raised by students in the next AR cycle.

6 Conclusion

Ultimately, remote emergency teaching and learning provided us with the opportunity to
grow as educators, since we had to think creatively about online assessment, as well as
the context of the students. An equity-minded approach to assessment in programming
education not only created opportunities for our students to bring their context to the
classroom, but it also allowed our students to solve problems within their local commu-
nities, to foster computational thinking, and to reduce academic dishonesty instances to
almost none.

Utilizing Computational Thinking in Programming 65

I found it fascinating to be able to create projects that I only even had them
as an idea and being given the platform to demonstrate them was an amazing
opportunity.

From the comment of the above student, it is recommended to other educators to

provide their students with the same opportunity, not only for programming assignments,
but we anticipate that the concept of creative assignments is reproducible by educators
in other fields.

References

a

12.

13.

15.

16.

17.

. Adzima, K.: Examining online cheating in higher education using traditional classroom

cheating as a guide. Electr. J. E-Learn. 18, 476493 (2020)

Barr, V., Stephenson, C.: Bringing computational thinking to K-12: what is Involved and what
is the role of the computer science education community? Acm Inroads 2, 48-54 (2011)
Baskerville, R.L.: Investigating information systems with action research. Commun. AIS 2,
4 (1999)

Baskerville, R.L., Wood-Harper, A.T.: A critical perspective on action research as a method
for information systems research. J. Inf. Technol. 11, 235-246 (1996)

Berland, M., Wilensky, U.: Comparing virtual and physical robotics environments for sup-
porting complex systems and computational thinking. J. Sci. Educ. Technol. 24, 628-647
(2015)

Creswell, J.W., Clark, V.L.P.: Designing and conducting mixed methods research. (2007)
Eaton, S.E.: Academic integrity during COVID-19: reflections from the university of Calgary.
Int. Stud. Educ. Adm. 48, 80-85 (2020)

Susman, G.I., Evered, R.D.: An assessment of the scientific merits of action research. Adm.
Sci. Q. 23, 582-603 (1978)

Fomunyam, K.G., Teferra, D.: Curriculum responsiveness within the context of decolonisation
in South African higher education (2017)

. Gamage, K.A., Silva, E.K.D., Gunawardhana, N.: Online delivery and assessment during

COVID-19: Safeguarding academic integrity. Educ. Sci. 10(11), 301 (2020)

. Gonzélez, M.R.: Computational thinking test: design guidelines and content validation. In:

Proceedings of EDULEARNI1S5 conference, pp. 2436-2444. (Year)

Gumbo, M.T.: Pedagogical principles in technology education: An indigenous perspective.
In: African Indigenous Knowledge and the Sciences, pp. 13—32. Brill Sense (2016)
Isomottonen, V., Tirronen, V.: Flipping and blending—An action research project on improv-
ing a functional programming course. ACM Transactions on Computing Education (TOCE)
17, 1-35 (2016)
http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.
pdf

Kazimoglu, C., Kiernan, M., Bacon, L., MacKinnon, L.: Learning programming at the
computational thinking level via digital game-play. Procedia Computer Science 9, 522-531
(2012)

Khoza, S.B., Biyela, A.T.: Decolonising technological pedagogical content knowledge of first
year mathematics students. Educ. Inf. Technol. 25(4), 2665-2679 (2019). https://doi.org/10.
1007/s10639-019-10084-4

Lavonen, J., Autio, O., Meisalo, V.: Creative and collaborative problem solving in technology
education: a case study in primary school teacher education. J. Technol. Stud. 30, 107-115
(2004)

http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf
https://doi.org/10.1007/s10639-019-10084-4

66

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

S. van der Linde and J. Liebenberg

Liebenberg, J., Botes, P.: Plagiarism in a GUI programming course. In: 10th Annual Inter-
national Conference on Computer Science Education: Innovation and Technology (CSEIT),
pp. 45-50. Global Science and Technology Forum (GSTF), Bangkok, Thailand (2019)

Lye, S.Y., Koh, J.H.L.: Review on teaching and learning of computational thinking through
programming: what is next for K-12? Comput. Hum. Behav. 41, 51-61 (2014)

Martin, F., Pirbhai-Illich, F.: Towards decolonising teacher education: criticality, relationality
and intercultural understanding. J. Intercult. Stud. 37, 355-372 (2016)

Moten, J., Jr., Fitterer, A., Brazier, E., Leonard, J., Brown, A.: Examining online college cyber
cheating methods and prevention measures. Electron. J. E-learn. 11, 139-146 (2013)

Msila, V., Gumbo, M.T.: Africanising the curriculum: indigenous perspectives and theories.
African Sun Media (2016)

NWU, http://www.nwu.ac.za/gov_man/policy/index.html

NWU: North-west university’s declaration on the decolonisation of university education. In:
University, N.-W. (ed.) (2018)

NWU: Teaching, learning assessment policy. In: University, N.-W. (ed.) (2019)
https://news.nwu.ac.za/major-data-and-connectivity-boost-nwu-students

Reyneke, Y., Shuttleworth, C.C., Visagie, R.G.: Pivot to online in a post-COVID-19 world:
critically applying BSCS 5E to enhance plagiarism awareness of accounting students. Acc.
Educ. 30(1), 1-21 (2020)

Saurombe, N.: Decolonising higher education curricula in South Africa: factoring in archives
through public programming initiatives. Arch. Sci. 18, 119-141 (2018)

Scurr, C.: Reflections on academic integrity during COVID-19. Can. Perspect. Acad. Integrity
3, 36-38 (2020)

Shute, V.J., Sun, C., Asbell-Clarke, J.: Demystifying computational thinking. Educ. Res. Rev.
22, 142-158 (2017)

Susman, G.I., Evered, R.D.: An assessment of the scientific merits of action research. Adm.
Sci. Q. 23(4), 582-603 (1978)

Tashakkori, A., Creswell, J.W.: The new era of mixed methods. J. Mixed meth. Res. 1(1), 3-7
(2007)

http://www.nwu.ac.za/gov_man/policy/index.html
https://news.nwu.ac.za/major-data-and-connectivity-boost-nwu-students

®

Check for
updates

Project-Based Learning Guidelines for IT
Higher Education

J. T. Janse van Rensburg®™)

School of Computer Science and Information Systems, North-West University,
Vanderbijlpark Campus, Vanderbijlpark, South Africa
jt.jansevanrensburg@nwu.ac.za

Abstract. It is challenging to adapt higher education at the same pace
as the fast-changing nature of the information technology (IT) sector.
Creative ways are needed to accommodate the continuous changes in the
IT industry, without needing to change the structure of the curriculum.
As the IT industry comprises of project teams in project environments, a
suitable instructional approach for IT higher education is project-based
learning (PBL). A PBL strategy allows for the instruction of current
technologies and contributes to skills development that is required in the
IT industry. General guidelines and characteristics for PBL are followed
across the board for all disciplines on a trial and error basis. Some guide-
lines may not be directly applicable to IT higher education, while other
needed guidelines do not exist because they are domain-specific. The
purpose of this paper is to present guidelines for PBL that is relevant to
IT higher education. The guidelines are formulated using popular char-
acteristics of PBL from literature and adapting them to the context of IT
projects. Additional guidelines are added based on specific requirements
of IT projects that are relevant to professional practice. A literature
review matrix is presented as evidence of sources where the guidelines
were adapted from. The guidelines can be used by educators who find
it challenging to assess whether they are implementing a suitable PBL
approach. Additionally, following the guidelines may contribute towards
bridging the skills gap between IT higher education and the IT industry.

Keywords: Project-based learning - Information technology - IT
higher education + Guidelines

1 Introduction

The goal of this article is to formulate guidelines for effectively using project-
based learning, specifically in the information technology (IT) higher education
sector. The need for the guidelines is emphasised in research that indicates how
challenging it can be for facilitators to assess whether they are implementing
an acceptable approach to project-based learning (PBL) [1,2]. Without clear
guidance of what a project-based learning strategy should resemble, it is chal-
lenging for facilitators to evaluate the quality of their PBL approach, or to

© Springer Nature Switzerland AG 2022
W. S. Leung et al. (Eds.): SACLA 2021, CCIS 1461, pp. 67-81, 2022.
https://doi.org/10.1007/978-3-030-95003-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95003-3_5&domain=pdf
http://orcid.org/0000-0002-9757-9009
https://doi.org/10.1007/978-3-030-95003-3_5

68 J. T. Janse van Rensburg

understand where improvement is needed [3]. More so, “education policymakers
are increasingly demanding evidence to guide decisions about whether to adopt
an educational reform or instructional innovation” [3].

Project-based learning emphasises deeper learning to develop skills relevant
to university life and future careers [4,5]. The goals of a PBL approach align
well with the development of higher-level thinking skills and interpersonal skills
[3]. Specifically in IT higher education, project-based learning shows evidence of
developing relevant IT skills, teamwork, communication, time management, and
collaborating with diverse individuals [6]. Project-based learning is a student-
centered approach that targets advanced skills such as analysis, evaluation, and
synthesis, but can also be supported by teacher-centered approaches to commu-
nicate required knowledge, and to demonstrate specific skills [7].

In this article, a general overview of the background of project-based learning
is provided. A discussion on how project-based learning has been applied in IT
higher education, and similar fields, follow. This leads into a discussion on the
importance of reflective practice in project-based learning. Thereafter, a set of
coherent guidelines for project-based learning in IT higher education is presented
which were formulated from PBL characteristics in literature, as well as core I'T
project requirements. The set of guidelines are given in response to the literature
that indicates how challenging it can be to assess whether an acceptable approach
to PBL is being implemented without guidance.

2 PBL Overview

“Project-based learning is a model that organises learning around projects” [1].
The first foundational introduction of project-based learning was by William
Heard Kilpatrick [8], which referred to it as the ‘project method’, and was
inspired by the philosophies of John Dewey [9]. Kilpatrick’s idea of the project
method centered on “an activity undertaken by students that really interested
them” [10]. The activity was typically in the form of a project, with four distinc-
tive student-centered phases: purposing, planning, executing, and judging [11].
Thomas and Kilpatrick both stressed that intrinsic motivation, deeper learn-
ing, and student-centered inquiry were central benefits of project-based instruc-
tion [12]. Project-based learning (PBL) is based on three principles: learning
takes place for a specific context, active participation in the learning process
is expected, and learning goals are reached though the sharing of knowledge
in social interactions [13]. PBL is an instructional methodology that facilitates
student learning through student-centered projects [14], and is often cited as a
preferred method to traditional teaching strategies. Comparative studies of PBL
and traditional instruction offer insight into the significance of project-based
learning as preferred method to master content and relevant skills [11]. However,
traditional instruction is perceived to have less management responsibilities than
project-based instruction has. Other authors have made the argument that PBL
is no more demanding than traditional instruction, can be implemented with
limited resources, and within the same timeframe [15]. Project-based learning

Project-Based Learning Guidelines for IT Higher Education 69

is seen as superior in some aspects to traditional summative assessment, as it
is designed to deliver outcomes not adequately evaluated through traditional
methods [14,16]. Project-based learning often uses performance-based assess-
ments, which provides a platform for evaluating 21st century competencies such
as critical thinking, reflection, and problem solving—which are difficult to mea-
sure [17]. Project-based learning exposes students to a variety of workplace skills
such as communication, teamwork, self-management, flexibility, and collabora-
tion [3,18,19]. Through PBL, students learn to be independent by setting goals,
planning and organising project requirements, developing collaboration skills,
and learning at their own level [20]. Project-based learning can be an effective
learning tool for lower achieving students, “students with special needs, low-
income students, and students with limited English proficiency” [3]. PBL has
been used in many different environments, ranging from primary school, to sec-
ondary school, to higher education [12]. PBL is inquiry-based instruction where
authentic, real-world problems drive the learning context and lead to meaningful
experiences [15,21]. The value of project-based learning lies in the construction
of a concrete artefact or end product [12,22,23]. The skills trained through arte-
fact creation assists in self-regulation and taking ownership of the learning pro-
cess [24], with the aim of students becoming self-directed whilst applying higher
order thinking skills [11]. PBL delivers increased levels of student engagement,
problem-solving skills development, transferability of skills, and an improved
interest in the subject matter [1,25]. Successful project-based learning relies on
the facilitator’s ability to provide motivation, guidance, and scaffolding appro-
priate to the context of the students [12]. Facilitators who support the devel-
opment of skills, instead of focusing on standard assessment achievements, can
more easily implement and align with a PBL curriculum, however, developing
a coherent PBL curriculum is one of the most difficult aspects of project-based
learning [3]. A literature review of interdisciplinary project-based learning as
an instructional method for a variety of undergraduate engineering and com-
puter science degrees highlighted the need for collaboration with industry for
skills development, embedding employability skills in curriculum planning, and
developing effective methods for assessing employability skills [26]. Project-based
learning has been widely adopted to develop employability skills in universities,
indicating that discipline content need not be sacrificed for the development of
employability skills when project-based learning is used effectively.

3 Applications of PBL in IT Higher Education

The use of PBL is popular in engineering, computer science, and information
technology degrees due to the expected artefact creation that is typical of these
project-based environments. One example is a model for project-based learning
that was implemented in two engineering subjects [27]. Seventy students pro-
vided feedback on the impact of the PBL strategy taken. The study concluded
that team-based PBL is a suitable pedagogy for improving student engagement,
and supporting skills such as problem-solving, report writing, and critical think-
ing. Project-based learning is a practical approach to skills development in any

70 J. T. Janse van Rensburg

field and can be used to evaluate the skill levels of students in a collaborative
environment that simulates an industry setting. A PBL approach in computer
science provides an environment to practice and develop workplace skills that are
challenging to simulate in traditional lecture settings [28]. PBL promotes profes-
sional skills, discipline and time management skills, in a similar manner as the
professional world would demand. For IT projects, the use of agile methodologies
to manage PBL teams in computer science education is recommended [29].

Project-based learning does have challenges in its implementation, specifi-
cally the manner in which tasks are divided amongst teams in a project, as there
is a perceived dissatisfaction in teams where two or more women are grouped
with men [30]. Male students tend to take on the role of programmer, while
female students are tasked with the role of documenter. Men are more likely to
gain technical experience through PBL activities, while women more often build
on project management and communication skills [30]. While the acquisition of
any new skills is a step in the right direction, the structure of PBL activities
should ensure that technically skilled students are also produced from the his-
torically underrepresented groups in computer science and engineering. A gap
between academic education and the role of the university was also noted where
excellent programmers fail a degree due to poor perceived academic performance,
while students who struggled with coding passes a degree based on good aca-
demic performance [29]. This issue emphasises the need for more practical based
curriculum in IT degrees, considering that the field of information technology
is constantly evolving. Research on the benefits and challenges of project-based
learning in IT higher education needs further development.

The use of projects in IT higher education is expected due to the fact that
the IT industry is comprised of project environments [31]. This suggests that a
project-based learning environment has the potential to not only train technical
IT skills, but also contribute to a robust understanding of entrepreneurship, data
analysis, computational thinking, critical thinking, creativity, and other 21st
century skills. Project-based learning is a suitable pedagogy that can address
the IT skills gap experienced worldwide [32-35], as it supports the IT graduate’s
development through real-life experiences [31]. For best practice, a project-based
learning environment should encourage continuous reflective practice for profes-
sional development [3,36,37].

4 Reflective Practice in PBL

At its core, project-based learning is a reflective practice approach to solving a
project-based problem. In PBL, active engagement and reflection contributes to
experiential learning as students need to collaborate on, and contribute to, the
outcome of the project [22]. It is difficult to assess the reflection that takes place
on learning [6], but research continuously places emphasis on the importance of
reflection, self-evaluation, and peer assessment in project-based learning [20, 37—
39]. Tt is crucial to make time for “students to reflect deeply on the work they
are doing and how it relates to larger concepts specified in the learning goal” [39].

Project-Based Learning Guidelines for IT Higher Education 71

Students’ conceptual knowledge is developed through a systematic process of doc-
umenting the learning process, and reflecting on the experience [40]. It is impor-
tant that both the learner and the facilitator take time to reflect. “Throughout a
project, students - and the teacher - should reflect on what they’re learning, how
they’re learning, and why they’re learning” [37]. Reflection can take place through
methods such as autoethnography and reflective journaling [41].

Students should be encouraged to think about what they are doing while they
are doing it, and after they have done it, to improve the manner in which they
will address similar problems in future [42]. This approach of dual reflection
is referred to as reflective practice. Reflective practice is a professional learn-
ing and development strategy focused on improving practice. It is “a dialog
of thinking and doing through which I become more skilful” [42]. Even when
professional practitioners engage in problem solving, they do so through reflec-
tion. Research on the implementation of project-based learning strongly suggests
that the reliability of a PBL strategy centres on its contribution to professional
development [3]. Reflective practice is central to professional development, and
is considered as a method to transform implicit knowledge into explicit knowl-
edge through experience [43]. For this reason, reflective practice is considered
central to the success of a project-based learning strategy, towards cultivating
professional development in students.

5 Guidelines for PBL in IT Higher Education

Thomas [1] made an observation two decades ago that is still problematic today—
“there continues to be a lack of consensus on what constitutes PBL” [3]. Condliffe
and colleagues [3] recommend aspects to be cautious of when constructing design
principles for PBL:

— Design principles should be measurable,

— Design principles should address both content and assessment,
— Design principles should be informed by practice,

Research on design principles should investigate adaptation.

Following the recommendations made above, Table 1 provides a coherent set
of guidelines that can be used for effective project-based learning in IT higher
education. The information is presented as a literature matrix where well-cited
PBL sources were consulted. Information technology sources were included to
improve rigour for IT projects. It is important to note that there are limited
PBL guidelines specifically for IT education in the literature, where most only
exist from research that applies generic PBL principles. As such, the guidelines
presented below were formulated using the general characteristics of what con-
stitutes good PBL, and were adapted to the scope of information technology
projects. Additional guidelines that are specific to IT projects were added for
value. The aim of the guidelines, if implemented properly, is to ensure greater
alignment between IT higher education and the IT industry. This in return will
develop the necessary skills that make I'T students more employable.

72 J. T. Janse van Rensburg

Table 1. PBL guidelines for IT higher education.

PBL guidelines for IT projects in higher
education

44

45

46

3112

36

20

37

22

23

47

38

14

48149

The primary objective of a PBL environment
for IT students is to focus on improving
specific 21st century competencies and IT skills

Project-based learning is central to the IT
curriculum, and is not viewed as a separate
activity at the end of a module

Every IT project has specific educational goals
as set out in the curriculum

An IT project in a PBL environment is
designed to encourage reflective practice in
both the student and the facilitator

For an IT PBL environment to be successful,
support is needed from colleagues and faculty
management

The scope of an IT project should be
significant, realistic and industry related

IT students should be allowed to have a voice
and choice appropriate to the context of the
project

IT projects should result in IT artefacts

The use of appropriate technology in IT
projects is expected and not a nice to have

The project scope should be well defined with
enough time allocated for in-depth inquiry

An IT project should start with a driving
question that makes the student think about
the project over a period of time before
actually starting with the creation of an
artefact

Intrinsic motivation for IT students and the
need to know are reinforced with tools such as
guest lectures from industry or building real
solutions for actual projects

Facilitator guidance should be appropriately
managed with scaffolding sources that further
improve the need to know of the student

Teamwork is emphasised to simulate working
environments in the I'T industry

Learning by doing is emphasised through
active participation throughout the IT project

Time management is crucial in IT projects

Use appropriate agile methodologies to manage
IT teams

Encourage the use of source control software to
manage and track code changes, and to
determine team member contribution

User stories will guide the creation of simplified
software requirements in an IT project

Assessment practices for IT projects should
include critique, revision, and rubrics

Motivation to deliver quality IT projects is
improved when external audiences such as
community or industry members are involved
and act as evaluators of the artefact

Project-Based Learning Guidelines for IT Higher Education 73

While compiling the guidelines, it was evident that they could be grouped
under different phases of a PBL activity. As such, a discussion of the guidelines in
context of IT higher education follows, and is structured according to a suggested
PBL activity process flow (Fig.1).

{ Assessment ’

and
management

Reasoning .
. b Requirements
and reflection

{ Design and ’ {(iuiduncc and

scheduling scaffolding

{ Monitoring

Fig. 1. Process flow for PBL guidelines

5.1 Reasoning and Reflection

Guidelines that form part of the reasoning and reflection criteria provide context
to the objectives of adopting a project-based learning strategy.

The primary objective of a PBL environment for IT students is to
focus on improving specic 21st century competencies and IT skills -
Before planning a project-based learning activity, ask yourself, “which skills do
I hope will be developed through this PBL activity?” The nature of a project-
based learning environment lends itself to skills development, but it is up to the
facilitator to determine which skills need to be developed. As a PBL environment
resembles an IT industry environment, specific skills development activities can
be incorporated with relative ease. For example, weekly demonstrations to train
soft skills, and specific development platforms to train technical skills.

Project-based learning is central to the IT curriculum, and is not
viewed as a separate activity at the end of a module - When planning to
use a project-based learning approach, you need to begin with the end in mind.
The project is the central activity in the module, and all other activities are
planned in such a way that it supports the development and improved outcome of
the project. Educators tend to go about their semester in the traditional manner,
and then add a project that covers some of the aspects that were discussed during
the semester. This is not the correct approach to PBL (as indicated by Thomas).
A successful PBL strategy is goal-driven, and is built around the project.

Every IT project has specific educational goals as set out in the
curriculum - All modules that form part of a degree have module outcomes.
Furthermore, all study units that form part of a module have study unit out-
comes. When formulating your project-based learning activity, you should take
cognisance of the learning outcomes that need to be met. This is an impor-
tant element that forms part of the administrative documentation of the institu-
tion, where a coherent strategy must be documented demonstrating how module
objectives were met.

An IT project in a PBL environment is designed to encourage
reflective practice in both the student and the facilitator - A project-
based learning activity is formulated through reflective practice, and encourages

74 J. T. Janse van Rensburg

reflective practice. PBL activities for IT projects aims to improve the profes-
sional development of the student, by guiding the student to become a reflective
practitioner. The PBL environment also improves the reflective practice of the
facilitator, who needs to adapt her problem-solving skills in the context of each
individual project.

5.2 Requirements

Guidelines that form part of the requirements criteria provide context to aspects
that need to be considered before planning a project-based learning activity.

For an IT PBL environment to be successful, support is needed
from colleagues and faculty management - Faculty support is important
when specific tools and platforms are required. You may also need other consum-
able resources such as brown paper and stationery for creative planning sessions.
Support may also be needed when the facilitator wants to attend workshops or
industry training sessions to improve her own skills related to facilitating the
project-based learning activity. Support from colleagues may be required in the
form of evaluation assistance, as assessing PBL artefacts can be time-consuming.

The scope of an IT project should be signicant, realistic and
industry-related - It is recommended to use industry project scopes as part of
a project-based learning environment for IT students. Using authentic project
briefs will encourage the commitment students have towards completing the
project. Community projects are also ideal for PBL activities if there is a need
in the community, because the students then feel that they are contributing to
a real solution. If it is not possible to obtain a project scope from industry/the
community, do market research on industry-relevant topics that are currently
in the headlines, preferably using wicked problems that will develop the critical
thinking and problem solving skills of the student.

IT students should be allowed to have a voice and choice appropri-
ate to the context of the project - Entry-level and exit-level I'T students are
motivated by different types of projects. For entry-level students, consider using a
voting platform where students can suggest, and then vote for, the project scope
that they would like as a topic. The facilitator should shortlist the topics based
on their suitability and relevance to most/all students. For exit-level students,
a multifaceted project scope can be used that explains the industry problem in
context of different role players, where an administrator might need a desktop
application, a client might need a web application, and a driver might need a
mobile application. The student can then choose which role player’s problem
s/he wants to solve.

IT projects should result in IT artefacts - A demonstrable artefact is
expected at the end of an IT project-based learning activity. These include, but
are not limited to, software documentation, systems, applications, and research
reports.

The use of appropriate technology in IT projects is expected and
not a nice to have - It is important to integrate authentic software and tools as
part of your IT project-based learning activity. From the market research you’ve

Project-Based Learning Guidelines for IT Higher Education 75

conducted to determine which tools and software are appropriate, you should
be able to make a list of requirements for faculty management. For IT degrees,
faculties usually have specific budgets available for upgrade and maintenance of
the IT infrastructure. Some technology stacks offer educational licenses, such as
Visual Studio. There are also open source platforms that are widely used and
that can be implemented, such as Python.

5.3 Design and Scheduling

Guidelines that form part of the design and scheduling criteria provide context
to aspects that should be implemented while planning a project-based learning
activity.

An IT project should start with a driving question that makes the
student think about the project over a period of time before actually
starting with the creation of an artefact - The driving question is a neutral
open-ended question that will lead students to investigate processes or proce-
dures that might be useful for the PBL activity. The driving question is given at
the start of a module, or before the project commences, to focus the direction
of the investigation. An example of a driving question is, “where can I host a
website for free that will include free database storage of at least X megabytes
per month?” Students will start researching possible hosting platforms without
needing to know what the project is about. The open-ended question will also
keep them thinking about the project, holding interest and motivation for when
the project scope is released.

The project scope should be well defined with enough time allo-
cated for in-depth inquiry - There should be no ambiguities in the project
scope. This does not necessarily mean that you need to provide a bullet list of
instructions. An effective manner of structuring briefs for IT projects is in nar-
rative format. Write a problem statement from the views of the respective role
players in the project. The time allocated to completing the project should be
fair, and can only really be assessed through active involvement of the facilita-
tor. IT projects are generally scheduled between 4-6 weeks (depending on the
scope), with the assumption that the students have dedicated development time
during every week where facilitator guidance is available.

5.4 Guidance and Scaffolding

Guidelines that form part of the guidance and scaffolding criteria provide context
to the manner in which the facilitator should provide support and direction in
the project-based learning activity.

Intrinsic motivation for IT students and the need to know are re-
enforced with tools such as guest lectures from industry or building
real solutions for actual projects - For increased motivation, arrange an
industry guest lecture that accompanies the industry project scope. Students
are inspired by practitioners, and will reflect deeply on the experience. Real

76 J. T. Janse van Rensburg

projects for real clients also improve motivation to complete the project, espe-
cially community projects that are completed with the aim of alleviating a real
problem. For example, a local animal shelter that requires a free website where
they can upload pictures of pets that are up for adoption.

Facilitator guidance should be appropriately managed with scaf-
folding sources that further improve the need to know of the student
- When structuring project scopes, make sure to add web links to resources
that will be useful to complete the project. Also provide links to other similar
projects, or similar problems experienced, to motivate the student’s search for
solutions. As part of the planning for a PBL activity, the supporting activities
can also be scaffolded in such a way that an important piece of information is
revealed every week to maintain the interest of the students.

5.5 Monitoring and Management

Guidelines in the monitoring and management criteria provide guidance for
important aspects that should form part of IT projects towards the professional
development and employability of the IT student.

Teamwork is emphasised to simulate working environments in the
IT industry - Where possible, team projects should be incorporated when
using project-based learning. The IT industry comprises of I'T teams that create
IT projects. Students need to work in teams where they are unfamiliar with
their team members. Working with new people will develop teamwork and time
management skills, more so than working in teams with friends. A suggested
number of members per team is 4-taking on roles such as the business analyst,
back-end developer, front-end developer, and database administrator.

Learning by doing is emphasised through active participation
throughout the IT project - Project-based learning aims to encourage stu-
dent reflection. There is a transition from ‘knowing through making’ the artefact,
to ‘learning by doing’ what is best practice for developing artefacts. Students
that do not actively participate in the project will miss out on the chance to
learn from peers and mentors in a controlled environment.

Time management is crucial in IT projects - One of the biggest chal-
lenges for IT graduates is to adjust to the demanding deadlines of the IT industry.
Training time management is essential in an I'T PBL activity, and can be coached
by setting time constraints on different activities that form part of the project,
weekly feedback sessions, and time boxing demonstrations so that students learn
how to highlight the most important items in their projects first.

Use appropriate agile methodologies to manage IT teams - IT com-
panies use agile development methodologies, such as DevOps, Extreme Program-
ming, Scrum, and Kanban, to manage their workflow. Educating students on the
methodologies that are available, and providing training in at least one method
is recommended. For example, Scrum is a useful methodology that demonstrates
how to plan backlog items, sprints, and daily stand-up meetings. The approach
can be supported by using a visual work-pull system such as a Kanban board
that tracks the progress and contribution of all team members. Brown paper

Project-Based Learning Guidelines for IT Higher Education 7

sheets and sticky notes work well for a tactile display, or alternatively an online
platform such as Trello can be used.

User stories will guide the creation of simplified software require-
ments in an IT project - Creating user stories is a standard approach to
defining software requirements for a system. A user story typically describes the
type of user, what the user wants to do, and why the user wants to do it. From
a user story, functional and non-functional requirements of the system can be
specified. To mimic professional practice, it is important to emphasise the devel-
opment of core functional requirements first. For example, if the client wants
an online booking system for their hotel, the core functional requirement of the
system would be the ability to make a booking. Items such as e.g. registration
and login features are secondary, and should be focused on after the booking
item is functional. Discourage the development of unnecessary ‘nice to haves’
that were not part of the project brief, or postpone development thereof until
all core functional requirements have been implemented first.

Encourage the use of source control software to manage and track
code changes, and to determine team member contribution - A standard
requirement in IT practice is the use of source control. Source control, or version
control, is a software program that manages and tracks code changes, providing
a history of code that was developed, logged, and merged. The benefits of source
control include access to previous versions of a project that was in workable
condition, and shared access in teams to work on the same code. Examples of
source control platforms are Git, Azure DevOps, and BitBucket. In IT student
projects, the extended benefit of implementing source control, is the ability of
the facilitator to see how long the team has been working on the project, and
who has been working on the project. The software keeps track of the dates when
code was committed, and by who the code was committed. Another benefit is
that students cannot use the excuse that “my project was working just this
morning”, because your response will be “then run your previous code commit
that was working on your source control platform”.

5.6 Assessment

Guidelines that form part of the assessment criteria provide recommended eval-
uation practices for IT projects.

Assessment practices for IT projects should include critique, revi-
sion and rubrics - Project assessment during development should include 5-10
min stand-ups where a student/team highlights what has been completed so far,
items that were struggled with, and what needs to happen next. This activity
develops their verbal communication and presentation skills. It is recommended
that every project brief should have an accompanying project rubric. A detailed
rubric provides the students with a checklist of items that need to be completed,
and eliminates the possibility of inconsistent marking as all students/teams are
scored using the same criteria.

78 J. T. Janse van Rensburg

Motivation to deliver quality IT projects is improved when exter-
nal audiences such as community or industry members are involved
and act as evaluators of the artefact - It is recommended that public audi-
ences take part in the evaluation of the final artefact. Students will be motivated
to produce quality artefacts when they know that members from the industry
will be evaluating their work, and in turn, this will provide industry with an
opportunity to scout for talent. When using community projects, members from
the community can also be invited to evaluate the artefact. Careful consideration
should be given to how the marks are awarded when using novice or unknowl-
edgeable judges from the community. If you are unable to arrange public audi-
ences, ask colleagues for assistance with evaluating the projects. An unfamiliar
face will encourage professional demonstrations.

6 Conclusion

This paper presented a set of guidelines for using project-based learning effec-
tively in IT higher education. The guidelines were formulated from existing char-
acteristics of PBL in literature, and were supplemented with guidelines that are
specifically relevant for IT projects. The novelty of the paper rests specifically on
the guidelines that were formulated as part of the monitoring and management of
IT PBL activities. These guidelines are specific to the IT sector, and emphasises
aspects that should be part of IT PBL activities to mimic professional practice.
Figure 2 depicts a high-level overview of the PBL guidelines presented in this
article.

1) Reasoning & reflection

The primary objective of a PBL environment for IT students is to focus on

6) Assessment improving specific 21st century competencies and IT skills

* Project-based learning is central to the IT curriculum, and is not viewed as a
separate activity at the end of a module

e Every IT project has specific educational goals as set out in the curriculum

e AnIT project in a PBL environment is designed to encourage reflective practice in

both the student and the facilitator

® Assessment practices for IT projects
should include critique, revision and
rubrics

Motivation to deliver quality IT
projects are improved when external
audiences such as community or
industry members are involved and act 2) Requirements
as evaluators of the artefact

For an IT PBL environment to be successful, support is
needed from colleagues and faculty management

The scope of an IT project should be significant,
realistic and industry-related

IT students should be allowed to have a voice and
choice appropriate to the context of the project

* IT projects should result in IT artefacts

The use of appropriate technology in IT projects is
expected and not a nice to have

5) Monitoring & managing

e Teamwork is emphasised to simulate
working environments in the IT industry
Learning by doing is emphasised through ~ Guidelines for project-based learning in
active participation throughout the IT IT higher education

project

Time management is crucial in IT projects
Use appropriate agile methodologies to
manage IT teams

Encourage the use of source control
software to manage and track code changes,
and to determine team member contribution
User stories will guide the creation of
simplified software requirements in an IT
project

4) Guidance & scaffolding

o Intrinsic motivation for IT students and 3) Design & scheduling
the need to know are re-enforced with
tools such as guest lectures from
industry or building real solutions for

The project scope should be well defined with enough
time allocated for in-depth inquiry

z An IT project should start with a driving question that
actual projects makes the student think about the project over a period

Facilitator guidance should be of time before actually starting with the creation of an
appropriately managed with scaffolding artefact

sources that further improve the need to
know of the student

Fig. 2. Guidelines for PBL in IT higher education

Project-Based Learning Guidelines for IT Higher Education 79

The need for the guidelines was emphasised in literature, where it was high-

lighted that educators find it challenging to assess whether a suitable PBL app-
roach is being implemented. After reflecting on the possible impact of the guide-
lines, it was noted that universities might be placing too much emphasis on
theoretical work at the disadvantage of practical experience expected in an IT
degree. Project-based learning is a solution towards including more practical
content in an IT degree, as well as preparing students for industry. Following
the PBL guidelines proposed in this research may contribute towards bridging
the gap between IT theory (higher education) and IT practice (industry).

References

10.

11.

12.

13.

14.

15.

16.

Thomas, J.W.: A Review of Research on Project-based Learning, Autodesk Foun-
dation, San Rafael (2000)

Tamim, S.R., Grant, M.M.: Definitions and uses: case study of teachers implement-
ing project-based learning. Interdiscipl. J. Probl.-Based Learn. 7(2), 3 (2013)
Condliffe, B., et al.: Project-Based Learning: A Literature Review. MDRC, New
York (2017)

Huberman, M., et al.: The Shape of Deeper Learning: Strategies, Structures, and
Cultures in Deeper Learning Network High Schools, Institutes for Research, Wash-
ington, DC (2014)

Scardamalia, M., et al.: New assessments and environments for knowledge building
new assessments and environments for knowledge building. In: Griffin, P., McGaw,
B., Care, E. (eds.) Assessment and Teaching of 21st Century Skills. Springer, Dor-
drecht (2012). https://doi.org/10.1007/978-94-007-2324-5_5

Whatley, J.: Evaluation of a team project based learning module for developing
employability skills. Iss. Inform. Sci. Inf. Technol. 2012(9), 75-92 (2012)
Veletsianos, G., et al.: Design principles for thriving in our digital world: a high
school computer science course. J. Educ. Comput. Res. 54(4), 443—461 (2016)
Kilpatrick, W.H.: The project method. Teacher’s college. Record 19, 319-335
(1918)

Dewey, J.: Democracy and Education: An Introduction to the Philosophy of Edu-
cation, p. 434. Macmillan, New York (1916)

Ravitch, D.: Left Back: A Century of Failed School Reforms. Simon and Schuster,
New York (2000)

Holm, M.: Project based instruction: a review of the literature on effectiveness in
prekindergarten. River Acad. J. 7(2), 1-13 (2011)

Kokotsaki, D., Menzies, V., Wiggins, A.: Project-based learning: a review of the
literature. Improv. School 19(3), 267-277 (2016)

Cocco, S.: Student Leadership Development: the Contribution of Project-based
Learning. Royal Roads University, Victoria, BC (2006)

Mergendoller, J.R., Thomas, J.W.: Managing project based learning: Principles
from the field. Buck Institute for Education (2000). http://www.bie.org
Al-Balushi, S.M., Al-Aamri, S.S.: The effect of environmental science projects on
students’ environmental knowledge and science attitudes. Int. Res. Geogr. Environ.
Educ. 23(3), 213-227 (2014)

Hertzog, N.B.: Transporting pedagogy: implementing the project approach in two
first-grade classrooms. J. Adv. Acad. 18(4), 530-564 (2007)

https://doi.org/10.1007/978-94-007-2324-5_5
http://www.bie.org

80

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

J. T. Janse van Rensburg

Pellegrino, J.W., Hilton, M.L.: Education for Life and Work: Developing Transfer-
able Knowledge and Skills in the 21st Century. National Academies Press, Wash-
ington, DC (2012)

Musa, F., et al.: Project-based learning (PjBL): inculcating soft skills in 21st cen-
tury workplace. Procedia-Soc. Behav. Sci. 59, 565-573 (2012)

Musa, F., et al.: Project-based learning: promoting meaningful language learning
for workplace skills. Procedia-Soc. Behav. Sci. 18, 187-195 (2011)

Bell, S.: Project-based learning for the 21st century: skills for the future. The Clear.
House 83(2), 39-43 (2010)

Wurdinger, S., et al.: A qualitative study using project-based learning in a main-
stream middle school. Impro. Schools 10(2), 150-161 (2007)

Helle, L., Tynjila, P., Olkinuora, E.: Project-based learning in post-secondary edu-
cation - theory, practice and rubber sling shots. Higher Educ. 51(2), 287-314 (2006)
Krajcik, J.S., Blumenfeld, P.C.: Project-based learning (2006)

Ertmer, P.A., Simons, K.D.: Scaffolding teachers’ efforts to implement problem-
based learning. Int. J. Learn. 12(4), 319-328 (2005)

Barron, B.J.S., et al.: Doing with understanding: lessons from research on problem
and project-based learning. J. Learn. Sci. 7(3/4), 271-311 (1998)

Hart, J.L.: Interdisciplinary project-based learning as a means of developing
employability skills in undergraduate science degree programs. J. Teach. Learn.
Grad. Employ. 10(2), 50-66 (2019)

Viswambaran, V.K., Shafeek, S.: Project based learning (PBL) approach for
improving the student engagement in vocational education : an investigation on
students‘ learning experiences & achievements. In: 2019 Advances in Science and
Engineering Technology International Conferences (ASET). Dubai, United Arab
Emirates (2019)

McManus, J.W., Costello, P.J.: Project based learning in computer science: a stu-
dent and research advisor’s perspective. J. Comput. Sci. Coll. 34(3), 38-46 (2019)
Renz, J., Meinel, C.: The “Bachelor Project”: project based computer science
education. In: 2019 IEEE Global Engineering Education Conference (EDUCON).
IEEE (2019)

Fowler, R.R., Su, M.P.: Gendered risks of team-based learning: a model of
inequitable task allocation in project-based learning. IEEE Trans. Educ. 61(4),
312-318 (2018)

Sindre, G., et al.: Project-based learning in I'T education: definitions and qualities.
UNIPED 2018, 27 (2019)

CompTIA. Assessing the IT skills gap. 2017 5 November 2019. https://www.
comptia.org/content/research/assessing-the-it-skills-gap

Cobb, S.: Mind this gap: criminal hacking and the global cybersecurity skills short-
age, a critical analysis. In: Virus Bulletin Conference (2016)

Van Broekhuizen, H.: Graduate unemployment and higher education institutions
in South Africa. In: Bureau for Economic Research and Stellenbosch Economic
Working Paper 08, vol. 16 (2016)

Schofield, A., Dwolatzky, B.: 2019 JCSE-IITPSA ICT skills survey, 5 November
2019. The Tenth Edition. https://www.iitpsa.org.za/wp-content/uploads/2019/
09/2019-JCSE-IITPSA-ICT-SKkills-Survey-v1.pdf

Lee, J.S., et al.: Taking a leap of faith: redefining teaching and learning in higher
education through project-based learning. Interdiscipl. J. Probl.-Based Learn. 8(2),
2 (2014)

Larmer, J., Mergendoller, J.R.: Essentials for project-based learning. Educ. Lead-
ersh. 68(1), 34-37 (2010)

https://www.comptia.org/content/research/assessing-the-it-skills-gap
https://www.comptia.org/content/research/assessing-the-it-skills-gap
https://www.iitpsa.org.za/wp-content/uploads/2019/09/2019-JCSE-IITPSA-ICT-Skills-Survey-v1.pdf
https://www.iitpsa.org.za/wp-content/uploads/2019/09/2019-JCSE-IITPSA-ICT-Skills-Survey-v1.pdf

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Project-Based Learning Guidelines for IT Higher Education 81

Grant, M.M.: Getting a grip on project-based learning: theory, cases and recom-
mendations. Meridian 5(1), 83 (2002)

Darling-Hammond, L.: Teaching and learning for understanding. In: DarlingHam-
mond, L., et al. (eds.) Powerful Learning: What We Know About Teaching for
Understanding, pp. 1-8. JosseyBass, San Francisco (2008)

Barak, M.: From “doing” to “doing with learning”: reflection on an effort to pro-
mote self-regulated learning in technological projects in high school. Eur. J. Eng.
Educ. 37(1), 105-116 (2012)

Krajcik, J.S., et al.: A collaborative model for helping middle grade science teachers
learn project-based instruction. Element. Sch. J. 94(5), 483-497 (1994)

Schoén, D.A.: The Reflective Practitioner: How Professionals Think in Action. Basic
books, London (1983)

Finlay, L.: Reecting on ‘Reective practice’. Practised-based professional learning
center, vol. 29, p. 2014 (2008)

Milentijevic, 1., Ciric, V., Vojinovic, O.: Version control in project-based learning.
Comput. Educ. 50(4), 1331-1338 (2008)

Mahnié, V.: The capstone course as a means for teaching agile software develop-
ment through project-based learning. World Trans. Eng. Technol. Educ. 13(3),
225-230 (2015)

Kastl, P., Romeike, R.: Agile projects to foster cooperative learning in het-
erogeneous classes. In: 2018 IEEE Global Engineering Education Conference
(EDUCON). IEEE (2018)

Doppelt, Y.: Implementation and assessment of project-based learning in a flexible
environment. Int. J. Technol. Des. Educ. 13(3), 255-272 (2003)

Moursund, D.G.: Project-based Learning Using Information Technology. Interna-
tional Society for Technology in Education, Eugene (1999)

Barron, B.J., et al.: Doing with understanding: lessons from research on problem-
and project-based learning. J. Learn. Sci. T(3-4), 271-311 (1998)

Teaching Methods and Strategies

®

Check for
updates

Mapping Computational Thinking Skills
to the South African Secondary School
Mathematics Curriculum

Karen Bradshaw!2®) @ and Shannon Milne!:2

! Department of Computer Science, Rhodes University, Makhanda, South Africa
2 Department of Information Systems, Rhodes University, Makhanda, South Africa
k.bradshaw@ru.ac.za

Abstract. Computational thinking (CT) is gaining recognition as an
important skill for learners in both Computer Science (CS) and several
other disciplines, including mathematics. In addition, researchers have
shown that there is a direct correlation between poor mathematical skills
and the high attrition rate of CS undergraduates. This research investi-
gates the use of nine core CT skills in the South African Grades 10-12
Mathematics curriculum by mapping these skills to the objectives given
in each of the topics in the curriculum. The artefact developed shows
that all the identified CT skills are used in the curriculum. With the use
of this mapping, future research on interventions to develop these skills
through mathematics at secondary school, should produce school leavers
with better mathematical and problem solving abilities, which in turn,
might contribute to better success rates in CS university courses.

Keywords: Computational thinking - Secondary school mathematics
curriculum - Computer science

1 Introduction

Computational thinking (CT) as defined by Wing is “the thought processes
involved in formulating problems and their solutions so that the solutions are rep-
resented in a form that can be effectively carried out by an information-processing
agent” [13]. Wing further elaborates on how she believes that CT involves all
critical thinking skills, including problem solving and designing systems that
draw on concepts from mathematics and engineering [12].

As cited by Mwakapenda, the South African Department of Education (DoE)
in its National Curriculum Statement (NCS) in 2003 defines the mathematics
discipline as follows: “Mathematics enables creative and logical reasoning about
problems in the physical and social world and in the context of mathematics itself.
It is a distinctly human activity practised by all cultures ... Mathematics is based
on observing patterns; with rigorous logical thinking, this leads to theories of
abstract relations. Mathematical problem solving enables us to understand the
world and make use of that understanding in our daily lives.” [7, p. 190].

© Springer Nature Switzerland AG 2022
W. S. Leung et al. (Eds.): SACLA 2021, CCIS 1461, pp. 85-101, 2022.
https://doi.org/10.1007/978-3-030-95003-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95003-3_6&domain=pdf
http://orcid.org/0000-0003-3979-5675
https://doi.org/10.1007/978-3-030-95003-3_6

86 K. Bradshaw and S. Milne

In order to link this definition of mathematics to CT concepts, problem
solving (PS) needs to be defined clearly. Voskoglou and Buckley [10] outline how
problem solving is used within the context of CT. They describe PS as an activity
that makes use of cognitive and/or physical means to solve a problem in order to
develop a better idea of the world. PS forms the essence of mathematics, which
corresponds with the view of mathematics held by the DoE. PS also forms part
of the essence of Wing’s definition of CT [12]. In their conclusion, Voskoglou
and Buckley [10] give their view on how mathematics should be taught in the
future, namely, that there should be a focus on teaching not only mathematical
concepts and techniques of computing, but also on PS in order to satisfy aims
such as creativity, systematisation, communication, argumentation, and seeing
how mathematics can be applied in the real world.

Not only do mathematical concepts underpin many computing and program-
ming concepts, but without the skills developed in studying mathematics, it
would be a challenge for potential computer science (CS) students to make sense
of abstract language, work with algorithms, accurately model and solve real-life
problems and be able to self analyse their work. It has been shown in the liter-
ature that poor mathematical skills and problem solving abilities are one of the
main reasons for the high attrition rates in CS courses [2]. Given that entry to
most CS Bachelor degrees in South Africa requires at least matriculation math-
ematics, it would be beneficial to those learners who were considering taking CS
at university, that not only their knowledge of mathematical concepts, but also
their problem solving and other skills associated with studying mathematics,
were developed to the fullest during their school years.

To understand exactly what these necessary skills are and where they occur
in the South African secondary school mathematics curriculum, this study set
out to map core CT skills identified in the literature to the existing mathemat-
ics curriculum. Once the skills appropriate to each topic in the mathematics
curriculum are known, future research can focus on designing exercises/study
aids that can develop and/or enhance such skills to assist learners that strug-
gle with comprehending the core mathematics content and in so doing, develop
undergraduates that have the requisite skills to succeed in CS courses.

In the rest of this paper, we discuss related work in the application of CT
in various disciplines (Sect.2), introduce the core set of CT skills used in the
study (Sect. 3), present the mapping of these skills to some of the topics in the
mathematics curriculum (Sect.4), and finally in Sect. 5, state our conclusions
with suggestions for future work.

2 Computational Thinking in the Context of STEM

Computational thinking draws from concepts of CS such as, algorithms, prob-
lem decomposition and simulation to solve problems that often transcend the
CS discipline [4]. On the other hand, Howland et al. [3] postulate that as CS
students learn programming languages they pick up high-level skills that are
broadly applicable outside of CS, including the ability to define clear, specific

Mapping Computational Thinking Skills 87

and unambiguous instructions for carrying out a process; the ability to design a
system made up of distinct components with clearly defined areas of responsibil-
ity; the ability to design a system made up of components that deliberately reveal
certain information and operations related to their purpose, and hide everything
else; and the understanding that a complex system of behaviours can arise from
simple interactions. Thus, there is a direct reciprocal relationship between CT
and CS, in that enhanced CT skills improve CS understanding, while CS pro-
gramming knowledge develops specific problem solving skills associated with
CT. Exploring this relationship further, several studies have shown that CT and
STEM' subjects generally share a similar reciprocal relationship [14].

The ideas discussed above are in line with Wing’s sentiments [12] that CT
is a fundamental skill for solving complex problems encountered in everyday
life not just in the field of CS. Wing further postulates that CT can enhance
skills that are currently required in school curricula. These skills include finding
solutions to given problems and designing intelligent solutions using different
levels of abstraction and decomposition, algorithms and mathematical concepts
while understanding and determining the impact of the solutions chosen for their
efficiency, economic and social impacts [12].

Based on the belief that embedding CT in a curriculum requires a practical
approach grounded in an operational definition, Barr and Stephenson set out to
answer questions such as “What would computational thinking look like in the
classroom? What are the skills that students would demonstrate? What would
a teacher meed in order to put computational thinking into practice? What are
teachers already doing that could be modified and extended?” [1]. By answering
these questions the authors proposed nine key CT concepts and capabilities
(as explained in Sect.3) and provided linkages of the identified skills to other
disciplines including mathematics.

A different approach was used in [8] to investigate CT education in K-12
German secondary schools. The methodology used was based on the analysis
of secondary data, namely the curricula frameworks for CS and Physics in four
federal German states. The authors also compared CT education in Germany
with that at the international level by considering the ACM model curriculum
for K-12 computer science. The state curricula were analysed and coded based on
whether the vocabulary in the description of competencies or learning objectives
in the curriculum frameworks matched specific CT terms and components. The
results were presented in the form of a table showing whether the curriculum of
each state contained the nine core computational concepts as defined by Barr
and Stephenson [1].

Weintrop et al. [11] stated that due to the increased presence of computation
in mathematics and scientific contexts there is an urgency to define CT and
provide a theoretical grounding for how it should be applied in school science
and mathematics classrooms. To do this, they proposed a taxonomy consist-
ing of four main categories: data practices, modeling and simulation practices,

1 STEM is an acronym for four closely connected areas of study, namely, science,
technology, engineering and mathematics.

88 K. Bradshaw and S. Milne

computational problem solving practices, and systems thinking practices. This
taxonomy was created based on secondary data in the form of existing CT lit-
erature and CT instructional materials as well as primary data collected via
interviews with mathematicians and scientists.

This research follows a similar approach to that documented in [3,8,11] where
secondary data sources are analysed to develop new artefacts. The main aim of
the research is to understand exactly what skills are associated with studying
mathematics at a secondary school level and how these correspond to the skills
addressed in CT. This understanding is documented in the form of a mapping of
core CT skills to topics within the existing Mathematics curriculum for grades
10-12.

3 Definition of CT Skills Applied in This Research

The latest South African secondary school curriculum change happened in 2012
with the introduction of the National Curriculum and Assessment Policy State-
ment (CAPS). According to the Department of Basic Education, CAPS was
not a new curriculum, but an amendment to the previous curriculum, the NCS,
which introduced outcomes-based education in 2005 [9].

The NCS was based on the core principles of social transformation (ensuring
that the educational injustices of the past are corrected and that there are equal
educational opportunities for the entire population); active and critical learning
(encouraging an active and critical approach to learning); and valuing indige-
nous knowledge systems (acknowledging the rich history and heritage of SA as
important contributors to nurturing the values contained in the Constitution).
According to the curriculum and assessment policy statement for grades 10-12
released in 2011, the new CAPS curriculum further aims to ensure that children
are able to apply their acquired knowledge and skills in a way that is meaningful
to their own lives [9].

Based on the work in [1] the nine CT concepts described below, were used
to analyse the South African secondary school mathematics curriculum.

Data Collection (DC) and Data Analysis (DA): Data collection and data anal-

ysis are jointly defined in [8] as the ability to observe and describe phenomena
and goal-oriented experiments. This includes the learner having the ability to
collect measurement data and assess the data. In terms of mathematics, DC
occurs when the learner is able to find a data source for a problem and DA
occurs when the learner needs to count the occurrences of flips, dice throws and
analyse these results.

Data Representation (DR): Data representation is defined as the ability
to search, analyse and evaluate relevant information and data in different
sources [8]. This ability includes being able to depict and organise data in appro-
priate graphs, charts or text. Examples of how this skill is used in mathematics
are provided in [1], together with the explanation that DR is used when repre-
senting data in terms of histograms, pie charts and bar charts or when containing
data in sets or lists.

Mapping Computational Thinking Skills 89

Problem Decomposition (PD): Problem decomposition is described as a learner’s
ability to represent and divide a task into smaller manageable parts or break
down a large problem into smaller sub-problems [8]. Barr and Stephenson [1]
state that this skill is applied in mathematics when the learner must apply some
order to operations in an expression.

Abstraction (AB): Abstraction is described as the ability to handle complex
data and think in terms of conceptual ideas rather than merely in terms of the
details [12]. This helps reduce the complexity of the problem as it assists the
problem-solver to decide what to emphasize and what to hide. In mathematics,
abstraction is used when variables are applied in algebra or essential facts are
identified in a word problem and iterations are then used to solve the word
problem [1].

Algorithms and Procedures (AP): Nyugen-thinh and Pinkwart [8] describe algo-
rithms and procedures as the ability to develop a step-by-step solution to a
problem or to follow a set of rules in order to solve a problem, while in [1], the
authors explain that in mathematics AP is used when procedures such as long
division, factoring or even addition and subtraction are performed.

Automation (AU): Automation is defined as the use of a computer or machine to
do repetitive or tedious tasks [1]. In mathematics, AU is used when tools, such
as Python programs, Sketch Pad or calculators, are applied to solve a problem.

Parallelization (PA): Parallelization is defined as the task of using a set of
instructions to make several events occur simultaneously or organising resources
to simultaneously carry out tasks to reach a common goal [1]. The authors
explain that PA is applied in mathematics when solving linear systems or car-
rying out matrix multiplication.

Simulation (SI): Simulation is defined as the representation or model of a pro-
cess and is applied in mathematics when functions are graphed on a Cartesian
plane [1].

The next section illustrates how the skills described above are mapped to the
mathematics curriculum for grades 10-12.

4 Mapping of CT Skills to the South African
Mathematics Curriculum

Each objective within the ten topics of the NCS mathematics curriculum, namely
functions, number patterns, finance, algebra, differential calculus, probability,
euclidean geometry, trigonometry, analytical geometry and statistics, as pro-
vided by the Department of Basic Education, was analysed separately in this
study. Table 1 summarizes the results obtained per topic. In addition, the anal-
ysis of one or more objectives in four of the topics, namely functions, algebra,
differential calculus and Euclidean geometry, is presented in detail in the subse-
quent subsections.

90 K. Bradshaw and S. Milne

Table 1. Summary of skills in the mathematics curriculum

DC | DA |DR |PD |AB| AP | AU | PA | SI
Functions X |[X [X | X |[X |[X X
Number patterns X | X | X X
Finance X | X [X | X |[X X
Algebra X X |[X [X |[X X X [X
Calculus X [X X | X |[X |[X X
Probability X |[X |[X X X
Euclidean geometry | X | X X | X | X X
Trigonometry X | X [X | X |[X X
Analytical geometry X |[X [X |[X |[X
Statistics X X |[X X X X

Each analysis subsection begins with an explanation of the topic, followed by
the objectives of the topic defined in a table along with the skills employed within
that objective. Following this, one or two representative objectives are defined in
detail, and a mathematical problem example (taken from one of the prescribed
text books or past exam papers) is provided and analysed to show which CT skills
are used during each of the steps carried out to solve the given problem.

4.1 Functions

A Grade 10 Mathematics textbook [5] defines functions as the mathematical
building blocks for designing machines, predicting natural disasters, understand-
ing world economies and keeping aeroplanes in the air. Functions take an input
from many variables but always give the same output, which is unique to that
function. Functions allow for the visualisation of relationships in terms of graphs
that are easier to interpret than lists of numbers.

Table 2. Learning objectives and associated CT skills for the functions topic

Learning objective CT skills
1 | Work with relationships between variables in terms of numerical, | DA, PD, DR, AB,
graphical, verbal and symbolic representations of functions and SI

convert flexibly between these representations (tables, graphs,
words and formulae)

2 | Generate as many graphs as necessary, initially by means of DA, DR, PD, SI,
point-by-point plotting, supported by available technology, to AP, AU

make and test conjectures and hence generalise the effect of the
parameter which results in a vertical shift and that which results
in a vertical stretch and/or a reflection about the x-axis

The two learning objectives and corresponding skills used to achieve these
objectives are given in Table 2. An analysis of the second objective is given below
together with a worked example.

Mapping Computational Thinking Skills 91

Objective 2 involves learners plotting graphs by firstly using a point-by-point
plotting method and then using available technology (typically a Casio FX-82 ES
Plus scientific calculator) to make and test conjectures. The other sub-objective
is to test the effect of shifting the graphs both vertically and horizontally as well
as reflecting them across the x- and y-axes.

The method of point-by-point graph plotting relies heavily on DR as learners
are required to create a table of x and y variables that can then be used to plot
a graph on a Cartesian plane, making use of SI. Decomposition occurs when the
learner first finds the coordinates and then draws the Cartesian plane, identifying
the different axes and then plotting the points. This process can also be considered
as AP as plotting the graph is a process itself as the plane first needs to be set up
and thereafter plotting can occur. The key skill used when striving to achieve this
objective is simulation as this involves graphing a function in a Cartesian plane and
modifying values of the variables. When the learner uses a calculator to create a
table of variables they employ AU, which makes the point-by-point plotting more
efficient. The act of shifting the graph and translating it employs AB.

Consider the function: f(x) = _—3—1

5.1 Calculate the coordinates of the x-intercept of f.

5.1.2 Calculate the coordinates of the y-intercept of f.

5.1.3 Sketch the graph of f in your ANSWER BOOK, showing clearly the

asymptotes and the intercepts with the axes.

Fig. 1. Example 1 functions

The problem given in Fig.1 requires the learner to interpret the equation
and present it as a graph. In this example, the question has already been broken
down into sub-questions for the learner instead of just asking for the third sub-
question. If this were not the case, then the learner would have had to rely heavily
on PD. Questions 5.1.1 and 5.1.2 in Example 1, rely on AP as the learner must
recall that for an x intercept, the y variable is zero and for the y intercept, the
x variable is zero. In order to solve Question 5.1.3 the learner can use the point-
by-point method or a calculator to determine various points on the graph. Due
to the complexity of the graph, however it is advised that the learner should
have a rough idea of what the graph looks like, so some recall is also required.
Decomposition occurs when the learner breaks up the problem by first finding
the points and then plotting them, which employs SI.

Figure2 illustrates a worked solution for Example 1. The first step is to
analyse the question in order to understand how to proceed and which procedure
to follow. This analysis is denoted by @ in the figure and shows where the DA
skill is used. The first two sub-questions made use of the AP skill (denoted by
@) to find the x and y intercepts. The third sub-question requires the use of PD

92 K. Bradshaw and S. Milne

b= -6 - 0)
-3
q\l O = -6 -1 @
X -3
\(X—-S) = -6
o -3 = -6
ok~ (-3,0)
L]
s.1.2 = -6 -
= n
B (051
®
s.1.3 ”;96:3
}
08
@
£ R
' |
i

Fig. 2. Worked solution for Example 1

(denoted by @) to first depict the intercepts and asymptotes on the Cartesian
plane and then of SI (denoted by @) to draw the graph. The data has been
represented in the form of a graph and this employs the DR skill (denoted by

(5)). AU (denoted by (6)) might be used if the points are calculated using the
function mode on a calculator.

4.2 Algebra

Throughout history, individuals from many diverse cultures have contributed to
the field of mathematics and although topics like algebra may seem obvious now,
for many centuries mathematicians had to make do without this knowledge [5].

Mapping Computational Thinking Skills 93

This section aims to explore more advanced and abstract mathematics that can
be applied to everyday life.

Table 3. Learning objectives and CT skills for the Algebra topic

Learning objective CT skills

1 | Describe the nature of roots, understanding that there are real PD, AP, AU, DA
and non-real numbers

2 | Simplify expressions using the exponent laws for rational PD, AP, AB
exponents

3 | Demonstrate an understanding of the definition of a logarithm AP, PD
and any laws needed to solve problems

4. | Manipulate algebraic expressions by: PD, AP, AB, AU
— Multiplying a binomial by a trinomial

— Factorising polynomials up to the third-degree
— Factorising the difference and sum of two cubes
— Factorising by grouping in pairs

5. | Solve: PD, SI, AB, AP,
— Linear equations AU, PA, DA, DR
— Quadratic equations

— Quadratic inequalities in one variable and interpret the solution
graphically

— Exponential equations

— System of linear equations

— Word problems

Five learning objectives and the corresponding skills used to achieve these
objectives are given in Table3. An analysis of the last objective is given below
along with two worked examples.

Objective 5 requires the learner to solve numerous equations including linear,
quadratic and simultaneous equations as well as expressing an equation graphi-
cally and solving word problems, where the latter is only covered in grade 10. The
simplest equations that learners will need to solve are linear equations and these
can be solved using AP as the learner will follow a simple procedure. In order
to solve quadratic equations, learners will use either a calculator, thereby apply-
ing AU, or the quadratic formula which implies using the AP skill. Quadratic
inequalities are solved in numerous ways, but the learner will usually find the
roots of the expression and may find it useful to sketch the graph in order to
help describe the inequality, which makes use of PD and SI.

To find the roots of the quadratic equation the learner may use either a
calculator or the quadratic equation, thereby using AU or PA, respectively. To
solve simultaneous equations or systems of linear equations, learners make use
of AP as there is a procedure to solve these equations. The learner begins by
ensuring that the equations are in the same form and then proceeds to solve
these either manually or using a calculator. Therefore, PD occurs, and AU may
occur if the learner uses a calculator to solve the simultaneous equations. Due to
the fact that the learner is solving two equations at the same time, PA occurs.

94 K. Bradshaw and S. Milne

This objective also includes word problems for grade 10 learners. Solving
these word problems relies on four key skills: DA, AB, AP and PA. The first two
are used when the learner analyses the word problem and highlights the relevant
and irrelevant information. PD is used to simplify the word problem by breaking
it up into smaller parts that can then be solved using the AP skill.

Solve for x:
2x" -2 <3x

Fig. 3. Example 2 Algebra

Fig. 4. Worked solution for Example 2

The problem depicted in Fig. 3 requires the learner to solve a quadratic equa-
tion with an understanding of inequalities. The learner needs to decompose the
problem to do it in steps. The learner must first rearrange the equation and
factorise it, which will require AP and PD skills. To solve the equation, the
learner may use a calculator to find the solutions (using AU) or recall the laws
of factorisation using the AP skill. Some learners may find it useful to plot a
rough graph using the SI skill in order to describe the inequality. The learner
will represent the data using an inequality.

Figure 4 illustrates the solution to Example 2. As an initial step, the expres-
sion is analysed using DA (denoted by @ in the figure) and the question decom-
posed by putting it in a form that can be factorised (denoted by @) Now, the
expression is factorised using AP (denoted by (2)) or AU (denoted by (6)). After
finding the solutions, the problem is once again decomposed and an illustration
is drawn to help visualize the inequality, which invokes ST (denoted by @)

Mapping Computational Thinking Skills 95

A second problem, depicted in Fig.5, requires the learner to solve the two
equations simultaneously in order to find = and y. The key skill used in this
problem is parallelization as the learner has two equations to focus on at the
same time. To solve this example, the learner needs to decompose the question
and break it up into manageable parts. For example, the learner can look at each
equation individually and try to simplify these. There are many ways that the
learner can complete this problem. Using AB allows the learner to choose the
most appropriate or easiest method and ignore the alternatives. The learner may
opt to substitute the smaller equation into the quadratic equation to work out
one of the variables. This will lead to a quadratic formula that can be factorised
using a calculator (making use of AU) or by recalling the factorisation laws (thus
making use of AP).

Solve simultaneously for x and y:

2+y=-2x

-2x" +8xy+42=y

Fig. 5. Example 3 Algebra

Lt E,, S20Ca e U (cokd e . e

2+ By 4 L2 = jor SN sl Sl
P M S0/ . e s

6 -7:>c 2 i

@ 2t + e (2 -2) 442 = zoc-2 (D
-25% =l - lboe, téph2=c £ 20 = O
| —1%e® -l thl =0\ @
. @z ~D(x+D =0 ¥ T
L > = I of. e,z -2

Fig. 6. Worked solution for Example 3

96 K. Bradshaw and S. Milne

Figure 6 illustrates the worked solution to the simultaneous equations given
as Example 3. The initial step is analysing the expression using DA (denoted
by @ in the figure). Following this the expression is decomposed (denoted by

@) to rearrange the equation labelled a. This equation can then be substituted
into the equation labelled b using PA (denoted by @) and factorisation done by
either recalling appropriate laws, thereby invoking AP (denoted by @) or using
a calculator, thereby invoking AU (denoted by (6)).

4.3 Differential Calculus

Table 4. Differential calculus learning objectives and associated CT skills

Learning objective CT skills
1 | Differentiation of specified functions from first principles PD, AP
2 | Use of the specified rules of differentiation AP, PD
3 | The equations of tangents to graphs. PD, AP, AB, DA
4 | The ability to sketch graphs of cubic functions DA, SI, PD, AP,
DR, AU
5 | Practical problems involving optimization and rates of PD, DA, AB, AP
change (including the calculus of motion)

Calculus is a central branch of mathematics that developed from algebra and
geometry and consists of two related ideas, namely, differential calculus and inte-
gral calculus. The curriculum only focuses on differential calculus and explores
how it can be used in everyday optimisation problems and finding rates of change,
amongst others [6].

A cubic function f has the following properties:

"

| .
. /(J:I(f‘):/(—l):()
. I'{Z)ZI'[—IJ:()
3
. f decreases for x € |:—

|
-2 |
5 }ony

Draw a possible sketch graph of £ clearly indicating the x-coordinates of the turning points

and ALL the x-intercepts.

Fig. 7. Example 4 differential calculus

Mapping Computational Thinking Skills 97

YO ERIES) : £(-) =0 O
(2) = £(-3) =0

¢
‘: J\:’,_,\du“u:b X & kl') / :>

Fig. 8. Worked solution for Example 4

Five learning objectives and the corresponding skills used to achieve these
objectives are given in Table4. An analysis of the fourth objective is given below
along with a worked example.

Within learning objective 4, learners are required to sketch cubic graphs using
differential calculus. There are a number of different ways to approach this, but
the key to solving these problems is PD as learners need to be able to break up
a problem into manageable parts. The procedure that the learner will follow is
based on the information provided, and therefore, AP will be applied differently
depending on what information is available. To find the roots of a cubic function
learners may use a calculator or their factorising knowledge, and thus, this step
may involve AU or AP, respectively. DR and SI are invoked to sketch the graph,
after the roots, turning points and intercepts have been calculated.

The problem depicted in Fig. 7 requires the learner to sketch a cubic graph
based on the information provided. Since the learner has not been provided
with the equation of the cubic function, the graph cannot be plotted using the
function mode on the calculator. Before attempting the question, the learner
must analyse the data that has been given (using DA) to evaluate whether there
is adequate information to solve the problem and this will also allow the learner
to decide which procedure to follow. The learner must decompose the problem
using PD, which helps to deal with the complexity of the problem. The learner
must understand what each of the points means, for example, the first derivative
equal to zero denotes a turning point and thus, the turning points are given.
This means that the learner has five points, which is sufficient to determine the

98 K. Bradshaw and S. Milne

concavity of the functions. At this stage, the learner can use DR and SI to plot
the cubic function.

Figure 8 illustrates a worked solution to Example 4. The initial step involves
analysing the problem using DA (denoted by @ in the figure) to establish what
data has been given to sketch the cubic function. This data must be represented
in the form of a graph, which uses DR (denoted by @) The sketching process
can be decomposed using PD (denoted by @), this is done by first establishing
where the roots lie on the Cartesian plane as well as the turning points. The last
line of information helps describe the concavity of the graph. Following this the
graph can be sketched using SI (denoted by (4)).

4.4 Euclidean Geometry

According to a Grade 10 Mathematics textbook [5], geometry developed as the
area of knowledge that deals with spatial relations. Euclidean Geometry deals
with space and shapes using a system of logical deductions and can be applied
in real life to surveying and designing new buildings, amongst others.

Two learning objectives and the corresponding skills used to achieve these
objectives are given in Table 5. An analysis of the first objective is given below
along with a worked example.

Objective 1 involves analysing a circle to deduce the problem and find angles
using the rules of circle geometry. The first step in solving these problems is to
analyse the data given to establish what angles or chords still need to be found.
The learner will need to decompose the question as it may be necessary to find
more than one angle or chord. Finding these angles invokes the DC skill. The
learner may have to use abstraction to ignore angles that are not labelled and do
not need to be found. Parallelization occurs when the learner must find multiple
angles at once.

Table 5. Euclidean Geometry learning objectives and associated CT skills

Learning objective CT skills

1 | Investigate and prove theorems of the geometry of circles as well | AP, AB, PD, PA,
as solving circle geometry problems, providing reasons for DC
statements when required

2. | Prove: AP, PD, DA

— A line drawn parallel to one side of a triangle divides the other
two sides proportionally (and the Mid-point Theorem as a special
case of this theorem)

— Equiangular triangles are similar

— Triangles with sides in proportion are similar

— Pythagorean Theorem by similar triangles

Mapping Computational Thinking Skills 99

Determine the values of /2 and s.

Fig. 10. Worked solution for Example 5

The problem depicted in Fig. 9 requires the learner to analyse the circle and
the information on the circle and use this information to recall the rules of circle
geometry to find the variables h and s. The first step in solving the problem is
to use DA to analyse the information given. The learner may opt to use PD to
break up the question and find the angles individually or may use PA to find
them concurrently. Finding the angles invokes the DC skill while the learner uses
AB to ignore any angles that do not need to be found. The next step involves
recalling and applying the tan-chord rule as well as the use of algebra to find
the variables, which requires the AP skill.

Figure 10 illustrates the worked solution to Example 5. The initial step
involves analysing the problem using DA (denoted by @ in the figure) to estab-
lish what data has been provided in any illustrations or text in the question.
Following this the problem is decomposed (denoted by @) to first find h, using
AP (denoted by @) to recall the rules of circle geometry and apply the tan-
chord theorem. After h has been found, AP is again used to apply the tan-chord

100 K. Bradshaw and S. Milne

theorem to find s. DC is used when the learner finds the angles as this can be
seen as a form of collecting data.

5 Conclusion and Future Work

In this paper, we provided some insight into the full exploration undertaken
whereby nine key CT skills identified from the literature, were mapped to the
ten topics in the South African Grades 10-12 Mathematics curriculum. Examples
of problems from some of the topics in the curriculum were presented together
with step-by-step worked solutions showing which of the CT skills are invoked
in solving these problems.

The final mapping of skills to representative problems for all objectives within
all topics shows that none of the skills is unused in the mathematics curriculum,
although DC, AU and PA are minimally used. However, development of these
skills can be enhanced with the inclusion of various additional exercises in the
curriculum. To improve DC, practical experiments could be added to the cur-
riculum so that learners have the opportunity to physically collect data, while
the use of AU can be enhanced by incorporating computers in mathematics
using software such as Microsoft Excel to automate procedures such as plotting
functions. PA is the hardest skill to incorporate further in the curriculum as it
requires the introduction of matrices, which are considered too complex for a
secondary school curriculum.

Having identified the skills associated with each topic in the curriculum,
future research will focus on the reciprocal relationship between CT and mathe-
matics with the design of CT exercises or interventions, not necessarily based on
actual mathematical content. For example, activity worksheets aimed at a spe-
cific problem solving need, or physical puzzle building or other activities could
be used to develop and/or enhance the core CT skills, which in turn could assist
learners that struggle with comprehending the core mathematics curriculum. It
is envisaged that such interventions would not only develop better mathemat-
ical skills and general problem-solving skills amongst the school learners, but
also equip them with the requisite basic skills to succeed in undergraduate CS
courses.

References

1. Barr, V., Stephenson, C.: Bringing computational thinking to K-12: what is
involved and what is the role of the computer science education community? ACM
Inroads 2, 49-54 (2011). https://doi.org/10.1145/1929887.1929905

2. Beaubouef, T., Mason, J.: Why the high attrition rate for computer science stu-
dents: some thoughts and observations. SIGCSE Bull. 37(2), 103-106 (2005)

3. Howland, K., Good, J., Nicholson, K.: Language-based support for computational
thinking. In: 2009 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pp. 147-150. IEEE, Corvallis (2009). https://doi.org/10.
1109/VLHCC.2009.5295278

https://doi.org/10.1145/1929887.1929905
https://doi.org/10.1109/VLHCC.2009.5295278
https://doi.org/10.1109/VLHCC.2009.5295278

10.

11.

12.

13.

14.

Mapping Computational Thinking Skills 101

Jackson, J., Moore, L.: The role of computational thinking in the 21st century.
In: Proceedings of 5th International Conference on Appropriate Technology, pp.
149-155 (2010)

Kannemeyer, L., Jenkin, A., van Zyl, M., Scheffler, C.: Everything Maths Grade
10 Mathematics, vol. 1. Siyavula Education (2012)

Kannemeyer, L., Jenkin, A., van Zyl, M., Scheffer, C.: Everything Maths Grade 12
Mathematics, vol. 1. Siyavula Education (2012)

Mwakapenda, W.: Understanding connections in the school mathematics curricu-
lum. South Afr. J. Educ. 28, 189-202 (2008)

Nguyen-thinh, L., Pinkwart, N.: K-12 computational thinking education in Ger-
many. In: International Conference on Computational Thinking Education 2017,
pp. 39—43. The Education University of Hong Kong (2017)

du Plessis, E., Marais, P.: Reflections on the NCS to NCS (CAPS): foundation
phase teachers’ experiences. Indep. J. Teach. Learn. 10, 114-126 (2015)
Voskoglou, M., Buckley, S.: Problem solving and computers in a learning environ-
ment. Egyp. Comput. Sci. J. 36, 28-46 (2012)

Weintrop, D., et al.: Defining computational thinking for mathematics and science
classrooms. J. Sci. Educ. Technol. 25(1), 127-147 (2015). https://doi.org/10.1007/
$10956-015-9581-5

Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33-35 (2006).
https://doi.org/10.1145/1118178.1118215

Wing, J.M.: Research notebook: computational thinking - what and why. Link
Mag. pp. 20-23 (2011)

Zhang, N., Biswas, G.: Defining and assessing students’ computational thinking in
a learning by modeling environment. In: Kong, S.-C., Abelson, H. (eds.) Computa-
tional Thinking Education, pp. 203-221. Springer, Singapore (2019). https://doi.
org/10.1007/978-981-13-6528-7_12

https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1007/978-981-13-6528-7_12
https://doi.org/10.1007/978-981-13-6528-7_12

)

Check for
updates

Common Code Writing Errors Made by Novice
Programmers: Implications for the Teaching
of Introductory Programming

Mokotsolane Ben Mase! @ and Liezel Nel2(®)

I Department of Computer Science and Informatics, University of the Free State,
Phuthaditjhaba, South Africa
masemb@ufs.ac.za
2 Department of Computer Science and Informatics, University of the Free State,
Bloemfontein, South Africa
nell@ufs.ac.za

Abstract. Novices tend to make unnecessary errors when they write program-
ming code. Many of these errors can be attributed to the novices’ fragile knowledge
of basic programming concepts. Programming instructors also find it challenging
to develop teaching and learning strategies that are aimed at addressing the spe-
cific programming challenges experienced by their students. This paper reports
on a study aimed at (1) identifying the common programming errors made by
a select group of novice programmers, and (2) analyzing how these common
errors changed at different stages during an academic semester. This exploratory
study employed a mixed-methods approach based on the Framework of Integrated
Methodologies (FralM). Manual, structured content analysis of 684 programming
artefacts, created by 38 participants and collected over an entire semester, lead to
the identification of 21 common programming errors. The identified errors were
classified into four categories: syntax, semantic, logic, and type errors. The results
indicate that semantic and type errors occurred most frequently. Although com-
mon error categories are likely to remain the same from one assignment to the
next, the introduction of more complex programming concepts towards the end
of the semester could lead to an unexpected change in the most common error
category. Knowledge of these common errors and error categories could assist
programming instructors in adjusting their teaching and learning approaches for
novice programmers.

Keywords: Novice programmer - Common programming errors - CS1 -
Computer Science education

1 Introduction

Novice programmers face various challenges when learning to write computer programs
[38]. These programming challenges have been shown to contribute to high failure and
dropout rates in computer programming courses [8]. Novices often end up being unable

© Springer Nature Switzerland AG 2022
W.S. Leung et al. (Eds.): SACLA 2021, CCIS 1461, pp. 102-117, 2022.
https://doi.org/10.1007/978-3-030-95003-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95003-3_7&domain=pdf
http://orcid.org/0000-0003-0699-9727
http://orcid.org/0000-0002-6739-9285
https://doi.org/10.1007/978-3-030-95003-3_7

Common Code Writing Errors Made by Novice Programmers 103

to write code properly due to a lack of problem-solving strategies and fragile knowledge
of basic programming concepts [13]. Numerous studies have been conducted to iden-
tify the difficulties experienced by novice programmers and the common programming
errors made by them [7, 33]. According to [35], it is key that instructors know which pro-
gramming errors their students are making. Better insight regarding the specific errors
made can help instructors to formulate custom teaching and learning strategies specif-
ically aimed at addressing the programming challenges of their students. This paper,
therefore, attempts to answer the following two questions:

e What are the most common code writing errors made by a select group of novice
programmers?
e How do these errors change during an academic term?

The remainder of this paper is structured as follows. Section 2 presents relevant
background literature. This is followed by a discussion of the research method in Sect. 3
and a presentation of the results and discussion in Sect. 4. The paper concludes with
conclusions and recommendations in Sect. 5.

2 Background

Programming is a fundamental part of the Computer Science (CS) curriculum. However,
novice programmers often perceive programming to be complex [38]. Teaching com-
puter programming skills within the university context has also proven to be a difficult
task for instructors [26]. Over the years, instructors have shown growing concern over the
difficulties experienced by novices when learning programming principles [33]. Since
the goal of an introductory programming course is to train novices, it is expected that at
the end of their first semester, they should be able to write simple programs [33]. However,
[39] notes that even after two years of learning to program, most novices still struggle
to write code properly. Since novices are inexperienced in the art of programming, they
often lack the necessary programming knowledge and strategies to solve problems [29].
[38] point out that novices encounter specific difficulties when they write code due to
the abstract nature of the programming language and a lack of problem-solving skills
in their early stages of learning to program. Due to their lack of problem-solving skills,
novices are unable to learn the theoretical concepts of the programming domain and
are therefore unable to practice these concepts in designing different programs [26].
Consequently, novices end up committing various common programming errors when
they write computer code.

2.1 Common Programming Error Categories

While learning to program, novices are bound to make unnecessary errors. Correcting
these errors can be a time-consuming process especially if the novice does not under-
stand the compiler error messages [28]. [7] concur that novices often find it challenging
and frustrating to understand feedback presented through compiler error notifications

104 M. B. Mase and L. Nel

as some notifications are imprecise and confusing. To further complicate error correc-
tion, not all programming errors are picked up by the compiler. Numerous studies have
been conducted to gain an in-depth understanding of the kinds of programming errors
novices are likely to make [22, 32]. Programming errors are typically classified into four
categories: syntax, semantic, logical, and type errors.

Syntax Errors. A syntax error occurs when the grammatical rules of the programming
language being used are not followed [22]. This type of error can be a major obstacle
for novices as it is likely to slow down their progress [14]. The correction of syntax
errors is usually the first step in the debugging process since it is impossible to continue
with program development until these errors have been dealt with [14]. One of the major
reasons why novices fail to master the art of programming relates to their inability to
apply valid rules of syntax when writing a program [29].

Semantic Errors. This type of error occurs when the meaning of the programming code
is not consistent with the programming language [22]. Examples include the use of a non-
initialised variable or an attempt to divide a value by zero. Such errors are violations
of the semantic meaning because it deals with the interpretation of the programming
language [10]. Semantic errors typically occur due to the misuse of a programming
concept, despite correct syntactical structure, and are detected when the program code
is compiled [39].

Logic Errors. Logic errors occur when the program does not solve the given problem
[16]. For instance, if the written code instructs the compiler to execute command A
under condition X while the command should instead be executed under condition Y to
solve the given programming problem, this will result in a logical error. Since this type
of error is typically detected when the program has successfully compiled but fails at
the time of execution, it can be harder to find and debug than the other error types [34].
Consequently, logic errors are generally only detected and addressed through rigorous
software testing.

Type Errors. Type error occurs when the indicated types are incorrect [1]. For example,
attempts to assign a floating-point value to an integer location. [31] add that the type error
can be detected when a novice programmer tries to use variable values with different
data type or perform operations that are not allowed by the variable type.

Summary. According to [25], novices spend more time trying to understand program-
ming language syntax and semantics while paying less attention to problem-solving
strategies. If novices are made aware of the different kinds of programming errors they
typically make, that could ultimately help to improve their understanding of program-
ming [32]. Knowledge regarding typical programming errors made by their students can
also assist programming instructors in making informed decisions regarding the design
of their teaching and learning tools and strategies [3].

Common Code Writing Errors Made by Novice Programmers 105

2.2 Strategies Utilized in the Identification of Common Programming Errors

The monitoring of student programming behavior and mistakes has a long history in
CS education research [4]. Numerous studies have attempted to monitor and identify
the most common errors made by novice programmers [4, 16]. In these prior studies, a
variety of strategies have been followed to identify common programming errors.

Using self-reported survey data collected from undergraduate students, teaching
assistants and CS educators, [19] compiled a list of 62 typical errors made by novice
programmers in Java courses. A process of data refinement and elimination (based on
the overall aim of their study) was then used to reduce the original list of errors to 20.
Sixty-five percent of the errors from their final list are syntax errors.

In the study conducted by [28], data was firstly collected through the BlueJ integrated
development environment (IDE) for programs developed in the Java programming lan-
guage. The Blackbox project data was also used and 23 sessions comprising a total of 136
events recorded were randomly selected for analysis. They identified a total of 80 error
categories that were divided into syntax, semantic, and logic errors. According to their
findings, semantic errors are more likely to correspond with compiler error messages
than syntax errors.

In their study, [4] investigated novice programming mistakes by using a year’s worth
of compilation events from more than 250,000 novices spread all over the world. The
data for their study was sourced from the large Blackbox data set that collects Java code
of BluelJ users. They used 18 mistakes, identified in their earlier work [12], as the basis
of their analysis. A comprehensive empirical analysis of the time-to-fix and frequency
of different Java errors was provided. [4] present their findings in three error categories:
syntax, semantic and type errors. They identify semantic errors and type errors as the
most common.

[6] investigated common errors leading to excessive student struggles with homework
problems. They analyzed 78 auto-graded coding homework problems developed in the
C++ programming language. They found the struggle rate to be 10-15% and as high as
30-40% for some coding activities. The researchers then investigated the errors that led
to these struggles by manually examining the student submissions for the 10 homework
problems with the highest struggle rates. Their results show that the most common
errors occur in nested loops, else-if statements, random range, input/output, for
loop and vector, for loop and i £, vector index, negated loop expressions, and Boolean
expressions.

[31] carried out a study where they implemented a data-driven approach to identify
common errors in Java using the data from an automated assessment tool called Mul-
berry. Among the 766 compilation-erroneous solutions, 1146 compilation errors existed.
By grouping the same compilation errors, 28 distinct compilation errors were identified
and 15 of them were categorized as common errors. In the same year, [2] attempted
to identify common errors from C programs written by novices. The 12371 submis-
sions were inspected manually. The identified errors were classified into six categories:
syntactic, conceptual, strategic, sloppiness, misinterpretation, and domain knowledge.
Interestingly, their findings show that a big portion of errors made by novices is simply
caused by sloppiness.

106 M. B. Mase and L. Nel

In most of the prior studies mentioned here, the common errors were identified
using different software tools or compiler error messages that could easily be evaluated
automatically. However, [28] warn that analysis of compiler error messages is imprecise.
Firstly, a single error can produce different compiler error messages. Secondly, the same
compiler error message can be produced by entirely different errors, depending on the
context. Lastly, the compiler error messages do not always have a direct correlation to
the types of errors made by novices. Although [6] performed some manual analysis of
programming code, the purpose of their manual process was to discover possible reasons
for why the novices’ might have made each of the already identified errors. The current
study followed a different approach by performing structured content analysis as part of
an extensive manual analysis of programming artefacts—as outlined in Sect. 3.

3 Method

In this exploratory study, a case study approach based on the Framework of Integrated
Methodologies (FraIM) [30] was followed. The aim of this case study was firstly to
identify and classify all the code writing mistakes made by a group of first-year CS
students at a selected university. The sample comprised 38 novices registered for a first-
year introductory programming course. The sampling strategy can be regarded as both
purposeful [23] and convenient [17] since the selected novices were in the process of
learning how to program and the principal researcher (the first author), as an instructor
for this course, had direct contact with the novices.

For this case study, artefact analysis [30] was selected as the primary data collection
strategy. The artefacts included all the pieces of C# programming code written by each of
the students over an entire 13-week semester for 11 timed assessments—comprising eight
practical assignments, two semester tests (ST1 and ST2) and the final examination. These
artefacts comprised the actual programming files submitted by the students which were
all created within the Microsoft Visual Studio IDE using the C# language. Microsoft
Visual Studio 2019 code metrics were used to check the lines of code as well as the lines
of executable code. Table 1 provides a summary of the programming artefact collected
and analyzed for each assessment.

Each assessment included at least one but no more than four programming questions.
Since all the students completed all the assessments, there were 38 artefacts for each of
the 18 programming questions—resulting in a total of 684 artefacts. A structured content
analysis approach was followed to analyze each of the 684 artefacts. First, a manual
line-by-line review of each piece of program code was conducted to identify all the
code writing mistakes made by each student. Where relevant, error messages and visual
feedback provided by the IDE were also reviewed to assist in the identification of errors.
A closed coding schedule was then applied to map each identified error to one of the
18 mistakes previously identified by [4]. However, it became apparent that some of the
identified errors could not be classified according to the initial coding schedule. The
coding schedule was therefore adapted by adding additional error descriptions for these
unclassified errors. All the data was captured in Microsoft Excel and descriptive statistics
were used to analyze the resulting numerical data.

Common Code Writing Errors Made by Novice Programmers 107

Table 1. Programming artefacts

Assessment type | Tasks | No. of questions | Lines of code | Lines of executable code
Formative Pracl 1 2293 931
Prac2 |1 2875 1144
Prac3 |1 2296 794
Prac4 |1 2945 1117
Prac5 |1 2062 590
Prac6 |1 2718 694
Prac7 |1 5110 1026
Prac8 |1 4022 637
Summative ST1 3 7146 2436
ST2 3 12646 2369
Exam |4 12790 3106
Total 18 56903 14844

4 Results and Discussion

The discussions in the following sub-sections focus on the common errors identified
from the students’ coding artefacts as well as how these common errors changed at
different stages of the academic term.

4.1 Common Programming Errors Made by Novices

Analyses of the artefact data revealed a total of 2396 errors made by the novices during
the course of the semester. Of these 311 (12.98%) were syntax errors, 787 (32.85%) were
type errors, 1108 (46.24%) were semantic errors and 190 (7.93%) were logic errors. A
summary of the 21 identified errors is presented in Table 2 where errors are grouped by
category. For each category, the errors are sorted according to the number of recorded
occurrences (from high to low). To aid in consequent referencing to specific errors, each
error is labelled with an alphabetical character. The identified errors corresponded with
12 of the 18 original errors from [4] while nine additional errors (see errors D, F, G, H,
P,R, S, T and U in Table 2) were identified. The top ten errors (A, C, B, D, E, F,L, M, R
and N) accounted for 87.65% (2100) of the total errors. Error A (with 565 occurrences;
23.58%) and error C (with 540 occurrences; 22.54%) were the two most common errors
made by the novices. In the following sub-sections, we look closely at some of the most
common errors from each of the categories listed in Table 2 and compare our results to
those of previous studies.

Type Errors. While the type error “Calling method with wrong types” was among the
top-18 identified errors [accounting for 393 (13.92%) of the total 2824 errors] in the study
by [1], the similar type error “Invoking methods with wrong arguments” only accounted
for 38 (1.11%) of the 3408 errors identified by [2]. In contrast, type error A (Invoking
methods with wrong arguments) was the most frequent error [565 (23.58%) of the total
2396 errors] in our study. [15] point out that when a method body is implemented,

108 M. B. Mase and L. Nel

Table 2. Summary of student errors

Error Error Description No. % of Over-
Category of overall all
errors errors rank
Type A. Invoking methods with wrong arguments 565 23.58 1
(e.g. wrong types).
B. Incompatible types between method return 222 9.27 3
and type of variable that the value is assigned
to.
Semantic C. Class claims to implement an interface but 540 22.54 2
does not implement all the required methods.
D. Invoking class method on object.” 159 6.64 4
E. Control flow can reach end of non-void 150 6.24 5
method without returning.
F. Undefined constructor in implicit constructor 135 5.63 6
call.”
G. Use of a non-initialized variable.” 50 2.09 12
H. Object not defined.” 36 1.50 15
I. A method that has a non-void return type is 20 0.83 16
called and its return value ignored/discarded.
J. Trying to invoke a non-static method as if it 13 0.54 18
was static.
K. Use of == instead of . equals to compare 5 0.21 19
strings.
Syntax L. Including the types of parameters when in- 97 4.05 7
voking a method.
M. Confusing short-circuit evaluators (&& and 91 3.80 8
| |) with conventional logical operators (&
and |).
N. Confusing the assignment operator (=) with 61 2.55 10
the comparison operator (==).
O. Getting greater than or equal/less than or >4 2.25 1
equal wrong (i.e. using => or =< instead of
>=and <=. 4017 20
P. Cannot implicitly convert type int [] to
string []. 4 017 21
Q. Wrong separators in for loops (e.g. using
commas instead of semi-colons).
Logic R. Method with parameters: Confusion between 80 3.34 9
declaring parameters of a method and passing
parameters in a method invocation.”
S. Improper casting.” 47 1.96 13
T. Array index out of range.” 46 1.92 14
U. Invoking a non-void method in a statement 17 0.71 17
that requires a return value.”
Total errors 2396

*Additional error categories identified in this study.

Common Code Writing Errors Made by Novice Programmers 109

novices should ensure that the type of the return expression matches the return type of
the method. It is therefore extremely important that the novices understand that the types
of arguments in a method call should match the types of the arguments in the method’s
definition [19]. In the study by [31], the error “Incompatible types”, which is similar to
our type error B (Incompatible types between method return and type of variable that
the value is assigned to), accounted for 3.23% of the 1146 recorded errors. The same
error only accounted for 0.79% of the errors identified by [2]. Even though the previous
work shows low frequencies for error B, this error seems to be problematic in our case
because it occurred frequently and accounted for 9.27% of the total errors. This type
error appears when novices use a non-void method that returns a value that has a different
data type to the variable that is supposed to receive the returned value [5]. Instructors
must warn novices about this type of error so that they can avoid equating two variables
of different types.

Semantic Errors. While error C (Class claims to implement an interface, but does not
implement all the required methods) was identified as the second highest occurring error
in our study [accounting for 540 (22.54%) of the recorded errors], errors with similar
descriptions had much lower occurrences in the studies by [27] (0.20%) and [1] (0.04%).
According to [21], error C occurs when novices forget to enclose their methods with a
class. [39] adds that the class or interface expected error can also take place when there
is code outside of a class declaration. This error usually occurs when objects declared
at the start of the class are mistakenly placed before the actual beginning of the class.
Similarly, we recorded a higher occurrence (6.64% of total errors) for error D (Invoking
class method on object) than what [27] (1.99%) observed for a similar error in their
study. Error D typically occurs when novices are trying to invoke a method that belongs
to a class on a variable or an object directly [39]. The apparent less common nature of
error J (Trying to invoke a non-static method as if it was static) (0.54% of total errors)
in our study is in line with the findings of [1] and [27] who recorded occurrences of
1.98% and 1.59% respectively for a similar error. Error J takes place when novices use
a non-static method as if it was static [36]. Error K (Use of == instead of . equals to
compare strings) was also found to occur seldomly with novices in our study with only
five occurrences (0.21%). Although more than half of the semantic errors identified in
our study occurred relatively infrequently, four of the top-6 recorded errors were from
the semantic error category. Novices tend to find it quite frustrating or difficult to resolve
semantic errors, and this is mostly due to their lack of programming knowledge [20].
If instructors are aware of the semantic errors that are most problematic for novices,
they could use this knowledge to devise teaching strategies aimed at reducing novices’
programming frustrations.

Syntax Errors. Even though syntax errors are based on misspelling, punctuation and
word order in a program, novices typically find it difficult to solve some of these errors.
For instance, in the study by [27], the error “Method call: Parameter number mismatch”,
which is comparable to our error L (Including the types of parameters when invoking a
method), accounted for 2.68% of the total errors. This moderately corresponds with the
findings of our study with error L accounting for 4.05% of the total error occurrences.
This error occurs when novices add types to parameters when they call a method that does

110 M. B. Mase and L. Nel

not require types [5]. The results of [31] indicate an occurrence of 5.50% for the error
“Incorrect use of operators”, which is in a similar range as the 3.08% we recorded for
our error M [Confusing short-circuit evaluators (&& and | |) with conventional logical
operators (& and |)]. [1] point out that the error “Confusing = with ==" is problematic
for novices [accounting for 262 occurrences (9.28%) from the total 2824 errors identified
in their study]. However, for the same error (N) we recorded a much lower occurrence
frequency of 2.55%, while [2] observed an even lower frequency of 0.50%. As pro-
gramming instructors, we have often in the past came across instances where novice
programmers use the assignment operator (=) instead of the equality operator (==) to
compare values in an expression. It is possible that our prior awareness of this common
problem could have led us to pay specific attention to this issue during our teachings. By
raising awareness of this common syntax error, our students possibly have been better
prepared to resolve this issue on their own.

Logic Errors. Since our initial coding schedule (adapted from [4]) did not include
any logic errors, all the error descriptions in this category were adapted from other
literature sources. While error R (Method with parameters: Confusion between declaring
parameters of a method and passing parameters in a method invocation) was one of the
top-10 errors identified in our study (with a frequency of 3.34%), [27] found their similar
“Method call: Parameter type Mismatch” error to occur less frequently (0.99%). Novices
experience this error when there is confusion between passing parameters, declaring
them, and identifying them in the method’s definition [11]. Another logic error that
novices seem to find challenging is error S (Improper casting), which accounted for
1.96% of the recorded errors. Again, [27] recorded an even lower frequency of 0.10%
for the same error. This error is experienced when novices declare variables rather than
casting them [19]. According to [16], novices often display alack of knowledge regarding
casting integers to doubles. Since novices struggle to find logic errors, developing a better
understanding of logic errors may help to inform teaching practices and reduce novices’
frustration [16].

Summary. Due to a lack of programming knowledge, novices appear to find type errors
and semantic errors the most difficult to detect and fix. [16] agree that novices can find
it very frustrating to locate and resolve these errors. Since novices repeat these common
errors, it could serve as a further indication that they continue to struggle with these
errors [9]. Instructors should therefore pay special attention to how often these errors are
repeated as the number of repeated occurrences could be a good indicator of how well or
poorly novices are performing when they write code [37]. Instructors should also look
more closely at each specific error because the more they understand the nature of these
errors, the more effective their teaching strategies can be [15]. Novice programmers
should be encouraged to find and correct errors by first understanding what the code
actually does as compared to what it is supposed to do.

4.2 Changes in Common Errors During an Academic Term

As part of an efficient teaching and learning strategy for the teaching of programming, it
is crucial that instructors monitor novices’ progress throughout the entire academic term.

Common Code Writing Errors Made by Novice Programmers 111

Monitoring of novices’ learning processes could help to identify individuals who are at
risk of failing the programming course [18]. Instructors often have the best understanding
of the type of support their students need and how best to address the specific needs of
novices [24]. The discussions in the following sub-sections look closely at the changes in
common programming errors made by novices in the various formative and summative
assessment activities throughout an academic term.

Formative Assessments: Most Common Errors. In the semester during which this
study was conducted, the novices had to complete eight practical programming assign-
ments. The graph in Fig. 1 depicts the number of occurrences for the most frequent error
(from Table 2) as identified for each of these assignments.

250

8
Q
5 200 /
=}
3 /
8 150 /
k)
E 100 /
E 50 —O=——un ey
= —
3 \./(
0
A A A A A 1 C C
Pracl Prac2 Prac3 Prac4 Prac5 Prac6 Prac7 Prac8
=8—Error occurrence 54 53 45 58 19 33 125 227

Fig. 1. Most common error for each formative assessment

Error A (Invoking methods with wrong arguments) was the most frequent error made
by novices in the first five assignments (Pracl to Prac5) while Error I (A method that
has a non-void return type is called and its return value ignored/discarded) was the most
common error during Prac6. However, error C (Class claims to implement an interface
but does not implement all the required methods) was the most common error for both
Prac7 and Prac8. It is notable how the occurrence of this error increased dramatically
from Prac7 to Prac8 with 102 more occurrences in the final assignment. However, it
should be noted that in Prac7, advanced concepts such as inheritance, polymorphism,
abstract classes as well as abstract and virtual methods were introduced. The novices
struggled with the implementation of these concepts because these assignments were
the first that required knowledge of these advanced concepts. The prominence of error
C in the final two assignments is further evidence of the novices’ struggles to implement
new (or unfamiliar) concepts. Overall, the results depicted in Fig. 1 show that the most
common errors made by the novices during the formative assessments can be attributed to
their lack of knowledge regarding the implementation of classes, interfaces and methods.

Formative Assessments: Occurrence of Error Categories. As outlined in Table 2,
the identified errors were grouped into four categories. Figure 2 depicts the number of
occurrences for these error categories in each of eight practical assignments. It is inter-
esting to note how the most common error category change between the assignments.

112 M. B. Mase and L. Nel

While type errors were the most common category in four of the first five assignments,
there was an unexpected surge in the occurrence of semantic errors towards the end of
the semester (with 187 occurrences in Prac7 and 338 occurrences in Prac8). Although
there are indications that the most common error category is likely to be the same from
one assignment to the next, there is also a chance of another error category becoming
more prominent due to the nature and complexity of the assignment. Since semantic
errors deal with the meaning of the code and arise from mistaken ideas on how a pro-
gramming language interprets instructions, instructors should pay more attention to how
novices can be supported in this regard [40], especially when more complex concepts
are introduced in later parts of the academic term.

100 /
. N /

TR SE .S o

Number of occurrences
1]
IS
(=]

Pracl Prac2 Prac3 Pracd Prac5 Prac6 Prac7 Prac8
8- Syntax 40 78 18 1 18 37 5 0
Type 83 53 45 65 19 11 83 7
—8—Semantic 46 14 32 55 7 2 187 338
~8-—] ogic 32 7 22 26 4 0 4 4

Fig. 2. Error categories for formative assessments

Summative Assessments: Most Common Errors. The novices had to complete two
practical semester tests (ST1 and ST2) and a practical examination (Exam) as part of
their summative assessments. The graph in Fig. 3 depicts the number of occurrences
for the most frequent error (from Table 2) identified for each of these assessments.
Error A (Invoking methods with wrong arguments) was the most frequent error made
by novices in ST1 while Error C (Class claims to implement an interface but does not
implement all the required methods) was the most common error in ST2. However,
error B (Incompatible types between method return and type of variable that the value
is assigned to) was the most frequent error during the Exam (with 132 occurrences).
Overall, the most common errors made by the novices in the summative assessments
can be attributed to their lack of knowledge regarding the implementation of return types
and values.

Summative Assessments: Occurrence of Error Categories. In the case explored in
this study, ST1 took place after the completion of Prac5 while ST2 took place after
Prac8. ST2 was followed by the Exam at the end of the academic term. Figure 4 depicts

Common Code Writing Errors Made by Novice Programmers

113

135

g 130 A
g /
153
£ 125
§ /
=]
= 120
o]
e 115
z

110

A C B
ST1 ST2 Exam
~8— Error occurrence 116 120 132

Fig. 3. Most common error for each summative assessment

250
é 200 R N\
g 150
Q
o 100
E 50 / —
Z / T
0 - -
Syntax Type Semantic Logic
- ST1 12 147 46 35
ST2 9 49 222 37
=#—Exam 3 225 159 19

Fig. 4. Error categories for summative assessments

the number of occurrences for the four error categories in each of the three summative
assessments.

It is interesting to note how the most common error category change between these
assessments. While the semantic errors category was the most common in ST2 (with
222 occurrences), the type errors category was the most common in both ST1 (147
occurrences) and the Exam (225 occurrences). Since ST1 took place after Prac5, the
prominence of type errors in ST1 correspond with the high frequency of type errors
in the first five practical assignments (see Fig. 2). The same observation applies to ST2
where the high frequency in semantic errors from Prac7 and Prac8 (see Fig. 2) continued
in this test. This could be an indication that at the time of ST1 and ST2, the novices still
lacked the necessary knowledge to deal with the errors made in the directly preceding
formative assessments. The overall prominence of type errors in the Exam, however,
remains unexplained—especially since semantic errors were most prominent in the three
assessments (Prac7, Prac8 and ST2) that directly preceded the examination. It should be
noted that the examination covered all the content discussed during the academic term.

Summary. The findings as presented in this sub-section, provide valuable insights
regarding the fluctuations in common programming errors (i.e. most common errors

114 M. B. Mase and L. Nel

and most common error categories) made by novice programmers during an academic
term. The changes in programming errors can be attributed to all the different new topics
that novices have to learn within a short time, combined with their overall lack of basic
programming knowledge [4, 13]. Itis extremely important that instructors realize that the
development process of novice programmers is not linear. Novices tend to re-encounter
the same common errors multiple times [35] while new errors can also be introduced as
new content is covered.

5 Conclusion and Recommendation

Novice programmers face various challenges when learning to write computer programs.
Due to their limited programming knowledge, these novices are bound to make unneces-
sary errors that they often find difficult and time-consuming to correct. This study aimed
to (1) identify the common programming errors made by a select group of novice pro-
grammers, and (2) analyze how these common errors changed at different stages during
an academic term. Using a manual, structured content analysis of 684 programming arte-
facts, this study identified 21 common programming errors made by novices when they
write code. The identified errors were classified into four categories: syntax, semantic,
logic and type errors. The type error A (Invoking methods with wrong arguments) and
semantic error C (Class claims to implement an interface but does not implement all the
required methods) were the most frequent errors made by novices. With semantic errors
and type errors also identified as the most frequently occurring error categories, these
are the errors that instructors need to particularly focus on as part of their teaching and
learning strategies when teaching novice programmers.

Furthermore, as part of an efficient teaching and learning strategy for programming,
it is crucial that instructors monitor novices’ progress throughout the entire semester.
Monitoring of novices’ learning processes (including the errors they most commonly
make) could help to identify individuals who are at risk of failing the programming
course. Consequently, instructors will be in a better position to provide targeted help and
proper intervention to address concepts that novices find difficult to master. If novices
are made aware of these common errors more explicitly, it could also help them to avoid
such errors which could potentially reduce their programming struggles and frustrations
as well as improve their chances of passing the programming course. Knowledge of the
identified common errors and error categories could assist programming instructors in
making informed decisions while adapting the teaching and learning approaches they
utilize for the teaching of novice programmers. Such interventions could also form the
basis of a longitudinal study evaluating the changes in students’ code writing errors in
response to educational interventions over multiple semesters.

References

1. Ahadi, A., Lister, R., Lal, S., Hellas, A.: Learning programming, syntax errors and institution-
specific factors. In: Proceedings of the 20th Australasian Computing Education Conference,
pp. 90-96. ACM, New York (2018). https://doi.org/10.1145/3160489.3160490

https://doi.org/10.1145/3160489.3160490

10.

11.

12.

13.

14.

15.

16.

Common Code Writing Errors Made by Novice Programmers 115

. Albrecht, E., Grabowski, J.: Sometimes it’s just sloppiness-studying students’ programming

errors and misconceptions. In: Proceedings of the 51st ACM Technical Symposium on Com-
puter Science Education, pp. 340-345. ACM, New York (2020). https://doi.org/10.1145/332
8778.3366862

. Alqgadi, B.S., Maletic, J.I.: An empirical study of debugging patterns among novice program-

mers. In: Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education, pp. 15-20. ACM, New York (2017). https://doi.org/10.1145/3017680.3017761

. Altadmri, A., Brown, N.C.C.: 37 million compilations: investigating novice programming

mistakes in large-scale student data. In: Proceedings of the 46th ACM Technical Symposium
on Computer Science Education, pp. 522-527. ACM, New York (2015). https://doi.org/10.
1145/2676723.2677258

. Altadmri, A., Kolling, M., Brown, N.C.C.: The cost of syntax and how to avoid it: text versus

frame-based editing. In: Proceedings of the 2016 IEEE 40th Annual Computer Software and
Applications Conference (COMPSAC), pp. 748-753. IEEE (2016). https://doi.org/10.1109/
COMPSAC.2016.204

. Alzahrani, N., Vahid, F., Edgcomb, A., Lysecky, R., Lysecky, S.: An analysis of common errors

leading to excessive student struggle on homework problems in an introductory programming
course. In: Proceedings of ASEE Annual Conference. ASEE, Riverside (2018)

. Becker, B.A,, et al.: Unexpected tokens: a review of programming error messages and design

guidelines for the future. In: Proceedings of the 2019 ACM Conference on Innovation and
Technology in Computer Science Education, pp. 253-254. ACM, New York (2019). https://
doi.org/10.1145/3304221.3325539

. Becker, B.A., Mooney, C.: Categorizing compiler error messages with principal component

analysis. In: Proceedings of the 12th China-Europe International Symposium on Software
Engineering Education (CEISEE 2016), pp. 28-29. CEISEE, Shenyang (2016)

. Becker, B.A.: An effective approach to enhancing compiler error messages. In: Proceedings of

the 47th ACM Technical Symposium on Computing Science Education, pp. 126-131. ACM,
New York (2016). https://doi.org/10.1145/2839509.2844584

Brass, S., Goldberg, C.: Semantic errors in SQL queries: a quite complete list. J. Syst. Softw.
79(5), 630-644 (2006). https://doi.org/10.1016/j.jss.2005.06.028

Bosse, Y., Redmiles, D., Gerosa, M.A.: Pedagogical content for professors of introductory
programming courses. In: Proceedings of the 2019 ACM Conference on Innovation and
Technology in Computer Science Education, pp. 429-435. ACM, New York (2019). https://
doi.org/10.1145/3304221.3319776

Brown, N.C., Altadmri, A.: Investigating novice programming mistakes: Educator beliefs vs.
student data. In: Proceedings of the 10th Annual Conference on International Computing
Education Research, pp. 43—50. ACM, New York (2014). https://doi.org/10.1145/2632320.
2632343

Canedo, E.D., Santos, G.A., Leite, L.L.: An assessment of the teaching-learning methodolo-
gies used in the introductory programming courses at a Brazilian university. Inform. Educ.
17(1), 45-59 (2018). https://doi.org/10.15388/infedu.2018.03

Denny, P., Luxton-Reilly, A., Carpenter, D.: Enhancing syntax error messages appears inef-
fectual. In: Proceedings of the 2014 Conference on Innovation and Technology In Computer
Science Education, pp. 273-278. ACM, New York (2014). https://doi.org/10.1145/2591708.
2591748

Denny, P., Luxton, R.A., Tempero, E.: All syntax errors are not equal. In: Proceedings of the
17th ACM Annual Conference on Innovation and Technology in Computer Science Education,
pp. 75-80. ACM, New York (2012). https://doi.org/10.1145/2325296.2325318

Ettles, A., Luxton-Reilly, A., Denny, P.: Common logic errors made by novice programmers.
In: Proceedings of the 20th Australasian Computing Education Conference, pp. 83—-89. ACM,
New York (2018). https://doi.org/10.1145/3160489.3160493

https://doi.org/10.1145/3328778.3366862
https://doi.org/10.1145/3017680.3017761
https://doi.org/10.1145/2676723.2677258
https://doi.org/10.1109/COMPSAC.2016.204
https://doi.org/10.1145/3304221.3325539
https://doi.org/10.1145/2839509.2844584
https://doi.org/10.1016/j.jss.2005.06.028
https://doi.org/10.1145/3304221.3319776
https://doi.org/10.1145/2632320.2632343
https://doi.org/10.15388/infedu.2018.03
https://doi.org/10.1145/2591708.2591748
https://doi.org/10.1145/2325296.2325318
https://doi.org/10.1145/3160489.3160493

116

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

M. B. Mase and L. Nel

Farrokhi, F., Mahmoudi-Hamidabad, A.: Rethinking convenience sampling: defining quality
criteria. Theory Pract. Lang. Stud. 2(4), 784-792 (2012). https://doi.org/10.4304/tpls.2.4.
784-792

Figueiredo, J., Lopes, N., Garcia-Pefialvo, F.J.: Predicting student failure in an introductory
programming course with multiple back-propagation. In: Proceedings of the 7th International
Conference on Technological Ecosystems for Enhancing Multiculturality, pp. 44-49. ACM,
New York (2019). https://doi.org/10.1145/3362789.3362925

Hristova, M., Misra, A., Rutter, M., Mercuri, R.: Identifying and correcting Java programming
errors for introductory computer science students. ACM SIGCSE Bull. 35(1), 153-156 (2003).
https://doi.org/10.1145/611892.611956

Johnson, W.L.: Understanding and debugging novice programs. Artif. Intell. 42(1), 51-97
(1990). https://doi.org/10.1016/0004-3702(90)90094-G

Jackson, J., Cobb, M., Carver, C.: Identifying top Java errors for novice programmers. In:
Proceedings Frontiers in Education 35th Annual Conference, p. T4C. IEEE, Indianapolis
(2005). https://doi.org/10.1109/FIE.2005.1611967

Kazeem, O.N., Abiola, O.A., Akinola, S.O.: Bug pattern analysis of codes produced by
beginner programmers using association rule mining technique. Univ. Ibadan J. Sci. Logics
ICT Res. 4(1), 10-24 (2020)

Koerber, A., McMichael, L.: Qualitative sampling methods: a primer for technical commu-
nicators. J. Bus. Tech. Commun. 22(4), 454-473 (2008). https://doi.org/10.1177/105065190
8320362

Lakkaraju, H., et al.: A machine learning framework to identify students at risk of adverse
academic outcomes. In: Proceedings of the 21st ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1909-1918. ACM, New York (2015). https://
doi.org/10.1145/2783258.2788620

Malik, S.I., Mathew, R., Hammood, M.M.: PROBSOL.: a web-based application to develop
problem-solving skills in introductory programming. In: Al-Masri, A., Curran, K. (eds.) Smart
Technologies and Innovation for a Sustainable Future. ASTI, pp. 295-302. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-01659-3_34

Malik, S.I., Mathew, R., Al-Nuaimi, R., Al-Sideiri, A., Coldwell-Neilson, J.: Learning prob-
lem solving skills: comparison of E-learning and M-learning in an introductory programming
course. Educ. Inf. Technol. 24(5), 2779-2796 (2019). https://doi.org/10.1007/s10639-019-
09896-1

McCall, D., Kolling, M.: A new look at novice programmer errors. ACM Trans. Comput.
Educ. 19(4), 1-30 (2019). https://doi.org/10.1145/3335814

McCall, D., Kolling, M.: Meaningful categorisation of novice programmer errors. In: 2014
IEEE Frontiers in Education Conference (FIE) Proceedings, pp. 1-8. IEEE (2014). https://
doi.org/10.1109/FIE.2014.7044420

Plonka, L., Sharp, H., Van der Linden, J., Dittrich, Y.: Knowledge transfer in pair program-
ming: an in-depth analysis. Int. J. Hum. Comput. Stud. 73, 6678 (2015). https://doi.org/10.
1016/j.ijhcs.2014.09.001

Plowright, D.: Using Mixed Methods: Frameworks for an Integrated Methodology. SAGE,
London (Kindle edition) (2011)

Qian, Y., Lehman, J.: An investigation of high school students’ errors in introductory pro-
gramming: a data-driven approach. J. Educ. Comput. Res. 58(5), 919-945 (2020). https://doi.
org/10.1177/0735633119887508

Rahman, M., Watanobe, Y., Nakamura, K.: Source code assessment and classification based
on estimated error probability using attentive LSTM language model and its application in
programming education. Appl. Sci. 10(8), 2973 (2020). https://doi.org/10.3390/app10082973

https://doi.org/10.4304/tpls.2.4.784-792
https://doi.org/10.1145/3362789.3362925
https://doi.org/10.1145/611892.611956
https://doi.org/10.1016/0004-3702(90)90094-G
https://doi.org/10.1109/FIE.2005.1611967
https://doi.org/10.1177/1050651908320362
https://doi.org/10.1145/2783258.2788620
https://doi.org/10.1007/978-3-030-01659-3_34
https://doi.org/10.1007/s10639-019-09896-1
https://doi.org/10.1145/3335814
https://doi.org/10.1109/FIE.2014.7044420
https://doi.org/10.1016/j.ijhcs.2014.09.001
https://doi.org/10.1177/0735633119887508
https://doi.org/10.3390/app10082973

33.

34.

35.

36.

37.

38.

39.

40.

Common Code Writing Errors Made by Novice Programmers 117

Robins, A.V.: Novice programmers and introductory programming. In: Fincher, S., Robins, A.
(eds.) The Cambridge Handbook of Computing Education Research, pp. 327-376. Cambridge
University Press, Cambridge (2019)

Schliep, P.A.: Usability of error messages for introductory students. Sch. Horiz. Univ. Minn.
Morris Undergrad. J. 2(2), 5-11 (2015)

Smith, R., Rixner, S.: The error landscape: characterizing the mistakes of novice programmers.
In: Proceedings of the 50th ACM Technical Symposium on Computer Science Education,
pp. 538-544. ACM, New York (2019). https://doi.org/10.1145/3287324.3287394
Steenmeijer, L.D.: Increasing the consistency of feedback on programming code by using
a tagging system (Bachelor’s thesis). University of Twente, Twente (2020). http://essay.utw
ente.nl/82198/

Tabanao, E.S., Rodrigo, M.M.T., Jadud, M.C.: Identifying at-risk novice java programmers
through the analysis of online protocols. In: Proceedings of Philippine Computing Science
Congress, pp. 1-8. Archtum Ateneo (2008)

Tiirkmen, G., Caner, S.: The investigation of novice programmers’ debugging behaviors to
inform intelligent e-learning environments: a case study. Turkish Online J. Dist. Educ. 21(3),
142-155 (2020). https://doi.org/10.17718/tojde.762039

Tuugalei, I., Mow, I.C.: Analyses of student programming errors in java programming courses.
J. Emerg. Trends Comput. Inf. Sci. 3(5), 739-749 (2012)

Zehetmeier, D., Bottcher, A., Briiggemann-Klein, A., Thurner, V.: Development of a classi-
fication scheme for errors observed in the process of computer programming education. In:
Proceedings of the 1st International Conference on Higher Education Advances (Head 2015),
pp. 475-484. Universitat Politecnica de Valencia, Valéncia (2015). https://doi.org/10.4995/
HEAd15.2015.356

https://doi.org/10.1145/3287324.3287394
http://essay.utwente.nl/82198/
https://doi.org/10.17718/tojde.762039
https://doi.org/10.4995/HEAd15.2015.356

)

Check for
updates

Ten Years in the Trenches of a Doubtful Science:
An Autoethnographic Investigation of Five
Challenges of Teaching in Information Systems

Daniel B. le Roux®

Information Science, Stellenbosch University, Stellenbosch, South Africa
dbleroux@sun.ac.za

Abstract. The field of Information Systems (IS) is characterised by a number of
properties that combine to create particular challenges for teaching and learning.
These properties include its close ties with rapidly advancing digital technology,
its interdisciplinary nature and its general lack of a strong, broadly agreed-upon
theoretical core. In the present study, I undertake an autoethnographic investiga-
tion of five key challenges for teaching in IS which result from one or more of
these properties. To provide theoretical scaffolding for the investigation I adopt
Weick’s theory of sensemaking and apply it to investigate both my own and my
students’ processes of sensemaking. I propose that to effectively navigate these
challenges and prepare students for careers in IS, lecturers should aim to develop
their students’ technical and social skills sets such that they are able to navigate the
uncertainty and ambiguity that characterise socio-technical systems in practice.
To this end, I outline the strategies I have adopted in my attempts to achieve this
aim.

Keywords: Information systems - Teaching - Challenges - Autoethnographic -
Sensemaking

1 Introduction

Since its emergence in the early 1960s, the field of Information Systems (IS) has rapidly
developed and diversified as scholars have attempted to keep pace with the advancement
of digital technology and its diffusion across all business and social spheres [6, p. 136].
The range of topics that potentially falls within the scope of IS has expanded so fast that
the determination of the field’s focus and boundaries are matters of ongoing debate among
its members. This dynamism makes IS an exciting domain for teaching and research and,
as industry demand for IS skills have increased, programme enrolments have grown [15].
In addition to fast-paced change, the field has, from its inception, been characterised by
interdisciplinarity, recognising the important principle that information technologies do
not function in isolation and that the boundary between the information system and its
setting (e.g., societal, organisational or other) is often difficult to determine.

Despite its broad recognition as an academic discipline today, the development of
IS has been (and still is) marred by a range of challenges. In its early years, scepticism

© Springer Nature Switzerland AG 2022
W.S. Leung et al. (Eds.): SACLA 2021, CCIS 1461, pp. 118-131, 2022.
https://doi.org/10.1007/978-3-030-95003-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95003-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-95003-3_8

Ten Years in the Trenches of a Doubtful Science 119

about its legitimacy and positioning were expressed by leading scholars. Dearden, in
1972, argued that IS is a mirage (referenced in King and Lyytinen [20, p. 540]) and
questioned the fundamental principles underlying the field’s emergence. Kling, in 1980,
described the field as “an arena yearning to be a discipline” (referenced in King and
Lyytinen [20, p. 540]) while Keen contested that the field lacked a theoretical base
(referenced in Culnan [12, p. 169]). Mum- ford and colleagues, in 1985, described IS
as “a doubtful science” characterised by poor intellectual and methodical rooting [20,
p. 540]. Questions about the field’s legitimacy and distinctiveness continued to be raised
in the 1990s with Avgerou et al. [6] describing it as ill-defined and facing problems in
terms of recognition and legitimacy. IS has, notwithstanding these challenges, continued
to grow and expand but as information technologies infiltrate every corner of human life
these concerns and debates are likely to continuously characterise the fields in which
they are studied.

Against this backdrop, an interesting and important tension that is often overlooked
is that IS lecturers at universities across the globe have to design curricula and teach
courses despite the ever-shifting thematic landscape and theoretical uncertainty of their
field. This presents a significant challenge for both lecturers and students. To teach
effectively, lecturers are required to continuously monitor the rapid developments in the
field and redesign their courses at short intervals. Students, on the other hand, have to
come to terms with the transitory nature of technological skills and best practices in
IS. Doubtless, IS is not the only field that presents this challenge, but the rapidity of
digital technology advancement and its uptake across industries and society make IS a
particularly interesting and important case. While a fairly large collection of literature
addresses the theoretical and conceptual ambiguity which result from these dynamic
forces, fewer studies have considered how lecturers manage the resulting challenges in
the course of their day-to-day teaching responsibilities.

In the present paper, I aim to address this gap by reporting an autoethnographic
investigation of my role as a lecturer in IS over the past decade. To achieve this I adopt
Weick’s theory of sensemaking [33-36] as a theoretical lens to systematically analyse
five key challenges I face as an IS lecturer which result (directly or indirectly) from
the dynamic, interdisciplinary and theoretically indistinct nature of the field. For each
challenge, I outline the factors which exasperate it and I provide brief descriptions of the
mindset and strategies which I adopt to manage or cope with it. The scope of the paper is
demarcated in two imported ways. Firstly, the emphasis falls primarily on the teaching
dimension of academic work. The task portfolios of academics obviously include a
much broader range of responsibilities but, while acknowledging these, they are not of
interest in this investigation. Secondly, while most of my students are undergraduates
that have little or no work experience, I also teach to post-graduate students that study
on a part-time basis. The difference between these two student groups is important and
requires thoughtful adaptation of curriculum and teaching approaches. While I briefly
address these differences, the emphasis falls primarily on the challenges of teaching to
the former group—full-time undergraduate students without work experience.

120 D. B. le Roux

2 Method

2.1 Autoethnography as Method

“Autoethnography is a research method that uses personal experience (‘auto’) to describe
and interpret (‘graphy’) cultural texts, experiences, beliefs, and practices (‘ethno’)” [2,
p. 1]. The method adopts the principle that personal experience is infused with the norms
and expectations of a particular setting and enables the researcher to utilise accounts of
their personal experiences to “complement or fill gaps in, existing research” [2, p. 1].
Many scholars have adopted the method as a means to critique (often problematic)
ethnographic accounts by researchers without personal experience of the culture under
investigation (i.e., “cultural outsiders”) [2, p. 4]. The method, accordingly, is sensi-
tive to the manner in which the findings of social studies are “inextricably tied to the
vocabularies and paradigms the scientists used to represent them” [13, p. 274].

Importantly, the method places substantial emphasis on personal experience,
enabling research to describe and analyse “moments of everyday experience which
cannot be captured through more traditional research methods” [2, p. 4]. Central to
this retrospective and selective investigation of personal experience is the reporting of
epiphanies which need to be analysed by contrasting personal experience against exist-
ing research [13, p. 276]. Epistemologically, autoethnography adopts the premise that
“a social scientist who has lived through an experience and has consumed, unanswered
questions about it can use introspection as a data source and, following accepted practices
of field research, study him- or herself as with any ‘n’ of 1 [31, p. 148]. While emphasis
falls on experience and introspection, autoethnographers, as part of the research pro-
cess, analyse data sources like personal notes, records, transcripts and other artefacts.
It is accepted the interrogation of these personal records is often “intensely personal”
[31, p. 150], the aim being to facilitate reflection about and conveying a “patchwork of
feelings, experiences, emotions, and behaviours that portray a more complete view of...
life” [23, p. 10].

2.2 Autoethnography Studies of Teaching in Higher Education

Autoethnography is well-suited to investigations of the culture of work in higher edu-
cation settings and has been used to this end with notable effect. For example, Hay
et al. [19] review the substantial impact of Iain Hay’s autoethnographic expression of
his “core personal views on high-quality teaching” in Letter to a new university teacher
[18]. The letter has been used internationally to guide the orientation of new lectur-
ing staff. In it Hay “adopted an autoethnographic approach, presenting his thoughts in
the form of a letter... to communicate with an audience he could envisage easily and
that allowed personal commentary without seeming entirely self-centred” [19, p. 579].
Etherington [14], in a comparable article, provide suggestions on teaching practices for
new lecturers. He acknowledges, for example, that upon commencement of his academic
career “the very different roles of a researcher and a lecturer... were simply not obvious
to me as a researcher who had just become a lecturer” [14, p. 1]. Leach [21] investi-
gates her lived experience as an early-career academic through autoethnographic poetry,
while Wilkinson [37] addresses the important issue of impostor syndrome in academe

Ten Years in the Trenches of a Doubtful Science 121

through an autoethnographic study of his role as an early career lecturer. [16] adopt
an autoethnographic approach to explore the effects of audit culture and neoliberalism
on university teaching, with a focus on the various demands that this culture places on
lecturers. Lastly, Lourens [22], in a striking autoethnographic study, investigates the
experiences of disabled employees within the academe in South Africa.

2.3 Research Process

The process adopted in the present investigation commenced from the position that
teaching in IS is characterised by various challenges which can be attributed to three of
the field’s key properties: Its interdisciplinary nature, its close ties to rapidly advanc-
ing digital technologies and, finally, its lack of a broadly agreed-upon conceptual and
theoretical core. I commenced with an introspective investigation of my role as lecturer
and developed a list of the major challenges I faced, focusing specifically on challenges
relating to, firstly, curriculum and course design (what I teach) and, secondly, pedagogy
(how I teach). Throughout this process, I consulted a range of data sources including
my personal collection of course outlines, lecture plans, reading lists and assessments
compiled over the past 10 years. Of particular interest in this phase of the study were
the curriculum and pedagogical changes I made year on year. These changes provided a
useful lens into my attempts to improve the quality of my teaching, often by specifically
addressing challenges or poor outcomes experienced in the previous year.

After compiling the initial list, it was refined by grouping overlapping challenges
together and developing broader descriptions for each of the emerging categories to
capture their essence. Each item in the finalised category list was then considered in
relation to the three properties of IS as outlined above. In each instance, I considered,
firstly, how the properties of IS impact (e.g., underlie, trigger, exasperate, ameliorate
etc.) the challenge and, secondly, wrote descriptions of these relationships.

In the final phase of the investigation, I returned to the data sources and searched
for evidence of attempts to address these challenges through adaptations to curriculum
or pedagogy. In particular, I focused on the manner in which I changed my teaching
of the same topic or theme from one academic year to the next and reflected on the
motivations for and effectiveness of these changes. This enabled me to describe the
interaction between refinement in my personal knowledge of the field and the manner
in which I communicated to my students.

3 Theoretical Points of Departure

To support the conceptual and theoretical framing of the research I adopt Weick’s theory
of sensemaking [33—-36] which describes the processes by which humans form mean-
ingful understandings of reality based on their ongoing streams of experience. Central
to the theory is the principle that that human actors perceive reality as a constant stream
of experiences through ongoing processes of “automatic information processing” [35,
p- 14]. As part of these processes, we use our senses to extract “present moments of expe-
rience” (termed cues) from the environment and place them in “perceptual frameworks”

122 D. B. le Roux

(or frames) to form plausible understandings of reality [35, p. 109-111]. Meaning, con-
sequently, is the product of a person’s ability to construct a relationship between a cue
and a frame [35, p. 109-111]. Over time we develop a larger and increasingly meaningful
frame repertoire, enabling us to create meaning of a greater variety of cues.

Weick describes seven properties of the sensemaking process, two of which are
of particular relevance in this paper. Firstly, sensemaking is ongoing. Our streams of
experience have no objectively definable starting or ending points but, to cope with this
constant flow, we bracket particular parts of these streams and construct distinguishable
moments from them [35, p. 43]. This enables people to assign absolute categories to
reality, but also to ignore large parts of it [35, p. 44]. The second relevant property of
sensemaking is that it is always retrospective. Any experience, Wieck argues, is only
identifiable when a person steps outside the ongoing processes of automatic information
processing and directs attention retrospectively. Meaning, consequently, is produced by
paying attention retrospectively to particular brackets of experience or cues.

In addition to the properties of sensemaking, Weick describes various forms that
the substance of sensemaking can take—the things people “draw on” when they make
sense [35, p. 109]. Of particular relevance in the present study are theories of action
which are symbolic representations of what action, under what circumstances, should
be used to achieve some desired outcome [35, p. 122]. Theories of actions provide a
useful conceptual tool to describe the frame repertoire one develops through experience
in a particular occupation. Weick warns, however, that such theories are necessarily
abstractions and that slippage between theory and action in practice will exist.

Three levels of sensemaking are of interest in this paper. Firstly, and primarily, the
paper concerns my personal, subjective sensemaking processes over the past decade.
This includes, on one level, my sensemaking of IS as an academic field but it also
includes, on a second level, my sensemaking of the learning processes of my students.
Central, in this regard, is my growing appreciation of the various learning challenges
which students of IS face, and how these can be managed through different interventions.
My personal theories of action, accordingly, are the products of the retrospective sense-
making of experiences I have had during the implementation of these interventions. The
interplay between these two levels is also important—as my frames of IS have become
more meaningful, my theories of action have evolved. The third level of interest is the
sensemaking processes undertaken by students during learning. As a lecturer, my view of
these processes is defined by my various forms of interaction with students. This includes
class, lab and personal conversations and discussions, but it also includes assessment of
their work which reflects the quality of their frames of the course content.

4 Challenges

In the sections which follow I describe each of the challenges identified, their associations
with the properties of IS and, finally, provide an outline of the curriculum and pedagogical
strategies have adopted to manage them. The challenges are presented in an order which
reflects their interdependence such that the management of earlier challenges often forms
important building blocks for the successful management of those following upon them.

Ten Years in the Trenches of a Doubtful Science 123

4.1 Challenge 1: Navigating Conceptual Ambiguity

After a decade of teaching and research in IS I’ve come to appreciate (even enjoy) the
conceptual intricacies of my field. Over time my frames of the key constructs in the
discipline have become more nuanced, reflecting the knowledge that their meanings are
context-dependent and, as such, resist single, unambiguous definitions. However, as a
lecturer, I see, year on year, how confusing this conceptual “briar patch” [11] can be to
my students. In my experience there are very few IS undergraduate students who, even
in their final year of study, have an unambiguous understanding of the key constructs in
the field. This, I believe, is not due to any shortcomings of their own or of their lecturers.
It is, rather, due to the nature of the concepts themselves.

Personally, a deeper appreciation of this challenge emerged during my post-graduate
research projects when I learned that the task of specifying definitions for even the most
basic concepts in the field (e.g., data, information and knowledge) is thwarted with a
range of historical, logical and technical pitfalls and obstructions (seee.g.[1,7,8, 11,27,
32, 38]). This contrasts the field to more established disciplines, particularly those in the
so-called hard sciences where concepts tend to have exact meanings. Ambiguity about
the meaning of first principles has an obvious knock-on effect on all the higher-level
concepts in which they are utilised. Not surprisingly, as pointed out by Carvalho [10], the
information system concept is used in literature to denote the number of fundamentally
different phenomena.

I have found that the challenge of conceptual ambiguity can impact teaching quality
in various ways. My most significant challenge in this regard has been the degree to
which higher levels of argumentation and reasoning become hindered by a failure to
establish conceptual clarity at more basic levels. For example, in a course I taught some
years ago I covered the various ways in which the determination of information system
success can be approached. In the lead-up to this part of the course, I made a substantial
effort to cultivate a socio-technical understanding of information systems among my
students, highlighting the importance of achieving alignment between technical and
non-technical system components. However, when we started to discuss the notion of
information system success, my students would consistently default to a more narrow
(i-e., technical) conceptualisation and, consequently, their ideas about success would be
dominated by technical correctness and quality. Thus, the idea of the information system
as a socio-technical phenomenon was accepted in a sort of ceremonial manner, but the
important implications of this conceptual decision seemed to be forgotten or ignored at
higher levels of reasoning.

In my early years of teaching I often tried to sidestep conceptual intricacies by
encouraging students to keep their eyes on the real-world problems to be solved rather
than fretting over accurate definitions for the concepts we use to describe them. IS prac-
titioners, I would say, have no time to quibble over the meanings of terms, they need
to solve problems fast and effectively. However, this approach is only partially help-
ful in a teaching context where unambiguous communication depends upon a shared
lexicon. Moreover, it limits my ability to convey more nuanced ideas about systems
operation like congruence, adaptation and system evolution. An alternative and perhaps
more successful intervention has been to introduce fresh concepts (neologisms) into the

124 D. B. le Roux

course lexicon, rather than attempting to reframe students’ existing, often tainted, under-
standings of concepts. This tabula rasa approach has two benefits. Firstly, it creates an
occasion for sensemaking because students are confronted with a novel cue. Secondly, it
offers me a degree of freedom from preconceived ideas about the field and its domains.
One example of this has been to utilise the work systems concept (as opposed to infor-
mation systems) and it’s associated framework as proposed by Alter [3—5]. My students,
at the outset of the course, have no existing frames for the notion of a working system.
This enables me to instil in them a socio-technical conceptualisation upon which more
nuanced layers of understanding can be based with confidence that there is adequate
alignment between my own and their frames.

4.2 Challenge 2: Teaching for a Wide Range of Roles

Of all the questions students have asked me in the past decade, the one which I have
received most frequently is: “What type of work will I do one day?” It is often asked by a
student looking simultaneously confused and anxious, uncertain whether they really want
to be on the career path they have chosen. I've come to appreciate that students’ uncer-
tainty about the nature of their future careers is both justified and difficult to address.
Graduates from the programmes in which I teach go on to perform a wide range of
professional roles, including, among others, software developers, system analysts, busi-
ness analysts, data scientists, testers, project managers, I'T managers and consultants. In
addition to the list being rather long, differentiation between these roles have become
increasingly difficult and transient—I’ve frequently had graduates become employed in
roles I've never heard of before. It is my view that this dynamic nature of IS practice is to
be embraced rather than avoided as it reflects an ongoing evolution of the organisational
forms best suited to achieving its goals. Understandably, however, students are intimi-
dated by what is perceived as a disorganised, ad-hocratic industry and disappointed when
lecturers are unable to sketch a more precise picture of their future career possibilities. I
have also found this to be an aspect of the field that makes it unattractive to prospective
students who want to become something (e.g., a doctor, an engineer, an auditor etc.).

In my experience, there are three important factors that serve to contextualise this
challenge in IS. Firstly, the continuous emergence of new types of professional positions
or renaming of existing ones resembles the industry’s efforts to find effective and efficient
organisational configurations. Secondly, the nature of work in IS implies that it is often
difficult to clearly demarcate roles and overlap in task portfolios is common. Thirdly,
the culture in many tech-oriented organisations is characterised by relaxed or agnostic
attitudes towards naming conventions for professional roles in which versatile individuals
are employed. For example, in many smaller or start-up companies workers are told to
pick their own job titles.

To guide students’ sensemaking of the turbulence in IS practice, I often utilise a
metaphor that was used in a panel session I attended at the 2009 International Conference
on Information Systems (ICIS) in Phoenix. The panel discussed the contentious topic
of theory development in IS and the various challenges which obstruct this endeavour.
During the concluding remarks, one of the panellists made the comment that scholars
and students in IS are required to develop sea legs—the ability to keep one’s balance and
not feel seasick when onboard a moving ship. I found the metaphor to be particularly

Ten Years in the Trenches of a Doubtful Science 125

striking and I’ve used it to encourage my students to become comfortable in an unstable
environment where one is expected to continuously learn and develop. Rather than
framing this as problematic or a source of anxiety, I urge them to view it as exciting
and rewarding by contrasting IS professionals to workers who perform the same set
of repetitive tasks year after year. Additionally, I encourage them to reframe feelings
of impostor syndrome as opportunities for learning and growth and to utilise these as
motivators to enhance their personal knowledge and skills repertoire.

A second strategy I’ve adopted to manage this challenge is to invite a career advisor
to present a guest lecture at the end of a course I present to final-year students. The
career advisor specialises in IS and IT occupations and has a strong understanding of
the market trends. Moreover, she has, over the years, placed many graduates from the
programmes I teach in and has good knowledge of their curricula. During the lecture she
addresses a range of topics, exposing students to the current market trends and optimal
strategies for finding suitable entry-level occupations. In my experience, this orientation
exercise plays an important role in supporting students’ efforts to make sense of the job
market, and it gives them a degree of confidence in the knowledge they have obtained
during their degree programmes.

4.3 Challenge 3: Demystifying the Social Issues in IS

As a lecturer, I have generally found it to be substantially less challenging to teach
courses of which the outcomes concern technical skills or proficiency like computer
programming or database design. These hard disciplines lend themselves well to tra-
ditional, reductionist modes of teaching and learning in which the lecturer, generally
well-versed in the relevant technology, guides the student towards the correct or optimal
solution to a problem by teaching particular techniques. Much more challenging, par-
ticularly at the undergraduate level, has been courses that address non-technical themes
in IS. Undergraduate students without work experience do not have meaningful frames
of organisational systems and culture, limiting the degree to which one can effectively
communicate about the social aspects of information systems operation.

This challenge perhaps best represents the difference between full-time undergradu-
ate (non-working) and part-time postgraduate students that have work experience. In my
classes with post-graduate students, questions and discussions are dominated by a wide
range of non-technical issues (e.g., budget allocation, project management, adoption,
adaptation, workarounds, shadow systems, user training, manager buy-in etc.). These
discussions suggest that their work experience has led to the development of frames of
system success that are sensitive to a wide range of non-technical factors. I have tried to
instil these same holistic frames among my undergraduate students by working through
case studies and the results of research studies on system success factors. However, these
efforts have not, in my experience, had a considerable impact and I have developed the
view that one can only really make sense of the complexities of organisational dynamics
through actual work experience.

To manage this challenge, I have adopted two general strategies. The first is to empha-
sise the role of congruence or fit between social and technical system components. To
this end, I adopt various theories/frameworks which describe fit in information systems,
both at the level of the individual user (e.g., Task-technology fit [17]), and the level of the

126 D. B. le Roux

organisation as a whole (e.g., package-organisation alignment [25, 26, 28]). These the-
ories/frameworks provide particularly useful lenses for the investigation of case studies
of system failure as they guide students to consider the system holistically and focus on
the nature of the relationships between system components as opposed to the technical
success of hardware or software artefacts.

My second strategy has been to explore examples or cases in which the students
themselves are actors in a system. This enables me to draw on their existing frames
of systems and bring awareness to their subjective experiences as users. This enables
discussion of how these experiences influence their future use intentions and, ultimately,
the functioning of the system as a whole. I also use this approach to address the distinction
between voluntary and compulsory systems use and explore their experiences of both.
In my experience students tend to tacitly adopt the view that all information systems in
business settings are characterised by compulsory use and, as a result, underestimate the
agency of users in system adoption, operation and success.

4.4 Challenge 4: Teaching Soft Skills

While some IS graduates pursue careers that predominantly involve technical or ana-
lytical work (e.g. programmers or database administrators), the majority of graduates
from the programmes I teach take up occupations that require a combination of tech-
nical/analytical and soft skills. I use the term soft skills here to refer to a collection of
abilities relating to one’s interaction with others. The role of Information Technology
Business Analyst (ITBA) is perhaps the best example of a career path in which a large por-
tion of the task portfolio involves various forms of social engagement (e.g., requirements
elicitation, joint-application development, structured walkthroughs, SCRUM meetings,
user training etc.). While I have found the classroom and lab to be well-suited to the teach-
ing of analytical and technical skills, I have struggled to develop meaningful strategies
to develop my students’ soft skills. Moreover, while many ITBA handbooks emphasise
the important role of these skills, they rarely provide meaningful guidance for teaching
or practising social skills.

A central obstruction in this regard is students’ ideas about the possibility of improv-
ing their social skill set. At the outset of an ITBA course, I normally run a quick poll to
ask students, firstly, whether they believe they have a strong or weak social skillset and,
secondly, whether they believe that this is an area in which one can improve through
learning and training. I have found that, in general, a majority of students believe that
one’s social skills is primarily a product of personality and, as such, cannot be changed
substantially through training. This shared belief has two effects—firstly, students who
perceive themselves to have weak social skills suddenly become concerned about their
career choice and, secondly, students are discouraged to participate in any teaching
interventions aimed at social skill improvement.

To manage this challenge, I try to expose students to various cues that disconfirm
their beliefs and encourage new sensemaking. This includes, for example, discussing
cases of prominent individuals like Warren Buffet who has frequently stated that the
advancement of his social skills has been the most important aspect of his education
[24]. Buffet attributes much of his success in this regard to a course presented by Dale
Carnegie, the contents of which have been captured in Carnegie’s widely admired book

Ten Years in the Trenches of a Doubtful Science 127

How to win friends and influence people [9]. I encourage my students, particularly those
who perceive themselves to be socially awkward, to read the book.

I have also developed two teaching strategies to address this challenge. The first is
to provide students with a strong set of practical guidelines for different types of social
interactions typically encountered by professionals like ITBAs. In this regard, a book
by Zwiers [39] has been particularly useful. Additionally, I have developed a series
of practical sessions in which students engage in various forms of role-playing. These
sessions typically run for 50 min and involve active participation by myself and a group
of four to eight students at a time. During such a session one group of students will be
tasked to perform a particular engagement technique (e.g., a brainstorming session with
the client), with another group of students performing the roles of clients. Throughout
such sessions I provide guidance and advice and, upon completion, we review the session
as a group. While the role-playing environment is obviously artificial, the sessions, when
managed well, provide a valuable sandbox for students to test their abilities and learn
about their strengths and weaknesses. It also enables me to identify students who need
particular support or guidance. Unfortunately, the sessions seem to be less effective if I
do not participate and, as such, the intervention does not scale well to large class groups
when there is limited class time available.

4.5 Challenge 5: Bridging the Research-Teaching Gap

Upon my appointment as an early-career lecturer in 2010, I attended an orientation
course for new academic staff at the institution. The course ran over three days and
covered a wide range of topics. A central theme across many of these topics concerned
the challenge of balancing the teaching, research and administrative workloads that
characterise typical academic positions. Presenters suggested that one should aim to
find alignment between one’s teaching responsibilities and research interests, enabling
some degree of overlap between these responsibilities. Intuitively, this made sense to
me as it would ensure that my course content covers the most recent developments in
the specific domain. In retrospect, however, this Utopian vision was naive and I have,
for the most part, been unable to achieve a meaningful alignment between the content I
teach and the research I perform. I do not believe that this reflects any form of failure on
my part, but rather that it is an inevitable product of a maturing and increasingly focused
personal research agenda.

While curriculum design in IS is typically characterised by frequent updating of
content and course structures, the general components of a model IS programme have
remained fairly stable over the past decade. The AIS (Association for Information Sys-
tems) published an IS model curriculum in 2010 [30] with an initial draft of an updated
version appearing in August 2020 [29]. In the same 10-year period my personal research
interests have become focused on very particular topics which, while certainly falling
within the general scope of IS, are much more specialised than the topics I cover when I
teach undergraduate classes. In my experience, reputable academic journals are unlikely
to publish research that addresses topics at an introductory level, and my undergraduate
students are equally unlikely to find value in lectures that cover very specific, specialised
research problems.

128 D. B. le Roux

Despite this apparent irreconcilability, it would be false to state that my research has
had no impact on my teaching. Even when there exist substantial differences between the
topics covered in either, I am aware of their interaction in my sensemaking. Experience
gained through the research process, independent of the method followed or question
asked, always provides new insights which stimulate sensemaking and enhance one’s
understanding of the field. This inevitably flows through to the way I teach and interact
with students. Similarly, interaction with students often stimulates sensemaking through
debate and argumentation, triggering the continuous updating of my frames of their
learning processes.

In addition to acknowledging the underlying interplay between research and teach-
ing, I have also tried to bridge this gap through two particular strategies. The first is
to encourage my students to continuously look for and challenge assumptions when
studying theories or frameworks in prescribed textbooks. For example, when presenting
a theory to a class, I ask them to consider its potential shortcomings or provide examples
of cases that may falsify it. By stimulating this critical outlook, I create an opportunity to
briefly discuss recent research findings that relate to the theory, raising their awareness of
the limitations of an abstract artefact like a theory. The second strategy is to commence
a lecture with a brief overview of a recently published study that relates, at least partly,
to the lecture content. This serves the purpose of alerting students to the degree to which
handbooks or textbooks often present an idealised picture of information systems devel-
opment and operation, and that the real world is messy and unpredictable. It also serves
to pique their interest and make them curious about various aspects and implications of
the study, laying the groundwork for sensemaking.

5 Discussion

Ongoing processes of sensemaking characterise academic work across all fields. In IS,
however, the field’s intertwinedness with rapidly advancing digital technologies, its inter-
disciplinary character and its theoretical indistinctness combine to create various teach-
ing and learning challenges for both lecturers and students. In this paper I’ve adopted
an autoethnographic approach to outline five of these challenges, utilising Weickean
sensemaking as a theoretical lens.

In their totality, the five challenges are reflective of the manner in which the dynamic
nature of IS resists the specification of fixed or rigid curricula. The field requires, rather,
that its members continuously monitor the trends in digital technology development
and adoption, and make sense of how these impact human behaviour and organisational
functioning and performance. Beyond the field’s broad but generally weak theoretical
base, there are no universal laws that enable accurate predictions about the development,
dissemination and uptake of technologies. Consequently, IS scholars often find them-
selves playing catch-up as digital media become embedded in every corner of our lives.
On a certain level, the idea of lecturing in such a turbulent field is in itself questionable.

Despite the ever-presence of so many uncertainties, I believe that IS lecturers can
conduct their teaching in a manner that, on the one hand, embraces the field’s dynamism
and, on the other, equips students with the appropriate attitudes and skillsets to be
successful professionals. This requires careful navigation of various challenges, some

Ten Years in the Trenches of a Doubtful Science 129

of which are described in this paper. How lecturers approach these challenges would
depend upon their personal backgrounds and contexts, but the strategies proposed may
serve to guide or inspire these efforts.

I have, over the past decade, become increasingly aware of my students’ perspec-
tive of the challenges outlined here. Choosing a career path characterised by so much
turbulence and uncertainty is a brave step, even if most of them do not fully appreciate
this at the outset of their studies. Over time I have observed an evolution in my app-
roach from teaching particular frameworks, techniques and skills, to creating learning
experiences that cultivate sea legs. This not only requires that students become exposed
to the non-deterministic nature of socio-technical systems in real-world settings, but
that they develop confidence in their ability to navigate the resulting uncertainty. These
learning experiences are not always comfortable for them, and I often receive complaints
and requests for more specific instructions and guidance. However, from a sensemaking
perspective, these experiences of uncertainty and ambiguity are valuable occasions for
broadening frames of reference and developing increasingly nuanced appreciations of
socio-technical systems.

Finally, as is the case in any autoethnographic study, the obvious limitations associ-
ated with such a strong reliance on personal experience should be acknowledged. The
degree to which the challenges I outline are representative of challenges experienced
by IS lecturers, in general, should be questioned. While I aimed to present them in an
abstract manner, it might well be that they poorly reflect the experiences of my colleagues
at other institutions.

References

Ackoff, R.: From data to wisdom. J. Appl. Syst. Anal. 16, 3-9 (1989)
. Moriarty, J.: Autoethnography. In: Analytical Autoethnodrama. BVER, pp. 37-52. SensePub-
lishers, Rotterdam (2014). https://doi.org/10.1007/978-94-6209-890-9_4

3. Alter, S.: Defining information systems as work systems: implications for the IS field. Eur. J.
Inf. Syst. 17(5), 448-469 (2008)

4. Alter, S.: Work system theory: overview of core concepts, extensions, and challenges for the
future. J. Assoc. Inf. Syst. 14(2), 72-121 (2013)

5. Alter, S.: Sociotechnical systems through a work system lens: a possible path for reconciling
system conceptualizations, business realities, and humanist values in IS development. In:
Conference on Advanced Information System Engineering, pp. 1-15 (2015)

6. Avgerou, C., Siemer, J., Bjgrn Andersen, N.: The academic field of information systems in
Europe. Eur. J. Inf. Syst. 8(2), 136-153 (1999)

7. Bates, M.J.: Fundamental forms of information. J. Am. Soc. Inf. Sci. Technol. 57(8), 1033—
1045 (2006)

8. Bawden, D.: Organised complexity, meaning and understanding: an approach to a unified
view of information for information science. Aslib Proc. 59(4/5), 307-327 (2007)

9. Carnegie, D.: How to Win Friends and Influence People. Simon and Schuster, New York
(1936)

10. Carvalho, J.A.: Information system? Which one do you mean? In: Falkenberg, E.D., Lyyti-
nen, K., Verrijn-Stuart, A.A. (eds.) Information System Concepts: An Integrated Discipline
Emerging. ITIFIP, vol. 36, pp. 259-277. Springer, Boston (2000). https://doi.org/10.1007/
978-0-387-35500-9_22

N =

https://doi.org/10.1007/978-94-6209-890-9_4
https://doi.org/10.1007/978-0-387-35500-9_22

130

11.

12.

13.

14.

15.

16.

17.
18.
19.

20.

21.

22.

23.

24.
25.

26.

217.

28.

29.

30.

31.

32.

D. B. le Roux

Checkland, P., Holwell, S.: Information, Systems and Information Systems, Making Sense of
the Field. Wiley, Chichester (1998)

Culnan, M.J.: The intellectual development of management information systems, 1972—1982:
a co-citation analysis. Manage. Sci. 32(2), 156-172 (1986)

Ellis, C., Adams, T.E., Bochner, A.P.: Autoethnography: an overview. Historical Social
Research/Historische Sozialforschung 36(4 (138)), 273-290 (2011). https://www.jstor.org/
stable/23032294

Etherington, T.R.: Seven simple suggestions to be a better teacher sooner: experiences of a
nearly new lecturer. Preprint, PeerJ Preprints, September 2018. https://peerj.com/preprints/
27185v1

Fitzgerald, B., Adam, F.: The status of the IS field: historical perspective and practical
orientation. Inf. Res. 5(4), 1-17 (2000)

Gonzalez-Calvo, G., Arias-Carballal, M.: Effects from audit culture and neoliberalism on
university teaching: an autoethnographic perspective. Ethnogr. Educ. 13(4), 413—427 (2018).
https://doi.org/10.1080/17457823.2017.1347885

Goodhue, D.L., Thompson, R.L.: Task-technology fit and individual performance. Manag.
Inf. Syst. 19(2), 213-236 (1995)

Hay, L.: Letter to a new university teacher. HERDSA News 24, 15-17 (2002)

Hay, 1., Bartlett-Trafford, J., Chang, T.C., Kneale, P., Szili, G.: Advice and reflections for
a university teacher beginning an academic career. J. Geogr. High. Educ. 37(4), 578-594
(2013). https://doi.org/10.1080/03098265.2013.828276

King, J.L., Lyytinen, K.: Reach and Grasp. MIS Q. 28(4), 539-551 (2004)

Leach, E.: The fractured “I”: an autoethnographic account of a part-time doctoral student’s
experience with scholarly identity formation. Qual. Inq. 27(3—4), 381-384 (2021). https://
doi.org/10.1177/1077800420918895

Lourens, H.: Superscripting the academy: the difference narrative of a disabled academic.
Disabil. Soc. 1-16 (2020). https://doi.org/10.1080/09687599.2020.1794798

Muncey, T.: Doing Autoethnography. Int. J. Qual. Methods 4(1), 69-86 (2005). https://doi.
org/10.1177/160940690500400105

Segal, G.Z.: Getting There: A Book of Mentors. Harry N. Abrams, New York (2015)

Sia, S.K., Soh, C.: An assessment of package—organisation misalignment: institutional and
ontological structures. Eur. J. Inf. Syst. 16(5), 568-583 (2007)

Soh, C., Sia, S.: An institutional perspective on sources of ERP package-organisation
misalignments. J. Strateg. Inf. Syst. 13(4), 375-397 (2004)

Stonier, T.: Information and the Internal Structure of the Universe: An Exploration into
Information Physics. Springer-Verlag, London (1990). https://doi.org/10.1007/978-1-4471-
3265-3

Strong, D.M., Volkoff, O.: Understanding organization-enterprise system fit: a path to
theorizing the information technology artifact. MIS Q. 34(4), 731-756 (2010)

The Joint ACM/AIS IS 2020 Task Force: 1S2020 Competency Model for Undergraduate
Degree Programs in Information Systems (Initial Draft) (2020). https://is2020.hosting2.acm.
org/wp-content/uploads/2020/08/1S-2020-Draft-August-2020.pdf

Topi, H., et al.: IS 2010: Curriculum Guidelines for Undergraduate Degree Programs in
Information Systems. Communications of the Association for Information Systems, vol. 26
(2010). https://aisel.aisnet.org/cais/vol26/iss1/18

Wall, S.: An autoethnography on learning about autoethnography. Int. J. Qual. Methods 5(2),
146-160 (2006). https://doi.org/10.1177/160940690600500205

Weaver, W.: Some recent contributions to the mathematical theory of communication. In:
The Mathematical Theory of Communication, pp. 1-16. University of Illinois Press, Urbana,
Illinois (1949)

https://www.jstor.org/stable/23032294
https://peerj.com/preprints/27185v1
https://doi.org/10.1080/17457823.2017.1347885
https://doi.org/10.1080/03098265.2013.828276
https://doi.org/10.1177/1077800420918895
https://doi.org/10.1080/09687599.2020.1794798
https://doi.org/10.1177/160940690500400105
https://doi.org/10.1007/978-1-4471-3265-3
https://is2020.hosting2.acm.org/wp-content/uploads/2020/08/IS-2020-Draft-August-2020.pdf
https://aisel.aisnet.org/cais/vol26/iss1/18
https://doi.org/10.1177/160940690600500205

33.

34.

35.
36.

37.

38.

39.

Ten Years in the Trenches of a Doubtful Science 131

Weick, K.E.: The collapse of sensemaking in organizations: the Mann Gulch disaster. Adm.
Sci. Q. 38(4), 628 (1993)

Weick, K.: The non-traditional quality of organizational learning. Organ. Sci. 2(1), 116-124
(1991)

Weick, K.: Sensemaking in Organizations. Sage, Thousand Oaks (1995)

Weick, K.: Improvisation as a mindset for organizational analysis. Organ. Sci. 9(5), 543-555
(1998)

Wilkinson, C.: Imposter syndrome and the accidental academic: an autoethnographic account.
Int. J. Acad. Dev. 25(4), 363-374 (2020)

Zins, C.: Conceptual approaches for defining data, information, and knowledge. J. Am. Soc.
Inform. Sci. Technol. 58(4), 479-493 (2007)

Zwiers, V.: The Business Analyst: Information Technology’s Paradigm Shift. Juta and
Company Ltd., Cape Town (2013)

)

Check for
updates

Mapping the Problem-Solving Strategies
of Novice Programmers to Polya’s Framework:
SWOT Analysis as a Bottleneck Identification
Tool

Pakiso J. Khomokhoana® and Liezel Nel®)

Department of Computer Science and Informatics, University of the Free State,
Bloemfontein, South Africa
{khomokhoanap,nell}@ufs.ac.za

Abstract. The development of problem-solving skills continues to be a challenge
in various disciplines including Computer Science. In this study, we used the prin-
ciples of the Decoding the Disciplines (DtDs) paradigm to better understand the
mental processes that novice programmers follow when answering source code
comprehension (SCC) related questions. This understanding can be fundamental
in helping novices to overcome problem-solving related challenges. While focus-
ing on step 1 of the DtDs paradigm, the aim of this study was threefold. Firstly,
we explored the problem-solving strategies utilised by novice programmers while
they were attempting to answer SCC related questions. Secondly, the identified
problem-solving strategies were mapped onto Polya’s four problem-solving steps.
Finally, we utilised a SWOT analysis as a tool to identify problem-solving related
learning bottlenecks. This study utilised an integrated methodological approach
where data was collected by means of asking questions, observations, and artefact
analysis. Thematic analysis of the collected data revealed a range of problem-
solving strategies that these novice programmers utilised while performing vari-
ous SCC tasks. These strategies were then mapped onto Polya’s problem-solving
steps. Based on a SWOT analysis of these strategies, we identified six problem-
solving bottlenecks that point to difficulties that are not sufficiently addressed in
introductory CS courses.

Keywords: Decoding the disciplines - Problem-solving - Source code
comprehension - Novice programmers - Computer Science education - Polya’s
framework - SWOT analysis

1 Introduction

High dropout rates in introductory computer programming courses remain a major con-
cern for higher education educators across the world [1, 20, 22]. Computer programming
is a complex and multi-faceted task as it requires not only conceptual and procedural
knowledge but also skills to create, modify and comprehend computer code [13, 35, 38]
in order to solve programming problems. Numerous studies [2, 19, 34] have identified a

© Springer Nature Switzerland AG 2022
W.S. Leung et al. (Eds.): SACLA 2021, CCIS 1461, pp. 132-148, 2022.
https://doi.org/10.1007/978-3-030-95003-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95003-3_9&domain=pdf
http://orcid.org/0000-0003-3642-1248
http://orcid.org/0000-0002-6739-9285
https://doi.org/10.1007/978-3-030-95003-3_9

Mapping the Problem-Solving Strategies 133

lack of problem-solving skills as one of the biggest challenges that novice programmers
experienced. Another major challenge (which has been researched extensively) relates
to how novice programmers comprehend (or interpret) pieces of source code [10, 18].
Lister et al. [18] regard the skill of source code comprehension (SCC) as a prerequisite
to problem solving. While Conn and McLean [9] argue that novice programmers’ lack
of problem-solving skills stems from how problem solving is taught in schools, Belski
[3] blames university educators for failing to properly develop this skill in students. This
failure has been attributed to educators’ tendency to focus on the teaching of syntactical
and conceptual programming knowledge, and paying less (or no) attention to the strategic
knowledge needed to appropriately and effectively solve programming problems [7, 19,
41]. This tendency is not exclusive to the Computer Science (CS) discipline. Middendorf
and Shopkow [24] (p. 2) note that while educators (as practitioners) are familiar with the
“approaches, techniques, and applications” of their specific academic disciplines, “they
tend to organise their courses around specific contents rather than around the mental
moves they want students to make”.

The Decoding the Disciplines (DtDs) paradigm — formulated by Middendorf and
Pace [23] — recognises that each discipline has its own unique ways of thinking that
students need to master to succeed in their higher-level studies. As part of the initial step in
the seven-step DtDs process, educators are encouraged to identify specific points where
their students’ learning are interrupted [11]. These points (referred to as bottlenecks) are
likely to prevent students from mastering the basic disciplinary ways of thinking. Only
once these bottlenecks have been identified can educators continue with the remaining
DtDs steps of designing, implementing, and evaluating specific strategies to address
the bottlenecks that their students are experiencing [26]. There are several examples
of approaches that educators used to identify bottlenecks. These include educators’
personal experiences in teaching a specific course [24, 28], problems discovered while
grading student assignments [26], problems observed while watching students’ attempts
to solve a given problem [17], and clarification questions asked by students regarding
assignment specifications [39]. A tool that could potentially also be used in this regard
is a SWOT analysis [16]. Although mostly used in business environments, this strategic
planning tool can help to analyse and position any situation in four regions: strengths,
weaknesses, opportunities, and threats [36]. By analysing the mental moves novice
programmers make while solving SCC problems, a SWOT analysis could potentially be
used to, not only identify the problem-solving steps that students are performing well,
but also the areas (potential bottlenecks) where students are not following the correct
problem-solving steps.

The foundation of most modern problem-solving strategies (both general and in the
field of CS) can be traced back to George Polya’s [30] four basic problem-solving steps:
understand the problem, devise a plan, carry out the plan, and evaluate the effectiveness
of the plan. Since problem solving is a skill that is used daily by all human beings, it can
be argued that the natural (unenhanced) problem-solving strategies followed by novice
programmers should in theory show some resemblance to the original steps of Polya’s
framework. By mapping the problem-solving strategies followed by novice programmers
while trying to answer an SCC question, it should be possible to identify shortcomings

134 P. J. Khomokhoana and L. Nel

in their strategies. This, in turn, could point to potential learning bottlenecks that CS
educators must specifically address.
This paper therefore attempts to answer the following three questions:

1. What are the problem-solving strategies utilised by novice programmers during
SCC?

2. How do these strategies relate to Polya’s four basic problem-solving steps?

3. How cana SWOT analysis of the SCC problem-solving strategies followed by novice
programmers be used as a learning bottleneck identification tool?

In the remainder of this paper, a theoretical framework guiding this study together
with a review of relevant background literature are presented in Sect. 2. This is followed
by a discussion of the research design and methods in Sect. 3, and a presentation and
interpretation of the results in Sect. 4. A SWOT analysis of the identified SCC strategies
is presented in Sect. 5, followed by bottleneck identification in Sect. 6. Conclusions and
recommendations for future research are presented in Sect. 7.

2 Theoretical Framework

Polya’s [30] problem-solving framework provides the theoretical framework for this
study. In the following sub-sections, the four basic steps of Polya’s framework, together
with examples of how these steps are typically executed by computer programmers
during SCC tasks, are discussed in more detail.

2.1 Understand the Problem

It is impossible to solve a problem if the problem is not understood first. Polya [30]
provides several questions that can be asked by the problem solver while trying to
understand or comprehend a problem: Do you understand all the words used in the
problem statement? What are you asked to find or show? Can you restate the problem in
your own words? Can you think of a picture or diagram that might help you understand
the problem? Is there enough information to enable you to find a solution?

As part of the understanding process, Chi et al. [8] suggest organising information
around important concepts. As part of understanding a given problem, programmers typ-
ically apply strategies that include reading or re-reading problem requirements and/or
related lines of code, and reasoning aloud [14, 25]. Other strategies such as highlighting
or colouring some lines of code or text [31], writing comments [37], and making draw-
ings or annotations (doodles) [18] are often utilised by programmers to gain a better
understanding of the problem at hand. For SCC tasks, expert programmers will often
scan the code from top to bottom to get a quick overview of the problem [40], while
also making notes on important information. They can then easily refer to these notes
(if needed) at a later stage [33].

Mapping the Problem-Solving Strategies 135

2.2 Devise a Plan

Polya [30] suggests several of strategies for devising a problem-solving plan. These
include guess and check, look for a pattern, make an orderly list, draw a picture, eliminate
possibilities, solve a simpler problem, use symmetry, use a model, consider special
cases, work backwards, use direct reasoning, use a formula, solve an equation, and be
ingenious. In resonance with Polya [30], the Mathematics students in the study by Malloy
and Jones [21] exhibited planning strategies that included drawing a picture or diagram,
using patterns, making lists or charts, guessing and checking, working backward, using
logical deduction, disregarding extra (unnecessary) data, as well as using multiple or a
combination of strategies and logical deduction.

The problem-solving plan helps to arrange ideas together, which in turn helps a
problem solver to gain an even better understanding of the problem [5]. With regard to
SCC, Fitzgerald et al.’s [14] respondents recognised that one SCC question resembled
other questions seen previously (pattern recognition) and, therefore, made assumptions
based on previous answers. During the planning stage of SCC, programmers tend to
identify possible test cases [25] to use in the execution of their plan. This helps them to
avoid carrying out infinite tests. Similar to understanding a problem, programmers also
make notes (annotations/doodles) on how their plan will be executed [18]. Ultimately,
devising a plan will typically involve working through different scenarios and gauging
the good as well as the bad points of each alternative [33]. During this process, a problem
solver justifies all the decisions he/she arrives at [15]. This also enables problem solvers
to remember important information that may be useful during the remainder of the
problem-solving process [5].

2.3 Carry Out the Plan

When it comes to carrying out the plan, Polya [30] suggests that the chosen plan should
be followed. If the plan does not work, it should be discarded, and another alternative
plan should be selected. The decision to either discard or continue with the selected plan
can only be made if the problem solver is continuously monitoring the plan — a task that
requires metacognitive abilities [5]. Inherently, a lot of thinking and analysing are in
operation during this problem-solving step [4]. In addition to applying surface thinking,
the problem solver also needs to think critically and creatively while integrating prior
knowledge as part of the process [12]. In carrying out a plan, the problem solver usually
considers limited details that are only relevant to the selected plan [33]. Interestingly,
Fitzgerald et al. [14] note that some of their participants would start from scratch with
an SCC task whenever they were becoming confused.

2.4 Evaluate the Effectiveness of the Plan

To evaluate the effectiveness of the selected plan, Polya [30] suggests that the problem
solver should take the time to reflect and look back at what has been done, what worked,
and what did not work. This step emphasises the importance of assessing and possibly
even re-assessing the identified solution to any programming or SCC related problem
[12]. This will typically be an iterative process during which the programmer may

136 P. J. Khomokhoana and L. Nel

discover even more knowledge about the problem and/or solution [19]. It is also not
uncommon for programmers to document their reflections on a completed SCC task
[37].

3 Research Methods

3.1 Design

The design of this study was narrative in nature and followed an integrated-methods
research approach based on Plowright’s [29] Frameworks for an Integrated Methodol-
ogy (FraIM). Within this framework, both narrative and numeric data were collected
by means of observations, asking questions, and artefact analysis. The study population
consisted of final-year undergraduate CS students from a selected South African univer-
sity. After participating in an SCC activity (as part of an earlier phase of this multi-phase
research project), students who incorrectly answered the three most difficult questions
(as determined during the earlier phase) were invited to take part in this phase of the
study. The purposeful and convenient sample [27] consisted of the 10 students who
agreed to partake in this part of the study. The purposefulness of the sample was based
on the fact that the students had already completed four programming modules. How-
ever, they could still be regarded as novice programmers since they did not have any
professional programming experience. Based on their underperformance in the men-
tioned SCC activity, it was highly likely that they were experiencing some bottlenecks
in their learning. The sample was also convenient since the students were affiliated with
the same department as the researchers.

3.2 Data Collection

The research activity consisted of individual sessions during which each participant had
to use a think-aloud technique [32] to verbally explain his/her thinking processes while
answering three selected SCC questions. These questions — C# versions of question 3
(Q3), question 6 (Q6) (see Appendix), and question 8 (Q8) from Lister et al.’s [18]
study — were the same three questions that the selected participants were unable to
answer correctly during an earlier phase of this research project. This data collection
strategy can be regarded as a means of “asking questions” [29]. Time slots of 45 min
were scheduled for each of the individual sessions. The first author (principal researcher)
played the role of the interviewer by asking probing questions when required (i.e. in case
of no progress or silence). Where deemed necessary, the interviewer also recorded some
observations as an additional data collection strategy. The proceedings of each session
were audio recorded with permission from the relevant participant.

3.3 Data Analysis

Since the participants had to verbalise their thoughts as part of the think-aloud process, the
transcripts contained numerous illogical and repeated statements. We therefore cleansed
the data, after which we familiarised ourselves with the data [6]. This was achieved

Mapping the Problem-Solving Strategies 137

by listening to the audio records numerous times as well as intensively and repeatedly
reading the transcripts. This helped us to decide on a coding plan where the analysis
would be guided by the data as it relates to our research questions. At this stage, we
imported the 10 validated transcripts into NVivo 12 Professional for Microsoft Windows.
After this, we developed the necessary codes (by creating several nodes) according to our
research questions. We coded the data by highlighting and/or underlining text within the
domain of the stated units of analysis. We then populated the created codes by moving
the necessary text into them. We continuously revised the names of the codes and the
relevant themes until recurrent themes were emerging. For each theme developed, the
NVivo-generated frequencies of occurrence were used.

4 Results and Interpretation

The discussion in this section focuses on the problem-solving strategies identified
from the data collected during the 10 think-aloud sessions. The discussion is grouped
according to Polya’s four problem-solving steps (see Sect. 2).

4.1 Understand the Problem

Analysis of both the think-aloud data and the interviewer’s observations revealed that
the participants utilised two main strategies to help them understand the problem.

Read Instructions and Identify Important Concepts or Terms. The typical first step
in understanding the problem is to read the instructions or the problem statement [30].
This strategy was utilised by all the participants with a total of 35 occurrences observed.
It is also key that the problem solver, while reading through the instructions, identifies
important concepts and/or terms [8]. In the 75 occurrences of this strategy, the partici-
pants mentioned and/or underlined specific programming concepts and terms that they
would have to understand in order to answer the given questions. These included Boolean
values, parameters, initialisation, nested loops, arrays, array indexes, and the use of post-
and pre-increment operators. By identifying all these concepts, participants were trying
to form an initial understanding of crucial parts of the provided programming code.

Interpret the Problem Details. As part of understanding the problem [30], all the par-
ticipants (29 occurrences) also tried to interpret more specific details from the provided
SCC questions. As part of this interpretation process, they conducted a more thorough
examination of specific pieces of source code and tried to explain the meaning thereof in
an attempt to increase their level of understanding. At this stage, it also became apparent
that the flawed interpretations made by some of the participants were likely to have a
negative impact on their ability to ultimately solve the problem. Due to his misinter-
pretation of the combined index in the statement b[x[1]]1= true; from Q3, P10
incorrectly concluded that “the second for loop resets everything from the first for
loop back to true”. By failing to recognise from the start that only the first three values
in array b would be set to true, he was eventually unable to identify option B as the
correct answer.

138 P. J. Khomokhoana and L. Nel

4.2 Devise a Plan

It was noted that none of the participants in this study attempted to formulate a definitive
plan for solving the various SCC questions. They did, however, follow some of the
strategies outlined in Sect. 2.2.

Eliminate Possibilities. After a quick look at the source code of Q6, P1 eliminated
option C as the possible missing piece of source code. She said: “Let me understand
option C... if the index of an array at position 1 is bigger than the index of 1 + 1, 1
must return false, else return b which is already false. There is no way of returning
true, so it is totally wrong, it can’t be the missing source code”. This meant that
she was left with only four options to consider, which simplified the remainder of the
problem-solving process for her.

Make Notes. As part of devising a plan during the problem-solving process [30], prob-
lem solvers typically make various types of notes while they work through the problem
[31, 37]. Seven participants utilised this strategy (with 24 occurrences). As part of his
attempt to answer Q3, PS5 made notes on the answer sheet to keep track of the values
assigned to array b. While working through the second for loop he said: “Set that
value to true. So that is going to mean that 1, 2 and 3 is going to be true”. He then
scratched out the three relevant false values in the notes he originally made when he
was working through the first for loop. Although he did not make any further written
notes, he continued to reference the written down values while he was working through
the third £or loop to determine the final value of the variable count. It should, however,
be noted that note-making instances were also observed with the participants during the
three other steps of the problem-solving process.

Use Test Cases. Indevising a plan during problem solving, a problem solver can identify
some test cases [25] to avoid conducting infinite tests. Four occurrences of this strategy
were observed with three of the participants. As evidence that P6 used test cases, she
said: “Let me just eliminate this one for now, so that I don’t waste time on irrelevant
things ... [Interviewer: You have created a long array!] ... yeah it was quite long”. In
formulating test cases for Q3, P2 decided to draw a trace table as part of his planning
and reasoning. He later referred to this table when he had to determine his final answer,
where he said: “Since 1 is equal to 4, our value is 5. So, our answer here should be
5 according to this table”. P10 also created his own array and started adding values as
he went through his reasoning for Q6: “Well, I made my array and I just changed the
values so that I can better understand what I was sorting out”. It is evident that these
participants not only identified possible test cases, but specifically used these values
during the execution of their problem-solving plans.

Work Backwards. While devising a plan, problem solvers can also work backwards to
check or confirm some of their initial interpretations [30], and then take corrective actions
if needed. Ten occurrences of this strategy were identified with six of the participants.
While attempting to interpret the second for loop from Q3, P6 exhibited several signs
of confirming initial understanding: ... meaning zexro is less than 5, yeah 5, wait... 5
... yeah, it’s 5... I think my answer is going to be B, wait... x[1] is 1, then 2... okay

Mapping the Problem-Solving Strategies 139

wait that’s zero, that’s 1. So now let’s see, 1 is O ... eish, what do we call this step?
Initialising? Yeah, I think so ... [Interviewer: Which one?] ... the one with b[x[1]]...
[Interviewer: You are assigning another value. |, Yeah, assigning it to t rue”. Itis evident
from this excerpt that while P6 attempted to confirm his initial understanding, he also
resorted to seeking confirmation or clarification from the interviewer. He specifically
wanted to confirm whether he was using the correct terminology while attempting to
interpret the statement b[x[1]]= true; which is an example of an assignment
and not an initialisation statement. It can therefore be deduced that although he was
attempting to link whatever he was doing to known disciplinary concepts [8], there were
still some gaps in his knowledge of basic programming terminology.

Pattern Recognition. Another strategy that problem solvers often utilise during the
devising-a-plan step is pattern recognition. During SCC, this happens when the problem
solver recognises similarities between different pieces of source code that allow for code
sections to be considered collectively [14]. The pattern recognition strategy was observed
with eight participants (20 occurrences). While looking at the initialisation of array x
in Q3, P8 said: “I am looking at the pattern for this, what was declared of x ... so now
by judging from the pattern that I see here, it’s 1, 2 and then it becomes constant”. By
“constant”, P8 was referring to the value of 3 that was assigned to the last three elements
of the x array. P6 also noticed a pattern in the headers of the first two for loops in Q3:
“The second for loop is still the same as the first one, but instead of taking the b length
we take the x length, so all these are the same”. While P2 recognised the same pattern
as P6, he also noted that there were actually similarities between the headers of all three
for loops in Q3: “All these loop statements look a little bit the same because all of them
startat 1 = 0 ... and 1i++, so they are all correct here”. Identification of a pattern or
range of patterns [21, 30] helps to reduce cognitive load as the problem solver is left
with fewer unique possibilities to concentrate on [5].

4.3 Carry Out the Plan

In carrying out their plans, participants corrected their earlier misinterpretations and
acknowledged areas where they experienced difficulties.

Correct Earlier Misinterpretations. Incarrying outa plan, problem solvers can correct
the misinterpretations they might have made in the previous problem-solving steps. This
strategy was observed with three participants (five occurrences). After reviewing the
pencil notes she made earlier in the problem-solving process, P9 realised that she had
labelled the array indexes incorrectly: “Coming back to A again, int, I have... (erasing
on the answer sheet)... I am just writing down the numbers again as well as their
corresponding position on top because I forget that they are not numbered 1, 2, 3.
They are numbered 0, 1, 2, 3”. Through a critical review [12] of her initial notes, this
participant was able to recognise her earlier mistake and take the necessary corrective
action.

Acknowledge When Lost. While Polya [30] encourages problem solvers to discard
their original plans in favour of alternative plans (if the original plans are not working), the

140 P. J. Khomokhoana and L. Nel

participants in this study could not always devise an alternative. Eight of the participants
(25 occurrences) acknowledged at some point during this problem-solving step that they
were either lost or confused. While tracing through the second for loop of Q3, P8
said: “That’s the part where I am really stuck—the second loop”, while P6 said: “So
this second for loop is the one that is freaking me out”. Both participants got lost at
this point because they were unable to interpret the combined index in the statement:
b[x[1]]1= true;. As another example of this strategy, P4 correctly identified option
C as the answer to Q3, but when asked why he thought the answer was C, he was neither
sure of himself nor of his answer. Instead, he was quick to acknowledge the limitations
of his general programming skills: “Like I said, I am not the best at these programming
subjects”. He then attempted to explain his reasoning which consequently resulted in him
selecting option A (which was incorrect) as his final answer. Although this participant
was able to identify the correct answer, he could not explain his reasoning. This could
imply that his original selection of option C was a guess rather than a definitive answer.

4.4 Evaluate a Solution

At this stage, the participants had already identified answers to the questions. Instances
of personal reflections were observed when the participants attempted to justify these
answers.

Defend an Incorrect Answer. During the evaluation of their final answers, six partic-
ipants (21 occurrences) remained confident while attempting to defend their incorrect
answers. While P9 completely ruled out option C (the correct answer) as a possible
answer to Q3 (“so option C does not work”), P2 remarked as follows on his answer for
Q3: “So the answer here, I think it should be 4 [option D] because this statement says,
if 1isless than b.Length, and b.Length is 5, we will increment it”. Although
P3 performed a thorough analysis and followed a reasoning strategy to answer Q6, he
ended up saying: “I believe, 1 am taking option A” while option B was the correct
answer. The interviewer did ask him to further explain why he thought option A was
the correct option, but he still ended up giving the same incorrect answer. Although all
the participants mentioned here attempted to assess or re-assess their answers, they just
repeated the same flawed reasoning to arrive at the same incorrect answers. This serves
as a further indication that several of the participants lacked some basic programming
knowledge.

Verify Answer. While reflecting on their final answers, six participants (18 occurrences)
attempted to verify or justify their selected answers while some also elaborated on their
reasons for not selecting any of the other answer options. As part of the process to verify
his selection of option B as the correct answer for Q6, P3 also provided justification
for why he thought some of the other options were incorrect: “Option D is totally
wrong because it says if this number, in my example, 2 is greater than 3, therefore it is
ascending, which is false. Then I have this one [pointing at the values on his written
down example], so it’s true and it returns false. Then it will go and take the second
value, check and increment and check the other one”. P3 followed a similar strategy

Mapping the Problem-Solving Strategies 141

while reflecting on choosing option B as the correct answer for Q3: “Okay, this one
[scribbling and looking at his written down example] will be wrong because j starts
from zero, and here in this example, you don’t check the numbers that are behind - you
only check the numbers that are after that position. So, options A and B in this particular
example will be out”. Both of these excerpts illustrate the level of critical thinking [12]
that P3 applied during the problem-solving process. These excerpts also illustrate how
problem solvers can reuse some of the strategies from earlier steps (e.g., make notes,
use test cases, and eliminate possibilities) while evaluating their solutions.

5 SWOT Analysis

Our next step was to perform a SWOT analysis of the SCC problem-solving strategies
identified in Sect. 4 (see Table 1). Strengths refer to strategies that the participants
performed well during their problem-solving processes, while the weaknesses are aspects
that were lacking from their skills sets and need to be improved. The opportunities
are strategies that educators can include when modelling a more ideal SCC problem-
solving strategy to their students. The threats are unfavourable strategies practised by
the participants that could lead to an overwhelmingly flawed problem-solving process.

Table 1. SWOT analysis of problem-solving strategies.

Strengths Weaknesses
* Read through instructions * Self-doubt in own programming abilities
* Identify important concepts and/or terms * Misinterpret basic code syntax
* Acknowledge when lost * Fail to understand the working of basic
* Eliminate incorrect answer options at an programming structures
early stage * Reluctant to change line of thinking when
* Make notes for future reference lost
« Utilise test cases « Struggle to interpret nested concepts
* Confirm initial understanding * Fail to recognise all coding patterns
* Recognise coding patterns * Incorrect use of programming terminology

Express confidence in devised solution
* Verify final answer

Opportunities Threats

* Realise value of devising an actual » Disregard earlier interpretations or notes
problem-solving plan * Content to provide answers to all the

* Emphasise importance of using correct questions (regardless of correctness)
programming terminology » Look at sections of code in isolation

* Identify specific gaps in programming * Ignore “difficult” pieces of code completely

knowledge * Resort to guessing when reasoning fails

142 P. J. Khomokhoana and L. Nel

6 Bottleneck Identification

By considering the identified weaknesses and threats (see Table 1), we identified six main
learning bottlenecks that could prevent novice programmers from mastering problem
solving in the CS discipline.

Bottleneck 1: Students Ignore Previously Understood Information at Later Stages
of the Problem-Solving Process. Many of the examples illustrated in the students’
excerpts (see Sect. 4) indicate the inconsistencies they exhibited while answering the
given questions. It seems as if students were forgetting the correct understanding they
previously had, unless they were, in the first place, not even convinced that their original
understanding was correct. In this way, the students’ original thinking and analysis [4]
were not necessarily helping them during the entire problem-solving process.

Bottleneck 2: Students Regard Their Working Notes as a Non-crucial Component
of the Problem-Solving Process. Although many of the students made conscious efforts
to demonstrate how they were going about answering the questions and making their
thinking logic as explicit as possible, many of the markings, comments, notes, and
underlinings [18, 31, 37] they made were either overly rough or unreadable. Some of the
participants also ignored their initial notes in later stages of the problem-solving process.

Bottleneck 3: Students Doubt Their Own Programming Abilities. From many of the
excerpts presented in Sect. 4, it was evident that the students were not always confident
of themselves. A level of doubt was observed not only with concepts they struggled
to understand, but also with concepts they seemed to find fairly easy to comprehend.
Consequently, they resorted to gathering fragmented pieces of information in their minds,
hence making it difficult to make usable mental connections. This type of reasoning
makes it difficult for one to gain a proper understanding of the question [5], and often
results in guessing the answers.

Bottleneck 4: Students Are Unable to Comprehend Nested Concepts. Although all
the students identified the crucial terms or concepts of computer programming, some
of them were unable to fully comprehend even the most basic of these concepts and/or
terms when these were combined within other programming structures. Consequently,
some students were unable to organise their continuous understanding of the question
around these basic concepts [8], and therefore resorted to viewing pieces of code in
isolation.

Bottleneck 5: Students Are Unable to Easily Change Their Viewpoints During
the Problem-Solving Process. Although some students were able to change their initial
understanding, others struggled to find alternative avenues of reasoning when they got
lost or stuck. Although these students attempted to make logical deductions [21], they
still were unable to correctly interpret the given source code.

Bottleneck 6: Students Are More Focused on the Answer Than the Process of Arriv-
ing at the Answer. The ultimate goal of most of the students was to get to the
final answer. Consequently, many of their problem-solving steps were unclear, and the

Mapping the Problem-Solving Strategies 143

expected direct reasoning [30] steps did not come to the fore. It can therefore be deduced
that they regarded their final answers as more important than the actual problem-solving
process. There were also instances where some students arrived at the correct answer
either using flawed reasoning or displaying a lack of comprehension of the relevant
programming concepts.

7 Conclusions and Future Work

The lack of problem-solving skills remains a challenge to undergraduate CS students.
Comprehension of the mental moves made by students during problem solving can be
essential in helping them to overcome related challenges. By focusing on Step 1 of
the seven-step DtDs framework (identifying places in a course where many students
consistently fail to master crucial material), this study aimed to (1) explore the problem-
solving strategies utilised by novice programmers during SCC; (2) relate these strategies
to Polya’s four basic problem-solving steps; and (3) utilise a SWOT analysis of these
strategies for the identification of problem-solving bottlenecks experienced by novice
programmers. Thematic analysis of data collected by means of asking questions, obser-
vations, and artefact analysis revealed that the novice programmers in this study did not
necessarily follow a well-defined problem-solving process. We were, however, able to
link the specific strategies they employed to all four of Polya’s basic problem-solving
steps. While some of the identified strategies could be mapped to a single step, several
strategies were utilised repeatedly in different stages of the problem-solving process. A
SWOT analysis of the identified strategies provided further insight regarding strategies
that the novices performed well (strengths), and the aspects that were lacking from their
skills sets (weaknesses). We also identified several undesirable strategies (threats) that
could hamper their problem-solving attempts. The listed observations point to strategies
that educators could utilise to assist students in improving their problem-solving skills.

This study also illustrated a novel approach in utilising a SWOT analysis as a learning
bottleneck identification tool. By considering the identified strengths and weaknesses,
we formulated six bottlenecks that could prevent novice programmers from mastering
problem solving in the CS discipline. The fact that these bottlenecks were identified from
the problem-solving attempts of final-year undergraduate students further highlights the
problem-solving difficulties that are currently not effectively addressed in introductory
CS courses. Further research is needed to investigate how the identified problem-solving
bottlenecks can be addressed through the application of the remaining six steps of the
DtDs framework [23].

144 P. J. Khomokhoana and L. Nel

Appendix

Question 3
Consider the following source code fragment:

int[] x = {1, 2, 3, 3, 3};
bool[] b = new bool[x.Length];

for (int 1 = 0; i1 < b.Length; ++1i)
b[i] = false;

for (int 1 = 0; 1 < x.Length; ++1i)
b[x[1]] = true;

int count = 0;

for (int 1 = 0; 1 < b.Length; ++i)
{
if (b[i] == true)

++count;

After this source code is executed, count contains:

Question 6
The following method i sSorted should return t rue if the array is sorted in ascending
order. Otherwise, the method should return false:

public static bool isSorted (int[] x)
{

//missing source code goes here

Which of the following is the missing source code from the method isSorted?

b)

)

d)

e)

Mapping the Problem-Solving Strategies

bool b = true;
for (int 1 = 0; i < x.Length - 1; 1i++)
{

if (x[1] > x[1 + 11)

b = false;
else
b = true;

}

return b;

for (int 1 = 0; 1 < x.Length - 1; i++)
{
if (x[1] > x[1 + 11)
return false;

}

return true;

bool b = false;
for (int 1 = 0; 1 < x.Length - 1; i++)
{
if (x[1] > x[1 + 11)
b = false;
}

return b;

bool b = false;
for (int 1 = 0; 1 < x.Length - 1; i++)
{
if (x[1] > x[1 + 17)
b = true;
}

return b;

for (int 1 = 0; 1 < x.Length - 1;i++)
{
if (x[1] > x[1 + 17)
return true;

}

return false;

145

146

P. J. Khomokhoana and L. Nel

References

10.

11.

12.

13.

14.

15.

16.
17.

. Alturki, R.A.: Measuring and improving student performance in an introductory programming

course. Inf. Educ. 15(2), 183-204 (2016). https://doi.org/10.15388/infedu.2016.10
Anyango, J.T., Suleman, H.: Teaching programming in Kenya and South Africa: what is
difficult and is it universal ? In: Proceedings of the 18th Koli Calling International Conference
on Computing Education Research, pp. 1-2. ACM, New York (2018). https://doi.org/10.1145/
3279720.3279744

. Belski, I.: Teaching thinking and problem solving at university: a course on TRIZ. Creativity

Innov. Manag. 18(2), 101-108 (2009). https://doi.org/10.1111/j.1467-8691.2009.00518.x
Bransford, J., Brown, A., Cocking, R.: How People Learn: Brain, Mind, Experience, and
School (Expanded). National Academy Press, Washington, D.C. (2000). https://doi.org/10.
4135/9781483387772.n2

Bransford, J.D., Stein, B.S.: The Ideal Problem Solver: A Guide for Improving Thinking,
Learning, and Creativity, 2nd edn. W.H. Freeman, New York (1993)

Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol. 3, 77-101
(2006). https://doi.org/10.1191/1478088706qp0630a

Cheah, C.S.: Factors contributing to the difficulties in teaching and learning of computer
programming: a literature review. Contemp. Educ. Tech. 12(2), 1-14 (2020). https://doi.org/
10.30935/cedtech/8247

Chi, M., Glaser, R., Rees, E.: Expertise in problem solving. In: Sternberg, R. (ed.) Advances
in the Psychology of Human Intelligence, vol. 1, pp. 7-75. Lawrence Erlbaum Associates
Inc, New Jersey (1982)

Conn, C., McLean, R.: Bulletproof Problem Solving: The One Skill That Changes Everything.
Wiley, Hoboken (2019)

Cunningham, K., Blanchard, S., Ericson, B., Guzdial, M.: Using tracing and sketching to solve
programming problems: Replicating and Extending an Analysis of What Students Draw. In:
Proceedings of the 2017 ACM Conference on International Computing Education Research,
pp- 164-172. ACM, New York (2017). https://doi.org/10.1145/3105726.3106190

Diaz, A., Middendorf, J., Pace, D., Shopkow, L.: The history learning project: a department
“decodes” its students. J. Am. Hist. 94(4), 1211-1224 (2008). https://doi.org/10.2307/250
95328

Egbert, J.: Methods of Education Technology: Principles, Practice, and Tools. Pearson, New
Jersey (2017). https://opentext.wsu.edu/tchlrn445/

Fedorenko, E., Ivanova, A., Dhamala, R., Bers, M.U.: The Language of programming: a
cognitive perspective. Trends Cogn. Sci. 23(7), 525-528 (2019). https://doi.org/10.1016/j.
tics.2019.04.010

Fitzgerald, S., Simon, B., Thomas, L.: Strategies that students use to trace code: an analysis
based in grounded theory. In: Proceedings of the 1st International Workshop on Computing
Education Research, pp. 69—80. ACM, New York (2005). https://doi.org/10.1145/1089786.
1089793

Herrmann, J.W.: Rational decision making. In: Balakrishnan, N., Colton, T., Everitt, B.,
Piegorsch, W., Ruggeri, F., Teugels, J.L. (eds.) Wiley StatsRef: Statistics Reference Online,
pp. 1-9. Wiley, New York (2017). https://doi.org/10.1002/9781118445112.stat07928
Humphrey, A.S.: SWOT analysis. Long Range Plan. 30, 46-52 (2005)

Khomokhoana, P.J., Nel, L.: Decoding source code comprehension: bottlenecks experienced
by senior computer science students. In: Tait, B., Kroeze, J., Gruner, S. (eds.) SACLA 2019.
CCIS, vol. 1136, pp. 17-32. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-356
29-3 2

https://doi.org/10.15388/infedu.2016.10
https://doi.org/10.1145/3279720.3279744
https://doi.org/10.1111/j.1467-8691.2009.00518.x
https://doi.org/10.4135/9781483387772.n2
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.30935/cedtech/8247
https://doi.org/10.1145/3105726.3106190
https://doi.org/10.2307/25095328
https://opentext.wsu.edu/tchlrn445/
https://doi.org/10.1016/j.tics.2019.04.010
https://doi.org/10.1145/1089786.1089793
https://doi.org/10.1002/9781118445112.stat07928
https://doi.org/10.1007/978-3-030-35629-3_2

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Mapping the Problem-Solving Strategies 147

. Lister, R., et al.: A multi-national study of reading and tracing skills in novice programmers.

ACM SIGCSE Bull. 36(4), 119-150 (2004). https://doi.org/10.1145/1041624.1041673
Loksa, D., Ko, A.J., Jernigan, W., Oleson, A., Mendez, C.J., Burnett, M.M.: Programming,
problem solving, and self-awareness: effects of explicit guidance. In: Proceedings of the 2016
CHI Conference on Human Factors in Computing Systems, pp. 1449-1461. ACM, New York
(2016). https://doi.org/10.1145/2858036.2858252

Malik, S.I., Coldwell-Neilson, J.: Impact of a new teaching and learning approach in an
introductory programming course. J. Educ. Comput. Res. 55(6), 789-819 (2017). https://doi.
org/10.1177/0735633116685852

Malloy, C.E., Jones, M.G.: An investigation of African American students’ Mathematical
problem solving. J. Res. Math. Educ. 29(2), 143-163 (1998)

Margulieux, L.E., Morrison, B.B., Decker, A.: Reducing withdrawal and failure rates in
introductory programming with subgoal labeled worked examples. Int. J. STEM Educ. 7(1),
1-16 (2020). https://doi.org/10.1186/s40594-020-00222-7

Middendorf, J.K., Pace, D.: Decoding the disciplines: a model for helping students learn
disciplinary ways of thinking. New Dir. Teach. Learn. 98, 1-12 (2004). https://doi.org/10.
1002/t1.142

Middendorf, J., Shopkow, L.: Overcoming Student Learning Bottlenecks: Decode Your
Disciplinary Critical Thinking. Stylus Publishing LLC, Sterling (2018)

Moore, D., Zabrucky, K., Commander, N.E.: Validation of the metacomprehension scale.
Contemp. Educ. Psychol. 22(4), 457-471 (1997). https://doi.org/10.1006/ceps.1997.0946
Pace, D.: The Decoding the Disciplines Paradigm: Seven Steps to Increased Student Learning.
Indiana University Press, Bloomington (2017)

Patton, M.Q.: Qualitative Research & Evaluation Methods: Integrating Theory and Practice,
4th edn. SAGE, Thousand Oaks (2015)

Pinnow, E.: Decoding the disciplines: an approach to scientific thinking. Psychol. Learn.
Teach. 15(1), 94-101 (2016). https://doi.org/10.1177/1475725716637484

Plowright, D.: Using Mixed Methods: Frameworks for An Integrated Methodology. SAGE,
Thousand Oaks (2011)

Polya, G.: How to Solve It: A New Aspect of Mathematical Method. Doubleday, University
of Michigan (1957)

Powell, N., Moore, D., Gray, J., Finlay, J., Reaney, J.: Dyslexia and learning computer
programming. ACM SIGCSE Bull. 36(3), 242 (2004). https://doi.org/10.1145/1026487.100
8072

Praveen, A.: Program comprehension and analysis. Int. J. Eng. Appl. Comput. Sci. 1(01),
17-21 (2016). https://doi.org/10.24032/ijeacs/0101/04

Preece, J., Rogers, Y., Sharp, H.: Interaction Design: Beyond Human-Computer Interaction,
4th edn. Wiley, New York (2015)

Rahmat, M., Shahrani, S., Latih, R., Yatim, N.FE.M., Zainal, N.F.A., Rahman, R.A.: Major
problems in basic programming that influence student performance. Proc. Soc. Behav. Sci.
59, 287-296 (2012). https://doi.org/10.1016/j.sbspro.2012.09.277

Renumol, V., Jayaprakash, S., Janakiram, D.: Classification of cognitive difficulties of students
to learn computer programming. Indian Institute of Technology (2009). http://dos.iitm.ac.in/
publications/LabPapers/techRep2009-01.pdf

Samejima, M., Shimizu, Y., Akiyoshi, M., Komoda, N.: SWOT analysis support tool for verifi-
cation of business strategy. In: IEEE International Conference on Computational Cybernetics,
pp. 631-635. IEEE, Talinn (2006). https://doi.org/10.1109/ICCCYB.2006.305700
Scalabrino, S., et al.: Improving code readability models with textual features. In: Proceedings
of the 24th IEEE International Conference on Program Comprehension, pp. 1-10. IEEE,
Austin (2016). https://doi.org/10.1109/ICPC.2016.7503707

https://doi.org/10.1145/1041624.1041673
https://doi.org/10.1145/2858036.2858252
https://doi.org/10.1177/0735633116685852
https://doi.org/10.1186/s40594-020-00222-7
https://doi.org/10.1002/tl.142
https://doi.org/10.1006/ceps.1997.0946
https://doi.org/10.1177/1475725716637484
https://doi.org/10.1145/1026487.1008072
https://doi.org/10.24032/ijeacs/0101/04
https://doi.org/10.1016/j.sbspro.2012.09.277
http://dos.iitm.ac.in/publications/LabPapers/techRep2009-01.pdf
https://doi.org/10.1109/ICCCYB.2006.305700
https://doi.org/10.1109/ICPC.2016.7503707

148

38.

39.
40.

41.

P. J. Khomokhoana and L. Nel

Scherer, R., Siddiq, F., Sdnchez Viveros, B.: A meta-analysis of teaching and learning com-
puter programming: effective instructional approaches and conditions. Comput. Hum. Behav.
109(106349), 1-18 (2020). https://doi.org/10.1016/j.chb.2020.106349

Shopkow, L.: How many sources do I need? Hist. Teach. 50(2), 169-200 (2017)

Uwano, H., Nakamura, M., Monden, A., Matsumoto, K.I.: Analyzing individual performance
of source code review using reviewers’ eye movement. In: Proceedings of the 2006 Sympo-
sium on Eye Tracking Research & Applications, pp. 133-140. ACM, New York (2006).
https://doi.org/10.1145/1117309.1117357

Yurdugiil, H., Askar, P.: Learning programming, problem solving and gender: a longitudi-
nal study. Proc. Soc. Behav. Sci. 83, 605-610 (2013). https://doi.org/10.1016/j.sbspro.2013.
06.115

https://doi.org/10.1016/j.chb.2020.106349
https://doi.org/10.1145/1117309.1117357
https://doi.org/10.1016/j.sbspro.2013.06.115

®

Check for
updates

Understanding the Significance of Enterprise
Resource Planning Education in Zambia: A Case
of an ERP Short Course at University of Zambia

Mampi Lubasi® @ and Lisa F. Seymour

CITANDA, University of Cape Town, Cape Town, South Africa
mampi.lubasi@gmail.com, Lisa.seymour@uct.ac.za

Abstract. This paper investigates the significance of ERP Education on post-
graduate students who took an ERP short course at the University of Zambia. The
paper identifies the benefits of ERP education in Zambia as well as the contextual
factors that impacted ERP education. These contextual factors were identified as
industry, course and student constraints. Thematic networks showing the benefits
of ERP education, the constraints on ERP education and the preliminary rela-
tionships are also presented. Universities seeking to integrate ERP systems into
their curriculum and organisations seeking to hire ERP graduates would therefore
benefit from these findings.

Keywords: ERP systems - ERP education - Inductive approach

1 Introduction

The integration of Enterprise Resource Planning (ERP) systems in the university cur-
riculum were introduced to help bridge the gap in the demand for ERP expertise [1].
One of the requirements of ERP success is having employees with the appropriate skills
to implement and maintain ERP systems. In this paper, the integration of ERP systems
into the university curriculum is referred to as ERP education. SAP was the first vendor
to offer its ERP system for classroom use to universities in 1996 as the ERP vendor
believed that this would further the development of their products. The SAP alliance
programme has helped universities on their programme with remote hosting, supply of
classroom material and workshops for faculty [2].

It has been noted that while universities have introduced ERP education, there is
limited research on the impact or added value of ERP education [1]. Therefore, calls
for research have been made to determine the benefits and success of ERP education.
Empirical evidence is required on whether ERP education has given ERP graduates an
advantage in the workplace or not [3]. Empirical evidence is also required to determine
how ERP education affects employability and salary scales [4, 5]. It has been stated that
more time and resources are spent on employees without ERP education compared to
the time spent on those with ERP education. Empirical evidence is therefore required to
determine the value of ERP graduates to companies that hire them [2].

© Springer Nature Switzerland AG 2022
W. S. Leung et al. (Eds.): SACLA 2021, CCIS 1461, pp. 149-164, 2022.
https://doi.org/10.1007/978-3-030-95003-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95003-3_10&domain=pdf
http://orcid.org/0000-0001-8713-8798
http://orcid.org/0000-0001-6704-0021
https://doi.org/10.1007/978-3-030-95003-3_10

150 M. Lubasi and L. F. Seymour

In this qualitative study, we investigate the impact that ERP education had on students
who took an ERP course in Zambia and the contextual factors that impacted ERP educa-
tion. The study seeks to answer the research question, “How does ERP education impact
student capabilities and organisations and what factors impact these capabilities?” In
ERP education, one size does not fit all as each context is unique. This paper, therefore,
makes two contributions on the impact of ERP education. Firstly, we identify the benefits
of ERP education to students in Zambia. Secondly, we identify the constraints on the
impact of ERP education in Zambia. The findings would benefit academic institutions
seeking to offer ERP education and organisations seeking to hire ERP graduates.

This paper is structured as follows: Sect. 1 presents the introduction and context of
the study. Section 2 presents the literature review. Section 3 presents the case description.
Section 4 presents the method that was used in data collection and analysis. Section 5
discusses the findings of the research. Section 6 presents the thematic networks and
preliminary relationships from the findings. Section 7 presents the conclusion of the
study.

2 Literature Review

Universities use five approaches in teaching ERP curriculum namely ERP training,
ERP via business processes, information systems approach, ERP concepts, and hybrid
approach [6]. The ERP training approach focuses on a particular ERP system and is
the least preferred approach by academic institutions [6]. ERP via business processes
approach focuses on business processes and uses an ERP system to enhance students’
understanding of business processes and their interdependencies [6]. The information
systems approach uses ERP systems to teach information system concepts [6]. The ERP
concepts approach teaches general ERP systems and concepts and does not focus on one
particular ERP system [6]. The hybrid approach is a hybrid of the four approaches.

Pedagogical methodologies that have been used in teaching ERP systems include
hands-on experience, case teaching, technical implementation, and simulations [7].
Hands-on experience teaches navigation, exploring, processing transactions, and config-
uring ERP systems [7]. The hands-on experience focuses on the step-by-step execution
of instructions and not on business logic [7]. Students, therefore, learn how to execute
technical tasks without understanding why [7]. Hands-on experience is of benefit when
integrated with class discussions [7]. Case teaching enhances process-oriented think-
ing and develops high order reasoning skills when integrated with hands-on experience
which helps to increase student motivation and interest [7]. However, case teaching does
not expose students to the challenges they will encounter in the real world with changing
business processes [7]. Simulation encourages high order reasoning, decision-making
skills and increases student motivation [7]. Technical implementation teaches configu-
ration issues rather than strategic issues related to the use and adoption of ERP systems
[7].

ERP education provides several benefits which include providing students with ERP
skills and exposes them to ERP system concepts and business processes to enable them
to get better jobs, enhancing the credibility of academic institutions in the eyes of indus-
try, exposing students to concepts surrounding ERP adoption and implementation, and

Understanding the Significance of Enterprise Resource Planning Education in Zambia 151

universities can use ERP education as a marketing tool to attract potential students [8].
ERP education has not been an easy task for universities as they have encountered several
challenges. Some of the challenges they have faced are inadequate ERP skills among
academic staff, lack of appropriate material to incorporate into curriculum, selecting
an appropriate enterprise system, high costs of procurement and maintenance of ERP
systems, lack of vendor support, difficulty in achieving learning outcomes, and creating
a curriculum that has both business-centric and technology-oriented approaches [9].

A study on the integration of an SAP Financial module into a university Accounting
curriculum showed that students felt that ERP training had the potential to enhance
their careers and help them find more job opportunities [10]. Another study found that
ERP training and user satisfaction influences individual impact or performance [11]. To
develop students’ professional skills, university collaboration with industry is important,
enabling student internships and mentoring from potential employers [12].

Many of the studies on ERP education have been conducted in developed coun-
tries and the findings may not be valid in developing countries. Therefore, much of the
research suffers from a generalizability problem [13]. In Africa, many universities have
poorly developed and distributed technology infrastructure with limited internet access,
bandwidth, and unreliable access to electricity [14]. Hence there is a need to understand
the impact of ERP education in developing countries and the contextual factors that
impact ERP education. Understanding the impact of ERP education on students and
their performance in the industry would assist in justifying investment in ERP education
[13].

3 Case Description

In Sub-Saharan Africa, the Enterprise Systems Education for Africa (ESEFA) pro-
gramme has partnered with universities to teach ERP fundamentals using SAP ERP
[15]. ERP education was introduced at the University of Zambia (UNZA) in October
2014 through the ESEFA programme. The ERP course was offered to Computer Sci-
ence undergraduate students and postgraduate students in Engineering, Economics and
Computer Science. The postgraduate students from the different disciplines all attended
the course together as one class. The ERP course content was offered to postgraduate
students as a short course and ran for about six weeks. About 41 postgraduate students
took the ERP course.

The course content used SAP ERP and had a case study component based on a
Zambian bamboo bike producing company (Zambikes), labs and lectures. The follow-
ing topics were covered in the ERP course: Business Processes, Enterprise Systems
Knowledge, SAP ERP Navigation and Reporting, Procure to Pay, Sales to Cash, and
Inventory Management. The Zambikes video was shown at the beginning of the course
and presented the organisation’s business processes. Most of the students who took the
course were from Computer Science and Engineering with an IT background. Very few
students from Economics took the ERP course. There was an exam at the end of the
course and an SAP University Alliances certificate of proficiency was issued upon suc-
cessfully passing the exam. The ERP course at UNZA is an example of the ERP via
business processes approach and the Hands-on experience method.

152 M. Lubasi and L. F. Seymour

4 Method

The research paradigm or philosophy that was used is interpretivism. Interpretivism
adopts the position that our knowledge of reality is a social construction by human
actors [16]. Interpretivism was used because it has the potential to produce deep insights
in Information Systems research as it seeks to understand a phenomenon of study through
the meanings assigned by human actors [17]. An interpretive approach helped to provide
an understanding of the Zambian context and how it impacted ERP education. The
research approach or reasoning that was used is induction. An inductive approach was
used because it allows research findings to emerge from dominant or significant themes
inherent in raw data without the restraints imposed by a theoretical framework [18].
Thomas’ general inductive approach was used. An inductive approach can assist in
condensing raw data into brief or summary format, establish clear links between research
objectives and summary findings derived from raw data, and develop a framework of
the underlying structure of experiences or processes that are evident in the raw data
[18]. Thomas’ general inductive approach “provides an easily used and systematic set
of procedures for analyzing qualitative data that can produce reliable and valid findings
[18].”

Purposive sampling was used in selecting participants for the interviews. Purposeful
sampling was used because it selects the most productive sample that will aid in answer-
ing the research question [19]. Data collection was cross-sectional as it was collected at
one point in time. Data was collected from twenty-one postgraduate students at UNZA
using semi-structured interviews in November 2016 and in February 2019. During the
second round of interviews in 2019, more students from Engineering were interviewed
as only one Engineering student was interviewed in the first round of interviews in 2016.
Semi-structured interviews were used as they provide flexibility and enable the devel-
opment of responses from the interviewee. The availability of the students at the time of
the interviews was the determining factor when selecting interviewees. An initial set of
questions was prepared for the first round of interviews. The questions were adjusted for
the second round of interviews based on the findings from the first round of interviews.
Table 1 shows the participant information.

Table 1. Participant information

Programme of study No. of respondents Code
Economics/Finance 2 ACC
Computer Science 11 CS

Engineering 8 ENG

The themes that emerged were coded in NVivo software. The following steps were
followed: multiple readings of the raw data guided by the evaluation objectives, devel-
opment of categories or themes from the raw data into a model or framework and
determining relationships with other categories or themes [18].

Understanding the Significance of Enterprise Resource Planning Education in Zambia 153

5 Findings and Discussion

This section discusses the findings from the study. The themes that emerged from the
study are presented in the tables and the themes are discussed.

5.1 Benefits of ERP Education to Students

ERP Education provided several benefits to postgraduate students. The themes that
emerged are shown in Table 2 and are discussed in this section.

Table 2. Benefits of ERP education

Benefits of ERP education No. of respondents | No. of statements
Increases self-confidence in using ERP systems 16 16
Increases employment prospects 15 22
Provides hands-on experience with ERP systems 11 11
Increases understanding of how a business is run 10 11
Increases likelihood of getting a higher salary 8 8
Increases decision-making on ERP software 4 4
acquisition

Enables further training

Increases ability to assist ERP system users in solving

ERP related problems

Provides insight on current software limitations 1 2

Increases Self-confidence in Using ERP Systems. As a result of going through the
ERP course, sixteen respondents said that the course increased their self-confidence
in using SAP ERP systems. Literature shows that students who took an ERP course
in Canada expressed confidence in their ability to manage ERP systems although the
students viewed themselves as potential users of ERP systems and not managers [20].
The results in this study are similar to the results in literature showing that ERP education
increases students’ confidence in using ERP systems.

“I can confidently say I know how to use SAP even if there is a shortage of
manpower at the office, I can use SAP.” (ENGS5)

Increases Employment Prospects. Fifteen respondents felt that the ERP course
increased their employment opportunities and marketability as they now have an addi-
tional skill. Literature shows that students who have gone through ERP courses have
increased employment prospects and increased market value [2, 20]. The results in this
study are similar to those in literature, however, most of the students in this research are
still working for the same organisations they worked for before taking the ERP course.

154 M. Lubasi and L. F. Seymour

“Recently, I tried to apply for a job and told them that I had done that, they called
me, though I turned it down.” (ENG6)

Provides Hands-on Experience with ERP Systems. Eleven respondents said that the
course provided hands-on experience with ERP systems through the labs that were part
of the course. Literature shows that by completing hands-on ERP activities with SAP,
students can better understand ERP systems and develop SAP skills [21]. Results in this
study and in literature are similar in that hands-on exercises or labs help students have
experience with ERP systems.

“Since it was practical, at least even if I work in an organisation where they use
ERP, I'll be able to use that because the labs gave me hands-on experience with
the ERP system.” (ACC2)

Increases Understanding of How a Business Is Run. Ten respondents felt that the
course had increased their understanding of how a business is run through the different
business processes they went through in the course and their interdependencies. These
findings are similar to other studies in literature that show that students who went through
an ERP course had increased knowledge and understanding of business processes and
functions [22, 23].

“It gave me a view of what goes on in running of companies and also what it would
take to start up your own and what would be needed of you in that case.” (CS8)

Increases Likelihood of Getting a Higher Salary. Eight respondents felt that the
course increased their likelihood of getting a higher salary if they moved to differ-
ent organisations that require ERP skills. In their current organisations, the respondents
have received no salary increment despite the ERP qualification they have. Literature
shows that students with an intensive ERP background had higher starting salaries [2].
Another study [24] shows that students who went through an ERP course based on an
ERP simulation game had higher starting salaries. The results in this study show that
students did not get higher salaries, but they felt that the course had increased their
likelihood of getting higher salaries if they obtained jobs requiring ERP skills, while
literature shows that ERP graduates had higher starting salaries after going through an
ERP course.

“Most of the multi-nationals operating here I think all rely on ERP systems so |
think it would definitely lead to a higher salary.” (CS8)

Increases Decision-Making on ERP Software Acquisition. Four respondents felt that
the ERP course increased their decision-making on ERP software acquisition in the
workplace. Literature shows that students who went through an ERP course based on
a simulation game had increased decision-making skills [25]. The decision-making in
this research was on ERP software acquisition in their organisations while the decision-
making in literature was on business decisions made during an ERP simulation game
that was part of an ERP course.

Understanding the Significance of Enterprise Resource Planning Education in Zambia 155

“In terms of making decisions for acquiring software for the company I think that
has changed very much because of doing the course.” (ENGI)

Enables Further Training. Three respondents felt that the ERP course laid a foundation
for them to pursue further training in similar software packages and in finance. Since
ERP education introduces students to business processes and concepts [23] and provides
hands-on experience with ERP systems [21], it, therefore, lays a good foundation for a
student’s future experience in the industry.

“In fact, after going through that course it motivated me to do a business course.
I went on to do a business course and it made more sense because I've the ERP.”
(ENGS)

Increases Ability to Assist ERP System Users in Solving ERP-Related Problems.
Two respondents felt that the ERP course increased their problem-solving skills as they
are now able to assist other users in resolving ERP related problems in the workplace.
It has been observed in other studies that students who have gone through ERP courses
based on an ERP simulation game develop problem-solving skills [26].

“We have a pool office where I work from and most of the times people call you

for troubleshooting, when they have problems, they ask you what you think this
would be and that has become common place presently because of the knowledge
I have acquired so yeah that has really given me that enhanced feeling of being
able to handle problems.” (ACCI)

Provides Insight on Current Software Limitations in the Organisation. One respon-
dent felt that the ERP course had provided insights on the limitations of the software
applications they currently have in their organisation.

“You see the limitations of the current applications that you are running. So, when
you see those limitations then it means that you are appreciating the course that
you’ve done then you see that if we used this then we can be able to do more.”
(ENGI)

5.2 Industry Constraints

Several industry constraints on the impact of ERP Education in Zambia were identified.
These constraints are presented in Table 3 and are discussed in this section.

Lack of Awareness of ERP Education at University. Nine respondents said that organ-
isations in Zambia are not aware of ERP education at UNZA hence the organisations do
not know about the presence of ERP graduates in the country. Literature shows that when
there is industry participation in ERP education, organisations will have more knowledge
about the skills of university students, and they may also provide employment opportu-
nities to university graduates [27]. Therefore, where there is no collaboration between
industry and academia, organisations may not be aware of certain courses offered at
universities.

156 M. Lubasi and L. F. Seymour

Table 3. Industry constraints

Industry constraints No. of respondents | No. of statements
Lack of awareness of ERP education at university |9 10

ERP systems are not implemented in workplace 8 8

Dependence on foreign expertise or consultants 8 11

Lack of understanding of ERP systems 3 4

No job adverts requiring ERP skills 2

ERP qualification is not appreciated in workplace |2 3

“I think most people are not aware that this programme is offered locally, and
we have got graduate students from University of Zambia who have been trained
there and have got our own local trainers.” (ENG6)

ERP Systems Are Not Implemented in Workplace. Eight respondents said that the
knowledge gained through the ERP course did not have much impact as the knowledge is
not being applied in the workplace. The respondents mentioned that they do not have ERP
systems implemented in the workplace. Literature shows that high implementation and
maintenance costs are one of the reasons ERP systems are not adopted by organisations
[28]. In developing countries, ERP is still in its early stages because of limited IT
infrastructure, low IT maturity, government policies and lack of ERP experience [28].

“We don’t have maybe at the moment as an institution capacity to afford such
licenses to deploy such a solution in our setting, so I think that is one of the limiting
factors which means there is nowhere we can continuously apply the knowledge
that was learnt.” (CS10)

Dependence on Foreign Expertise or Consultants. Eight respondents felt that organi-
sations in Zambia prefer foreign expertise or consultants to local expertise thus disadvan-
taging local ERP graduates. ERP systems in Zambia are implemented and maintained
by foreign consultants hence organisations continue to rely on them. Literature shows
that since ERP implementation requires product-specific and business skills the depen-
dence on consultants as implementation partners greatly increases [29]. Organisations,
therefore, outsource ERP skills rather than investing and developing them internally
[29].

“I think most organisations still prefer to look outside the country for expertise
especially in ERP which isn’t that big locally, so I think the decision for them to
look out rather than look in, I think that’s a big hindrance for most of the graduates
of the ESEFA programme locally.” (CS8)

Lack of Understanding of ERP Systems. Three respondents felt that organisations do
not understand ERP systems hence they do not understand the value that ERP graduates
could add. Literature shows that I'T maturity levels are low in some firms in developing

Understanding the Significance of Enterprise Resource Planning Education in Zambia 157

countries [28], hence this could lead to some organisations not understanding ERP
systems.

“Not everybody understands the work which is required to somehow have a fully
operational enterprise system because everyone forgets the aspect of putting in
the raw data to fit the components.” (CS9)

No Job Adverts Requiring ERP Skills. Two respondents said that they had not seen
any job advertisements requiring ERP skills hence they could not apply for jobs using
the ERP qualification. Literature shows that many organisations rely on consultants for
ERP implementation and maintenance [29], hence this could lead to many organisations
in Zambia not advertising ERP jobs.

“I haven’t seen adverts maybe I think when you're already in an organisation and
then they want to implement it then you would have that opportunity, but I haven’t
seen organisations that are going to advertise and say they want someone with

this skill.” (CS2)

ERP Qualification Is Not Appreciated in Workplace. Two respondents felt that the
ERP qualification was not valued or recognized in the workplace compared to other
qualifications they were pursuing hence this was a restriction. Literature shows that
some students who took an ERP course were not sure if they gained skills that would be
rewarded in the job market [20]. Other studies however show that the ERP qualification
is valued in the workplace as ERP graduates had to start higher salaries [2, 24]. Literature
shows that organisations value ERP skills while in this research the students felt that
ERP skills were not valued.

“I have the knowledge and they benefit from it but then my paper is not as valued
as the other qualifications that we are busy pursuing, so I think to begin with, the
organisation has to appreciate and value the training that we have.” (ACCI)

5.3 Course Constraints

A number of course constraints were also identified. The constraints are shown in
Table 4 and are discussed in this section.

ERP Course Content Was Too Basic. Three respondents felt that the ERP course
content was too basic for them to be able to compete with consultants hence they needed
a more advanced course. Literature shows that students who took an ERP course felt
that they did not get enough technical practice and training from the course [30]. The
results in this study and in literature are similar in that the students felt that they did not
get enough training and practice.

“So, the fact that the course is also basic they need to like maybe teach something
more enhanced so that our students are able to compete with the consultants.”

(ENG3)

158 M. Lubasi and L. F. Seymour

Table 4. Course constraints

Course constraints No. of respondents | No. of statements
ERP course content was too basic 3 5

Lack of university collaboration with industry 3 3

Lack of integration of ERP course with university |3 3

qualifications

Connectivity and setup challenges 2 2

SAP interface was difficult to navigate 1 1

SAP Tutorial software was restricted to university | 1 1

Lack of University Collaboration with Industry. Three respondents felt that univer-
sity collaboration with industry would enable organisations to be involved in the ERP
programme at UNZA thus providing opportunities for students. Literature shows that
collaboration between universities and industry helps to bridge the gap between the
skills of university graduates and those required by industry [27]. It also helps to build
stronger links between universities and industry thus helping to motivate students and
providing employment to students [27]. In this research, it was noted that there was a
lack of collaboration between the university and industry while literature shows how
universities can benefit when there is a collaboration with industry.

“More interaction with industry because for some of the people that do it like the
under graduates, they haven’t been in industry, so they still are looking at it from
just a theoretical part of it.” (ENG1)

Lack of Integration of ERP Course with University Qualifications. Three respon-
dents felt that the ERP course needs to be combined or integrated with another qual-
ification to be beneficial to an organisation. On its own, it may not add value to the
employing organisation or ERP graduate. Hence, the respondents felt that an academic
qualification or other professional qualification was necessary with ERP training as an
added advantage.

“The ERP course that I have, [don’t think it’s a standalone knowledge like someone
would just want to have that and then you become employable. I think you need
to have it in conjunction with another course so that you become more beneficial
to the organisation that employs you.” (ACCI)

Connectivity and Setup Challenges. Two respondents said that at times there were
connectivity issues during the lessons. Literature shows that most universities in Sub-
Saharan Africa have limited internet access, bandwidth, and unreliable access to elec-
tricity [14] which can lead to connectivity challenges. Another study shows that students
who took an ERP course based on SAP at a college in Saudi Arabia encountered account
setup and connectivity challenges [31].

Understanding the Significance of Enterprise Resource Planning Education in Zambia 159

“Yeah, the learning experience was wonderful although in the beginning we had
some hitches getting to start and running of course, connecting to the system,
getting the passwords and the usernames I think after we had gone through that
stage then we were able to get through.” (ENGI)

SAP Interface Was Difficult to Navigate. One respondent felt that the SAP ERP
interface was not user friendly hence it was difficult to navigate. Literature shows that
students who took a similar ERP course in Nigeria felt that the SAP tutorial software
should be more user friendly to facilitate proficiency [32]. In another study, students also
found the SAP screens and interface challenging to navigate [30].

“I think the only challenge was the interface of the application. I think getting
people to work with it regularly would be very, very difficult.” (CS3)

SAP Tutorial Software Was Restricted to University. One respondent felt that since
the software could only be accessed from the university, this had restricted her from
practicing at home or elsewhere. Literature shows that students in Nigeria who took a
similar ERP course also identified this as a constraint [32]. For a user to be able to access
SAP, the SAP GUI needs to be installed on the computer. The IP address of the computer
should also be allowed to access the SAP server as there are IP restrictions on accessing
the SAP server.

“The only thing is, the software is confined to here, so you cannot really practice
at home. You just have to practice when you're here, like it’s a software that is not
shared.” (CS6)

5.4 Student Constraints

The student constraints identified are presented in Table 5 and are discussed in this

section.

Table 5. Student constraints

Student constraints No. of respondents | No. of statements

Inadequate prior knowledge 7 7

Working on ERP systems is not in line of work

5 5
Limited time to devote to course 4 6
2 2

Unable to obtain certificate

Inadequate Prior Knowledge. Six respondents from an IT background felt that
Accounting principles were a challenge in the course as they had no accounting back-
ground. One respondent from an accounting background felt that IT jargon was a chal-
lenge in the course. Hence some students faced challenges due to inadequate prior

160 M. Lubasi and L. F. Seymour

knowledge. Literature shows that inadequate knowledge of accounting and finance was
a challenge for students from an IT background who took an ERP course in Australia
[30]. In another study [25], it was found that students need to have a basic understanding
of the business before attempting to learn business processes from ERP systems. The
results in this study and in literature show that when students have inadequate prior
knowledge, they may experience challenges in understanding certain concepts taught in
ERP courses.

“Those were actually the biggest challenges that we also had on the credit and
debit. We are not coming from that background, so we had a serious challenge.”
(CS1)

Working on ERP Systems is Not in Line of Work. Five respondents mentioned that
working on ERP systems is not in their line of work hence this had restricted them from
applying their ERP knowledge.

“Basically, it’s because it’s not really in my line of work. There are other people
that use those systems.” (ENG4)

Limited Time to Devote to Course. Four respondents said that they had limited time
to dedicate to the ERP course as they were working fulltime and working on the main
programme of study at UNZA. Literature shows that students who took an ERP course
felt that the course presented too much work and the pace was too fast hence they
requested more time in the lab [20]. In another study [32], students felt that the time
allocated to the labs was too short. In this study, the students did not have the time to
dedicate to the ERP course due to other commitments while literature shows that students
needed more time on the course.

“So, the only issue that I had is the fact that my time at that particular point was
limited because I was working full time and also doing the Masters programme
full time so that really pushed me a little bit.” (ENG4)

Unable to Obtain Certificate. Two respondents felt that since they did not manage to
obtain ERP certificates due to either not passing or writing the exam, this had restricted
them when applying for other jobs as they had no certificates to prove that they did
the ESEFA ERP course. Literature shows that students’ perceived value of a vendor
certificate such as SAP ERP will motivate them to pursue that certificate to improve
their job prospects. [33].

“I didn’t even get the certificate therefore it is even very difficult for me to talk
about it when I've been called for interviews.” (ENG2)

6 Thematic Networks

The themes that emerged from the research are presented in the thematic networks.
Figure 1 shows a thematic network on the benefits of ERP Education. The dominant

Understanding the Significance of Enterprise Resource Planning Education in Zambia 161

themes on the benefits of ERP education were increased self-confidence in using ERP
systems, increases employment prospects, provides hands-on experience with ERP sys-
tems, increases understanding of how a business is run, increased likelihood of getting
a higher salary increases decision-making on ERP software acquisition, and enables
further training. These themes were considered dominant as they were cited by three or
more respondents and are presented in bold font in the thematic network.

Some preliminary relationships between benefits were also identified from the anal-
ysis of the data as also shown in Fig. 1. The solid lines represent the thematic network
and the relationships between themes are represented by the dotted lines. Hands-on
experience with ERP systems led to increased self-confidence in using ERP systems.
Increased self-confidence in using ERP systems led to increased ability to assist ERP
system users in solving ERP related problems, increased ability to assist ERP system
users in solving ERP related problems, in turn, led to increased self-confidence in using
ERP systems. Further training led to increased decision-making on software acquisition
in the organisation.

Increases Increases ability

Increases self-

hands-on to assist ERP
: confidence in t : Increases
experience freeens T Bessssas system users in employment
with ERP using ERP solving ERP
systems prospects
systems related
problems

Increases
likelihood of
Benefits of ERP Education getting a

higher salary

Provides
insight on

Increases
understanding

of how a Increases current
business is run Enables further | decision-making software
training on ERP software limitations

acquisition

Fig. 1. Benefits of ERP education thematic network

Figure 2 shows a thematic network on the constraints on ERP education. The dom-
inant industry constraints were lack of awareness of ERP education at university, ERP
systems are not implemented in workplace, dependence on foreign expertise or consul-
tants, and lack of understanding of ERP systems. The dominant course constraints were
ERP course content was too basic, lack of university collaboration with industry, and
lack of integration of ERP course with university qualifications. The dominant student
constraints were inadequate prior knowledge, working on ERP systems is not in the
line of work, and limited time to devote to ERP course. These themes were considered
dominant as they were cited by three or more respondents and are presented in bold font
in the thematic network.

162 M. Lubasi and L. F. Seymour

Some preliminary relationships between constraints were identified from the analysis
of the data as also shown in Fig. 2. The solid lines represent the thematic network and the
relationships between themes are represented by the dotted lines. Connectivity and setup
challenges reduced the limited time to devote to the course. Since some students had
limited time to devote to the ERP course, they were then unable to obtain certificates. Due
to a lack of university collaboration with industry, there was a lack of awareness of ERP
education at university. Dependence on foreign expertise or consultants by organisations
was impacted by the fact that the knowledge from the ERP course was too basic. The

preliminary relationships show that course constraints increase student constraints and
prevent a reduction of industry constraints.

Lack of
Integration of
ERP course with
university
qualifications

SAP
interface

was difficult
to navigate

SAP Tutorial
software is

restricted to
university

Connectivity
and setup
chall L)

.
A =
5| Limited Unable to
time to -
devoteto [obtain
certificate
course

ERP course
content was
too basic

Lack of
university
collaboration
with industry

Course Constraints

Working on
: Student Constraints .ERP sy.ste.ms
: is not in line
- of work
awareness.of Industry Constraints
ERP education
at universi

Inadequate
prior
knowledge

Dependence
on foreign
expertise or

No job |‘fFRP- . Lack of ERP systems
adv.er_ls nqol‘taa;:raeté?ant; understanding i alre "°tt d
requiring © of ERP systems mplemente
ERP skills inworkplace 4 in workplace

Fig. 2. Constraints on ERP education thematic network

7 Conclusion

The aim of this paper was to investigate the benefits of ERP education on postgradu-
ate students who took an ERP short course at UNZA and identify the constraints that
impacted ERP education using a general inductive approach. This research found that
the dominant benefits of ERP education were increases self-confidence in using ERP
systems, increases employment prospects, provides hands-on experience with ERP sys-
tems, increases understanding of how a business is run, increases likelihood of getting
a higher salary, increases decision-making on ERP software acquisition in the organisa-
tion, and enables further training. The contextual factors that impacted ERP education
were identified as industry, course and student constraints. The results in this study show
that context should be taken into consideration when introducing ERP courses into the
university curriculum as it has an impact on ERP education. The results in this paper
would therefore be useful for other universities seeking to integrate ERP systems into
their university curriculum and organisations seeking to hire ERP graduates.

Understanding the Significance of Enterprise Resource Planning Education in Zambia 163

A limitation of the study was that very few students from Economics took the ERP

course. Most of the students who took the course were from Computer Science and Engi-
neering with an IT background. Future research is required to investigate the industry’s
perspective on ERP education in Zambia.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Ravesteyn, P., Kohler, A.: Industry participation in educating enterprise resource planning.

Commun. IIMA 9(2), 45-55 (2009)

. Sager, J., Mensching, J., Corbitt, G., Connolly, J.: Market power of ERP education — an

investigative analysis. J. Inf. Syst. Educ. 17(2), 151-161 (2006)

. Bradford, M., Vijayaraman, B.S., Chandra, A.: The status of ERP integration in business

school curricula: results of a survey of business schools. Commun. Assoc. Inf. Syst. 12,
437-456 (2003)

. Hepner, M., Dickson, W.: The value of ERP curriculum integration: perspectives from the

research. J. Inf. Syst. Educ. 24(4), 309-326 (2013)

. Fedorowicz, J., Gelinas Jr, U.J., Usof, C., Hachey, G.: Twelve tips for successfully integrating

enterprise systems across the curriculum. J. Inf. Syst. Educ. 15(3), 235-244 (2004)

. Hawking, P., McCarthy, B., Stein, A.: Second wave ERP education. J. Inf. Syst. Educ. 15(3),

327-332 (2004)

. Wang, M., Hwang, D.: An innovative framework of integrating ERP into IS 2010 model

curriculum. Commun. [IMA 11(3), 75-86 (2011)

. Bradford, M., Vijayaraman, B.S., Chandra, A.: The status of ERP integration in business

school curricula: results of a survey of business schools. Commun. Assoc. Inf. Syst. 12(1),
26 (2003)

. Akre, V.L., Rajan, A., Nasseri, N.: Enterprise systems (ES) integration into academic curricu-

lum across multiple campuses of a leading academic institution in the UAE. In: International
Conference on Current Trends in Information Technology (CTIT), pp. 90-95 (2013)

Saidi, F., Abdulkarim, M.E., Ousama, A.A.: Factors affecting the integration of the SAP-
financial accounting module into an accounting curriculum: evidence from a gulf-based
university. Int. J. Smart Technol. Learn. 1(3), 218-243 (2019)

Costa, C.J., Aparicio, M., Raposo, J.: Determinants of the management learning performance
in ERP context. Heliyon 6(4), e03689 (2020)

Qiu, M., Xu, Y., Omojokun, E.O.: To close the skills gap, technology and higher-order thinking
skills must go hand in hand. J. Int. Technol. Inf. Manage. 29(1), 98-123 (2020)

Garavan, T., et al.: Measuring the organizational impact of training: the need for greater
methodological rigor. Hum. Resour. Dev. Q. 30(3), 291-309 (2019)

Mahanga, K.M., Seymour, L.F.: Enterprise resource planning teaching challenges faced by
lecturers in Africa. In: Proceedings of the 9th IDIA Conference, IDIA2015, Nungwi, Zanzibar,
pp. 343-353 (2015)

ESEFA. http://www.esefa.uct.ac.za/esefa/about/the-programme. Accessed 21 Aug 2021
Walsham, G.: The emergence of interpretivism in IS research. Inf. Syst. Res. 6(4), 376-394
(1995)

Klein, H.K., Myers, M.D.: A set of principles for conducting and evaluating interpretive field
studies in information systems. MIS Q 23, 67-93 (1999)

Thomas, D.R.: A general inductive approach for analyzing qualitative evaluation data. Am.
J. Eval. 27(2), 237-246 (2006)

Marshall, M.N.: Sampling for qualitative research. Fam. Pract. 13(6), 522-526 (1996)

http://www.esefa.uct.ac.za/esefa/about/the-programme

164

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

M. Lubasi and L. F. Seymour

Davis, C.H., Comeau, J.: Enterprise integration in business education: design and outcomes
of a capstone ERP-based undergraduate e-business management course. J. Inf. Syst. Educ.
15(3), 287-299 (2004)

Pridmore, J., Deng, J., Turner, D., Prince, B.: Enhancing student learning of ERP and busi-
ness process knowledge through hands-on ERP exercises in an introductory management of
information systems course. In: Southern Association for Information Systems Conference
(SAIS), vol. 31 (2014)

Fulford, R.: Effective education using information systems as cognitive tools. Proc. Microsoft
Dyn. Acad. Preconf. 2(1), 8-14 (2011)

Seethamraju, R.: Enterprise systems (ES) software in business school curriculum-evaluation
of design and delivery. J. Inf. Syst. Educ. 18(1), 69-83 (2007)

Cronan, T.P., Douglas, D.E.: A student ERP simulation game: a longitudinal study. J. Comput.
Inf. Syst. 53(1), 3-13 (2012)

Monk, E.E, Lycett, M.: Measuring business process learning with enterprise resource planning
systems to improve the value of education. Educ. Inf. Technol. 21(4), 747-768 (2014). https://
doi.org/10.1007/s10639-014-9352-6

Foster, S., Hopkins, J.: ERP simulation game: establishing engagement, collaboration and
learning. In: PACIS, vol. 62 (2011)

Hawking, P., McCarthy, B.: Industry collaboration: a practical approach for ERP education.
In: Proceedings of the Australasian Conference on Computing Education, pp. 129-133 (2000)
Abdellatif, H.J.: ERP in higher education: a deeper look on developing countries. In: 2014
International Conference on Education Technologies and Computers (ICETC), pp. 73-78.
IEEE (2014)

Kumar, V., Maheshwari, B., Kumar, U.: An investigation of critical management issues in
ERP implementation: empirical evidence from Canadian organizations. Technovation 23(10),
793-807 (2003)

Seethamraju, R.: Enhancing student learning of enterprise integration and business process
orientation through an ERP business simulation game. J. Inf. Syst. Educ. 22(1), 19-29 (2011)
Shanneb, A.: Incorporating SAP® ERP training into industrial college education: a usability
evaluation. I. J. Educ. Manage. Eng. 5, 1-9 (2020)

Alawode, O.0., Anyaeche, C.O., Osunade, O.: Perception and evaluation of enterprise systems
education in University of Ibadan, Nigeria. In: Proceedings of the 9th IDIA Conference,
IDIA2015, Nungwi, Zanzibar, pp. 434450 (2015)

Kung, H.-J., Kung, L.: Pursuing a vendor-endorsed ERP award for better job prospect:
students’ perceptions. Inf. Syst. Educ. J. 15(3), 2941 (2017)

https://doi.org/10.1007/s10639-014-9352-6

Author Index

Bradshaw, Karen 85 le Roux, Daniel B. 118
Broekman, Andrew 27 Liebenberg, Janet 51
Lubasi, Mampi 149

Calitz, Andre P. 3 Marshall, Linda 27
Mase, Mokotsolane Ben 102

Dick, Geoffrey 43 Milne, Shannon 85

Nel, Liezel 102, 132

Janse van Rensburg, J. T. 67
Seymour, Lisa F. 149

Khomokhoana, Pakiso J. 132 van der Linde, Suné 51

	 Preface
	 Organization
	 Contents
	Past, Present and Future
	The 50 Year History of SACLA and Computer Science Departments in South Africa
	1 South African Computer Science Departments
	2 SACLA First Meetings
	3 CSLA News Publications 1982 and 1983
	4 TECLA and HEICTA
	5 SACLA Hosting Universities 1980 to Present
	6 SACLA Paper Review Process, Publications and Conference Themes
	7 SAICSIT and SACLA
	8 The Social Side of SACLA
	9 Future of SACLA
	References

	Teaching Innovation
	Minimising Tertiary Inter-group Connectedness Over Successive Rounds
	1 Introduction
	2 Rocking the Boat (RTB)
	2.1 Theory
	2.2 Participation Levels
	2.3 Group Allocations
	2.4 Application
	2.5 2021 Group Allocation Requirements

	3 Allocating Groups
	3.1 Automation
	3.2 Inter-group Connectedness

	4 Genetic Algorithms
	4.1 Representation
	4.2 Crossover and Mutation Operators
	4.3 Selection
	4.4 Termination
	4.5 Fitness Function

	5 Application of a GA for Inter-group Connectedness
	5.1 Data Overview
	5.2 Methodology
	5.3 Mock Data Example

	6 Future Work
	7 Conclusion
	References

	Teaching in a Time of Uncertainty – A Practical Guide
	1 Introduction
	2 Setting Up the LMS
	3 Getting the Class Moving
	3.1 Discussions
	3.2 Group Work
	3.3 Ethics
	3.4 Testing and Assessment

	4 In Conclusion
	References

	Utilizing Computational Thinking in Programming to Reduce Academic Dishonesty and Promote Decolonisation
	1 Introduction
	2 Conceptual Framework
	2.1 Computational Thinking and Programming
	2.2 A Problem-Solving Learning Environment (PSLE)
	2.3 Decolonisation of the Programming Curriculum
	2.4 Academic Dishonesty in Programming

	3 Research Design
	4 Action Research
	4.1 Diagnosis
	4.2 Action Planning and Action Taking
	4.3 Evaluating and Specifying Learning

	5 Results and Discussion
	5.1 Quantitative Results
	5.2 Qualitative Results – “Likes”
	5.3 Qualitative Results – “Dislikes”
	5.4 Reflection

	6 Conclusion
	References

	Project-Based Learning Guidelines for IT Higher Education
	1 Introduction
	2 PBL Overview
	3 Applications of PBL in IT Higher Education
	4 Reflective Practice in PBL
	5 Guidelines for PBL in IT Higher Education
	5.1 Reasoning and Reflection
	5.2 Requirements
	5.3 Design and Scheduling
	5.4 Guidance and Scaffolding
	5.5 Monitoring and Management
	5.6 Assessment

	6 Conclusion
	References

	Teaching Methods and Strategies
	Mapping Computational Thinking Skills to the South African Secondary School Mathematics Curriculum
	1 Introduction
	2 Computational Thinking in the Context of STEM
	3 Definition of CT Skills Applied in This Research
	4 Mapping of CT Skills to the South African Mathematics Curriculum
	4.1 Functions
	4.2 Algebra
	4.3 Differential Calculus
	4.4 Euclidean Geometry

	5 Conclusion and Future Work
	References

	Common Code Writing Errors Made by Novice Programmers: Implications for the Teaching of Introductory Programming
	1 Introduction
	2 Background
	2.1 Common Programming Error Categories
	2.2 Strategies Utilized in the Identification of Common Programming Errors

	3 Method
	4 Results and Discussion
	4.1 Common Programming Errors Made by Novices
	4.2 Changes in Common Errors During an Academic Term

	5 Conclusion and Recommendation
	References

	Ten Years in the Trenches of a Doubtful Science: An Autoethnographic Investigation of Five Challenges of Teaching in Information Systems
	1 Introduction
	2 Method
	2.1 Autoethnography as Method
	2.2 Autoethnography Studies of Teaching in Higher Education
	2.3 Research Process

	3 Theoretical Points of Departure
	4 Challenges
	4.1 Challenge 1: Navigating Conceptual Ambiguity
	4.2 Challenge 2: Teaching for a Wide Range of Roles
	4.3 Challenge 3: Demystifying the Social Issues in IS
	4.4 Challenge 4: Teaching Soft Skills
	4.5 Challenge 5: Bridging the Research-Teaching Gap

	5 Discussion
	References

	Mapping the Problem-Solving Strategies of Novice Programmers to Polya’s Framework: SWOT Analysis as a Bottleneck Identification Tool
	1 Introduction
	2 Theoretical Framework
	2.1 Understand the Problem
	2.2 Devise a Plan
	2.3 Carry Out the Plan
	2.4 Evaluate the Effectiveness of the Plan

	3 Research Methods
	3.1 Design
	3.2 Data Collection
	3.3 Data Analysis

	4 Results and Interpretation
	4.1 Understand the Problem
	4.2 Devise a Plan
	4.3 Carry Out the Plan
	4.4 Evaluate a Solution

	5 SWOT Analysis
	6 Bottleneck Identification
	7 Conclusions and Future Work
	Appendix
	References

	Understanding the Significance of Enterprise Resource Planning Education in Zambia: A Case of an ERP Short Course at University of Zambia
	1 Introduction
	2 Literature Review
	3 Case Description
	4 Method
	5 Findings and Discussion
	5.1 Benefits of ERP Education to Students
	5.2 Industry Constraints
	5.3 Course Constraints
	5.4 Student Constraints

	6 Thematic Networks
	7 Conclusion
	References

	Author Index

