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1 Introduction

Most chemical and physical properties of atomic systems are related to electronic
properties. Those properties are still one of the most studied topics since they can
behave differently among molecules, solids, interfaces, and their interactions. In
the last decades, experimental techniques became more sophisticated, being able to
reach the electronic structure and to provide unique fingerprints. One of the hot topics
studied is surface science, due to its large area leading to a potential for applications,
such as biomolecule identification. Due to the experimental challenges, one way
to have better comprehension of quantum effects at surfaces is using theoretical
modeling. In particular, Density Functional Theory (DFT) is a powerful tool to study
the electronic structure, electron transfer, binding energies, electron transport, and
currents, being able to provide further insights about these systems.

Surface modeling is a many-body problem that involves several atoms and elec-
trons. In quantum mechanics, this type of problem does not have an analytical solu-
tion. Just a few simple problems have an analytic solution: a free particle in a box,
quantum oscillator, and hydrogen atom. The first approximation that can be done to
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simplify the problem is using the Born-Oppenheimer approximation: the electrons
have different time scale compared with the nuclei, due to their mass difference
(mN � me). Thus, it is possible to consider the nuclei fixed to solve just the elec-
tronic hamiltonian. Although this problem becomes simpler to deal with, it is still
unsolvable. There are different methods to treat this problem based on wavefunction,
that depends on 3N variables without considering the spin. An example of a wave-
function method is Hartree-Fock [60]. For large systems, this method is extremely
costly. One way to overcome this very hard problem is using the charge density
instead, which is more efficient to treat compared to wavefunction’s method. DFT
was proposed by Hohenberg and Kohn in 1964 [26], which drastically changes how
the results from the quantum mechanics theory are obtained. In 1965, Kohn and
Sham [28] proposed mapping of N-body problem in N problems of one body. For
that, they proposed the self-consistent equations and defined the KS potential that
has the external potential, Hartree, and the exchange-correlation potential, which are
known as Kohn-Sham Scheme (KS) for the DFT (KS-DFT).

TheKSwavefunctions can be described using different mathematical approaches.
There aremany computational codes available that have a particular description, hav-
ing some characteristics with advantages and disadvantages. Computational codes
such as Gaussian [17] or ORCA [43] employ wavefunctions based on Pople’s Gaus-
sian orbitals in real space, being very effective to describe molecular structures,
however struggles to study bulk materials or molecule/material interfaces. Quantum
ESPRESSO [14, 20] and VASP [29] on the other hand, describe the wavefunctions
as planewave basis sets in reciprocal space, using pseudopotentials [62] or projector
augmented wave (PAW) [6] approximations to describe the core region of the atoms.
While reciprocal space methods are well suited for bulk materials and interfaces,
their computational cost is hugely increased in comparison to real space methods.
There are also computational codes such as SIESTA [18] that employs numerical
localized basis sets, pseudopotentials and linear-scaling algorithms in real space,
allowing investigations of molecules, bulk material and interfaces. In the end, the
computational packages choice is based on which property of interest, or the type of
material, is investigated. There are state-of-art theories and computer implementa-
tions that are exclusive to it package.

Another critical point to establish the DFT accuracy, precision and reliability
is the exchange correlation functional (Exc) employed for the system. The most
common used in the electronic structure calculations are the Local Density Approxi-
mation (LDA) [48], generalized gradient approximations (GGA) such as PBE [49] or
PBEsol [50], and hybrid functionals such as B3LYP [5] or HSE [25]. If a system has
non-bonded interactions, van der Waals corrections should be included [21]. As dis-
cussed before, there is not an unique choice since it depends on the systemmodel, the
analysis, the computational code, convergence tests and the computational resources
available. There are many studies that provide Exc benchmarks, for example Su et
al. [59].

The analysis of the electronic structure calculations allows to understand the
stability, bonding, potential energy surface, density of states (DOS), band structure,
electronic transport and others properties for different systems. The highlight proper-
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ties could guide and/or support the experimental results, leading to the understanding
of fundamental atomic aspects.

The KS wavefunctions are the eigenvectors obtained from the KS equation, asso-
ciated with the energy levels/bands, that express the probability to find an electron in
a given region of the space. They can be used to understand where the electrons are
localized in the molecule/solid and how they can behave. In bioelectrochemistry, this
analysis can help to understand which atoms can possibly participate on the electron
transfer process between the surface and molecule.

The DOS accounts the electronic states that are found in a particular energy, or in
an energy window. It can be related to physical or chemical effects, such as surface
interactions, reaction centers, defects, electron entrapment and others. Also, it can be
used to reproduce experimental techniques such as scanning tunneling microscopy
(STM). The total DOS for a given system is difficult to interpret since there are many
states involved. In this scenario, projected DOS for a given atom and/or orbitals, or
atomic groups are employed instead. This helps to understand the specific role for
the components of the system.

The electronic transport is a powerful model to understand microscopically what
is happening in a electrochemistry process and nanodevices such as biosensors, etc.
The concept of the electronic transport is different of canonical electronic calculation
in equilibrium. In this case, two electron reservoir or electrodes are considered, and
the central region is called the scattering region. There is one electrode in the left side
and other in the right of the scattering region. The system is considered semi-infinity
in both directions [7, 54]. The basic quantity calculated is the transmission function,
that represents the probability of one electron, from the left side, to reach the right
electrode passing through the scattering region. The transmission relevance is due to
the possibility to obtain the electronic conductance and current. In the case of biosen-
sors, one can calculate the transmission for the bare system and to obtain the zero
bias conductance/resistance. For the molecule chemio/phisiosorbed in the device, it
is possible to calculate the new transmission, where the charge transfer between the
molecule and device will play the main role. Changes in the conductivity/resistance
(sensitivity) can be a powerful tool to identify electrical signature of biomolecules
in such systems.

The molecule adsorption can be understood by the total charge density that is
given by the square of KS wavefunctions. The charge density gives the electron
probability and possibly quantifies the referred property. For example, in a pristine
material, the charge density can characterize the bond nature. If the system is com-
posed by a surface and a molecule, it is possible to evaluate the electronic charge
reorganization through the charge density difference. In this case, we consider the
difference between the whole system (surface + molecule) and isolated counterparts.
From the mathematical point of view, it is possible to write:

�ρ(�r) = ρsur f ace+molecule(�r) − (ρsur f ace(�r) + ρmolecule(�r)), (1)

where the regions can be locally analyzed: in the case of �ρ(�r) > 0, that region
decreases the charge, and for �ρ(�r) < 0, the charge increases when compared to
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the isolated parts. This quantity gives how the charge is redistributed in the entire
system compared with the isolated ones. The charge redistribution is an important
way to quantify the charge transfer between molecule and surface.

Richard Bader [4] has proposed an intuitive scheme for visualization of atoms
in molecules focusing on the charge density. Bader has used zero flux surfaces to
separate the atomic charge, where the electronic charge density has a minimum value
perpendicularly to the surface. Typically in molecular systems, the charge density
reaches a minimum between neighbour atoms, which is a natural place to separate
them from each other. Therefore, Bader considered the electronic charge density
enclosed within this volume as a good approximation for the total electronic atom
charge. Thus, obtaining the partial atomic charges. This quantity is interesting to
investigate local reorganization, reduction and oxidation states in the bioelectro-
chemistry context. For computational Bader charge analysis, there is a open source
code developed by Henkelman Group [24, 66].

In the following sections, we illustrate the state of the art of theoretical models
of biomolecules interface with surface or nanodevices. These systems were treated
within quantum mechanics calculations, using the analysis tools summarized here.

2 Electron Transfer of Peptide SAMs Modified
with Ferrocene

The heterogeneous electron transfer (ET) involves amolecule/electrode interface that
is composed by a donor-acceptor system: the electroactive group is connected to the
electrode through a spacer molecule, which can be a polypeptide, alkanethiol, lipid,
sugar, and others. In particular, ferrocene (Fc) modified self-assembled monolayers
(Fc-SAMs) have been considered as excellent models for the study of ET [13, 40,
55]. One interesting study has observed higher ET rate in peptides compared to thiol
ligand, both functionalized with Fc [45]. Despite the progress in the area, there is
a dichotomy regarding the ET mechanism [38]: from one side they believe that the
electron hopping through amide groups whereas the electronmoves within sites from
the donor to the acceptor; on other hand, electron tunneling where the electronmoves
from the donor to acceptor without any intermediate state.

Based on this paradigm, the community carried out new experiments [13, 27,
37, 39, 42, 47, 51, 55, 61, 65], emerging three possible types of ET mechanisms:
molecular mobility, electron tunneling, and hopping, as well as combinations of
those [8, 39, 61].

From the theoretical perspective, Lima et al. [33] carried on DFT calculations of
several models to investigate each component in the system. For calculations, the
authors used DFT and GGA exchange-correlation functional, other computational
details can be found elsewhere [33]. These tests investigated the role of the space
molecule glycylcistamine (Gly-CSA), the electroactive center Fc and the electrode
modeled by the Au(111) surface. It is worth to observe that the electronic states that
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belongs to the Gly-CSA are always below the Fermi energy, even during simula-
tion considering Gly-CSA@Au(111). On the other hand, the Fc electronic states are
always located close to the Fermi energy, regardless the configuration it was inves-
tigated. In summary, Fig. 1 shows a gold slab with the Fc-SAMs with the organic
solvent environment. The DOS analysis in this case indicates the electronics states
closer to the Fermi Energy (EF ) are the thiol bond (S-Au), then the Fc group (HM )
without any intermediate state from the spacer (Hm) or the solvent. In terms of
the energetics, while the Fc peak is placed at −0.3 eV, the electronic contributions
for the molecular spacer are located about −1.5 eV below the EF . Although DFT
simulations presented do not show the dynamics of ET, the results demonstrate the
electronic pathways. In this case, it is possible to describe the ET involving the Fc
group and the gold electrode, favoring the electron tunneling mechanism. The DOS
analysis combined with different building models contributed to elucidate the charge
mechanism discussion in Fc-SAMs.

3 Two-Dimensional (2D) Systems

In 2004, graphene mechanical exfoliation was assembled by Geim and Novoselov
[44], opening new perspectives in 2D materials and its applications. Graphene is
a lightweight, atom-thick, zero-gap semiconductor, it has a large Young’s Modu-
lus (about 1 TPa) that is flexible perpendicularly to its basal plane. These unique
properties in a single material make it special among others. One of the promising
applications of graphene is using as a fast biomolecule sensor, i.e. utilize it as a solid-
state nanodevice for electric identification. Graphene paves the way for 2D materi-
als [16], and nowadays more than 700 different structures are known. It is possible
to highlight some of 2D materials such as: h-BN [3], silicene [2], germanene [34],
borophene [64], phosphorene [10], transition metal chalcogenides (TMDs) [12],
Janus [67], also combinations of them (hybrid materials) [22, 56, 58]. Considering
the electrical properties, the 2D materials can be metallic, semi-metallic, semicon-
ductor and insulator. The material properties control allows different technological
applications e.g.: biosensors, next generation batteries and nanodevices.

For biomolecule electric sensing, there are three possible mechanisms discussed
by Heerema [23] and Diventra [11], where the schematics are depicted in Fig. 2: (a)
on top, (b) on edge or nanogap and (c) nanopore device, respectively.

On top mechanism uses a large 2D surface area for device biomolecule iden-
tification. In this mechanism, the molecule is lying on the surface as could bind
strongly (chemisorbed) or weakly (physisorbed), depending on the molecule nature.
In general, the device has a bare resistance, and each molecule has different electron
transfer. This charge transfer and perturbation leads to changes in the device resis-
tances, thus the sensitivities can be characterized. A typical biomolecular signature is
the Fano resonances [41], and the challenge is to distinguish amolecule among others
based on their signal. Another important aspect to be considered for the nanodevices
consists to detect the biomolecules with binding energies smaller than 1.0 eV. The
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Fig. 1 Total DOS (black line) and projected contributions on the Au substrate (shaded area) and
Fc-Gly-CSA molecule (red line) for the molecule/surface interface: a including methanol solvent
(cyan area); b including sodium perchlorate (blue line) andmethanol solvent. Zero energy reference
is set to the Fermi energy (EF ) of the system. Insets display representative single particle orbitals
of the interface. Reprinted (adapted) with permission from Ref. [33]. Copyright 2014, American
Chemical Society



Computer Simulation: Biomolecules on Surfaces 7

Fig. 2 Systems basedwith graphene, with possible site interactions: a on top;b on edge or nanogap;
c nanopore; d surface functionalization; e edge functionalization

translocation time is given by τ ∼ exp( −Eb
KBT

), where Eb is the binding energy, KB is
the Boltzmann constant and T is temperature, that characterize the molecule resident
time in the device. Large binding energies could lead to disposable nanodevice, once
the translocation time could be very large. For the case of very small molecule bind-
ing, it is possible to consider the surface functionalization as it is shown in Fig. 2d.
The functionalization should be an atom or a molecule that acts an anchor to interact
with the biomolecule.

Figure2b is shown on edge or nanogap device based on tunneling mechanism.
For a bare system, the transmission is zero per construction due to the large distance
between the sides. When the molecule is placed on the nanogap, it can work as a
bridge between the two sides (electrodes) and the electron could tunnel from the
left to the right side. The conductance typical signal is about 10−10 G0 and this fact
could be a experimental challenge due to the signal-to-noise ratio. A possible way
to minimize this problem is the edge functionalization with different atoms as it
is shown in Fig. 2e. The functionalization can increase the conductance signal and
signal-to-noise ratio. This fact could improve the tunneling transmittance signal for
different biomolecule, that also depends on the coupling.

The nanopore is the third and more promising biomolecule nanodevice as it is
shown in Fig. 2c. In this case, there are a nanodevice with 10–20 Å pore diameter.
This pore size allows the biomolecule passing through it, changing the electronic
characteristics of system. In this mechanism the bare device has a resistance, when
the molecule is inside the pore it changes, which is similar to the on top. In fact,
the molecule can modulate the electronic current leading to its identification. Nowa-
days, there are technics to control the nanopore size, shape and its functionalization,
fundamental for this type of applications.
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In the next sections, the three mechanism will be exemplified in the detection
of nucleobases, also discussing the aspects regarding the change transfer, that is a
possibility to identify each one.

3.1 On Top Application Using Silicene

Silicene is a silicon 2D material, similar to graphene, with honeycomb lattice that
was proposed theoretically by Ciraci et al. [9]. The electronic structure is a semimetal
system with a Dirac cone in K-K’-symmetry point, similar to graphene. However,
silicene is buckled and more stable than planar structure by 0.05 eV [2]. This fact is
due to sp2 − sp3 bonds, that leads to the referred roughness. The lattice parameter
for buckled (planar) is about 4.002 (3.995) Å with 0.55 Å of height, using DFT and
GGA+ van derWaals correction for exchange correlation functional as implemented
in SIESTA code. Further details can be find elsewhere [2]. Considering the transport
point of view, it was build a supercell that are coupling two electrodes in left/right
sides. The transmission gives a V-shape curve, in good agreement to Dirac materials.
Biomolecules such as: adenine (A), cytosine (C), guanine (G) and thymine (T), were
adsorbed on the silicene surface and distinct orientations were fully relaxed.With the
most stable geometries of each nucleobase were calculated the binding energy and
the distance between the molecule and device. For A and T, the distance was about
3.0 Å and the binding energy close to −0.6 eV. However, for C (G) the distances
were about 2.0 Å and the binding energy were −0.88 (−0.77 eV), respectively.
The strong binding for C and G is related to single oxygen atom presented in each
nucleobase. This fact makes the molecule tilt, where the Si-O atoms are minimal
distance between the surface and biomolecule. For A and T the molecules are planar,
where the A does not have oxygen atoms, and T has two (one in each molecule side).
For the T molecule, there are oxygens competition and the molecule stays quasi
planar. Based on these results, it is possible to classify the nucleobase in two groups:
(I) weak binding (A and T) molecules and (II) strong binding (C and G).

Figure3 shows the difference of charge density calculated using Eq.1. For the
group I, it is noted a charge repulsion between the biomolecule and the silicene
device. For A and T (Fig. 3a, d), the negative difference (blue color) is between the
bottom of the molecule and the surface. In another hand, Fig. 3b, c represent the
group II, where the molecules (C and G) are stronger in terms of binding energy,
leading to an attractive charge redistribution. In the inset, can be noted a negative
charge concentration between Si-O and a positive charge on Si atoms, confirming
this assumption. These results confirm the binding energy previously discussed.

Next, we analyse the electronic transport by the transmission function. For C and
G molecule, it was noted a decreasing in the transmission at +1.0 eV, compared
with pristine device and also A and T. A similar result is also noted from −1.0
eV to EF , where the group II decreases the transmission compared to the pristine
one. Fano resonances were observed for energies smaller than −1.0 eV, typical from
molecular signatures. For the inset upper (lower), two energies were chosen for the
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Fig. 3 The change in electronic charge density is plotted, calculated as the difference between the
charge density of the total system (silicene + nucleobase) and that of each constituent part (silicene,
nucleobase) separately. Blue color indicates a negative difference in the charge density; red color
indicates a positive difference in the charge density. The main panels show isosurfaces for a value
of 0.001 electron × bohr−3 while the insets show the same charge density difference data plotted
for a larger isosurface value of 0.03 electron × bohr−3 and viewed from a different perspective.
a Adenine; b cytosine; c guanine; d thymine. Reprinted (adapted) with permission from Ref. [2].
Copyright 2015, IOP Publishing, Ltd.

analysis of the changes in the transmission. In both cases, the molecules transmis-
sion are different than the pristine one. The transmission changes observed lead-
ing to the modification in the resistance/conductance, important aspect to molecule
identification.

For electrical nucleobase identification were chosen two energies values +1.0 eV
and −1.26 eV (upper and lower right side panel on Fig. 4), at the Fano resonances.
One way to identify changes in the conductance/resistence is through the sensitivity,
that is given by:

S[%] =
(
g0 − gi

g0

)
× 100, (2)

where g0 is the pristine conductance and gi is the nucleobase conductance (for i =
A, C, G and T). Figure5 shows the sensitivity, where for a gate voltage of −1.26
eV is noted a sensitivity up to 20% to A and about 3% for T. The nucleobase C and
G has similar sensitivities (around 10%). However, considering the gate voltage of
+1.0 eV it is possible to identify C and G with a good resolution and A and T are
indistinguishable. This device can identify each nucleobase using two gate voltages
through sensitivities, as well as with translocation time with a good resolution.
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Fig. 4 The plot shows the zero-bias transmission of silicene with and without nucleobases on top
as a function of the electron energy, with the Fermi level for the whole system aligned to 0 on the
horizontal axis. The curve in black color represents the transmittance for pristine silicene without
any nucleobases present while the other colors (red, orange, green, and blue) refer respectively
to the transmission for each nucleobase (A, C, G, and T, in that precise order) physisorbed or
chemisorbed on top of silicene. Reprinted (adapted) with permission from Ref. [2]. Copyright
2015, IOP Publishing, Ltd.

Fig. 5 For two different gate voltages (left panel: −1.26V; right panel: +1.00V) we plot the
calculated sensitivity of the hypothetical silicene sequencing devicewith respect to the four different
nucleobases A, C, G, and T). Reprinted (adapted) with permission from Ref. [2]. Copyright 2015,
IOP Publishing, Ltd.
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3.2 Nanogap Application with Graphene

Nanogap or edge device consists of surface material with a empty space between
two regions. From the experimental point of view, Postma [52] proposed a graphene-
based device for reading the transverse conductance of biomolecules, in particular
nucleobases. In the proposed setup, it was considered the electrodes as the samemate-
rial, demonstrating the nucleobase electrical detection with single-base resolution.
Theoretically, a graphene nanogap device was investigated by Jariyanee Prasongkit
et al. [53], where the tunneling transmission were studied, and the authors showed
very small electrical conductance (in the order of 10−10 G0). The main question to be
addressed consists on how can we modify the nanogap device to improve the trans-
port properties. To answer this issue, the nanogap functionalization will be addressed
to electrically detect biomolecules with better conductance signal.

The results shownherewereobtainedusingDFTcalculationswithGGAexchange-
correlation functional, further details can be found elsewhere [1]. Graphene nanogap
with H- or N-edge functionalization were considered. The devices were built and full
ionic relaxation were performed. Thus, the shortest distances between the two sides
are about 13.85 Å. The A, C, G, and T nucleobases were placed as a linker between
the two sites. There are twomolecules that have two rings, namely group I (A and G),
and two with one (C and T) as group II. For group II, it was expected that the small
size, in comparison with group I, can lead to a weaker coupling. The nucleobases
were relaxed inside the nanogap and for the group I were found distances smaller
than group II for both devices.

Figure6 shows the total density of charge for H- (left side), N-functionalized
device (right side), and each row represents one nucleobase. The nitrogen is charac-
terized by a high electron concentration (blue color) in comparison to the hydrogen
one. Firstly, were observed a weaker coupling for the biomolecules of group II in
contrastwith the group I, as expected. In another hand, analyzingA as an example and
comparing to a different device, were noted a strong interaction in a N-functionalized
one. Figure6 shows an inset in red for weak coupling (H-functionalized device)
and N-functionalized the green/yellow. For A and C in H-functionalized devices,
it is noted the smaller nucleobase presented a weaker interaction. This fact is also
true for N-functionalized devices. However, for C in N-functionalized devices were
observed a better electronic coupling in comparison with H-functionalized devices.
These results show that group I has stronger coupling and theN-functionalized device
is better for biomolecule detection in comparison to H one.

Figure7a–b show the zero bias transmission for H-passivation (left panel) and N-
passivation (right panel), respectively. Firstly, itwas investigated the four nucleobases
at each nanogap device. At Fermi energy, the transmission hierarchy was G > A >

C > T for both devices (-H and -N) and the main difference is the transmission order
ofmagnitude. ForN-functionalization itwas noted a conductance improvement about
104−105 G0. For all cases, there are resonances for a certain energy value due to
the nucleobases. For nucleobase A, there is a peak at −1.0 eV for H-functionalized
nanogap. Secondly, for N-functionalized devices, the previous peak moves towards
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Fig. 6 Charge density for a
graphene nanogap with
nucleobase in between where
left handside panel is for
hydrogen, and right is for
nitrogen functionalization.
The circular insets show
zoomed in regions at the
frontier between molecule
and edge. The colors
represent the charge density
is given in linear scale going
from 0.0 (red) to 1.1 (violet)
and e/Bohr3. Reprinted
(adapted) with permission
from Ref. [1]. Copyright
2016 American Chemical
Society

Fermi energy. This fact indicates that further device has a better coupling, as it was
previously demonstrated in the total charge density analysis. When the molecules
are placed in the N-functionalized material, there was noted a peak shift toward the
Fermi energy.

For the nanogap case, the sensitivity characterization is difficult to evaluate due
to zero transmission for the bare system (without the molecule). For the analysis
of the changes in the conductance without device reference, it was considered a
target molecule. In this case, it was chosen a molecule with the smaller conductance
signal, which was the nucleobase T at the H-functionalized device. In this way, all
nucleobase conductance were normalized by T, and the sensitivity definition is given
by the following:

S[%] =
(

gi
gre f

)
× 100, (3)

where gi represents the nucleobase conductance, and gre f the smaller conduc-
tance case (T in H-functionalized device). Figure8 hashed histogram shows the
H-functionalized, where the biggest sensitivity is given by G, followed by
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Fig. 7 Zero-bias transmission as a function of energy: graphene nanogap functionalized with a
Hydrogen (dashed), and bNitrogen atoms (solid) for all nucleobases; c–f transmittance comparison
between H- and N-terminated edges of graphene nanogap with different nucleobases in between—
A, C, G and T. Reprinted (adapted) with permission from Ref. [1]. Copyright 2016 American
Chemical Society

Fig. 8 Sensitivity at Fermi
level of four nucleobases for
H- (hashed) and
N-functionalized (solid)
nanogaps. Thymine in the
H-terminated nanogap has
the smallest conductance and
was taken as a reference.
Reprinted (adapted) with
permission from Ref. [1].
Copyright 2016 American
Chemical Society
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A—nucleobases of group I, and C has a good resolution in comparison with T. Here,
were demonstrated despite the small-signal the four nucleobases are distinguish-
able in H-functionalized device. Comparing the reference with an N-functionalized
device, were noted an improvement in the sensitivity by more than five orders of
magnitude, as well as the sensitivity follow the magnitude of the H-functionalized
device (G > A > C).

3.3 Nanopore Application with Hybrid Graphene-BN Device

Nanopore inside of 2D materials has emerged as a great potential to be used as
DNAsequencing due to its individual-base resolution. The applicability of solid-state
nanopores for the detection and analysis of biomolecules is dependent on achiev-
ing accurate control of size and shape. In this context, recent advances in size and
shape control have been achieved, using controlled dielectric breakdown [30] and
electrochemical reaction (ECR) [15]. Encouraged by the experimental synthesis suc-
cessfully of nanopores embedded in the 2D materials [15], Souza et al. [56], have
been proposed a novel device based on lateral heterostructure graphene-BN.

Formodeling the proposed systems herein, it was performedDFT calculationwith
GGA exchange-correlation functional, more details can be found somewhere [56].
The investigated setup has two electrodes (left and right) and a scattering region
with a nanopore. The graphene stripe has a width of 16.92 Å embedded in the h-BN
and the pore diameter is 12.5Å (see Fig. 9e). One important aspect of the device
is the presence of two carbon nanowires (above and below the pore). Focusing on
the electronic transport, Fig. 9a shows the transmission spectra for the bare device,
where one should verify two broad peaks around the Fermi level in the energy range
(±0.25 eV)) and a well-defined peak at 0.9 eV. The transmission is actually not
symmetric around the Fermi level. Figure9b shows the vertical dashed lines (±0.18
eV), where one can clearly note an asymmetric T (E), as a result of the two distinct
interfaces C1-B (C2-N), which present, electron acceptor (electron donor) character,
respectively. In Fig. 9c the central peak (orange color) represents the total density of
states (DOS) with the majority contribution ascribed to central carbon atoms (blue
color, C). However, the left (right) shoulders are associated with the hybridized states
from the interface atoms C1-B (C2-N), as highlighted in Fig. 9d. In order to get some
insights about the T (E) around the Fermi level, it was analyzed the local current in
the scattering region at ±0.18 eV. For the negative energy value (Fig. 9e), the local
current is located in the lower carbon wire, while for the positive one (Fig. 6f) it is
in the upper, as expected from the projected density of states (PDOS) (see Fig. 9c–
d). The results reveal for the proposed device an important functionality, once it is
possible to choose the electrons pathway switching the applied gate voltage.

The nucleobases were placed inside the nanopore and performed full relaxations.
With the most stable configurations (Fig. 10a–d), the interaction strength between
nanodevice and molecule were examined through the binding energy. Figure10e
shows binding energy for the four nucleotides such as: deoxyadenosine monophos-
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Fig. 9 a Zero-bias transmission spectra as a function of energy for the device without any molecule
present in the pore; b zoom-in around Fermi level; c the projected density of states (PDOS) as a
function of energy; d zoom-in of the PDOS around Fermi level; the local current density e for
−0.18 eV and f for +0.18 eV. Reproduced from Ref. [56] with permission from the Royal Society
of Chemistry

phate (dAMP), deoxyguanosinemonophosphate (dGMP), deoxycytidinemonophos-
phate (dCMP) and deoxythymidine (dTMP). In particular, the dCMP is 0.65 eV and
dAMP is 0.13 eV, which is higher than corresponding binding energies on graphene
and MoS2 surfaces [31, 32]. Then, based on the binding energy values, one can infer
that dCMP will have the biggest resident time while dAMP will have the smallest
one. These results suggest that the device might also allow to identify individually
different target molecules due to their specific residence times into the nanopore.

Figure10f shows the transmission spectrum of the bare device (black dashed line)
and device with four nucleotides. These results reveal that one can distinguish the
nucleotides based on their transmission signature around the Fermi level. In general,
one can observe that T (E) decreases for all nucleotides relative to the bare nanopore
system. However, for one case (i.e., dGMP), there is an electron channel opening for
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Fig. 10 Fully relaxed structures for each nucleotide a dAMP, b dGMP, c dCMP, and d dTMP inside
the pore; e binding energies; f zero-bias transmission spectra in the vicinity of the Fermi level for
the empty pore (black dashed line) and for the pore filled with each nucleotide (colored full lines);
g sensitivity histograms for two specific energies (−0.18 and +0.18 eV). Reproduced from Ref.
[56] with permission from the Royal Society of Chemistry

the range of −0.06 to 0.0 eV relative to the Fermi energy, which could be attributed
to a charge redistribution (Δρ > 0) close to the carbon atoms at the left side of the
device’s pore [57].

The main issue concerning a biomolecule sensor is its capability of identifying
each molecule according to a specific property. From the experimental point of view,
it can be done by measurements of conductance changes in the device due to its
interaction with the target molecules. For evaluate the referred changes were used
the sensitivity as defined in Eq.2. Figure10g shows the sensitivity at gate voltages
Vg = ±0.18 V , for the device with each nucleotide at its most stable configuration.
Even though, one could present the sensitivity for fully energy spectra, herein, a
specific gate voltages were chosen, as at these energies higher contributions of C1
(C2) atoms to the total DOS are noted (Fig. 9c–d). For Vg negative (positive) we noted
−3.6%, 16.6%, 29.0%, and 8.3% (−25.2%,−19.9%, 36.2%, and 17.9%) for dAMP,
dGMP, dCMP, and dTMP, respectively. These results indicate that device possesses
a considerably sensitive resolution to distinguish each nucleotide electrically.

Figure11 shows the local current for each nucleotide at VG = −0.18 V, where
the intensity is represented by the size of the arrows. Combining the sensitivity (Fig.
10g) with the electrical local current of bare device (Fig. 9e), one notes that the
dCMP (dAMP) has the higher (lowest) sensitivity leading to bigger (smaller) local
current modulation. It is also verified that the current modulation is proportional to
sensitivity for dGMP and dTMP. In summary, it was demonstrated that the proposed
device can modulate the local current and distinguish each nucleotide electronically.
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Fig. 11 Local current density modulation is shown for a gate voltage of −0.18 eV. For each
nucleotide (dAMP, dGMP, dCMP and dTMP) inside the nanopore, the reference local current
(Fig. 2e) is altered due to the different interaction between the molecule and the device. Reproduced
from Ref. [56] with permission from the Royal Society of Chemistry

3.4 Surface Application with Graphene Functionalization

The growth or processing of graphene sheets can induce structural defects, which
becomes a challenge for graphene-based nanodevice applications. To overcome this
issue, the literature [19, 46, 63] has shown that these sheets can be modified with lig-
ands to tune their properties. Surface functionalization can alter how electron transfer
processes occur in graphene [16, 35], which can be applied to adjust physical and
chemical properties in these systems. Macedo et al. [36] reported an experimen-
tal and theoretical study of graphene-modified with 4-carboxyphenyl (4-CP) units,
indicating evidence of inhomogeneous charge distribution on the sheets. Here it was
employed DFT calculations using GGA exchange-correlation functional, details can
be found elsewhere [36].
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Fig. 12 Computational results of modified graphene. a Projected density of states per atom for (i)
pristine graphene, graphene functionalized with 4-CP (ii) in a neutral system and in configurations
(iii) CS-1 and (iv) CS-2. The yellow dash indicates the region of the Fermi energy between −0.5
and 0.5 eV. Kohn–Sham (KS) wavefunctions at b valence band maximum (VBM) and c conduction
band minimum for cases i, ii, iii, and iv. Because ii and iv are electronically degenerate, both VBM
states are shown. Atom colors: C (gray), O (red), H (white), KS wavefunction (blue spheroids).
Reproduced from Ref. [36] with permission from the Royal Society of Chemistry

Figure12 shows the projected density of states (PDOS), also the Kohn-Sham elec-
tronicwavefunctions (KS) for the valence bandmaximum (VBM) and the conduction
band minimum (CBM). It was explored the pristine graphene (i) and graphene-4CP
(ii) in a neutral system and in the configurations-1 (CS-1) (iii) and -2 (CS-2) (iv).

For the pristine graphene was observed the Dirac cone at the Fermi energy, show-
ing π type wavefunction for the VBM and CBM. For the graphene-4CP system
(ii), there is a hybridization between carbons atoms (graphene) with 4-CP at Fermi
energy, since the total number of electrons is odd. The KS states are localized in the
molecule/graphene bond in the VBM and its vicinity, while CBM states are similar
in comparison to the pristine system. This study also investigates the charge injec-
tion, allowing to understand the electron transfer mechanism at the atomic level.
The CS-1, denoted as the addition of one extra electron in the system. It generates
a small gap and moves the central peak towards the valence band, while its VBM
states are similar to the graphene-4CP in the neutral condition. Moreover, the two
electrons injection (CS-2) shifts the central peak to−0.9 eV below the Fermi energy.
It is worth noting that injection of the extra charge electron induces the non-uniform
charge distribution in the graphene-4CP surface, as indicated by the KS VBM and
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CBM wavefunctions. These results indicate an anisotropic charge distribution sup-
porting the experimental findings. It also provided the next step, suggesting that these
changes are related to the covalent anchoring in the sheet.

4 Conclusion

We presented a discussion regarding interactions between a solid surface and target
biomolecules based on quantum mechanic calculations. It was performed DFT in
combination with electronic transport method, analysis tools as well as applications
examples. It was considered peptide SAMs and biomolecules (DNA) on the three
possible detection mechanisms such as: on top, on edge, and nanopore. The on top
and on edge systems were also discussed from a functionalization point of view, and
their effects to improve devices electronic properties. Nowadays, the computer sim-
ulations in nanoscale systems enable a detailed atomic view of the electron transfer
process between surfaces and target biomolecules. The future of computer simu-
lations requires multidisciplinary studies between fields such as materials science,
solid-state physics, biology, physical chemistry, and bioengineering among others.
These advances will have meaningful impacts regarding bioelectronics, contributing
to warrant the widest possible dissemination to multidisciplinary scientists, working
on the cutting edge of surface science with a strong interest in applications toward
nanodevices, which would inspire future experiments.
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