®

Check for
updates

Symmetric and Asymmetric Schemes
for Lightweight Secure Communication

Simona Buchoveckd®, Rébert Lorencz, Jiff Bucek, and Filip Kodytek

Department of Information Security, Faculty of Information Technology, Czech Technical
University in Prague, Prague, Czech Republic
{simona.buchovecka, lorencz, jiri.bucek,kodytfil}@fit.cvut.cz

Abstract. The paper deals with the topic of lightweight authentication and
secure communication for constrained hardware devices such as IoT or embedded
devices. In the paper, protocols based on both symmetric and asymmetric schemes
are presented, utilizing a PUF/TRNG combined module, showing it is advanta-
geous to have single module that will allow generation of both TRNG and PUF at
the same time. This approach minimizes implementation requirements and opera-
tional resource consumption. Moreover, it allows the simplification of the overall
key management process as the proposed protocols do not require to store secrets
on the devices themselves. This paper is the extended and revised version of the
paper entitled “Lightweight Authentication and Secure Communication Suitable
for IoT Devices” [1] presented at the 6th International Conference on Information
Systems Security and Privacy (ICISSP) 2020.

Keywords: Authentication - Secure communication - PUF - TRNG - Key
generation - Key management - [oT security

1 Introduction

With the rising usage of smart devices interconnected in Internet of Things (IoT) the
importance of their security is growing. The primary security functions that needs to be
established are secure authentication for ensuring only properly authenticated devices
are connected to the system or network and secure communication to ensure the confi-
dentiality of transferred data. As necessary prerequisite for both there is a need for proper
use of cryptography, especially cryptographic key management, all with the constraint
of limited computing resources and low power consumption.

Different communication protocols were proposed for secure authentication and
communication in IoT world and are being implemented nowadays. These include
machine-to-machine/Internet of Things connectivity protocol (MQTT), Constrained
Application Protocol (CoAP), or Datagram Transport Layer Security (DTLS) that can
be integrated with CoAP. However, there is ongoing development and lighter variants of
the protocols are being continuously introduced — such as Lithe [36] or E-Lithe [20] as
a lightweight variant of DTLS [46], because the originals are quite resource exhaustive
for simple constrained devices.

© Springer Nature Switzerland AG 2022
S. Furnell et al. (Eds.): ICISSP 2020, CCIS 1545, pp. 97-114, 2022.
https://doi.org/10.1007/978-3-030-94900-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94900-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-94900-6_5

98 S. Buchovecka et al.

Another problem that is often being neglected is the need for cryptographic key
lifecycle and its management including the secure key generation, distribution and usage.
The generation of cryptographic keys is the first and essential step in the key life cycle.
The generated key needs to meet the strict requirement of its unpredictability, arising from
Kerckhoffs’ principle formulated by Auguste Kerckhoffs in 1883 [22]. The principle
states that the cryptographic system should be secure even if everything about the system,
except the key, is public knowledge. This principle is applied to all modern encryption
cryptosystems and the algorithms for encryption are publicly known. Therefore, the
key needs to be kept secret and unpredictable, so the attacker cannot easily guess it. In
hardware, the Random Number Generators (RNGs) or Physical Unclonable Functions
are used to generate unpredictable bitstream. Further, postprocessing of this bitstream
allows to generate the cryptographic key.

An RNG can be defined as a device or algorithm which outputs a sequence of random
(thus independent and uniformly distributed) numbers. In practical hardware implemen-
tations, the output sequence is represented as a bit stream of zeros and ones, that may
be further sliced and converted to the integers, as per the need of the implemented algo-
rithms. Nowadays, the RNGs are most often and most widely used for cryptographic
key generation. The RNG can utilize non-deterministic effects in analogue or digital
circuits such as noise generated in the circuit itself, including thermal noise, shot noise
or avalanche noise or in case of programmable devices the advantage can be taken from
the metastability of logic circuits. This is the resource and power efficient way of gener-
ating random bitstream. Once generated, keys should be stored in secure manner [19],
to be protected against attacker. According to sensitivity and criticality of the informa-
tion, various approaches for storage keys are used today in practical applications. For
most critical applications Hardware Security Modules (HSMs) are being used, however,
implementing the HSM function often required much more resources, than available on
the constrained device. Therefore, the properly defined and implemented key manage-
ment, consistent way of handling variety of cryptographic keys, including proper key
generation, key storage, key usage for various applications (authentication, access con-
trol, encryption) and possibilities of reusing traditional security mechanisms and ensur-
ing end-to-end integrity verification mechanisms in interconnected IoT and embedded
systems, as depicted in Fig. 1 is still a challenging task [32, 37, 41]. The need for proper
key management in particular applications of embedded systems and IoT started to be
raised in some research papers with regards to specific areas such as automotive context
[40] distributed sensor networks [8], or embedded systems in general [42].

Nowadays, PUF usage is promising to solve the issue of secure storage of crypto-
graphic keys. The concept of PUF was originally introduced in [35] showing that instead
of relying on number theory, the mesoscopic physics of coherent transport through a dis-
ordered medium can be used to allocate and authenticate unique identifiers by physically
reducing the medium’s microstructure to a fixed-length string of binary digits. Instead
of storing the key in memory, the key is generated at the time it is needed. Moreover,
PUFs are on-way, inexpensive to fabricate, prohibitively difficult to duplicate, admit
no compact mathematical representation, and are intrinsically tamper-resistant, making
them the ideal candidate for providing tamper resistant design for cryptographic key
generation and storage.

Symmetric and Asymmetric Schemes 99

This radically new approach to secure key storage utilizing PUF was defined in [19].
With regards to drawbacks of non-volatile storage, authors define the criteria for new
approach: key should not be permanently stored in digital form on the device, key should
be extracted from the device only when required, and after having been used, it should be
removed from all internal registers, memories, and locations and key should be somehow
uniquely linked to a given device such that it cannot be reproduced or the device with a
same key manufactured.

Therefore, PUFs usage is promising to solve the issue of secure storage of crypto-
graphic keys. Instead of storing the key in memory, the key is generated at the time it is
needed. A combined PUF/TRNG circuit used in our paper is therefore a suitable alter-
native for the purpose of key generation and authentication in lightweight cryptographic
applications, such as [oT devices and other embedded platforms.

Authentication Authority
Devices (Sensors etc.)

Fig. 1. Interconnected systems with an authentication authority [1].

The aim of this paper is to discuss protocols for authentication and secure commu-
nication utilizing PUF and TRNG, showing it is advantageous to have single module
that will allow generation of both TRNG and PUF at the same time, since it minimizes
implementation requirements and operational resource consumption. The goal we want
to achieve in order to simplify the key management on the simple hardware devices and
microcontrollers is to remove the requirent of storing secrets on the device itself. The
paper is the extended and revised version of the paper entitled “Lightweight Authenti-
cation and Secure Communication Suitable for IoT Devices” [1] presented at the 6th
International Conference on Information Systems Security and Privacy (ICISSP) 2020.
This extended paper introduces the new schemes based on asymmetric cryptography
(Algorithms 4 and 5). This brings the benefit that no shared keys need to be transmitted
over secure channel. Further, the paper extends original Case Study, with the discussion
on the length of the generated bitstream after all necessary corrections and experiment
proving the quality of the generated key material.

This paper is organised as follows, related work and current State-of-the-Art is sum-
marized in Sect. 2, providing us with the theoretical basis for our further work. In Sect. 3
our proposed approach to lightweight authentication and secure communication is pre-
sented, introducing the authentication algorithms based on symmetric and asymmetric
cryptographic schemes, as well as secure communication approach. Section 4 presents

100 S. Buchovecka et al.

a case study and feasibility review of proposed protocols with a specific PUF/TRNG
circuit. Section 5 concludes this paper.

2 State-of-the-Art and Technical Background

As stated in previous paragraphs, every protocol for authentication and secure com-
munication relies on security of used secret cryptographic keys and the security of the
cryptographic system is exclusively linked to the security of the key, as discussed for
instance in [14]. In critical applications, especially when used in an untrusted environ-
ment, cryptographic keys should never be generated outside the system and they should
never leave the system in clear. Therefore, if the security system is implemented in a
single chip (cryptographic system- on-chip), the keys should be generated inside the
same chip.

The minimum common requirements for key generation and storage are summarized
by Maes et al. [30]. Every system implementing a cryptographic algorithm needs a source
of true randomness that ensures unpredictable and unique fresh keys and a protected
memory that will shield the keys from unauthorized parties and will allow the reliable key
storage and usage. This implies the need for the true randomness source that will enable
generation of random bitstream. The traditional methods of generating cryptographic
keys in hardware and embedded systems are mainly based on true random number
generators (TRNGs). As stated by Schindler [39], ideal random number generators are
characterized by the property that the generated random numbers are independent and
uniformly distributed on a finite range. Various TRNG designs suitable for cryptographic
key generation include purely digital designs [12, 13], Phase-Locked Loops in designs
targeting FPGAs [9, 15], Random access memories [17] or multiple designs [5, 16, 27,
45] based on Ring Oscillators as a source of entropy. However, implementation of mere
TRNG is not enough to resolve the problem of secure key storage.

In [30] the idea of using PUF-based key generators is presented, as using PUF it is
possible to fulfill both requirements on secure key generation and storage at once. PUF
is a system responding to a challenge C with a response R, referenced in general as a
challenge-response pair. According to [29] PUF is best described as an expression of an
inherent and unclonable instance-specific feature of a physical object and as such has
a strong resemblance to biometric features of human beings, line fingerprints, and thus
cloning a PUF is extremely hard if not impossible at all. Therefore, there is no need for
a protected non-volatile memory since the randomness is measured only when needed.
However, the PUF output may slightly vary in different measurements, and it is still
challenging to get static PUF output as required by cryptographic schemes.

Existing PUF designs proposed for cryptographic applications include PUFKY based
on a ring oscillator PUF [30] providing low-failure rate, generation of read-once keys
[23] single-chip secure processor for embedded systems [44], arbiter PUF for device
authentication and secret key generation [43] and others.

Our goal is to enable a secure communication and authentication method using a
combined PUF/TRNG circuit that will allow generation of keying material using both
PUF and TRNG at the same time, utilizing benefits of each one. Session keys should
be periodically re-generated and are not stored in non-volatile memory in a long term,

Symmetric and Asymmetric Schemes 101

and as such the TRNG is ideal for this case. On the other hand, utilizing the PUF for
asymmetric keys looks promising - as the decryption key should remain private it is
ideal to utilize the PUF for key generation and storage, as the key remains private, never
leaves the device and cannot be copied nor cloned to another device.

There have been several similar works published recently. The very first attempts in
using PUF for the device authentication were rather simple. In [43] simple authentication
against authentication authority was discussed, using pre-generated challenge-response
pairs stored centrally. At the authentication time, the challenge is sent to the device and
response then compared with the output. Same challenge cannot be reused again due to
possible replay attacks, limiting the number of possible authentications of the device.
More sophisticated PUF-based authentication protocols were reviewed in [10]. The
work of [34] using reprogrammable non-volatile memory; Hammouri et al. [18] using
two arbiter PUFs; protocol based on logically reconfigurable PUFs [21] which allows
to recycle the challenge tokens; Reverse Fuzzy Extractor [47] allowing mutual authen-
tication; Slender PUF protocol [31] that does not expose the full PUF responses, only
the random subset instead; and Converse authentication Protocol [24] which provides
one-way authentication of the server.

The protocols discussed above do not consider the need of key establishment, which
is prerequisite in all the cases. Neither, the secure communication protecting the confi-
dentiality of transmitted data is taking into the consideration. The [10], further discuss
other caveats of the PUFs - responses being not perfectly reproducible, small output
space of strong PUFs or need of secure TRNG, that is substantial for most of the pro-
tocols. Another issue is the privacy preservation of the devices being authenticated [2,
4] — as the PUF responses are unique per device and cannot be deliberately altered once
device is manufactured, it is necessary to design the protocol in the way it preserves the
privacy of the device.

3 Proposed TRNG/PUF Module for Secure Authentication
and Communication

Our design aims to simplify the key management on the endpoint embedded device,
allowing the efficient and secure authentication and communication, both against the
Authentication Authority, as well as mutually across the interconnected devices. As
discussed in the previous sections, we aim to utilize the single circuit for key generation
using PUF and TRNG as a basic building block of the module so that there is no need
to store secrets on the hardware device.

The overall module as presented in [1] is depicted in Fig. 2. It provides PUF authen-
tication and PUF/TRNG based key generation. For the authentication, the PUF is used,
since it provides randomness intrinsically present in the device and utilizes the fact that
the generated response is unique per device. Since there is a need for both static key, as
well as ephemeral keys, combination of PUF and TRNG is used in this case — the PUF
is used for generation of static (private) key that never leaves the device, thus utilizing
all the advantages of PUF, while TRNG is used for generation of ephemeral, one-time
keys, that are shared with other communicating parties.

102 S. Buchovecka et al.

Asymmetric schemes are suitable if the private key is easily generated from random
sequence by a Key Derivation Function (KDF), such as PBKDF2 [38]. For example,
ElGamal encryption [11] and DSA/ECDSA signature schemes can be used, if good
quality public parameters are chosen (generation of the public key from a private key
is denoted as GENPK in Fig. 2). On the contrary, an RSA key requires more complex
processing including secure prime generation. TRNG output is also used to generate
random nonce and padding data.

Challenge
v

PUF/TRNG circuit

P T
Key K,
Nonce PUF Response ‘ TRNG output
Helper data
Encryption Error Correction |«
v
E« (Response || Nonce) . -
K
‘ KDFpyp ‘ ‘ KDFrgng
v v v
Static / Ephemeral ; Nonce
Symmetric Key

v \

Private Static Private Ephemeral
Key ublic Key
Parameters i
v v
GENPK 4 —{ GENPK

v v

Public Key Public/Shared Key

Fig. 2. Embedded module for secure authentication and communication. KDF is a Key Deriva-
tion Function, GENPK generates a public key from a private key and public parameters. Error
Correction is used to obtain a stable key material from the PUF Response (see Sect. 3.1) [1].

3.1 Authentication Against Central Authentication Authority

Before the device is connected to the network and is allowed to communicate it must
be properly authenticated. Since the PUF responses are unique per each device, and
are intrinsically random, it makes PUF the ideal cryptographic primitive for device
authentication. The authentication protocol against Authentication Authority using pre-
generated challenge-response pairs that can be easily implemented in hardware devices
is quite straightforward. This protocol does not require the PUF to have a large space of
challenge-response pairs (even one challenge-response pair is enough). The authentica-
tion protocol consists of two phases — secure enrollment phase and authentication phase
itself and is depicted in Algorithm 1 [1].

The Enrollment phase is critical for the security of all protocols based on PUFs,
and (analogous to biometric authentication methods) must be performed in a secure

Symmetric and Asymmetric Schemes 103

environment. We assume that a suitable environment can be for example during the
manufacturing process, but specific means are not elaborated in this paper.

During the Enrollment phase of Algorithm 1, the challenge/response pair(s) (C, R)
are measured from the targeted device and securely stored at the central authenticating
authority (AA), that can be either integrated into the gateway or be represented by
separate device that the gateway is querying during authentication process. A database
DBp; of the pairs (C, R) is created for each device D;. Furthermore, the public key
(PKaa) of the authenticating authority is pre-set on the device, so as the authentication
data can be securely transferred. For this purpose, an asymmetric scheme (ElGamal) can
be used, as proposed in the section above. We assume that PKap is protected against
unauthorized changes (by the tamper-evidence property of the PUF).

The first 4 steps of the Enrollment phase are common for all 3 algorithms presented
in this paper. The database DBp; is used also in the Authentication phases of Algorithms
2-3.

Algorithm 1: Authentication against central Authentication Authority [1].

Enrollment phase (Secure environment)
Common for Algorithms 1 — 3:

1. AA — D1: Challenges (Cy, G, ...)

2. D1: Ry = PUF(Cl), Ry = PUF(Cz)
3. D1 — AA: Responses (R, Ry, ...)

4. AA: Store (G, Ri) to DBp;

Specific only for Algorithm 1:
5. AA — D1: Public key PKaa
6. D1: Store(PKaa)

Authentication phase for D1
AA: Choose (C, R) from DBp;
AA — D1: Challenge C, Nonce N
D1: R’ =PUF(C)
D1 — AA: CR = Epc,, (R || N)
AA: (R’,N’) = Dsg,,(CR)
Compare(R = R’), Compare(N = N’)

S A S o

Every time device is connected to the network and needs to communicate the Authen-
tication phase of Algorithm 1 is executed. AA randomly chooses one of the challenges
C and sends it together with the nonce value N to the device to be authenticated. The
nonce value is used to prevent simple replay attacks and allows each challenge-response
pair to be used repeatedly. On the device that is being authenticated the appropriate
PUF response is generated, concatenated with nonce value and encrypted with public
key of the Authenticating Authority. Authenticating Authority then compares (strictly)
if the decrypted nonce value N’ = N. Since the PUF response may slightly vary across
various measurements, a predetermined number of faulty bits in R’ is tolerated. If both

104 S. Buchovecka et al.

matches, the device is successfully authenticated. The disadvantage of Algorithm 1 is
that it only performs authentication and does not provide a cryptographic context for
future communication.

Authentication of a single device (D1) to the AA without asymmetric cryptography
is depicted in Algorithm 2 [1]. (The Enrollment phase is the same as in Algorithm 1,
steps 1-4) This method includes generating a shared symmetric key K, which requires a
stable error-free PUF output. This is achieved by using an error-correcting code (ECC),
denoted in the algorithm by its functions Encode and Decode. This code must have
enough redundancy and structure to correct the maximum amount of errors assumed in
the PUF when operated under various conditions (voltage, temperature etc.).

Choosing a suitable ECC depends on the bit error rate and length of PUF response
while meeting the required corrected output length. The computational power of the
device is also a limiting factor. In the case of “lightweight” devices, simple codes (such
as a repetition code) are preferable.

The helper string H is a distance from the raw PUF response R to the random
codeword Encode(r). It is computed by the AA (step 4 of Algorithm 2). The device then
uses it to recover the key material (step 8), and subsequently derive the key K.

Algorithm 2: Authentication of a device D1 to the AA. [1].

Authentication phase — using symmetric cipher
1. D1 — AA: Call(D1)

2. AA: r=TRNG()

3. Choose (C, R) from DBp;

4. H =R @ Encode(r)

5. K = KDF(r)

6. AA — D1: Challenge C, Helper string H
7. D1: R =PUF(C)

8. r = Decode(R’ @ H)

9. K = KDF(r)

10.D1 « AA: Authentication + Encryption with K

The shared key K can be used for authentication and encrypted communication, as
opposed to Algorithm 1, which covers only authentication, limiting its usefulness. On
the other hand, Algorithm 1 does not require the generation of a helper string, nor does
it need any error correction codes.

Symmetric and Asymmetric Schemes 105

3.2 Mutual Device Authentication

Not only the device needs to be authenticated to central authority when connected to the
network, the devices must be mutually authenticated before they start to communicate,
as well. Similarly, as in the previous case, central authenticating authority stores the pre-
generated challenge-response pair(s), and acts as trusted 3rd party. This time though,
a shared symmetric key is established between the two devices, and a conventional
symmetric authenticated and encrypted session can follow afterwards. The goal is to
use the PUFs in both devices D1 and D2, but not transmit any PUF response over the
network. Due to the one-wayness of the hash functions used, no device gets to know
other device’s PUF response, even if it monitors all communication. An error correcting
code is used to ensure stable PUF outputs. The codewords are selected randomly from
the code space by the AA. The overall process is described in Algorithm 3 [1].

Algorithm 3: Mutual authentication of D1 and D2 using AA. [1].

Authentication phase — using symmetric cipher
D1 — AA: Call(D1, D2)

1

2 AA: 1= TRNG()

3 ro2 = TRNG()

4. Choose (Cps, Rp1) from DBp;
5. Choose (Cpy, Rpz) from DBp;
6 Hp1 = Rpx @ Encode(rp1)

7 Hp2 = Rp2 @ Encode(rp,)

8 r = Hash(rp1) @ Hash(roz)

9

. AA — D1: (Cpy, Hpy, 1)
10. AA — D2: Call(D1, D2), (Cpz, Hoa, 1)

11. D1: R'Dl = PUF(CDl)

12. ro1 = Decode(R’p1 @ Hpi)

13. Hash(rpz2) = Hash(rp1) @ r

14. K = KDF(Hash(rp:1) | | Hash(rpz))
15. D2: R'Dz = PUF(C[)z)

16. b2 = DeCOde(Rloz ® HDz)

17. Hash(rp1) = Hash(rpa) @ r

18. K = KDF(Hash(rp:) | | Hash(rpz))

19. D1 < D2: Authentication + Encryption with K

Let us assume that D1 wants to authenticate with D2 and set up a secure commu-
nication channel. D1 initiates the process by calling the AA with the identification of
D1 and D2 (Call(D1, D2)). AA contains the complete table of challenges and responses
(Cp1, Rpy etc.). An error correcting code is chosen that can correct enough errors to
make the PUF response stable, with the corresponding functions Encode and Decode.
AA generates two random components p1, rpz from the set of preimages, and encodes

106 S. Buchovecka et al.

them, thereby forming randomly chosen codewords. The code length should correspond
to the PUF response length. Helper strings Hp; and Hpy are created by XORing the
expected PUF response (Rpi, Rpy) to the corresponding codeword. The two random
components are hashed and the hashes XORed to form r.

To each of the devices, a triplet (Cp;, Hp;, r) with the challenge, helper string, and r
is sent. Also, in step 10, AA relays the request for communication from D1 to D2. Each
of the devices challenges its own PUF to get the response (R’p1, R’p2). By XORing the
response with the corresponding helper string (Hpi, Hp2), resulting with a codeword
with errors, which is then corrected by the Decode function. This way, each device
recovers its component (rpg, rp2). D1 recovers the value Hash(rpy) by XORing r with
the hash of its rpy, and vice versa. Moreover, both devices know the hashes of rp; and
p2, and can derive the shared key K by applying a key derivation function KDF on the
concatenation of the hashes.

The hashing of rpy, rp> is done to hide the PUF responses from the other device. If
D1 monitors the communication, it will know (Cp;, Cp2, Hpi, Hpy, 1). It can recover
p1, and if the hashing were not done, and r would be equal to rp; @ rpy directly, D1
would compute rp>, and using the helper string Hp», it could discover the PUF response
Rpz. We would have to either trust all devices in the network or use all challenges only
once and discard them. In our case, because we do use hashing of rpy, rp2, D1 only gets
Hash(rpy), and the one-wayness of the hash function prevents it from discovering Rp;.
Thus, we can reuse the challenges for future authentications.

PUF response correction code choice depends on the number of bitflips inherent in
the PUF operation. The code length and codeword distance determine the number of
information bits, thus the length of rpy, rpy, and limit the entropy contained in r. By
using the same challenge with multiple random rp;, we can extract more bits of entropy
from the PUF. The entropy of the resulting shared key K is determined by the properties
of used hash functions and KDF, and the inputs. If chosen correctly, it is as high as the
entropies of rpy, rpa. The key K is always derived from randomly chosen codewords,
and therefore for the same PUF challenges (Cpi, Cp»), a different K is obtained.

3.3 Secure Communication Using Asymmetric Encryption Scheme

An asymmetric scheme provides us with benefit that there are no shared keys and the keys
do not need to be transferred over secure channel. Moreover, using PUF we do not need
to store the secret key on the device, instead, the key is generated during initialization
phase (e.g. on boot of the device or after longer period of inactivity), when needed. We
propose to use the asymmetric ElGamal encryption scheme, since there are no specific
requirements on private keys (such as requirement of private numbers in RSA), apart from
the requirement that the private key is from an appropriate range. For digital signatures,
either ElGamal or DSA, or even ECDSA can be used. In subsequent text, we assume
appropriate keys are generated depending on chosen algorithms. A private-public key

Symmetric and Asymmetric Schemes 107

pair of each device must be generated and the public key stored in the Authentication
Authority. In contrary to Algorithms 1-3, no challenge-response pairs are necessary to
store in the authority. The private key is not stored but deleted immediately after using
for generating the public key. This process is described by Algorithm 4.

Algorithm 4: Enrollment of asymmetric key of device D1 with the AA.

Enrollment phase (Secure environment)
AA — D1: Public parameters PP, Public key PKaa

1
2. D1: Store PP, PKaa

3 Choose challenge Cp;

4, R[)1 = PUF(CDl)

5. ro1 = TRNG() so that Encode(rp:) is a random codeword
6 HD1 = Encode(rDl) @ RDl

7 Store (CD1, HDl)

8 Private key SKp; = KDF(rps, PP)

9 Public key PKpy = GENPK(SKDL PP)

10. D1 — AA: Public key PKp;
11. AA: Store (D1, PKp1)

After the keys are enrolled in the Authentication Authority, any device D1 can use
it to establish a secure channel by requesting a fresh and authentic public key of its peer
D2 from the AA. The public key query Q1 is created by encrypting the identity of D2
and a random nonce N1 with the AA’s public key. The answer Al contains a signed
triplet with the identification of D2, its public key PKp», and the nonce N1. The device
D1 verifies this signature using the AA’s public key PKaa.

The device’s own private key SKp; is generated using its PUF and the previously
stored challenge Cp; and helper string Hp; (steps 8 and 9 of Algorithm 5). This private
key is generated only for the subsequent signing operation and then deleted. It is not
stored in the device. A new symmetric key K is generated randomly using the device’s
TRNG and sent encrypted with the peer’s public key PKp, and signed with SKp1. Device
D2 then verifies and decrypts this message to get the symmetric key K, as described in
Algorithm 5.

108 S. Buchovecka et al.

Algorithm 5: Mutual authentication of D1 and D2 using AA.

Authentication phase — using asymmetric cipher

1. D1: N1=TRNG() Generate a random challenge to ensure freshness
2. Ql= EPKAA(DZ’ Nl)

3. D1— AA:Call(D2, Q1)

4. AA: Al=Sg, (D2, PKpy, N1)

5. AA—DI1:Al

6. D1: (D2, PKoy, N1') = Ve, (A1)

7. Compare(N1’ = N1), Compare(D2’ = D2)

8 Rp1 = PUF(Cpa1) Use PUF to recall D1’s private key
9. SKDl = KDF(Decode(RDl @ HDl), PP)

10. K = TRNG()

11. CK= SSKDl(EPKDZ(K))

12. D1 — D2: Call(D1, D2, CK)

13. D2: N2 =TRNG()
14. Q2 = Ep, (D1, N2)

15. D2 — AA: Call(D1, Q2)
16. AA: A2 =S (D1, PKpy, N2)

17. AA — D2: A2
18. D2: (DY, PKp1, N2') = Vi, (A2)

19. Compare(N2’ = N2), Compare(D1’ = D1)

20. Rp2 = PUF(Cpa) Use PUF to recall D2’s private key
21. SKpz = KDF(Decode(Rp2 @ Hpz), PP)

22. K'= Dk, (Veky, (CK))

23. D1 <> D2: Authentication + Encryption with K

3.4 Secure Communication

After the authentication process described in the previous section, a shared key is estab-
lished. At this point, a conventional symmetric authentication and session key derivation
process can be performed using block ciphers such as AES. Several lightweight block
ciphers suitable for embedded systems or sensor networks has been proposed, such as
PRESENT [3, 28] with an 80-bit key. This allows generating the key in a single run of
PUF circuit for most of the PUF designs and implementations, with no further stretching
needed.

All presented algorithms in this Section utilized only PUF on the side of the devices
and TRNG was used on AA. TRNG functionality on the devices is used after the secure

Symmetric and Asymmetric Schemes 109

channel establishment (steps 10 and 19) in dependence on the communication protocols.
Random numbers are needed in many classical authentication protocols [33] as well as
modern internet standards such as DTLS [46].

4 Feasibility Review and Testing

As results from the previous paragraphs, a combined PUF/TRNG circuit seems to be a
suitable alternative for the purpose of key generation and authentication in lightweight
cryptographic applications, such as IoT devices and other embedded platforms. Such
PUF/TRNG based on Ring Oscillators — ROPUF circuit was presented in our previous
work [6, 7, 25, 26], so the idea of the single RO circuit can be used both for PUF and
TRNG generation was validated. This circuit is depicted in Fig. 3. As the design of the
protocols we present relies on the module that allows secure and efficient generation
of both TRNG and PUF. We used the module to test the implementation feasibility of
proposed protocols.

In order to validate the proposed authentication process outlined in Sect. 3, we
performed an experiment on one device containing the ROPUF design [6, 7, 25, 26].
For this purpose, we used a ROPUF design that consisted of 2 groups of ring oscillators
(ROs), each group contained 150 ROs. Only ROs from different groups were selected to
form a pair, which was then used to generate part of the PUF response. We extracted 3
bits from each RO pair and enhanced the stability of the PUF output by applying Gray
code on these bits [26]. The selected bits from all of the RO pairs are concatenated to
create the PUF response.

In the first case, we generated the PUF responses from 150 pairs of ROs (each RO
from each group was used only once), in the other, each RO was used five times (one
RO from the first group is paired with 5 ROs from the other group) resulting in 750 RO
pairs. These two setups achieved 450 and 2250 bits of PUF response respectively. In
both cases, we performed 1000 measurements, from which we obtained a majority PUF
response - Rp; (we determined the majority for each position of the PUF output).

In our experiment, the block length of 9 bits proved to be sufficient for the repetition
code. In order to create the helper string Hp;, we need to generate 50 or 250 random bits
(rpj) that are then encoded by the repetition code and XORed with the major PUF output,
forming the helper string Hp;. This process is related to steps 2 and 4 in Algorithm 2.

The example using a simple repetition code with 5-bit block length is depicted in
Fig. 4. On the device, the PUF generates a response R’p; that is corrected by the helper
string Hp;, corresponding to steps 7 and 8 in Algorithm 2. After correction, we obtained
50 and 250 bits respectively. These bits can be used to create a cryptographic key. For
Algorithm 2, we can simply represent KDF as the selection of the first 128 bits (from
rpi) for symmetric cipher AES.

The same can be applied for Algorithm 3, where two devices are authenticating each
other. However, this algorithm is more complex, since it requires implementation of
suitable hash function. In case of Algorithm 1, no KDF is needed, since the AA’s public
key is stored on the device and PUF is not used to derive any cryptographic key.

Implementation of more efficient error would allow to increase the number of bits
in generated bitstream after correction even more.

110 S. Buchovecka et al
3 multiplexer
= —ce OF s aQl—
= froi .
il foy I RS Flip-flop
[}
x R Q -
9;/‘ Counter 1 . —8
_ —/'Io] @ result
CIR i
- enable ‘ S/O)l
3 _ [
= o s 9
%_r' a—— RS Flip-flop
[R a
3 0] Counter 2
RRRRCCiY
— IR

Fig. 3. PUF/TRNG circuit based on Ring Oscillators, serving as basic building block for proposed
authentication and secure communication scheme [7, 25].

Correcﬁng Stri ng MajOI" PUF Output RDi: 10110| 01100| .. |01011
creation Hp;

Encoded random (rp, = 10...1): @A | 00000 ...|11111

Hpi = RoiB Encode(Rp;): 01001|01100]...]10100

PUF output R’y 11110|00000]...]0101

PUF output
correction and
key generation

Correcting string Hp: 01001]01100].../10100
Result of (R’p; P Hpi): \10111/|0110c3|...|\1111o/

majority majority majority

Key: rp = Decode (R'5PHp): 1 o -

Fig. 4. Example of a simple repetition code with 5-bit groups [1].

In Fig. 5, a case study of the enrollment phase for the asymmetric key derivation
according to Algorithm 4 is presented. In this case, we consider 750 ring oscillator
pairs, using 3 bits from each pair [26]. This yields 2250 bits of raw PUF response, of
which we use 2200 bits for key generation, using a 11 times repetition code. For this
purpose, a 2200-bit helper string was derived from a 2200-bit random codeword. For this
example, we consider a 200-bit private key SK of ElGamal asymmetric scheme (which
corresponds to approx. 100-bit equivalent symmetric key size). The challenge C and
helper string H are subsequently used to regenerate the same SK in Algorithm 5, lines
8,9, 20, 21. The attained key lengths and the fact that the asymmetric scheme is used
only once for the authentication correspond with the intended use for authentication and
secure communication of IoT devices.

The experiment showed and confirmed that it is possible to generate key material
for the proposed protocols, using the state of the art PUF/TRNG designs, in sufficient
length and quality.

Symmetric and Asymmetric Schemes 111

750 RO pairs

200-bit
c i

TRNG
r

Encode
(repetition x 11)

2200-bit PUF
response
R

2200-bit random
codeword
®
|
2200-bit
helper string PP
H

200-bit SK

PK

Fig. 5. Example of asymmetric key derivation for enrollment.

5 Conclusions

For the security of embedded systems, IoT and constrained devices, it is inevitable to
implement the algorithms that will enable the secure authentication before the device is
allowed to access the network; and secure communication to protect the confidentiality
of transmitted data afterwards. In this paper we presented a set of lightweight algorithms
that enable these goals even with constrained hardware, while avoiding the need to store
secrets on the devices.

Several variants of authentication and secure communication protocols are presented
in the paper — authentication against central authority, mutual device authentication using
symmetric scheme and asymmetric encryption scheme suitable for key exchange. The
combination of the protocols allows establishment of a secure communication channel —
first, the devices are authenticated, then the shared session key is established, and finally,
the communication may take place securely. The proposed protocols are built on PUF
and TRNG as basic cryptographic primitives, as they can be efficiently implemented
even in constrained devices.

Finally, a practical experiment was performed. By implementing the proposed
design, following up with measurement of generated PUF responses and TRNG bistream,
the feasibility of the proposed ideas was validated and confirmed. Our feasibility study
and testing is utilizing the implementation a circuit combining TRNG and PUF into a
unified module based on ring oscillators as it was presented in our previous work [6, 7,
25, 26] that was proved to be implementation and resource consumption efficient.

The implementation of the security measures in simple IoT devices or embedded
devices is often neglected, as it is generally perceived as implementationally complex
and resource exhaustive. In this paper we presented the approach and the methods that

112 S. Buchovecka et al.

may be used to enhance the security posture of such simple devices with constrained
hardware resources, without significant overhead.

Acknowledgements. The authors acknowledge the support of the OP VVV MEYS funded project
CZ.02.1.01/0.0/0.0/16_019/ 0000765 “Research Center for Informatics”.

References

1. Buchoveckd, S., Lérencz, R., Bucek, J., Kodytek, F.: Lightweight authentication and secure
communication suitable for IoT devices. In: Proceedings of the 6th International Conference
on Information Systems Security and Privacy - Volume 1: ICISSP, pp. 75-83. ISBN 978-989-
758-399-5 (2020). https://doi.org/10.5220/0008959600750083

2. Aysu, A., Gulcan, E., Moriyama, D., Schaumont, P., Yung, M.: End-to-end design of a PUF-
based privacy preserving authentication protocol. In: Giineysu, T., Handschuh, H. (eds.) CHES
2015. LNCS, vol. 9293, pp. 556-576. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48324-4_28

3. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Ver-
bauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450-466. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74735-2_31

4. Bolotnyy, L., Robins, G.: Physically unclonable function-based security and privacy in
RFID systems. In: Fifth Annual IEEE International Conference on Pervasive Computing
and Communications. PerCom 2007. IEEE (2007)

5. Bucci, M., Germani, L., Luzzi, R., Trifiletti, A., Varanonuovo, M.: A high-speed oscillator-
based truly random number source for cryptographic applications on a smart card IC. IEEE
Trans. Comput. 52(4), 403—409 (2003)

6. Buchovecka, S., Kodytek, F., Lérencz, R., Bucek, J.: True random number generator based
on ROPUF circuit. In: 2016 Euromicro Conference on Digital System Design (DSD). IEEE
(2016)

7. Buchoveckd, S., Kodytek, F., Lérencz, R., Bucek, J.: True random number generator based
on ring oscillator PUF circuit. Microprocess. Microsyst. 53(2017), 33—41 (2017)

8. Chan, H., Gligor, V.D., Perrig, A., Muralidharan, G.: On the distribution and revocation
of cryptographic keys in sensor networks. IEEE Trans. Dependable Secure Comput. 2(3),
233-247 (2005)

9. Deak N., Gyorfi T., Marton K., Vacariu L., Cret, O.: Highly efficient true random number
generator in FPGA devices using phase-locked loops. In: 20th International Conference on
Control Systems and Computer Science, pp. 453-458. IEEE (2015)

10. Delvaux,J.,Gu, D., Schellekens, D., Verbauwhede, I.: Secure lightweight entity authentication
with strong PUFs: mission impossible? In: Batina, L., Robshaw, M. (eds.) CHES 2014.
LNCS, vol. 8731, pp. 451-475. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44709-3_25

11. ElGamal, T.: A public-key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Trans. Inf. Theor. IT-31(4), 469-472 (1985)

12. Epstein, M., Hars, L., Krasinski, R., Rosner, M., Zheng, H.: Design and implementation of a
true random number generator based on digital circuit artifacts. In: Walter, C.D., Kog, C.K.,
Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 152-165. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45238-6_13

13. Fairfield, R.C., Mortenson, R.L., Coulthart, K.B.: An LSI random number generator (RNG).
In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 203-230. Springer,
Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_18

https://doi.org/10.5220/0008959600750083
https://doi.org/10.1007/978-3-662-48324-4_28
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-662-44709-3_25
https://doi.org/10.1007/978-3-540-45238-6_13
https://doi.org/10.1007/3-540-39568-7_18

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Symmetric and Asymmetric Schemes 113

. Fischer, V.: A closer look at security in random number generators design. In: Schindler,

W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 167-182. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29912-4_13

Fischer, V., Drutarovsky, M.: True random number generator embedded in reconfigurable
hardware. In: Kaliski, B.S., Kog, ¢K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 415-
430. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_30

Golic, J.D.J.: New methods for digital generation and postprocessing of random data. IEEE
Trans. Comput. 55(10), 1217-1229 (2006)

Gyorfi, T., Cret, O., Suciu, A.: High performance true random number generator based on
FPGA block rams. In: International Symposium on Parallel and Distributed Processing.
IPDPS 2009, pp. 1-8. IEEE (2009)

Hammouri, G., Oztiirk, E., Sunar, B.: A tamper-proof and lightweight authentication scheme.
J. Pervasive Mob. Comput. 6(4), 807-818 (2008)

Handschuh, H., Schrijen, G.J., Tuyls, P.: Hardware intrinsic security from physically unclon-
able functions. In: Sadeghi, A.R., Naccache, D. (eds.) Towards Hardware-Intrinsic Security.
ISC. Springer, Heidelberg. https://doi.org/10.1007/978-3-642-14452-3_2

Haroon, A., Akram, S., Shah, M.A., Wahid, A.: E-lithe: a lightweight secure DTLS for IoT.
In: 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), pp. 1-5. IEEE (2017)
Katzenbeisser, S., Kocabasg, U., Van Der Leest, V., Sadeghi, A.R., Schrijen, G.J., Wachsmann,
C.: Recyclable PUFs: logically reconfigurable PUFs. J. Cryptogr. Eng. 1(3), 177-186 (2011)
Kerckhoffs, A.: La cryptographie militaire. J. des sciences militaires 9, 538 (1883)
Kirkpatrick, M.S., Bertino, E., Kerr, S.: PUF ROKs: generating read-once keys from physi-
cally unclonable functions. In: Proceedings of the Sixth Annual Workshop on Cyber Security
and Information Intelligence Research. ACM (2010)

Kocabag, U., Peter, A., Katzenbeisser, S., Sadeghi, A.-R.: Converse PUF-Based authentica-
tion. In: Katzenbeisser, S., Weippl, E., Camp, L.J., Volkamer, M., Reiter, M., Zhang, X. (eds.)
Trust 2012. LNCS, vol. 7344, pp. 142-158. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-30921-2_9

Kodytek, F., Lérencz, R.: A design of ring oscillator based PUF on FPGA. In: 2015 IEEE
18th International Symposium on Design and Diagnostics of Electronic Circuits and Systems
(DDECS). IEEE (2015)

Kodytek, F., Lérencz, R., Bucek, J.: Improved ring oscillator PUF on FPGA and its properties.
Microprocess. Microsyst. 47, 55-63 (2016)

Kohlbrenner, P., Gaj, K.: An embedded true random number generator for FPGAs. In: Pro-
ceedings of the 2004 ACM/SIGDA 12th International Symposium on Field Programmable
Gate Arrays. ACM (2004)

McKay, K.A.: Report on Lightweight Cryptography — NIST publication (2017). https://doi.
org/10.6028/NIST.IR.8114

Maes, R.: Physically Unclonable Functions. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-642-41395-7

Maes, R., Van Herrewege, A., Verbauwhede, I.: PUFKY: a fully functional PUF-Based cryp-
tographic key generator. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428,
pp. 302-319. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_18
Majzoobi, M., Rostami, M., Koushanfar, F., Wallach, D.S., Devadas, S.: Slender PUF protocol:
a lightweight, robust, and secure authentication by substring matching. In: IEEE Symposium
on Security and Privacy (SP), pp. 33—44 (2012)

Malina, L., Hajny, J., Fujdiak, R., Hosek, J.: On perspective of security and privacy-preserving
solutions in the Internet of Things. Comput. Netw. 102, 83-95 (2016)

Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC
Press, Boca Raton (1996)

https://doi.org/10.1007/978-3-642-29912-4_13
https://doi.org/10.1007/3-540-36400-5_30
https://doi.org/10.1007/978-3-642-14452-3_2
https://doi.org/10.1007/978-3-642-30921-2_9
https://doi.org/10.6028/NIST.IR.8114
https://doi.org/10.1007/978-3-642-41395-7
https://doi.org/10.1007/978-3-642-33027-8_18

114

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

S. Buchovecka et al.

Oztiirk, E., Hammouri, G., Sunar, B.: Towards robust low-cost authentication for pervasive
devices. In: IEEE Conference on Pervasive Computing and Communications, PerCom (2008)
Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions. Science
297(5589), 2026-2030 (2002)

Raza, S., Shafagh, H., Hewage, K., Hummen, R., Voigt, T.: Lithe: Lightweight secure CoAP
for the Internet of Things. IEEE Sens. J. 13(10), 3711-3720 (2013)

Roman, R., Zhou, J., Lopez, J.: On the features and challenges of security and privacy in
distributed internet of things. Comput. Netw. 57(10), 22662279 (2013)

RSA Laboratories: PKCS #5 V2.1: Password Based Cryptography Standard (2012)
Schindler, W.: Random number generators for cryptographic applications. In: Kog, C.K. (ed.)
Cryptographic Engineering. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-718
17-0_2

Schleiffer, C., Wolf, M., Weimerskirch, A., Wolleschensky, L.: Secure key management-a
key feature for modern vehicle electronics. Technical Report, SAE Technical Paper (2013)
Sicari, S., Rizzardi, A., Grieco, L.A., Coen-Porisini, A.: Security, privacy and trust in Internet
of Things: the road ahead. Comput. Netw. 76, 146-164 (2015)

Sklavos, N., Zaharakis, I.D.: Cryptography and security in Internet of Things (IoTs): models,
schemes, and implementations. In: IEEE Proceedings of the 8th IFIP International Conference
on New Technologies, Mobility and Security (NTMS 2016), Larnaca, Cyprus (2016)

Suh, E.G., Devadas, S.: Physical unclonable functions for device authentication and secret
key generation. In: Proceedings of the 44th annual Design Automation Conference, pp. 9-14.
ACM (2007)

Suh, E.G., O’Donrnell, C., Devadas, S.: AEGIS: a single-chip secure processor. IEEE Des.
Test Comput. 24, 6 (2007)

Tkacik, T.E.: A hardware random number generator. In: Kaliski, B.S., Kog, ¢K., Paar, C.
(eds.) CHES 2002. LNCS, vol. 2523, pp. 450—453. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-36400-5_32

Tschofenig, H., Fossati, T.: Transport Layer Security (TLS)/Datagram Transport Layer
Security (DTLS) Profiles for the Internet of Things. RFC 7925, July 2016

Van Herrewege, A., et al.: Reverse fuzzy extractors: enabling lightweight mutual authen-
tication for PUF-Enabled RFIDs. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397,
pp. 374-389. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3_27

https://doi.org/10.1007/978-0-387-71817-0_2
https://doi.org/10.1007/3-540-36400-5_32
https://doi.org/10.1007/978-3-642-32946-3_27

	Symmetric and Asymmetric Schemes for Lightweight Secure Communication
	1 Introduction
	2 State-of-the-Art and Technical Background
	3 Proposed TRNG/PUF Module for Secure Authentication and Communication
	3.1 Authentication Against Central Authentication Authority
	3.2 Mutual Device Authentication
	3.3 Secure Communication Using Asymmetric Encryption Scheme
	3.4 Secure Communication

	4 Feasibility Review and Testing
	5 Conclusions
	References

