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Abstract. In this paper, we discuss our and related work in the domain
of efficient parallel optimization, using Stochastic Gradient Descent, for
fast and stable convergence in prominent machine learning applications.
We outline the results in the context of aspects and challenges regarding
synchronization, consistency, staleness and parallel-aware adaptiveness,
focusing on the impact on the overall convergence.
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1 Introduction

Among the most prominent methods used for common optimization problems in
data analytics and Machine Learning (ML), especially for problems tackling large
datasets using Artificial Neural Networks (ANN), is the widely used Stochastic
Gradient Descent (SGD) optimization method, introduced by Augustin-Louis
Cauchy back in 1847. By iteratively processing data, SGD enables Artificial
Neural Network (ANN) training, Logistic Regression, Support Vector Machines,
and other ML methods. Let us use ANNS as an example. ANNs build on the
concept of biological neurons, where the model of a neuron is called a perceptron.
Several perceptions can be used in connected layers, forming an ANN that can
be trained on different ML tasks. A perceptron consists of a weight, a bias, and
a non-linear activation function. The network will produce an output for a given
input, and this output can be compared to an expected output through a loss
function. From this point, the training process becomes a numerical optimization
problem where the sets of weights and biases producing the lowest error are the
target. On one hand large datasets generally allow for more complex tasks and
better generalizing capabilities of the model; on the other hand they demand
larger computational time. Parallelism is one of the major way for both speeding
up model training and handling large datasets.
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Many algorithms for ML are far from trivial to parallelize. Taking SGD as
the primary example, but any other iterative algorithm as well, usually every
iteration requires the computation of the previous iteration to be completed,
and available to be used in the next. As a consequence, parallelization would
impose either that threads work in parallel only during each individual iteration
and synchronize at the end in a lock-step manner, or relax the semantics of
the original algorithm. These two main approaches to parallel SGD came to
be known as synchronous and asynchronous parallel SGD, respectively, with
fundamentally different properties in scalability, convergence and applicability.

It is easy to realize that synchronous parallelization suffers limitations in
scalability due to the fact that each iteration is only as fast as the slowest con-
tributing thread. Hence, slow threads, i.e. stragglers, present particularly in het-
erogeneous computing environments, can significantly impact the convergence
time. Asynchronous approaches alleviate this limitation, showing improved scal-
ability in some applications. However, the reduced inter-thread coordination
that asynchrony entails breaks the semantics of the original SGD algorithm, and
hence introduces several questions, among the most important is how the con-
vergence time of SGD is affected. Moreover, the degree of synchronization that is
still required, such as when accessing shared variables, becomes a focal point. For
example, degradation in convergence due to lock-free inconsistent access is a risk,
depending on the application. This can be avoided with consistency-enforcing
mechanisms, one option being locking, however it is unclear whether or not it is
worth the computational overhead it introduces in practice.

In this paper, we survey our work together with other recent related results
in the domain of efficient parallel optimization with SGD for fast and stable
convergence in prominent machine learning applications. We explore aspects of
synchronization, consistency, staleness and parallel-aware adaptiveness, focusing
on the impact on the overall convergence.

2 Preliminaries

2.1 SGD and Machine Learning

Machine learning with SGD is at its core an optimization problem:

minimize
θ

fD(θ) (1)

for a non-negative function f : Rd → R
+. In machine learning (ML) applica-

tions, θt ∈ R
d typically represents an encoding of the learned knowledge, and fD

quantifies the performance error of the model θt on the dataset D at iteration
t. Solutions may be found using Stochastic Gradient Descent (SGD), defined as
repeating the following with data mini-batches B ∈ D sampled randomly:

θt+1 = θt − η ˜∇fB(θt) (2)
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where ˜∇fB(θt) and an unbiased estimate of the true gradient. The choice of the
initialization point θ0 is chosen at random according to some distribution, which
as one might expect may significantly impact the convergence [32].

The negative gradient of a function constitutes the direction of steepest
descent, resulting in a trajectory corresponding to the slope of the target func-
tion. The iteration (2) is repeated until a solution θ∗ of sufficient quality is found,
i.e. fD(θ∗) < ε, referred to as ε-convergence.

The original deterministic counterpart Gradient Descent (GD) to SGD sim-
ply lets B = D, i.e. considers the entire dataset in every iteration. The stochastic
element of random data subsampling in SGD entails two major benefits, namely
that (i) sampling and processing only small mini-batches enables significantly
faster iterations and (ii) the algorithm is effective on also non-convex target
functions, as opposed to GD. However, SGD introduces a new hyper-parameter,
the batch size b, which introduces stochasticity or noise in the convergence. While
a certain degree of noise is necessary for enabling convergence in non-convex set-
tings, it can be fatal when too high, causing endless sporadic oscillation about
the initialization point θ0. In practice, b consequently requires careful tuning. An
established method for reducing such oscillation, while maintaining the stochas-
ticity as necessary, is Momentum-SGD (MSGD), defined as follows:

θt+1 ← θt + μ(θt − θt−1) − η ˜∇fB(θt) (3)

for some momentum parameter μ ∈ [0, 1]. Momentum can accelerate the conver-
gence of SGD in many practical settings, especially so for target functions which
are irregular and asymmetric in shape, forming narrow valleys. Such irregulari-
ties are in particular known to arise in deep learning (DL) applications.

2.2 Performance Metrics

The implementation of any algorithm affects its performance and usefulness in
practice. Considering SGD, or any iterative optimization algorithm, the perfor-
mance is influenced by many implementation aspects and system features. As
described in [22] a useful decomposition of the performance is to consider the
statistical and computational efficiency, defined as follows.

1. statistical efficiency measures the number of SGD iterations required until
reaching a solution of sufficient quality, ε-convergence

2. computational efficiency measures the number of iterations per time unit

The overall convergence rate, i.e. the wall-clock time until ε-convergence, is the
most relevant in practice, and is essentially the product [22]:

convergence rate = statistical efficiency × computational efficiency

Consequently, when proposing new algorithms (or altering existing ones) in this
application domain that potentially change the computational efficiency, it is not
sufficient to evaluate the invention by measuring only the statistical efficiency,
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i.e. counting the iterations until convergence. One must in general consider these
metrics in conjunction, and measure the overall convergence rate. Ideally, they
should also be measured separately, as this is the only way to truly understand
from where potential improvements originate.

These metrics become particularly important in parallel algorithms for iter-
ative optimization, since the parallelization method can have significant impact
on the computational and statistical efficiency, as we shall see in the following.

3 Parallel SGD

While parallelism can improve computational efficiency, simply by managing
to apply a greater number of updates in each unit of time, the impact on the
statistical efficiency, and thereby the overall convergence rate, is unpredictable.
Parallelization is consequently not trivial, and requires synchronization in every
iteration (prior to applying an update) in order to not break the original sequen-
tial semantics of SGD. Alternatively, threads can execute the SGD algorithm,
i.e. accessing and updating the shared state θ, asynchronously, although this
might not conform to the sequential semantics.

These approaches correspond to two main directions of methods for parallel
SGD, referred to as synchronous and asynchronous.

Most methods mentioned in this paper were originally introduced in the cen-
tralized shared-state context, either on a shared-memory parallel system or a
distributed one with one node acting as a parameter server, which sequentializes
updates. Most approaches can be naturally generalized to different computing
infrastructure, and also to their decentralized counterpart. However, in this paper
we retain the focus on asynchronous SGD in the context of shared-memory par-
allel systems, but keep in mind distributive and decentralizing generalizations,
with occasional remarks on that topic.

3.1 Synchronous SGD

Synchronous SGD (SyncSGD) is a lock-step data-parallel version of SGD where
threads or nodes access the shared θt at an iteration t, then compute gradients
based on individual randomly sampled data-batches, see Fig. 1. The threads
synchronize by averaging the resulting gradients before taking a global step
according to (2) [37]. In the original version, SyncSGD is statistically equivalent
to sequential SGD with larger mini-batch size [13], and can hence be consid-
ered a method for accelerated gradient computation. From this perspective, the
SyncSGD approach does not break the semantics of the sequential SGD algo-
rithm, and the vast empirical results and theoretical convergence guarantees in
the literature entail predictable performance of SyncSGD . From a scalability
perspective, since each SGD iteration is only as fast as the slowest contributing
thread, the presence of slower threads, i.e. stragglers, becomes a bottleneck. A
comprehensive overview of methods along this approach is provided in [8].
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Fig. 1. In SyncSGD the threads’ individual gradients are aggregated by averaging,
after which a global iteration is performed. SyncSGD essentially corresponds to paral-
lelization on the gradient computation level.

Stale-synchronous parallel (SSP) relaxes the strict synchronous semantics of
SyncSGD , allowing faster threads to asynchronously compute a bounded number
of SGD steps based on a local version of the state before synchronizing [14]. The
method is useful in heterogeneous computing systems, where stragglers are kept
in check. SSP has been proven useful for distributed DL applications, e.g. in [36]
where a method for dynamically adjusting the staleness (the number of applied
updates between the read vector and the one where the update is applied on)
threshold is proposed, enabling improvements in computational efficiency.

From a progress perspective, note that the original SyncSGD as well as SSP
provide weak progress guarantees, since in the presence of halting threads, the
system as a whole will halt indefinitely in the synchronization step. This is par-
tially addressed by n-softsync [35], a further relaxed variant of SyncSGD with
partial synchronization, requiring only a fixed number n of threads to contribute
a gradient at the synchronization point. Contrary to SSP, there is no bound
on the maximum staleness. Introduced originally in the context of centralized
distributed SGD with a parameter server [13,35], the recent work [18] imple-
ments similar semantics in a decentralized setting utilizing a partial-allreduce
primitive which atomically applies the aggregated updates and redistributes the
result.

3.2 Asynchronous Parallel SGD

Fig. 2. AsyncSGD parallelizes the SGD iterations, allowing asynchronous read (R) and
update (U) operations on the shared state.

Asynchronous parallel SGD (AsyncSGD) removes the gradient averaging syn-
chronization step, allowing threads to access and update the shared state asyn-
chronously. Consequently, while an update is being computed by one thread,
there can be concurrent updates applied by other ones, i.e. AsyncSGD follows:
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θt+1 ← θt − η ˜∇f(vt) (4)

where vt = θt−τt is a thread’s view of θ and τt is the number of concurrent
updates, which defines the staleness. Updates are consequently generally com-
puted based on states which are older than the ones on which the updates
are applied (Fig. 2). The resulting impact on the convergence is referred to as
asynchrony-induced noise, and affects, together with the overall distribution of
the stalenesses τt, the statistical efficiency.

AsyncSGD enables increased computational efficiency with higher paral-
lelism, up to a point where contention due to concurrent shared-memory access
attempts becomes severe. We denote the corresponding number of threads by
m∗

C ; at this point the system stagnates and additional computing threads pro-
vide no additional speedup. In addition, the presence of staleness in AsyncSGD
causes decay in statistical efficiency from the asynchrony-induced noise, which
grows as more threads are introduced. Over-parallelization may thereby not only
be redundant, but in fact harm the statistical efficiency, with potentially dire
consequences on the overall convergence. There is hence a trade-off between
computational and statistical efficiency, which in practice requires careful tun-
ing of the level of parallelism (number of threads) m. The appropriate choice of
m depends on the properties of the optimization problem itself, as well as the
other hyper-parameters, e.g. the step size η and the batch size b.

AsyncSGD and Momentum. The research direction of asynchronous itera-
tive optimization is not new, and sparked due to the works by Bertsekas and
Tsitsiklis [9] in 1989. More recently, Chaturapruek et al. [11] show that, under
several analytical assumptions such as convexity (linear and logistic regression),
the convergence of AsyncSGD is not significantly affected by asynchrony and
that the noise introduced by staleness is asymptotically negligible compared
to the noise from the stochastic gradients. In [19] Lian et al. show that these
assumptions can be partially relaxed, and it is shown that convergence is possi-
ble for non-convex problems, however with a bounded number of threads, and
assuming bounded staleness. Several works have followed, aiming at understand-
ing the impact of asynchrony on the convergence. In [26] Mitliagkas et al. show
that under certain stochastic staleness models, asynchronous parallelism has an
effect on convergence similar to momentum. This work is extended in parts of
[6], which introduces models which capture the dynamics of the system more
accurately, leading to alternate conclusions, as well as means to improve the
statistical efficiency by asynchrony-awareness. In [23] Mania et al. model the
algorithmic effect of asynchrony in AsyncSGD by perturbing the stochastic iter-
ates with bounded noise. Their framework yields convergence bounds which, as
described in the paper, are not tight, and rely on strong convexity of the target
function. In the recent [2] Alistarh et al. introduced the concept of bounded
divergence between the parameter vector and the threads’ view of it, proving
convergence bounds for convex and non-convex problems.
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AsyncSGD and Lock-Freedom. Hogwild! [28], introduced by Niu et al.,
implements AsyncSGD with lock-free accesses to the shared state θ. This is
achieved in a straightforward manner by allowing uncoordinated, component-
wise atomic access to the shared state θt, as opposed to traditional consistency-
preserving access implemented with locks. This significantly reduced the com-
putational synchronization overhead, and was shown to achieve near-optimal
convergence rates, however assuming sparse updates. AsyncSGD with sparse
or component-wise updates has since been a popular target of study due to
the performance benefits of lock-freedom [27,29]. De Sa et al. [12] introduced
a framework for analysis of Hogwild!-style algorithms for sparse problems.
The analysis was extended in [3], showing that due to the lack of θ-consistency
(shared state consistency for shared state θ) of Hogwild! (i.e. read operation
includes partial updates) the convergence bound increases with a magnitude of√

d when relaxing the sparsity assumption. This indicates in particular higher
statistical penalty for high-dimensional problems and motivates development of
algorithms which, while enjoying the computational benefits of lock-freedom,
also ensure consistency, in particular for high-dimensional problems such as DL.
This is the main focus of [10], where a consistency-preserving lock-free implemen-
tation of AsyncSGD for DL is introduced. In [22] a detailed study of parallel
SGD focusing on Hogwild! and a new, GPU-implementation, is conducted,
focusing on convex functions, with dense and sparse data sets and a comparison
of different computing architectures.

AsyncSGD for DL. In [33] the focus is the fundamental limitation of data
parallelism in ML. They observe that the limitations are due to concurrent SGD
parameter accesses, during ML training, usually diminishing or even negating
the parallelization benefits provided by additional parallel compute resources.
To alleviate this, they propose the use of static analysis for identification of data
that do not cause dependencies, for parallelizing their access. They do this as
part of a system that uses Julia, a script language that performs just-in-time
compilation. Their approach is effective and works well for e.g. Matrix factoriza-
tion SGD. For DNNs, as they explain, their work is not directly applicable, since
in DNNs permitting “good” dependence violation is the common parallelization
approach. Asynchronous SGD approaches for DNNs are scarce in the current lit-
erature. In the recent work [21], Lopez et al. propose a semi-asynchronous SGD
variant for DNN training, however requiring a master thread synchronizing the
updates through gradient averaging, and relying on atomic updates of the entire
parameter vector, resembling more a shared-memory implementation of param-
eter server. In [31] theoretical convergence analysis is presented for SyncSGD
with once-in-a-while synchronization. They mention the analysis can guide in
applying SyncSGD for DL, however the analysis requires strong convexity of the
target function. [15] proposes a consensus-based SGD algorithm for distributed
DL. They provide theoretical convergence guarantees, also in the non-convex
case, however the empirical evaluation is limited to iteration counting as opposed
to wall-clock time measurements, with mixed performance positioning relative
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to the baselines. In [20] a topology for decentralized parallel SGD is proposed,
using pair-wise averaging synchronization.

Asynchrony-Adaptive SGD. Delayed optimization in asynchronous first-
order optimization algorithms was analyzed initially in [1], where Agarwal et
al. introduce step sizes which diminish over the progression of SGD, depend-
ing on the maximum staleness allowed in the system, but not adaptive to the
actual delays observed. Adaptiveness to delayed updates during execution was
proposed and analyzed in [24] under assumptions of gradient sparsity and read
and write operations having the same relative ordering. A similar approach was
used in [35], however for synchronous SGD with the softsync protocol. In [35]
statistical speedup is observed in some cases for a limited number of worker
nodes, however by using momentum SGD, which is not the case in their theoret-
ical analysis, and step size decaying schedules on top of the staleness-adaptive
step size. In [30], AdaDelay is proposed, which addresses a particular constrained
convex optimization problem, namely training a logistic classifier with projected
gradient descent. It utilizes a network of worker nodes computing gradients in
parallel which are aggregated at a central parameter server with a step size that
is scaled proportionally to the inverse staleness, τ−1 (τ denotes staleness defined
as the number of applied concurrent updates). The staleness model in [30] is
a uniform stochastic distribution, which implies a strict upper bound on the
delays, making the system model partially asynchronous. [6] extends this line of
research, exploring further the idea of adapting updates based on staleness, and
studies in particular analytical foundations to motivate how.

4 Problems and Challenges with Parallel SGD

4.1 Scalability

Growing Batch Size. In SyncSGD , stragglers become a bottleneck, making
every iteration only as fast as the slowest thread. This issue can however par-
tially be reduced through relaxed semantics, such as SSP and the n-softsync
protocol (see Sect. 3). Moreover, the convergence of SyncSGD under increasing
parallelism is statistically equivalent to sequential SGD with a larger mini-batch
size b [13], also shown in [6], which is a hyper-parameter that requires careful
tuning depending on the problem. In particular, the convergence can be slower if
b is too large [16,25]. As discussed in Sect. 3.1, this indicates limited scalability, as
over-parallization will impose large-batch properties, which in some cases slows
down the convergence [13]. This motivates further exploration of asynchronous
parallelism for scalability.

Staleness. AsyncSGD eliminates many scalability bottlenecks of SyncSGD due
to reduced inter-thread coordination, however this also introduces other chal-
lenges related to asynchrony. As discussed in Sect. 3.2, asynchronous access to
and update of the shared state leads to staleness due to the fact that updates
may occur by threads concurrently to the gradient computation. The updates
that are applied are in fact rarely in practice based on the latest shared state, as
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described by (4). For problems satisfying assumptions on convexity, smoothness
and bounded gradients, staleness has little impact on the convergence of Async-
SGD [11]. However, for a wider class of problems, staleness can have significant
impact. In particular for problems not conforming to e.g. convexity assumptions,
such as the recently relevant DL applications. Crucial steps toward understand-
ing how convergence is affected in AsyncSGD due to staleness were taken by
Mitliagkas et al. [26], explicitly quantifying the impact of concurrency, under
a certain statistical staleness model. The results indicate that the influence of
asynchrony has an effect similar to momentum in SGD, and a reduced step size.
This analysis is extended in [6], proposing models better capturing the stale-
ness dynamics, and showing that the momentum effect grows and the step size
reduces monotonically as the parallelism is increased. This indicates a scalability
limitation in convergence, which however can be partially alleviated by using a
staleness-adaptive step size.

Progress and Consistency Guarantees. As previously mentioned, read and
update operations on the shared state θ become focal in AsyncSGD , since they
constitute the remaining synchronization steps in the otherwise asynchronous
algorithm. There must be primitives in place to handle concurrent attempts to
read and update by several threads, and these become bottlenecks for scalability
at sufficiently high levels of parallelism. Traditionally, a separate thread or node
acting as a parameter server is responsible for providing the latest parameter
state to workers, as well as processing contributing gradients, sequentializing
the updates [17]. To efficiently utilize multi-core systems, this was extended to
shared-memory implementations [19,28,29]. The access to the shared state is
then scheduled by the operating system, and regulated by some synchroniza-
tion method, such as locking, to ensure consistency in case of concurrent read
and update attempts. However, locks can be relatively computationally expen-
sive, in particular when the gradient computation step itself incurs little latency.
In addition, the total time spent on waiting for locks grows as more threads
are introduced to the system, potentially making it scalability bottleneck. By
allowing completely uncoordinated component-wise atomic read and update
operations, i.e. Hogwild! [28], such contention is eliminated, allowing signif-
icant speedup for sparse optimization problems in particular. However, for other
problems, Hogwild! introduces inconsistency when read and update operations
occur concurrently, with unpredictable impact on the convergence. There is cur-
rently a lack of methods providing a middle-ground solutions in the literature in
the realm in between these two endpoints of the synchronization spectrum, i.e.
the consistency-enforcing lock-based AsyncSGD and the lock-free inconsistency-
prone Hogwild!. This spectrum is explored further in [10], and Leashed-SGD
is proposed as a middle-ground solution. Leashed-SGD ensures consistency in
arbitrarily dense problems, while enjoying the benefits of lock-freedom, reducing
computational synchronization bottlenecks (see Sect. 5.1).

Memory Consumption. An additional aspect of scalability to consider is
memory consumption; standard AsyncSGD implementations in the literature
require each thread to copy the entire shared state θ prior to its individual
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gradient computation. The result of the computation, i.e. the stochastic gradi-
ent, is of the same dimension d as θ, and is stored locally until applied to the
shared state in an SGD iteration. The magnitude of d varies, however in DL
applications it is often in the magnitude of hundreds of thousands, sometimes
millions, which is why the memory consumption of the AsyncSGD implemen-
tation needs to be carefully considered. This aspect is discussed further in [10],
and possible improvements are explored.

4.2 Convergence Under Asynchrony

Staleness. The staleness that arises in AsyncSGD due to parallelism signifi-
cantly impacts the statistical efficiency of the convergence; it has been shown
analytically that the number of SGD iterations to ε-convergence increases lin-
early in the maximum staleness [3,12]. Hence, only if the gains in computa-
tional efficiency from parallelism are sufficiently great, will there be an overall
improvement in wall-clock time until ε-convergence. In addition, inconsistent
synchronization as in Hogwild! potentially incurs further statistical penalty;
the expected number of iterations required increases linearly in

√
d [3]. Subse-

quently, there are challenges in understanding whether it is worth the computa-
tional overhead to ensure consistency for a given problem, and which synchro-
nization primitives are appropriate to utilize.

Synchronization. As a consequence of Amdahl’s law [5], when there is a syn-
chronization overhead, the achievable speedup is bounded. In the context of
AsyncSGD , this applies in particular for the computational efficiency, i.e. how
many SGD updates can be applied in a given time unit. This implies that there
is a computational saturation point m∗

C for which additional threads will not pro-
vide additional significant computational speedup. For this statement, as well as
the ones to follow in this paragraph, empirical evidence is provided in [10]. More-
over, due to the presence of staleness there is a degradation of statistical efficiency
coupled to parallelism in AsyncSGD [23,33]. Hence, as more threads are intro-
duced to the system, more iterations are required until reaching ε-convergence.
At some level of parallelism, which we refer to as the system saturation point m∗

S ,
additional threads will no longer reduce the wall-clock time to ε-convergence, and
might instead even increase it. It can be concluded that m∗

S ≤ m∗
C from a sim-

ple argument of contradiction, assuming that statistical efficiency degrades with
higher parallelism. This assumption is in accordance with results in previous
literature [3,12], and explored further in [6,10] There are substantial challenges
in understanding the appropriate range of the number m of threads in order
to (i) fully utilize the parallel computation ability of the system and (ii) avoid
over-parallelization, potentially harming or completely obstructing convergence.
Ideally an implementation of AsyncSGD feature resilience to tuning, provid-
ing reliable and fast convergence over a broad spectrum of parallelism, towards
which [10] takes significant steps (see Sect. 5.2).
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4.3 Benchmarking and Evaluation

Standardization. There are significant challenges in conducting empirical eval-
uations and comparisons which are useful and fair within the domain of parallel
SGD, for several reasons: Firstly, there are several metrics of interest related
to convergence of SGD, the measurements of which must be effectively aggre-
gated as to show the overall performance. Traditionally, in ML the statistical
efficiency is the metric most used, i.e. the number of SGD iterations until reach-
ing sufficient performance, i.e. ε-convergence. However, when improvements in
statistical efficiency is achieved by altering the underlying algorithm, this poten-
tially alters the computational efficiency, i.e. the number of SGD iterations per
time unit. In such cases, it is hence necessary that evaluations take this into
consideration, and ideally provide measurements of the overall convergence rate,
i.e. the wall-clock time until converging to a solution of sufficient quality. Sec-
ondly, the domain of shared-memory parallel SGD lacks established universal
procedures for benchmarking, leaving the task of setting up an appropriate test
environment to the individual authors. The domain contains a wide spectrum of
questions, ranging from efficient communication protocols [4] in wide distributed
DL networks to exploring the impact of progress guarantees and synchronization
in shared data structures [3,28]. This renders the task of designing a universal
benchmarking platform for parallel SGD including such universal procedures
immensely difficult, if not impossible. The Deep500 framework [7] takes impor-
tant steps in providing such an environment, although it focuses primarily on
higher-level distributed SGD. For instance, the framework provides a Python
interface for development, which does not facilitate exploration of for instance
efficient shared data structures for fine-grained synchronization and mechanisms
for memory management.

Hyper-parameter Dependencies. Another key issue in benchmarking par-
allel SGD for machine learning is the inherent dependency between parallelism
and various hyper-parameters crucial for achieving convergence [13,26], some of
the most important being the step size η and the mini-batch size b. As mentioned
above, it is known that higher parallelism in SyncSGD exhibits similar conver-
gence properties as sequential SGD with a larger batch size. As more threads
or nodes are introduced to the system, the scalability of SyncSGD can hence
appear to be limited due to the statistical penalty from a too large value of b.
This can be avoided by choosing a sufficiently small initial b for each thread or
node, which will then instead give the appearance of high scalability, but only
until a certain level of parallelism [13]. It is hence of interest in such evaluations
to provide empirical evidence from test scenarios that indicate the general abil-
ity of the proposed method to scale independently of hyper-parameter choices.
Analogously, for AsyncSGD , there is delicate interplay between the step size η
and the staleness distribution, stemming from the fact that stale updates cor-
respond to gradients based on old views of the state, and are applied with a
coarsity proportional to η [24,34]. A smaller η implies less impact on the con-
vergence per update, hence tends to tolerate updates with higher staleness, and
subsequently higher levels of parallelism. This can give the appearance of good
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scalability, showing speedup for a larger number of threads. It is in this case also
of interest to provide empirical results that indicate scalability independently of
hyper-parameters, such as η, for instance by testing for several choices of η.

In summary, there are challenges in establishing evaluation methodologies,
making fair and useful comparisons between methods difficult. This is mainly
due to the wide span of research questions in the domain. A collective strive
towards standardized benchmarking platform for various methodological aspects
is imperative. In addition, the dependence of the performance and scalability of
parallel SGD algorithms on various hyper-parameters, such as step size η and
batch size b, complicate empirical evaluations.

5 Our Work on Parallelizing SGD

5.1 Convergence of Staleness-Adaptive SGD

The scalability limitations of traditional synchronous parallel SGD highlighted
in Sect. 4.1 motivates further exploration of asynchronous parallelization, i.e.
AsyncSGD which has shown promising improvements in ability to scale for many
applications. The degradation of statistical efficiency due to staleness is however
a limiting factor, forcing the user to carefully tune the level of parallelism in order
to maintain an actual overall speedup in convergence rate, as also highlighted in
Sect. 4.1. In order to address this issue, we first propose methods to statistically
model the behaviour of staleness in AsyncSGD . The models, which are proposed
based on reasoning of the dynamics of the algorithm and its dependency on
scheduling, capture the staleness distribution in practice to a high degree of
precision, and more accurately than models previously proposed in the literature.

Based on the proposed staleness models, we provide analytical results that
quantify the side-effect of asynchrony on the statistical efficiency. Moreover,
our approach enables derivation of a staleness-adaptive step size, referred to as
MindTheStep-AsyncSGD , which provably reduces this side-effect, and in expec-
tation can, depending on the rate of adaptiveness, alter it into the more desired
behaviour of momentum. We prove also that the staleness-adaptive step size is
efficiently computable, ensuring minimal additional synchronization overhead for
maximal scalability capability, as described in Sect. 4.2. We provide an empir-
ical evaluation of the proposed staleness models and the adaptive step size for
a relevant use case, namely DL for image classification. The empirical results
show in particular: (i) significantly improved accuracy in modelling the staleness
with our proposed models, (ii) reduced penalty from asynchrony-induced noise,
leading to up to a ×1.5 speedup in convergence compared to baseline (standard
AsyncSGD with constant step size) under high parallelism.

5.2 A Framework for Lock-Freedom and Consistency

Asynchronous parallelization of SGD, i.e. AsyncSGD , significantly reduces wait-
ing compared to SyncSGD , as explained in the previous sections. However, the
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remaining synchronization that is needed, in particular access to the shared
state, becomes focal and constitute a possible bottleneck. Motivated by analyt-
ical results in previous literature that indicate great computational benefits of
lock-freedom, however a statistical penalty from inconsistency and staleness, we
propose Leashed-SGD (lock-free consistent asynchronous shared-memory SGD),
which is an extensible framework supporting algorithmic lock-free implementa-
tions of AsyncSGD and diverse mechanisms for consistency, and for regulating
contention. It utilizes an efficient on-demand dynamic memory allocation and
recycling mechanism, which reduces the overall memory footprint. We provide
an analysis of the proposed framework in terms of safety, memory consump-
tion, and model the progression of parallel threads in the execution of SGD,
which we use for estimating contention over time and confirming the potential
of the built-in contention regulation mechanism to reduce the overall staleness
distribution.

Among the analytical results for Leashed-SGD , we provide guarantees on
lock-freedom and atomicity, safety and exhaustiveness and bounds on the mem-
ory consumption. Moreover, we model the progression of the algorithm over time,
finding in particular fixed points in the system useful for estimating potential
contention and the effect of the built-in contention-regulating mechanism.

We conduct an extensive empirical study of Leashed-SGD for Multi-Layer
Perceptron (MLP) and Convolutional Neural Network (CNN) training for image
classification. The empirical study focuses on scalability, dependence on hyper-
parameters, distribution of the staleness, and benchmarks the proposed frame-
work compared to established baselines, namely lock-based AsyncSGD and
Hogwild!. We draw the following main conclusions:

1. Leashed-SGD provides significantly higher tolerance towards the level of par-
allelism, with fast and stable convergence for a wide spectrum, taking sig-
nificant steps towards addressing the scalability challenges highlighted in
Sect. 4.1. The baselines however require careful tuning of the number of
threads in order to avoid tediously slow convergence and are more prone
to completely failing or crashing executions.

2. The lock-free nature of Leashed-SGD entails a self-regulating balancing effect
between latency and throughput, leading to an overall reduced staleness dis-
tribution, which in many instances is crucial for achieving convergence.

3. For MLP training we observe up to 27% reduced median running time for
ε-convergence for Leashed-SGD compared to baselines, with similar memory
footprint. For CNN training, we observe a ×4 speedup for ε-convergence, with
a memory footprint reduction with 17% on average.

For the empirical study, a modular and extensible C++ framework is devel-
oped with the purpose of facilitating development of shared-memory paral-
lel SGD with varying synchronization mechanisms (https://github.com/dcs-
chalmers/shared-memory-sgd). Hence, we take steps towards addressing the
challenges (highlighted in Sect. 4.3) that the community faces regarding a gen-
eral platform for further exploration of aspects of fine-grained synchronization
in this domain.

https://github.com/dcs-chalmers/shared-memory-sgd
https://github.com/dcs-chalmers/shared-memory-sgd


The Impact of Synchronization in Parallel Stochastic Gradient Descent 73

6 Conclusions

There are significant challenges for asynchronous parallel SGD methods for
machine learning to scale, due to (i) staleness and reduced update freshness and
(ii) computational overhead from synchronization for shared-memory operations.

While higher parallelism in AsyncSGD enables more iterations per second,
its inherent staleness and asynchrony-induced noise leads to an deteriorating
statistical efficiency, requiring a growing number of iterations to achieve sufficient
convergence. Understanding and modelling the dynamics of the staleness enables
explicitly quantifying its side-effect on the convergence, towards which important
steps were taken in [26], however under simplifying assumptions. Under a more
practical system model, this analysis was extended in [6], and used to show
how adaptiveness to staleness reduces asynchrony-induced noise, and thereby
improves convergence. In addition, it allows derivation of the proposed staleness-
adaptive MindTheStep-AsyncSGD which provably reduces this side-effect. The
analytical results are confirmed in practice in [6], showing increased statistical
efficiency in ANN training for image classification.

Relaxed inter-thread synchronization, with weak consistency requirements
as in Hogwild! [28], enables a straightforward way for achieving lock-freedom
without consistency guarantees in shared state. The reduced computational over-
head allows overall speedup for sparse problems, where inconsistency might have
little impact [28] and asymptotic convergence bounds can be established. How-
ever, the inconsistency has implications on the statistical efficiency, as observed
theoretically in [3] and confirmed in [6,10]. In [10] an interface is introduced, pro-
viding abstractions of operations on the shared state θ, utilized in the proposed
lock-free Leashed-SGD framework, which includes an implementation that guar-
antees consistency and which is extensible to provide configurable consistency.
The lock-free nature of Leashed-SGD has a self-regulating effect which avoids
congestion under high parallelism, which by reducing the overall staleness distri-
bution enables fast and stable convergence in contexts where the baselines fail.
In this context, the dynamic memory allocation featured in Leashed-SGD allows
for significantly reduced memory footprint, which is critical in particular for DL
applications where the problems dimension can be in the order of millions.
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