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Preface

This volume contains the papers selected for presentation at the 18th International
Conference on Distributed Computing and Intelligent Technology (ICDCIT 2022) held
during January 19–23, 2022, in Bhubaneswar, India.

From its humble beginnings, the ICDCITconference series has grown to a conference
of international repute and has become a global platform for computer science
researchers to exchange research results and ideas on the foundations and applications
of distributed computing and intelligent technology. An additional goal of ICDCIT is
to provide an opportunity for students and young researchers to get exposed to topi-
cal research directions of distributed computing and intelligent technology. Given the
importance of learning-related topics such as artificial intelligence, machine learning,
and computer vision, the title of the conference was revised to ‘International Conference
on Distributed Computing and Intelligent Technology’.

This year we received 50 full paper submissions. Each submission considered for
publication was reviewed by three or four Program Committee (PC) members with the
help of reviewers outside of the PC. Based on the reviews, the Program Committee
decided to accept 15 papers - 11 regular papers and four short papers - for presentation
at the conference, with an acceptance rate of 22% for full papers.

We would like to express our gratitude to all the researchers who submitted
their work to the conference. Our special thanks go to all colleagues who served on
the Program Committee, as well as the external reviewers, who generously offered their
expertise and timewhich helped us select the papers and prepare the conference program.

We were fortunate to have six invited speakers – Hagit Attiya (Technion, Israel),
Philippas Tsigas (Chalmers University, Sweden), Roger Wattenhofer (ETH Zurich,
Switzerland), Matthew E. Taylor (University of Alberta, Canada), Michael Cashmore
(University of Strathclyde, Glasgow), and U. Deva Priyakumar (IIIT Hyderabad, India).
Their talks provided us with the unique opportunity to hear the leaders of various fields.
The papers related to the invited talks were also included in this volume.

A number of colleagues have worked very hard to make this conference a success.
We wish to express our thanks to the local Organizing Committee, the organizers of the
satellite events, and the many student volunteers. The School of Computer Engineering,
Kalinga Institute of Industrial Technology (KIIT), the host of the conference, provided
various support and facilities for organizing the conference and its associated events.

Finally, we enjoyed institutional and financial support from the Kalinga Institute of
Industrial Technology (KIIT), Bhubaneswar for which we are thankful. In particular, we
express our sincere thanks to Achyuta Samanta, the Founder of KIIT University, for his
continuous support to ICDCIT since its inception. We express our appreciation to all the
Steering Committee members, and in particular Hrushikesha Mohanty, DN Dwivedy,
Subhasis Das, and Samaresh Mishra, whose counsel we frequently relied on. Thanks is
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also due to the faculty members and staff of the School of Computer Engineering, KIIT
University, for their timely support.

January 2022 Sandeep Kulkarni
Swarup Mohalik

Sathya Peri
Raju Bapi



Organization

General Chair

Swarup Mohalik Ericsson, Bangalore, India

Program Committee Chairs

Sathya Peri IIT Hyderabad, India
Sandeep Kulkarni Michigan State University, USA
Raju Bapi IIIT Hyderabad, India

Conference Management Chair

Samaresh Mishra KIIT, India

Organizing Chair

Subhasis Dash KIIT, India

Finance Chairs

Manoj Kumar Mishra KIIT, India
Kunal Anand KIIT, India

Publicity Chairs

Bindu Agarwalla KIIT, India
Abhaya Kumar Sahoo KIIT, India

Registration Chairs

Sital Dash KIIT, India
Kamakhya Narain Singh KIIT, India

Session Management Chairs

Ajay Kumar Jena KIIT, India
Amiya Kumar Dash KIIT, India



viii Organization

Publications Chairs

Saurabh Bilgaiyan KIIT, India
Santwana Sagnika KIIT, India

Student Symposium Chairs

Pradeep Kumar Mallick KIIT, India
Amiya Ranjan Panda KIIT, India

Industry Symposium Chairs

Debasish Das TCS, India
Jagannath Singh KIIT, India

Project Innovation Contest Chairs/Innovation Chairs

Chittaranjan Pradhan KIIT, India
Junali Jasmine Jena KIIT, India

Workshop Chairs

Sapna P. G. ikval Softwares, India
Siddharth Swarup Rautaray KIIT, India
Krishna Chakravarty KIIT, India

Ph.D. Symposium Chairs

Satya Ranjan Dash KIIT, India
Manas Ranjan Lenka KIIT, India

Steering Committee

Maurice Herlihy Brown University, USA
Gérard Huet Inria, France
Bud Mishra Courant Institute of Mathematical Sciences,

NYU, USA
Hrushikesha Mohanty KIIT, India
Raja Natarajan Tata Institute of Fundamental Research, India
David Peleg Weizmann Institute of Science, Israel
R. K. Shyamasundar IIT Bombay, India



Organization ix

Program Committee

Distributed Computing Track

Kishore Kothapalli IIIT Hyderabad, India
Neeraj Mittal University of Texas at Dallas, USA
Archit Somani Huawei Research, India
Sweta Kumari Huawei Research, India
Muktikanta Sa Telecom Paris, France
Elad Schiller Chalmers University of Technology, Sweden
Achour Mostefaoui University of Nantes, France
Binoy Ravindran Virginia Tech, USA
Sebastien Tixeuil Sorbonne University, France
Matthieu Perrin University of Nantes, France
Xavier Defago Tokyo Institute of Technology, Japan
Ajay Kshemkalyani University of Illinois Chicago, USA
Toshimitsu Masuzawa Osaka University, Japan
Maria Potop-Butucaru Sorbonne University, France
Gokarna Sharma Kent State University, USA
Vidhya Tekken Valapil GE Research, USA
Bapi Chatterjee IST Austria, Austria
Matthieu Perrin University of Nantes, France
Meenakshi D’Souza IIIT Bangalore, India
Stéphane Devismes Grenoble Alpes University, France
John Augustine IIT Madras, India
Silvia Bonomi Sapienza University of Rome, Italy
R. Ramanujam Institute of Mathematical Sciences, Chennai,

India
Anisur Rahaman ISI Kolkata, India

Intelligent Technology Track

Ansuman Banerjee ISI Kolkata, India
Assad Alam Ericsson Research, Sweden
Atul Negi University of Hyderabad, India
Chandra Shekar

Lakshminarayanan
IIT Palakkad, India

Chiranjeevi Yarra IIIT Hyderabad, India
Chittaranjan Hota BITS-Pilani Hyderabad, India
Debi Prasad Dogra IIT Bhubaneswar, India
Krishna Prasad IIT Gandhinagar, India
Manoranjan Satpathy IIT Bhubaneswar, India
Niladri Bihari Puhan IIT Bhubaneswar, India



x Organization

Padmanabhuni Srinivas IIT Tirupati, India
Pradeep Kumar IIM Lucknow, India
Puneet Goyal IIT Ropar, India
Radhakrishna P. NIT Warangal, India
Raghava Mutharaju IIIT Delhi, India
Sai Prasad P. S. V. S. University of Hyderabad, India
Srinath Srinivasa IIIT Bangalore, India
Subba Reddy Oota Inria Bordeaux, France
Sumit Jha University of Texas at San Antonio, USA
V. Ravi Institute for Development and Research in

Banking Technology, India
Vinod P. K. IIIT Hyderabad, India
Naveen Nekuri University of Hyderabad, India
Asif Ekbal IIT Patna, India
Himadri S. Paul TCS Research, India
Moumita Das Ericsson, India
Arani Bhattacharya IIIT Delhi, India

Additional Reviewers

Kaushik Majumdar
Aliva Bakshi
Sumit Tetarave
Sunny Raj
Julien Aimonier-Davat
Yoann Dieudonné
Subhash Bhagat
Chaitali Diwan
Tanik Saikh
Yash Khare
Kamalakar Dadi

Abdullah Alourani
Soumitra Ghosh
Bernard Nongpoh
Sravanthi Upadrasta
Vivek Talwar
Chayan Sarkar
Chitra Babu
Pascal Lafourcade
Parwat Singh Anjana
Karine Altisen



Contents

Invited Papers

Modern AI/ML Methods for Healthcare: Opportunities and Challenges . . . . . . . 3
Akshit Garg, Vijay Vignesh Venkataramani, Akshaya Karthikeyan,
and U. Deva Priyakumar

An Introduction to Graph Neural Networks from a Distributed Computing
Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Pál András Papp and Roger Wattenhofer

Towards Temporally Uncertain Explainable AI Planning . . . . . . . . . . . . . . . . . . . . 45
Andrew Murray, Benjamin Krarup, and Michael Cashmore

The Impact of Synchronization in Parallel Stochastic Gradient Descent . . . . . . . . 60
Karl Bäckström, Marina Papatriantafilou, and Philippas Tsigas

Distributed Computing

A Distributed Algorithm for Constructing an Independent Dominating Set . . . . . 79
Suman Banerjee, Abhishek Dogra, Anurag Kumar Singh,
and Subhasis Bhattacharjee

An Approach to Cost Minimization with EC2 Spot Instances Using VM
Based Migration Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Sharmistha Mandal, Sk Shahryar Saify, Anurita Ghosh, Giridhar Maji,
Sunirmal Khatua, and Rajib K. Das

Transforming Medical Resource Utilization Process to Verifiable Timed
Automata Models in Cyber-Physical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Rizwan Parveen and Neena Goveas

An SDN Implemented Adaptive Load Balancing Scheme for Mobile
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Madhukrishna Priyadarsini and Padmalochan Bera

Rewriting Logic and Petri Nets: A Natural Model for Reconfigurable
Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Lorenzo Capra



xii Contents

MCDPS: An Improved Global Scheduling Algorithm for Multiprocessor
Mixed-Criticality Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Lalatendu Behera

Replication Based Fault Tolerance Approach for Cloud . . . . . . . . . . . . . . . . . . . . . 163
Kamal K. Agarwal and Haribabu Kotakula

Intelligent Technology

A Comparative Study on MFCC and Fundamental Frequency Based
Speech Emotion Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Asfahan Shah and Tanmay Bhowmik

Efficient Traffic Routing in Smart Cities to Minimize Evacuation Time
During Disasters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Sayan Sen Sarma, Bhabani P. Sinha, and Koushik Sinha

Early Detection of Parkinson’s Disease as a Pre-diagnosis Tool Using
Various Classification Techniques on Vocal Features . . . . . . . . . . . . . . . . . . . . . . . . 198

Vaibhaw, Pratik Behera, Vaibhav Bal, and Jay Sarraf

Extracting Emotion Quotient of Viral Information Over Twitter . . . . . . . . . . . . . . 210
Pawan Kumar, Reiben Eappen Reji, and Vikram Singh

A Novel Modified Harmonic Mean Combined with Cohesion Score
for Multi-document Summarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Rajendra Kumar Roul and Jajati Keshari Sahoo

Multi-channel Deep Model for Classification of Alzheimer’s Disease
Using Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Sriram Dharwada, Jitendra Tembhurne, and Tausif Diwan

Deep Learning and Linguistic Feature Based Automatic Multiple Choice
Question Generation from Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

Rajat Agarwal, Vaishnav Negi, Akshat Kalra, and Ankush Mittal

A Deep Multi-kernel Uniform Capsule Approach for Hate Speech Detection . . . 265
Vipul Shah, Amey Bhole, Sandeep S. Udmale, and Vijay Sambhe

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273



Invited Papers



Modern AI/ML Methods for Healthcare:
Opportunities and Challenges

Akshit Garg, Vijay Vignesh Venkataramani, Akshaya Karthikeyan,
and U. Deva Priyakumar(B)

Center for Computational Natural Sciences and Bioinformatics, International
Institute of Information Technology, Hyderabad, Hyderabad 500 032, India

deva@iiit.ac.in

Abstract. Artificial Intelligence has seen a significant resurgence in
the past decade in wide ranging technology and domain areas. Recent
progress in digitisation and high influx of biomedical data have led to an
unparalleled success of Machine Learning systems in healthcare, which
is perceived to be a possible game changer for ‘healthcare to all’. This
article gives an account of some of the current applications of AI solu-
tions in the medical domains of diagnosis, prognosis and treatment. The
article will also illustrate the implications of AI in the fight against the
COVID-19 pandemic. Lastly, the article will summarise the challenges
AI currently faces in its wide-scale adoption in the healthcare industry
and how they can possibly be dealt with to move towards a more intelli-
gent medical future. This may enable moving towards quality healthcare
for all.

Keywords: Healthcare · Artificial Intelligence · Machine Learning ·
Deep Learning · Diagnosis · Prognosis

1 Introduction

At its simplest, Artificial Intelligence (AI) is essentially a branch of computer sci-
ence that aims to build intelligent machines that can think and learn like humans.
Even though the idea of AI has been around for a long time, the term “Arti-
ficial Intelligence” was first coined in 1956 at a conference in Dartmouth Col-
lege [75]. Due to breakthroughs in computational hardware, algorithms, libraries
and datasets, AI has seen a significant resurgence in the past decade and has
seeped through into various domains. With the digital revolution, the generation
of big datasets has been made possible, leading to the significant success of the
data-hungry AI techniques of Machine Learning (ML) and Deep Learning (DL).

The healthcare sector, in particular, is responsible for the maintenance and
improvement of health for the people through various means like prevention,

A. Garg and V. V. Venkataramani—Contributed equally.

c© Springer Nature Switzerland AG 2022
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4 A. Garg et al.

diagnosis, treatment and cure of illness (both mental and physical). But with
the industry facing a severe shortage of medical staff [77] to treat an ever grow-
ing population, this becomes a very challenging task. The advent of AI into
the industry can help physicians, assisting them in difficult areas like diagnosis,
prognosis and help them make decisions quickly and efficiently. As various hos-
pital records get digitised, researchers have seen a sharp increase in the amount
of viable data that can be used for AI, which has been a severely limiting factor
in the past. Due to this high influx of biomedical data, AI in healthcare is cur-
rently being dominated by ML and DL. Researchers can now use Machine/Deep
learning studies and apply them to existing medical practices to come up with
innovative solutions to solve issues faced by the healthcare industry. Multimodal
data plays an important role in success of AI in Healthcare. Figure 1 shows how
AI utilizes data from different modalities to assist in various sectors of healthcare.
This article will look at a few applications of AI techniques in various medical
domains like diagnosis, prognosis and treatment. We will also look into how AI
has played a pivotal role in the COVID-19 pandemic. Lastly, we will discuss
about some of the challenges AI in Healthcare faces and how these challenges
can be overcome to move towards a brighter and intelligent medical future.

Fig. 1. A schematic of use of multimodal data and AI for different aspects of healthcare
problems
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2 AI in Medical Diagnosis

One of the essential steps for providing good medical care is to identify the
underlying disease. Diagnosis refers to this process of assessing and identifying
the underlying condition from the patient’s symptoms. Health practitioners may
take the help of several methods ranging from patients health history, imaging
tests, blood tests etc. to conduct an efficient diagnosis. ML and DL, in particular,
have revolutionised the field of Medical Diagnosis and one can argue that the
applications of AI in Diagnosis are the most wide-ranging and successful. Figure 2
demonstrates various medical fields where AI is being used for diagnosis. In the
following section, we will summarize the advances of AI for diagnosis in these
fields.

Fig. 2. Five major medical domains where modern AI/ML methods have been used
for disease diagnosis

2.1 Cardiology

Cardiology refers to the branch of medicine that involves studying and treating
conditions affecting the heart and circulatory system. Cardiovascular diseases
(CVDs) are one of the leading causes of global deaths, World Health Organiza-
tion (WHO) estimates 17.9 million lives are lost annually due to CVDs. Several
AI applications have been proposed to help in the early detection of various
cardiac diseases through the anomaly detection in cardiac imaging, electrocar-
diogram (ECG) signals and blood parameters.

Hussain et al. [36] proposed Linear Kernel Support Vector Machine which
analysed the heart rate variability signals to detect Congestive Heart Failure with
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an area under the receiver operating characteristic curve (AUC) of 0.97. Qu et
al. [69] proposed ML methods to detect congestive heart failure with an accuracy
of 84.0%. Than et al. [93] introduced an ML algorithm MI3 which used Gradient
boosting to generate a score suggesting probability of Myocardial Infarction
(MI). MI3 was trained on a cohort of 3013 patients and used the combination of
age, sex and paired high-sensitivity cardiac troponin I concentrations to detect
MI. Sharma et al. [80] proposed an ML model which utilised the full length
multilead ECG signal to detect MI with an AUC of 0.9945 while Weiss et al. [109]
utilised Statistical Relation Learning Algorithms to detect MI from Electronic
Health Records. Akella et al. [3] trained a Neural Network on a cohort of 303
patients to detect Coronary Artery Disease (CAD) with an accuracy of 93%
using 14 different medical parameters. Wang et al. [104] used Random Forest
Classifier to detect CAD with an AUC of 0.948.

2.2 Pulmonology

Pulmonology is the domain of medicine which deals with the treatment of dis-
eases affecting the respiratory system. Respiratory diseases negatively affect a
large part of the global population. According to WHO, chronic obstructive pul-
monary disease (COPD) is the 3rd leading cause of death, which is attributed
to over 3.2 million deaths in the year 2019. Early detection of respiratory dis-
eases is an essential step for efficient medical treatment. AI has shown promise
in playing a pivotal role in the diagnosis of respiratory diseases [65,72,85,88].

An interesting application of AI to detect COPD using saliva samples was
introduced by Zarrin et al. [115]. The authors used biosensors to detect the dielec-
tric properties of the saliva samples. The eXtreme Gradient Boosting (XGBoost)
algorithm based model is then trained upon these properties to detect the pres-
ence of COPD with an accuracy of 91.25%. Porieva et al. [68] used a dataset of
296 lung sounds representing 3 classes of normal, bronchitis and COPD. Authors
extracted different features from the sound recordings and used a combination
of ML models to achieve an overall accuracy of 93% for bronchitis and COPD
detection. Recent advances in deep learning and computer vision have lead to
an emergence of models which can detect pulmonary fibrosis [24], pulmonary
arterial hypertension [89], pneumonia [94] using different chest imaging data.

2.3 Dermatology

Dermatology is the branch of medicine involving the study and treatment of
skin, hair and nails. Visual inspection is one of the essential steps in diagnosing
a dermatological problem. The advancements of computer vision has opened up
new horizons for the field of AI in dermatology and have led to some of the recent
DL models which can provide a diagnosis which is at par with some of the field’s
leading experts [31,96]. With the help of AI, mobile devices can provide easy
and cheap access to high-quality medical diagnosis to the parts of population
who were previously left behind [19,98].
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Kim et al. [44] trained a Convolutional neural network (CNN) using clin-
ical images belonging to 90 different patients. The CNN was able to detect
Onychomycosis with a positive predictive value/negative predictive value of
73.4%/61.5% which was comparable with the results of 5 dermatologists
with positive predictive value/negative predictive value of 69.3%/66.7%. Ecze-
maNet [64] is a CNN trained on clinical images to predict the severity and pres-
ence of Atopic Dermatitis with a high accuracy. Gustafson et al. [34] proposed
a Natural Language Processing (NLP) based algorithm for Electronic Health
Record based phenotyping to identify Atopic Dermatitis in adults. Ros-Net [15]
is an Inception-ResNet-v2 trained to detect rosacea with an accuracy of 89.8%.
AI based solutions for diagnosis of Psoriasis [99], Onychomycosis [44] are also
being proposed. Recent advancements in AI in Dermatology will improve the
overall well being of global population.

2.4 Neurology and Psychiatry

Neurology is the science of treating and diagnosing the diseases of the nervous
system. Early detection of neurological diseases can help in improvement of
provided medical care. AI plays an important role in early detection of neu-
rological disorders [8,27,59,73,78,87,91]. Recent studies have aimed for early
detection of neurodegenerative diseases using non-coding RNAs and MicroR-
NAs [29,50,51,117]. AI solutions for early detection of Alzheimer’s disease using
Electroencephalography (EEG) [83,97] are also being put forward. Liu et al. [48]
proposed a new method which uses speech data to extract spectrogram features
to detect Alzheimer’s disease. Recent studies have tried to exploit gait for early
detection of Parkinson’s disease [5,13]. Several DL based solutions have also
been proposed which can help in accurate and precise detection of brain hemor-
rhage in brain CT images [16,40]. Dammu et al. [26] developed an ML model to
classify Autism Spectrum Disorder with an accuracy of 73.6% using the resting
state functional magnetic resonance imaging (rs-fMRI).

Psychiatry is the branch of medicine associated with the diagnosis, prevention
and treatment of mental disorders. Diagnosis of mental illness is an inaccurate
and challenging process where a psychiatrist or psychologist tries to evaluate a
patients mental health. A large part of the global population does not have access
to good psychiatric diagnosis. WHO estimates depression alone affects 5% of
the worldwide population, and early detection of depression can make enormous
improvements in its medical treatment. AI based depression detection models
are being deployed, which use NLP and emotion detection to detect potential
patients of depression from their social media feeds [7,28,37,61]. Sato et al. [76]
developed ML model to detect people susceptible to major depression using the
functional magnetic resonance imaging (fMRI) data. Schizophrenia (SCZ) affects
20 million people worldwide and early detection can help in providing patients
with better medical care. ML and DL models are being developed to detect SCZ
using the EEG signals [21,116], genomic data [95] and fMRI data [86] for early
and accurate detection of SCZ.
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2.5 Oncology

Cancer is the second leading cause of death and led to one in six deaths in 2018.
Oncology is the branch of medicine associated with the treatment of cancer. AI
can play an important role in early and accurate cancer diagnosis. Mobile devices
equipped with AI can provide a low cost and easy diagnosis to the remote popu-
lation [30]. Esteva et al. [31] trained a deep Convolution Neural Network (CNN)
on a dataset of 129,450 clinical images to detect skin cancer. The CNN was
able to achieve performance on par with 21 board-certified Dermatologists. DL
models are being proposed which can detect and classify brain cancer [20,101],
breast cancer [43,100] and renal cancer [90] from radiological and histopatho-
logical images. Whole genome sequencing data is also being used to train ML
models which can enable early detection of different cancers [22,103].

3 AI in Medical Prognosis

After successful diagnosis of a patient’s underlying condition, health professionals
move on to determine their prognosis. Medical prognosis refers to the process of
predicting or forecasting the expected developments and even the outcome of a
medical condition for a given patient. Determining an accurate prognosis can be
very difficult due to the various factors involved. Healthcare professionals look
at factors like disease progression, patient’s current health and patient’s medical
history to determine a suitable prognosis. Recent developments in ML and DL
in the healthcare industry has helped healthcare professionals greatly increase
the accuracy and their confidence in their prognosis. In further sub-sections we
discuss how AI has helped prognosis prediction in different kinds of studies.

3.1 Cancer Progression Studies

Once a patient is diagnosed with cancer, determining a suitable prognosis is very
important as it helps determine the next course of action medically. Cancer is
estimated to affect 1 in 10 people on average in the USA [81], making the task
of predicting cancer progression very important. Nie et al. [60] developed a 3D
deep learning framework to automatically extract features from pre-operative
multi-modal images like MRI, fMRI, DTI of high-grade glioma patients (i.e.,
patients suffering from a type of brain tumors), achieving accuracies as high as
89.9%. CNNs are being used to segment a brain tumor from healthy tissue, once
the tumor data is extracted, regression is used to predict the number of days of
overall survival [38]. Boeri et al. [17] built an ML model to predict outcomes after
surgery for breast cancer patients with an accuracy of 95%. Using various deep
learning techniques, survival prediction for Non-small cell lung cancer (NSCLC)
is being predicted with good accuracy [47,114]. Tang et al. [92] came up with
a novel approach for predicting prognosis of Kidney renal clear cell carcinoma
(KIRC). Using lasso regression, a prognosis model on the basis of methylation-
driven genes was developed. The survival rates of patients were then predicted
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using both clinical information and the methylated prognosis model, finally giv-
ing a C-index value of 0.838 for the test data. Instead of targeting a specific
type of cancer, there has been research using multi-modal data for pan-cancer
prognosis. These papers make use of DL techniques on histopathology slides and
other clinical information to finally predict single cancer and pancancer overall
survival [23,82].

3.2 Mortality Prediction Studies

Mortality prediction refers to the process of predicting the risk of a critically ill
patient’s mortality or death. Building an accurate mortality predictor using AI
can assist physicians perform appropriate clinical interventions for critically ill
patients, thus helping them improve the patient’s medical care.

Kong et al. [46] were able to use ML to predict the mortality of sepsis patients
in the ICU with moderate success. They built four different kinds of machine-
learning based classifier models and trained them on the medical information
mart for intensive care (MIMIC) III dataset. They found the gradient boosting
machine (GBM) performed the best, giving an AUC of 0.845. Using gradient
boosting, Parikh et al. [66] were able to predict 6-month mortality for patients
with cancer successfully with an AUC of 0.87. Studies of mortality prediction is
also being done for different kinds of cancer specifically like advanced hepatocel-
lular carcinoma (HCC) [52] and metastatic colorectal cancer (mCRC) [74].

The need for calculating mortality risk for traumatic patients admitted to
the ICU is very high, Servia et al. [79] conducted a series of experiment using
the RETRAUCI database which is the national trauma registry of 52 Spanish
ICUs from the period of 2015–2019. The 9 different ML models they developed
used a set of variables derived from the deviation of both physiological and
anatomical parameters to predict the death risk of a given traumatised patient.
Elderly trauma patients generally have a very high risk or mortality, Morris
et al. [58] present a set of novel outcome scores, quick elderly mortality after
trauma (qEMAT) score and a full elderly mortality after trauma (fEMAT) score,
for predicting mortality of elderly trauma patients. They achieve an AUC of 0.84
for the qEMAT and 0.86 for fEMAT.

Stillbirth can be defined as death of a fetus after 20 or 28 weeks of pregnancy.
It is a devastating outcome which accounts to two-thirds of perinatal mortality
or live-born children who are yet to complete 7 days of life [32,57]. Using a com-
bination of features like current pregnancy complications, congenital anomalies,
maternal characteristics, and medical history, researchers were able to use reg-
ularised logistic regression, decision tree based on classification and regression
trees, random forest, extreme gradient boosting, and a multilayer perceptron
neural network which could predict the risk of stillbirth with mild success, i.e.,
the best performing classifier XGBoost was able to predict 45% of stillbirths
among all women in the dataset [55].

Mortality prediction studies in the field of cardiology has been very active,
as cardiovascular diseases account for a large amount of deaths worldwide. Adler
et al. [1] trained a boosted decision tree on a cohort of 5822 hospitalized patients
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with Heart Failure (HF). Using eight key variables the model was able to give a
risk score with an AUC of 0.88. Wang et al. [108] proposed a feature rearrange-
ment based DL system for heart failure mortality prediction, which works well
even on imbalanced datasets. The researchers also propose a method called Fea-
ture rearrangement based convolutional layer, where they show that the order
of the input features is also essential for the convolutional network. Numerous
studies on the risk stratification and mortality prediction for COVID-19 patients
have been reported in the last one and a half years, which are discussed later.

4 AI in Medical Treatment

In the previous sections we discussed how AI has greatly impacted the way
healthcare professionals accurately diagnose and give prognosis to patients. In
this section, we will look at how AI techniques like ML and DL have helped
improve the quality of the treatment they provide to their patients.

The development of a emergency department (ED) triage systems that are
able to differentiate patients according to care they need remains a challenging
task. Raita et al. [70] were able to build a deep neural network to predict if
patients coming to the ED were critically ill with an AUC of 0.86. As the lead-
ing cause of mortality and morbidity, CVDs are very time sensitive in nature,
especially if the patient suffering from it is admitted to the ED. Using data
from about 17,661 ED patients with suspected CVDs, researchers used a set
of ML models like multinomial logistic regression, extreme gradient boosting,
random forest and gradient-boosted decision tree to train on 80% of the data,
keeping the rest for testing. They achieved AUC of 0.937 for XGBoost, 0.921 for
gradient-boosted decision tree, 0.919 for random forest and 0.908 for multino-
mial logistic regression [39]. Klang et al. [45] developed a novel prediction model
to find patients in who require head CT exam during Emergency Department
(ED) triage. Using a gradient boosting model with a dataset containing 595,561
ED visits, the model showed an AUC of 0.93, with sensitivity of 88.1% and
specificity of 85.7%.

AI in robotics has greatly influenced the healthcare industry, we can see that
even though AI controlled robotic systems are used proficiently in healthcare
laboratories and for manufacturing healthcare equipment with precision [110],
it’s adoption into mainstream medical practices like surgery has been scarce.
Minimally invasive surgery is a great alternative to open surgery options as
it reduces surgical trauma and eases post-surgery rehabilitation, but it comes
with its own set of disadvantages as surgeons now need to handle a confined
work space, loss of depth perception, and compromised hand-eye coordination.
There has been console operated robotic systems, like the da Vinci surgical
system which is able to perform minimally invasive surgery by replication the
hand movements of a surgeon with high precision [33]. Concentric Tube Robots
(CTRs) which are a special class of continuum robots (i.e., a type of robot
characterised by infinite degrees of freedom and number of joints [84]) has shown
great potential for minimally invasive surgery due to its miniaturization potential
and maneuverability [4].
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The advent of AI in healthcare has also come as a boon for hospitals them-
selves. Re-admission in hospitals is generally defined as admitting a patient again
within, generally, 30 days of initial admission. Ajay et al. [2] showed the cons
of re-admission in hospitals and proposed how it can be prevented using ML
techniques. Vivanco et al. [102] used ML techniques to identify patients likely to
overstay in hospitals, these patients are partly responsible for high waiting times
and bed shortages in the hospital. Using a decision tree classifier, they were able
to achieve a F-Measure of 0.826 for patients at a tertiary teaching hospital and
an F-Measure of 0.784 at a community hospital. Yala et al. [112] built a classifier
to parse classical breast pathology reports automatically by extracting pertinent
tumor characteristics into readily available data with an average accuracy of
97% of individual categories.

Hypoxaemia is the condition where there is an abnormally low concentration
of oxygen in the blood. Researchers were able to use a ML based system to
predict the prevention of hypoxaemia during surgery. They were effectively able
to double the rate of prediction of hypoxaemia by anesthesiologists from 15%
originally to 30% with the use of their system [53]. Wijnberge et al. [111] used
a ML algorithm that predicts hypotension during surgery in combination with
personalized treatment. Hatib et al. [35] built a custom ML based algorithm
to predict intraoperative hypotension, they were able to achieve a sensitivity of
88% and specificity of 87% 15 min before a hypotensive event with an AUC of
0.95.

5 AI in COVID-19

Coronavirus Disease 2019 (COVID-19) is an infectious disease caused by Severe
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Virus. The outbreak
of COVID-19 originated from Wuhan, China and rapidly spread across the world,
bringing the global population to a standstill. Severe cases of COVID-19 can lead
to serious respiratory disease and pneumonia, which might even lead to death.
By the end of October 2021, WHO has confirmed over 4.9 million deaths due
to COVID-19. AI interventions can help in controlling the pandemic. AI mod-
els are being used to quickly and accurately identify individuals who are not
wearing face masks [12,49]. COVID-19 is an infectious disease that spreads very
rapidly and poses immense pressure on the existing health infrastructure of the
world. Early prediction of an upcoming surge in the COVID-19 positive cases
can help the authorities in taking proactive measures that can save thousands of
lives. Researchers have developed AI based models for epidemic waves forecast-
ing [10,67,107]. These models can predict the approximate time and intensity
of the forthcoming surge of positive cases. Several prognostic and diagnostic
applications of AI for COVID-19 are also being developed, proving the immense
significance of AI in this fight.
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5.1 AI Based COVID-19 Diagnosis

Early detection of COVID-19 is an essential step to stop the spread of the
virus. Several studies tried to use AI based solutions to help in accurate and
fast COVID-19 diagnosis. Many studies trained ML models using chest X-rays
[11,71,105], while others tried to exploit the chest CT images [14,42] for the
early detection of COVID-19. Although radiological imaging based solutions
tend to perform well, they are expensive and complex. Some studies proposed
using cough or respiratory sound recordings for COVID-19 detection [56,62,63].
Aly et al. [9] used a dataset of 1299 sound samples to train an ML model that
detected COVID-19 positive samples with an AUC of 0.96. Zoabi et al. [118]
proposed an ML model trained on records of 51,831 individuals. The model
could detect COVID-19 positive cases with a high accuracy by just using the
symptoms and basic patient information like age and sex.

5.2 AI Based COVID-19 Prognosis

COVID-19 has posed an unprecedented pressure on global health infrastructure
due to the enormous inflow of patients demanding medical care. In times of dis-
tress, efficient utilisation of critical resources like oxygen and ventilators becomes
an important step, which, if not appropriately enacted, can lead to the deaths of
many. The efficient prognosis of COVID-19 patients can help in the early iden-
tification of high-risk patients. Authorities can then provide preferred medical
care to individuals who stand a chance of developing severe complications, which
might help in saving thousands of lives. Many AI solutions for early and quick
COVID-19 prognosis are being developed. Wang et al. [106] proposed ML mod-
els based on clinical and laboratory features to predict mortality of COVID-19
patients with an AUC of 0.83. Bolourani et al. [18] developed an ML model that
utilised features like age, respiratory rate, serum lactate to predict respiratory
failure with an accuracy of 91.9%. ML models to predict mortality and severity
of patients using chest X-rays and CT scans have also been proposed [25,54].

In further sections, we will look at two different COVID-19 risk stratification
and mortality prediction studies to get an in-depth understanding of the research
in the domain of AI for COVID-19.

5.3 Machine Learning Based Clinical Decision Support System
for Early COVID-19 Mortality Prediction

Karthikeyan et al. [41] proposed an ML model to predict COVID-19 patient
Mortality. The model uses a combination of five readily available features: neu-
trophils, lymphocytes, lactate dehydrogenase (LDH), high-sensitivity C-reactive
protein (hs-CRP), and age to predict mortality with an accuracy of 96%. Vari-
ous ML models like Support Vector Machine, XGBoost, random forests, logistic
regression, neural network and decision trees were trained and tested to get the
best performing model. The neural network performed the best with an ability
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Fig. 3. ML pipeline used by Karthikeyan et al.

to predict mortality with an accuracy of 90% as early as 16 days before the
outcome. Figure 3 depicts the ML pipeline used for the study.

For the study, the authors used the publicly available dataset provided by
Yan et al. [113]. The dataset is a time-series data of 375 COVID-19 patients from
Tongji Hospital in Wuhan, China. It contains the information corresponding to
74 biomarkers and data sample time, admission time, discharge time and out-
come. After data cleaning, K-Nearest Neighbour algorithm was used to impute
the missing values followed by Min-Max scaling. The pre-processed dataset con-
sisted of 1,766 data points coming from 370 different patients. Since the dataset
is time series, a single patient had multiple data points corresponding to dif-
ferent days of hospital stay. To ensure exclusive patients for train and test set,
authors divided the dataset such that all the data points corresponding to 80%
of the randomly chosen patients were considered for the training set while all
the data points of the remaining 20% of the patients were considered for the
testing dataset. The test set had a balanced distribution, where 56.3% of data
points correspond outcome as ‘died’ while 43.7% data points had ‘survived’ as
the outcome.

After the data pre-processing and data splitting, XGBoost classifier was used
to get the relative feature importances of all the available features. The aver-
age importance of features was found by taking the arithmetic mean of fea-
ture importance of 100 different runs, where each run takes a random 80% of
the training data points. XGBoost feature importance produced the list with
the top 4 features being neutrophils (%), lymphocyte (%), LDH and hs-CRP.
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Later age is added to the top of the feature importance list owing to its ease
of procurement. After determining the feature importances, the number of most
important features that need to be used to train the ML models must be deter-
mined. A neural network with two hidden layers was trained and validated on
the training dataset. The AUC after five-fold cross validation was chosen as the
evaluation metric to compare the neural network’s performance corresponding to
the different number of features. Neural network feature selection suggested the
combination of the top 5 features, as these features gave the optimum results.
Although the top 6 features gave slightly better results, authors felt the increase
in performance was not enough to add another feature to the model. Finally, 5
features of age, neutrophils (%), lymphocyte (%), LDH and hs-CRP were chosen
as the optimal set of features and were thus used for further analysis.

The selected combination of features is then used to 6 different ML algo-
rithms, namely Logistic Regression, Random Forests, XGBoost, Support Vector
Machine, Decision Trees and Neural Network. Extensive hyper-parameter tuning
for the Logistic Regression, Random Forests, XGBoost, Support Vector Machine,
and Decision Trees was done using GridCV with stratified five-fold cross vali-
dation. Adam optimizer with Binary Cross Entropy loss was used to train the
neural network consisting of 2 hidden layers and ReLU activation.

Figure 4 shows comparison of overall test accuracy, F1 score and AUC of
different ML algorithms used in the study. The graphs suggest neural network
performs the best with an overall accuracy of 96.53% (±0.64%), F1 score of
0.969 (±0.006) and AUC of 0.989 (±0.006). Neural network was hence chosen
as the ML model for all the further analysis.

Fig. 4. Comparison of the performance of different ML algorithms. Standard deviation
is denoted by the vertical lines.

The authors of the study also tested the model’s capacity to predict mortality
with respect to number of days to outcome. Figure 5 shows the analysis where
model is tested on different datasets varied with respect to different cutoff for
days to outcome. For the value of cutoff set as ‘n’ a new dataset is generated
where only the data points which have the number of days to outcome ‘≥ n’ are
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selected. The Fig. 5 suggests model was able to achieve an accuracy of 90% for
cutoff set as 16 days, hence model is able to predict mortality with an accuracy
of 90% as early as 16 days in advance to day of outcome.

Fig. 5. The performance of neural net on the test data when only data points with
days to outcome ≥n are chosen. (A) Class wise distribution of varying dataset. (B)
Accuracy of the model with respect to varying dataset. (C) F1-score and AUC of the
model with respect to varying dataset.

5.4 COVID-19 Risk Stratification and Mortality Prediction
in Hospitalized Indian Patients

Even though studies regarding COVID-19 had been done in the past, analysis of
Indian COVID-19 patients was required. Alle et al. [6] conducted a detailed study
to understand the COVID-19 disease progression in the Indian cohort. The data
for the study was collected from the Max Group of Hospitals, New Delhi, India.
The authors developed XGboost based ML model for risk stratification with
an F1 score of 0.81, while a logistic regression classifier was used for mortality
prediction with an F1 score of 0.71. The study also tried to investigate the
differences between disease progression in Wuhan and New Delhi cohorts.

A time-series data of 544 COVID-19 cases was collected by the MAX group
of hospitals, New Delhi, between June 3rd and October 23rd, 2020. Patient data
was anonymised at the data warehouse of CSIR-IGIB, New Delhi, to ensure
patient privacy. The data comprised 357 different biomarkers, including vitals,
symptoms, comorbidities, blood biomarkers, and medicines administered. The
authors categorised the patients into different risk levels. They created three
sets of different labels based on mortality, quaternary stratification and binary
stratification. Mortality comprised of outcome labels of died and survived. Quar-
ternary stratification had four outcome labels of home quarantined, hospitalised
but not on respiratory support, on respiratory support, died based on patient’s
severity during the disease. Binary stratification had output labels of mild and
severe, where mild risk represented home quarantined or hospitalised patients
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Fig. 6. ML pipeline used by Alle et al.

without respiratory support. The severe risk category comprised patients who
were either on respiratory support during their hospital stay or succumbed to
the disease.

As the data for the study was a time-series dataset, a single patient had
multiple records of data with respect to blood parameters and vitals. For the
study, authors considered each blood sample recording as a separate data point.
The missing values for a parameter were imputed with the nearest value of
the parameter from the patient’s past results. All the numerical parameters
were scaled within a range of 0–1 using min-max scaler. To ensure patient-level
segregation between train and test set, all the 429 patients who had a clear
outcome before 11th September 2020 were considered for the training set while
the data of other 115 patients was used for the generation of the holdout test
set.
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Figure 6 depicts the flowchart for ML pipeline. Different sets of features were
selected for mortality prediction and risk stratification. These features were then
used for training and testing of various ML algorithms. The explanation about
feature selection and training is discussed below.

To identify the most important features, the relative importances of all the
features were identified using XGBoost algorithm. The number of features to
be used for training the ML model was then determined by training XGBoost
with different number of features, with features being added in the order of their
relative importance. The smallest cluster of features giving the optimal perfor-
mance was then chosen for model training. To account for high class imbalance
of training set, SMOTE algorithm was used for synthetic generation of sam-
ples belonging to the minority class. XGBoost, Random Forest, SVM, Logistic
Regression based models were then trained for mortality and risk prediction.

Fig. 7. Density histogram to compare Indian and Wuhan cohort

11 features were selected for the risk stratification task: absolute neutrophil
count, LDH, lymphocyte (%), neutrophil (%), record of diabetes comorbidity,
ferritin, INR, interleukin-6 (IL-6), oxygen saturation level, absolute eosinophil
count and packed cell volume. XGboost algorithm performed best with an F1
score of 0.810 ± 0.01 and AUC of 0.833 ± 0.01. For mortality prediction, a set
of 9 features were selected: D-Dimer, Ferritin, Lymphocyte (%), Neutrophil to
Lymphocyte ratio (NLR), WBC, Trop I, INR, IL-6 and LDH. Logistic regression
performed the best for the task with an AUC and F1 score of 0.927 ± 0.01 and
0.710 ± 0.02.

The authors tried to identify differences between Wuhan and the Indian
cohort, for which data provided by Yan et al. was used to understand the dis-
ease progression for the Wuhan cohort. Authors plotted density histograms for
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five different parameters like neutrophil (%), LDH to understand the differences
between people who survived and those who did not. From Fig. 7 we can observe
that for the Wuhan cohort, the neutrophil (%) and LDH had really high vari-
ation between the people who died and those who survived. The Indian cohort
did not show such a stark variation.

6 Summary and Outlook

Although AI in Healthcare has shown excellent prospects, it faces many chal-
lenges. ML models are data-hungry systems that require enormous amounts
of data for training. Healthcare data collection is an arduous task, and often
healthcare datasets are inadequate and biased. Data scarcity poses a significant
challenge to the success of AI in healthcare. Developing an AI for healthcare
solution that generalises well is another challenging task. Often, inadequate and
biased training data fails to represent the proper and complete subsample of the
data. Healthcare datasets are often plagued with ethnic and racial biases, which
pose a severe challenge in the generalizability of the ML and DL models. It is
often seen that models trained on the data of the population of one subcon-
tinent fail when tested on data from some other cohort. Under representation
of the minority class in the dataset can lead to biased AI models that overfit
the majority class. This bias can lead to the seclusion of minorities from the
general medical practice. Data privacy is another big hurdle in the success of AI
in healthcare. Lack of proper protocols to maintain the anonymity and privacy
of intimate health information dissuades patients and hospitals from sharing the
data with the researchers. Another big challenge is the lack of interpretability
in the developed AI solutions. Most modern ML and DL models are black boxes
that take input to produce a quantitative outcome. These black box models fail
to explain the reasoning behind the various decisions. This lack of interpretabil-
ity and generalisability has led to the loss of trust of the medical community in
AI. Hesitation from the healthcare industry to deploy and augment AI solutions
at the ground level has developed some friction in the growth of AI in healthcare.

Even though many challenges loom ahead of the success of AI in healthcare,
we believe in the coming future, AI will play a pivotal role in revolutionising
the healthcare industry for good. Cumulative efforts of academia, industry and
government authorities might help in the generation of more extensive and unbi-
ased healthcare datasets. Development and training of the AI models which are
uninhibited from racial and ethnic biases will play a crucial role in the success of
AI in healthcare. Proper protocols and regulations need to be established to dis-
miss the concerns regarding data privacy and security. Developing trust toward
the AI solution is also an essential attribute in the widescale adoption of AI
in healthcare. We believe AI would not eliminate the need for human interven-
tion; instead, it will assist radiologists and clinicians in providing more reliable,
cheaper and easily accessible medical care to all.
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Abstract. The paper provides an introduction into the theoretical
expressiveness of graph neural networks. We discuss the basic properties
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1 Introduction

Graph Neural Networks (GNNs) are one of the recent success stories in machine
learning. They have first been developed in [6,16], and have been the subject of
intensive study in the past few years [8]. GNNs have achieved remarkable results
in a very wide range of applications, such as chemistry, physical systems, social
science or recommendation systems [5,13,19].

This paper provides a brief introduction into GNNs from a distributed com-
puting perspective. While the practical properties and concrete applications of
GNNs are also interesting and extensively studied topics, we mostly focus on the
theoretical capabilities of GNNs, and in particular: (i) what GNNs can learn in
theory, (ii) what is beyond their expressive power, (iii) and how we can extend
the GNN concept in order to increase this expressive power. It turns out that
these questions are closely related to some variants of classical message passing
model in distributed computing.

2 Model and Background

2.1 Preliminaries

Similarly to distributed message passing algorithms, GNNs operate on graphs. For
simplicity, we will assume that these graphs are simple, unweighted, undirected.
c© Springer Nature Switzerland AG 2022
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We denote the set of nodes and edges by V and E, respectively. Individual nodes
of the graph are mostly denoted by u or v, the number of nodes in the graph by
n = |V |.

The neighborhood of u is denoted by N(u), the degree of u by δ(u) = |N(u)|.
We assume for convenience that the graph has a bounded degree, i.e. δ(u) ≤ Δ
for all u ∈ V and some global constant Δ; this is indeed realistic e.g. in many
chemical or biological applications.

In contrast to most message passing models, nodes in a GNN do not have
identifiers; instead they have input features, which describe some properties of
the node. We can assume that features are represented as real numbers. Unlike
IDs, these features might not be unique. To make our examples simpler, we will
assume that a node only has a single feature. However, in most applications,
nodes actually have d different features, and thus the features of a node are
stored as a vector ∈ R

d.
We also apply the double brackets notation {{·}} to denote a multiset, i.e.

where the same element can appear multiple times.

2.2 Graph Neural Networks

A GNN is similar to the popular message passing model in distributed comput-
ing: the GNN operates in rounds, and nodes communicate with their neighbors
in each round.

Definition 1. A Graph Neural Network (GNN) operates in synchronous
rounds. In each round, every node v independently computes a new state; we
denote the state of v after time step t by hv

(t). The initial state hv
(0) is the node

feature(s) of v.
The state in time step t is always computed from (i) the node’s own state

hv
(t−1) in the previous time step, and (ii) the state hu

(t−1) of the nodes’ neighbors
u ∈ N(v) in the previous time step. More specifically, GNNs are described in
terms of two functions:

av
(t) = aggregate ({{hu

(t−1) |u ∈ N(v)}})

and
hv

(t) = update (hv
(t−1), av

(t)),

where aggregate is a permutation-invariant function.

In the machine learning literature, the states of nodes are usually called
embeddings. Furthermore, the rounds of computation are also called layers. We
will denote the number of rounds/layers by r, where r is usually a small constant.

In more sophisticated GNN models, the aggregate and update functions
may also depend on the time step t. However, they cannot depend on the node
v, since each node uses the same function (similarly to an orthodox distributed
model, where each node executes the same program).

One of the key concepts in this definition is the permutation-invariance of the
aggregate function; intuitively, this means that if the same multiset of states
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was distributed in any other way among the neighbors, then the function would
still return the same value. It is very natural to wonder how one can implement
an aggregate function in practice that is permutation-invariant on the one
hand, but still sufficiently expressive.

Example 1. Aggregation is often implemented as

aggregate(M) := A ({{f(i) | i ∈ M}}),

where f is some transformation f : R → R, and A is one of the following
permutation-invariant functions: max, mean, sum.

In the simplest case, the transformation f is implemented as

f(x) := σ(w · x) ,

where w ∈ R is a learnable weight, and σ is a simple non-linearity. The input x
of the function commonly also includes a constant value 1.

Executing a transformation f before A ensures that the GNN can represent
a large class of functions. The non-linearity σ is usually a simple function such
as the step function (σ(x) = 0 for x < 0, σ(x) = 1 for x ≥ 0), a ReLU (σ(x) = 0
for x < 0, σ(x) = x for x ≥ 0), or some kind of a sigmoid. Note that if the states
are in R

d instead of just R, then the transformation is a function f : Rd → R
d,

W ∈ R
d×d is a matrix, and σ is applied element-wise on each cell of w · x.

The main idea behind GNNs is that the functions defining a GNN are not all
hard-coded. That is, while A and σ are usually decided in advance, the weight
w is learnt by the neural network on a large set of data; that is, weights are
adjusted repeatedly during training, until the output of the GNNs (the final
state) is of good enough quality. Discussing the details of this standard training
procedure (backpropagation) is beyond the scope of this paper.

Applications often use a more sophisticated function f ; for example, a so-
called multi-layer perceptron (MLP), which is a neural network formed from
the repeated application of the transformation f(x) = σ(w · x), with a different
choice of weights on different levels. It is known that MLPs can approximate any
continuous R → R function, which hints that with such a powerful f , GNNs are
rather expressive.

Example 2. Let us construct an example GNN to decide if a node v is adjacent
to a leaf node. Assume for convenience that the initial node features are the
degrees: hv

(0) = δ(v). Then we can easily solve this task by a 1-layer GNN that
has

aggregate(N(v)) = max(−h(t−1)
u | u ∈ N(v))

and
update(hv

(t−1), av
(t)) = −av

(t).

This ensures that if hv
(1) = 1, then v has an adjacent leaf neighbor, whereas if

hv
(1) �= 1, then this is not the case.
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2.3 Comparison to Distributed Algorithms

GNNs are in many ways similar to our distributed algorithms in the message
passing model: for a given number of rounds r, they aggregate messages from
their neighbors, execute a computation, and then they pass on the new states
to their neighbors again. However, there are also some key differences.

– The most obvious difference is that GNNs do not have infinite computational
power: they can only compute the next state with the formulas above.

– Furthermore, GNNs do not have the ability to send different, specialized
messages to different neighbors: their current node state is essentially their
entire view of the world, and they can only pass on this node state to each of
their neighbors in each round.

– As mentioned before, nodes do not have unique identifiers in the GNN setting.
Hence symmetry breaking and distinguishing specific structures are some of
the main challenges.

– Finally, nodes do not have a port numbering, i.e. they cannot distinguish their
different neighbors. This means that if the neighbor states form a multiset
M = {{hu

(t) |u ∈ N(v)}}, then any other permutation of M along the neigh-
bors would also produce the same next state hv

(t+1). In this framework, a
node might not even be able to execute simple tasks that are fundamental
steps in classical distributed algorithms, e.g. decide if it has received the same
message from a specific neighbor in two consecutive rounds.

2.4 Applications of GNNs

So what kind of graph-related questions do we want to answer with a GNN? We
know that GNNs compute a final state hv

(r) for each node v. In the simplest
case, node labels are already what we are looking for in the first place.

Definition 2. In a node classification task, we want to compute (or approxi-
mate) a function V → R. For example, we want to compute some property of
the nodes (represented as a real number or vector), or we want to partition the
nodes into different classes.

The final state of the node can be interpreted as the value of this property,
or the label of the class we sort the node into. As such, a GNN can be directly
applied to solve a node classification task. For a more sophisticated classification,
it is also a common method to apply a function g(hv

(0), hv
(1), . . . , hv

(r)) which
predicts the final label of v from all the states it had during the different rounds.

In other applications, however, node states are not even the end of the story.

Definition 3. In a graph classification task, we want to estimate a function
that is dependent on the entire graph; i.e. a function G → R, where G denotes
the set of all possible input graphs.
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For example, given the structure of a specific molecule, we want to estimate
some physical or chemical property of the molecule.

In case of graph classification, we can collect the set of states of each node into
a multiset M with |M | = n, and learn a so-called readout function M → R

for the graph classification task, where M denotes the set of all multisets of
size n. E.g. if each state hu

(r) describes how faulty node u is, then we could
simply compute

∑
u∈V hu

(r) as the total “faultiness” of the entire network. For a
classification task, we could also introduce a threshold θ, e.g. θ = 3 or θ = 1

5 · n,
and classify a network as too faulty if

∑
u∈V hu

(r) ≥ θ. For another example, if
we compute an state where hu

(r) = 1 if node u satisfies some (local) constraint
and hu

(r) = 0 otherwise, then a readout aggregation with ANDu∈V allows us
to decide if the constraint is fulfilled at every node in the graph.

Finally, another popular task is link prediction.

Definition 4. In a link prediction task, there is an original graph G, but we
only see a subset of the edges, i.e. we see another graph G′ where some of the
edges of G are missing. Given a specific pair of nodes u and v, our task is to
predict whether the edge (u, v) is present in the original graph G.

In this case, we can learn a function R × R → [0, 1] which takes the states
hu

(r) and hv
(r) of u and v as inputs, and outputs the estimated probability of

the edge (u, v) being present in the graph.

3 Limits of GNNs: The WL-Test

Given this overview of the GNN framework, it is very natural to wonder what
GNNs can or cannot compute.

3.1 Different Aggregation Methods

Recall from Example 1 that some of the popular permutation-invariant aggrega-
tion functions for A are max, mean and sum. One might wonder which of these
three functions is the best choice. Not surprisingly, this depends on the concrete
application. The example below already shows that their expressive power is
somewhat different.

Example 3 (from [18]). In the example graphs of Fig. 1, consider the state of
v after using a GNN with a single layer (r = 1). The different node features
are shown by colors; for simplicity, assume that the orange feature corresponds
to 1, and the green feature corresponds to 2. Also, assume that we execute no
transformation before aggregating the values, i.e. f(x) = x in the formula of
Example 1.

max aggregation cannot even distinguish the left and middle graphs, since
it returns 2 in both cases. However, mean can distinguish them: it returns 1.66
for the first graph, and 1.5 for the second.
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Fig. 1. An example for the limits of different aggregators. (Color figure online)

However, even mean aggregation cannot distinguish the middle and right
examples: it returns 1.5 in both cases. On the other hand, sum can distinguish
these, too: it returns 3 for the middle graph, and 6 for the right-hand graph.

Note that the choice of f does not matter for the example above: for two
nodes with the same feature hv

(0), the value of f(hv
(0)) is the same as well.

This example suggests that mean aggregation is more expressive than max,
and sum is more expressive than mean. It is indeed true that in terms of repre-
sentative power, sum is the strongest one of these options. However, sum might
not always be the best choice in practice. For example, mean has the useful
property that the output does not scale with the number of neighbors. One can
also find simple examples where max provides an easy solution.

3.2 The Weisfeiler-Lehman Algorithm

So let us now revisit our original, general question: how can we describe the
functions that GNNs can compute? In order to answer this, we first make a brief
detour to the so-called Weisfeiler-Lehman algorithm on graphs, also known as
the state refinement (or color refinement) algorithm.

In the beginning of this algorithm, each node v has the same initial state sv
(0),

and these states are refined through multiple rounds. Throughout the algorithm,
the state of a given node essentially represents its current knowledge about its
local neighborhood.

The pseudocode of the algorithm is shown in Algorithm1. The relabel func-
tion is essentially a hash function which assigns a different state to each possible
configuration in the neighborhood of the node. More formally,relabel is an injec-
tive functionR×M → R, where M denotes all possible multisets ofR. Intuitively
speaking, this means that if two nodes u and v have the same state in iteration t,
then they will receive a different state in the next time step if and only if there
exists a state s such that u and v have a different number of neighbors that are in
state s at time step t. E.g. after the first round of the algorithm, two nodes have
the same state if and only if they have the same degree.

Note that there is no termination condition in the pseudocode: the algorithm
runs forever. However, in practice, we are only interested in further refinement
steps as long as the algorithm actually makes progress, i.e. it distinguishes more
nodes from each other.
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Algorithm 1. State Refinement
1: t = 0
2: for all v ∈ V do
3: sv

(0) = 0
4: end for
5: while True do
6: for all v ∈ V do
7: sv

(t+1) = relabel ( sv
(t), {{su(t) |u ∈ N(v)}} )

8: end for
9: t = t + 1

10: end while

Definition 5. We say that state refinement has finished in time step t if there
exist no pair of vertices u, v such that su

(t) = sv
(t), but su

(t+1) �= sv
(t+1).

Theorem 1. The state refinement algorithm finishes in at most n rounds.

Proof. If the algorithm has not terminated after round t, then this means that
there are two vertices u and v such that su

(t−1) = sv
(t−1), but su

(t) �= sv
(t). On

the other hand, if nodes u and v have different states in round t, then they also
have different states in all subsequent rounds t′ > t.

Hence the number of different states that are present in the graph strictly
increases in each round. Since this can be at most n, the algorithm finishes after
at most n rounds.

This state refinement algorithm is commonly known as the Weisfeiler-
Lehman (WL) algorithm. The algorithm was developed as a fundamental heuris-
tic to test the isomorphism of graphs. Graph isomorphism is a fundamental
problem in theoretical computer science: intuitively, if two graphs are isomor-
phic, then they are “essentially the same”, but the nodes are (possibly) presented
in a different order.

Definition 6. Two graphs G1(V1, E1) and G2(V2, E2) are isomorphic if there
exists a bijection π : V1 → V2 such that for any u, v ∈ V1, we have (u, v) ∈ E1 if
and only if (π(u), π(v)) ∈ E2.

Deciding if G1 and G2 are isomorphic is a fundamental problem, but it is
rather difficult: we do not know how to solve it in polynomial time, even in
a centralized setting. Think about a naive algorithm that checks all possible
bijections π: this would take Ω(n!) time.

After running the state refinement algorithm on both G1 and G2, we can
test isomorphism with the function in Algorithm2. The equality of multisets
can be checked, for example, by sorting both multisets, and then comparing the
corresponding elements. If these so-called canonical forms of two graphs are not
equivalent, then the two graphs are certainly not isomorphic. However, if the
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canonical forms are equivalent, then it is still possible that the graphs are not
isomorphic, but the test was unable to detect this. In other words, the algorithm
is a one-sided isomorphism test.

Algorithm 2. Isomorphism testing after state refinement
1: M: = {{sv | v ∈ V1}} and M2 = {{sv | v ∈ V2}}
2: if M1 = M2 then
3: output “maybe isomorphic”
4: else
5: output “not isomorphic”
6: end if

Some examples for non-isomorphic graphs that are not distinguished by the
Weisfeiler-Lehman algorithm are as follows.

Example 4. The two 8-node graphs in Fig. 2 are non-isomorphic: one of them
consists of two 4-cycles, the other consists of a single 8-cycle.

Since each node begins with the same state s and each node has exactly two
neighbors in state s, relabel assigns the same new state to each node. Hence
the algorithm already terminates in the first round on both graphs, and the
multisets M1 and M2 are identical; the algorithm outputs “maybe isomorphic”.

Example 5. The two graphs in Fig. 3 are again non-isomorphic; for example, one
of them has a triangle, but the other one does not.

In the first state refinement step, nodes receive different states based on their
degree. In the second step, however, nodes in the same state already all have
the same multiset of states in their neighborhoods, so the algorithm terminates.
The multiset of states is the same in the two graphs.

(a) (b)

Fig. 2. Two graphs on 8 nodes, consisting of cycles of different length.

Example 6. Figure 4 is a slight variation of Fig. 3, where the process goes on
for three iterations instead of two, again outputting “maybe isomorphic”. The
graphs in this case correspond to two different molecules, Decalin and Bicy-
clopentyl.
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(a) (b)

Fig. 3. Two graphs that cannot be distinguished by the WL algorithm.

(a) (b)

Fig. 4. Two graphs that cannot be distinguished by the WL algorithm.

The WL-test is one of the most well-known heuristics for isomorphism testing,
and it has been the subject of intensive study for decades [3,7,17]. The algorithm
is also one of the main ingredients of Babai’s celebrated result on the complexity
of the isomorphism problem [1].

We point out that for the full power of the algorithm, it is important that
we compare the actual states in M1 and M2, and not just the number of the
occurrences of each state. For example, consider a clique on 4 nodes as G1, and
a cycle of length 4 as G2. Both graphs are regular, so the refinement process will
stop after one step in both cases, and both graphs will end up with 4 nodes of
identical state. However, this state is different, since nodes in G1 have degree
3, while nodes in G2 have degree 2. As such, M1 and M2 are different, and the
WL-test can distinguish the two graphs.

Also, note that in general, if both G1 and G2 are k-regular (every node
has degree exactly k), then the algorithm can never distinguish them, since it
already terminates in the first iteration. We have already seen one example for
non-isomorphic regular graphs in Example 4: the WL-test cannot distinguish
cycles of different length.

On the positive side, it was shown that the majority of graphs can indeed be
distinguished by the algorithm, and the algorithm can also always distinguish
some special kinds of graphs such as trees [3].
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3.3 The WL-Test and GNNs

It turns out that the WL-test is closely related to GNNs. Let us assume that a
GNN begins with no information on the nodes, i.e. any two nodes u, v have the
same features hu

(0) = hv
(0).

Theorem 2 (from [18]). If two nodes u and v in G have the same state su
(r) =

sv
(r) after r rounds of the state refinement algorithm, then any r-layer GNN on

G will compute the same final states for the nodes: hu
(r) = hv

(r).

Proof. We can prove this by induction, showing that the states hu
(t) and hv

(t)

are identical after each time step t ∈ {0, ..., r}. For t = 0, this is straightforward,
since all nodes begin with the same feature.

For a general t, assume that the statement is already proven for t−1. Assume
that u and v still have the same state in round t; due to the state refinement
algorithm, this implies that they had the same state su

(t−1) = sv
(t−1) at time

t − 1, and the same multiset of states in their neighborhood: {{su′(t−1) |u′ ∈
N(u)}} = {{sv′(t−1) | v′ ∈ N(v)}}. Due to the induction hypothesis, this means
that hu

(t−1) = hv
(t−1) and {{hu′(t−1) |u′ ∈ N(u)}} = {{hv′(t−1) | v′ ∈ N(v)}} in

our GNN. However, then according to the formulas in Definition 1, the nodes
will also have the same state hu

(t) = hv
(t).

This shows that the expressive power of GNNs is at most as high as that
of the WL-test: if the WL algorithm fails two distinguish two graphs, then a
GNN will also produce the same result on these graphs. For example, for several
applications, it is important to know whether a node is contained in a triangle.
However, as Example 5 shows, GNNs are unable to decide this from the final
state of a node: the blue nodes in the left graph are contained in a triangle,
while the blue nodes in the right graph are not. According to Theorem2, these
blue nodes will end up with the same final state in the two graphs.

It is natural to wonder about the other direction: are GNNs indeed as pow-
erful as the WL-test? It turns out that they are.

Theorem 3 (from [18]). There exists an r-layer GNN that fulfills the following
property: if two nodes u and v have a different state su

(r) �= sv
(r) after r rounds

of state refinement, then the GNN assigns different final states hu
(r) �= hv

(r) to
u and v.

Proof Sketch. We only outline the main idea of the proof, which is quite natural:
if both aggregate and update are injective on their domain, then whenever
two nodes receive a different state in the state refinement, they also receive a
different state in the GNN. Through another induction, this shows that if the
final states of u and v are different, then also hu

(r) �= hv
(r). It only remains to

show an example for an injective aggregate and update function.
In case of aggregate, we show that there exists a function f such that∑

x∈M f(x) is different for every multiset M over the possible states. As a tech-
nicality, the theorem assumes that node features come from a countable set X,
i.e. there is a mapping Z : X → Z

+. Since the degree of the graph is bounded
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by Δ, we can select a large integer � > Δ; this ensures that for any multiset M
we encounter, we have |M | < �.

Now let us define f(x) = �Z(x) for any x ∈ X. This ensures that
∑

x∈M f(x)
is indeed unique for any multiset M : it essentially encodes the multiset as a
number in �-ary format, where each position corresponds to a specific value in
x ∈ X, and the digit at the position describes the multiplicity of x in M . Hence
this aggregate function is indeed injective.

Given this sum, an injective update function can be created in several ways.
A simple solution is to define it as α · hv

(t−1) + av
(t), where α is a freely chosen

irrational number. A specific hv
(t) then uniquely determines the corresponding

hv
(t−1) and av

(t).
Finally, it follows from classical results in machine learning (the so-called

universal approximation theorem) that if this function exists, then a GNN can
indeed learn this function if aggregate and update are implemented by, for
example, a multi-layer perceptron.

This means that the most powerful GNNs we can design are exactly as pow-
erful as the state refinement algorithm!

Intuitively speaking, the construction of injective functions also shows that
whenever we can describe an algorithm in the corresponding message passing
model (constantly many rounds, not distinguishing a node’s neighbors, no node
IDs), then a GNN can indeed express the function computed by the algorithm.
This allows us to discuss the expressiveness of GNNs on a higher abstraction
level, and ignore the details of the actual implementation. Of course, this only
describes the theoretical capabilities of a GNN – whether a GNN in practice can
indeed learn such complicated functions is another question.

4 More Expressive GNNs

The examples in Figs. 2, 3 and 4 show that some neighborhoods cannot be dis-
tinguished by the WL algorithm, and hence also not by GNNs. This raises a
natural question: how can we make GNNs more expressive?

4.1 Port Numbers

One natural approach is to introduce port numbers into our model [14].

Definition 7. In a GNN with port numbers, each node v numbers its incident
edges from 1 to δ(v), and the domain of aggregate is not a multiset as before,
but a vector R

Δ, which allows the result to depend on the different neighbors in
a different way.

More formally, the domain of the aggregate function is R̂
Δ, where R̂ =

R ∪ {⊥}, and ⊥ is a special symbol denoting that the node does not have a
neighbor with the given port number.
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Of course, there are multiple ways a node can number its incident edges.
Hence in these GNNs, the final state also depends on the port numbers assigned
to the edges: for a different assignment of port numbers in the same graph, the
nodes might compute a different state! As such, besides the challenge of distin-
guishing non-isomorphic graphs from each other, this setting also raises a dual
problem: to ensure that isomorphic graphs are not distinguished accidentally.

Also, port numbers are still not always enough to distinguish our examples.

Theorem 4 (from [4]). GNNs with port numbers are still unable to distinguish
some of the previous examples in case of an unlucky port numbering.

Proof. Consider Fig. 5, which is an extension of the graph in Fig. 2 with port
numbers and some node features (colors). However, port numbers and features
are chosen such that the two graphs still cannot be distinguished by a GNN.
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(b)

Fig. 5. Graphs that cannot be distinguished even with port numbers.

Note that introducing port numbers brings our setting significantly closer to
classical distributed algorithms. In particular, one can adapt the construction of
injective functions in Theorem 3 to this model with port numbers; this essentially
means that the resulting GNNs have the same expressive power as the so-called
anonymous model of distributed computing. It also follows that upper and lower
bounds for the solvability of combinatorial problems in the anonymous model
also carry over to this GNN model [14].

4.2 Domain-Specific Extra Features

A more practice-oriented approach is to apply further insights from the given
application area, e.g. by adding more node features which help us distinguish
the different cases. For example, in molecule modelling, one possibility is to also
measure the angles of the different edges between the graphs, and add this as
an extra node feature to each node [9].

Definition 8. In a GNN with angles, we assume that there is a given position
for each node in a 2- or 3-dimensional space. The angles between the incident
edges of v are added to hv

(0) as node features.
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Note that this raises some difficult representation questions about storing
these angles: we either have to tie these features to pairs of edges, or we have
to come up with a structured way to store all the

(
δ(v)
2

)
angles at each node v.

For simplicity, we will only consider some specific graphs now where each node
has degree two; this means that each node only needs to store exactly 1 angle
parameter, i.e. a single extra feature.

However, given an unlucky geometric embedding, there are graphs that still
cannot be distinguished with this method.

Theorem 5 (from [4]). Even if we add the angles of edges as extra features,
there are non-isomorphic graphs G1, G2 that cannot be distinguished by GNNs.

Proof. Consider the graphs in Fig. 6, which are embeddings of the (non-
isomorphic) graphs in Fig. 2 in 3-dimensional space. For all nodes in both graphs,
the two incident edges have an angle of 90◦ between them, so in any representa-
tion, all nodes begin with the same feature. This means that the upper bound
in Theorem 2 still applies, and hence a GNN cannot distinguish the graphs.

(a) (b)

Fig. 6. Two graphs that cannot be distinguished even with angle features.

4.3 Random Features

Another approach from the theoretical side is to do symmetry breaking by intro-
ducing random features to each node. That is, we increase the dimension d of the
feature vector by 1, and into this final slot of the vector, we insert a uniform ran-
dom integer in {1, ..., L} (for some constant L), which is chosen independently
for each node. This approach was introduced in [15].

Definition 9. In a GNN with random features, we assign a new random feature
to each node, i.e. an integer chosen uniformly at random from {1, ..., L} (for
some constant limit L), independently from other nodes.
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With this approach, an algorithm can now recognize that two nodes observed
on two different paths actually correspond to the same node. That is, if the
random features are more-or-less unique in the neighborhood (which becomes
probable if the neighborhood has bounded size and L is large enough), then we
can essentially use them as pseudoIDs, and we obtain a model that is again quite
close to classical distributed algorithms.

Example 7. Random IDs already allow us to separate cycles of different length.
Consider a graph G1 that consists of 2 disjoint 3-cycles, versus a graph G2 which
consists of a single 6-cycle, as in Fig. 7. Both in G1 and G2, a standard GNN
with 3-layers will observe the same structure.

However, let us add a random feature to each node, and assume that L is
high enough such that all the six nodes receive a different pseudoID with decent
probability. In this case, a node in G1 will always see a node with the same
pseudoID in a 3-hop distance, whereas in G2, this will not happen when the
pseudoIDs are unique. Based on this information, a sufficiently powerful GNN
can distinguish the two graphs.

Fig. 7. (from [15]) Distinguishing cycles of different length with random features.

For this GNN variant, one can prove an even stronger result: in theory, it
can distinguish any two distinct neighborhoods.

Theorem 6 (from [15]). For any set of bounded-degree local neighborhoods S,
there exists a GNN with weights such that for each node v,

– if the r-hop neighborhood of v is isomorphic to a graph in S, then hv
(r) > 0.5

with high probability.
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– if the r-hop neighborhood of v is not isomorphic to any graph in S, then
hv

(r) < 0.5 with high probability.

However, while this sounds convincing in theory, the approach has some
notable drawbacks when applied in practice. In particular, if we train a GNN
with random features, it often learns to distinguish different structures by learn-
ing how the different random features relate to each other. If we apply these
learnt functions later in a situation where the random features happen to have a
different relation to each other, then our learnt functions might return something
that is not useful. Therefore, while random features often yield good results on
the training data, the approach might not generalize so well to new test data.

4.4 GNNs with Dropouts

Another method of introducing randomization is to use dropouts; that is, to
randomly remove some nodes from our input graph. GNNs with dropouts were
introduced and studied in [12].

Definition 10. A GNN with dropouts executes the same r-round computation
multiple times; each time is called a run. In each run, every node v is “dropped
out” independently with a fixed probability p, which means that both v and all
of its incident edges are removed from the graph. The GNN is then simulated in
this smaller graph G′ (remaining after dropouts) in the given run.

The final state of v in the ith run is denoted by hv
(r) [i]. After the R runs,

each node v computes a final state ĥv by aggregating its final states in these R
runs through

ĥv = COMBINE ({{hv
(r) [1], ..., hv

(r) [R] }}),

where COMBINE is a permutation-invariant function.

The GNN now executes the same computation multiple times, but on slightly
different variants of the original graph where some nodes are always removed ran-
domly. Note that in any reasonable implementation, the COMBINE function
has to be permutation-invariant, because there is no ordering between the dif-
ferent runs: a given final state hv

(r) [i] is obtained in each run i ∈ {1, ..., R} with
the same probability.

What if the final state hv
(r) [i] of node v if v is removed in the ith round?

This is just a technical question. We can conveniently assume that hv
(r) [i] = 0 in

this case, or that hv
(r) [i] is then left out from the multiset {{hv

(r) [1], ..., hv
(r) [R] }}

altogether.
The main idea of this approach is that even if two neighborhoods cannot be

distinguished by the WL-test, the modified neighborhoods (when some nodes are
removed) are often still distinguishable. Note that in order to use this method,
we not only have to execute multiple runs while training the GNN, but also
during testing, i.e. every time when we want to apply the GNN on a new graph.
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Example 8. Recall that the graphs in Fig. 2 cannot be distinguished by standard
GNNs. However, consider a GNN with dropouts, r = 2 layers, and a simple choice
of av

(t) =
∑

u∈N(v) hu
(t−1) and hv

(t) = hv
(t−1) + av

(t). For example, if no node is
removed in a run, then each node ends up with a final state of hv

(2) = 9.
Now consider the probability of having a final state hv

(r) = 7 in a run for
any of the nodes v (in a run where v itself is not removed). In the left graph
of Fig. 2, this can already happen if the node at distance 2 from v is removed,
which happens with probability p in each run. However, in the 8-cycle, this only
happens if both of the nodes at distance 2 from v are removed, which happens
with probability p2.

This means that if R is large enough, then the expected occurrences of 7 as
a final state after R runs in the two graphs is p · R and p2 · R, respectively. As
such, the COMBINE function can separate these cases based on the frequency
of the value 7 in the multiset (with a decent probability).

Example 9. Recall that the middle and right graphs in Fig. 1 cannot be distin-
guished with A = mean in case of r = 1.

However, in case of dropouts, the right graph can produce a final hv
(1) value

of 1.33 or 1.66 in case a neighbor of v is dropped out. These final states can never
occur in the middle graph; as such, if the multiset {{hv

(r) [1], ..., hv
(r) [R] }} con-

tains either 1.33 or 1.66, then we know that v has the right-hand neighborhood
instead of the one in the middle.

In case of dropouts, v essentially observes a probability distribution of final
states. If two such probability distributions are different, then a sophisticated
combine function can separate the two cases. Of course, this only holds if R is
large enough. But how large does R have to be?

Note that asymptotically speaking, if p,Δ, r ∈ O(1), then the maximal size of
the r-hop neighborhood is O(Δr), and the number of possible dropout patterns
is 2O(Δr) = O(1), each happening with a constant probability. However, ensuring
that we observe all such configurations is usually not viable in practice.

One simpler objective is to observe all the possible 1-dropouts.

Definition 11. Given the r-hop neighborhood Nr(v) of v, we say that a specific
run is a 1-dropout if exactly 1 node is removed from Nr(v), and v is not removed.

A simple technical argument shows that if n0 := |Nr(v)|, then in order to
maximize the probability of any 1-dropout for v, we should select p = 1

n0
. Note

that different nodes have a different r-hop neighborhood size (i.e. different n0),
while p is a global parameter; however, if the neighborhood sizes are not so
different, then this is not a problem in practice.

With this choice of p, one can already investigate the number of runs it take
to ensure that we observe all the possible 1-dropouts. The following lower bound
can be shown by applying a Chernoff bound.

Theorem 7 (from [12]). Let p = 1
n0

. Then with R = O(n0 · log n0) runs, v
observes all the possible 1-dropouts in Nr(v) with high probability.
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Requiring O(n0 · log n0) distinct runs is not too high from a theoretical per-
spective; however, this might already be too high to be feasible in practice.

Are 1-dropouts already enough to distinguish any two distinct r-hop neigh-
borhoods? Unfortunately not.

Theorem 8 (from [12]). There is a pair of non-isomorphic neighborhoods that
cannot be distinguished based on the 1-dropouts.

v v
1–dropouts

v

Fig. 8. (from [12]) Example of two graphs that are not separable by 1-dropouts (left
side). In both of the graphs, for any of the 1-dropouts, v observes the same tree structure
for r = 2, shown on the right side.

Proof. Consider the left and middle graphs in Fig. 8, obtained by connecting v
to each node in two 3-cycles or a 6-cycle, respectively, and assume that r = 2.
Note that in both cases, v can observe all the nodes and edges of the graph in 2
hops; a classical message passing algorithm could easily distinguish these cases.

However, a GNN without dropouts always computes the same state in both
graphs. Furthermore, in case of any of the 6 possible 1-dropouts (in either of the
graphs), v also observes the same tree structure (shown on the right side of the
figure), so it also computes the same hv

(2). As such, the two graphs cannot be
distinguished from the 1-dropouts.

4.5 Metagraph-Based Approaches

Other notable methods to increase the expressive power of GNNs use another
interesting approach: they first transform the original input graph into a more
sophisticated meta-graph (in order to capture structural properties that cannot
be recognized by the WL-test), and then they run a GNN on this new graph. We
also mention these GNN variants for completeness; however, since they operate
on modified variants of the input graph, they are not so closely related to classical
message passing models.

One such approach for more powerful GNNs is based on a higher-order WL-
test. In this paper, we only discussed the so-called 1-WL algorithm, but WL is in
fact a hierarchy of isomorphism-heuristics. That is, for each k ∈ Z

+, there is also
a more sophisticated k-WL algorithm which essentially operates on the different
k-tuples of nodes in the original graph, and it is known that (k+1)-WL is always
strictly more expressive than k-WL. There are also more powerful GNN variants
that are based on these higher-order WL algorithms [10,11]; however, these
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GNNs have at least Ω(nk) space and sometimes even higher time complexity, so
they are often not applicable in practice.

Another similar approach is to use so-called cell complexes [2]; intuitively
speaking, this method finds specific substructures (such as cycles or cliques) in
the graph, and adds new extra nodes to the graph representing these structures;
these nodes are then connected to the original nodes and smaller structures that
they contain. This method also comes with increased complexity.

5 Conclusion

In this paper we discussed the connection between distributed message pass-
ing algorithms and graph neural networks. We believe that this connection will
advance the state of the art in both areas.
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Abstract. Automated planning is able to handle increasingly complex applica-
tions, but can produce unsatisfactory results when the goal and metric provided
in its model does not match the actual expectation and preference of those using
the tool. This can be ameliorated by including methods for explainable planning
(XAIP), to reveal the reasons for the automated planner’s decisions and to provide
more in-depth interaction with the planner. In this paper we describe at a high-
level two recent pieces of work in XAIP. First, plan exploration through model
restriction, in which contrastive questions are used to build a tree of solutions to a
planning problem. Through a dialogue with the system the user better understands
the underlying problem and the choices made by the automated planner. Second,
strong controllability analysis of probabilistic temporal networks through solving
a joint chance constrained optimisation problem. The result of the analysis is a
Pareto optimal front that illustrates the trade-offs between costs and risk for a
given plan. We also present a short discussion on the limitations of these methods
and how they might be usefully combined.

1 Introduction

Automated Planning is the process of considering and organising actions to achieve
goals before starting to execute them. In automated planning, the actions that must be
performed are not predetermined by the goals, but are selected and scheduled from
a typically large number of alternative actions. The choice is guided by an effort to
achieve the goals whilst optimising various metrics. Ordering choices and resource allo-
cations are made, and evaluated, as part of the selection process. The consequence of
this approach is that neither the number of actions in a plan, nor resource allocation
of the plan, are predetermined. This distinguishes planning from scheduling, where the
actions to be performed are predetermined but the timing of actions, and the allocation
of resources to them, are not [16].

As automated planning is being used in increasingly complex applications, explana-
tion plays a crucial role in building trust – both in automated planners and in the plans
that they produce. A plan is a set of instructions that can be carried out by humans or
autonomous agents. In either case, the plan conveys the means by which a goal is to be
achieved, but not the reasons for the choices it embodies. When the audience for a plan
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includes humans then it is natural to suppose that some users might wish to question
the reasoning, intention and underlying assumptions that lead to those choices.

As a result of this, there has been growing interest in investigating the explanation
of plans [3], developing various approaches to building trust and understanding in the
decisions made by an automated planner. Automated planning presents a distinct advan-
tage in the context of explainable AI (XAI) in that it relies on the use of a model of the
available actions. The model supports both prediction of action effects on a state and the
identification of states from which the actions are applicable. However, in the context of
explanation, the model becomes a shared vocabulary between the system and the user,
enabling a depth and specificity of communication that is more difficult to obtain when
explaining the decisions of systems such as deep-neural nets [31].

In this paper we describe recent work in two distinct areas of explainable automated
planning (XAIP). First, in Sect. 2 we report on recent work in plan negotiation and the
use of contrastive explanations to explore a space of plans. Then, in Sect. 3 we report on
an approach to optimisation under one kind of uncertainty: temporal uncertainty about
how long actions will take to complete. This approach can be used to generate analyses
of the trade-offs between plan costs and risks. In Sect. 4 we discuss how this approach
might be embedded within iterative plan exploration.

Both of these approaches share the idea of exploring a space of solutions, and by so
doing gain a deeper understanding about the structure of the underlying problem. The
motivation behind these approaches is that the user, with increased understanding, will
either (i) gain trust in the decisions made by the automated planner, (ii) identify where
the planner is operating outside of its competency, or (iii) identify where the planner is
unaware of the user’s preferences. In whichever case, the process of automated planning
becomes a more useful interactive process that has the potential to converge towards
a more satisfactory plan. In Sect. 4 we discuss how these different strands could be
brought together to form a comprehensive suite of tools for plan explanation, which
could be used by a human operator to better understand the problem, constraints, and
converge to a more preferred solution.

1.1 Explainable AI Planning in Literature

Meuller et al. [26] provide an overview of the landscape of research into XAI. This
work spans several decades, and includes work carried out with intelligent tutoring
systems, XAI hypotheses and models, and explanation in expert systems. The early
work on explanation in expert systems provided causal explanation for conclusions,
often in the form of chains of rules contributing to the conclusion [38]. Recently, there
has been a resurgence of interest in explanation in XAI, both when the model is and is
not interpretable. This is, in large part, due to the difficulty of understanding the results
of deep learning systems [31].

While there is a long history of work on explanation in AI, most work on expla-
nation of plans (XAIP) is relatively recent. In a challenge paper, Smith [33] argues for
the importance of plan explanation in mission planning, and suggests that questioning
and explanation is part of an iterative process that helps elucidate and refine the prefer-
ences for a planning problem. Fox et al. [14] highlight contrastive ‘why’ questions as
being important for plan explanation, and describe a number of different types of these
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questions and possible responses. Chakraborti et al. [3] survey recent work in XAIP and
categorise the different approaches that have emerged in the last several years, including
three important areas:

– model reconciliation - namely, that the need for explanation is due to differences
between the agent’s and the human’s model of the planning problem. The planning
system therefore “suggests changes to the human’s model, so as to make its plan be
optimal with respect to that changed human model” [2,23,34].

– contrastive explanations - an approach answering local contrastive questions;
explaining the reason that a contrast case Bwas not a feature of the plan by revealing
the consequences that would hold if B were the case [1,7,14,19,20,22].

– and explanation of unsolvability for planning problems [8,9,17,35].

2 Contrastive Explanations in Plan Exploration

Fundamentally, the need for plan explanation is driven by the fact that a human and a
planning agent may have different models of the planning problem and different com-
putational capabilities. In this section we describe our approach to plan explanation
through exploration. Through asking contrastive questions, a human user can impose
iterative restrictions upon the model of the automated planner in order to generate dif-
ferent plans. In so doing, the user gains a better understanding of the problem and
capabilities of the automated planner. An in-depth description of this process, including
a formal definition of model restrictions, is presented in Krarup et al. [21].

2.1 Planning Model and Capability

A standard modelling language for autonomous planning is the Planning Domain
Description Language (PDDL), originally developed in 1998 by a committee led by
Drew McDermott [25] and later extended to support more expressive features such
as time [6,13], preferences [15], continuous change and exogenous events [12]. To
describe our approach to plan exploration, we’ll use PDDL2.1 as an example plan-
ning formalism. Our definition follows the definition of PDDL2.1 given by Fox and
Long [13], extended by a set of time windows and explicit record of the plan metric. A
more detailed description can be found in Krarup et al. [21].

Definition 1 (Planning model). A planning model is a pair Π = 〈D,Prob〉. The
domain D = 〈Ps, V s,As, arity〉 is a tuple where Ps is a finite set of predicate sym-
bols, V s is a finite set of function symbols, As is a set of action schemas, called opera-
tors, and arity is a function mapping all of these symbols to their respective arity. The
problem Prob = 〈Os, I,G,M,W 〉 is a tuple where Os is the set of objects in the plan-
ning instance, I is the initial state, G is the goal condition, M is a plan-metric function
from plans to real values (plan costs) and W is a set of time windows.

A solution for a planning model is called a plan. A plan is a sequence of grounded
actions, π = 〈a1, a2, . . . , an〉 each with a respective time denoted by Dispatch(ai).
The execution of a plan consists of a sequence of happenings corresponding to the
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effects of actions and exogenous effects in the world [13]. This sequence describes a
trace of times, ti=0...k and states, si=0...k+1 such that s0 = I and for each i = 0 . . . k,
si+1 is the result of executing the happening at time ti from state si. The plan is valid
if sk+1 |= G (that is, the goal is satisfied in the final state reached by the plan).

We assume that the human’s planning model ΠH , and planning agent’s model ΠP

share the same vocabulary, namely the same predicate symbols Ps, function symbols
V s, and actions As from the domain D, and objects Os from the problem. However,
the action durations, conditions, and effects may be different, and the initial states I ,
goals G, and plan metric M may be different.

Even when a human and a planning agent have the same planning models ΠH =
ΠP , there are typically multiple plans satisfying this planning model. Although a plan-
ner is intended to optimise the plan with respect to the plan metric, it is common to
produce only one of the valid plans, rather than an optimal plan for a model. For some
problems a planner might even fail to produce a plan at all. In part, this is an inevitable
consequence of the undecidability of planning problems with numeric variables and
functions [18], but it is also a consequence of the practical limits on the computational
resources available to a planner (time and memory). These observations are equally
valid for automated and human planners. In order to discuss the process of developing
plan explanations, it is helpful to define the planning abilities of both the planner and the
user. We model the planning capability of an agent as a partial function from planning
models to plans:

Definition 2. The planning capability of an agent A (human or machine), is a partial
function, CA, from planning models to plans. Given the agent’s planning model, ΠA, if
C

A(ΠA) is defined, then it is a candidate plan πA for the agent.

The part of the function domain on which C
A is defined determines the planning

competency of the agent – domain-problem pairs for which the agent cannot find a
plan lie outside this competency. Note that the planning competency of an agent can be
restricted by a bound on the computational resources the agent is allowed to devote to
the problem, as well as by the capabilities of the agent in constructing and adequately
searching the search space that the problem defines.

When A is an automated AI planner P , the computational ability is determined by
the search strategy implemented in the planner and the resources allocated to the task.
WhenA is a human plannerH , the planning capability is determined by the understand-
ing that the human has of the planning model and the patience and problem-solving
effort they are willing to devote to solving the problem. It cannot be assumed that, if
C

H(ΠH) is defined, that the human’s model ΠH accurately reflects the world, or that
the reasoning C

H is sound. This means that the plan may not be valid.
One aspect of the process of planning and explanation is that the user can revise their

model ΠH as the process unfolds. However, it is also possible that the user can change
their planning capability C

H , by coming to a greater understanding of the model, by
engaging in more reasoning, or by simply concluding that the solution provided by an
automated system is satisfactory. It is also possible that the planner responses lead to
the user changing their view of what might be a good plan to solve a problem, while
still not adopting the solution offered by the planner.
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2.2 Iterative Plan Exploration

We adopt the approach that the human user asks contrastive questions that impose addi-
tional restrictions φ on the agent’s planning problem ΠP to generate a succession of
hypothetical planning problems. The object of these questions and the resulting hypo-
thetical plans is for the user to understand and ultimately arrive at a satisfactory plan.
We call this process Iterative Plan Exploration.

Given the planning models ΠH and ΠP , and planning capabilities C
H and C

P

of a human and planning agent, the two agents disagree when C
H(ΠH) �= C

P (ΠP ),
which can arise in the case that either of these terms is undefined, or if both terms
are defined and yield different plans. We assume that the user is able to inspect the
planner output and determine a question that will expose some part of the explanation
for this difference. By questioning why certain decisions were made in the plan and
receiving contrastive explanations the user can gain an initial understanding. As their
understanding of the plan develops they can ask more educated questions to gain a
deeper understanding or try to arrive at an alternative plan that they consider more
satisfactory. This process concludes when the user is satisfied with some plan.

We formalise the iterative process of questioning and explanation as one of suc-
cessive model restriction, in which the user asks contrastive questions in an attempt to
understand the planning agent’s plan and potentially steer the planning agent towards a
satisfactory solution. We suppose that, when C

H(ΠH) �= C
P (ΠP ), the user can con-

struct a foil, φ, in the form of a constraint that CP (ΠP ) does not satisfy, so that seeking
an explanation for the plan, CP (ΠP ), can be seen as seeking a plan for ΠP that also
satisfies φ. This requirement acts as a restriction on ΠP and is captured as follows.

Definition 3. A constraint property is a predicate, φ, over plans.
A constraint operator, × is defined so that, for a planning model Π and any constraint
property φ, Π × φ is a model Π ′, called a model restriction of Π , satisfying the
condition that any plan for Π ′ is a plan for Π that also satisfies φ.

The process in which the user interacts with a planner is an iterative one – the
user successively views plans and seeks explanations by generating foils that impose
additional restrictions on the planning problem. The collection of model restrictions
forms a tree, rooted at the original model and extended by the incremental addition of
new constraint properties, as shown in Fig. 1. As the user inspects the result of applying
C

P to a node in this tree, their own planning model and capability, ΠH and C
H , may

change, reflecting accumulating understanding of the plans that can be constructed for
the model. It is worth emphasising that any constraint, φ, may be added to any model,
so that the user is not forced to develop a tree of models in any particular way to arrive
at the consequence of adding any specific constraint to a model.

It should be noted that, depending on the planning models and capabilities of the
two participants, there might not exist any constraint achieving a common solution. For
example, in the degenerate case in which C

P produces no plan at all, for any value of
φ, then there can be no mutually satisfactory plan. Typically, the greater the differences
between the planning models and capabilities of the two agents, the more likely it will
be that there is no common satisfactory plan.

We formally capture the iterative process of model restriction and planning as:
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ΠP

ΠP × φ1 ΠP × φ2Π
P × φ3

ΠP × φ1 × φ4 ΠP × φ1 × φ5 ΠP × φ3 × φx

ΠP × φ1 × φ4 × φy

Fig. 1. A fragment of a tree of model restrictions for a planner P . Each node ni in the tree is a
model restriction of the model of it’s parent node ni−1, and a constraint φi.

Definition 4. Iterative Model Restriction. For a planner P , and a user H: Let CP and
ΠP be the planner’s underlying capability and planning model andCH

0 and ΠH
0 be the

initial capability and planning model ofH . Let φi be the set of user imposed constraints,
which is initially empty, i.e. φ0 = ∅. Each stage, i (initially zero), of this process starts
with the planner producing a plan πP

i = C
P (ΠP

i ) for the model ΠP
i = ΠP × φi.

The user responds to this plan πP
i by potentially updating their capability and model

toCH
i+1 and PiHi+1 and then either terminating the interaction, or asking a question that

imposes a new constraint φi+1 on the problem. This results in the planner solving a new
constrained problem ΠP

i+1 = ΠP × φi+1 at the next step.

We have assumed here that the planner’s underlying capability and planning model
C

P and ΠP do not evolve during the process. While this is not strictly necessary,
possible evolution or improvement of the planner capabilities and model based on the
sequence of user questions and the resulting φi is an issue we do not consider here. In
contrast, the user’s capability and planning model CH and ΠH are assumed to evolve,
but in unknown ways. Again, we do not attempt to model the user’s learning process.

The exploration process could end in a variety of different ways. One way that the
exploration can end is that the plan produced for the final model yields a plan that is
acceptable to the user, so that the user adopts this plan for the original model. Alterna-
tively the user, having explored the plans for several models, is persuaded in this process
that the first plan produced by the planner for the original model is actually the desired
plan. The exploration can also result in the selection of a plan somewhere between these
two extremes, in which the user decides to adopt a plan produced for some intermediate
model in the exploration. Finally, the exploration can end when the user explores the
space and then rejects all of the plans the planner offers. In this case, the user might
modify their planning model and capability as a consequence of what they observe and
they might or might not conclude the process with a satisfactory plan for the original
model. Krarup et al. [21] explore the hypothesis that the user will usually find value in
the exploration and conclude in one of the three cases in which a mutually agreed plan
is identified.
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2.3 Temporal, Numeric, and Probabilistic Model Restrictions

The Iterative model restriction process presents a natural method to explore a space of
plans through dialogue with the system, but does not succinctly represent more com-
plex constraints in the space of solutions that arise from the interaction between numeric
and probabilistic parts of the model. For instance, the trade-offs between two different
rewards that the human user wishes to capture in the model’s metric could be iter-
atively refined so that the user can see the outcome of different weightings between
those rewards - but this is not an efficient way to represent what could be visually pre-
sented immediately with a Pareto-optimal set of solutions - if such a thing is possible to
produce given the automated planner’s capability.

In addition to this, our process does not account for uncertainties that might alter
the plan during execution, which is a natural occurrence when executing a plan in the
real world. While comparing different plans allows the user to understand the space of
solutions to the planning instance, it might not reveal differences in how those plans
might be realised in an uncertain environment.

3 Optimisation Under Temporal Uncertainty

In many applications, the activities that need to be performed are already known, but
there remains the problem of deciding when to perform those activities in order to meet
constraints and optimise reward. As an example, consider the problem of 5G network
slicing. Containerised components are hosted on pods in nodes within a data center
(DC). Each pod is an allocation of a component’s required share of resources. Multiple
components can be linked to provide a service which satisfies the requirements defined
in the service level agreement (SLA) reached between the provider and customer. How-
ever a number of events can occur which may result in the service configuration no
longer being valid. Congestion at component input, for example, can result in packet
drops such that the terms outlined in the SLA are no longer satisfied. Under such a
scenario it may be necessary to reconfigure how the components are hosted within the
DC. The decision of when to reroute traffic is influenced by two conflicting factors: the
increased cost of migrating components early, and the risk associated with the proba-
bility distribution describing the SLA violation.

It is not known by the decision maker a-priori which combination of risk and cost is
desired. The problem can be considered a bi-objective optimisation problem in which
the solution is a Pareto optimal set of schedules optimising risk and cost. The relation to
plan exploration is clear: the problem has many possible solutions with different char-
acteristics, and the decision maker can benefit from exploring this space of solutions.

In this section we provide a background on the temporal network formalism and
definitions of controllability. Then we discuss the Relaxable Chance Constrained Prob-
abilistic Simple Temporal Network (r-cc-PSTN) which was introduced by Yu et al. [41].
We show that this can be expressed as a Joint Chance Constrained Optimisation Prob-
lem (JCCP) for which a rich suite of solution methods exist. Finally we discuss the
potential for this to be incorporated within a bi-objective optimisation framework capa-
ble of generating the Pareto optimal set of schedules.
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3.1 Temporal Networks and Controllability

Simple Temporal Networks (STN) [5] are used to represent temporal domains and rea-
son about decisions under the influence of temporal constraints. An STN is a graph in
which the nodes correspond to time-points and the edges (links) correspond to dura-
tions between the time-points. A solution to an STN is a schedule at which to execute a
number of time-points such that the temporal constraints are satisfied. As such they are
a natural formalism to represent scheduling problems such as 5G network slicing.

Simple Temporal Networks with Uncertainty (STNU) were introduced [39] to cap-
ture uncertainty in the problem through the inclusion of set-bounded contingent links,
over which the operator has no control. In STNU semantics, a distinction is made
between contingent links, for which the duration of the interval is uncertain and require-
ment links for which we can choose the duration.

Definition 5 (STNU). A STNU is a tuple, SU = 〈Tc, Tu, C,G〉 where b1, b2, ..., bB ∈
Tc is the set of controllable time-points and e1, e2, ..., eE ∈ Tu is the set of uncon-
trollable time-points, such that t1, t2, ..., tn ∈ {Tc ∪ Tu}. The set C, is the set of tem-
poral requirement constraints between two time-points, normally written in the form
c(tj , ti) = tj − ti ∈ [lcij , u

c
ij ]. The set G is the set of contingent links given in the form

g(ei, bi) = ei − bi ∈ [lgi , u
g
i ]. Here, lc∨g, uc∨g denote the lower and upper limits for

the constraint or contingent link respectively. Let s (b) ∈ R+ be the assignment of a
value to the controllable time-point b. Let o (e) ∈ R+ be the value observed by an
uncontrollable time-point e. A projection of a contingent link gi is ωi := o(ei) − s(bi).

The challenge in scheduling STNUs lies in the fact that the set of contingent links
may take any random value within their bounds, and therefore an effective execution
strategy must consider all possible projections for each contingent link.

When dealing with uncertainty in temporal networks it is typical to classify the
problem in terms of controllability [40], which can be considered as a way of classifying
howmuch control the agent has over the outcome of the network [40]. Controllability of
an STNU is typically separated into 3 categories (strong, dynamic, weak). In a strongly
controllable network, there exists an assignment to all controllable time-points that can
be determined a-priori and will satisfy all constraints no matter the outcome of the
contingent links.

Definition 6 (Strong Controllability). Denote Ω, the space of projections of the con-
tingent links: Ω = ×g∈G[lg, ug]. Let the schedule δ, be the assignment s (b), ∀b ∈ Tc.
An STNU S is said to be strongly controllable if: ∃δ | ∀ω ∈ Ω, δ satisfies all con-
straints.

We denote: Cu ⊆ C, the set of uncontrollable constraints containing an uncon-
trollable time-point. One can substitute e = b + ω for the contingent link pre-
ceding/succeeding the uncontrollable constraint. To check whether an STNU, SU is
SC, it is sufficient to check that the uncontrollable constraints are satisfied for the
worst possible projection of the contingent links. i.e. min{c | ω ∈ [lg, ug]} ≥ lc,
max{c | ω ∈ [lg, ug]} ≤ uc for every c ∈ Cu.

Where sufficient data is available, it is often more representative to model the space
of possible projections of a contingent link by a probability density function [11,36],
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creating a Probabilistic Simple Temporal Network (PSTN). This allows the scheduling
process to focus on the durations most likely to be realised at execution.

Definition 7 (PSTN). A PSTN is a tuple, SP = 〈Tc, Tu, C,D〉, where Tc, Tu and C
are as per the STNU. The set of probabilistic constraints, D are in the form d(ei, bi) =
ei − bi = Xi, where Xi is a random variable with a set of outcomes Ωi, probability
density function f(ωi) and cumulative probability function F (ωi).

It should be noted that it is often impossible to find a SC schedule robust to all
possible outcomes of an unbounded distribution. As a result, it is typical to squeeze the
distribution by neglecting the extreme, unlikely outcomes in the tails of the distribu-
tions, i.e.: Ω∗

i = [ldi , u
d
i ]. We denote d∗(ei, bi), the restricted probabilistic constraint,

and performing this restriction transforms the probabilistic constraint to a contingent
link, i.e. d∗(ei, bi) = ei − bi = X∗

i ∈ [ldi , u
d
i ] ≡ g(ei, bi). Applying this transforma-

tion to all d ∈ D is equivalent to transforming the PSTN, SP to an equivalent STNU,
SU∗. However the schedule is now only robust to the outcomes considered in SU∗. The
probability mass excluded by performing this transformation is the risk of SP .

Definition 8 (Robustness and Risk). We denote ΩR ⊆ Ω and c(ω) the value of each
constraint c ∈ C given an outcome ω. If ω ∈ Ω and for every c ∈ C, c(ω) ∈ [lcij , u

c
ij ]:

then ω ∈ ΩR. The robustness R, is P (ΩR), while the risk Δ, is P (Ω̄R), where Ω̄R

denotes the complement of the set ΩR.

Since the joint probability function P (Ω̄R) is non-trivial, it is typical to treat uncon-
trollable constraints independently and bound above the risk using Boole’s inequality.
The risk can of then be approximated through: Δ =

∑|Cu|
i F (ldi ) + (1 − F (ldi )). The

values of ud
i and ldi are determined through the SC relationships outlined previously,

through substituting lg, ug for ld, ud.

3.2 PSTN Strong Controllability and Risk in Literature

Tsamardinos [36] takes a risk minimisation approach to PSTN SC, and makes use of
various assumptions to leverage Sequential Quadratic Programming. Likewise, Santana
et al. [32] and Lund et al. [24] make varying assumptions to permit the use of LPs to
allocate risk in PSTNs. Fang et al. [11] introduced the notion of chance constrained
PSTNs (cc-PSTN); by enforcing an allowable tolerance on the risk as a constraint in
the system, such as Δ ≤ α, where α ∈ [0, 1]. Some other objective function could then
be optimised, while ensuring that the schedule risk does not exceed α.

In some instances the risk required to enforce SC can be deemed too high. Yu et al.
[41] extended the chance-constrained framework to the relaxable chance constrained
probabilistic simple temporal network (r-cc-PSTN) by permitting the use of soft con-
straints which can be relaxed. A cost is then paid relative to the amount of relaxation.
This enables solutions to be found for over-constrained cc-PSTNs. The r-cc-PSTN is
very general, and is solved by Yu et al. using a nonlinear solver, combined with a con-
flict detection mechanism based on identification of negative cycles in STNUs. Nonlin-
ear optimization problems are solved to eliminate these cycles.
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To the best of the authors’ knowledge, all previous SC approaches for PSTNs either
use Boole’s inequality to bound above the risk [11,24,32,41], or solve a generic non-
linear optimisation problem [36]. Using Boole’s inequality permits the use of Linear
Programming solvers, however it can be overly conservative - particularly when the
number of uncontrollable constraints is large. Whereas posing the problem in a generic
non-linear setting can either be computationally expensive or offer no guarantee of
global optimality.

Fig. 2. Figure showing the Pareto optimal front generated using Boole’s inequality (left) in com-
parison to the equivalent Monte-Carlo risk (right)

In Fig. 2, an example r-cc-PSTN was solved for strong controllability with Boole’s
inequality bounding the risk. Following this, the schedules obtained for each cost were
simulated using a Monte-Carlo execution approach enabling the cost to be plotted
against the true risk. As can be seen, the Pareto front obtained using Boole’s inequality
is not guaranteed to be the true Pareto optimal solution for cost and risk. Likewise as the
number of uncontrollable constraints increases, the Boole’s risk is not guaranteed to be
bounded within [0, 1]. As such it is not interpretable and gives little useful information
to the human required to reason over the Pareto front.

3.3 On Pareto Optimal Schedules to PSTNs

In this section we discuss in greater detail the r-cc-PSTN [41] and highlight how these
can be solved as a Joint Chance Constrained Optimisation Problem (JCCP) enabling
the evaluation of true Pareto optimal solutions.

Definition 9 (r-cc-PSTN). A r-cc-PSTN is a tuple SR = 〈Tc, Tu, Cc, Cu,D,W,α〉,
where Tc, Tu andD are as per the definition of PSTN. The set of requirement constraints
C is partitioned into a set of controllable constraintsCc: c(bj , bi) = bj−bi ∈ {lcij , uc

ij}
and uncontrollable constraintsCu: c(ej , bi) = ej−bi ∈ {lcij uc

ij}∨c(bj , ei) = bj−ei ∈
{lcij , u

c
ij}. There exists some subset Cc,s ⊆ Cc and Cu,s ⊆ Cu which are considered

soft constraints. We introduce the lower and upper relaxation variables: r̆ij , r̂ij ∈ R+

for each constraint in {Cc,s ∪ Cu,s}: c(tj , ti) = tj − ti ∈ {lcij − r̆ij , u
c
ij + r̂ij}.
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The relaxation weight w ∈ W , associated with relaxing constraint c ∈ {Cc,s ∪Cu,s} is
the relative cost of relaxing the constraint by one time unit, such that the relaxation cost
k is calculated as the linear sum: k = wr̆ + wr̂. Finally, α ∈ [0, 1] is the risk bound
representing the maximum allowable probability of failure across all c ∈ Cu.

Fig. 3. Diagram showing data center configuration before (left) and after (right) migrating traffic.

Fig. 4. Example PSTN showing data center problem.

To elucidate the key characteristics of such a problem, we return to the motivating
example of 5G slicing. First we describe an example situation (Fig. 3), and then the
example PSTN problem that results (Fig. 4). In Fig. 3, we consider two nodes. A service
consisting of two components, payload (PL) and service controller (SCtrl), is hosted in
the DC. Traffic is processed by PL and then by SCtrl before exiting through the exit
gateway. We consider three conditions outlined in the SLA: latency of the path, the
percentage of packet drops, and the cost of hosting the pods on the nodes. The rental
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of Node 2 is higher than that of Node 1, and the latency of the path POD1 → POD3
is larger than that of POD1 → POD2. Initially, PL and SCtrl are hosted in POD1 and
POD2 of Node1 such that the terms in the SLA are met.

At some point in the day, increased traffic to the service requires a scaled up SCtrl
for which there is insufficient resources available in the current configuration using
POD2. If SCtrl continues to be hosted in Node 1 POD2, then packets cannot be pro-
cessed at the rate of arrival, resulting in increased packet drops and consequently a
violation of the SLA. The penalty associated with packet drops is greater than the
increased contributions from latency and the cost of rental. The decision is made to
spin off another pod (POD3) in Node 2 before the SLA violation occurs and reroute the
traffic from SCtrl in Node 1 to PL in Node 2. The traffic should then be rerouted back
to the original configuration after the violation has ended. We assume that moving the
component from “Node 1 POD2” to “Node 2 POD3” and back both take 5 time units.
The SLA violation due to the congestion can take place any time in the future but with
a distribution of N (10, 2). The end of the SLA violation can also be described with a
probability distribution of N (20, 2).

The time at which to move the component is constrained by the availability of
resources in Node 2, modelled by the constraint b0 → b1 in Fig. 4. Between 5 and
10 units after b0, there exists sufficient resources for PL to be spun on Node 2. The
ideal decision would be to move the component as early as possible to minimise the
probability that the SLA violation penalty will be incurred. We can choose to schedule
b1 = 5, however this means that the component will not be activated on Node 2 until
b2 = 10 and thus the resulting strongly controllable schedule will have only a 50%
chance of success (if the SLA begins prior to the mean of 10 units, the penalty will be
incurred).

The availability of resources is a soft constraint that we can relax from [5, 10] to
[0, 10] incurring some cost associated with relocating existing components. This relax-
ation allows b1 to be scheduled earlier, decreasing the risk of the SLA violation. The
relaxation cost is a function of the amount by which we relax the constraint. The opti-
mal scheduling decision therefore becomes a trade-off between the relaxation cost and
the risk associated with incurring the SLA violation cost.

To solve this problem, a bi-objective optimisation framework such as the ε-
constraint method [4] can be used to generate the Pareto optimal front minimising
both risk and cost. Within this framework, one of the objectives (i.e. the risk) can be
treated as a constraint by imposing a limit which is subsequently varied and the other
objective (i.e. cost) is optimised until the problem becomes infeasible. The underlying
problem of minimising cost subject to the constraint on risk can be considered as a
JCCP: minx{cTx | Ax ≤ b, P (Tx + q ≥ ξ) ≥ 1 − α}.

With some algebraic manipulation, r-cc-PSTNs can quite easily be expressed in this
form. The decision vector x ∈ Rn, would be the controllable time-points compris-
ing the schedule, combined with the relaxation variables for each soft constraint. The
controllable constraints can be encapsulated in the linear inequality: Ax ≤ b, where
A ∈ Rm×n are the constraint coefficients and b ∈ Rm are the upper bounds. Sim-
ilarly, the uncontrollable constraints can be captured in the joint chance constraint:
P (Tx+ q ≥ ξ) ≥ 1−α, where T ∈ Rp×n is the matrix of coefficients and q ∈ Rp are
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the bounds. Here, ξ is a p dimensional random variable with mean vector, μ and covari-
ance matrix, Σ and α ∈ [0, 1] is the joint bound on the probability of failure. Finally
any linear objective can be implemented within the objective function cTx, however we
consider that we wish to minimise the relaxation cost and thus c ∈ Rn, is the vector of
relaxation weights w associated with each relaxation variable.

Prekopa [27,28] proved that if the probability distribution is log-concave, then the
cumulative probability function F (z) = P (ξ ≤ z) is also log-concave and thus the set
{z | − log(F (z)) ≤ − log(1−α)} is convex. Many interesting distributions contain this
characteristic [29]. The result is that r-cc-PSTN SC as JCCP is a convex optimisation
problem with a tractable evaluation of the global optimal schedule. More detail can be
found in a recent survey of solution methods [10,37] and overview on the topic [30].

4 Discussion and Conclusion

In this section we briefly discuss three possible directions for future work that could
combine the approaches from Sects. 2 and 3. A naive approach would be to use iterative
plan exploration to generate a plan π = 〈a1, a2, . . . , an〉, whose happenings become
the nodes of a PSTN. That PSTN could then be analysed for SC. The limitation of this
naive approach is that the plan exploration would not benefit from the additional insight
provided by the PSTN SC analysis. Below we describe three alternatives for closer inte-
gration of the approaches.

Constrastive Explanations of Strongly Controllable Plans. In iterative plan exploration,
model restrictions are used to generate a hypothetical plan that embodies the “what if”
question posed by the user. Plans are compared against one another as a form of expla-
nation – the aim of which is to make explicit the impact of their suggestions. In the user
study carried out by Krarup et al. [21], plan metrics were directly compared, assuming
a single realisation of the plan’s time-points that was selected by the planner. Instead,
the approach presented in Sect. 3 could be used to provide a more in-depth compari-
son between the two plans by comparing Pareto-optimal schedules for their respective
actions.

Iterative Restrictions to PSTNs. A direction for future work in explainable scheduling
would be to apply the paradigm of iterative plan exploration to the problem of PSTN
SC. Just as it is the case that the decision maker might have preferences that are not
completely captured by the planner’s model, it can also be the case that the Pareto opti-
mal frontier does not actually represent the complete set of solutions of interest. By
allowing the user to apply restrictions as new constraints in the PSTN the user will
be able to see the impact of restrictions that iteratively force solutions away from the
Pareto-optimal frontier. Just as in iterative plan exploration, this process could converge
in a schedule that better adheres to the user’s true preferences, or increase their trust in
the original set of solutions.

Plan Exploration in Discrete and Continuous Spaces. Krarup et al. [21] showed that
by using the most common restrictions requested by users – action inclusion, exclu-
sion, ordering, and temporal constraints – iterative model restriction can combine these
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constraints to encapsulate more specific questions and eventually converge to any valid
plan. However, using successive queries to explore a continuous space such as real-
valued cost or risk would be very inefficient. This limitation could be tackled by embed-
ding the analysis provided by the PSTN SC analysis into the plan exploration tools
developed by Krarup et al. This would extend the common restrictions above to also
include constraints on cost and risk that are drawn from observation of the Pareto-
optimal set of solutions. Unlike the iterative restrictions to PSTNs described above,
these constraints would be applied to a planning model in the current exploration tree
and used to generate a new plan that could potentially have a different set of actions. The
result would be that the user could efficiently explore the different trade-offs exhibited
by a variety of possible plans, before converging upon a chosen plan and schedule.
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Abstract. In this paper, we discuss our and related work in the domain
of efficient parallel optimization, using Stochastic Gradient Descent, for
fast and stable convergence in prominent machine learning applications.
We outline the results in the context of aspects and challenges regarding
synchronization, consistency, staleness and parallel-aware adaptiveness,
focusing on the impact on the overall convergence.
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1 Introduction

Among the most prominent methods used for common optimization problems in
data analytics and Machine Learning (ML), especially for problems tackling large
datasets using Artificial Neural Networks (ANN), is the widely used Stochastic
Gradient Descent (SGD) optimization method, introduced by Augustin-Louis
Cauchy back in 1847. By iteratively processing data, SGD enables Artificial
Neural Network (ANN) training, Logistic Regression, Support Vector Machines,
and other ML methods. Let us use ANNS as an example. ANNs build on the
concept of biological neurons, where the model of a neuron is called a perceptron.
Several perceptions can be used in connected layers, forming an ANN that can
be trained on different ML tasks. A perceptron consists of a weight, a bias, and
a non-linear activation function. The network will produce an output for a given
input, and this output can be compared to an expected output through a loss
function. From this point, the training process becomes a numerical optimization
problem where the sets of weights and biases producing the lowest error are the
target. On one hand large datasets generally allow for more complex tasks and
better generalizing capabilities of the model; on the other hand they demand
larger computational time. Parallelism is one of the major way for both speeding
up model training and handling large datasets.
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Many algorithms for ML are far from trivial to parallelize. Taking SGD as
the primary example, but any other iterative algorithm as well, usually every
iteration requires the computation of the previous iteration to be completed,
and available to be used in the next. As a consequence, parallelization would
impose either that threads work in parallel only during each individual iteration
and synchronize at the end in a lock-step manner, or relax the semantics of
the original algorithm. These two main approaches to parallel SGD came to
be known as synchronous and asynchronous parallel SGD, respectively, with
fundamentally different properties in scalability, convergence and applicability.

It is easy to realize that synchronous parallelization suffers limitations in
scalability due to the fact that each iteration is only as fast as the slowest con-
tributing thread. Hence, slow threads, i.e. stragglers, present particularly in het-
erogeneous computing environments, can significantly impact the convergence
time. Asynchronous approaches alleviate this limitation, showing improved scal-
ability in some applications. However, the reduced inter-thread coordination
that asynchrony entails breaks the semantics of the original SGD algorithm, and
hence introduces several questions, among the most important is how the con-
vergence time of SGD is affected. Moreover, the degree of synchronization that is
still required, such as when accessing shared variables, becomes a focal point. For
example, degradation in convergence due to lock-free inconsistent access is a risk,
depending on the application. This can be avoided with consistency-enforcing
mechanisms, one option being locking, however it is unclear whether or not it is
worth the computational overhead it introduces in practice.

In this paper, we survey our work together with other recent related results
in the domain of efficient parallel optimization with SGD for fast and stable
convergence in prominent machine learning applications. We explore aspects of
synchronization, consistency, staleness and parallel-aware adaptiveness, focusing
on the impact on the overall convergence.

2 Preliminaries

2.1 SGD and Machine Learning

Machine learning with SGD is at its core an optimization problem:

minimize
θ

fD(θ) (1)

for a non-negative function f : Rd → R
+. In machine learning (ML) applica-

tions, θt ∈ R
d typically represents an encoding of the learned knowledge, and fD

quantifies the performance error of the model θt on the dataset D at iteration
t. Solutions may be found using Stochastic Gradient Descent (SGD), defined as
repeating the following with data mini-batches B ∈ D sampled randomly:

θt+1 = θt − η ˜∇fB(θt) (2)
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where ˜∇fB(θt) and an unbiased estimate of the true gradient. The choice of the
initialization point θ0 is chosen at random according to some distribution, which
as one might expect may significantly impact the convergence [32].

The negative gradient of a function constitutes the direction of steepest
descent, resulting in a trajectory corresponding to the slope of the target func-
tion. The iteration (2) is repeated until a solution θ∗ of sufficient quality is found,
i.e. fD(θ∗) < ε, referred to as ε-convergence.

The original deterministic counterpart Gradient Descent (GD) to SGD sim-
ply lets B = D, i.e. considers the entire dataset in every iteration. The stochastic
element of random data subsampling in SGD entails two major benefits, namely
that (i) sampling and processing only small mini-batches enables significantly
faster iterations and (ii) the algorithm is effective on also non-convex target
functions, as opposed to GD. However, SGD introduces a new hyper-parameter,
the batch size b, which introduces stochasticity or noise in the convergence. While
a certain degree of noise is necessary for enabling convergence in non-convex set-
tings, it can be fatal when too high, causing endless sporadic oscillation about
the initialization point θ0. In practice, b consequently requires careful tuning. An
established method for reducing such oscillation, while maintaining the stochas-
ticity as necessary, is Momentum-SGD (MSGD), defined as follows:

θt+1 ← θt + μ(θt − θt−1) − η ˜∇fB(θt) (3)

for some momentum parameter μ ∈ [0, 1]. Momentum can accelerate the conver-
gence of SGD in many practical settings, especially so for target functions which
are irregular and asymmetric in shape, forming narrow valleys. Such irregulari-
ties are in particular known to arise in deep learning (DL) applications.

2.2 Performance Metrics

The implementation of any algorithm affects its performance and usefulness in
practice. Considering SGD, or any iterative optimization algorithm, the perfor-
mance is influenced by many implementation aspects and system features. As
described in [22] a useful decomposition of the performance is to consider the
statistical and computational efficiency, defined as follows.

1. statistical efficiency measures the number of SGD iterations required until
reaching a solution of sufficient quality, ε-convergence

2. computational efficiency measures the number of iterations per time unit

The overall convergence rate, i.e. the wall-clock time until ε-convergence, is the
most relevant in practice, and is essentially the product [22]:

convergence rate = statistical efficiency × computational efficiency

Consequently, when proposing new algorithms (or altering existing ones) in this
application domain that potentially change the computational efficiency, it is not
sufficient to evaluate the invention by measuring only the statistical efficiency,
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i.e. counting the iterations until convergence. One must in general consider these
metrics in conjunction, and measure the overall convergence rate. Ideally, they
should also be measured separately, as this is the only way to truly understand
from where potential improvements originate.

These metrics become particularly important in parallel algorithms for iter-
ative optimization, since the parallelization method can have significant impact
on the computational and statistical efficiency, as we shall see in the following.

3 Parallel SGD

While parallelism can improve computational efficiency, simply by managing
to apply a greater number of updates in each unit of time, the impact on the
statistical efficiency, and thereby the overall convergence rate, is unpredictable.
Parallelization is consequently not trivial, and requires synchronization in every
iteration (prior to applying an update) in order to not break the original sequen-
tial semantics of SGD. Alternatively, threads can execute the SGD algorithm,
i.e. accessing and updating the shared state θ, asynchronously, although this
might not conform to the sequential semantics.

These approaches correspond to two main directions of methods for parallel
SGD, referred to as synchronous and asynchronous.

Most methods mentioned in this paper were originally introduced in the cen-
tralized shared-state context, either on a shared-memory parallel system or a
distributed one with one node acting as a parameter server, which sequentializes
updates. Most approaches can be naturally generalized to different computing
infrastructure, and also to their decentralized counterpart. However, in this paper
we retain the focus on asynchronous SGD in the context of shared-memory par-
allel systems, but keep in mind distributive and decentralizing generalizations,
with occasional remarks on that topic.

3.1 Synchronous SGD

Synchronous SGD (SyncSGD) is a lock-step data-parallel version of SGD where
threads or nodes access the shared θt at an iteration t, then compute gradients
based on individual randomly sampled data-batches, see Fig. 1. The threads
synchronize by averaging the resulting gradients before taking a global step
according to (2) [37]. In the original version, SyncSGD is statistically equivalent
to sequential SGD with larger mini-batch size [13], and can hence be consid-
ered a method for accelerated gradient computation. From this perspective, the
SyncSGD approach does not break the semantics of the sequential SGD algo-
rithm, and the vast empirical results and theoretical convergence guarantees in
the literature entail predictable performance of SyncSGD . From a scalability
perspective, since each SGD iteration is only as fast as the slowest contributing
thread, the presence of slower threads, i.e. stragglers, becomes a bottleneck. A
comprehensive overview of methods along this approach is provided in [8].



64 K. Bäckström et al.

Fig. 1. In SyncSGD the threads’ individual gradients are aggregated by averaging,
after which a global iteration is performed. SyncSGD essentially corresponds to paral-
lelization on the gradient computation level.

Stale-synchronous parallel (SSP) relaxes the strict synchronous semantics of
SyncSGD , allowing faster threads to asynchronously compute a bounded number
of SGD steps based on a local version of the state before synchronizing [14]. The
method is useful in heterogeneous computing systems, where stragglers are kept
in check. SSP has been proven useful for distributed DL applications, e.g. in [36]
where a method for dynamically adjusting the staleness (the number of applied
updates between the read vector and the one where the update is applied on)
threshold is proposed, enabling improvements in computational efficiency.

From a progress perspective, note that the original SyncSGD as well as SSP
provide weak progress guarantees, since in the presence of halting threads, the
system as a whole will halt indefinitely in the synchronization step. This is par-
tially addressed by n-softsync [35], a further relaxed variant of SyncSGD with
partial synchronization, requiring only a fixed number n of threads to contribute
a gradient at the synchronization point. Contrary to SSP, there is no bound
on the maximum staleness. Introduced originally in the context of centralized
distributed SGD with a parameter server [13,35], the recent work [18] imple-
ments similar semantics in a decentralized setting utilizing a partial-allreduce
primitive which atomically applies the aggregated updates and redistributes the
result.

3.2 Asynchronous Parallel SGD

Fig. 2. AsyncSGD parallelizes the SGD iterations, allowing asynchronous read (R) and
update (U) operations on the shared state.

Asynchronous parallel SGD (AsyncSGD) removes the gradient averaging syn-
chronization step, allowing threads to access and update the shared state asyn-
chronously. Consequently, while an update is being computed by one thread,
there can be concurrent updates applied by other ones, i.e. AsyncSGD follows:
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θt+1 ← θt − η ˜∇f(vt) (4)

where vt = θt−τt is a thread’s view of θ and τt is the number of concurrent
updates, which defines the staleness. Updates are consequently generally com-
puted based on states which are older than the ones on which the updates
are applied (Fig. 2). The resulting impact on the convergence is referred to as
asynchrony-induced noise, and affects, together with the overall distribution of
the stalenesses τt, the statistical efficiency.

AsyncSGD enables increased computational efficiency with higher paral-
lelism, up to a point where contention due to concurrent shared-memory access
attempts becomes severe. We denote the corresponding number of threads by
m∗

C ; at this point the system stagnates and additional computing threads pro-
vide no additional speedup. In addition, the presence of staleness in AsyncSGD
causes decay in statistical efficiency from the asynchrony-induced noise, which
grows as more threads are introduced. Over-parallelization may thereby not only
be redundant, but in fact harm the statistical efficiency, with potentially dire
consequences on the overall convergence. There is hence a trade-off between
computational and statistical efficiency, which in practice requires careful tun-
ing of the level of parallelism (number of threads) m. The appropriate choice of
m depends on the properties of the optimization problem itself, as well as the
other hyper-parameters, e.g. the step size η and the batch size b.

AsyncSGD and Momentum. The research direction of asynchronous itera-
tive optimization is not new, and sparked due to the works by Bertsekas and
Tsitsiklis [9] in 1989. More recently, Chaturapruek et al. [11] show that, under
several analytical assumptions such as convexity (linear and logistic regression),
the convergence of AsyncSGD is not significantly affected by asynchrony and
that the noise introduced by staleness is asymptotically negligible compared
to the noise from the stochastic gradients. In [19] Lian et al. show that these
assumptions can be partially relaxed, and it is shown that convergence is possi-
ble for non-convex problems, however with a bounded number of threads, and
assuming bounded staleness. Several works have followed, aiming at understand-
ing the impact of asynchrony on the convergence. In [26] Mitliagkas et al. show
that under certain stochastic staleness models, asynchronous parallelism has an
effect on convergence similar to momentum. This work is extended in parts of
[6], which introduces models which capture the dynamics of the system more
accurately, leading to alternate conclusions, as well as means to improve the
statistical efficiency by asynchrony-awareness. In [23] Mania et al. model the
algorithmic effect of asynchrony in AsyncSGD by perturbing the stochastic iter-
ates with bounded noise. Their framework yields convergence bounds which, as
described in the paper, are not tight, and rely on strong convexity of the target
function. In the recent [2] Alistarh et al. introduced the concept of bounded
divergence between the parameter vector and the threads’ view of it, proving
convergence bounds for convex and non-convex problems.
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AsyncSGD and Lock-Freedom. Hogwild! [28], introduced by Niu et al.,
implements AsyncSGD with lock-free accesses to the shared state θ. This is
achieved in a straightforward manner by allowing uncoordinated, component-
wise atomic access to the shared state θt, as opposed to traditional consistency-
preserving access implemented with locks. This significantly reduced the com-
putational synchronization overhead, and was shown to achieve near-optimal
convergence rates, however assuming sparse updates. AsyncSGD with sparse
or component-wise updates has since been a popular target of study due to
the performance benefits of lock-freedom [27,29]. De Sa et al. [12] introduced
a framework for analysis of Hogwild!-style algorithms for sparse problems.
The analysis was extended in [3], showing that due to the lack of θ-consistency
(shared state consistency for shared state θ) of Hogwild! (i.e. read operation
includes partial updates) the convergence bound increases with a magnitude of√

d when relaxing the sparsity assumption. This indicates in particular higher
statistical penalty for high-dimensional problems and motivates development of
algorithms which, while enjoying the computational benefits of lock-freedom,
also ensure consistency, in particular for high-dimensional problems such as DL.
This is the main focus of [10], where a consistency-preserving lock-free implemen-
tation of AsyncSGD for DL is introduced. In [22] a detailed study of parallel
SGD focusing on Hogwild! and a new, GPU-implementation, is conducted,
focusing on convex functions, with dense and sparse data sets and a comparison
of different computing architectures.

AsyncSGD for DL. In [33] the focus is the fundamental limitation of data
parallelism in ML. They observe that the limitations are due to concurrent SGD
parameter accesses, during ML training, usually diminishing or even negating
the parallelization benefits provided by additional parallel compute resources.
To alleviate this, they propose the use of static analysis for identification of data
that do not cause dependencies, for parallelizing their access. They do this as
part of a system that uses Julia, a script language that performs just-in-time
compilation. Their approach is effective and works well for e.g. Matrix factoriza-
tion SGD. For DNNs, as they explain, their work is not directly applicable, since
in DNNs permitting “good” dependence violation is the common parallelization
approach. Asynchronous SGD approaches for DNNs are scarce in the current lit-
erature. In the recent work [21], Lopez et al. propose a semi-asynchronous SGD
variant for DNN training, however requiring a master thread synchronizing the
updates through gradient averaging, and relying on atomic updates of the entire
parameter vector, resembling more a shared-memory implementation of param-
eter server. In [31] theoretical convergence analysis is presented for SyncSGD
with once-in-a-while synchronization. They mention the analysis can guide in
applying SyncSGD for DL, however the analysis requires strong convexity of the
target function. [15] proposes a consensus-based SGD algorithm for distributed
DL. They provide theoretical convergence guarantees, also in the non-convex
case, however the empirical evaluation is limited to iteration counting as opposed
to wall-clock time measurements, with mixed performance positioning relative



The Impact of Synchronization in Parallel Stochastic Gradient Descent 67

to the baselines. In [20] a topology for decentralized parallel SGD is proposed,
using pair-wise averaging synchronization.

Asynchrony-Adaptive SGD. Delayed optimization in asynchronous first-
order optimization algorithms was analyzed initially in [1], where Agarwal et
al. introduce step sizes which diminish over the progression of SGD, depend-
ing on the maximum staleness allowed in the system, but not adaptive to the
actual delays observed. Adaptiveness to delayed updates during execution was
proposed and analyzed in [24] under assumptions of gradient sparsity and read
and write operations having the same relative ordering. A similar approach was
used in [35], however for synchronous SGD with the softsync protocol. In [35]
statistical speedup is observed in some cases for a limited number of worker
nodes, however by using momentum SGD, which is not the case in their theoret-
ical analysis, and step size decaying schedules on top of the staleness-adaptive
step size. In [30], AdaDelay is proposed, which addresses a particular constrained
convex optimization problem, namely training a logistic classifier with projected
gradient descent. It utilizes a network of worker nodes computing gradients in
parallel which are aggregated at a central parameter server with a step size that
is scaled proportionally to the inverse staleness, τ−1 (τ denotes staleness defined
as the number of applied concurrent updates). The staleness model in [30] is
a uniform stochastic distribution, which implies a strict upper bound on the
delays, making the system model partially asynchronous. [6] extends this line of
research, exploring further the idea of adapting updates based on staleness, and
studies in particular analytical foundations to motivate how.

4 Problems and Challenges with Parallel SGD

4.1 Scalability

Growing Batch Size. In SyncSGD , stragglers become a bottleneck, making
every iteration only as fast as the slowest thread. This issue can however par-
tially be reduced through relaxed semantics, such as SSP and the n-softsync
protocol (see Sect. 3). Moreover, the convergence of SyncSGD under increasing
parallelism is statistically equivalent to sequential SGD with a larger mini-batch
size b [13], also shown in [6], which is a hyper-parameter that requires careful
tuning depending on the problem. In particular, the convergence can be slower if
b is too large [16,25]. As discussed in Sect. 3.1, this indicates limited scalability, as
over-parallization will impose large-batch properties, which in some cases slows
down the convergence [13]. This motivates further exploration of asynchronous
parallelism for scalability.

Staleness. AsyncSGD eliminates many scalability bottlenecks of SyncSGD due
to reduced inter-thread coordination, however this also introduces other chal-
lenges related to asynchrony. As discussed in Sect. 3.2, asynchronous access to
and update of the shared state leads to staleness due to the fact that updates
may occur by threads concurrently to the gradient computation. The updates
that are applied are in fact rarely in practice based on the latest shared state, as
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described by (4). For problems satisfying assumptions on convexity, smoothness
and bounded gradients, staleness has little impact on the convergence of Async-
SGD [11]. However, for a wider class of problems, staleness can have significant
impact. In particular for problems not conforming to e.g. convexity assumptions,
such as the recently relevant DL applications. Crucial steps toward understand-
ing how convergence is affected in AsyncSGD due to staleness were taken by
Mitliagkas et al. [26], explicitly quantifying the impact of concurrency, under
a certain statistical staleness model. The results indicate that the influence of
asynchrony has an effect similar to momentum in SGD, and a reduced step size.
This analysis is extended in [6], proposing models better capturing the stale-
ness dynamics, and showing that the momentum effect grows and the step size
reduces monotonically as the parallelism is increased. This indicates a scalability
limitation in convergence, which however can be partially alleviated by using a
staleness-adaptive step size.

Progress and Consistency Guarantees. As previously mentioned, read and
update operations on the shared state θ become focal in AsyncSGD , since they
constitute the remaining synchronization steps in the otherwise asynchronous
algorithm. There must be primitives in place to handle concurrent attempts to
read and update by several threads, and these become bottlenecks for scalability
at sufficiently high levels of parallelism. Traditionally, a separate thread or node
acting as a parameter server is responsible for providing the latest parameter
state to workers, as well as processing contributing gradients, sequentializing
the updates [17]. To efficiently utilize multi-core systems, this was extended to
shared-memory implementations [19,28,29]. The access to the shared state is
then scheduled by the operating system, and regulated by some synchroniza-
tion method, such as locking, to ensure consistency in case of concurrent read
and update attempts. However, locks can be relatively computationally expen-
sive, in particular when the gradient computation step itself incurs little latency.
In addition, the total time spent on waiting for locks grows as more threads
are introduced to the system, potentially making it scalability bottleneck. By
allowing completely uncoordinated component-wise atomic read and update
operations, i.e. Hogwild! [28], such contention is eliminated, allowing signif-
icant speedup for sparse optimization problems in particular. However, for other
problems, Hogwild! introduces inconsistency when read and update operations
occur concurrently, with unpredictable impact on the convergence. There is cur-
rently a lack of methods providing a middle-ground solutions in the literature in
the realm in between these two endpoints of the synchronization spectrum, i.e.
the consistency-enforcing lock-based AsyncSGD and the lock-free inconsistency-
prone Hogwild!. This spectrum is explored further in [10], and Leashed-SGD
is proposed as a middle-ground solution. Leashed-SGD ensures consistency in
arbitrarily dense problems, while enjoying the benefits of lock-freedom, reducing
computational synchronization bottlenecks (see Sect. 5.1).

Memory Consumption. An additional aspect of scalability to consider is
memory consumption; standard AsyncSGD implementations in the literature
require each thread to copy the entire shared state θ prior to its individual
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gradient computation. The result of the computation, i.e. the stochastic gradi-
ent, is of the same dimension d as θ, and is stored locally until applied to the
shared state in an SGD iteration. The magnitude of d varies, however in DL
applications it is often in the magnitude of hundreds of thousands, sometimes
millions, which is why the memory consumption of the AsyncSGD implemen-
tation needs to be carefully considered. This aspect is discussed further in [10],
and possible improvements are explored.

4.2 Convergence Under Asynchrony

Staleness. The staleness that arises in AsyncSGD due to parallelism signifi-
cantly impacts the statistical efficiency of the convergence; it has been shown
analytically that the number of SGD iterations to ε-convergence increases lin-
early in the maximum staleness [3,12]. Hence, only if the gains in computa-
tional efficiency from parallelism are sufficiently great, will there be an overall
improvement in wall-clock time until ε-convergence. In addition, inconsistent
synchronization as in Hogwild! potentially incurs further statistical penalty;
the expected number of iterations required increases linearly in

√
d [3]. Subse-

quently, there are challenges in understanding whether it is worth the computa-
tional overhead to ensure consistency for a given problem, and which synchro-
nization primitives are appropriate to utilize.

Synchronization. As a consequence of Amdahl’s law [5], when there is a syn-
chronization overhead, the achievable speedup is bounded. In the context of
AsyncSGD , this applies in particular for the computational efficiency, i.e. how
many SGD updates can be applied in a given time unit. This implies that there
is a computational saturation point m∗

C for which additional threads will not pro-
vide additional significant computational speedup. For this statement, as well as
the ones to follow in this paragraph, empirical evidence is provided in [10]. More-
over, due to the presence of staleness there is a degradation of statistical efficiency
coupled to parallelism in AsyncSGD [23,33]. Hence, as more threads are intro-
duced to the system, more iterations are required until reaching ε-convergence.
At some level of parallelism, which we refer to as the system saturation point m∗

S ,
additional threads will no longer reduce the wall-clock time to ε-convergence, and
might instead even increase it. It can be concluded that m∗

S ≤ m∗
C from a sim-

ple argument of contradiction, assuming that statistical efficiency degrades with
higher parallelism. This assumption is in accordance with results in previous
literature [3,12], and explored further in [6,10] There are substantial challenges
in understanding the appropriate range of the number m of threads in order
to (i) fully utilize the parallel computation ability of the system and (ii) avoid
over-parallelization, potentially harming or completely obstructing convergence.
Ideally an implementation of AsyncSGD feature resilience to tuning, provid-
ing reliable and fast convergence over a broad spectrum of parallelism, towards
which [10] takes significant steps (see Sect. 5.2).
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4.3 Benchmarking and Evaluation

Standardization. There are significant challenges in conducting empirical eval-
uations and comparisons which are useful and fair within the domain of parallel
SGD, for several reasons: Firstly, there are several metrics of interest related
to convergence of SGD, the measurements of which must be effectively aggre-
gated as to show the overall performance. Traditionally, in ML the statistical
efficiency is the metric most used, i.e. the number of SGD iterations until reach-
ing sufficient performance, i.e. ε-convergence. However, when improvements in
statistical efficiency is achieved by altering the underlying algorithm, this poten-
tially alters the computational efficiency, i.e. the number of SGD iterations per
time unit. In such cases, it is hence necessary that evaluations take this into
consideration, and ideally provide measurements of the overall convergence rate,
i.e. the wall-clock time until converging to a solution of sufficient quality. Sec-
ondly, the domain of shared-memory parallel SGD lacks established universal
procedures for benchmarking, leaving the task of setting up an appropriate test
environment to the individual authors. The domain contains a wide spectrum of
questions, ranging from efficient communication protocols [4] in wide distributed
DL networks to exploring the impact of progress guarantees and synchronization
in shared data structures [3,28]. This renders the task of designing a universal
benchmarking platform for parallel SGD including such universal procedures
immensely difficult, if not impossible. The Deep500 framework [7] takes impor-
tant steps in providing such an environment, although it focuses primarily on
higher-level distributed SGD. For instance, the framework provides a Python
interface for development, which does not facilitate exploration of for instance
efficient shared data structures for fine-grained synchronization and mechanisms
for memory management.

Hyper-parameter Dependencies. Another key issue in benchmarking par-
allel SGD for machine learning is the inherent dependency between parallelism
and various hyper-parameters crucial for achieving convergence [13,26], some of
the most important being the step size η and the mini-batch size b. As mentioned
above, it is known that higher parallelism in SyncSGD exhibits similar conver-
gence properties as sequential SGD with a larger batch size. As more threads
or nodes are introduced to the system, the scalability of SyncSGD can hence
appear to be limited due to the statistical penalty from a too large value of b.
This can be avoided by choosing a sufficiently small initial b for each thread or
node, which will then instead give the appearance of high scalability, but only
until a certain level of parallelism [13]. It is hence of interest in such evaluations
to provide empirical evidence from test scenarios that indicate the general abil-
ity of the proposed method to scale independently of hyper-parameter choices.
Analogously, for AsyncSGD , there is delicate interplay between the step size η
and the staleness distribution, stemming from the fact that stale updates cor-
respond to gradients based on old views of the state, and are applied with a
coarsity proportional to η [24,34]. A smaller η implies less impact on the con-
vergence per update, hence tends to tolerate updates with higher staleness, and
subsequently higher levels of parallelism. This can give the appearance of good
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scalability, showing speedup for a larger number of threads. It is in this case also
of interest to provide empirical results that indicate scalability independently of
hyper-parameters, such as η, for instance by testing for several choices of η.

In summary, there are challenges in establishing evaluation methodologies,
making fair and useful comparisons between methods difficult. This is mainly
due to the wide span of research questions in the domain. A collective strive
towards standardized benchmarking platform for various methodological aspects
is imperative. In addition, the dependence of the performance and scalability of
parallel SGD algorithms on various hyper-parameters, such as step size η and
batch size b, complicate empirical evaluations.

5 Our Work on Parallelizing SGD

5.1 Convergence of Staleness-Adaptive SGD

The scalability limitations of traditional synchronous parallel SGD highlighted
in Sect. 4.1 motivates further exploration of asynchronous parallelization, i.e.
AsyncSGD which has shown promising improvements in ability to scale for many
applications. The degradation of statistical efficiency due to staleness is however
a limiting factor, forcing the user to carefully tune the level of parallelism in order
to maintain an actual overall speedup in convergence rate, as also highlighted in
Sect. 4.1. In order to address this issue, we first propose methods to statistically
model the behaviour of staleness in AsyncSGD . The models, which are proposed
based on reasoning of the dynamics of the algorithm and its dependency on
scheduling, capture the staleness distribution in practice to a high degree of
precision, and more accurately than models previously proposed in the literature.

Based on the proposed staleness models, we provide analytical results that
quantify the side-effect of asynchrony on the statistical efficiency. Moreover,
our approach enables derivation of a staleness-adaptive step size, referred to as
MindTheStep-AsyncSGD , which provably reduces this side-effect, and in expec-
tation can, depending on the rate of adaptiveness, alter it into the more desired
behaviour of momentum. We prove also that the staleness-adaptive step size is
efficiently computable, ensuring minimal additional synchronization overhead for
maximal scalability capability, as described in Sect. 4.2. We provide an empir-
ical evaluation of the proposed staleness models and the adaptive step size for
a relevant use case, namely DL for image classification. The empirical results
show in particular: (i) significantly improved accuracy in modelling the staleness
with our proposed models, (ii) reduced penalty from asynchrony-induced noise,
leading to up to a ×1.5 speedup in convergence compared to baseline (standard
AsyncSGD with constant step size) under high parallelism.

5.2 A Framework for Lock-Freedom and Consistency

Asynchronous parallelization of SGD, i.e. AsyncSGD , significantly reduces wait-
ing compared to SyncSGD , as explained in the previous sections. However, the
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remaining synchronization that is needed, in particular access to the shared
state, becomes focal and constitute a possible bottleneck. Motivated by analyt-
ical results in previous literature that indicate great computational benefits of
lock-freedom, however a statistical penalty from inconsistency and staleness, we
propose Leashed-SGD (lock-free consistent asynchronous shared-memory SGD),
which is an extensible framework supporting algorithmic lock-free implementa-
tions of AsyncSGD and diverse mechanisms for consistency, and for regulating
contention. It utilizes an efficient on-demand dynamic memory allocation and
recycling mechanism, which reduces the overall memory footprint. We provide
an analysis of the proposed framework in terms of safety, memory consump-
tion, and model the progression of parallel threads in the execution of SGD,
which we use for estimating contention over time and confirming the potential
of the built-in contention regulation mechanism to reduce the overall staleness
distribution.

Among the analytical results for Leashed-SGD , we provide guarantees on
lock-freedom and atomicity, safety and exhaustiveness and bounds on the mem-
ory consumption. Moreover, we model the progression of the algorithm over time,
finding in particular fixed points in the system useful for estimating potential
contention and the effect of the built-in contention-regulating mechanism.

We conduct an extensive empirical study of Leashed-SGD for Multi-Layer
Perceptron (MLP) and Convolutional Neural Network (CNN) training for image
classification. The empirical study focuses on scalability, dependence on hyper-
parameters, distribution of the staleness, and benchmarks the proposed frame-
work compared to established baselines, namely lock-based AsyncSGD and
Hogwild!. We draw the following main conclusions:

1. Leashed-SGD provides significantly higher tolerance towards the level of par-
allelism, with fast and stable convergence for a wide spectrum, taking sig-
nificant steps towards addressing the scalability challenges highlighted in
Sect. 4.1. The baselines however require careful tuning of the number of
threads in order to avoid tediously slow convergence and are more prone
to completely failing or crashing executions.

2. The lock-free nature of Leashed-SGD entails a self-regulating balancing effect
between latency and throughput, leading to an overall reduced staleness dis-
tribution, which in many instances is crucial for achieving convergence.

3. For MLP training we observe up to 27% reduced median running time for
ε-convergence for Leashed-SGD compared to baselines, with similar memory
footprint. For CNN training, we observe a ×4 speedup for ε-convergence, with
a memory footprint reduction with 17% on average.

For the empirical study, a modular and extensible C++ framework is devel-
oped with the purpose of facilitating development of shared-memory paral-
lel SGD with varying synchronization mechanisms (https://github.com/dcs-
chalmers/shared-memory-sgd). Hence, we take steps towards addressing the
challenges (highlighted in Sect. 4.3) that the community faces regarding a gen-
eral platform for further exploration of aspects of fine-grained synchronization
in this domain.

https://github.com/dcs-chalmers/shared-memory-sgd
https://github.com/dcs-chalmers/shared-memory-sgd
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6 Conclusions

There are significant challenges for asynchronous parallel SGD methods for
machine learning to scale, due to (i) staleness and reduced update freshness and
(ii) computational overhead from synchronization for shared-memory operations.

While higher parallelism in AsyncSGD enables more iterations per second,
its inherent staleness and asynchrony-induced noise leads to an deteriorating
statistical efficiency, requiring a growing number of iterations to achieve sufficient
convergence. Understanding and modelling the dynamics of the staleness enables
explicitly quantifying its side-effect on the convergence, towards which important
steps were taken in [26], however under simplifying assumptions. Under a more
practical system model, this analysis was extended in [6], and used to show
how adaptiveness to staleness reduces asynchrony-induced noise, and thereby
improves convergence. In addition, it allows derivation of the proposed staleness-
adaptive MindTheStep-AsyncSGD which provably reduces this side-effect. The
analytical results are confirmed in practice in [6], showing increased statistical
efficiency in ANN training for image classification.

Relaxed inter-thread synchronization, with weak consistency requirements
as in Hogwild! [28], enables a straightforward way for achieving lock-freedom
without consistency guarantees in shared state. The reduced computational over-
head allows overall speedup for sparse problems, where inconsistency might have
little impact [28] and asymptotic convergence bounds can be established. How-
ever, the inconsistency has implications on the statistical efficiency, as observed
theoretically in [3] and confirmed in [6,10]. In [10] an interface is introduced, pro-
viding abstractions of operations on the shared state θ, utilized in the proposed
lock-free Leashed-SGD framework, which includes an implementation that guar-
antees consistency and which is extensible to provide configurable consistency.
The lock-free nature of Leashed-SGD has a self-regulating effect which avoids
congestion under high parallelism, which by reducing the overall staleness distri-
bution enables fast and stable convergence in contexts where the baselines fail.
In this context, the dynamic memory allocation featured in Leashed-SGD allows
for significantly reduced memory footprint, which is critical in particular for DL
applications where the problems dimension can be in the order of millions.
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Abstract. Given a simple finite undirected graph, finding a minimum
Independent Dominating Set is a fundamental graph algorithmic
problem. In this paper, we propose a distributed algorithm for construct-
ing an independent dominating set (IDS) in the CONGEST model of
distributed computing. Our algorithm requires only 2-hop partial infor-
mation at each node for computations, and hence each node takes various
decisions without having any global knowledge of the graph. The algo-
rithm consists of mainly three steps. First, we construct a dominating set
using a node estimation and voting mechanism. Then each dominating
node finds out a vertex cover of its 2-hop graph by an incremental greedy
algorithm along with a few optimizations and tie breaking. We prove that
the union of the vertex covers computed by each dominating node is a
vertex cover of the original graph. Finally, we construct an independent
set by complementing the vertex cover. Considering this independent set
as an IDS (of the induced graph by the closed neighborhood of the inde-
pendent set), its closed neighborhood is deleted from the original graph
to construct the reduced graph. We repeat the above three-step process
until the reduced graph is null.

To the best of our knowledge, this is the first distributed algorithm
for constructing an IDS. We experimented on eight real-world networks
and synthetic networks from well-known Erdos-Renyi graph generators.
We observe that in most of the cases our algorithm takes only a few
(approx 5) iterations and returns an IDS whose size is fractionally higher
than the size of IDS computed by a sequential greedy algorithm.

Keywords: Distributed algorithm · Vertex cover · Voting ·
Independent Dominating Set

1 Introduction

Given a graph, a subset of its vertices is said to be an independent set if between
every pair of vertices there is no edge [5]. Similarly, a subset of the vertices of an
undirected graph is said to be a dominating set if every vertex which is not in
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the subset has at least one neighbor in the subset. Combining these two, a subset
of the vertices is said to be an IDS if it is both independent and dominating.
Finding a maximum size independent set, minimum size dominating set and also
the minimum size IDS are popular NP-Complete problems. Given an undirected
graph finding a minimum size IDS is a graph algorithmic problem having appli-
cations in wireless networks, social networks [10], etc. Next, we report relevant
studies on the independent dominating set problem.

Related Work. Haraguchi [9] proposed a local search technique for this prob-
lem which uses k-swap as the neighborhood operation. For k = 2 and 3, their
algorithm runs in O(n · Δ) and O(n · Δ3) time, respectively where n and Δ
denote the number of nodes and maximum degree of the graph. Hurink and
Nieberg [10] first proposed a polynomial time approximation scheme for this
problem for the graphs with polynomially bounded growth. Gaspers and Liedloff
[7] proposed a branch-and-reduce algorithm for this problem having the running
time O(1.3575n). Subsequently, Bourgeois et al. [4] proposed a branching algo-
rithm with running time O∗(20.424n). Subsequently, this has been improved by
Bourgeois et al. [3] to O∗(20.417n). Liu et al. [12] showed that this problem
is NP-Complete even on cubic bipartite graphs. Several soft computing-based
approaches have also been proposed [18,19]. Goddard et al. [8] presented a com-
prehensive survey on different combinatorial results on this problem. Loverov
et al. [13] showed that the IDS problem in NP-Complete even on cubic planner
graph. Most of the studies are either complexity theoretic or combinatorial in
nature, not algorithmic. Also, to the best of our knowledge, there does not exist
any distributed algorithm for this problem.

Our Contributions. In this paper, we study the Independent Dominating Set
problem and propose a purely distributed algorithm. Our algorithm requires
only two hop connectivity information from every node and the message pass-
ing is from any node to its immediate neighbors only. Our algorithm is broadly
divided into three steps. First, we extract out a dominating set where dominat-
ing nodes are elected based on estimates and voting. These dominating nodes
construct a vertex cover of the graph. Finally, we construct an independent set
by complementing the vertex cover and reduce the graph by deleting the closed
neighborhood of the independent set. The algorithm repeats the above three-
step process until the vertex set of the graph is exhausted. The most important
feature of our algorithm is that all the above three steps are computed in O(1)
rounds of message communications among the immediate neighbors of each node.
Moreover, a node does not need to know the size, the diameter or the maximum
degree of a node in the graph. A node stops itself when it is either marked itself
as an Independent Dominating Node (namely, IDN) or it is a neighbor of an
Independent Dominating Node (namely, NIDN). The algorithm finishes when
all nodes are marked. We have experimented with our proposed approach with
real-world as well as synthetic datasets.

Organization of the Paper. Section 2 contains some preliminary concepts and
states the problem. Section 3 contains the proposed solution approach. Section 4
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contains the experimental evaluation of the proposed approach. Finally, Sect. 5
concludes our study.

2 Preliminaries and Problem Definition

Graphs considered in this paper are finite, simple, and undirected [5]. A graph
is denoted by G(V,E) where V (G) and E(G) denotes the vertex and edge set
of the graph. We denote the number of vertices and edges of G by n and m,
respectively. For any vertex v ∈ V (G), its open k-hop neighbor is denoted as
Nk(v) and defined as Nk(v) = {u : dist(u, v) ≤ k}. Here, dist(u, v) denotes
the shortest path distance from u to v. Similarly, closed k-hop neighbor of v
is defined as Nk[v] = Nk(v) ∪ {v}. When k = 1, we call this as the open and
closed neighborhood of v and denoted by N(v) and N [v], respectively. Instead of
a single vertex for a subset of vertices S, Nk(S) is defined as Nk(S) = {u : u ∈
V (G)\S and ∃ v ∈ S such that dist(uv) ≤ k}, and Nk[S] as Nk[S] = S∪Nk(S).
The cardinality of the open neighborhood is defined as degree. A vertex is said to
be a pendent vertex and isolated vertex if its degree is one and zero, respectively.

A subset of the vertices D ⊆ V (G) is said to be a dominating set of G if
every vertex which is not in the subset has at least one neighbor in D, i.e.,
N [D] = V (G). The nodes in D are called ‘dominating’ nodes and the remaining
nodes are called non-dominating nodes. Finding a dominating set of minimum
size is a well known NP-Complete problem [5]. A subset of vertices S ⊆ V (G)
is said to be an independent set if for every u, v ∈ S and (u, v) /∈ E(G). Finding
an independent set of minimum size is a well known NP-Complete problem [5].
Given a subset of the vertices C it is called as the IDS if it is both independent set
and dominating set. Given a graph G(V,E) and a positive integer k, the decision
version of this problem asks to determine whether G contains an IDS of size at
most k. The size of a minimum IDS is known as the ‘independent domination
number’ of G and denoted as id(G).

Independent Dominating Set Problem (Decision Version)

Input: A Simple Undirected Graph G(V,E), k ∈ Z
+.

Question: Does G contain an independent dominating set of size of at
most k or is id(G) ≤ k?

The IDS Problem is also NP-Complete. Next, we proceed to describe our dis-
tributed algorithm.

3 The Proposed Algorithm

Our algorithm is broadly divided into three steps. Given the graph, first we
construct a dominating set. Next, using this dominating set, we construct a
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vertex cover of the graph. We know the complement of the vertex cover of a
graph is independent set. Subsequently, We delete the close neighborhood of
the independent set from the graph. Now on the reduced graph, we repeat this
process until the whole graph is exhausted. Algorithm 1 describes this procedure.

Algorithm 1: Proposed algorithm for independent dominating set con-
struction
Data: A simple undirected graph G(V,E)
Result: An independent dominating set Φ of G

1 Φ ← ∅;
2 Initialization for All u ∈ V (G) do
3 State(u) = null, Comment: State(u) ∈ {null, IDN,NIDN};

4 while ∃v ∈ V (G) and State(v) = null Comment: V (G) 	= ∅ do
5 Step 1: Construct a dominating set of the graph;
6 Step 2: From the dominating set information construct a vertex

cover (say B);
7 Step 3: Construct the independent set, S ← V (G) \ B ;
8 for All u ∈ S do
9 State(u) = IDN;

10 for All u ∈ N(S) and All u 	∈ S do
11 State(u) = NIDN;

12 Φ ← Φ ∪ S;
13 V (G) ← V (G) \ N [S]

14 return Φ

Now, we describe each steps involved in the algorithm in details. Along with
the description, we also explain our with an example. For this purpose, we use
the graph shown in Fig. 1.

2
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9
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Fig. 1. Graph considered for running example in this study.

3.1 Construction of the Dominating Set (Step 1)

For any node v ∈ V (G), first we define its k-hop partial graph. Let G[V ′] denotes
the subgraph induced by the vertex set V ′ in G.
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Definition 1 (k-hop Partial Graph). For a given graph G, the k-hop partial
graph for a node v is denoted as PGk(v) whose vertex set is V (PGk(v)) = {u :
dist(u, v) ≤ k} and the edge set is E(PGk(v)) = E(G[V (PGk(v))]) \ {u,w ∈
V (PGk(v)) : dist(u, v) = dist(w, v) = k and (u,w) ∈ E(G)}.
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(b) 2-hop Graph for node 1(a) 2-hop Graph for node 9

Fig. 2. Two hop graph for the nodes 9 and 1.

Figure 2 shows the 2-hop partial graphs for the nodes 1 and 9. We will prove
that knowing only the 2-hop partial graph at each node is sufficient to construct
the IDS in a fully distributed manner. At the start of algorithm, we assume
that each node is aware of its neighbors (i.e., 1-hop neighbors). Then, each
node collects 1-hop neighbor information from each of its neighbor to get the
knowledge of 2-hop partial graph. This can be done in just one round of message
exchange with a total of n messages. So, it can be safely accepted that we describe
the proposed distributed algorithm at each node with only the local knowledge
of the 2-hop partial graph.

In our method, each node checks its suitability to be included in the domi-
nating set. Hence, it calculates an estimate which is stated in Definition 2.

Definition 2 (Node and Edge Estimate). For an edge (uv) ∈ E(G), we
denote its estimate μ(uv) and defined as the nodes that are at least neighbor of
at least one of these two nodes, i.e., μ(uv) = |N(u) ∪ N(v)|. The estimate of a
node v is the maximum among all the edges that are incident with the node v,
i.e., μ(u) = max{μ(uv) : v ∈ N(u)}.

After calculating the node estimate, each node v ∈ V (G) informs its estimate
to its neighbor. After hearing the estimates every node recommends exactly one
node to be included in the dominating set with the highest estimate value. We
break ties based on the node id. Now, we illustrate this with an example. Observe
the 2-hop partial graphs as shown in Fig. 3. Consider the (5, 9) edge of the graph
shown in Fig. 3(a). We observe that N(5) = {1, 9, 3} and N(9) = {5, 6}. As per
Definition 2, the estimation of the edge (5, 6) is μ(5, 6) = |N(6) ∪ N(5)| = 5.
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(b) Estimates for Node 1(a) Estimates for Node 9
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Fig. 3. Two hop graph for the nodes 9 and 1 with node and edge estimates

Fig. 4. Example graph with node estimates. The table contains node id with their
corresponding voted node id.

Similarly, the estimation of edge (9, 6) is 3. These are the only two edges incident
with the vertex 9. The node estimate for the node 9 is the maximum of 5 and 3
which is 5. Similarly, if we work out in the 2-hop partial graph of the node 0 as
shown in Fig. 3(b), the estimate for the node 0 is 6.

Figure 4 shows our example graph along with its node estimates (shown inside
bracket). We can observe that the node 0 has the neighbors 1, 4, and 7. Their
respective nodes estimates are 6, 5, and 5. Every node votes a neighbor node
with the highest estimate. So, node 0 will vote 1. For the example graph, nodes
with their respective voted nodes are shown in Fig. 4.

Algorithm 2 describes this process in the form of psudocode. This kind of
estimation technique has been previously used to find out the connected (and
smaller) dominating set of a topology graph of a wireless sensor network [1,2].
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Algorithm 2: Dominating set construction Algorithm
Data: A simple undirected graph G(V,E)
Result: A dominating set D of G

1 D ← ∅;
2 Initialization for All u ∈ V (G) do
3 for All v ∈ N(u) do
4 Calculate μ(uv);

5 Calculate μ(u);

6 First Round for All v ∈ V (G) do
7 Exchange μ(v) among the nodes in N(v);

8 Second Round for Each v ∈ V (G) do
9 Let μ(u) > μ(w) ∀w ∈ N(v);

10 Final for Each v ∈ V (G) do
11 if v is recommended by some u ∈ N(v) then
12 D ← D ∪ {v};

Now, we show a few theoretical results related to our dominating set con-
struction (Algorithm 2). For the purpose of determining the computational com-
plexity, let us assume that the maximum degree of a node in the graph is Δ where
is Δ << n for large graphs in general. By computational complexity, we denote
the amount of computation that a node does for a decision or message exchange.
Our distributed algorithm however does not need any global knowledge of n and
Δ. It is easy to note that the total number of nodes in a 2-hop partial graph
(PG2(v)) of any node v is O(Δ2). Also, as the degree of each node of N2(v) is
1 in PG2(v), the total number of edges in a PG2(v) is O(Δ2).

Lemma 1. Let, v ∈ D and |D| > 1 then there exists a node u ∈ N(v) such that
u ∈ D.

Proof. It is clear the algorithm that each node v ∈ V (G) recommends exactly
one node u ∈ N(v) to be included in the dominating set. So, for any node v ∈ D
there exists one node u ∈ N(v) which is in D.

Lemma 2. The computation complexity, message complexity and time complex-
ity of our dominating set construction procedure are O(Δ2) O(n) and O(1),
respectively.

Proof. For edge estimate, each node v computes the size of union of v’s neighbor
with all of its Δ (at most) neighbors. Each node has to do at most 2Δ operations
for one set union operation. And there are at most Δ set unions operations to be
computed by each node. For node estimate, each node has to find the node with
the maximum edge estimate in Δ operations. So, the computation complexity is
O(Δ2). Each node v ∈ V (G) sends exactly one recommend message to its direct
neighbors and at most one declared dominating message in the second round.
Hence, for each node the number of messages are 2 and total number of messages
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are 2n (which is of O(n)). Also, this clearly shows that two rounds are sufficient
for generating the dominating set leading to the time complexity of O(1).

Theorem 1. The selected nodes in D by Algorithm 2 is a dominating set of G.

Proof. To prove that D is the dominating set we need to show N [D] = V (G).
Now, each node v ∈ V (G) recommends exactly one node of its neighbors and all
such recommended nodes are included in the dominating set. So, irrespective of
whether v ∈ D or v /∈ D there is at least one neighbor u ∈ N(v) (Here, node u
is recommended by v.). Thus according to the definition of dominating set D is
a dominating set of G.

Lemma 3. The union of all the 2-hop graphs of the dominating nodes constitute
the whole graph, i.e.,

⋃

v∈D
PG2(v) = V (G).

Proof. We prove this statement by showing two cases:

Case 1 (Nodes are Preserved): Here, we need to show that for all u ∈ V (G),
there exists at least one w ∈ D such that u ∈ PG2(w). u can be either a
dominating or a non-dominating node. If u is a dominating node then certainly
it belongs to PG2(u). So, in this case u ≡ w. On the other hand, if u is not
a dominating node then there must exist a v ∈ D such that v ∈ N(u). So, u
contained in V (PG2(v)). This proves that the node set of the original graph is
preserved.

Case 2 (Edges are Preserved): Here, we need to show that for all (u, v) ∈
E(G), there exists at least one w ∈ D such that (u, v) ∈ E(PG2(w)). Now, any
one of the following cases may happen. Both, u and v are dominating nodes. In
that case, the edge (u, v) belongs to both PG2(u) and PG2(v). So, the union
of the PG2(w) for all w ∈ D contains the edge (u, v). Now, assume that one
of them is dominating and the other one is non-dominating node. Without loss
of generality, assume that u is dominating and v is non-dominating. Certainly,
the edge (u, v) belongs to E(PG2(u)). Hence, in this case also the edge (u, v) is
preserved. The remaining case is that both u and v are non-dominating nodes. As
D is a dominating set of G, there must exists a node w ∈ D such that w ∈ N(u).
We can easily follow that the edge (u, v) belongs to PG2(w). So, in this case also
the edge is preserved. This completes the proof.

3.2 Construction of Vertex Cover (Step 2)

Once we have the dominating set, the next step is to construct the vertex cover.
The construction algorithm is as follows. However, before stating the procedure,
we highlight that this step will be carried out by the dominating nodes only.
Other nodes will safely skip this step. For every dominating node v ∈ V (G),
we construct its two hop graph denoted as PG2(v). Now, in each partial graph,
we construct their respective vertex covers in the following way. We calculate
the degree of all the non-dominating nodes present in the partial graph, short
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them in the decreasing order and greedily picks up one with the highest degree
and delete the edges incident on this to obtain a reduced graph. This process is
repeated until all the dominating nodes are checked. However, we can observe
that there may be some edges which can not be covered by non-dominating
nodes. To cover such edges between the two end vertices (both of them are
dominating one), we pick one with the lowest node id. For a dominating node
v, we denote the vertex cover of the 2-hop partial graph of v as V C(PG2(v)).
This procedure has been described in the form of psudocode in Algorithm 3.

Algorithm 3: Vertex cover construction algorithm
Data: A simple undirected graph G(V,E). and its dominating set D
Result: A Vertex cover C of G

1 C ← ∅;
2 Computation for All u ∈ D do
3 C(u) ← ∅, C1(u) ← ∅, C2(u) ← ∅;
4 while ∃v ∈ V (PG2(u)) and v �∈ D do
5 Let w ∈ V (PG2(u)) is highest degree;
6 C1 ← C1 ∪ {w};
7 Remove all edges from PG2(u) incident to w;
8 Remove all isolated nodes from PG2(u);

9 while ∃v ∈ V (PG2(u)) Comment: all v ∈ D do
10 Let w ∈ V (PG2(u)) is lowest id;
11 C2 ← C2 ∪ {w};
12 Remove all edges from PG2(u) incident to w;
13 Remove all isolated nodes from PG2(u);

14 C(u) ← C1(u) ∪ C2(u)

15 First Round for All u ∈ D do
16 Inform each v ∈ C(u) as a VC node;

17 Final for Each v ∈ V (G) do
18 if v is infomred as a VC node by some u ∈ N(v) then
19 C ← C ∪ {v};

Now, we illustrate the execution of Algorithm 3 with an example. Figure 5(a)
shows the 2-hop partial graphs of node 1 where the dominating nodes are marked
in yellow. In the 2-hop partial graph of the node 1 contains all the dominating
nodes, namely, 0, 1, 2, 5, and 9. Now, all the non-dominating nodes have the
degree 1 and there is a tie among these four nodes. As in our methodology, we
are braking the tie by picking up the node with lowest id, hence, in this case
node 3 is picked up. Subsequently, the edge (3, 5) is deleted and this leads to the
isolated node 3, which has also been deleted. This reduced graph has been shown
in Fig. 5(b). If we repeat this process all the remaining non-dominating nodes
will be deleted from the graph and the remaining graph is shown in Fig. 5(c).
Now, the graph is left with only dominating nodes, and hence, the procedure
mentioned in Line 11 to 15 will be applied. So, in the remaining graph the lowest
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node id is 0. So, this node is taken as a vertex cover node and the edge (0, 1) is
deleted. This leads to the isolated node 0 and this is deleted from the graph. This
reduced graph is shown in Fig. 5(d). In the remaining graph, the node with the
lowest id is 5, so it is taken as a vertex cover node and both the incident edges to
it (1, 2) and (1, 5) are deleted. This leads to the isolated node 2 and deleted from
the graph. Now, the remaining graph consist of only one edge (5, 9) where the
lowest node id is 5. After taking this as a vertex cover node and deleting the edge
(5, 9) the isolated node 9 is remaining and this has also been deleted. Now, the
remaining graph is an empty graph and the execution stops. The vertex cover
returned by Algorithm 2 of the 2-hop partial graph of node 2 is {0, 1, 3, 4, 5, 7, 8}
which has been shown in Fig. 5(e) marked in pink color.

Lemma 4. The vertex set C returned by Algorithm 3 is a vertex cover of G.

Proof. Proof by Contradiction: So assume that the final vertex set returned by
Algorithm 3 is not a vertex cover of G. So, there must be an edge say (u, v) such
that none of u and v are in the final vertex set returned by Algorithm 3. However,
in Lemma 3, we have already shown that the union of partial graphs cover the
entire graph. This implies that there must be some w ∈ D whose PG2(w) covers
the edge (u, v). Now, in Algorithm 3, we have computed the vertex cover for
every partial graph and each of the vertex cover of the partial graphs together
constitute the final vertex set. So, either u or v or both must be in the final
vertex set. This holds for every edge (u, v) of G. So, the final vertex set returned
by Algorithm 3 is a vertex cover of G.

It is important to observe that entire vertex set of a graph is also a vertex
cover of the graph. If in Step 2 we find the entire vertex set as a vertex cover,
then it leads to an empty set as an independent set. In that case we can not
reduce our input graph, and hence, the while loop of Algorithm 1 will be an
infinite loop. So, it is important that in our methodology Step 2 should find out
a vertex cover which is a proper subset of the vertex set of the graph. In Lemma
5, we show that the vertex cover chosen by Algorithm 3 is a proper subset of the
vertex set.

Lemma 5. The size of the vertex cover returned by Algorithm 3 is a proper
subset of the vertex set of the original graph G.

Proof. We need to show that at least one node in G is not present in the union
of the vertex cover returned by all the dominating nodes. Let us assume that v
be a dominating node with the highest node id. Our claim is that v can not be
present in the vertex cover returned by any of the dominating nodes. We prove
this claim by two cases. Case 1, Let all neighbors of v are non-dominating. Then
from step 6 to 10 of algorithm, it is clear that once all neightbors of v are taken
in VC, node v is removed from PG2(v). So, v can not in the VC returned by
v or any other dominating node whose two hop partial graph contains v. Case
2, Let ∃u ∈ N(v) and u is also a dominating node. Note that id(u) < id(v) by
assumption that v is a dominating node with the highest node id. Then from
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(a) 2-hop Partial Graph of Node 2.

Dominating Nodes are marked in yellow.

(b) 2-hop Partial Graph of the Node 2 after
processing the non-dominating node with lowest id.
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(d) 2-hop Partial Graph of the Node 2 after
processing the dominating node with lowest id.
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(e) 2-hop Partial Graph of Node 2.

Vertex Cover Nodes are marked in pink.

Fig. 5. Demonstration of our vertex cover selection algorithm (Color figure online)

step 11 to 15 of algorithm, it is clear that node u must have been taken in VC
to cover the edge (u, v). So, again v is not in VC returned by v or any other
dominating node whose two hop partial graph contains v. However, in practice,
there will be many nodes which will not be in the union of the vertex cover
returned by all the dominating nodes.

Lemma 6. The computational complexity, message complexity and time com-
plexity of Algorithm 3 are O(Δ4), O(n) and O(1), respectively.

Proof. Computational Complexity at Each Node: As this step is skipped
by the non-dominating nodes hence computational complexity of these nodes will
be of O(1). Now, we analyze the computational complexity for each dominating
node. There are O(Δ2) edges in a PG2(v) of a dominating node v. The while
loop in the Computation can run at most O(Δ2) iterations as at least one
edge is removed in each iteration. And during each iteration, a node needs to
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find the maximum degree node from O(Δ2) nodes in O(Δ2) operations. So,
computational complexity is O(Δ4).

Time and Message Complexities: From the steps of the Algorithm 3 it can
seen that there is only 1 round of massage communication from dominating
nodes only. So, the time complexity is O(1). The message complexity is O(n)
(viz., exactly O(D), but D = O(n))

3.3 Independent Set Construction and Graph Shrinking (Step 3)

It is known that complement of a vertex cover of a graph is an independent set.
Let, S1 be an independent set chosen by our algorithm in the first iteration of
the while loop. Then the nodes are in N(S1) will be dominated by S1. If we
can safely delete the nodes in N [S1] from the graph so that in the next iteration
this process will work on the reduced graph. When the entire vertex set of the
graph is exhausted we will show the generated vertex set is an IDS of the input
graph. However, before that we prove few other statements.

Lemma 7. The final vertex set returned by Algorithm 1 is an independent set
of the input graph.

Proof. We prove this statement by contradiction. Assume that the vertex set
returned by Algorithm 1 is not an independent set. That means there exists at
least two vertices u, v ∈ V (G) such that (u, v) ∈ E(G). Now, any one of the
following two cases may happen. Both u and v have been included in the set Φ
in the same iteration of the while loop, or in the different iterations. If both of
them have been included in the same iteration then (u, v) /∈ E(G), because both
of them belongs to the complement of a vertex cover, which is an independent
set. Now, consider the other case where u and v has been included in two different
iterations of the while loop. Without loss of generality, let us assume that u
has been included before v. As per the working principle of our algorithm, once
u is included its closed neighborhood is deleted. Hence, if (u, v) ∈ E(G) then v
belongs to the closed neighborhood of u. So, when u is included then v must be
deleted and there is no question of inclusion of v in Φ. So, our assumption that
Φ is not an independent set is false. So, this implies the lemma statement.

Lemma 8. The final vertex set returned by Algorithm 1 is a dominating set of
the input graph.

Proof. Proof by contradiction: Assume that the vertex set returned by our algo-
rithm is not a dominating set. This means that N [Φ] 	= V (G), or in other words,
there exists at least one vertex v which is not in N [Φ]. Here, we need to show
that for any v ∈ V (G), if v /∈ Φ then at least one of its neighbors must be in
Φ. Without loss of generality, assume that the while loop of Algorithm 1 takes
� many iterations to exhaust the whole graph, and in each iteration the vertex
set returned by our algorithm is Φ1, Φ2, . . ., Φ�. Hence,

⋃

i∈[�]

Φi = Φ, and also
⋃

i∈[�]

(Φi∪N(Φi)) = V (G). Now, consider any vertex v ∈ V (G). If v ∈ Φi for some
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i ∈ [�] then v ∈ Φ. Now, consider the other case v ∈ N(Φi) for some i ∈ [�]. By
definition of the neighborhood, there exists some u ∈ Φi such that (u, v) ∈ E(G).
As per the working principle of our algorithm Φi ⊆ Φ for all i ∈ [�], and hence
u ∈ Φ. This proves that for every v ∈ V (G), either v ∈ Φ or if v /∈ Φ there
exist at least one u ∈ N(v) such that (u, v) ∈ E(G). This means that Φ is a
dominating set of G.

Combining Lemma 7 and 8, we have the correctness statement described in
Theorem 2.

Theorem 2. The vertex set returned by Algorithm 1 is an independent domi-
nating set of the input graph.

4 Experimental Evaluation

Datasets. In our experiments, we use eight real-world as well as syntactic
datasets. Among the eight real-world datasets, four of them are social networks,
namely, Facebook1 [14], LastFM2 [17], Facebook Pages Politician, Face-
book Public Figure3. [15,16]; next two are collaboration networks, namely,
General Relativity and Quantum Cosmology collaboration network
(GR-QC Colla)4 [11], High Energy Physics - Theory collaboration net-
work (HEPT Colla)5 [11]; and the remaining two are pear to pear network,
namely, Gnutella peer-to-peer network 16 and 27.

Now, we describe the generation of synthetic datasets, which are basically
Erdős-Rényi random graphs [6]. A random graph of n vertices with connection
probability p will have p · n(n−1)

2 number of edges in expectation. We have used
the Erdős-Rényi random graph generator of NetworkX8.

Experimental Setup. First, we fix the connection probability and increase the
number of nodes and secondly, we fix the number of nodes and increase the connec-
tion probability. For the first case, we experimented with two different probabil-
ity values, 0.002 and 0.01. For each probability value, we start with the number of
nodes value as 2000 continued upto 20000 with an increment of 2000 each time. For
the second case, we experimented with two different number of nodes value 10000
and 20000. For each of these values, we start with the connection probability value
0.002 continued till 0.01 with an increment of 0.002 each time.

Goals of the Experiments. For the benchmark datasets, we compare the
performance of the proposed approach with the incremental greedy algorithm
1 http://snap.stanford.edu/data/ego-Facebook.html.
2 http://snap.stanford.edu/data/feather-lastfm-social.html.
3 http://networkrepository.com/fb-pages-public-figure.php.
4 http://snap.stanford.edu/data/ca-GrQc.html.
5 http://snap.stanford.edu/data/ca-HepTh.html.
6 http://snap.stanford.edu/data/p2p-Gnutella04.html.
7 http://snap.stanford.edu/data/p2p-Gnutella05.html.
8 https://networkx.org/documentation/stable/reference/generators.html.

http://snap.stanford.edu/data/ego-Facebook.html
http://snap.stanford.edu/data/feather-lastfm-social.html
http://networkrepository.com/fb-pages-public-figure.php
http://snap.stanford.edu/data/ca-GrQc.html
http://snap.stanford.edu/data/ca-HepTh.html
http://snap.stanford.edu/data/p2p-Gnutella04.html
http://snap.stanford.edu/data/p2p-Gnutella05.html
https://networkx.org/documentation/stable/reference/generators.html
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which is a sequential. This works in the following way: it computes the degree of
the nodes pick the highest degree node as an independent dominating node and
delete the closed neighborhood. This process is repeated until the whole graph
is exhausted. We report the size of the independent dominating set returned by
this algorithm. Next, we report the size of the IDS returned by the proposed
distributed algorithm, the difference between the size of the IDS returned by the
incremental greedy algorithm and the proposed algorithm. Certainly, lesser the
value of the difference, better is the algorithm. Next important thing is how many
iterations the while loop takes to finish. Finally, the last one is the portion (and
correspondingly the percentage) of the independent dominating nodes obtained
after the first iteration itself.

For the synthetic datasets, our experimental goals are two folded. One way,
we want to study how the sizes of the IDS by our algorithm and the incremental
greedy approach, the portion of the IDS obtained after the first iteration, and
the number of passes taken by our algorithm increases with the increase of
network size for a fixed connection probability. In the similar way, we also study
the change of this matrices with the increase of the connection probability for
a fixed number of nodes. Next, we proceed to describe the experimental results
with detailed observations and discussions.

Experimental Results with Discussion. Table 1 shows the results of the
benchmark datasets. Here, we observe that the proposed distributed algorithm
can find an IDS within 2 to 6 passes of the while loop and the difference between
the cardinality of the independent dominating set found by the incremental
greedy approach and the proposed distributed algorithm varies from 2.42 to
8.23% with respect to the number of nodes of the graph. In most of the datasets,
10 to 40% of the nodes of the final independent dominating set is obtained in
the first pass itself. It is important to notice that once our algorithm chooses
a node to be included as an independent dominating node it never goes out.
That means once the independent dominating nodes after first pass is obtained,
they immediately start serving their purpose. Naturally, it is better to have more
number of independent dominating nodes after the first pass itself. We observe
that for HEPT Colla and GR-QC Colla datasets this size is 32% and 40% which
is significantly high. We also observe that for most of the datasets, the size of
the independent dominating set returned by our proposed distributed algorithm
is upto 38% of the number of nodes of the graph.

Table 1. Results for the benchmark datasets.

Benchmark name Nodes Edges Greedy IDS size Proposed distributed algorithm

IDS size Diff % of extra nodes # of passes % of nodes in 1st pass % of nodes in IDS

CA-HepTh.txt Hashed.txt 9877 51971 3170 3409 239 2.42 6 32.70 34.51

CA-GrQc Hashed.txt 5242 28980 1558 1708 150 2.86 5 40.40 32.58

fb-pages-politician.edges 5908 41729 1381 1867 486 8.23 5 10.07 31.60

facebook combined.txt 4039 88234 261 319 58 1.44 6 1.88 7.90

fb-pages-public-figure.edges 11565 67114 3747 4401 654 5.65 6 12.22 38.05

lastfm asia target.txt 7624 27806 4327 4899 572 7.50 2 0.12 64.25

p2p-Gnutella04.txt 10879 39994 3867 3913 46 0.4 7 13.08 35.97

p2p-Gnutella05.txt 8846 31839 3017 3212 195 2.20 6 12.80 36.31
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Fig. 6. Number of nodes Vs. IDS size plots for probability values 0.002 and 0.01

Figure 6 shows the plots for the IDS Size Vs. Number of Nodes for two
different probability values 0.002 and 0.01. From the figure, we can observe that
for a fixed probability value if we increase the number of nodes then for both
the methodologies the size of the IDS is also increasing. It is natural that for a
larger graph, the size of the independent set is bigger. Also, in this case as the
probability is kept fixed so the density of the graph is also not changing.

Fig. 7. Probability Vs. IDS size plots for the number of nodes 10000 and 20000

Figure 7 shows the plots for the IDS Size Vs. Probability for two different
fixed values of n (namely, 10000 and 20000). From the figure we observe that,
for a fixed number of nodes if we increase the probability value for both the
methodologies the IDS Size is gradually decreasing.

However, we observe that the fractional difference in the size of IDS
returned by our algorithm against the greedy sequential algorithm (i.e.,
IDSProposed−IDSGreedy

n ) decreases as n increases for a fixed probability. We observer
the similar behavior when probability value is increased keeping the n fixed. This
implies that our algorithm converges towards the greedy sequential algorithm as
n increases with fixed probability or, as probability increases with fixed n.
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5 Concluding Remarks

In this paper, we have proposed a constant round distributed algorithm under
the CONGEST Model of distributed computing for the independent dominating
set problem. Our algorithm requires only two-hop neighborhood information
of every node and consisting of mainly three steps, namely (i) Construction
of Dominating Set, (ii) Construction of Vertex Cover, and (iii) Construction
of Independent Set and Reducing the graph. We have analyzed each node’s
computational complexity and message complexity of our proposed methodology.
Experimentation with benchmark and synthetic datasets shows the effectiveness
of our methodology. More importantly, in some cases a significant portion (up to
40%) of the final result is obtained after the first pass itself. The immediate
question is to extend our algorithm for other models of distributed computing.
There are many variations of the domination in a graph. Hence, our algorithm
can be extended to solve those kinds of domination problems.
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Abstract. Amazon provides several different options for deploying
workloads to AWS in the form of on-demand, reserved and spot instances.
Spot instances come with steep discount offers but are susceptible to
revocation and hence are not reliable. Using spot instances to run Work-
loads dramatically lowers computational cost, but we cannot guarantee
the SLA requirements. In this paper, we have developed a novel tech-
nique that uses spot instances to minimize cost. It can also scale itself
based on the workload and maintain SLA even during bulk preemption.
Our system employs the following strategies. (i) Allocation of workloads
based on a measure of spot score (represents the general trend of spot
prices of a particular VM type over a predetermined duration of time),
rather than just checking the spot price at a particular instant which may
be high due to a temporary spike in traffic and may lead to an inefficient
allocation. (ii) Migration of workloads triggered by certain resource uti-
lization threshold conditions and spot price fluctuations over time. The
proposed scheme is implemented and simulated on AWS spot instances
with real demand traces from Google. The cost in our proposed method
is significantly lower compared to the case when workloads run purely
on on-demand instances or spot instances without VM migration. The
results indicate that the proposed technique can reduce the cost of run-
ning large enterprise applications and compute-intensive workloads to a
great extent.

Keywords: AWS spot instances · Cost minimization · Spot score ·
VM migration

1 Introduction

Cloud computing delivers through the internet computing services such as stor-
age, network, servers, etc. Cloud computing has gained immense popularity these
days due to its ease of use and cost benefits. Nowadays, Cloud service providers
(CSPs) offer several types of virtual machines (VMs) that differ in performance
and cost models.
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Amazon EC2 [2] provides scalable cloud computing capacity in the form of
Amazon Web Services (AWS). Amazon EC2 gives three types of purchasing
options for different VM instances: on-demand, reserved, and spot. With On-
demand instances, users, depending on the instance type, pay for computing
capacity by the hour or the second. No long-term commitments or upfront pay-
ments are needed. On the other hand, reserved instances provide a significant
discount compared to on-demand instances but require an upfront reservation
charge. Spot instances let users take advantage of unused EC2 capacity in the
AWS cloud through a bidding mechanism. Spot instances are available at up to a
90% discount compared to on-demand prices and do not need upfront payments.

Amazon allocates spot instances on spare EC2 capacity at a much lower price
than the on-demand instances. The hourly price of a spot instance is known as
the spot price, and it depends on its demand and availability. Before requesting a
spot instance, the user specifies a maximum price per hour (aka bid). By default,
it is the on-demand price. The requested instance is launched if the user’s bid
exceeds the current spot price of that instance and capacity is available. In case of
non-availability of capacity or current spot price exceeding the maximum price,
Amazon revokes the spot instance after a 2 min warning period.

Most of the prior work focuses on selecting an optimal VM based on expected
resource usage and future spot prices. SpotOn [12] and Tributary [6] have intro-
duced several fault-tolerant mechanisms like checkpointing to reduce the amount
of work lost during revocation. HotSpot [11] has proposed proactive migration
based on the current spot prices. Earlier, users had to bid for the spot instance,
and the spot price was equal to the highest unfulfilled bid. This spot instance
pricing policy was updated in 2017 by Amazon. Now, the spot prices are solely
dependent on the supply and demand of that instance. With this policy change,
revocation rates have gone down by a big margin. Thus, the overhead incurred
by the fault-tolerant mechanisms exceeds the benefits.

In this paper, we have introduced a flexible migration technique that allows
workloads to self-migrate to new VMs responding to changes in spot price or
resource utilization. We have introduced buckets - a new categorization system
for the spot instances, based on resource parameters of the VM instances such as
RAM, bandwidth, etc. Our technique monitors the change in the spot price and
the resource utilization of the workload and places the workload in the appro-
priate bucket. Thus, it ensures a minimal number of migrations, cost reduction,
and no significant degradation in performance.

This paper is arranged in the following way - First, we have discussed signifi-
cant prior works in this field and why they are inadequate considering the current
spot pricing scenario in Sect. 2. Next, we have described our proposed model in
Sect. 4, followed by the implementation details in Sect. 5. The data preparation
is outlined in Sect. 6. Experimental results are discussed and compared to other
strategies in Sect. 7. Section 8 points out the limitations of the present work and
envisages the future direction of work. Finally, Sect. 9 concludes the paper.
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2 Related Work

The prior works on this topic focus on reducing the cost by choosing the opti-
mal VM after revocation and reducing the work lost due to migration. SpotOn
[12] deals with revocations as faults and introduces several fault-tolerant mech-
anisms like checkpoints and replication. HotSpot [11] uses proactive migration
to reduce cost and optimize performance. Tributary [6] and SpotCheck [10] aim
at improving performance by mixing batch and interactive jobs.

Tributary [6] is a new elastic control system that uses multiple preemptible
resource pools to reduce cost and chances of bulk preemption. SpotCheck [10]
uses a combination of on-demand and spot VMs to offer always-available VMs on
demand for a cost near that of spot servers, and support all types of applications,
including interactive ones. Cumulon [7] is another approach that optimizes the
cost of executing mixed interactive and batch workloads on cloud platforms using
transient VMs. SpotOn [12] is a model that calculates the cost for all the spot
markets across all available zones and chooses the market with the least cost
and the fault-tolerant mechanism with the least overhead.

Bid Selection for Deadline Constrained Jobs [8] is a greedy approach for bid-
ding where, with effective use of checkpointing, the total cost of using spot
instances is reduced further without violating the deadline constraint. They
have compared the cost of their solutions with the optimal given by an ILP.
HotSpot [11] uses a pro-active migration policy to migrate whenever it can find
a VM with a lower spot price. Thus, HotSpot effectively decreases the cost and
is capable of dealing with pre-emption. But the cloud spot markets suffer from
bulk pre-emptions frequently.

We observe from the above discussion that most of the existing literature is
based on Amazon’s old spot instance pricing policy. As a result of Amazon’s 2017
policy update, the revocation rates have decreased to about less than 5% on an
average [1]. Thus, the prior works like [10,12] that use the fault-tolerant mech-
anisms incur more overhead in this new pricing model. Our proposed algorithm
does not have any fault-tolerant mechanism. Instead, its migration decision is
based on the current spot price and thus eliminates overheads otherwise required
for checkpointing or replication. Also, most of the prior work like [6,11,12] con-
siders the spot price as the sole parameter for migration. However, without
adequate resources, a job’s execution time can increase, leading to higher costs.
Our proposed algorithm considers resource utilization and migrates to a new
VM when the resource utilization exceeds a certain threshold value. Thus, our
proposed algorithm aims at reducing the cost by proposing a new migration
policy based on spot price and resource utilization.

3 Problem Statement

Let a job run for Nk hours on a virtual machine vk. Let Si
vk

, i = 1, 2, · · ·Nk, be
the spot price for vk at the ith hour. Also, assume ok is the on-demand instance
price of the same VM. The maximum price (or bid) is the on-demand price, so
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the cost of provisioning a VM will be the minimum of spot price and on-demand
price. Then the total cost incurred for executing the job on VM vk for Nk hours
is:

Cvk
=

Nk∑

t=1

min(St
vk
, ok) (1)

Now, the job is migrated based on certain conditions among a set of VMs. Let
V = {v1, v2, v3 . . . vp} be the sequence of VMs, such that the job executes for Ni

hours on VM vi, where Cvi
is the cost of execution in VM vi. Then the total

cost of executing the job to completion will be:

C =
p∑

i=1

Cvi

Our objective is to minimize C through the optimum use of migration based on
resource utilization and spot price trends, such that the total cost of computation
is reduced without significant loss in performance.

4 Proposed Algorithmic Modelling

The spot prices of AWS spot instances are continuously changing, based on
the free capacity in the AWS cloud at that time. However, the spot price at a
particular instant in time may accurately reflect the general trend of the spot
price of that instance. Thus, to get a general representation of the spot price
trend, we adopt a metric “Spot Score” calculated as follows:

SpotScore =
1
w

w∑

t=1

min (st, o) (2)

where st = spot price at instant t and o = on-demand price for the concerned
VM instance type.

Here w indicates a predetermined past duration of time based on which to
observe the trend. From the above definition, we can express the cost of Eq. 1,
as Nk ∗SpotScore where the SpotScore is computed over those Nk hours. That
means, if we have to choose between several instances, the one with a lower
SpotScore will lead to lower costs (assuming total execution time remains the
same).

Also, a categorization system is adopted for the VM types available, hereafter
referred to as buckets. Each bucket contains VMs conforming to a certain range
of RAM, CPU, and bandwidth. The exact ranges of parameters of the buckets
are dependent on the dataset under consideration, as explained later in Sect. 5.

Based on this measure of spot score and the bucket system, we formulate our
strategy to minimize the cost of computation of jobs. As during Cloudsim [9] sim-
ulation, we map the jobs to cloudlets, so henceforth we refer to jobs as cloudlets.
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We migrate cloudlets from one VM to another, triggered by certain “EVENTS”.
The following events may occur during the execution of the job on a VM. REVO-
CATION event occurs when cloud service provider reclaims its spot instances
with a two-minute warning; Another event SPOT SCORE occurs when spot
price exceeds the on-demand price. The other two events occur due to a change in
resource utilization. The third event occurs when resource requirements become
so high that resource utilization crosses a pre-fixed UPPER THRESHOLD. Simi-
larly, the fourth event occurs on utilization going below LOWER THRESHOLD.
We stop monitoring when JOB COMPLETED event occurs. Algorithm 1 out-
lines the process step-by-step.

Let us now explain the proposed algorithm with some concrete details. We
are concerned about RAM as a primary VM resource. The RAM demanded by
each cloudlet varies with time. When the demand exceeds a certain threshold,
say x% of the total RAM available, for more than y% of the time, in the past z
minutes, we assume that the average RAM requirement of the cloudlet exceeds
the threshold. Suppose we observe last (z=) 100 min/h of RAM utilization by the
job and find that RAM usage remains below (x=) 80% for (y=) 90 observations.
In this case, the job keeps running on the same VM. In other words, in the chosen
VM the job is expected to run without throttling on memory/cpu. In case we
observe that RAM usage crosses 80% of allotted RAM for more than 90% of the
time, we decide to migrate to a bucket with more memory. Then we migrate the
cloudlet to another VM belonging to a bucket with more memory and having
the minimum spot score. During experiments, we need to fine-tune the values
for x, y, and z. Here z is the preceding time-window length (henceforth called
sliding window) in consideration during the above computations.

Migrating to a VM in the next bucket ensures a lower frequency of migrations
as we can expect that the RAM requirement of the cloudlet will not exceed
the RAM threshold in a higher bucket. Even if it does, the overall migration
frequency will be low as we tend to counter a sudden momentary spike in resource
usage using a window of size z. This is important since frequent migrations will
decrease the cloudlet’s performance, which translates to a poor experience for
the cloud service consumer and may even violate SLAs.

In case the cloudlet is already assigned to a VM in the highest bucket avail-
able, the cloudlet is migrated to another VM in the same bucket based on spot
score if amazon revokes a running instance. The VM is selected based on the
least spot score among the VMs available in the bucket.

The RAM demanded by a cloudlet may also decrease and stay below the
x% threshold of the lower bucket for an extended amount of time. When the
frequency of RAM under-utilization reaches y%, the cloudlet is migrated to a
lower bucket. If it is in the lowest bucket, we migrate it to another VM in the
same bucket but with a lower RAM (if such a VM exists).

The spot price of each instance varies with time. If the spot price exceeds
the on-demand price at some point of time,

1. If the spot price of some VM within the same bucket at that time is lower
than the on-demand price, the cloudlet is migrated to that VM.
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Algorithm 1: VM migration based on resource utilization
input : J : Incoming Job, Va: Set of available VMs
output : Vs: Sequence of VMs the job runs on until completion

1 Va is divided into k-buckets B = B1, B2, . . . Bk based on the available resources.
Each bucket consists of a few number of VMs such that:

2 B1 ∪ B2 ∪ ... ∪ Bk = Va

3 Effectively each VM belongs to any one bucket only i.e., ∀i, jBi ∩ Bj = Φ

4 Initially J is assigned to a VM from the nearest matched bucket (Bj) based
on expected resource requirement of the job.

5 The spot score values of all the VMs of the chosen bucket is computed
following eqn. (2)

6 Let the VM V i
Bj ∈ B

j is the chosen one with the minimum spot score

7 We call this as the first VM in the sequence Vs, i.e., V1
s = V i

Bj

8 while (OnEvent) do
9 if (Revocation Event with 2 min warning) then

10 Migrate to another VM from the same bucket, V x
Bj ∈ B

j

11 Add V x
Bj to the List: Vs

12 end
13 if (spot price exceeds on-demand price) then
14 Compute the spot score ∀ VMs in the corresponding bucket B

j

15 List them in ascending order of spot score
16 Loop through the list of VMs and stop when spot price is less than

on-demand price of the current VM
17 Migrate to the chosen VM from the same bucket
18 If the minimum spot price of all VMs in the bucket is more than

on-demand price of the current VM
19 Migrate to the on-demand instance of the same VM
20 Add V y

Bj to the List: Vs

21 end
22 if (Resource utilization exceeds upperthreshold) then
23 Choose the best matched bucket based on current resource utilization

24 Migrate to another VM from the chosen bucket, V y

Bk ∈ B
k

25 Add V y

Bk to the List: Vs

26 end
27 if (Resource utilization goes below lowerthreshold) then
28 Choose the best matched bucket based on current resource utilization

29 Migrate to another VM from the chosen bucket, V y

Bk ∈ B
k

30 Add V y

Bk to the List: Vs

31 end
32 if (Job Completed execution) then
33 Break
34 end
35 Return Vs

36 end
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2. If the spot prices of all the other VMs are higher than the on-demand price,
the cloudlet is migrated to an on-demand instance of the same VM type.

5 Implementation

The above algorithm has been implemented in Python v3.5.
We use Cloudsim [9] to simulate the architecture of AWS cloud with the

following details:

– The jobs run on a datacenter with characteristics such as CPU architecture,
OS, VMM, time zone, etc.

– The host machines in the datacenter with features such as RAM, CPU, band-
width, storage, and MIPS.

– A datacenter broker provisions VMs on appropriate hosts and assigns
cloudlets to VMs based upon the given allocation policy.

– A set of cloudlets submitted to the datacenter broker for assigning VMs and
initiating execution.

The flowchart in Fig. 1 gives an overview of the program flow, followed by a
detailed description of the programming logic and the code used to arrive at the
results (Table 1).

Table 1. Bucket boundaries

RAM usage Bucket

0–8 1

9–32 2

33–64 3

64 and above 4

The boundaries of the buckets are completely determined by the dataset
under consideration, and may need to be changed if another dataset is consid-
ered.

6 Data Aggregation and Preprocessing

The prototype is evaluated using a production Google workload trace [5] for the
month of May 2019, and publicly-available EC2 spot price traces [2]. The Google
workload trace is downloaded in a JSON format through Google BigQuery API.
It describes every job submission, scheduling decision, and resource usage data
for the jobs that ran in those clusters. The normalized value of average RAM
usage, highest RAM usage, and cycles-per-Instruction (CPI) for every 5 min are
described by the workload trace as can be seen in Table 2.
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Fig. 1. Basic overview of the implementation
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Table 2. One record from Google workload trace in CSV format for instance index
645

Start time µs End time µs Avg. CPU

usage

Avg. RAM

usage

Max. CPU

usage

Max. RAM

usage

CPI

928800000000 929100000000 0.029510 0.015899 0.089355 0.019866 0.7406

929100000000 929400000000 0.022583 0.011154 0.055297 0.019866 0.7406

929700000000 930000000000 0.022186 0.011367 0.085815 0.0198974 0.7406

929400000000 929700000000 0.0190429 0.0101928 0.088256 0.020050 0.7406

928500000000 928800000000 0.030975 0.016265 0.090087 0.019927 0.7406

930000000000 930133000000 0.00046 0.000883 0.007492 0.002048 0.7406

930133000000 930150000000 0.000365 0.000654 0.003299 0.000741 0.7406

Table 3. Base frequency of different Google machine types

CPU processor Supported VMs Base frequency (GHz)

Intel Xeon Scalable
Processor (Cascade
Lake)

– N2 predefined VMs
– N2 custom VMs

2.8

C2 VMs 3.1

M2 ultramem memory-optimized VMs 2.5

A2 VMs 2.2

Intel Xeon Scalable
Processor
(Skylake)

– E2 predefined VMs
– M1 megamem memory-optimized VMs
– N1 predefined VMs
– N1 custom VMs

2.0

Intel Xeon E7
(Broadwell E7)

M1 ultramem memory-optimized VMs 2.2

To de-normalize the RAM usage and CPI, we map each job with a type of
Google machine [3,4]. We assume that each job runs on a separate Google Cloud
instance. So, the RAM usage is normalized RAM usage from Google workload
trace multiplied by the memory provided by its corresponding Google machine
type. To obtain the number of instructions for each job for every 5 min, we divide
the base frequency of each Google instance type with the normalized CPI of the
corresponding job and multiply it by 300 (5 min in seconds). The total num-
ber of instructions for every job is the summation of the calculated number of
instructions every 5 min.
Example 1: job ID (instance index): 645 (Table 2)
Assumed instance type: n2-highcpu-80.
Base frequency: 2.8 GHz for N2 (Table 3).
CPI = .740588

# of instructions executed per second =
the base frequency divided by CPI = 2.8

0.740588 × 106.

# of instructions executed in 5 min = 2.8
0.740588 × 106 × 300 = 1134234125.
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Table 4. Memory of different Google machine type

Machine name vCPUs Memory (GB) Machine name vCPUs Memory (GB)

n2-standard-2 2 8 n2-standard-32 32 128

n2-standard-4 4 16 n2-standard-48 48 192

n2-standard-8 8 32 n2-standard-64 64 265

n2-standard-16 16 64 n2-highcpu-80 80 80

Table 5. A job (job id 645) mapped to a Google instance type. It has RAM 80 GB,
Clock Speed of 2.8 GHz and CPI as 0.740588.

Instance type CPI No. of

instructions

Avg. RAM

normal

Max. RAM

normal

Average

RAM

denormal

Max. RAM

denormal

N2-highcpu-80 0.740588 1,13,42,3412 0.0159 0.019867 1.272 1.589

N2-highcpu-80 0.740588 1,13,42,34,125 0.01115 0.019867 0.892 1.589

N2-highcpu-80 0.740588 1,13,42,34,125 0.01136 0.019897 0.908 1.591

N2-highcpu-80 0.740588 1,13,42,34,125 0.01626 0.019928 1.3008 1.59

N2-highcpu-80 0.740588 1,13,42,34,125 0.0159 0.019867 1.272 1.589

N2-highcp-80 0.740588 1,13,42,34,12 0.00088 0.002048 0.0704 0.16

N2-highcpu-80 0.740588 1,13,42,34,125 0.00065 0.000741 0.052 0.059

The denormalized value of the average/maximum RAM is derived by multi-
plying the normalized value of the average/maximum RAM with the memory of
the mapped instance type.
Example 2: Normalized maximum RAM = 0.019867 (Table 5, first row)
Normalized average RAM = 0.0159 (Table 5)
Memory of N2-highcpu-80 = 80 GB (Table 4).

Thus,

De − normalised max RAM = 0.019867 × 80 GB = 1.589 GB (3)
De − normalised avg RAM = 0.015900 × 80 GB = 1.272 GB (4)

The total number of instructions for the job id 645 is calculated by taking
the summation of number of instructions for each 5 min.
Thus,

Total number of instructions = 1, 13, 42, 34, 125
+ 1, 13, 42, 34, 125 + 1, 13, 42, 34, 125 + 1, 13, 42, 34, 125
+ 1, 13, 42, 34, 125 + 1, 13, 42, 34, 125 + 1, 13, 42, 34, 125

= 7, 93, 96, 38, 875

Similarly, avg. RAM usage is taken as the maximum of the avg. RAM usage
for every 5 min.

Avg RAM = max(1.589, 1.589, 1.5911, 1.604,
1.59, 0.16, 0.059) GB = 1.604 GB
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The number of instructions obtained for each job was not sufficient to observe
migration in our prototype. So, we have clubbed similar jobs based on the clock
speed and highest RAM usage. The final set of data obtained after merging the
data is as shown in the Table 6. The last column is the RAM distribution. To
get a time-based RAM usage of each job, we have obtained 1000 RAM usage
values following the normal distribution whose mean is the average RAM usage
and the standard deviation is 10% of the average RAM usage.

Table 6. Final dataset after merging jobs

Cloudlet

ID

Clock speed

(Hz)

No. of instructions Avg. RAM

usage

Max. RAM

usage

RAM distribution

(GB)

0 2 103957692413 9.98715 11.00610352 12.157, 12.776 . . .

1 2.2 105291126524 19.45987 20.09859848 21.614, 18.329 . . .

2 2.3 78306432526 2.5649 4.317475586 4.030, 5.287 . . .

3 2.5 85644903258 55.5486 58.51168213 60.100, 63.086 . . .

4 2.6 50542997136 4.8789354 6.324296874 6.511, 6.033 . . .

5 2.8 60117559682 3.12056 6.800415039 5.776, 7.552 . . .

6 2.8 13109861479 7.587 7.890 7.981, 6.940 . . .

7 Results and Analysis

The Table 7 shows the results obtained on execution of the above algorithm on
the dataset in Table 6. All costs are in USD. Here, L RAM indicates migration
due to under-utilization of RAM of the currently allocated VM, and H RAM,
migration due to over-utilization of RAM.

The costs of execution of a policy of no-migration on the same dataset appear
in Table 8. Here, the job runs on the initially chosen VM based on ram or spot
score until completion.

7.1 Cost Analysis

We compare the costs obtained using no migration strategy, lowest spot score
strategy and running cloudlets on on-demand instances only, and see, in Fig. 2,
that there is a significant cost reduction when we follow the lowest spot score
based allocation and migration approach.

7.2 Sliding Window Duration Analysis

We ran our migration algorithm using sliding windows of different time dura-
tions. The time durations selected for testing are - 10 min, 30 min, and 60 min.
The results are as shown in Fig. 3:
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Table 7. Costs for lowest spot score first algorithm

Cloudlet ID VM type End time (in sec) Instance type Migration event Cost

0 a1.2xlarge 45198 Spot COMPLETED 0.494 667

1 a1.4xlarge 45778 Spot COMPLETED 1.002 030

2 a1.xlarge 34046 Spot COMPLETED 0.186 307

3 m5n.4xlarge 3660 Spot H RAM 0.164 395

m5zn.6xlarge 7500 Spot L RAM 0.419 862

m5n.4xlarge 11220 Spot H RAM 0.586 952

m5zn.6xlarge 15000 Spot L RAM 0.838 427

m5n.4xlarge 18660 Spot H RAM 1.002 822

m5zn.6xlarge 22471 Spot COMPLETED 1.256 359

4 a1.xlarge 20220 Spot H RAM 0.110 648

a1.2xlarge 21976 Spot COMPLETED 0.129 867

5 a1.xlarge 4020 Spot H RAM 0.021 998

a1.2xlarge 7740 Spot L RAM 0.062 712

a1.xlarge 11700 Spot H RAM 0.084 382

a1.2xlarge 15420 Spot L RAM 0.125 095

a1.xlarge 19140 Spot H RAM 0.145 452

a1.2xlarge 22800 Spot L RAM 0.185 508

a1.xlarge 26144 Spot COMPLETED 0.203 807

6 a1.xlarge 3600 Spot H RAM 0.019 700

a1.2xlarge 5700 Spot COMPLETED 0.042 683

Table 8. Costs for no migration Policy Algorithm

Cloudlet
ID

VM type End time
(in sec)

Instance type Migration event Cost

0 a1.2xlarge 45198 Spot COMPLETED 0.494 667

1 a1.4xlarge 45778 Spot COMPLETED 1.002 030

2 a1.2xlarge 34046 Spot COMPLETED 0.372 615

3 m4.10xlarge 35685 Spot COMPLETED 4.196 379

4 a1.2xlarge 21975 Spot COMPLETED 0.240 504

5 a1.2xlarge 26138 Spot COMPLETED 0.286 066

6 a1.2xlarge 5699 Spot COMPLETED 0.062 372

In the above figures (Fig. 3), we see, for a 60-min sliding window duration, the
number of migrations is minimum. Since a cloudlet migrates only if the spot price
increases or there is a sustained increase/decrease in its resource requirement, a
longer window leads to less migration. Reducing migration decreases the cost of
computation and also helps to maintain SLA requirements.

In some cases, the cost increases with an increase in the duration of the
sliding window (job 4 and job 5). If the job was running on a VM with a higher
spot price and migration to a lower-priced bucket is delayed by a longer window,
the cost may increase.
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7.3 SLA Violation Analysis

We have measured the number of SLA violations by executing the program
using both no-migration and Lowest Spot Score strategies. As shown in Fig. 4,
the number of SLA violations is significantly less when we follow the Lowest
Spot Score strategy.

0 1 2 3 4 5 6
On Demand Only 1.55243 3.1446949 0.620276759 7.841266698 0.377402667 0.448896 0.098
No Migra on 0.494667 1.002029556 0.372614556 4.19637875 0.240504167 0.286065889 0.062372388
Lowest Spot Score With Migra on 0.494667 1.002029556 0.186307278 1.256359028 0.129866778 0.203807444 0.042683333
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Cloudlet ID 4 Cloudlet ID 5
No Migra on 1500 7560
Spot Score 1441 4023
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Fig. 4. Comparison of number of SLA violations when executing jobs using no migra-
tion strategy vs using Spot Score Strategy

8 Limitations and Future Work

Computation of the running time of a job by dividing its number of instructions
by the MIPS (millions of instructions per second) does not always hold. If the
job requires more RAM than is available, its running time may be affected.
Thus, future studies can explore the impact on the execution time by the over-
utilization of RAM.

9 Conclusion

This paper presents an efficient algorithm for cost optimization in the spot mar-
ket. The prototype automatically selects and migrates cloudlets to a new VM
when the spot price exceeds the on-demand price or the VM is over-utilized (the
RAM usage of the job exceeds 90% of the VM’s available memory). We catego-
rize the VMs into buckets based on the RAM available. A job never migrates to
a VM with memory capacity lower than its RAM usage, and so there is no degra-
dation in performance. We demonstrate the benefits of switching VMs in EC2’s
spot market in terms of cost and performance. We implement a prototype on
EC2 and evaluate it using job traces from a production Google cluster. We com-
pare our prototype with the other approaches (on-demand or no-migration) and
show that it can significantly lower cost with minimal change in performance.
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Abstract. Effective resource utilization in healthcare related systems is the prime
objective to ensure patient care. However, to effectively utilize the treatment
time, for example such as transporting patients to diagnostics centres, and pro-
viding timely medication, requires efficient optimization of the resources. These
resources are hospital staff such as caregivers, nurses, physicians, etc. and other
diagnostic resources such as MRI machines, X-Ray machines and other general-
purpose resources such as hospital beds, wheelchairs, etc. To model the behaviour
of a system with time constraints, timed automata are useful and also helpful in
representing system dynamic properties (i.e., requirements). However, the health-
care applications such as utilizing healthcare resources require formal verification
to ensure the system’s correctness. The paper presents an approach to model the
resource allocation process as Timed Automata and further verifies the system’s
properties using a model checking tool, UPPAAL. The applicability of our app-
roach is demonstrated using a hospital situation where the combination of patient
and caregiver is used. A few example healthcare resource utilization scenarios are
derived to use as a case study to validate the proposed approach. We show how
an individual patient is efficiently assigned to the available caregiver in a clinical
setup.

Keywords: Healthcare · Resources · Timed automata · UPPAAL

1 Introduction

The timely availability of healthcare resources (i.e. treatment timing) plays an important
role in patient care. The complex task of managing and allocating multiple resources
to patients is mostly done manually by the staff. Automation of resource management
is one way to reduce the burden on the staff and provide a decision support system for
the hospital staff. However, automating a clinical process requires domain knowledge,
often the output that is produced can go wrong (i.e., can lead to deadlock) if the results
are not validated and verified. Over the last few years, efforts have been made to auto-
mate the process of correctly allocating clinical resources [1–3]. various approaches
and tools have been used for transforming processes based on medical requirements
to computerized systems for easy operations. For example, Guo et al. present cardiac
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arrest treatment scenarios using Yakindu statecharts to show how medical practices are
modelled as statecharts and then transformed into UPPAAL models for further verifica-
tion [4]. However, for automating resource allocation, unexpected resource demand and
unpredictable delays in resource availability are some of the properties that have to be
factored in. The resultant multiparameter complex system is not easy to solve optimally
and in some cases may lead to incorrect solutions being proposed. In a usual clinical
process, resources vary from the hospital staff such as caregivers, nurses, physicians,
etc., and other diagnostic resources such as MRI machines, X-Ray machines to the other
general-purpose resources such as hospital beds, wheelchairs, etc. Healthcare resource
availability being blocked (even temporarily) due to breakdown, human error or false
updates in the computerized system, can violate the safety property of the system. Such
violations of safety properties in healthcare systems can be severe and often, impact
human life. Additionally, it is not easy to verify if safety requirements are met by human
intervention without setting up a formal multilevel rule-based system.

To address these challenges, we present a formal approach to automate the resource
allocation in a clinical setup. In this approach, we show how the medical resource
allocation process is transformed to a verifiable timed automata model. In particular, we
use UPPAAL to construct a model for our resource allocation problem. UPPAAL is then
used for model checking and verification of the resulting solution to ensure all safety
requirements are satisfied. These requirements are captured formally using temporal
logic.

The paper is organized as follows. Section 2 briefly presentswhyModel-based design
is appropriate for the design and development of medical applications and howUPPAAL
is a helpful tool in this regard. Section 3 describes the case study of the hospital resource
allocation process and model of patient and caregiver timed automata developed using
UPPAAL.We show the execution of individual processes running in parallel and describe
the essential properties in Subsect. 3.3. System’s properties are verified using temporal
logic in Sect. 3.4. Finally, we conclude in Sect. 4.

2 Background and Related Work

2.1 Usefulness of UPPAAL in Healthcare Applications

UPPAAL is an open-source model checking tool that is appropriate for the systems that
can be modeled as a collection of non-deterministic processes with finite control struc-
ture [5]. With this ability, it has been used in multiple fields like complex automobiles
[6] and medical applications [7, 8]. It is based on the concept of finite state machine
(also known as timed automata) where various system’s components or subprocesses are
modelled as individual timed automata and communicate through synchronized chan-
nels. These individual timed automata form a network which is known as Networked
Timed Automata [9]. It has a user-friendly editor, simulator and verifier window where
various results can be observed and analysed. The output during the execution can be
visualized in the form of Gantt charts. The UPPAAL interface can also help medical
professionals, who are not familiar with the software, to visualize the overall system.
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Clinical processes and resource sharing are complicated as every individual has a
different set of requirements. These processes are typically multistage with well-defined
criteria to be satisfied to go from one stage to another. These requirements are often
interpreted as the system’s safety requirements. To this end, UPPAAL provides a model
checking capability to verify the system’s safety requirement. These requirements are
presented in the form of a system’s properties and written formally in temporal logic.
UsingUPPAAL,we demonstrate component interactions in the formof a timed automata
model. Each component is modelled as an individual timed automaton. These automata
depict the internal dynamics of component communication and help to capture unex-
pected system behaviors when failure events occur. This particular feature is especially
crucial in healthcare applications where many medical instruments and devices work in
an integrated and interoperable environment, and often take inputs from the healthcare
staff. Moreover, processes associated with medical personals and their interaction with
healthcare instruments can be modelled as automata in UPPAAL. The formal model-
based approaches have been widely used and applied to many safety-critical systems
[10] because they provide a unified method for thorough analysis and provide the ability
to resolve the risk at the model level itself. Model-based approach is a widely accept-
able design choice that helps to abstract the complex behavior of the system. Models do
not only help to predict the errors at the early design phase but also provide options to
rectify the problem at the model level itself [11, 12]. In such context, UPPAAL provides
a suitable simulation and verification environment to perform various safety checks at
the model level of a healthcare process and medical software, which seems an efficient
design choice in safety-critical healthcare systems as the testing of an instrument or a
clinical process is expensive and life-critical.

2.2 Model-Based Development: Tools and Programming Languages

Model-based development tools and programming languages are widely used and
accepted in various domains such as robotics, avionics, smart transportation, indus-
trial automation, business process modeling, and so on. However, when it comes to
model physical interaction in the Cyber-Physical Systems (CPS) application, current
UML profilers and simulation tools either require significant extension or revision in
order to exploit the full potential of the Model-based approach [13, 14]. To address CPS
design concerns such as heterogeneity, dynamism in component interaction, modeling
and validating system behavior under various scenarios and to address the design con-
straints many tools need to be combined and used in co-simulation [15]. Model checking
tool UPPAAL for timed automata that has already been used in the industry successfully.
It allows users to model the behavior of systems in the form of states and transitions,
and to simulate and analyze the models for various system’s properties. A preliminary
case study that implements a scenario of a patient undergoing laser tracheotomy (med-
ical CPS) was carried out via model checking UPPAAL tool [16]. Another example
is the design of an implantable pacemaker with the help of UPPAAL is presented by
[7]. With the help of UPPAAL, it is possible to find safety violations, development of
patient-specific algorithms and prove the correctness of medical device algorithms.
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2.3 Defining Formalism Using Temporal Logic

Typically, two kinds of inputs are required by a model checker: a model that charac-
terizes the state-transition behaviors of a finite state concurrent system, and a temporal
logic formula that specifies the property of the system to be verified and validated. The
modeling formalism used inUPPAAL is timed automata and the temporal logic formulas
are written in TCTL [17]. The temporal logic TCTL helps in formalizing a wide range of
user requirements such as reachability, liveness, safety, and responsiveness [18]. Live-
ness is to guarantee that there exists a state where the specific condition will eventually
be true, expressed asA<> p and φ → ψ (whenever φ is satisfied, then eventuallyψ will
be satisfied). Reachability is to check if the given query φ, possibly be satisfied by any
reachable state, expressed as E <> p which is interpreted as there is an execution path
in which property p eventually (in some state of the path) holds. Safety is to guarantee
that the system will never go into a bad state, or another way of stating this is: nothing
bad will ever happen. It is expressed as E[] p and A[] p, where it checks if there exists
an execution path to hold the specific condition in all the states and property p holds for
each (all) execution path in all the states, respectively. Deadlock properties to check if
any deadlock is possible or not in the model, expressed as “A[] not deadlock”.

A timed automaton T is a tuple T = {L, l0, C, I, E, A} where L is a set of
states (also called locations), l0∈ L is the initial location, C is a set of real-valued clock
variables, I is invariant which represents that time elapses in a location only as long as
its invariant stays true, A is the action set (for example, in Fig. 1, a! and a? are actions
on the two transitions in the given automaton, hence A: {a}). E ⊆ L × C(X) × A ×
2X × L is a finite set of transitions which is defined as e = (l, g, a, r, l′) ∈ E
represents a transition from l to l′, g is the guard of transition e, r ∈ R on an edge
is the set of clocks that is reset by edge e when a transition involving the edge is fired,

and a ∈ A is the action of e. The transition is represented as l
g,a,r→ l′ for any e ∈ E.

C(X) is a set of clock constraints over X and 2X is a power set of all possible sets build
over x [19].

Fig. 1. Timed automata representation in UPPAAL

An example of timed automata in UPPAAL is shown in Fig. 1 where S1 and S2 are
two states and transition between S1 → S2 enabled when the guard g > 1 is true, then
it sends action a! (a? represent the receive action from another timed automata) and
update the variable r to zero.
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UPPAAL provides an ability to trace back the property which fails. By checking
the corresponding state transition, we are able to observe the behaviour of our resource
allocation model. For example, we check whether a particular resource is occupied for
longer than expected or a particular resource is not being used for a longer period.
Moreover, by looking at the Gantt chart, it is easy to check if corresponding states are
correct, which otherwise can be missed. The paper presents an approach to show the
resource allocation of medical resources in a clinical setup. The aim of this paper is to
present an approach to build a formal model for analyzing the resource utilization for a
clinical process.

3 Design and Modeling of Medical Resource Utilization Process

The correct functioning of a Cyber-Physical system depends on the monitoring and
control of complex physical processes where the targeted application runs on dedicated
execution platforms in a resource constrained manner, which is often expected to fol-
low the correct timing behavior. These CPS such as Healthcare applications are viewed
as collections of various interdependent but atomic tasks where the timing guarantees
depend on the coordination of the individual tasks in an orderly manner. The challenge
here is to assure the timing guarantee for the individual tasks running in the system
as well as for the overall system. We modelled a clinical process to enforce the correct
execution sequence of allocating and deallocating the medical resources, which includes
preconditions-postconditions validation, behaviour monitoring and expected responses
checking. The following subsections explain the UPPAAL based model for the hos-
pital resource allocation procedure. The model consists of two automata: Patient and
Caregiver.

3.1 Case Study of Caregiver Assignment

This paper addresses the problem of organising and automating patients being assigned
and transported in and out of a treatment facility (we named it as Diagnostic Centre) in
a hospital, to a medical resource: caregiver. We design an automated system that allows
a patient to be assigned to a caregiver. To demonstrate the simultaneous assignment of
multiple patients (i.e., multiple processes running in parallel), we create n numbers of
patient objects andm numbers of caregiver objects. The value of n andm can bemodified
to test various scenarios, for example, in our experiment we kept the number of patients
n = 4 and number of caregiversm = 2. As stated in the earlier section, there are the pre-
conditions and post-conditions validation. For instance, the pre-condition here is to check
if a caregiver is available to take a patient request, else the patient request will be queued
to be served based on the FIFO principle. After the patient is dropped at the diagnostic
centre (DC), another pre-condition here is to check the patient’s service time (i.e., the
time required for a patient to complete the treatment at the diagnostic centre) is more or
less than a predefined threshold time. This threshold time is introduced to decidewhether
the caregiver has to wait for the patient at the DC till the patient completes his treatment
or to release the patient and leavewithout the patient. In the post-condition validation, the
patient, if left at DC, should be taken back by another or the same caregiver in subsequent
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trips. Another queue (at DC) is maintained for the patients where the patients are picked
up by caregivers in a FIFO manner. This way, it assures that all the patients at DC will
be picked up certainly in an orderly manner and their waiting time at DC is not forever,
but time-bound. In this resource allocation model, the property which must satisfy is to
assure that one patient must be assigned to only one caregiver at a time and the same
condition holds during the return of the patient from DC. Another way to state this is
that two patients cannot be assigned to a single caregiver. The model must satisfy the
property of avoiding clashes in the assignments of the resources. Another property that
we check is that a patient cannot be in the waiting state forever as stated earlier. If a
patient is taken to the diagnostic centre, he must return.

Fig. 2. Process of healthcare resource allocation to the patient.

Figure 2 shows a collaboration diagram to depict the process of resource (i.e.,
Caregivers) allocation to the patients in a clinical setup.

3.2 Model Implementation Using UPPAAL

We create a scenario where a patient arrives at the hospital, requests for a service, based
on the request, a hospital resource such as caregiver (i.e., nurse or medical staff) is
allocated to the patient. However, to make it more realistic, we made a few assumptions
in our design. In our scenario, the number of caregivers is limited and less in number than
the patients. Every patient who arrives at the hospital requests certain services and where
each service has its own time of completion. For example, if there are three patients (P0,
P1, P2, … , Pn). P0 requires an x-ray which takes 10 time units, P1 requires an MRI
machine which takes 15 time units and P2 requires a general checkup, which takes 5
time units. Hence, P0’s service time is considered as 10, P1’s 15 and P2’s 5 time unit.

It is a hospital resource allocation system that controls how the resource is assigned
and released. Figure 3 shows the model of patients and Fig. 4 shows the model of
caregivers in the editor of UPPAAL. A caregiver is assigned to the patient to carry the
patient to the diagnostic centre (DC). The patient request and caregiver assignment are
represented by ReqService in the Patient automata and Assigned state in the caregiver
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automata, respectively, as shown in Fig. 3 and Fig. 4. The patients arrive in a random
sequence, for instance, if there are N patients (P0, P1, P2, … , Pn), then, P2 can arrive
before P1 and Pn and arrive before P(n − 1). The initial state of a patient is Start and
then it transitions to request for a service (ReqService). From the ReqService state, the
next state (isTaken) is reached when a patient’s request is approved for the service.
These requests are enqueued if none of the caregivers is free. To avoid the clashes
in the request assignment, we check the ‘id’ value of the patient associated with the
caregiver id (caregiver[0] or caregiver[1]). The patient’s request is approved only if
a caregiver (with the particular id number) is available (Available) to transport the
patient. Otherwise, the variable isNotAvailable (i.e., isNotAvailable[m]) becomes true.
For example, isNotAvailable = {1, 0} means caregiver[0] is busy and caregiver[1]
is available. This shows the dependency of execution of one task (arrival of patient’s
request) on another task (checking if a caregiver is available). Once the caregiver is
available, the patient’s request will be dequeued. The enqueuing and dequeuing of a
request is based on the queue’s principle of First-in-First-Out (FIFO). Once the patient
reaches the diagnostic centre (named as DC), the boolean variable isSafe sets to true and
the patient state changes to ReachedDC. Similarly, in the caregiver process, as depicted
in Fig. 4, the initial state of the caregiver is Available which changes to Assigned when
a patient is assigned to the caregiver.

We keep a constant integer variable threshold value for the service time where
we check if the patient’s service time is more than the threshold value. This condi-
tion check can be seen as the two outgoing transitions from the ReachedDC state in the
Patient automata where the condition patientDelay[id]>threshold enables the transition
ofWait_inDC and the patientDelay[id]<threshold enable the transitionwhich is leading
back to the initial state of the patient (back to initial state shows that the system is con-
tinuous transition system and a patient reaching back to initial state means that the cycle
of that previous patient object is complete and a new patient object will start the process
again and this will go on). In other words, if the condition patientDelay[id]<threshold is
true then the patient returns instantly with the caregiver, considering that the patient has
completed the service. When the condition patientDelay[id]>threshold is true, then,
the assigned caregiver will drop the patient at DC and will be released from that patient
and that patient’s treatment cycle is complete. Another way to interprets this is that the
caregiver need not wait at the diagnostic centre for a patient to complete the service,
this patient is picked up by any available caregiver once he finishes his service time.
The waiting patients at the diagnostic centre are picked by the caregivers as and when a
caregiver arrives at the diagnostic centre to drop another patient (this is the ‘wait’ state
of caregiver where a caregiver waits and checks for the existing waiting patient before
leaving from DC). Every patient is distinguished from another patient through their id
numbers, passed as a value in synchronized channels and variables used on the tran-
sitions, for example, the patientDelay[2]<threshold means the service time of Patient
no. 2 (can be expressed as Patient[2] or P2) is less than the threshold value, hence the
P2 does not go in Wait_inDC state. To make the system more realistic, a randomized
patient and caregiver selection is added on respective automaton’s transitions. For exam-
ple, e:id_p on transitions [9] (id_p is a type of id, see below code snippet) of the caregiver
automaton show that patients are selected randomly from the given total number of the
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patients and id of the patient helps to distinguish which patient request is accepted and
which patient is to be picked from the DC.

const int P = 4; //total number of patients
const int C = 2; //total number of caregivers
typedef int[0,P-1] id_p; //id number of patient
typedef int[0,C-1] id_c; // id number of caregiver

Patient Parameters: const id_p id
Caregiver Parameters: const id_c id

TheCheckPrevPatient state of the caregiver automata is the statewhere the caregiver
checks if there is any earlier patient waiting at DC (using a boolean variable prevPatient)
to be picked up after he releases his current patient at DC; caregiver picks up that previous
patient and returns with him (see the outgoing transition no. 2 of CheckPrevPatient state
in caregiver automata). If the prevPatient is false, meaning there is no patient to be picked
from DC, then the caregiver returns without any patient (see the outgoing transition no.
1 of CheckPrevPatient state in caregiver automata). Otherwise, if the patient’s service
time is less than or equal to the threshold time value, then the caregiver returns with the
same patient (see the outgoing transition no. 3 of Wait state in caregiver automata).

Fig. 3. Patient automata

In a scenario, when there is no new patient request arrived, but there are patients
who were earlier dropped at DC and now waiting for return, then, the caregiver’s
state GoToCollectPatient becomes enabled, provided that the caregiver is free (i.e.,
in Available state). The following guard condition must be true to take the transition of
GoToCollectPatient state.

lenOfWQueueO==0 && lenOfWQueueI>0
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Here, the variable lenOfWQueueO corresponds to the length of the waiting queue
outside (i.e., patient’s request queue) and lenOfWQueueI corresponds to the length of
the waiting queue inside DC.

Fig. 4. Caregiver automata

There are two outgoing transitions from the state TakePatientBack. The left-most
transition enables after a caregiver collects thewaiting patient and returns.However, there
may be a situation when more than one caregiver (in our case, both caregivers) are free
and also there is no new patient request to serve, in that case, state GoToCollectPatient
becomes enables for both the caregiverswhich leads to the possibilities of getting stuck at
the TakePatientBack state and eventually leads to the deadlock situation. To avoid such
conflict, another transition from TakePatientBack is designed (right-most transition)
where it is checked if the patient is picked up; this check is done through the isSafe (is
true) variable and lenOfWQueueI (is zero).

3.3 Concurrent Execution of Patient and Caregiver Processes in UPPAAL

We run the execution with four patients and two caregiver automata and observe the
behaviour of individual tasks running in parallel. The time each individual automaton
spends in a particular state is depicted via Gantt chart in different color coding as shown
in the bottomwindowof Fig. 5. Figure 5 shows that all four patients are in different states.
It is interpreted as Patient(0) is arrived first, since Patient(0)’s service time (modelled
as patientDelay) is more than the threshold, hence Patient(0) goes in Wait_inDC state.
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The subsequent state of the caregiver automata would be theWait state. While hovering
the mouse over the Gantt chart, it shows the time duration of start and end of a state; as
an example, a small box shows the Patient(0)’s total waiting time and time interval.

Fig. 5. Four patient processes are running in parallel and a gantt chart at bottom shows their
corresponding state during the execution. (Color figure online)

Figure 6 shows two caregiver processes simultaneously running along with the
patient automata, where Caregiver(0) is seen inWait state and Caregiver(1) is in GoTo-
CollectPatient state. The same can be seen in the Gantt chart at bottom of the image
where Caregiver(1) goes from TakePatientBack (light blue color) to Available state
(green color), then almost immediately goes toGoToCollectPatient state (yellow color).
The execution shows that it satisfies the expected behaviour as one of the patients is
in Wait_inDC state and there is no new patient request at the time when the caregiver
was in the Available state. However, it is quite possible that soon after Caregiver(1)
reaches GoToCollectPatient state, a new patient might arrive, which will be enqueued
to be served whenever the caregiver is in Available state again.

3.4 Model Verification

Timed automata are useful for representing systems, however, to represent the properties
of a system (such as nondeterministic properties) temporal logics with timed constraints
are necessary [19]. Using model checking, it can be assured that there are no safety
violations, which further assures that there will be no violation during the execution. In
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Fig. 6. Two caregiver processes are running in parallel and a gantt chart at bottom shows their
corresponding state during the execution. (Color figure online)

UPPAAL, the individual processes (in our case, these processes are Patients and Care-
givers), the interdependencies between the tasks these automata run, and their timing
constraints, are modeled as timed automata and UPPAAL verifies the properties using
model checking. A timed automaton is a finite-state machine extended with clock vari-
ables andTCTL is an extended version ofCTLwhich is specially introduced for checking
the timed constrained logics [17]. Using TCTL, we checked our model’s reachability,
safety, and liveness properties as stated in earlier sections. There are certain conditions
that must be true every time a particular event occurs. For example, if a patient is taken to
the diagnostics centre and is inwaiting state, it is expected that the patient eventuallymust
return from the diagnostics centre (i.e., a patient must not wait forever in a diagnostic
centre). We defined the following property check to assure the given scenarios:

forall (i : id_p) Patient(i).Wait_inDC --> forall 
(i : id_p) Patient(i).Start

The above query represents ‘Always eventually’, if a patient is waiting, will even-
tually always return. This property is known as the “leads-to” property (i.e., Liveness
property) which specifies that whenever P is reached then for all subsequent paths where
Q is reached also satisfies, for (P→Q). The “leads-to” property pattern (φ → ψ)which
is a shorthand forA[] (φ ⇒A<>ψ), stating that whenever φ is satisfied, then eventually
ψ will be satisfied [9, 19]. Another property which we check is the following:

A[] forall (i: id_p) (Patient(i).Wait_inDC imply 
patientDelay[i]>threshold)
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The above property is satisfied for the conditions where every time if a patient’s
service time (i.e., patientDelay) is more than the predefined threshold time, then the
patient goes into the waiting state (i.e., a treatment which takes more time and the
caregiver does not need to wait for the patient at DC). The other property whichwe check
is the reachability property (A <> φ) which means for all paths there must be a state
that satisfies φ. In our case, we want to check whether the state of GoToCollectPatient
is achieved whenever the length of the waiting queue outside (i.e., lenOfWQueueO) is
zero (i.e., there is no new patient request in the queue), and the length of the waiting
queue inside (i.e., lenOfWQueueI) is not zero (i.e., there are patients waiting at DC who
eventually have to return after consuming their service at DC) and if any of the caregivers
is available.

A<> forall (i: id_c) Caregiver(i).GoToCollectPatient 
imply (lenOfWQueueO==0 && lenOfWQueueI>0 

&& isNotAvailable[i]==0)

Furthermore, we plot some of the query results to observe the behaviour of the model
over the particular time units. For example, Fig. 7 shows the plot for the length of the
queues (lenOfWQueueO in red marking and lenOfWQueueI in blue marking) over fifty
time units (Fig. 7(a)) and over hundred time units (Fig. 7(b)). These queues represent the
number of patients requesting the service (lenOfWQueueO) and the number of patients
waiting at DC (lenOfWQueueI). Figure 7(a) shows one patient is in the request queue
towards the end. However, the waiting queue is constantly getting empty. The query
which plots the graph is following where we kept the bound value as fifty:

simulate[<=bound]{lenOfWQueueO,lenOfWQueueI}

The bound is the time bound on the simulations. Similarly, in Fig. 7(b), the plot
shows the results of the simulation for hundred time units (bound value is hundred). It is
observed that as time progresses length of the request queue (lenOfWQueueO) decreases
and the waiting queue at DC becomes zero which is interpreted as all patient requests
are served and no patient is waiting at DC.

Using the following query, we assure that the patient is returned from the DC within
some time interval:

Pr[#<=20](<> forall (i : id_c) (Caregiver(i).prevPatients 
== true) imply Caregiver(i).TakePatientBack)>= 0.98

The above query checks that within 20 discrete transitions the probability of taking
the patient back (if there is any previous patient waiting in DC) is larger than 98%. It
means the possibility of picking up the waiting patient from DC is highly likely. The
result of this query is shown in Fig. 8.
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(a)

(b)

Fig. 7. Simulation results (Color figure online)
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Fig. 8. The verifier window of the UPPAAL shows various TCTL queries execution results.

4 Conclusion

In this paper, wemodelled a process for resource utilization and the mechanism of utiliz-
ing the resources is strategized by carefully allocating and deallocating the resources for
a safety-critical healthcare system using the UPPAAL tool. Although we demonstrated
the safety assured design for a clinical process where medical staff (Caregivers) is allo-
cated to patients, the proposed approach can be reasonably applicable and adaptable to
design other similar systems. We designed the resource allocation model by looking at
some real-life scenarios in a clinical setup. Themodel is verified for various safety checks
to avoid clashes in the assignment. The design part includes formal model construction
and model level verification. Our future work is to extend the model by adding more
resources (i.e., wheelchairs, hospital beds, etc.) as timed automata and run the parallel
execution for multiple resources, along with handling the emergency cases. We plan to
develop a code and test case generation for the network of timed automata.
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Abstract. In the last decade, mobile networks face challenges in pro-
viding reliable communication with enhanced performance and quality of
service for handling the large volume of heterogeneous traffic. Software-
defined networking (SDN) has gained significant attention as an effec-
tive deployment platform for the Internet and enterprise networks. In
SDN, the separation between the controller (program), and forwarding
switches (data) allows configuring network parameters, routing policies
on the fly based on changes in application requirements and topologies.
Moreover, it allows distributing the traffic load to the controllers that
may help users and service providers to run applications with heteroge-
neous requirements as a pay-per-use basis. In this work, we modeled an
SDN integrated adaptive load balancing scheme for mobile networks that
efficiently process traffic from multiple nodes simultaneously. The exper-
imentation results indicate that our scheme experiences a less number
of packet drops, which is less than 1.3% of the total number of message
exchanges among the base stations during the load balancing process.

Keywords: SDN · MANET · Load balancing · OpenFlow · Node
migration

1 Introduction

Today, the necessary use of mobile devices and applications has triggered an
explosion in cellular data traffic [1]. The mobile networks are largely driven by
the demand to serve heterogeneous content requirements from various servers
[2]. However, satisfying the requirements from a large number of users while
enhancing performance, reliability, QoS is a major challenge. There are mainly
two lines of effort to address this. Firstly, the content requirements can be served
within the single mobile network using existing load balancing approaches. Sec-
ond, the traffic of highly loaded base stations can be migrated to lightly loaded
stations. The former does not provide efficient load distribution; and the later
undergoes inter-network communication issues [3,4].

Software-defined networking (SDN) is capable of serving heterogeneous traf-
fic simultaneously by an effective distribution of traffic load in the network. In
c© Springer Nature Switzerland AG 2022
R. Bapi et al. (Eds.): ICDCIT 2022, LNCS 13145, pp. 127–139, 2022.
https://doi.org/10.1007/978-3-030-94876-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94876-4_8&domain=pdf
http://orcid.org/0000-0002-8833-179X
https://doi.org/10.1007/978-3-030-94876-4_8


128 M. Priyadarsini and P. Bera

SDN, the separation of control programs (controller) and data plane (OpenFlow
switches) makes it flexible to handle multiple content requests with less num-
ber of flow rules (less intervention to the controller). The controller generates
flow rules for the packets and the switches forward the packets as per the flow
rules. This effectively reduces the load in the network. Also, SDN contributes
to bandwidth savings, which in turn reduces the cost for the Mobile Network
Operators (MNOs) in terms of both Capital Expenditures (CAPEX) and Oper-
ational Expenditures (OPEX). Therefore, SDN architecture has the potential
to greatly improve mobility support in the network with enhanced performance
[5]. In addition, SDN provides inter-network communication which is essential
for mobile networks. A generic architecture of SDN is shown in Fig. 1 comprises
three controllers, seven OpenFlow switches.

Fig. 1. A generic architecture of SDN

Current research on load balancing in mobile networks covers two classes of
spectrum efficiency analysis, namely spatial and temporal efficiency [3]. Tempo-
ral efficiency serves cellular traffic by exploring additional spectrum, including
offloading cellular traffic to WiFi and the recent 60 GHz millimeter-wave com-
munication endeavor. However, in the case of spatial efficiency reducing cell size,
operators can accommodate more (low-power) base stations in an area and reuse
radio frequencies more efficiently to increase network capacity. Both approaches
are based on spectrum analysis and they do not scale well for large systems and
are not robust and reliable [4]. In addition, these processes increase the time
of the load balancing process. The completion time of load balancing can be
reduced using multiple controllers, however, it requires higher bandwidth. It has
been studied that the load balancing problems are NP-complete in nature [6].
Therefore, the key challenges in mobile networks are as follows:

1. How to migrate mobile nodes from one base station to others under high load
conditions?
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2. How to dynamically adjust the threshold of base stations when no suitable
lightly loaded base stations are found?

In this paper, we modeled a heuristic approach, named as self-adaptive load
balancing (SALB) scheme for MANET, to effectively distribute the load on the
base stations. The key features of this scheme are listed as follows:

1. The impact of the radio range has been considered while migrating mobile
nodes from one base station to another.

2. Dynamic adjustment of base threshold in the base stations has been imple-
mented depending on the traffic load variations on them.

3. Our modeled SALB scheme for MANET implements simultaneous migration
of nodes from a set of highly loaded base stations to a set of lightly loaded
stations.

The basic idea of SALB is presented in our work of SDN load balancing [6]. In
this work, we model a SALB scheme for load balancing in MANET considering
its environmental constraints. In the next subsection, we describe the overview
of the software-defined network which is the basis of our work.

1.1 SDN Overview

SDN is a network design and implementation platform that mainly rely on sep-
aration of data (data plane) from control programs (control plane) to enable
dynamic configuration of network parameters for easier traffic management and
monitoring. The control plane (i.e., controller) that generates rules for traffic
routing based on heterogeneous policies for different applications. On the other
hand, the data plane (i.e., OpenFlow switches) is responsible for only forwarding
the traffic according to the flow rules generated by the controller.

The OpenFlow architecture [7] with a defined set of protocols enables the
communication between the controller and switches to determine the path for
network packets. An OpenFlow switch forwards the data packet from any of
its hosts according to the flow rules in its flow table. The flow table consists of
mainly three fields, namely; header, actions, and counter (expiration timer) [7].
A packet is processed with necessary actions if its header matches one or more
rules in the flow table. If there is no match between the packet header and the
flow table, then the corresponding packet header information is forwarded to the
controller as a Packet-IN event. Subsequently, the controller generates flow rules
for this Packet-IN request using all running network control functions. Finally,
this flow rule is forwarded to the underlying switch that stores the rule in its flow
table for further processing. The examples of widely used open-source controllers
are NOX, POX, Beacon, Floodlight, OpenDayLight, Ryu [8]. We have used the
Floodlight controller for the implementation and evaluation of our proposed
load balancing solution. However, it can also be used in integration with other
controllers.

The rest of the paper is organized as follows. The problem is formulated for-
mally in Sect. 2. The SALB scheme for MANET is described in Sect. 3. Detailed
simulation results are presented and analyzed in Sect. 4. Finally, we conclude the
paper in Sect. 5.
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2 Problem Formulation

We have first proposed mapping between elements of the mobile network and
that of SDN. The satellites are the major signal transmission elements for het-
erogeneous traffic in mobile networks. We integrate the functions of satellites
to the application plane of SDN as the application plane pushes heterogeneous
traffic requirements to the control plane. The end mobile nodes are implemented
as switches in SDN which forward the traffic in the network. Finally, the traffic
requirements of mobile nodes are served by base stations which are realized as
a distributed set of logically centralized SDN controllers. Therefore, in our load
balancing problem, our objective is to effectively distribute the traffic load of
base stations with changes in network dynamics to satisfy QoS and performance
requirements of the network. Another reason of using SDN in mobile networks
is that, SDN provides high data rate, better connectivity and coverage to the
network. Figure 2 shows the integration between SDN and Mobile networks.

Let a mobile network G = 〈V = N ∪ B, I〉, where N = {N1, N2, . . . , Nm} is
the set of m mobile nodes, B = {B1, B2, . . . , Bn} is the set of n base stations
(controllers), and I ⊆ V × V is the set of interconnections among mobile nodes
and base stations. Each base station Bi manages a potential mobile node set
NBi, and Bi can only process the requests from those mobile nodes. Each mobile
node Ni ∈ N sends some requests to the base station, and is termed as load of the

Application
Plane

Control
Plane

Data
Plane

Mobile
node

Base
station

Satellite

Fig. 2. Mobile network and software-defined network integration framework
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node, NLi. The current load BLi of ith base station is the sum of the requests
from the connected mobile nodes, i.e., BLi =

∑
j∈NBi

NLj . Each base station Bi

has a base threshold BTi that signifies the capacity of Bi. The value of Bi varies
between BTmin

i and BTmax
i , which depend on the hardware specification of the

base station (controller). For example, different controllers have different base
thresholds. However, the value may vary in a certain limit. A mobile network is
overloaded if ∃Bi ∈ B,BLi > BTmin

i . We define HLB as the set of base stations
for which the current loads are greater than their respective base thresholds,
i.e. HLB = {Bi|BLi > BTi}. Similarly, LLB = B\HLB denotes the set of
lightly loaded base stations. In other words, a mobile network is not overloaded
if HLB = φ. In general, the load balancing process in the mobile network selects
a subset of nodes from NBi of Bi ∈ HLB, and migrate them to LLB. This
migration continues until the mobile network is not overloaded.

We consider distance of a node Nk to a base station Bi, as dik, is the radio
range length from the node Nk to the base station Bi. Here, we introduce a
parameter D, that defines the upper bound of distance djk from a migrating
node Nk ∈ NBi to a target base station Bj .

It may so happen that a base station Bi ∈ HLB could not find a suitable
Bj ∈ LLB for migrating an overloaded node Nk. This can happen due to one
of the two following reasons. Firstly, the distance constraint for node migration,
i.e., djk ≤ D may be violated. Secondly, the association of a node Nk to a
base station Bj makes Bj overloaded, i.e., BLj + NLk > BTj . If a base station
Bi ∈ HLB could not find a suitable Bj ∈ LLB for migrating a node Nk, BTj

will increase. However, depending upon the hardware limit of the base station
(controller) Bj , BTj can be increased up to BTmax

j . In this paper, we present
a Self-Adaptive Load Balancing (SALB) scheme for MANET that objectively
solves the following problem:

SALB Problem for MANET. Given a mobile network G = 〈V = N ∪ B, I〉,
with an initial load BLinit = {BL1, BL2, . . . , BLn} (BLi ∈ Z+) and base
threshold {BT1, BT2, . . . , BTn} (BTi ∈ Z+), the objective is to derive an asso-
ciation of the mobile nodes to base stations f : N → B with final load BLfin =
{BL′

1, BL′
2, . . . , BL′

n} (BL′
i ∈ Z+) such that following constraints hold:

1. Network association constraint: NB1 ∪ NB2 ∪ . . . ∪ NBn = N and NBi ∩
NBj = φ for i �= j,

2. Load balancing constraint: ∀Bi ∈ B,BL′
i ≤ BTi, and

3. Distance constraint: ∀Bi ∈ B ∀Nk ∈ N f(Nk) = Bi ⇒ dik ≤ D. ��

3 Self-adaptive Load Balancing Scheme for MANET

Here, we present our modeled self-adaptive load balancing (SALB) scheme for
MANET in detail. Due to the heterogeneous content requirements of the mobile
nodes such as traffic, weather, vehicle information etc., the load on multiple base
stations increase simultaneously, which needs load balancing. Balancing load in
MANET signifies the assignment of mobile nodes to base stations appropriately
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and satisfying their demand for requirements. Our scheme runs on each base
station present in the network, and whenever there is a requirement of load bal-
ancing, it transfers control of nodes from highly loaded base stations (source)
to the lightly loaded stations (target). In the first step, highly loaded stations
find suitable station-node pairs for load balancing, and in the second step, they
migrate the selected nodes to the target stations considering the distance con-
straint. In due course, if the highly loaded stations do not find any suitable target
for load migration, the threshold of base stations are adjusted dynamically.

The SALB scheme has four modules, namely, Load measurement module
monitors the load on every station; Load broadcast module is responsible for
broadcasting the load to other stations in the network; Load balancing mod-
ule checks load balancing constraints under variable load in the network; Load
migration module migrates the load of highly loaded source stations to lightly
loaded stations identified by the load balancing module.

3.1 Description of SALB Scheme

The working procedure of our SALB scheme is described in the next subsections.

Load Measurement. In this module, the base station Bi measures its load
BLi by summing up the number of received requests from the mobile nodes
NBi that are connected to it, i.e., BLi =

∑
j∈NBi

NLj .

Load Broadcast. Here, initially BTi is set to BTmin
i , and BLi is set to zero.

Each station Bi stores its previously informed load in a local variable PLi,
which is initialized to zero. In this phase, the station Bi sends the message
〈LOAD,Bi, BLi〉 to other stations, when |BLi − PLi|> BTi/10, and then sets
PLi as BLi. The reason behind selecting such a broadcasting condition is as
follows. Frequent broadcast of load information among the stations consumes
large bandwidth of the network. However, if the time difference between two
successive broadcasts is large, then BLi of Bi may differ significantly from PLi,
and in that case, the load information of other stations may hardly be of any
use.

Load Balancing. After the load broadcast phase is over, each station Bi has
load information from other stations. A station is included in the list of highly
loaded stations, HLB if the load BLi is higher than BTi. Otherwise, Bi is
included in the list of lightly loaded stations, LLB. We consider the load distri-
bution as non-uniform distribution, if there exists a station Bj ∈ LLB such that
BLj + NLk < BTj , where Nk ∈ NBi. Otherwise it is considered as uniform
distribution.

In the case of non-uniform distribution, Bi ∈ HLB will invoke node migra-
tion, which is clearly explained in the load migration module. For uniform
load distribution, Bi ∈ HLB won’t find a suitable Bj for load migration, i.e.,
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Algorithm 1. Load Balancing Algorithm for Station Bi

1: procedure ActivateLoadBalancing(BL,BTmin
i )

2: if BLi > BTmin
i then

3: g loadBalancingActivated ← TRUE
4: BalanceLoad()
5: else
6: g loadBalancingActivated ← FALSE
7: end if
8: end procedure
9:

10: procedure BalanceLoad(BL,NL,BTmin)
11: for k ∈ NB, j ∈ LLB do
12: if (BLj + NLk < BTmin

j ) then
13: ctrlNode ← STATIONNODEPAIR()
14: MigrateLoad(ctrlNode)
15: else
16: send (〈INCREASE,Bi, 0.1 × BTj〉)
17: end if
18: end for
19: end procedure
20:
21: procedure UpdateThreshold(BT )
22: while true do
23: if g loadBalancingActivated == TRUE then
24: for j ∈ LLB do
25: Receive (<INCREASE,Bi, 0.1 × BTj>)
26: BTj = BTj + 0.1 × BTj

27: if BTj ≥ BTmax
j then

28: send (〈NACK,Bj , Bi〉)
29: else
30: send (〈ACK,Bj , Bi〉)
31: end if
32: if BLj < BTj then
33: while BLj > BTmin

j do
34: BTj = BTj − 0.1 × BTj

35: end while
36: end if
37: end for
38: g loadBalancingActivated ← FALSE
39: end if
40: end while
41: end procedure

∀Bj ∈ LLB, BLj + NLk ≥ BTj , where Nk ∈ NBi. In such scenario, Bi sends
〈INCREASE,Bi, 0.1 × BTj〉 message to all Bj . After receiving this message,
Bj updates its BTj and acknowledges Bi with 〈ACK,Bj , BTj〉 message. Station
Bi again checks node migration condition, and if possible, then migrates its node
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to Bj . Otherwise, Bi sends 〈INCREASE,Bi, 0.1 × BTj〉 message to Bj until
BTj reaches to BTmax.

Similarly, other stations of HLB may send 〈INCREASE,Bi, 0.1 × BTj〉
message to Bj . Here, Bj calculates its BTj for any one of the Bi ∈ HLB arbi-
trarily, and sends 〈ACK,Bj , Bi〉 message. After sending 〈ACK,Bj , Bi〉 mes-
sage to one of the stations, if Bj can accommodate another station’s load (i.e.,
BLj+NLk < BTj holds), then it sends 〈ACK,Bj , Bi〉 to that station, otherwise,
it sends 〈NACK,Bj , Bi〉 message.

However, if the load on Bj decreases below BTj (i.e., BLj < BTj), then Bj

reduces its BTj to 0.1×BTj . In light load scenario, Bj continuously compares its
BLj and BTj and reduces its BTj upto BTmin

j . In the load reduction process,
it may so happen that Bi sends a 〈INCREASE,Bi, 0.1 × BTj〉 message, and
in that case, Bj may increase its BTj . This increment and decrement of BTj

happen until the network is balanced (i.e., ∀i ∈ B, BLi < BTmin
i ).

Our scheme is self-adaptive in the sense that the base threshold is modified
(in the range of BTmin and BTmax) depending on the load on various stations.
The load balancing procedure is shown in Algorithm 1.

Load Migration. In this phase, a highly loaded station Bi ∈ HLB first selects
a subset NBi′ of nodes from NBi, and then each node Nk ∈ NBi′ is migrated
to a lightly loaded station Bj ∈ LLB. While migrating a node Nk ∈ NBi′ from
Bi ∈ HLB to Bj ∈ LLB, our scheme takes care of the following issues:

(a) The migration of Nk from Bi to Bj should not overload Bj . We ensure this
by the following equation.

BLj + NLk + BTi/10 < BLi (1)

After migration of node Nk, the new load of station Bj will be BLj + NLk.
However, in Eq. 1, we consider an extra load of BTi/10. The reason behind
considering the extra load is that the informed load BLi of Bi may increase
in due course while Bi calculates the new load of Bj .

(b) Considering (a), Bi may migrate the node Nk to other station. In this sce-
nario, our scheme selects the station Bj that is inside the radio range of Nk.
We consider the upper bound of distance (radio range) between Bj and Nk

is D (i.e., djk ≤ D). The parameter D is the maximum allowable distance for
node migration in any mobile network. If the distance from Nk is the same
for more than one station, then we choose the station Bj with minimum
load. Again, if more than one station has the same minimum load, then our
scheme selects arbitrarily any one of them.

The migration procedure of node Nk from station Bi to station Bj is described
in Algorithm 2. The steps are as follows:
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Algorithm 2. Station-node Pair Selection Algorithm for Station Bi

1: procedure StationNodePair()
2: if LLB == ∅ then
3: return -1;
4: end if
5: for k ∈ NB do
6: for j ∈ LLB do
7: if (BLj + NLk + BTi/10) < BLi && (djk ≤ D) then
8: send (〈MIGRATE,Bi, Bj , Nk〉)
9: end if

10: end for
11: end for
12: if Bi Receives 〈REJECT,Bj , Bi, Nk〉 then
13: StationNodePair()
14: else
15: Send (〈Terminate,Bi, Bj , Nk〉)
16: end if
17: end procedure
18:
19: procedure OnReceipt( 〈MIGRATE,Bj , Bi, Nk〉)
20: migreq ← false
21: if migreq = = false then
22: Set migreq ← true
23: Send (〈ACCEPT,Bj , Bi, Nk〉)
24: else
25: Send (〈REJECT,Bj , Bi, Nk〉)
26: end if
27: end procedure

(a) Bi sends a message 〈MIGRATE,Bi, Bj , Nk〉 to Bj .
(b) On receiving 〈MIGRATE,Bi, Bj , Nk〉 by Bj , Bj may allow to accept

the load migration from Bi for the node Nk, and in such scenario, Bj

sends a message 〈ACCEPT,Bj , Bi, Nk〉 to Bi. However, if Bj is not able
to accept the load migration from Bi for the node Nk, then Bj sends
〈REJECT,Bj , Bi, Nk〉 message to Bi. In that case, Bi tries to find another
lightly loaded station from LLB after receiving the REJECT message from
Bj and continues the same process.

(c) Station Bj do not get control over node Nk by sending ACCEPT message,
since there may be some unfinished requests of Nk at Bi. After getting
a 〈Terminate,Bi, Bj , Nk〉 message from Bi, both Bi and Bj update their
status of node mapping.

Node migration does not impose an extra cost on the load balancing process
rather than message transfer time. Also, multiple node migrations do not increase
network traffic as well as do not affect bandwidth utilization of the network.
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4 Experimental Evaluation

We evaluated the SALB scheme for MANET in two stages. Firstly, we analyzed
the performance of the scheme, and then, we verified its accuracy using real-
world traffic applications in the designed testbed.

Table 1. Performance analysis results of SALB scheme in MANET

Control overhead Load balancing time Throughput Packet drops

SALB 3.8% of # M 1.42 s 9.72 Mbps .0182% of # M

4.1 Methodology

We implemented our modeled self-adaptive load balancing scheme in Java and
used Floodlight controllers [9] as base stations. Then, we perform a simulation
with real Internet service topology, Geant from the Internet Topology Zoo [10]
to make our evaluation more similar to the real-time network scenario. We con-
sidered five controllers as base stations and 140 mobile nodes. The nodes are
assigned to the five stations for their service requirements and content requests.
More requests are generated by the nodes using the mininet platform to create
a high load on the base stations. We considered the range of BT is from 75–90%
of hardware capacity (i.e., BTmin and BTmax).

4.2 Performance Evaluation

We evaluated the performance of our scheme in terms of packet loss, control over-
head, load balancing time, and throughput. Table 1 shows control overhead, load
balancing time, throughput, packet drops on an average for the SALB scheme.
In the table, M denotes the total number of messages exchanged (broadcast,
migration) among base stations during the execution of the respective modules
on an average. The average load balancing time for SALB is approximately 1.42 s,
which is reasonably good for serving heterogeneous content requests of the mobile
nodes. Also, we analyzed the computational complexity of our SALB scheme for
MANET. The major computation is involved in the selection of suitable station-
node pair, which is linearly dependent on the number of base stations present in
the network. This shows the computational efficacy of our scheme.

We have compared the load of each base station by sending a large num-
ber of requests to them without load balancing and with the SALB scheme.
Figure 3 presents the load comparison results of five base stations used in our
simulation. The load of each station lies below BTmin after the execution of
the SALB scheme. This comparison clearly indicates the efficacy of our load-
balancing scheme in the MANET environment.
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Fig. 3. Load distribution in different base stations (a) Without any load balancing
scheme, (b) With SALB scheme

We have also tested the performance of the proposed scheme in compari-
son to the state-of-the-art mobile network load balancing methodologies [3,4].
Figure 4 represents the performance comparison of the existing load balancing
techniques along with the proposed scheme in terms of throughput and packet
drops. We have chosen Geant network topology for the simulation of the results.
Here, the results show that our proposed load balancing scheme provides signif-
icantly higher throughput (approx. 6.71 Mbps) and less packet drops (approx.
2 4 packets/s) than the existing approaches.

Fig. 4. Throughput comparison of proposed SALB with the existing load balancing
schemes in [3] and [4]
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4.3 Accuracy Verification

Our SALB scheme is implemented in the EstiNet-emulation testbed. For evalu-
ation, we created the Geant network topology [10] with mobile nodes and base
stations using a mininet simulation run on the EstiNet board. We observed a
difference of 1.32% in throughput and packet drop ratio between our simulation
and emulation results. It indicates that the performance of our SALB scheme
does not deviate largely in the real-time network environment. In addition, we
created large hardware set up in different laboratories in our institute and tested
the efficiency of our scheme. For this setup, we used two Floodlight controllers
as base stations and ten mobile nodes. To increase the load on the base sta-
tions, continuous heterogeneous requests were forwarded from all the mobile
nodes simultaneously. Figure 5 shows the accuracy comparison of our scheme in
both simulation and experimental platforms considering load balancing time and
packet drop rate concerning the average load on the base stations.
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Fig. 5. Accuracy comparison of SALB in simulation and experimental platforms (a)
Load balancing time, (b) Loss rate

5 Conclusion

In this paper, we presented a self-adaptive load balancing scheme for mobile
networks in integration with SDN control architecture. Our scheme, under non-
uniform distribution, allows effective migration of nodes and related traffic from
source stations to target stations while satisfying distance constraints between
source and target stations. Also, under the uniform distribution, it dynamically
adjusts the threshold value of the source station when there is no suitable target
station for migration and thereby manages the traffic load. The experimental
results show that our SALB scheme is effective with low packet drops (less than
1.3% of the total number of message exchange) and high throughput (approx
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9.72 Mbps). Thus, our scheme is suitable for any mobile application (LTE or
VoLTE).
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Abstract. Petri Nets (PN) are a central model for concurrent or dis-
tributed systems, but not expressive enough to represent dynamically
reconfigurable systems. On the other side, Rewriting Logic has proved
to be a natural framework for several formal models of distributed sys-
tems. We propose an efficient Maude formalization of dynamically recon-
figurable PT nets (with inhibitor arcs), using as a running example a
fault-tolerant manufacturing system. We discuss the advantages of such
a hybrid approach, as well as some concerns that are raised.

Keywords: Maude · PT nets · Reconfigurable distributed systems

1 Introduction

Modern distributed systems operate in highly dynamic environments and have
to manage varying operational conditions. System components may become tem-
porarily or permanently unavailable, may appear/disappear, e.g., due to failures
or dynamic load balancing. Self-adaptation is increasingly used to face such
complexity. Self-adaptive systems (and many other distributed systems, e.g.,
automated systems) rely on dynamic-reconfiguration policies that overlap with
the base system functionality.

To validate early design choices and/or verify the system behaviour at run-
time, there is an impelling need for formal methods modelling both the system’s
base architecture and the reconfiguration procedures.

Petri nets (PNs) are a central model of concurrent or distributed systems,
but not expressive enough to specify dynamic structural changes. Several PN
extensions have been proposed in which an enhanced expressivity is not ade-
quately supported by analysis techniques. A representative is the “nets within
nets” paradigm, introduced by Valk [19], that gave rise to special High-Level
PNs such as [10]. As for PNs with indistinguishable tokens, we have to mention
Reconfigurable PN, a family of PN-based formalisms composed of a marked net
and a separated set of net-transformation rules specified consistently with alge-
braic Graph Transformations Systems, as (double) pushouts [7–9,11,16]. Most
research has focused on trying to formulate these models as M-adhesive cate-
gories. See [14] for a survey of dynamic PN extensions.
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This paper provides a formalization of “rewritable” PT nets with inhibitor
arcs (a Turing-complete PN class) in rewriting-logic [3,13], using Maude as a spec-
ification language [6]. We focus on operational aspects, by proposing a Maude-
based framework for the specification/analysis of rewritable PT systems. Com-
pared to [1,15], in which a class of reconfigurable PNs are converted in Maude
modules to exploit the model-checking tools of Maude, our encoding provides
more data abstraction to ease the modeller task, is more compact and efficient,
and promotes the definition of rewrite rules with a higher level of flexibility.
Throughout the paper, we use a simple yet tricky benchmark, the model of a
fault-tolerant Manufacturing System. We conduct some experiments of formal
verification of properties and briefly discuss the advantages of using a somehow
hybrid modelling approach like that we propose.

The presented work should be deemed as a preliminary, however, encourag-
ing, step towards a Maude-based tool-set for the specification and the analysis of
dynamically reconfigurable PT systems.

2 PT Nets

2.1 Multisets

A multiset (bag) b on D is b : D → N, where b(d) is the multiplicity of d. d ∈ b if
and only if b(d) > 0. Let Bag[D] be the set of bags over D, and b1, b2 ∈ Bag[D].
b1 + b2 and b1 − b2 are Bag[D] elements such that ∀d ∈ D: b1 + b2(d) = b1(d) +
b2(d); b1 − b2(d) = b1(d) − b2(d) if b1(d) ≥ b2(d), 0 otherwise. Also relational
operators are component-wise: b1 < b2 if and only if ∀d ∈ D b1(d) < b2(d). With
b1 rop′ b2 we mean the restriction of rop to {d|d ∈ b1}.

2.2 Place/Transition (PT) Nets with Inhibitor Arcs

A PT net [17] is a 5-tuple (P, T, I,O,H), where: P , T are non-empty, finite sets
such that P ∩ T = ∅. I,O,H : T → Bag[P ] such that ∀t ∈ T : I(t) �= O(t).

P and T hold the net places and transitions. The former, drawn as circles,
represent system state variables, whereas the latter, drawn as bars, represent
events causing local state changes. A distributed state of a PT net, called mark-
ing, is a bag m ∈ Bag[P ]. A net is a kind of directed, bipartite multi-graph
whose nodes are P ∪ T . Maps I, O, H describe the input, output, and inhibitor
edges, respectively ( ). Let f ∈ {I,O,H}: if
k = f(t)(p) > 0, then a weight-k edge of corresponding type links p to t.

The behavior of a PT net is specified by the firing rule. A transition t ∈ T
is enabled in m if and only if: I(t) ≤ m ∧ H(t) >′ m.

If t is enabled in m it may fire, leading to m′ (we denote this m[t〉m′), where:

m′ = m + O(t) − I(t)

A PT-system is a pair (N,m), where N is a net and m is a marking of
N . The interleaving semantics of (N,m0), where m0 denotes the PT system’s
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initial state, is specified by the reachability graph (RG), an edge-labelled, directed
graph (V,E) whose nodes are reachable markings. The RG is defined inductively:
m0 ∈ V ; if m ∈ V and m[t〉m′ then m′ ∈ V , m

t−→ m′ ∈ E.

3 Rewriting Logic and the Maude system

Maude [6] is an expressive, strictly declarative language with a sound semantics
in rewriting logic [3,13]. Maude’s statements are (possibly conditional) equations
(keyword eq) and rules (keyword rl). Both sides of a rule/equation are terms
of a given kind and may contain typed variables. Both rules and equations have
a simple rewriting semantics in which instances of the lefthand side pattern are
replaced by corresponding instances of the righthand side.

A Maude functional module (keyword fmod) contains only equations and is
a functional program defining one or more operations through equations, used
as simplifications. A Maude system module (keyword mod) contains rules and
possibly equations. Rules are also computed by rewriting terms from left to right,
but represent local transitions in a (concurrent) system. Although declarative in
style and with a clear logical semantics, system modules are non-functional. In
Maude, a distributed system’s state is usually represented as a kind of associative
“multiset”. Rules apply concurrently to different portions of a system, leading
to a new state. There is no assumption on the confluence of rewrites.

Maude features expressivity, simplicity and performance. A wide range of
systems is naturally expressible with Maude, which may be used as a formal
specification language, as a programming language and as a meta-language
(in which other formalisms, languages and logics can be expressed). Maude’s
expressivity is achieved through: equational pattern matching modulo operator
equational attributes; user-definable operator syntax/evaluation strategy; sub-
typing(sorting) and partiality (kinds); generic types; reflection. A Maude program
is a logical theory, and a computation is a deduction according to the theory’s
axioms. Under certain executability conditions, the mathematical and the oper-
ational semantics coincide. We refer to [2] and [20] for functional and system mod-
ules, respectively.

A functional module specifies an equational theory in membership equational
logic [2,12]. Formally, such a theory is a pair (Σ,E∪A), where Σ is the signature,
that is, the specification of all the sort, subsort, kind1, and (overloaded) operator
declarations (considering also the imported functional modules); E is the collec-
tion of (conditional) equations and memberships declared in the module(s), and
A is the collection of equational attributes (assoc, comm, and so on) of operators
(treated as predefined equations). The models of functional modules are alge-
bras, i.e., sets of data with related operations. The family of Σ-ground terms TΣ

defines a model called Σ-algebra (TΣ(X) denotes the whole set of terms). Accord-
ing to [4], the best model of (Σ,E ∪ A) is one that satisfies E ∪ A and is both

1 A kind is an implicit equivalence class gathering all sorts connected by the subsort
relation; terms having a kind but not a sort may be considered as undefined or errors.
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junk-free (all elements can be denoted by TΣ terms) and confusion-free (only
elements that are forced to be equal by E ∪A are identified). This model, called
the initial algebra of E ∪A and denoted TΣ/E∪A, does exist [2] and provides the
denotational semantics of the Maude functional module specifying (Σ,E ∪ A).
TΣ/E∪A is the quotient of TΣ in which the equivalence classes hold terms that
prove equal using E ∪ A.

If the axioms E are Church-Rosser and terminating modulo A (each ground
term is thus simplified in a unique way regardless of the order in which equa-
tions apply) there is an intuitive, equivalent description for TΣ/E∪A. The
final values (canonical forms) of all ground terms form an algebra called the
canonical term algebra, denoted CANΣ/E∪A. By definition, the reduce com-
mand of Maude interpreter reduces operators to their values in this algebra.
The coincidence of the denotational and operational semantics is expressed by
TΣ/E∪A

∼= CANΣ/E∪A.
A Maude’s system module, with the imported submodules, specifies a gen-

eralized rewrite theory [3,13], that is, a four-tuple R = (Σ,E ∪ A,φ,R) where
(Σ,E∪A) is the membership equational theory specified by the signature, equa-
tional attributes, and equation statements in the module; φ is a map specifying,
for each operator in Σ, its frozen arguments; and R is a set of rewrite rules2.
Intuitively, a rewrite theory specifies a concurrent system. The equational part
(Σ,E ∪ A) specifies the algebraic structure of the states, formalized by the ini-
tial algebra TΣ/E∪A. The rules R (and φ) specify the system’s dynamics, that is,
the possible concurrent transitions of the system. In this context, they represent
structural changes to a PT system. In rewriting logic, concurrent transitions
become rewrite proofs; since several proofs may correspond to the same com-
putation (because of equivalent interleavings), rewriting logic has an equational
theory of proof equivalence [3,13]. The initial model TR of R associates to each
kind k a labeled transition system (a category) whose states are TΣ/E∪A,k, and

whose transitions take the form: [t]
[α]→ [t′], with [t], [t′] ∈ TΣ/E∪A,k, and [α] an

equivalence class of rewrites modulo the equational theory of proof-equivalence.
Different [α] represent different “truly concurrent” computations.

The executability conditions for system modules match the notion of ground
coherence between rules and equations [20]. Assuming that E ∪ A is Church-
Rosser and terminating, an efficient strategy (adopted by Maude’s rewrite com-
mand) is to first apply the equations to get a canonical form, then apply a
rewrite rule in R. Coherence ensures that this strategy is complete, i.e., any
rewrite of t ∈ TΣ with R is also possible with t’s canonical form. Coherence is
crucial because rewriting modulo an equational theory is in general undecidable.
It reduces rewriting with R modulo E ∪ A to rewriting with E and R modulo
A, which is decidable given an A-matching algorithm.

Checking the confluence, termination and coherence of Maudemodules is under
the user’s responsibility. It is often possible to prove them using the Maude Formal
Environment (MFE), available at https://github.com/maude-team/MFE, most

2 R rules don’t apply to frozen arguments; in the paper we do not use frozen arguments.

https://github.com/maude-team/MFE
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of which is currently integrated with the Maude’s interpreter. The modules listed
in this paper have been proven to be executable. Their functional part also meets
two other desirable properties: i) each (equivalence class of a) ground term has a
least sort (kind); ii) the canonical form of a well-defined ground term is only built
of constructors (characterized by the ctor operator attribute). A syntactical con-
dition (called term pre-regularity) and Maude’s Sufficient Completeness Checker
(SCC) have been used to verify properties i) and ii), respectively.

Fig. 1. The MS and its adaptation upon a fault on line 1.

4 Running Example: A Fault-Tolerant MS

We model a manufacturing system (MS) able to self-reconfigure to manage fail-
ures. Despite its simplicity, it is a benchmark for any formalism intended to
specify highly dynamic systems. We use a variant of the model introduced in [5].

The MS (Fig. 1, top) is composed of two symmetric lines that work an even
number of raw pieces. Pairs of worked pieces are assembled to get the final
artefacts. Either line gets broken occasionally. In that case, the system adapts
itself in order to work using one line. This involves significant changes to the
topology and the transfer of raw pieces left on the faulty line to the other one
(Fig. 1, bottom). If another fault then affects the left line, the MS goes back to
its nominal configuration after a global repair (not represented). The parameter
M ∈ N

+ defines the number of raw pieces (2 · M) worked during an entire
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production cycle. Each artefact is immediately replaced by a pair of raw pieces,
what makes the system’s behaviour cyclic.

Tokens represent (raw or worked) pieces. The two production lines are mod-
elled by the subnets {p2, t1 p4} (line 1) and {p3, t2, p5} (line 2). Transition t3
models he assembly of raw pieces. Transition t0 models the loader component,
that (initially) picks up two raw pieces from a storage (place p1) putting them
onto the lines. Transition t4 models the immediate reload of the MS. The fault
occurrence is sketched by transitions t5 (line 1) and t6 (line 2). A fault causes
the immediate block of a line, which is modelled by the inhibitor arc linking p7
to t1. We assume that the simultaneous failure of both the lines is not possible.
For this reason, the transitions t5 and t6 are in symmetric structural conflict.

The PT net at the bottom of Fig. 1 illustrates the changes to the MS layout
that allow it to operate in a degraded way, preserving the expected behaviour.
The marking of the PT system at the top represents the system’s initial state,
whereas that of the PT system at the bottom shows the situation immediately
after a fault: the (M) raw pieces left on line 1 (place p2) have been moved
to line 2 (place p3). Two major concerns, addressed in the next section, are
how to formally specify the MS reconfiguration(s) described in Fig. 1 and the
condition(s) under which it may occur. The bounded expressivity of PT nets with
inhibitor arcs (despite their Turing-completeness) makes it nearly impossible to
specify scenarios like that described.

5 Formalization of Rewritable PT Systems with Maude

In this section, we describe the Maude formalization of rewritable PT systems.
The sources are available at github.com/lgcapra/rewpt. A (system) module
refers to a particular model, all the others are reusable: some functional mod-
ules specify the PT signature (the main is PT-SYS), a system module (PT-EMU)
specifies the PT firing rule. The main modules are listed at the end of the section.

The formalization relies on two generic functional modules, BAG{X} and
MAP+{X,Y}, whose type-parameters (satisfying the built-in elementary theory
TRIV3) correspond to the bag’s support and to the map’s arity. Differently from
[15,18], bags on a set are not merely represented as the free commutative monoid
on that set. More data abstraction is provided by the _._, _+_, _[_] _-_, _<=_,
_>’_, set operators (the first two constructors). The commutative/associative
_+_ makes it possible to intuitively represent a bag as a weighted sum, e.g., 3
. a + 1 . b. The module MAP+ defines a map as a “set” of entries, built with
the associative/commutative operator _,_. Sort Entry, whose only constructor
is the operator _|->_, is a subsort of Map. With respect to the Maude’s built-
in MAP module, MAP+ has a significant improvement: given that the constructor
_,_ cannot ensure (for efficiency) the uniqueness of map keys (_,_ is a par-
tial function), a conditional membership equation characterizes correct maps by
assigning a term of kind [Map] the sort Map only if no duplicates are present.
3 Maude uses views to instantiate the type-parameters (theories) of a generic module

to concrete modules. In this context, theories and views are very intuitive.

https://github.com/lgcapra/rewpt
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PT Signature. The Maude PT signature complies with the definition in Sect. 2,
thus passing from a formalization to the other is straightforward. The nodes of
a PT net are indexed terms, e.g., t(1) (see module TRAN). The module IMATRIX
provides a compact representation of a transition’s incidence matrix as a triplet
(as the edge types) of place bags ([_,_,_] constructor). IMATRIX imports BAG by
preserving its initial semantics and renaming sorts/operators. Two extra opera-
tors are defined, to remove a place and to check the presence of a place (in).

The module PT-SYS builds on MAP+ and IMATRIX, both imported in a pro-
tected way and with some renaming (in particular, the sort MapTran,Imatrix
is renamed Net). That is, a PT net is syntactically expressed as a set of entries
t(i) |-> [I,O,H]. This formalization allows us to specify system structural
changes easily and consistently. A PT system term is the juxtaposition (the
constructor __) of a Net term and a BagP term (representing a marking). The
module provides three operators corresponding to the maps I,O,H of the formal
definition, and three predicates: enabled encodes the transition enabling; dead
(which builds on enabled) encodes a deadlock state; in tests the existence of a
place. The co-domains of __, enabled, and In, Out, Inh are kinds i.e., these are
partial functions. As for __, the reason is that the net of a PT system must not
be empty (constant emptyN): a membership axiom specifies the correct System
terms. The others make sense for Tran arguments belonging to the given net.

The module PT-SYS includes two equations specifying structural equiva-
lences. One eliminates transitions having a null effect, according to the definition
in Sect. 2. The other eliminates transitions structurally dead, as linked to a place
by an input edge and by an inhibitor edge of non lesser weight.

PT System Dynamics. The generic (system) module PT-EMU specifies the PT
system operational semantics. The module’s type-parameter has to satisfy the
theory PTSYSTH, that requires two constant operators describing a marking and
a net. A conditional rewrite rule specifies the PT system firing rule (Sect. 2).
Notice the use (in the rule’s condition) of the associative connective /\ and of
a matching equation (t := t’) that makes the rule compact and efficient to
apply. The rule’s free variables I, O, H, N’ are instantiated by matching the left-
hand side of the matching equation against the canonical ground term bound to
variable N (occurring on the rule’s left-hand side).

Rewritable PT Systems. The model-dependent part consists of a Maude system
module importing PT-SYS and satisfying the theory PTSYSTH, which is (in part)
mechanically derived from a PT system (N,m0). The module RWPT-FMS, e.g.,
comes from the PT system in Fig. 1-top. Two equations assign terms net, m0 the
expressions encoding N and m0, respectively. These expressions are obtained by
defining any two bijections φP : P → {0, . . . , |P | − 1}, φT : T → {0, . . . , |T | − 1}
(in our example, implicitly defined by subscripts of PT nodes). For the rest, the
encoding of N is straightforward. The constant operator M makes the module
syntactically parametric in the initial marking of place p1.

The remaining part of the module contains a (possibly empty) set R of
rewrite rules specifying structural changes that may occur during the evolution
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of the system initially represented by the term net m0. With respect to related
approaches [15], where rewrite rules rigorously meet the model of algebraic GTS
(based on pushout) and need to verify glueing conditions, our formalization fos-
ters a flexible, though rigorous, modelling of dynamically reconfigurable systems.

We can classify rewrite rules based on the kind of TΣ(X),k terms in left- and
right-hand sides: Place, Tran, BagP, Imatrix, Net, System. Except for rules of
System type, all the other rules are local, that is, act on portions of the term
describing a PT system. This ensures a lot of flexibility and is coherent with the
intrinsically distributed operational semantics of rewriting logic, but may have
uncontrolled effects. A rule of BagP type, e.g., may touch both the marking and
some local incidence matrices of a System.

The system module RWPT-FMS specifies two (conditional) System-level rules
that model the reconfiguration described in Fig. 1. Both r1 (nominal=>faulty)
and r2 (faulty=>nominal) are symbolic, i.e., may refer to any of the two lines.
That means a rule folds two cases. In rule r1, this is achieved by matching the
rule’s left-hand pattern, which contains some variables denoted by capital letters:
variable P3 may be instantiated to either ground term p(2) or p(3), depending
on which line gets faulty, then P2 is consequently instantiated. In rule r2, the
two matching equations in the rule’s condition make the free variables P2, P3 be
instantiated one to p(2) and the other to p(3), depending on which line is bro-
ken. The condition of rule r1 ensures that the transformation nominal=>faulty
may take place if there are no “worked” pieces left on the faulty line. These resid-
ual pieces are contextually moved to the working line (the marking of place bound
to P3 is cleared and that of the place bound to P2 increased correspondingly).
The last clause of r2’s conditions the back-transformation faulty=>nominal to
the fact that the system (operating in a degraded way) has entererd a deadlock,
upon another fault breaking the line left: this happens when in that line there
is at most one “worked” piece and all the others are raw (the total is 2 · M). In
order for the system to safely restart (after a global repair), M raw pieces are
moved from that line to the other one (M tokens are withdrawn from the place
bound to P2 and added to the place bound to P3).

A Library of Net-Transformations. In the example, we use two monolithic rules,
each implementing a system transformation as a whole. Besides being com-
plex, such an approach is unrealistic when dealing with adaptive systems, where
changes are local and meet a strategy. Using our model, we can define rewrite
rules of varying granularity and locality, with a high degree of flexibility. To ease
the modeller task, we also provide a minimal set of net transformations in the
form of net operators. The functional module PT-RWLIB provides two such oper-
ators (the others are implicitly provided by modules BAG, MAP+, IMATRIX). setw
allows us to set the weight of any edge, whose type is passed as an argument.
Edges/nodes may be added to a net using setw. Edges may be removed using a
zero-weight. This may cause the erasure of nodes that removed edges are incident
to. The operator remove withdraws a place from a net. The homonym operator
of MAP+ may remove a transition. Using BAG operators (e.g., set) we may modify
the marking of a PT system and its local incidence matrices, add/remove places.
Module PT-RWLIB also defines an operator w reading the edge weight.
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fmod TRAN is

protecting NAT .

sort Tran .

op t : Nat -> Tran [ctor] .

op subscript : Tran -> Nat .

vars N : Nat .

eq subscript (t(N)) = N .

endfm

fmod IMATRIX is

pr BAG{Place} * (sort Bag{Place} to BagP, sort NeBag{Place} to NeBagP, op nil to nilP) .

pr EXT-BOOL .

sort Imatrix .

op [_,_,_] : BagP BagP BagP -> Imatrix [ctor] .

op remove : Imatrix Place -> Imatrix .

op in : Imatrix Place -> Bool .

vars X Y Z : BagP .

var P : Place .

eq remove([X,Y,Z], P) = [set(X,P,0),set(Y,P,0),set(Z,P,0)] .

eq in([X,Y,Z], P) = X[P] =/= 0 or-else Y[P] =/= 0 or-else Z[P] =/= 0 .

endfm

fmod PT-SYS is

pr MAP+{Tran, Imatrix} * (sort Map{Tran, Imatrix} to Net, op empty to emptyN) .

sort System .

op __ : Net BagP -> [System] [ctor] .

ops In Out Inh : Net Tran -> [BagP] .

op enabled : System Tran -> [Bool] .

op dead : System -> Bool .

op in : Net Place -> Bool . *** test the existence of a place

var N : Net .

var T : Tran .

var P : Place .

var I O H S : BagP .

var Q : Imatrix .

var K K’ : NzNat .

eq In((T |-> [I,O,H], N), T) = I .

eq Out((T |-> [I,O,H], N), T) = O .

eq Inh((T |-> [I,O,H], N), T) = H .

eq in((T |-> Q, N), P) = in(Q, P) or-else in(N, P).

eq in(emptyN, P) = false .

eq T |-> [I,I,H] = emptyN [metadata "null t"] .

ceq T |-> [K . P + I, O, K’ . P + H] = emptyN if K >= K’ [metadata "dead t"] .

eq enabled( (T |-> [I,O,H], N) S, T) = I <= S and-then H >’ S .

ceq dead((T |-> Q, N) S) = false if enabled( (T |-> Q, N) S, T) .

eq dead(N S) = true [owise] .

cmb N S : System if N =/= emptyN . *** the net cannot be "empty"

endfm

fth PTSYSTH is

protecting PT-SYS .

op m0 : -> BagP .

op net : -> Net .

endfth

mod PT-EMU{X :: PTSYSTH} is

var T : Tran .
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var I O H S : BagP .

var N N’ : Net .

crl [firing] : N S => N S + O - I if T |-> [I,O,H], N’ := N /\ I <= S /\ H >’ S .

endm

mod RWPT-FMS is

protecting PT-RWLIB .

op net : -> Net .

op m0 : -> BagP .

op M : -> Nat . *** model’s parameter

vars N N’ : Net .

vars TL TF : Tran .

vars P2 P3 P4 P5 PF : Place .

var S : BagP .

var K : NzNat .

eq M = 50 .

eq net = t(0) |-> [2 . p(1), 1 . p(2) + 1 . p(3), nilP], t(1) |-> [1 . p(2), 1 . p(4),

1 . p(7)], t(2) |-> [1 . p(3), 1 . p(5), 1 . p(8)], t(3) |-> [1 . p(4) + 1 . p(5),

1 . p(6), nilP], t(4) |-> [1 . p(6), 2 . p(1), nilP],t(5) |-> [1 . p(0), 1 . p(7), nilP],

t(6) |-> [1 . p(0), 1 . p(8), nilP].

eq m0 = 2 * M . p(1) + 1 . p(0) .

crl [r1] : (N, t(0) |-> [2 . p(1), 1 . P2 + 1 . P3, nilP] , t(3) |-> [1 . P4 + 1 . P5,

1 . p(6), nilP],TF |-> [1 . p(0),1 . PF,nilP],TL |-> [1 . P3,1 . P5, 1 . PF]) S + 1 . PF

=> (N, t(0) |-> [1 . p(1), 1 . P2, nilP], t(3) |-> [2 . P4, 1 . p(6), nilP]) set(S, P3, 0)

+ S[P3] . P2 + 1 . p(0) if S[P5] = 0 .

crl [r2] : N S => net S + 1 . p(0) + M . P3 - M . P2 - 1 . p(7) - 1 . p(8) if 1 . P2 :=

Out(N, t(0)) /\ 1 . P2 + 1 . P3 := Out(net, t(0)) /\ dead(N S) .

endm

view Fms from PTSYSTH to RWPT-FMS is

op m0 to m0 .

op net to net .

endv

mod FMS-EMU is

including PT-EMU{Fms} .

endm

fmod PT-RWLIB is

protecting PT-SYS .

sort Atype . *** arc type

ops i o h : -> Atype [ctor] .

op w : Net Tran Place Atype -> [Nat] . ***get an arc’s weight

op setw : Net Tran Place Atype Nat -> Net . ***set an arc

op setwS : Net Tran Place Atype Nat -> Net . ***set an arc in a safe way

ops remove : Place Net -> Net .

var N N’ : Net .

var T : Tran .

var P : Place .

var I O H M : BagP .

var Q : Imatrix .

var K K’ : NzNat .

var Y : Nat .

var A : Atype .

eq w(N, T, P, i) = In(N,T)[P] .

eq w(N, T, P, o) = Out(N,T)[P] .

eq w(N, T, P, h) = Inh(N,T)[P] .
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ceq setw(N, T, P, i, Y) = N, T |-> [Y . P, nilP, nilP] if N[T] = undefined .

eq setw((N, T |-> [I,O,H]), T, P, i, Y) = N, T |-> [set(I, P, Y), O, H] .

ceq setw(N, T, P, o, Y) = N, T |-> [nilP, Y . P, nilP] if N[T] = undefined .

eq setw((N, T |-> [I,O,H]), T, P, o, Y) = N, T |-> [I, set(O, P, Y), H] .

ceq setw(N, T, P, h, Y) = N if N[T] = undefined .

eq setw((N, T |-> [I,O,H]), T, P, h, Y) = N, T |-> [I, O, set(H, P, Y)] .

eq remove(P, (T |-> Q, N) ) = T |-> remove(Q, P), remove(P, N) .

eq remove(P, emptyN) = emptyN .

ceq setwS(N, T, P, A, Y) = N’ if N’ := setw(N, T, P, A, Y) /\ N’ =/= emptyN .

eq setwS(N, T, P, A, Y) = N [owise] .

endfm

5.1 Base Notions and Properties of Rewritable PT Systems

In this section, we provide a theoretical basis for the Maude formalization of
rewritable PT systems through a few intuitive notions and properties. We refer
to the canonical form of ground terms, that does exist if a term is well-defined
(i.e., has an associated least sort) and is built of constructors since all modules
satisfy the executability conditions (end of Sect. 2).

Property 1 (correspondence between PT systems and well-defined terms). A PT
system S = (N,m) has an associated ground term of sort System, vice-versa, a
ground term of sort System represents a PT system (up to isomorphism4).

We have described how to get a System term from S = (N,m). Vice versa, we
observe that a canonical term of sort System is built (by definition of PT-SYS and
MAP+) of (n m), with n being a non-empty set of entries T:Tran -> Q:Imatrix
(without duplicate-keys) with the first two components (in, out) of each local
incidence matrix unequal, and m a bag of places. By the way, the property above
sets a bijection, denoted ψ (a pair ψP , ψT ), between (classes of isomorphic) PT
systems and well-defined System terms.

Let r be a rewrite rule, t, t′ two ground terms of kind k. The notation

t
r(σ)→ t′ means that 1) the rule’s lefthand side u ∈ TΣ(X),k matches t (i.e., there

is a ground substitution σ such that σ(u) = t)5, 2) t is rewritten to t′ using r, σ.
Given a PT system S = (N,m0), let RWPT-S represent a system module

(satisfying PTSYSTH) in which the term (net m0) encodes S, R be the set of
rewrite rules defined in RWPT-S, and S-EMU the module PT-EMU whose parameter
is instantiated (via an obvious view) to RWPT-S.

The interleaving semantics of a rewritable PT system specified by mod-
ule RWPT-S is expressed naturally by the labelled transition system, denoted
RWLTS , which is built from the initial term/state (net m0).

4 S and S′ are isomorphic iff there are a two bijections φp : P → P ′, φt : T → T ′,
preserving the edges and the initial markings.

5 σ nay be empty is u is a ground term; if r is a conditional rule σ may involve free
variables introduced by matching equations used in the rule’s condition.
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Definition 1 (State-transition system of RWPT-S). Let R′ = R∪{firing}.
RWLTS is an edge-labelled, directed graph (VRWS

, ERWS
) inductively defined:

(net m0) ∈ VRWS
; if s ∈ VRWS

and s
r(σ)→ s′ then: s′ ∈ VRWS

, s
r(σ)→ s′ ∈ ERWS

.

By default, the Maude interpreter’s search command explores the state-space
associated with an initial term by executing one-step rewrite rules in a fair,
breadth-first way, therefore, coherent with the definition above.

By the way, RWPT-S includes the ordinary behaviour of the PT system S.

Property 2 (RG inclusion). RWLTS contains a sub-graph isomorphic to RGS .

It directly follows from the fact that, by definition, for any transition t and

for any marking m of S: m[t〉m′ if and only if ψP (m)
firing(σ)−→ ψP (m′), with

σ(T) = ψT (t) (T is the variable used in rule firing of module PT-EMU).
Notice that, in the event of badly defined/used rules, we may reach undefined

(error) states, despite (net m0) well-definiteness. For example, the rule
crl : (N, T |-> [I, 1 . P, nilP], T’ |-> [1 . P, O, nilP]) S =>

(N, T |-> [ I, O, nilP]) S if I[P] = 0 /\ O[P] = 0 /\ S[P] = 0 .

that aggregates two transitions connected by an intermediate empty place not
linked to any other transitions, rewrites the System ground term
(t(1) |-> [1 . p(1),1 . p(2),nilP], t(2) |-> [1 . p(2),1 . p(1),nilP]) nilP

into: (emptyN nilP), an undefined term of kind [System] (due to the equations
of functional module PT-SYS).

Definition 2 (Well-defined RWPT-S). RWPT-S specifies a well-defined rewritable
PT system if and only if all reachable states in VRWS

are terms of sort System.

Rule Validation. The module RWPT-FMS is well-defined. In general, however,
ensuring the well-definiteness of Maude system modules specifying rewritable
systems may not be simple. There are two approaches, shortly discussed in the
following, each with different possible implementations.

One consists of defining (structurally) valid rewrite rules, and works also in
the event the system state-space is infinite.

Definition 3 (Valid rewrite rule). r ∈ R is valid if and only if, for any

ground term s of sort System, if s
r(σ)→ s′ then s′ is of sort System.

Each Maude rewrite rule crl [r] : s => s’ if cond, where cond is the
(possibly empty) rule’s condition and s, s’ ∈ TΣ(X),System, may be rephrased as
a valid rule using the built-in sort predicate

crl [vr] s => s’ if cond /\ s’ :: System

The weak spot of this elegant and efficient solution is that it may shadow bad
design choices. As an alternative, we might define rewrite rules exclusively com-
posed of safe net-operators. For example, the operator setw, defined in module
PT-RWLIB, always results in a term of sort Net, possibly emptyN (for the sake of
flexibility). The operator setwS, which builds on setw, also guarantees that the
resulting term is a non-empty PT net (note the use of owise equation attribute
mixed with a matching equation).
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6 Examples of Formal Verification

In this section, we briefly discuss on the tools that are available to formally verify
the properties of a Maude-based specification of rewritble PT systems, and we
present a few experimental data.

A system module (which specifies a rewrite theory) provides an executable
formal model of a distributed system. Under appropriate conditions, we can
check that this model satisfies some properties, or obtain counterexamples. This
kind of model-checking analysis is quite general and builds on the search com-
mand, which allows one to explore (following a breadth-first strategy) the reach-
able state-space in different ways. For example, using bounded model-checking,
if the system state-space is huge (or even infinite), or model-checking of infinite-
state systems through abstractions. Under finite reachability assumptions, we
can efficiently model check any linear time temporal logic (LTL) property of
a system module. We here focus on a simple, yet very useful, model-checking
capability, namely, the model checking of invariants using the search command.

One invariant we might like to verify about a rewritable PT system is dead-
lock freedom. A straightforward way to check this property is to issue the search
command below, which searches for all final states of our running example,
starting from the PT system’s nominal configuration.

search in FMS-EMU : net m0 =>! X:System .
It gives no solution, meaning that the self-adaptive MS is deadlock-free6. Table 1
reports some data about the performance of this command, as the system size
varies. The data refer to a Intel Core i7-6700 equipped with 32 GB of RAM.

Another interesting search concerns the existence of dead states inside the
different configurations (the nominal one and the two symmetric, faulty ones)
that the system enters during its evolution. The command to issue is ( * means
“in zero or more steps”, dead is the predicate defined in module PT-SYS):

search net m0 =>* X:System such that dead(X:System) .
There are six solutions (for any M), two for each configuration of the system.
For example, for M = 50, we get (for readability, in the following excerpt of
the command’s output, we use the terms net, faulty1, faulty2 to denote the
system’s nominal and faulty configurations instead of the longer canonical forms)

Table 1. Performance of search command as M varies

M # states # rewrites time (ms)

3 350 35730 44

5 1232 130539 153

10 8932 995724 1192

20 84007 9737494 36090

50 2186132 261564504 862536

6 Using the LTL modules we can even check that the initial marking is a home-state.
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Solution 1 (state 133541) rewrites: 16647633 in 65130ms cpu
X:System --> faulty1 1 . p(8) + 100 . p(3)
Solution 2 (state 133542) rewrites: 16647811 in 65140ms cpu
X:System --> faulty2 1 . p(7) + 100 . p(2)
Solution 3 (state 142860) rewrites: 17841539 in 68140ms cpu
X:System --> faulty2 1 . p(4) + 1 . p(7) + 99 . p(2)
Solution 4 (state 142865) rewrites: 17842109 in 68140ms cpu
X:System --> faulty1 1 . p(5) + 1 . p(8) + 99 . p(3)
Solution 5 (state 1083022) rewrites: 143322169 in 781220ms cpu
X:System --> net 1 . p(8) + 50 . p(3) + 50 . p(4)
Solution 6 (state 1084477) rewrites: 143524908 in 782130ms cpu
X:System --> net 1 . p(7) + 50 . p(2) + 50 . p(5)

We may suppose a generic form for the six states above in which expressions
M , 2 · M , 2 · M − 1 should be used in place of values 50, 100, 99, respectively.

As a last example of use of search, we check whether the system correctly
evolves from an inner deadlock: the command below lists the system states
reachable in one-step from a dead state which refers to the system’s nominal
configuration after line 2 gets faulty (for M = 10).

search net 1 . p(8) + 10 . p(3) + 10 . p(4) =>1 X:System .

Solution 1 (state 1) rewrites: 23 in 0ms cpu
X:System --> faulty2 1 . p(0) + 10 . p(2) + 10 . p(4)

As you can see, the system enters a state in which only line 1 is working and the
raw pieces left on the faulty line (a half of the total) have been moved on line 1.

6.1 Exploiting PT Net Structural Analysis

In a somehow hybrid modelling framework like that proposed, we can benefit
from the tools/techniques available for both formalisms. For example, structural
analysis of Petri nets may be an interesting, really efficient alternative/comple-
ment to state-space inspection techniques, when the system state-space is huge
and performances degrade (as shown in Table 1). Not only that. Structural anal-
ysis doesn’t depend on the initial marking of a PT system, so we may use it to
get some parametric outcomes. Let us show an application of semiflows on this
direction to our running example.

Table 2. P- and T-semiflows of the PT nets specifying the MS (Fig. 1)

Nominal behavior Faulty behavior

pin1 p1 + 2 * p6 + 2* p2 + 2 * p4 pin′
1 p1 + 2 * p6 + p3 + p5

pin2 p1 + 2 * p6 + 2* p3 + 2 * p5 pin′
2 p0 + p8

pin3 p0 + p7 + p8

tin1 t0 + t1 + t2 + t3 + t4 tin′
1 2 * t0 + 2* t2 + t3 + t4
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Let Q be the |P | · |T | matrix such that is Q[p,t] = 0(t)(p) − I(t)(p) ∈ Z.
Any P -vector p which is a non-null, positive integer solution of the product
p · Q = 0, called P -semiflow, expresses a conservative law for the marking of
places corresponding to non-zero entries of p. Any T -vector t which is a non-null,
positive integer solution of the product Q · t = 0, called T -semiflow, expresses
a cyclicality effect for firing sequences matching the semiflow. By inspecting the
module RWPT-FMS one can (formally) check that the system’s layout may only
be one of those described in Fig. 1, more a symmetrical faulty one.

Table 2 shows the semiflows7 of the PT nets in Fig. 1 (there are symmet-
ric semiflows for the other faulty configuration). The PT nets are covered by
P -semiflows, therefore, the whole system is structurally bounded. The
T -semiflows represent a base production cycle in the nominal and faulty con-
figurations of the MS. Consider the two P -semiflows of the faulty configuration,
and the initial marking immediately after a system switch. We derive these
invariant marking-expressions: ∀m : m(p0) + m(p8) = 1, m(p1) + 2 · m(p6) +
m(p3) + m(p5) = 2 · M . With simple arguments we can show that if m(p8) = 1
then we eventually reach either of the two dead states: m′ = 1 ∗ p8 + 2 · M ∗ p3,
m′′ = 1 ∗ p8 + 1 ∗ p5 + (2 · M − 1) ∗ p3, corresponding to matches 1,4 found with
the search command (for M = 50). We have used this parametric outcome in
rule r2 of module RWPT-FMS.

Even if, in general, a static prediction of all the possible structural changes
of a rewritable PT system specified with Maude may be more complex, or even
impossible, the opportunity to exploit the structural analysis capabilities of Petri
nets together with the formal analysis tools of Maude looks promising.

7 Conclusion

We have presented a Maude formalization of “rewritable” PT nets, a frame-
work for the specification/analysis of automated distributed system with
reconfiguration capabilities. With respect to similar approaches, the proposed
encoding provides much more data abstraction, to ease the modeller task, is more
compact and efficient, and fosters the definition of rewrite rules with the maxi-
mum degree of flexibility. We have used as a (simple but tricky) running example
throughout the paper a self-healing MS. We have reported some experiments of
formal verification of properties and discussed about the possible advantages of
such a hybrid modelling approach.

Ongoing Work and Open Issues. We plan to enrich the modular and intu-
itive Maude specification presented in the paper with structural extensions
(e.g., test/flush arcs, transition priorities) that further enhance the model
expressivity. The idea is to use “decorated” terms representing PT nodes (e,g,
t(1,"line",0), where 0 denotes the priority) and to update the firing rule

7 Computed with the GreatSPN tool (github.com/greatspn/SOURCES).

https://github.com/greatspn/SOURCES


RL and PN: A Model for Reconfigurable Systems 155

in module PT-EMU accordingly. A more interesting extension would be the for-
malization of rewritable High-Level PN possibly using the Maude meta-level and
unification modules.

The Labelled Transition System of a Maude specification of rewritable PT nets
should be defined up to isomorphism of PT systems (the running example’s state-
space would be reduced by half). A possible solution is to define a normal form
for PT systems using equations. This is generally complex, but some heuristics
could help dramatically reduce the inefficiency in most practical cases, e.g., by
defining classes of “symmetrical” PT nodes (using labels) so that an isomorphism
preserves these classes.

Non-deterministic, rule-based transformations are simple to specify, but
sometimes they are shown to be flawed and ill-equipped for representing realistic
situations. Passing to more sophisticated and suitable forms should be possible
and convenient using Maude’s reflection and/or Maude’s strategy language.
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Abstract. Real-time systems are increasingly involved in mixed-
criticality tasks with different criticality levels. However, the focus is
increasing on the multiprocessor systems that can help in reducing the
cost, space, weight, time, and power consumption. There is significantly
less work done in the literature to design a global scheduling algorithm
for multiprocessor mixed-criticality systems. In this paper, we propose a
global scheduling algorithm based on the DP-Fair scheduling algorithm for
multiprocessor mixed-criticality systems. We also show that our proposed
algorithm dominates the existing global scheduling algorithm in terms of
the number of successful scheduling instances.

Keywords: Real-time systems · Dp-fair algorithm · Mixed-criticality
systems · Global scheduling · GMCS · EDF

1 Introduction

In recent years, there is an increasing trend towards integrating applications
at different importance/criticality levels and implementing them onto a single
computation platform. Such an integrated system, often referred to as a mixed-
criticality system, helps to reduce cost, energy consumption and resource under-
utilization. For example, let us consider a UAV whose primary mission is to
capture ground images. The functionalities (tasks) of such a UAV can be easily
classified into two criticality-based categories: (i) safety-critical – functionalities
related to safe flight operation of the UAV; higher in criticality (HI-criticality)
and (ii) mission-critical – functionalities related to image capturing; relatively
lower in criticality (LO-criticality). Satisfying the timing specifications of the HI-
criticality functionalities even under the worst-case scenarios is very important as
they are related to safe flight operation and are typically certified by Certification
Authorities (CAs) who use very conservative tools to predict worst-case execu-
tion time (WCET). On the other hand, the general goal of the System Designers
(SDs) is to satisfactorily execute both HI-criticality and LO-criticality function-
alities. As only SDs are concerned about the timely execution of LO-criticality
tasks and hence they are assumed to have only a single WCET (referred to as
LO-criticality WCETs of LO-criticality tasks). The CAs are not concerned about
the execution of LO-criticality tasks.
c© Springer Nature Switzerland AG 2022
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Here we investigate for a new algorithm based on DP-Fair [9] which can
schedule more number of task sets (a super set of task sets) and properly utilize
the system resources. Here we plan to find an algorithm similar to the DP-
fair algorithm which can be used to find a schedule for a task set and can
be scheduled on a multiprocessor mixed-criticality systems. Since the execution
time assumptions of CAs are very pessimistic, there is a fair chance that all the
HI-criticality jobs will not execute their extra execution time. So we investigate
the situation where at least K HI-criticality jobs execute their extra execution
time in the HI-criticality scenario.

2 System Model

A mixed-criticality (MC) periodic task system T consists of a number of tasks
τ1, . . . , τn. A task τi is characterized by a 4-tuple (χi, Ci(LO), Ci(LO), pi), where
χi ∈ {LO,HI}, Ci(LO) ∈ N

+, Ci(HI) ∈ N
+, and pi ∈ N

+ denote the crit-
icality level, the LO-criticality WCET, the HI-criticality WCET and period,
respectively. We assume that Ci(LO) ≤ Ci(HI) for all tasks τi and the dead-
line of each task is the same as its period. Each of these tasks may generate
an unbounded number of dual-criticality jobs, either of LO-criticality or HI-
criticality. A job jik of task τi is characterized by a 5-tuple of parameters:
jik = (aik, dik, χi, Ci(LO), Ci(HI)), where aik ∈ N denotes the arrival time,
aik ≥ 0 and dik ∈ N

+ denotes the relative deadline, dik = pi.

Definition 1: A scheduling strategy is feasible or correct if and only if the
following conditions are true:

1. If all the jobs finish their Ci(LO) units of execution time on or before their
deadlines.

2. If any job does not declare its completion after executing its Ci(LO) units of
execution time, then all the HI-criticality jobs must finish their Ci(HI) units
of execution time on or before their deadlines.

2.1 Literature Survey

In 2007, Vestal [10] introduced the mixed-criticality notion of the classical real-
time systems to the research community. Since then a lot of work has been pub-
lished on the various aspects of the mixed-criticality scheduling problem [1–6].

Here we plan to propose a method which will judiciously use the time-line
to construct a schedule such that all the HI-criticality jobs will get their HI-
criticality execution time and some of the LO-criticality jobs will still be guar-
anteed some execution in the HI-criticality scenario. In 2014, Baruah et al. [3]
investigated the schedulability of the multiprocessor mixed-criticality systems
namely Global mixed-criticality scheduling algorithm. Hereafter abbreviated as
GMCS. We know that there are some task sets which are not scheduled by
GMCS. Hence we show that the new proposed method not only schedules the
task sets that are scheduled by the GMCS algorithm but also schedules some
more task sets that are not scheduled by GMCS.
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3 Our Algorithm

Here we present our mixed-Criticality DP-Fair Proportion Scheduling (MCDPS)
problem. Our objective is to find a fairness schedule for the given task set T
such as each job finishes its LO-criticality execution in the LO-criticality scenario
and all HI-criticality job must execute their HI-criticality execution in the HI-
criticality scenario.

In this section, we propose an algorithm which finds a fair schedule for the
mixed-criticality task sets to be scheduled in a multiprocessor mixed-criticality
system. Our main aim is to schedule the HI-criticality jobs as late as possible, so
that more LO-criticality execution of all jobs can be executed before the change
of scenario. Here we want to find a LO-scenario deadline (pi

Δ) by which all
the HI-criticality jobs must finish their LO-criticality execution. Since we follow
the DP-fair paradigm, the time-line is demarcated using LO-scenario deadlines
(only for HI-criticality jobs) and actual deadlines of all the jobs. If a HI-criticality
job does not declare its completion on or before the LO-scenario deadline, then
each HI-criticality job ji must finish its Ci(HI)−Ci(LO) units of execution time
before pi as the scenario changes from LO-criticality to HI-criticality. In other
words, each job ji executes at Ci(LO)

pi
Δ rate in LO-criticality scenario, whereas

each HI-criticality job jk executes at Ck(HI)
pk−pk

Δ rate in HI-criticality scenario. The
LO-scenario deadline also indicates the time instant where a scenario change
may be triggered. We know that each HI-criticality job requires at least pi −pi

Δ

time to complete Ci(HI)−Ci(LO) units of execution time after scenario change.
Suppose each HI-criticality job jk requires Ck(HI) − Ck(LO) units of execution
time on a scenario change at pi

Δ, i.e., LO-scenario deadline of job ji.

3.1 Special Case: At Least K HI-Criticality Tasks Meet Their
Deadline in HI-Criticality Scenario

We know that the execution time estimations by the CAs are very pessimistic.
There is a fair chance that all the HI-criticality tasks will not execute their
Ci(HI) − Ci(LO) units of execution time in HI-criticality scenario. So reserving
time in the scheduling time-line for these task sets enforces under-utilization
of the system resources and deadline misses for other tasks as well. Therefore,
we ensure at least K tasks which can execute their Ci(HI) − Ci(LO) units of
execution time in HI-criticality scenario should meet their deadline. In this case,
we compute the LO-scenario deadline for K HI-criticality tasks instead of nH

HI-criticality tasks. We can use the same algorithm given in Sect. 3 to find the
mixed-criticality schedule for a task set.

4 Results and Discussion

In this section, we present the experiments conducted to evaluate MCDPS. The
experiments show the impact of schedulability of a task set using MCDPS and
the GMCS algorithm. We also verify the amount of execution of a LO-criticality
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Algorithm 1. Mixed-Criticality DP-Fair Proportion Schedule (MCDPS)
Input : A task set T = {τ1, τ2, ..., τn}, where jik is a job of τi =< aik, di, χi, Ci(LO),
Ci(HI) >.
Output : Fairness Schedule

1: Compute the LO-scenario deadline (pi
Δ) of each job ji as pi

Δ = �pi −
(Ci(HI)−Ci(LO))×nH

m
�; //nH is the number of HI-criticality jobs

2: Γ := LO;
3: Divide the time line into different time slices (TS l) based on pi

Δ;
4: for each TSl in TS do

5: for each τi in τ do

6: shLO
i = min(uLO

i × TSL, Ci(LO));
7: shHI

i = min(uHI
i × TSL, Ci(HI));

8: Ci(LO) := Ci(LO) − shLO
i ;

9: Ci(HI) := Ci(HI) − shHI
i ;

10: end for

11: for (each active job ji in TS l) do

12: if (Γ = HI) then

13: Allocate shHI
i share of each job in EDF order considering pi as the deadline;

14: else

15: Allocate shLO
i share of each job in EDF order considering pi

Δ as the dead-
line;

16: if (a HI-criticality job does not complete its execution after its Ci(LO) units
of execution time) then

17: Γ := HI;
18: Allocate shHI

i − shLO
i extra share of ji in the available processors;

19: Update the time-slices according to pi;
20: end if

21: end if

22: if SCAP > 0 then //Any spare capacity in a time slice
23: Update the final share shΓ

i of each incomplete job according to the EDF
order based on pi

Δ by assigning extra shares to fill up the spare capacity in the
time slice TSl its Ci(χi);

24: end if

25: if ((Ci(LO) > 0 or Ci(HI) > 0) and pi
Δ = TSE

l ) then

26: Declare Failure;
27: end if

28: Use McNaughton’s Wrap-around rule to arrange the final shares of time-slice
TS l in a scheduling table;

29: end for

30: end for

job in HI-criticality scenario against the existing algorithms. The details of the
task generation policy are as follows.

– The utilization (ui) of the tasks of task set T are generated according to the
Stafford’s randfixedsum algorithm [8].
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– We use the exponential distribution proposed by Davis et al. [7] to generate
the period (pi) of the tasks of task set T .

– The Ci(LO) units of execution of the tasks are calculated by ui × pi.
– The Ci(HI) units of execution of the tasks are calculated as Ci(HI) = CF ×

Ci(LO) where CF is the criticality factor which varies between 2 and 6 for
each HI-criticality task τi in our experiments.

– Each task set T contains at least one HI-criticality task and one LO-criticality
task. We have generated random task sets for 2, 4, 8 and 16 processors, where
each task set has at least m+1 number of tasks. Each task set is LO-scenario
schedulable. We have used an intel core 2 duo processor machine with speed
of 2.3 Ghz to conduct the experiments.

First we verify the schedulability of MCDPS and the GMCS algorithm. In
the first experiment, we fix the utilization at LO-criticality level of each task set
at 1.5 and let the period of the tasks vary between 1 and 2000. The number of
tasks in each task set is set to 5. The number of processor is fixed to 2.

From the graph in Fig. 1, it is clear that MCDPS schedules more task sets
successfully than the GMCS algorithm. As can be seen from Fig. 1, for a LO-
criticality utilization of 1.5 more than 600 task sets out of 1000 task sets are
successfully scheduled by MCDPS which is almost two times more than the
GMCS algorithm. As the number of task sets increases, the success ratio is more
or less stable. Next we vary the number of processors to 4 and LO-criticality
utilization of each task set to 3.5. The results given in Fig. 2 are almost similar
to the Fig. 1.

The next experiment checks the impact of the utilization on the schedulable
task sets. Here the number of tasks in a task set is fixed to 10. The periods of the
tasks in a task set range between 1 and 2000. The utilization at LO-criticality
level of the task sets are varied over 1.1 to 1.9. The number of processors is fixed
to 2. The graph in Fig. 3 shows the number of schedulable task sets from up to
1000 randomly generated task sets.
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From the graph, it is clear that MCDPS schedules more task sets successfully
than the GMCS algorithm. Typically MCDPS is successful in scheduling 1.75
times more task sets than the GMCS algorithm. We can see that the number of
schedulable task sets decrease with the increase in the utilization. This is due to
the lack of reservation time for HI-criticality tasks in the HI-scenarios.

5 Conclusion

In this paper, we propose a new algorithm which finds a fair schedule for multi-
processor mixed-criticality systems. The proposed algorithm does not abandon
every LO-criticality job in the HI-criticality scenario. We show that the MCDPS
algorithm is better than the GMCS algorithm in terms of scheduling more num-
ber of task sets with various experiments. Then we discuss that at least K
HI-criticality tasks can be scheduled in a HI-criticality scenario, if a task set
failed to schedule due to the deadline miss of a HI-criticality task.
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Abstract. The usage of cloud computing has been increasing every-
day and in almost every organization. It is now an integral part of the
information technology market. And this rapidly growing need gives rise
to consider two main criteria namely reliability and availability to sus-
tain growing demand. To ensure SLAs, and gain customer confidence,
cloud architectures use fault tolerant strategies. The work in the liter-
ature towards fault tolerant cloud has not considered aspects such as
using resource subsets to be fault tolerant. In this paper, we have used a
replication based fault-tolerance strategy which considers cost and fault
proneness of VMs. Simulation of the proposed algorithm has been car-
ried out using CloudSim and the result shows an improvement in average
total execution time and average delay time.

Keywords: Cloud computing · Fault-tolerance · Replication ·
CloudSim

1 Introduction

Cloud computing has become an integral part of the rapidly changing IT domain
in recent years because of its multi-tenant based resource provisioning capabili-
ties. Cloud computing has been characterized by its rapid elasticity, on-demand
access, multi-tenancy and resource autonomy. Cloud computing infrastructure
has a large number of components. Therefore it almost always has some fault
proneness due to the interaction among those heterogeneous components. A
fault is a defect or inability to perform its normal operations [11]. A fault in
the system causes errors in the system leading to system failure, which further
interrupts the normal delivery of services and degraded the performance of the
system [7,11].

As the number of cloud users increases, the need for fault-tolerance also
increases [9,12]. Fault tolerance is the ability of a system that enables systems
to continue their anticipated operations regardless of faults [11,13,14].

Fault tolerance approaches in distributed systems such as Cloud discussed in
the literature are [1] Reactive approaches such as checkpointing, Job-migration,
Replication, Retry, Task Re-submission, Rescue overflow are primarily used

c© Springer Nature Switzerland AG 2022
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to lower aftereffects of failures and proactive approaches such as self-healing,
software rejuvenation, preemptive migration, load balancing are used to avoid
failures.

2 Related Works

Some basic reactive approaches are RSVMP (Random selection VM placement)
after creation VMs will be placed on randomly selected hosts but whenever there
is VM failure data required by that request will be re-fetched from storage [2,16].
RLVMP improvement over RSVMP with some additional consideration on net-
work resource consumption [but at the cost of restricting selection to a particular
host], a copy of data will be kept on host node so whenever there is failure data
can be reused at that same host but have to ensure that newly created VM will
be placed in that particular host only [2]. OPVMP (Optimal redundant virtual
machine placement) proposed by Wang et al. (2016) a replication based app-
roach focused on FAT free topology works in 3 steps viz. selection of host server,
optimal VM placement and recovery strategy.

Das and Khilar [14] proposed a replication-based method to increase the
system availability and reduce the service time by using software variants and
not schedulling tasks on fault prine VMs. Alhosban et al. [15] introduced a
scheme that depends on prediction and planning. A recovery method out of two
viz. replication and retry is selected based on failure history, user requirements
and service weight and criticality. Saranya et al. [16] presented a method based on
both re-submission of tasks and replication. It depends on the priority assigned
to each task, task length, deadline and the out-degree of each task.

Most of the existing works based on replication consider a fixed number of
replicas i.e. replication is done for all virtual machines, which is not a cost-
effective or efficient approach.

In our work we consider replication as the main approach for fault tolerance
to reduce storage and network resource consumption for fault tolerance.

3 Problem Description

As a replication strategy used for fault tolerance, if we replicate every VM for
incoming requests it will increase the total number of VMs required as we are
not considering any specific attributes of VMs. So replication should be applied
to a subset of VMs.

Challenges exist in how to determine if a VM should be replicated or not.
If we go by some intuitive reasoning that clients are assigned with VMs of dif-
ferent configuration, of which some have high configurations like the number
of CPUs required, RAM and bandwidth required. So it would be better if we
could consider this aspect in selecting a VM to be replicated as VMs with high
configuration should be provided with better fault tolerance approach.

Also when a particular host has already experienced several faults it can be
expected that VMs running or to be created on that host will be more prone to
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experience same kind of fault. So in our approach, we consider a combination
of cost (as cost will be proportional to VM configuration requested) and the
number of faults occurred on a host to select VMs to replicate. Also, to consider
the faults for VMs which were not identified as fault prone would be resubmitted
by the fault manager or broker to reduce overall turnaround time after a fault
occurs.

4 Proposed Algorithm

The proposed algorithm provides fault-tolerance by way of replication, where
fault prone VMs are identified and replicated based on rank of each VM. The
Rank of each VM (vj)rank is determined by multiplying cost and number of
faults in host. The proposed fault tolerant algorithm handles VM faults and host
fault. Also, it will be able to handle failure of all VMs running on a host. Algo-
rithm works in a way that for each cloudlet request (ci), broker will select a VM
(vj) satisfying sufficient conditions such as RAM, CPU requirements etc. now for
providing the fault tolerance, broker needs to identify if a given VM needs to be
replicated. For this identification,VM rank (vj) rank is determined, if it is found
to be greater than some predefined threshold broker will replicate the Cloudlet
on one other VM (vk) placed on other host to increase fault-tolerance. Both
the VMs (orignal (vj) and replicated VM (vk)) will be executing the cloudlet
request. The earliest result arrived from one of the VM will be accepted and
other one will be discarded. Also, if at any point in time if it is found that both
the VMs have failed, the broker will resubmit that cloudlet to be executed on
some other VM.

5 Result

There are many cloud simulators such as CloudSim, CloudAnalyst, iCanCloud,
GreenCloud, CloudSim Plus available to the research community. Among all,
CloudSim [7] and CloudSim Plus [6] (an extension to CloudSim) is the most
preferred one for simulating cloud environments.

The proposed algorithm has been implemented using CloudSim Plus. The
fault injection part of the simulation has been done by destroying a random VM
at a random instant of time. In the CloudSim user requests are generated as
files that are processed with the help of an intermediary broker. The VMs are
allocated to a particular host as per the VM allocation policy. In our setup, we
have selected each host who satisfies the just sufficient requirements of a VM.
For the part where we need to identify if we have to duplicate a request allocated
on a VM, we need to rank VMs by calculating the product of cost and number
of faults that occurred on the host of that VM. For the simulation experiment,
we have assumed the cost of each VM as 1, as all the VMs created are of the
same configuration. After ranking a VM the next step is to check if it is greater
than some threshold defined. Here in this setup, we have assumed a threshold
of 1 so it translates to a request to be duplicated if a host has faced at least
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1: procedure FT(C,V ,flags) � C list of Cloudlet requests, V list of Available
VMs, flags count of requests

2: for all Cloudlets (ci) ∈ C do
3: if (ci) ∈ C not executed then
4: get (ci) parameters RAM, BW, Cost
5: for all V Ms (vj) ∈ V do
6: get (vj) parameters VM size, Cost, number of faults in host
7: Calculate (vj) rank as cost * faults in host
8: if (vj) = available and (vj)params ≥ (cj)params then
9: allocate (vj) ← (cj)
10: (vj) = BUSY
11: if (vj)rank > Threshold then
12: get another VM (vk) from V
13: allocate (vk) ← (ci)
14: (vk) = BUSY

15: break;

16: if (ci) not executed successfully then
17: execute (ci)
18: if exe time (vj) ≤ exe time (vk) then
19: (ci) ← executed
20: flag ++
21: (vj) = available
22: else if exe time (vj) > exe time (vk) then
23: (ci) ← executed
24: flag ++
25: (vj) = available
26: else
27: waiting list ← (ci)
28:
29: if flag == n then
30: All cloudlets execute succesfully
31: else
32: Execute FT for waiting Cloudlets
33:

one fault. So in our setup, a cloudlet allocated to a particular VM (vm1) will be
replicated on one additional VM (vm2) if the host of (vm1) has faced at least
one fault. Also, it is to be noted that the request assigned to (vm2) will not be
replicated again. The number of datacenter created is 1 and the ratio between
total processing element of hosts to total processing elements required by all
Vms has been kept to 75% to avoid resource contention. The execution results
are shown in the Table 1 below.

The results obtained have been compared with the results of the algorithm
presented in “Self-Healing fault tolerance Technique in cloud Data-center” [4].
Comparison between the two for average delay faced by each cloudlet over total
execution time for the different number of VM failures has been displayed in
Fig. 1. We can see that as the number of failures increases, the delay for the
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Table 1. Simulation result.

No. of failed VMs Total exec. time No. of Cloudlet executed Avg exec. time Avg delay

1 15356.16 96 159.96 3.1365625

2 15356.16 96 159.96 3.1365625

3 16982.22 96 176.89 3.7638541

4 14573.32 92 158.40 3.6002173

5 21318.24 90 236.86 6.3567777

6 5600.46 72 77.78 2.0909722

7 4215.4 63 66.91 1.9117460

8 2770.12 48 57.71 2.5091666

proposed algorithm doesn’t increase as rapidly as it is in Self-Healing. This is
because the proposed algorithm considers the probability of failures beforehand
and replicates cloudlets to reduce overall turnaround time. Also, the broker will
be resubmitting a cloudlet request which was not replicated as a part of fault
tolerance as soon as it identifies a VM fault, reducing overall turnaround time.

Fig. 1. (a) Average delay over total execution time. (b) Average execution time over
total execution time.

Also, the comparison for the average execution time over total execution time
for each Cloudlet has been displayed in Fig. 1. It can be seen that there is not
much difference between the results produced by the proposed algorithm and
self-healing. This is because of consideration of fault probability and resubmit
to minimize total execution time for the request received.

6 Conclusion

The cloud computing environment is composed of heterogeneous components
which make it obvious to have faults in the system and a challenging task well.
The faults need to be handled to provide uninterrupted services to its users.
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A replication based fault tolerance approach has been proposed which handles
faults in VM and host failure due to failure of all the VMs running on that host.
Results show the proposed method to be more efficient than many replication
based approaches proposed earlier specifically in terms of reducing overall delay
and average delay. In the future effort can be made to extend this idea to a real
cloud environment to see if any further improvements are needed.
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Abstract. Speech emotion recognition and classification is one of the
most important and emerging fields in artificial intelligence. It has vari-
ous uses in different applications starting from medical science to smart
home devices. Input feature selection is a very important part of speech
processing. Mel Frequency Cepstral Coefficients is the most widely used
features in the processing of audio data. In case of processing of emo-
tion related data, the fundamental frequency also plays an important
role. In this study a comparative analysis has been conducted to deter-
mine the better feature in the field of emotion classification. Emo-Db
database was used for the study. For classification task the Support Vec-
tor Machine classifier with the radial basis and sigmoid function kernel
has been used. The model was trained with both the audio features and
the performances were compared. Better performance was observed with
Mel Frequency Cepstral Coefficients which ensures the better performing
speech features in emotion classification task.

Keywords: Speech emotion classification · MFCC · Fundamental
frequency · SVM · Sigmoid kernel · RBF kernel

1 Introduction

Humans are emotional beings by nature. They have capability to express vari-
ous kinds of emotions like anger, happiness etc. For human computer interaction,
emotion detection and recognition by a computer becomes an important task.
Mainly these emotions are expressed by facial expressions, but as human grows,
an individual learns to control one’s expressions thus, making emotion recogni-
tion a challenging task. Emotions can also be detected by using audio features
of speech.

Speech emotional detection is one of the emerging domains in Artificial intel-
ligence. Speech emotional recognition is a process of detecting an individual’s
emotions using the speech. This is effective as audio features like tone, pitch etc.
changes according to the mood or emotion. A Speech emotion detection system
mainly consists of two parts pre-processing and classification.
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Pre-processing part consists of extraction of audio features like pitch, Mel
Frequency Cepstrum Coefficient (MFCC) etc. from the given audio. After extrac-
tion of features these are then normalized. Then comes the classification. Clas-
sification is done by various machine learning algorithms like Support Vector
Machines, Decision Trees etc. One of the most important aspect of any classifi-
cation algorithm is choice of features. Features should be chosen carefully before
training the model.

Speech Emotion detection is important and has application in various fields.
One of the applications is in the field of medical science, where it can used to
evaluate emotional health of a person and can help in early detection of mental
disorders like depression, post-traumatic stress disorder and suicidal tenden-
cies. Speech Emotion detection can also be used to improve human computer
interaction which in-turn improves various application like smart home appli-
ances. Speech emotion detection can also be used to improve customer feedback
systems.

The goal of this study is to compare and determine which Audio feature
MFCC or Fundamental Frequency is better for emotion classification. In this
study MFCC and Fundamental Frequency were extracted from various audio
files and results were compared.

2 Literature Review

T. Seehapoch et al. in their study used SVM classifier with linear kernel func-
tion for emotion recognition [8]. They considered a combination of energy, fun-
damental frequency and MFCC for classification. The study was conducted on
Japanese, Thai and German databases. The accuracy for classification was found
as 98.00% for Thai, at 89.80% for German and 93.57% for Japanese. One of the
main conclusions of the study is that speech recognition system that uses both
prosodic and spectral features have high recognition rate.

P. P. Dahake et al. used a SVM classifier trained with feature vector of
formants and cepstral features with MFCC for classification of emotions [3]. They
compared various kernel functions of SVM classifier. Study concluded that RBF
kernel function was best suitable for all emotion recognitions with an accuracy
of 84%. Quadratic and Linear kernel functions showed high recognition rate for
joy, sadness and fear. It was also found polynomial kernel didn’t gave suitable
results for speech emotion recognition.

Mohanta et al. in their study extracted acoustic parameters from speech
signals for emotion classification [7]. Emotions that were classified were happy
anger, sad and neutral. Fundamental frequency and formants were derived from
signals using only vowels words of English language i.e., ‘a’, ‘e’, ‘i’, ‘o’, and ‘u’.
Now using these extracted features, emotions were classified using a Support
Vector Machine (SVM) classifier.

T. Kathiresan et al. in their study extracted and used cepstral delta and
cepstral double delta for emotion recognition [4]. They used Gaussian Mixture
Model (GMM) classifier. Study concluded that these extracted features along
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with MFCC improved classification of specific emotions but not for all. It was
also found that recognition pattern differs from language to language used in
experiment.

T. Chaspari et al. used Emo-Db database and Athens Emotional States
Inventory to show that instant amplitude and features derived from frequency
can increase classification performance of widely used spectral and prosodic infor-
mation [1].

Kuchibhotla et al. used a feature fusion which is a combination of energy
pitch prosody features and MFCC for emotion classification [5]. They used these
fused features to classify emotions using support vector machine (SVM), lin-
ear discriminant analysis (LDA), regularized discriminant analysis (RDA) and
k nearest neighbour (KNN) individually. The results showed that RDA and
SVM gave good recognition results as compared to other classifiers. It was also
observed that use of fused features provided good results as compared to indi-
vidual results.

3 Methodology

3.1 Database

Emo-Db database was used in this study. Emo-Db database is a German emo-
tional database. This database was created by Institute of Communication Sci-
ence, Technical University, Berlin Germany. The data base consists of 535 audio
files and were recorded by a total of 10 speakers. The speakers were 5 females
and 5 males with ages ranging from 21 years old to 35 years old. The audio
was originally recorded at 48-KHz and is then sampled down to 16-KHz. This
database consists of 7 emotions:

– Anger
– Anxiety
– Boredom
– Happiness
– Disgust
– Sadness
– Neutral

3.2 Features

In this study fundamental frequency and Mel-Frequency Cepstrum Coefficients
(MFCC) were extracted from the audio files using Librosa library of Python 3.

Fundamental Frequency: Fundamental frequency in a complex signal can be
defined as the lowest partial. For fundamental frequency estimation we use YIN
estimator algorithm [2]. YIN estimator is a time-domain pitch detector algorithm
and is based upon auto-correlation. Auto-correlation algorithm though simple
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in nature is prone to various errors. YIN algorithm tries to reduce these errors.
YIN algorithm has a difference function. This can be defined over a window as:-

dt(τ) =
W∑

j=1

(xj − xj+τ )2 (1)

where xj is the signal and xj+τ is its duplicate which is delayed by τ . To reduce
sub-harmonic errors, YIN uses a cumulative mean function:-

d′
t(τ) =

{
1 If τ = 0
dt(τ)/ 1

τ

∑τ
j=1 dt(j) Otherwise

(2)

Other improvements in this estimator includes a Parabolic interpolation of local
minimums.

Fundamental frequency carries information about linguistic characteristics
like consonant voicing, prosodic features etc. [6]. Besides that, previous stud-
ies show that fundamental frequency changes depending upon the emotion of
speaker [10]. The study [10] demonstrated that “anger” showed higher funda-
mental frequency than that of “neutral” emotion while average fundamental
frequency of “sorrow” was lower than “neutral” emotion. The study also showed
that average fundamental frequency of “fear” was less than “anger” and was
close to fundamental frequency of “neutral” emotion.

Thus, keeping in view of above mentioned factors, fundamental frequency is
taken into consideration in the study

Mel-Frequency Cepstrum Coefficients: Mel-Frequency Cepstrum Coeffi-
cients (MFCC) are audio features which are commonly used for speech recog-
nition applications. MFCC is computed by [4] first taking fast Fourier trans-
formation of the sound signal. After that a mel-filter bank is applied to this
transformation. Further a logarithm is applied. The final process is to apply a
discrete cosine transformation on the log-Mel-filter bank. This results in forma-
tion of a number of coefficients equal to number of filters in mel-filter bank.
Process is illustrated in Fig. 1.

Generally, first 13 coefficients are used since they correspond to slow varying
components in the spectrum, so n this study first 13 MFCC features were con-
sidered besides that, derivatives and double derivatives of these MFCC features
are also considered. Therefore, when MFCC features is referred in this study,
it is referring to these overall 39 features combined. After extraction of these
features, SVM classifier was used to classify audio files into 7 different emotions.

3.3 Support Vector Machines

SVM is a nonlinear supervised learning classifier. It is used for binary as well as
multiclass classification. This algorithm finds a hyperplane that correctly sepa-
rates two classes with a maximum margin [9]. Suppose we have vector xi with
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Fig. 1. Block diagram for extraction of MFCC.

i = 1,2,3....N . These vectors can correspond to y ∈ {–1,+1}. If these set of
vectors is linearly separable then there exists b and w such that:-

yi(wT xi + b) ≥ 1 (3)

The hyperplane is given in (4)

wT xi + b = 0 (4)

To solve for w and b we consider equation below

max
α

LD =
N∑

i=1

N∑

j=1

yiyjαiαjxi
T xj (5)

subject to
N∑

i=1

αiyi = 0 (6)

For non-linear separable set of vectors, (5) can be rewritten as:-

max
α

LD =
N∑

i=1

N∑

j=1

yiyjαiαjF (xi, xj) (7)

where F represents kernel function.
Mostly commonly used kernel functions are:

– Linear kernel
F (xi, xj) = xi

T xj (8)

– Radial basis function (RBF) kernel

F (xi, xj) = e−γ‖xi−xj‖ (9)

– Polynomial kernel
F (xi, xj) = (1 + xi

T xj)
p

(10)
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– Sigmoid kernel
F (xi, xj) = tanh(axT

i xj + b) (11)

For emotion recognition system, data i.e., extracted audio features (MFCC
and Fundamental Frequency) is split into two parts, training and test data.
Training data was used to train SVM classifier. First, the model was trained on
MFCC and then on Fundamental Frequency. For optimization and selection of
kernel function for the model, GridSearchCv algorithm of Scikit learn library
was used. For MFCC model as seen from Table 1, RBF kernel function was
taken as it gave the highest accuracy as compared to others. For Fundamental
Frequency model as seen from Table 1, Sigmoid kernel function was considered.
After training of the models, they were tested using test data. Results from both
the models were recoded and are shown in Table 2 and Table 3.

Table 1. Accuracy of various Kernel Functions of SVM model trained on MFCC and
Fundamental Frequency.

Kernel function Accuracy value

MFCC Fundamental Frequency

Linear 69.6% 26.2%

Polynomial 71.3% 27.2%

RBF 72.1% 27.7%

Sigmoid 68.1% 28.2%

4 Results

The study was conducted according to methodology as proposed above. Accord-
ing to Table 2 and Table 3, it can clearly be observed that when emotions are
taken collectively MFCC is a better parameter as compared to Fundamental
Frequency.

Accuracy of model with MFCC is 74.6% while with Fundamental Frequency
it is 27.6%. Besides the accuracy, the comparison of F1 scores for both models is
given in Fig. 2. From Table 4 it can be observed that average weighted F1 score
of MFCC is 74.3% and that of Fundamental Frequency it is 23.8%. On analysing
the confusion matrix of both MFCC Fig. 3 and Fundamental Frequency Fig. 4,
model trained with Fundamental Frequency has a lot of misclassifications as
compared to model trained with MFCC.

Precision of a model can be defined as:

Precision =
True Positives

True Positives + False Positives
(12)

While recall can be defined as:

Recall =
True Positives

True Positives + False Negatives
(13)
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Table 2. Metrics for MFCC trained model

Emotions Metrics

Precision Recall F1-score

Anger 0.886 0.861 0.873

Boredom 0.667 0.857 0.750

Anxiety 0.611 0.647 0.629

Happiness 0.455 0.357 0.400

Sadness 0.778 0.824 0.800

Disgust 0.800 0.889 0.842

Neutral 0.867 0.650 0.743

Table 3. Metrics for Fundamental Frequency trained model

Emotions Metrics

Precision Recall F1-score

Anger 0.300 0.333 0.316

Boredom 0.308 0.571 0.400

Anxiety 0.152 0.294 0.200

Happiness 0 0 0

Sadness 0.412 0.412 0.412

Disgust 0 0 0

Neutral 0.250 0.050 0.083

For a model when recall increases there is an increase in false positive rate
(FPR). This increase in recall reduces precision of model. Similarly, if precision
of a model is increased then there is a decrease in recall, FPR and TPR of model.
When analysing a ROC curve, (a plot between TPR and FPR of model) if recall
increases then both TPR and FPR increases which is obviously not good for the
model and if precision is increased then FPR decrease but TPR also decrease
which is again not ideal.

Hence just increasing recall or precision of model, doesn’t guarantee good
performance and a good ROC area value. For a good model both of the parame-
ter’s precision as well as recall should have sufficient high values. This maintains
a balance between FPR and TPR which ensures a good ROC curve and area for
the model. This can be observed from Fig. 5, Fig. 6, Table 2 and Table 3 where it
can be seen emotion models which have high values for both precision and recall
have high ROC area values, while those which don’t have low ROC area values.

Looking at ROC curves of MFCC Fig. 5 and Fundamental Frequency Fig. 6,
it can be seen that model trained with MFCC performed good when compared
to model trained with Fundamental Frequency. MFCC Model had its ROC-area
values in range from 0.807 to 0.996, while for model trained with Fundamental
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Frequency, ROC area values where lying-in range from 0.411 to 0.802. With
model trained with Fundamental Frequency, worst ROC area result was for
happiness as its ROC area is 0.411 which is less than the baseline comparison
value of 0.5, thus making this classification worse than a random guess. For
model trained with MFCC, worst ROC area value was for happiness which is
0.807. Best ROC area value for MFCC model was 0.996 corresponding to disgust
while for Fundamental Frequency model it was 0.802 corresponding to sadness.

Table 4. Weighted average metrics of MFCC and Fundamental Frequency

Parameter Weighted average metrics

Precision Recall F1-score

MFCC 0.749 0.746 0.743

Fundamental Frequency 0.238 0.276 0.238

Fig. 2. Comparison of F1 scores of MFCC and Fundamental Frequency models
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Fig. 3. Confusion matrix of model trained with MFCC. 0 = Anger, 1 = Boredom, 2
= Anxiety, 3 = Happiness, 4 = Sadness, 5 = Disgust, 6 = Neutral

Fig. 4. Confusion matrix of model trained with Fundamental Frequency. 0 = Anger, 1
= Boredom, 2 = Anxiety, 3 = Happiness, 4 = Sadness, 5 = Disgust, 6 = Neutral
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Fig. 5. ROC Curve of model trained with MFCC.

Fig. 6. ROC Curve of model trained with Fundamental Frequency.
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5 Conclusion

The study was conducted on speech emotion classification using Emo-Db dataset.
Support Vector Machine classifier with RBF and Sigmoid kernel function was
used for classification. The model was trained on both MFCC and Fundamental
Frequency. The study concluded that MFCC trained model (74.6% accuracy)
was much better in classification as compared to Fundamental Frequency based
model (27.6% accuracy). It was also seen that RBF kernel for MFCC and Sigmoid
kernel function for Fundamental Frequency for SVM classifier gave good results
for speech emotion classification.

Although ROC area values of emotions in MFCC model were more as com-
pared to Fundamental Frequency, it was observed that ROC area values of
boredom and sadness (0.791 and 0.802 respectively Fig. 6) of Fundamental Fre-
quency model were also promising enough. Thus, consideration to fundamental
frequency can be given when analyzing these two emotions. This can be useful
(in analysis of the emotions) as the size of feature vector of fundamental fre-
quency (N × 1 where N is number of samples) is smaller than that of MFCC
vector (N × 39 where N is number of samples), thus taking less amount of time
and computation.

In this study emotion were analysed and classified collectively rather than
individually, further study needs to be done on efficacy of MFCC and Funda-
mental Frequency on each individual emotion rather than collectively. Another
thing which was observed in the study was that for fundamental frequency model
for emotions happiness and disgust, precision and recall had both values as 0.
This needs to be analysed and studied further.
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Abstract. Efficient traffic management during disaster evacuations is an essen-
tial component of intelligent transport systems in smart cities. In a natural dis-
aster, a surge of vehicles from dense residential areas may simultaneously move
towards the same nearest safe shelter following a shortest path for each individual
vehicle, thereby often leading to congestion and resulting in increased evacuation
time. In this paper, we consider time-optimal traffic distribution in such disas-
trous situations considering a Manhattan grid network of roads. Several research
results on optimal-time traffic distribution in such a network exist in the liter-
ature, all of which consider a restricted scenario of a single safe destination at
a corner point of the grid. In contrast, we describe a technique for minimizing
average travel time of the vehicles assuming a general situation as experienced
in real-life, where the destination node can be anywhere on a rectangular m× n
grid network with multiple sources of traffic injection. Simulation results using
SUMO on a road network of Manhattan borough of New York city show that
our proposed technique outperforms the existing techniques on dynamic traffic
assignment in terms of average travel time.

Keywords: Transportation network · Route planning · Intelligent transport
system (ITS) · Queuing delay · Evacuation problem · Congestion control

1 Introduction

Route planning in urban areas during a natural disaster when many vehicles from dense
residential areas start to simultaneously move towards the nearest safe shelter consti-
tutes an important research problem in intelligent transport system design for smart
cities [1]. A solution to such an evacuation problem [2] should provide a traffic distribu-
tion strategy so that, i) for every vehicle the maximum time to reach the final destination
(sink) is minimized to keep it less than some specified upper limit, and ii) the average
travel time to reach the sink is minimized.

An important aspect of the evacuation problem is that choosing the shortest route
for every vehicle in such a disaster situation may not lead to the desired time-optimal
solution due to creation of congestion, similar to that observed in wireless networks.

c© Springer Nature Switzerland AG 2022
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Our aim in this paper is to provide a real-time navigation service for individual vehicles
so as to reach the designated safe shelters with minimum travel-time, while avoiding
congestion at intermediate links and intersection points.

In [3], authors addressed the evacuation problem in a dynamic network with several
sources and sinks having fixed supply and specified demand, respectively and proposed
a solution. However, their proposed solution is not practically applicable due to its high-
order polynomial time complexity. A tractable and practically useful subclass of this
problem was addressed by Kamiyama et al. [4] to propose a faster algorithm. If the
given road network is a tree having n nodes and has a single sink then the evacuation
problem can be solved in O(n log2 n) time [5]. For the same tree structured network,
Mamada et al. [6] proposed a solution with time complexity O(n(C log n)k+1), where
n is the number of nodes, C is some constant and k is the number of sinks. Some
dynamic traffic assignment (DTA) based approaches to solve evacuation problem have
been proposed in [7–9]. Authors in [10] have proposed an optimal traffic distribution
for such scenario, considering a rectangular m × n grid-structured network with mul-
tiple source points and a single destination. However, they assumed that the topmost-
rightmost corner point of the grid will be considered as the single destination point,
while in a real-life scenario the destination point can often be anywhere on the grid
network instead of being a corner point of the grid. In [11], authors introduced the con-
cept of non-corner destination point but no detailed formulation of the problem were
given. In this paper, we propose a solution to remove the restriction on the position of
the destination to match with the practical requirements, considering an m × n grid
network with multiple source points. We derive the conditions to be satisfied for min-
imizing the average travel time of the vehicles and accordingly propose an algorithm
for optimal traffic distribution. We simulate our proposed technique on a road network
of Manhattan borough of New York city to show that it outperforms the existing best
known solutions.

2 Basic Ideas

We assume a rectangular m × n grid network having m horizontal and n vertical roads
intersecting each other at mn cross-points as shown in Fig. 1. We number the horizontal
roads sequentially as 1, 2, · · · ,m with the bottommost one numbered as 1. Similarly,
vertical roads are numbered sequentially as 1, 2, · · · , n with the leftmost one numbered
as 1. A cross-point (CP) at the intersection of qth horizontal and pth vertical roads will
be denoted by the coordinates (p, q). Let the cross-point S having the coordinates (t, l)
be the safe shelter or the final destination point (sink) as shown in Fig. 1. By drawing
dotted vertical and horizontal lines through this point S(t, l), we divide the m × n
grid in four rectangular sub-grids A, B, C and D of dimensions l × t, (m − l) × t,
(m − l) × (n − t) and l × (n − t), respectively. Vehicles will be directed towards S
along the shortest paths using up link (ul) and right link (rl) in sub-gridA, down link (dl)
and right link in sub-grid B, down link and left link (ll) in sub-grid C, and up link and
left link in sub-grid D. In each sub-grid, we draw diagonals as shown in Fig. 1 where
a diagonal is the locus of all cross-points in the sub-grid at equal Manhattan distance
from S(t, l). We can visualize the traffic within each sub-grid flowing in a layer by layer
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Fig. 1. Numbering of cross-points and flow-fronts in am×n rectangular grid with destination at
a non-corner point S(t, l)

fashion, from the farthest diagonal to the diagonal closest to S(t, l). We term all these
diagonals as flow-fronts which are numbered as FA

1 , FA
2 , FA

3 , · · · in sub-grid A. Flow-
fronts in other sub-grids are also numbered likewise as shown in Fig. 1. In a sub-grid
r, r ∈ {A,B,C,D}, of dimension u × v, there will be (u + v − 1) such flow-fronts
F r

j , 1 ≤ j ≤ u + v − 1. The number of cross-points Cr
j on flow-front F r

j is given by,

Cr
j =

⎧
⎨

⎩

j, for 1 ≤ j < min(u, v)
min(u, v), for min(u, v) ≤ j ≤ max(u, v)
u + v − j, for max(u, v) < j ≤ u + v − 1

The ith cross-point on F r
j is denoted by CP r

ij , 1 ≤ i ≤ Cr
j . The cross-points on a

particular flow-front F r
j are numbered in the following manner:

– If there is a cross-point on the lower horizontal boundary of the main grid network of
dimension m×n, then we number that cross-point as CP r

1j and continue to number
the successive cross-points on that flow-front in increasing order.

– If there is no cross-point on the lower horizontal boundary of the main grid and there
is a cross-point on the upper horizontal boundary of the main grid, then we number
that cross-point as CP r

1j and continue to number the successive cross-points on that
flow-front in increasing order.
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Fig. 2. A 7× 9 rectangular grid taken from the road network of Manhattan borough of New York
city

This numbering scheme is illustrated in Fig. 1. A real-life example of such a situ-
ation is the road network of Manhattan borough of New York city as shown in Fig. 2.
From this road network, we consider a 7×9 rectangular grid as shown in Fig. 2, for our
discussion. For simplicity, we consider that all the links of the grid are of equal length
with equal vehicle velocity along all the links. We assume that the non-corner destina-
tion point S is located at the crossing of 82nd Street and 2nd Avenue. From Fig. 2, we
can identify three types of traffic flow patterns as follows based on traffic in-flow to the
cross-points on a flow-front from its neighboring flow-fronts:

– Flow type 1: This corresponds to the situation when all cross-points on a flow-front
receive traffic from at most two incoming edges. Flow-fronts of a sub-grid having
no common cross-point with any neighboring sub-grid(s), are having this type of
traffic flow. Referring to Fig. 2, flow-fronts FA

1 , FA
2 , FA

3 , FB
1 , FB

2 , FB
3 , FC

1 , FC
2 ,

FC
3 , FD

1 , FD
2 , FD

3 , all have this flow type. Also, two flow-fronts in two different
sub-grids having a common cross-point lying at one boundary of the main grid, e.g.,
FA
4 and FB

4 in Fig. 2, have such flow type. All these flow-fronts are shown as dashed
line in Fig. 2.

– Flow type 2: This corresponds to the situation when there is at least one cross-point
on a flow front receiving combined traffic flow along three incoming edges from two
neighboring sub-grids and at least one of the intersecting flow-fronts is having one
boundary cross-point that is not receiving combined traffic from any neighboring
sub-grid. In Fig. 2, flow-fronts FA

5 and FB
5 have this type of traffic in-flow. All such

flow-fronts having this type of traffic flow are shown as dash-dot lines in Fig. 2.
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– Flow type 3: This corresponds to the situation when each of the two boundary cross-
points of a flow-front receive combined traffic from both neighboring sub-grids. It
can be checked that in this case the corresponding flow-fronts in four sub-grids form
a square, as shown by solid lines in Fig. 2, e.g., flow-fronts FA

6 , FB
6 , FC

4 , FD
4 . The

total traffic to be distributed from such a square formed by the four flow-fronts has
contribution from all the four sub-grids.

Fig. 3. Traffic flow graph showing traffic flow from flow-fronts FB
5 , FA

5 , FD
3 and FC

3

Travel time of the vehicles has two components - link delay, i.e., the time taken
by a vehicle to traverse a link connecting two consecutive cross-points, and queuing
delay, which is defined as the waiting time of a vehicle in the queue generated at each
intermediate cross-point. We assume that each link of the network is of same length
and the average speed of each vehicle is same along any link which implies that link
delay is a constant. Hence, optimizing only the queuing delay will lead to finding an
optimal traffic distribution for our problem. We also assume that both traffic generation
and service pattern follow Poisson distribution. We denote the mean rate of new traffic
generation at CP r

ij by λr
ij and the uniform service rate at each cross-point by μ. We

would like to find an optimal traffic distribution so that queuing delay over each flow-
front of a sub-grid is minimized. Using the results shown in [10], we express the total
average queuing delay over a flow-front F r

j as the sum of queuing delays at all cross-
points on F r

j .

W r
j =

Cr
j∑

i=1

(
A

1 − xr
ij

μ

× xr
ij)/

Cr
j∑

i=1

xr
ij , (1)

where A is a constant, xr
ij is the sum of the traffic received at CP r

ij from the imme-
diate previous flow-front and the new traffic generated at CP r

ij itself. From any cross-
point, traffic can flow in at most two possible directions - horizontally through left-link
(ll)/right-link (rl), and vertically through up-link (ul)/down-link (dl). From an arbitrary
cross-point CP r

ij , the fraction of traffic going in the horizontal direction will be denoted
by f horr

ij and the remaining traffic diverted along the vertical direction will be denoted
by f verr

ij . Clearly, f horr
ij + f verr

ij = 1.
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Table 1. Traffic distribution factors for flow-fronts having independent traffic flow

Distribution at cross-point CPr
ij

r = A r = B r = C r = D

i = 1 i = 2 i = 3 i = 1 i = 2 i = 3 i = 1 i = 2 i = 3 i = 1 i = 2 i = 3

j = 1 f horr
ij 0.5000 - - 0.5000 - - 0.5000 - - 0.1000 - -

f verr
ij 0.5000 - - 0.5000 - - 0.5000 - - 0.9000 - -

j = 2 f horr
ij 0.0000 0.0000 - 0.6667 0.3333 - 1.0000 0.0000 - 0.6667 0.3333 -

f verr
ij 1.0000 1.0000 - 0.3333 0.6667 - 0.0000 1.0000 - 0.3333 0.6667 -

3 Formulation of the Problem

Consider an example scenario as shown in Fig. 2 using a 7× 9 grid with the destination
point located at S(6, 4). We identify the four rectangular sub-grids using red, green, blue
and black color having dimensions 4× 6, 4× 4, 4× 4 and 4× 6, respectively. The links
common to two neighboring sub-grids will carry combined traffic from the correspond-
ing neighboring sub-grids. We need to find the optimal traffic distribution fractions at
all cross-points considering the three flow types as mentioned in the previous section.
Depending on the computation, as given below, we can calculate f verr

ij and f horr
ij

for all CP r
ij .

Fig. 4. Traffic flow graph showing traffic flow
from flow-fronts FB

4 and FA
4

Fig. 5. Combined traffic in-flow from level j
to j + 1

3.1 Optimal Traffic Distribution for Flow Type 1

When a cross-point receives input traffic corresponding to flow type 1, it has no more
than two incoming edges. As mentioned in Sect. 2, such a cross-point may belong to
a flow-front of a sub-grid having no common cross-point with any neighboring sub-
grid(s) or it can be a common cross-point on two intersecting flow-fronts in two dif-
ferent sub-grids and also lying at one boundary of the main grid. Authors in [10] have
proposed an optimal solution for traffic distribution from a flow-front whose all cross-
points receive input traffic from no more than two cross-points similar to this traffic flow
type 1. Hence, we can directly apply the corresponding results from [10] to compute
the optimal traffic distribution factors from all such cross-points.

3.2 Optimal Traffic Distribution for Flow Type 2

If a flow-front F r
j has inputs of flow type 2, there must be a cross-point on it with three

traffic incoming edges. Hence, the results from [10] are not directly applicable in this
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case. However, to calculate the optimal traffic flow from F r
j in such a case, we proceed

by converting every three-input junction (cross-point) on F r
j to a two-input junction

with a modified rate of new traffic generation at this cross-point. The method is best
illustrated by the following example.

Example 1. Consider the flow-fronts FB
5 and FA

5 of Fig. 2 with the cross-pointCPB
45(=

CPA
45) having three incoming edges from cross-points CPB

34, CPB
44(= CPA

44) and
CPA

34, respectively on previous flow-fronts FB
4 and FA

4 . Figure 4 is the traffic flow
graph showing the parts of traffic flowing from the cross-points on FB

4 and FA
4 (shown

in the lower row) into the cross-points on FB
5 and FA

5 (shown in the upper row). The
arrows marked with ul, dl, rl represent parts of traffic flowing along up link, down link
and right link, respectively from the respective cross-points. The traffic from CPB

44 is
fully transferred to CPB

45(= CPA
45) as shown by the dotted line arrow in Fig. 4. Let the

total traffic at cross-points CPB
34, CPB

44(= CPA
44) and CPA

34 be xB
34, xB

44(= xA
44) and

xA
34, respectively.
Hence, assuming λB

45(= λA
45) as the new traffic generated at CPB

45(= CPA
45), the

total traffic xB
45 = xA

45 at cross-point CPB
45(= CPA

45) is given by f verB
34x

B
34 + xB

44 +
f verA

34x
A
34 + λB

45 = f verB
34x

B
34 + f verA

34x
A
34 + λ′B

45 , where λ′B
45 = λB

45 + xB
44 may

now be taken as the modified new traffic generation rate at CPB
45(CPA

45) instead of just
λB
45.

Thus, effectively a three-input cross-point on the intersecting flow-fronts of the
neighboring sub-grids is converted to a two-input cross-point with this change and we
can now apply the results of [10] to compute the optimal fractions of the combined
traffic to be distributed from the respective flow-fronts, e.g., FA

5 and FB
5 in Example 2.

3.3 Optimal Traffic Distribution for Flow Type 3

In this case, four flow-fronts in the sub-grids A,B,C and D form a square having four
corner vertices. If a corner vertex does not fall on a boundary of the main grid, it can
have three incoming edges for traffic; otherwise if it falls on such a boundary, it will
have only two incoming edges. Thus, the number of cross-points on such a square with
three incoming edges may vary from 0 to 4. A square is assigned a level number j which
increases successively from j = 1 for the outermost square to j = d for the innermost
square, if there are d such squares around the destination point. Let z be the number of
three-input cross-points on a square. It follows that z can assume a value from 0 to 4
for the outermost square at level 1, while z = 4 for all squares other than the outermost
square. Similar to the technique in Sect. 3.2, we convert all such three-input cross-points
of a square at level j + 1, 0 ≤ j ≤ d − 1, into two-input cross-points using a traffic
flow graph described as in Sect. 3.2. The total number of cross-points on the square at
level j + 1 is equal to 4(d − j) = ν (say). Note that after converting all three-input
cross-points on the square at level j + 1, the number of cross-points from which the
cross-points on this square receive inputs becomes also equal to ν.

Example 2. Consider the square formed by the flow-fronts FB
6 , FA

6 , FD
4 and FC

4 of
Fig. 2 which is at level 1 with respect to the destination S(6, 4). Note that d = 3 for
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this example. Figure 3 represents the corresponding traffic flow graph where the cross-
points on the upper row are those from FB

6 , FA
6 , FD

4 and FC
4 which receive input traffic

from the cross-points on FB
5 , FA

5 , FD
3 and FC

3 . There will be 4 × 3 = 12 cross-points
in the upper row of the traffic flow graph. The labels ul, dl, ll and rl on various edges of
the graph represent up link, down link, left link and right link, respectively. In Fig. 3, the
cross-point CPB

46(= CPA
46) is a three-input junction receiving traffic from cross-points

CPA
35, CPB

45(= CPA
45) and CPB

35. The total traffic from cross-point CPB
45(= CPA

45) is
transferred to CPB

46(= CPA
46) as shown by the dotted line arrow in Fig. 3. Assuming

the total traffic at CPB
35, CPA

35 and CPB
45 as xB

35, x
A
35 and xB

45, respectively and λB
46 as

the new traffic generated at CPB
46, we use the same technique as in Sect. 3.2 to convert

this three-input cross-point CPB
46(= CPA

46) to a two-input cross-point with total traffic
as f verB

35x
B
35 + f verA

35x
A
35 +λ′B

46 , where λ′B
46 = λB

46 +xB
45 is the modified new traffic

generated at CPB
46.

Referring to Fig. 3, it is noted that the cross-points at level j + 1 located at the
intersection of two neighboring sub-grids, has incoming edges which are either both
horizontal (rl or ll) or both vertical (ul or dl). For example, in Fig. 3, cross-pointCPA

16(=
CPD

14) has both incoming edges as horizontal, whileCPA
46(= CPB

46) has both incoming
edges as vertical. Each of the remaining cross-points has one horizontal incoming edge
(rl or ll) and one vertical incoming edge (ul or dl). For example, in Fig. 3, CPA

36 has a
horizontal link (rl) and a vertical link (ul) as its two incoming edges.

Table 2. Traffic distribution factors for combined traffic flow from two neighboring sub-grids

Distribution at cross-point CP r
ij

r = A r = A/B r = B

i = 1 i = 2 i = 3 i = 4 i = 1 i = 2 i = 3

j = 3 f horrij 1.0000 1.0000 1.0000 - 1.0000 1.0000 0.0000

f verrij 0.0000 0.0000 0.0000 - 0.0000 0.0000 1.0000

j = 4 f horrij 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

f verrij 0.0000 0.0000 0.0000 - 0.0000 0.0000 0.0000

Consider a traffic flow graph in Fig. 5 describing the combined traffic flow from
level j to j + 1 after converting all three-input cross-points at level j + 1 to two-input
ones. Let the ith cross-point, 1 ≤ i ≤ ν on level j + 1 in Fig. 5 have a total traffic of
ηi,j+1 with a modified new traffic generation of ξi,j+1. Each cross-point at level j has
two out-going links, a left-going link which may be horizontal or vertical, and a right-
going link which may also be horizontal or vertical as explained above, for sending
traffic to level j + 1. Let the fraction of total traffic at the ith cross-point on level j
diverted to level j+1 through the right-going link be denoted by gij , 1 ≤ i ≤ ν, so that
the remaining fraction 1 − gij of traffic is diverted along the left-going link. Therefore,
the total traffic at level j + 1 can be calculated as,

ηi,j+1 = (1 − gij)ηij + gi+1,jηi+1,j + ξi,j+1, 1 ≤ i < ν (2)

ην,j+1 = (1 − gνj)ηνj + g1jη1j + ξν,j+1 (3)
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Queuing delayWi,j+1 at each cross-point i, 1 ≤ i ≤ j+1 of level j+1 is calculated
as, Wi,j+1 = A

1− ηi,j+1
μ

. The average queuing delay (W av
j+1) over the flow-front Fj+1

can be calculated with the help of Eq. (1) by using the appropriate values of the total
number of cross-points on Fj+1 and also the total traffic at each of these cross-points
as discussed above.

In our approach for finding the traffic distribution at different cross-points on a flow-
front to get the minimum average travel time, we do not, however, look for globally
optimizing the travel time by considering the total delay at all the flow-fronts taken
together. This is because finding such a global optimum will be much more complex
and time-consuming. On the other hand, we need a quick real-time solution to the traffic
distribution problem. We therefore proceed to find the condition that will lead to the
minimum queuing delay at every flow-front Fj+1, j ≥ 1, considering the total traffic
coming from the flow-front Fj as well as the new traffic generated at all the cross-points
on Fj+1. Depending on that result for minimizing the queuing delay at each individual
flow-front Fj+1, we will find out the required traffic distribution factors at all the cross-
points on flow front Fj . Average queuing delay W av

j+1 over the flow front Fj+1 can
be minimized by properly adjusting the ηi,j+1 values. To simplify the notations, we
denote ηi,j+1 by Yi and j +1 by N , so that W av

j+1 will be a function of the N variables
Y1, Y2, · · · , YN . Accordingly, we formulate the optimization problem as follows.

The Optimization Problem

Minimize F (Y1, Y2, · · · , YN ) =
Y1

μ − Y1
+

Y2

μ − Y2
+ · · · + YN

μ − YN
(4)

subject to the constraints:

Y1 + Y2 + · · · + YN = T,

Y1 ≥ 0, Y2 ≥ 0, · · · , YN ≥ 0,
Y1 < μ, Y2 < μ, · · · , YN < μ

By simple algebric manipulations we can show that the KKT conditions for the
above optimization problem exists when Y1 = Y2 = · · · = YN = T/N , with the
corresponding minimum of the objective function F as NT

μN−T .
In view of the above discussion, we get the following result.

Lemma 1. The average queuing delay at any given unfolded representation of flow-
fronts at level j +1 will be minimum when the total traffic over level j +1 is uniformly
distributed over all the cross-points on that level.

By virtue of Lemma 1, for having minimum queuing delay at level j + 1, we should
have η1,j+1 = η2,j+1 = · · · = ην,j+1. Under such condition, the set of equations given
in Eqs. (2) and (3) can be reorganized to have a set of simultaneous linear equations in
gij’s, solving which we can compute the values of traffic distribution fractions that will
optimize the total delay. The result is stated below.

Theorem 1. The optimal values of the fractions gij , 1 ≤ i ≤ ν of total traffic at the ith

cross-point on level j diverted to level j +1 through the right-going link, are computed
from the given set of linear equations,
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⎡

⎢
⎣

−η1j 2η2j −η3j 0 . . . 0 0
0 −η2j 2η3j −η4j . . . 0 0

. . . . . . . . . . . . . . . . . . . . .
−η1,j 0 0 . . . 0 −ην−1,j 2ην,j

2η1,j −η2j 0 . . . 0 0 −ην,j

⎤

⎥
⎦

⎡

⎢
⎣

g1j

g2j

. . .
gν−1,j

gν,j

⎤

⎥
⎦

=

⎡

⎢
⎣

(ξ2,j+1 − ξ1,j+1) − (η1,j − η2,j)
(ξ3,j+1 − ξ2,j+1) − (η2,j − η3,j)

. . .
(ξν,j+1 − ξν−1,j+1) − (ην−1,j − ην,j)

(ξ1,j+1 − ξν,j+1) − (ην,j − η1,j)

⎤

⎥
⎦

However, it is possible that the values of some of the gij’s as obtained from Theorem 1
may cross the allowed range [0,1]. In such cases, we first note that Wi,j+1 is a mono-
tonically increasing function of ηi,j+1. Also, ∀i, 1 ≤ i ≤ ν, ξi,j+1 is a linear mono-
tonically increasing function of gij and for 2 ≤ i ≤ ν, ηi,j+1 is a linear monotonically
decreasing function of gi−1,j . Hence, in order to reach the condition of optimality, if any
gij value needs to be negative, we assign its value to 0 (the limiting value on the left side
of the interval [0,1]), and similarly when gij requires to be more than 1 for optimality,
we assign its value to 1 so that we obtain the minimal possible queuing delay with the
values of gij within its allowed range of [0,1] due to the monotonic property of Wi,j+1,
although the exact condition of optimality, i.e., η1,j+1 = η2,j+1 = · · · = ην,j+1 cannot
be achieved with such assignments.

After getting the values of gij’s as above, f horr
ij can be calculated as gij or 1−gij ,

depending on the position of a cross-point CP r
ij in the traffic flow graph. Next, f verr

ij

can be calculated as, 1 − f horr
ij .

Table 3. Traffic distribution factors for combined traffic flow from four neighboring sub-grids

Distribution at cross-point CP r
ij

r = A/D r = A r = A r = A/B r = B r = B/C

i = 1 i = 1 i = 2 i = 3 i = 2 i = 3 i = 4 i = 1 i = 2 i = 3 i = 1

j = 5 f horrij - 0.0000 0.5000 0.5000 - - 1.0000 0.0000 0.0000 0.5000 -

f verrij - 1.0000 0.5000 0.5000 - - 0.0000 1.0000 1.0000 0.5000 -

j = 6 f horrij 0.0000 - 0.5000 1.0000 - - 1.0000 - 0.5000 0.0000 0.0000

f verrij 1.0000 - 0.5000 0.0000 - - 0.0000 - 0.5000 1.0000 1.0000

j = 7 f horrij 0.0000 - 1.0000 - - 1.0000 - - 0.0000 - 0.0000

f verrij 1.0000 - 0.0000 - - 0.0000 - - 1.0000 - 1.0000

j = 8 f horrij 0.0000 - - - 1.0000 - - - - - 0.0000

f verrij 1.0000 - - - 0.0000 - - - - - 1.0000

r = C r = C/D r = D

i = 1 i = 2 i = 3 i = 2 i = 3 i = 4 i = 1 i = 2 i = 3

j = 3 f horrij 0.7500 0.5000 0.2500 - - - 1.0000 1.0000 1.0000

f verrij 0.2500 0.5000 0.7500 - - - 0.0000 0.0000 0.0000

j = 4 f horrij - 0.5000 1.0000 - - 1.0000 - 1.0000 0.0000

f verrij - 0.5000 0.0000 - - 0.0000 - 0.0000 1.0000

j = 5 f horrij - 1.0000 - - 1.0000 - - 0.0000 -

f verrij - 0.0000 - - 0.0000 - - 1.0000 -

j = 6 f horrij - - - 1.0000 - - - - -

f verrij - - - 0.0000 - - - - -
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4 Algorithm

Based on the results obtained in Sect. 3, we now present an route recommendation algo-
rithm (Algorithm 1). Our algorithm considers a m×n grid-structured road network and
calculates the optimal traffic distribution fractions for each individual flow types using
the method as described in Sect. 3. We assume that the location of the traffic generation
points and their traffic generation rates along with the values of m, n are known a pri-
ori. For ease of notation in our following discussions, let us denote min(m,n) by ρ.
We use a two-dimensional array lambda of size ρ × (m + n − 1) where lambda(i, j)
is denoting the rate of new traffic generation at each cross-point P r

ij . Finally, at each
cross-point vehicles are diverted to the horizontal or vertical link depending on the com-
puted values of the optimal traffic distribution fractions as shown below in Algorithm
Route V ehicle.

Algorithm 1: Route V ehicle

Input: ρ × (m + n − 1) array lambda.
Output: Routing of a vehicle along the horizontal or the vertical link from each

cross-point P r
ij .

At each cross-point P r
ij , using the values of new traffic generation rate from array

lambda compute f verr
ij and f horr

ij according to Section 3;
for each vehicle at P r

ij , do
if f verr

ij = 1 then
Send the vehicle along vertical link;

if f horr
ij = 1 then

Send the vehicle along horizontal link;

else
Generate a uniform random number rand in [0, 1];
if rand ≤ f verr

ij then
Send the vehicle along vertical link;

else
Send the vehicle along horizontal link;

5 Simulation Results

We simulate our proposed approach using an example scenario as shown in Fig. 2.
Figure 2 shows a 7 × 9 rectangular grid road network of Manhattan borough of New
York city. We consider nine different traffic generating source points(yA

11 = 0.1, yA
13 =

0.05, yA
36 = 0.025, yB

11 = 0.15, yB
34 = 0.05, yB

24 = 0.025, yC
11 = 0.2, yC

23 =
0.1, yD

11 = 0.125, yD
12 = 0.1) and a single destination point marked as S(6, 4), to

evaluate the performance of our proposed algorithm. We compute the optimal traffic
distribution fractions at different flow-fronts which are shown in Tables 1, 2 and 3. r =
A/B in column headings of Tables 2 and 3 implies the intersection of two flow-fronts
in sub-grids A and B. Similarly, r = A/D, B/C and C/D refer to the intersections of
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Fig. 6. Comparison of average delay using different techniques

sub-grids A and D, B and C, and C and D, respectively. For simulating our proposed
algorithm, we use SUMO assuming a maximum vehicle speed of 13.9m/s (equivalent
to 50Km/h along any link. Every link connecting two nodes in the network is assumed
to be of length 500m. We consider 750, 1000, 1250 and 1500 numbers of vehicles,
respectively, to compare the average travel time of vehicles to reach the destination
S(6, 4) using i) a random traffic distribution, ii) dynamic traffic assignment algorithm
AR* [8] which is based on some heuristic, iii) traffic assignment algorithm as proposed
in [10] and iv) our proposed approach. The algorithm given in [10] is applicable to
the situation where the final destination point is located only at one corner of the grid
network. Accordingly, to use the method in [10], we had to consider each individual
sub-grid separately to compute the optimal traffic flow from the flow-fronts lying in
that sub-grid only. The simulated values of average queuing delay with different meth-
ods as shown in Fig. 6 establish that our proposed method has the best performance of
all.

6 Conclusion

We have considered the problem of route planning in case of a natural disaster when
lot of vehicles from dense residential areas start to move simultaneously to the near-
est safe-shelter. Authors in [10] proposed an optimal traffic distribution technique in a
grid-structured road network under such scenarios. However, their approach was based
on the assumption of a single destination point (safe shelter) located at the topmost-
rightmost corner point of the grid which often cannot represent a real-life situation. In
this paper, we have first analyzed the general traffic routing problem on a grid network
with an arbitrary final destination point chosen anywhere on the grid, and then have pro-
posed an optimal traffic routing strategy to minimize the average travel time of all the
vehicles. Simulation results using SUMO on a road network of Manhattan borough of
New York city show that our proposed technique outperforms the existing dynamic traf-
fic assignment algorithms in terms of the average travel time of the vehicles from their
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respective source points to the final destination point. Future research work includes
extending the ideas in the paper to non-grid networks.
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Early Detection of Parkinson’s Disease
as a Pre-diagnosis Tool Using Various

Classification Techniques on Vocal Features
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Abstract. Parkinson’s disease is a non-curable progressive nervous system dis-
order affecting operations related to muscles movements. More than 1 million
individuals are affected by Parkinson’s disease in India per year. Due to the pro-
gressive nature of the disease, the symptoms generally start gradually and are
barely noticeable; with symptoms that can start from normally unnoticeable shak-
ing of a hand to noticeable speech and writing changes to even worse like loss of
automatic movements. This project is concerned with contributing to the advance-
ment of medical technologies and may help earlier detection of Parkinson’s which
will enable early treatment. In this paper, we have overviewed the current status of
Parkinson’s disease detection and studied the model for early detection of Parkin-
son’s disease using various classifier approaches. The highest accuracy of about
96.61% was achieved using the XgBoost classifier.

Keywords: Parkinson’s disease · Extreme Gradient Boosting (XgBoost) ·
Feature selection · Decision support systems · Medical diagnosis · Support
Vector Machine · Artificial Neural Network

1 Introduction

Parkinson’s disease is one of the non-curable progressive nervous systemdisorderswhich
mostly occurs at older ages andmainly affects operations related tomovements. It affects
more than 1million individuals in India per year. As it is a progressive disorder, the symp-
toms generally start gradually and are barely noticeable [1, 2]. The symptoms can start
from normally unnoticeable shaking of a hand which can gradually progress to notice-
able changes such as slowed movement, speech changes, writing changes, olfactory loss
[3] to even worse like loss of automatic movements [4].

Most of the symptoms related to Parkinson’s disease are caused because certain
neurons in the area of the brain which is responsible for controlling muscles movement
gradually get damagedwhich results in the death of the neuron cells. Generally, an impor-
tant brain chemical is produced by these cells known as dopamine. When the neurons
cells get impaired, it results in a decrease in the level of dopamine which is responsible
for movement problems in Parkinson’s disease [5, 6]. Also, the nerve endings in the
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https://doi.org/10.1007/978-3-030-94876-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94876-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-94876-4_14


Early Detection of Parkinson’s Disease as a Pre-diagnosis Tool 199

brain get affected and the patients tend to lose the nerve endings which is responsible
for producing the main chemical messenger of our sympathetic nervous system, nore-
pinephrine [7, 8]. The sympathetic nervous system is responsible for controlling many
functions of our body such as blood pressure and heart rate. This can explain the non-
movement features of Parkinson’s disease such as irregular blood pressure, sudden drop
in blood pressure [9, 10], fatigue, decreased movement of foods from the digestive tract
[11], etc.

The main cause of death of neuron cells that produce dopamine is still unknown but
studies reflected that several factors such as genes due to hereditarywhich can be traced to
some specific genetic mutations [12], environmental triggers (like environmental factor
or like exposure to certain toxins) and presence of Lewy bodies within brain cells as it
has been found that many brain cells of patients suffering from Parkinson disease contain
Lewy bodies [13, 14].

Reduced speech intelligibility is a functional restriction of dysarthria and in the case
of Parkinson’s disease, it is related to phonatory impairment [15, 16]. This particular
symptomof Parkinson’s disease affects the articulatory component of the speech produc-
tion mechanism of the human body. Voice abnormality tends to be the first indication of
dysarthria and approximately 90% of the people with Parkinson’s will develop it during
the disease [17].

Although it is a chronic disease, studies suggest that early medication can be bene-
ficial in controlling the symptoms [18]. As it is a progressive disease our project aims
at early detection of the disease so that precautionary measures can be taken as early as
possible to counter the effects of the disease.

This study is concerned with contributing to the advancement of medical tech-
nologies, this project may help the patient as well as the medical assistance to detect
Parkinson’s earlier and along with early treatment, they may also get time to make
advance directives and establish a durable attorney to ensure their healthcare wishes to
be followed.

Interdisciplinarity includes medical science (knowledge about Parkinson’s disease)
and Computer science (knowledge about machine learning models to gain insight from
medical data).

2 Related Works

There have been numerous studies conducted to obtain the possible biomarker in the case
of Parkinson’s disease based on various factors that influence patients suffering from
Parkinson’s disease like change in handwriting due to muscles impairment, olfactory
loss, slow movements, voice impairment, etc.

Zayrit et al. [19] proposed a Parkinson’s disease detection mechanism using support
vector machine and other genetic algorithms. They use a publicly available dataset con-
taining in total 34 voice recordings belonging to 20 patients suffering from Parkinson’s
disease and other 14 healthy controls. The data was sampled at 44.100 Hz and in total 21
feature vectors were extracted by decomposing the signal using discrete wavelet trans-
form up to a3 approximation. Overall best accuracy obtained was 91.18% using SVM
and the genetic algorithm.
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Shivangi et al. [20] presented a Parkinson’s disease detection mechanism using a
dense artificial neural network for voice feature classification along with a convolution
neural network for spectrogram image classification obtained by converting gait signal
to spectrogram image. The voice impairment dataset used contains biomedical voice
measurements of a total of 91 subjects out of which 43 were suffering from Parkinson’s
disease. The data were then normalized and inputted to a 3-layer perception network
having 64, 32, and 16 neurons respectively. The overall accuracy obtained using the
voice impairment dataset was around 89.15%.

Senturk et al. [21] presented an early Parkinson disease detection model using a
machine learningmethod based on patient voicemeasurements. UCI Parkinson’s dataset
was used for the study and the data was collected from 31 subjects (23 patients suffering
from Parkinson’s diseases and 8 healthy control). Feature Importance technique was
used for feature selection in Classification and Regression tree classification models and
Recursive Feature Elimination was used with SVM and ANN. The highest accuracy of
93.84% was achieved using SVM.

Abdurrahman et al. [22] proposed an XgBoost Model for Parkinson’s Disease detec-
tion. They use a publicly available dataset containing voice impairment data collected
from 188 patients. The voice signals were sampled at 44.1 kHz gathering continuous
phonation in three reparative times. By taking the whole feature set into account, an
accuracy of 84.50% was achieved, they improved the model by ranking the feature set
by its importance then important feature selection. The final accuracy of 85.60% was
achieved.

Karabayir et al. [23] presented a Gradient boosting model for Parkinson’s disease
detection using voice impairment features. Replicated acoustic data was obtained from
80 subjects (40 patients with Parkinson’s and 40 healthy subjects), containing 44 speech-
test-based acoustic features, sampled at 44.1 kHz and 16 bits/sample. For each acoustic
feature, three artificial variables were created for representing changes from one run to
another, increasing the acoustic feature set to 264. Proper feature selection and reclas-
sification have been performed resulting in 4-fold cross-validation. Overall accuracy of
88% was obtained.

Naranjo et al. [24] proposed a two-stagevariable selection and classification approach
is developed tomatch the replication-based experimental design. The statistical approach
allows solving the computational problems with easy to implement Gibbs Sampling
Algorithm. The results that were produced had an acceptable predictive capacity to
differentiate between a PD patient and a non-PD patient. The accuracy, specificity and
sensitivity 86.2%, 90%, 82.5% respectively. This approach had less computation time
and better chain mixing as compared to the other approaches present at that time. This
Bayesian approach fills the gap on variable selection and classification in the presence of
the replicated data by properly matching the experimental design. This also proves that
computer-assisted diagnostic systems had started playing important role in the diagnosis
of Parkinson’s Disease (PD).

Olanrewaju et al. [25] proposed a method in early detection and diagnosis of Parkin-
son’s Disease that has been done using MLFNN (Multi-Layer Feed Forward) with Back
Propagation algorithm. Here Back Propagation algorithm with a single hidden layer
of MLFNN has been in which consists of 8 and 10 nodes of input and hidden layer
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respectively. There is only one output of the network which gives a value between 0 and
1. Log Sigmoid has been used as an activation layer in this research for both hidden
and output layers with weight being chosen randomly. The output of the network is
classified into two clusters which are Cluster One (for people with Parkinson’s Disease)
and Cluster Two (for healthy people). The output has a minimum and maximum value
of 0.7394 and 0. 7221. Overall the whole study proves that it can be used due to good
performance measured based on three parameters sensitivity, specificity, and accuracy
which are 83.8%, 63.6%, and 80% respectively.

3 Methodology

This section discusses the methodology we have used for the study ranging from signal
acquisition to signal pre-processing followed by discussing various classificationmodels
we have utilized for our study on Parkinson’s disease classification (Fig. 1).

Fig. 1. Proposed methodology

3.1 Signal Acquisition

For our study, we used publicly available UCI Parkinson’s dataset [26]. The dataset
is composed of a range of biomedical voice measurements from 31 subjects, 23 with
Parkinson’s disease (PD) along with the remaining 8 healthy subjects. On average, six
phonations ranging from one to thirty-six seconds in length were recorded from each of
the subjects using a head-mounted microphone positioned 8 cm away from the source.
The voice reading was sampled at 44.1 kHz with a 16-bit resolution. The dataset was
created by the University of Oxford in collaboration with the National Center for Voice
and Speech.
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Table 1. Voice perturbation and nonlinear dynamic parameters measured

Attribute
category

Attributes Description No of features

Feature
vector

Vocal
fundamental
frequency

These are fundamental frequency parameters
of vocal recording such as average, minimum,
maximum values of frequency of vocal fold
vibration, along with spread and frequency
variation

5

Jitter Jitter is the extent of variation or alteration in
the basic frequency from one vocal cycle to
another vocal cycle. Useful in finding
instabilities in the oscillating pattern of vocal
folds

3

Shimmer Shimmer is the extent of variation or
alteration in the amplitude from one vocal
cycle to another vocal cycle. Useful in finding
instabilities of the oscillating pattern of vocal
folds

5

Harmonic
parameters

This parameter accounts for the noise
introduced by the partial vocal fold closure
that occurred in speech pathologies. HNR
(Harmonics to noise ratio) and NHR (Noise
to harmonics ratio) are those two features

2

D2 D2 is the correlation dimension. It is
calculated by first-delay embedding the signal
to recreate the phase space of the nonlinear
dynamical system

1

RPDE Recurrence period density entropy (RPDE)
measures the distortion from the average
vocal fundamental frequency. It is the
measure of the extent to which vocal folds
can sustain stable vocal fold oscillation

1

DFA Detrended Fluctuation Analysis (DFA). It is
the measure of the stochastics self-similarity
of the turbulent noise

1

PPE Pitch Period Entropy (PPE). It utilizes the
logarithmic scale to measure the impaired
control of average vocal fundamental
frequency

1

(continued)
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Table 1. (continued)

Attribute
category

Attributes Description No of features

PPQ It is five-point period perturbation quotient
(PPQ)

1

RAP It is relative amplitude perturbation (RAP) 1

APQ 11 It is 11-point amplitude perturbation quotient
(APQ)

1

Labels Status This parameter accounts for the status of the
disease in a patient

1

3.2 Signal Pre-processing

Then, the voice impairment dataset is organized in an accurate format and separating the
feature vectors and the labels for model training and then followed by pre-processing the
dataset by normalizing the data by passing it through the min-max scaler to normalize
it in the range from −1 to 1.

Normalization is a technique that is utilized as a part of data preparation for machine
learning. It is mainly utilized for changing the numeric values involved in the dataset to
a common scale without distorting the differences in the range of values involved [27].
As our dataset contains various features having different ranges, hence, we normalized
it so that each feature is scaled to a particular range.

3.3 Feature Engineering

The next step involves feature selection based on feature importance. Feature importance
refers to the techniques that assign a score to each feature based on how useful or
important the feature is at predicting the output for a given feature vector [28, 29]. This
technique allows us to analyze and interpret which features contribute to the accuracy
of the model and which features can be ignored.

Ranking based feature selection technique has been implemented using XgBoost.
The significance of each feature in the dataset is explicitly computed, allowing attributes
to be graded and examined. The degree by which each feature split point improves the
performance criteria, weighted by the set of observations the node is accountable for,
is used to determine the importance of a single decision tree. The significance of each
attribute is then averaged across all of the decision trees in the classification model.

Finally, map of feature importance is then plotted by analyzing and interpreting
feature score (as in Fig. 2) and selecting the important feature in the feature selection
phase a separate feature vector is created by ignoring the features such as Shimmer:DDA,
Jitter:DDP, MDVP:Shimmer, HNR, and MDVP:Flo (Hz) whose feature score is nearly
zero.
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Fig. 2. Map of feature importance

3.4 Classification Algorithms

Various classification algorithms such as Support Vector Machine (SVM), Extreme Gra-
dient Boosting (XgBoost) Classifier, Random Forest Classifier, and Artificial Neural
Network.

3.4.1 Extreme Gradient Boosting (XgBoost) Classifier

Gradient boosting is a machine learning model which can be utilized for classification
and regression problems. It worked by building an ensemble of weak learners a decision
tree.

Boosting in gradient boosting model signifies the approach by which a weak learner
such as a decision tree is converted or rather modified into a better learner by the means
of fitting the weak learner into a modified version of the original dataset [30]. To make
the model more robust a loss function is also defined mostly as a 14 logarithmic loss
function in case of classification problem [31]. Our goal is to reduce the loss function
so that the classification score increases hence the precision of the model.

Fs−1(x) = Fs(x) + f(x) (1)

Where Fs(x) is the function learned by the boosting model in ‘sth’ iteration. By this, we
can fit the current iteration model f(x) on residuals of the previous iteration.

We decided to utilize the XgBoost model as boosting is an ensemble method for
primarily reducing bias, and also variance in supervised learning, and a family of
machine learning algorithms that convert weak learners to strong ones. And also, it
is computationally very efficient.
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3.4.2 Support Vector Machine (SVM)

A support vector machine takes input data points and gives a hyperplane (which in this
case (two-Dimensional space) it’s simply a line) as an output that best separates the
vectors. It is necessary to find the most optimal hyperplane to find the most accurate of
the results [32]. This line is the decision boundary: anything that falls on the left side of
it we will classify as an item belonging to first class, and anything that falls to the right
as an item belonging to second class.

To find the best hyperplane in a linear SVM, linear algebra is used to transform the
problem according to our needs. Here kernel plays a crucial role [33]. In linear kernel,
the equation that is used to make the predictions for the new inputs using dot product
between the input (x) and the support vectors is:

f(x) = B(0) + sum(ai ∗ (x, xi)) (2)

This equation involves calculating the inner product of a new given input vector with
all support vectors that are present in the data (data-set). The coefficients: ‘B(0)’ and
‘ai’ (for each input) must be estimated from the training data by the learning algorithm.

Similarly in our project SVMclassifies between vectors in the same linearway,which
helps us to classify, if someone is suffering from Parkinson’s disease or not. Through
this method the accuracy acquired is 91.52%.

3.4.3 Random Forest

Random forest is an ensemble learning technique that is used for regression and classi-
fication problems. It operates by constructing a forest of decision trees and then making
the prediction by averaging the responses of each node which are individual decision
trees [34]. A decision tree at its basics can be considered as a tree containing a condition
or statement and two branches either yes or no; those branches can be further extended
to fit a complex query. Formally, a decision tree is a non-parametric model which works
on labeled data i.e., it is a supervised learning approach.

Further, extending the basic idea of a decision tree, a forest of multiple decision
trees can be considered each having its predictions based on certain parameters. These
parameters are chosen randomly for each of the decision trees at every split [35].

Bootstrap aggregating or bagging is utilized during the training phase in the random
forest for drawing random samples from the training dataset with replacement. To output
the prediction, the output from the individual decision tree is combined for input test
point x’. Where bagging count is represented by B.

f = 1/B
∑

B
B=1fb

(
x

′)
(3)

3.4.4 Artificial Neural Network (ANN)

An artificial Neural Network is a collection of connected units or nodes called artificial
neurons. These neurons are typically aggregated into layers. Different transformations
may be performed at different layers. These are trained by processing examples that
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contain a known input and result framing probability-weighted associations between the
two. These are stored within the data net itself in the Data Structure. ANN (Artificial
NeuralNetwork) is composedofmultiple nodeswhich are connected by lines and interact
with each other [36]. The results of the tasks are passed to the neurons. The output at
each node is called its activation value.

Each Link is associated with weight. ANNs (Artificial Neural Network) learn what
happens by altering weight values. ANNs consist of layers that consist of an input layer,
hidden layer, and output layer. Here backpropagation is the essence of neural net training
[37]. It fine-tunes theweights of the neural net based on the error obtained from the epoch
(iterations). So, it’s all about feeding the loss backward in such a way that it helps in
better predicting the neural network.

3.5 Training and Test Case Classification

Firstly, we have separated the feature vectors i.e., the voice features and the labels
i.e., either suffering from Parkinson’s disease or not, and then organized the data as
per convenience to model it using the classification models. For our study, we have
utilized 70% of the data for the training purpose and the remaining 30% for testing the
classification model.

4 Results

Performance of various classification approaches was evaluated using the model preci-
sion, Recall, F1 score, support for both the class i.e., class 0 (not have Parkinson disease)
or class 1 (have Parkinson disease) as mentioned in Table 2; and finally, the accuracy of
the model as It has been mentioned in Table 1.

Table 2. Classification accuracy score

Algorithms Accuracy

XgBoost 96.61%

Support Vector Machine 91.52%

Random Forest 84.74%

Artificial Neural Network 81.35%

Extreme gradient boosting (XgBoost) outperformed the other three algorithms and
the highest accuracy of about 96.61%was achieved in our study. SVMwas second on the
list with achieved accuracy of about 91.52%. Random forest on third with an accuracy
of 84.74% and finally ANN was last with achieved accuracy of about 81.35% (Table 3).
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Table 3. Classification report for the different classification algorithm

Algorithm Class 0 Class 1

Precision Recall F1 score Support Precision Recall F1 score Support

XgBoost 1.00 0.89 0.94 19 0.95 1.00 0.98 40

SVM 1.00 0.55 0.71 11 0.91 1.00 0.95 48

Random
Forest

0.57 0.73 0.64 11 0.93 0.88 0.90 48

ANN 0.83 0.53 0.65 19 0.81 0.95 0.87 40

5 Conclusion

Aperson showing stage one of Parkinson’smay experiencemild symptoms that generally
do not interfere with daily activities, tremors, and changes in facial and walking expres-
sions. Regardless of how long it takes to reach stage 4 of 5 a person with Parkinson’s,
the person will get symptoms that become debilitating if an early detection technique
of Parkinson’s can be made, it can become an empowering thing for patients as s the
patients can start with the latest treatments before the harmful progression of the disease.
Parkinson’s disease can’t be cured but medication and proper physiological therapies
may help control the symptoms dramatically. With our machine learning model, the
detection of PD can be made before it progresses to extreme stages. Contributing to the
advancement of medical technologies, this project may help the patient as well as the
medical assistance to detect Parkinson’s earlier and along with early treatment, they may
also get time to make advance directives and establish a durable attorney to ensure their
healthcare wishes to be followed.

6 Application

An application can be deployed where the patient will be directed to record his voice
signals according to given parameters in the application to form the feature set for the
model, the formed dataset then can be sent over to a cloud for analysis, and the prob-
able chance of having the Parkinson Disease is detected and the results are displayed
to the patient, along with other important information and precautionary measures with
mentioned other tests if required according to the results. This can help in remote diag-
nosis of the disease and the patients can consult their doctors at the early stages of this
progressive neurological disease so that proper medication can be started as early as
possible and can restrict Parkinson’s disease from progressing further stages.

7 Future Work

The future scope of the project includes that in addition to voice frequency analysis and
revelation, features to detect other symptoms like stationary tremors through computer
vision can be achieved. So that a more robust model can be formed by considering
various parameters into consideration related to the effects of Parkinson’s Disease.
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Abstract. In social media platforms, a viral information or trending term draws
attention, as it asserts potential user content towards topic/terms and sentimentflux.
In real-time sentiment analysis, this viral information deliver potential insights, as
encompass sentiment and co-located ranges of emotions be useful for the analysis
and decision support. A traditional sentiment analysis tool generates the level of
predefined sentiments over social media content for the defined duration and lacks
in the extraction of emotional impact created by the same. In these settings, it is
a multifaceted task to estimate precisely the emotional quotient viral information
creates. The proposed novel algorithm aims, to (i) extract the sentiment and co-
located emotions quotient of viral information and (ii) utilities for comprehensive
comparison on co-occurring viral informations, and sentiment analysis over Twit-
ter text data. The generated emotion quotients andmicro-sentiment reveals several
valuable insight of a viral topic and assists in decision support. A use-case analysis
over real-time extracted data asserts significant insights, as generated sentiments
and emotional effects reveals co-relations caused by viral/trending information.
The algorithmdelivers an efficient, robust, and adaptable solution for the sentiment
analysis also.

Keywords: Big data · Emotion quotient · Sentiment analysis · Twitter

1 Introduction

The traditional social media platforms, e.g., Twitter, Facebook, etc. cater to the global
users and list their personal information and media. The heterogeneous user data is often
utilized for deriving common sentiments or trending information. The trending or viral
information primarily harnesses the global content shared co-related to a particular topic
and hash tag keywords [1].

A naive user or new user usually refers to this trending or viral list of information
to see the most occurring or contributory piece of information [2, 3]. In this process, a
user simply refers to the viral information and explores the related term over the Twitter
API, without cognitive awareness of the emotional effect of viral information. A piece
of viral information may have a list of information that may trigger the emotional effect
on the user and lead to emotional splits or swings on the choice of information. User
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R. Bapi et al. (Eds.): ICDCIT 2022, LNCS 13145, pp. 210–226, 2022.
https://doi.org/10.1007/978-3-030-94876-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94876-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-94876-4_15


Extracting Emotion Quotient of Viral Information Over Twitter 211

assistance is pivotal for the user, which may assist the user to showcase the emotional
effects that viral information may carry. Though social media platforms offer limited or
no functions or aspect-related views on the API for the generic user.

For example: Viral information related to ‘Covid-2019’ may cause significant emo-
tional effects on the citizens in current time. The cause-effect analysis over twitter may
assist in administration (Healthcare offices) to track the sources/persons to take pre-
cautionary measures proactively. Similarly, for spectrum of applications where these
estimated statistics may play a significant role:

• Sentiment analysis on social media is extensively used in the Stock market and crypto
market to observe current trends and potential of Panic sell.

• Several sentiment models adapted on political elections recently, e.g. for US elections
and Indian Elections. Similarly, a government office could utilize to track civil riot
origins before they become uncontrollable, etc.

Typically, the designed algorithm for the sentiment analysis and emotion quotients
(EQ) statistics could serve several pivotal objectives, as asserted by the experimental
analysis also [7, 8]. The sentiment andEQ statistics generated could be utilized in several
application areas: decision-making, advertising, public administrations, etc. Though,
generating these statistics for real-time published data from the twitter data is a complex
and multifaceted computing task [13, 14].

1.1 Motivation and Research Questions

The sentiment analysis is a complex computing task, mainly due to the semantic correla-
tion that exists between the user-generated data and targeted sentiment level and created
emotional quotients [14]. The task becomes multifaceted, primarily, when it is aimed
for deriving the ‘emotion effect’ co-located to a sentiment, as a micro-level. In these
settings, a strategy could be the need of the hours that acquire the real-time twitter data
and deliver the insights.

The research questions (RQs) are formalized to assist design of proposed adaptive
strategy for the estimation of sentiment level (SL) and emotion quotient (EQs) of viral
information on the real-time basis:

RQI: What are the key twitter data elements/features to extract the SL and EQs?
RQII: How to estimate the SLs and EQs and co-located overlap on both estimates?
RQIII: What SL and EQ statistics asserted for spectrum of application domains?

The designed RQs assist in conducting overall work and validate its feasibility for
analytics and just-in-time decision-making over real-time published twitter data.

The key contribution is a robust and adaptive algorithm for sentiment and emotion
evaluation, on just-in-time estimation for an interactive data play. Other contributions
are as follows:

(i) A portable and adaptive UI, to assist on generates the real-time statistics (emotion
and sentiment polarities) for an emotion value ‘as query’ or viral information.
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(ii) The strategy outlines pivotal features of text-based sentiment and emotion analysis
on social media, e.g. subjectivity, statement polarity, emotions expressed, etc.

(iii) The experimental assessment asserts the overall accuracy upto 89% and 90%,
respectively for sentiment and EQs estimation. The overall performance achieved
is at significant-level in the view of real-time soft data analysis challenges.

The paper is organized as: Sect. 2 lists the relevant research efforts to the sentiment
and emotional statistics. Section 3 elaborates the conceptual schema and internals of
the designed strategy, with formulas and working example. Section 4 describes the
experimental assessment on the traditional metrics and advanced measures. Conclusion
listed at last.

2 Related Work

In recent years, developing novel algorithms for sentiment and threaded emotional ana-
lytics estimation on soft data, particularly at micro-level on viral or trending information
is area of interest. The located research areas fall under two heads:

2.1 Sentiment Analysis Over Soft Data (Reviews/Posts/Viral Information)

In recent years, the research efforts made on the accurate estimation of sentiment statis-
tics, with a listed core task (i) an automatic identification of relevant and text with opinion
or documents [15–20], (ii) preparation of sentiment and threaded sentiment analysis.
Existing strategies and methods employed mainly rule-based and statistical machine
learning approaches for these inherent tasks, e.g. opinion mining and sentiment analysis
[22, 23].

A comprehensive survey is presented in [34] with two broad set of strategies (opinion
mining and sentiment analysis). Whereas, Turney [38] asserts that an unsupervised
algorithm, could be more suitable for the lexicon-based determination of sentiment
phrases using function of opinion words over the word/sentences or document corpus,
same is supported in [4, 36]. Another work in [5] highlighted the use of SentiWordNet as
lexicon-based sentiment classifier over document and text segregation, as it may contains
opinion strength for each term [22]. A prototype in [9], used the SentiWordNet Lexicon to
classify reviews and [6] build a dictionary enabled sentiment classification over reviews
with embedded adjectives.

Further, several work used Naïve-byes and SVM for sentiment analysis of movie
reviews supported by inherent features, unigrams, bigrams, etc. These experimentations
reveal that with feature a greater accuracy could be achieved sentiment polarity and
statistics generation [23, 25].
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In the recent potential work, a subsequence kernel-based voted perceptron prototype
is created, and it is observed that the increase in the number of false positives is strongly
co-related with the number of true positives. The designed models reveal its resiliency
over intermediate star rating reviews classification, though five-star rating reviews is
not utilized while training the model. Similar model is used for the sentiment analysis
over the microblog posts using two phases: first phase involves partition of subjective
and objective documents based on created and further for the generation of sentiment
statistics (as positive and negative) in the second phase [10, 11, 34].

2.2 Emotion Quotients (EQs) Over Soft Data

The accurate detection of inherent ‘Emotion’ over a text data using natural language
processing and text analytics to discover people’s feelings located subarea of research
work. The usage of it could be tracking of disasters and social media monitoring.

Tracking user’s opinions and inherent emotional quotients using posted soft data
reveals interesting insights, e.g. tracking and analyzing Twitter data for election cam-
paigns [6, 21, 22, 39, 41, 43]. There are several research studies asserts that sentiment
topics and emotion topic/terms delivers promising outcomes for the generation of both
polarities, such as for the tracking and monitoring ‘earthquake disasters’ using ‘Weibo’
a Chinese social media content is used to see the sentiments generated and sensitization
[44]. In this, the proposed framework detected disasters related sentiment over mas-
sive data from a micro-blogging stream and to filter the negative messages to derive
co-located event discovery in a post-disaster situation [23, 24, 37, 38].

The emergence of spectrum of social media platforms justified the need of social
analytics for decision-making [38]. A system for tracking of sentiment on news entities
over time [35, 39, 42], the socio-politics issues are detected over real-time streams.
In this, sentiment-spike detection has been generated in [25–29, 40], Twitter data and
analyzed the sentiment towards 70 entities from different domains. Similarly, in [30–33,
41, 45] a system to tracking health trends using microblogs data for the identification
of province of several health related sentiment and co-located emotions are used. The
authors introduced an open platform that uses crowd-sourced labeling of public social
media content.

The key challenges in the accurate estimation sentiment and co-located EQs is the
scalability of soft data and its rate of change for each inherent levels. Though, building
an information system on the top of social media platform content could offer several
useful takeaways to government’s official and decision-makers. An end-to-end adaptive
system is a focus of the system to generate these statistics to the spectrum of user, ranging
from naïve to policy maker.

3 Proposed Strategy

The traditional social media platform, e.g. Twitter, Facebook, etc. caters global user’s
personal intents using postedmedia. The posted heterogeneous user data is pre-processed
for acquiring generic sentiments and EQs of a viral information. The trending or viral
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information primarily harnesses the global content shared to a particular topic and key-
word (e.g., hashtag). In this setting, a user simply refers to the viral information/hashtag
ormanually explores the related termover the twitterAPI,without cognitive awareness of
the emotional effect of viral information. Though, social media platforms offer limited
or no functions or aspect related views on the API for the generic user. The design system
assists a naive user to understand its sentiment impact and further emotional quotients
(EQs).

3.1 Conceptual Framework

A novel strategy for the real-time generation of emotional quotients of viral/trending
information on twitter is designed. Figure 1 illustrates the internal computing blocks
and their interactions for the intended objectives. The proposed framework begins with
a traditional data collection over twitter API. The data extraction is driven by the user
inputs, e.g. keyword/hashtags, number of tweets, and duration. The retrieved tweets from
the API, are now to be stored in a temporary storage for later text-processing and feature
extraction.

The local twitter data storage is also connected to the computing clock ‘text pre-
processing’, each tweet extracted must go through local text processing and further
supplied to the ‘feature-extraction’. Further, a small computing thread is kept within
the ‘feature extraction’ computing block for the estimation ‘sentiment score (SC)’ and
‘emotional quotient (EQ)’ co-located twitter data objects.

Fig. 1. Conceptual framework of proposed strategy



Extracting Emotion Quotient of Viral Information Over Twitter 215

3.2 Generating Sentiment Level (SL) and Emotional Quotient (EQ)

The aim of the designed system is to generate the sentiments and emotion quotient. A
prospective user (e.g., naïve, decision-maker, business analytics, admin, Govt. official,
etc.) submit the data request over the user interface, using keywords, number of tweets
of interest and name of emotional (optional). The designed system, evaluates the both
statistics over a real-time.

The pre-processing stage, each extracted tweet is divided into tokens with estimated
probability (Tprob = Happy, Sad, etc.). The python sentiment analysis is conducted using
NLTK library [12]. The probability score (WGTProb.) is weighted a value, as to account
of fewer negative tweets as there are positive and neutral ones. Additionally, token below
a threshold count is truncated, since it is not significant and often little contributory. The
latter is determined using the H10 entropy, formalized as Eq. 1 as.

H10(token) = −
∑

s∈sentiment
(p(s|token) log10 p(s|token)) (1)

The measures for positive, neutral and negative emojis are found. Finally, as given that a
tweet is composed of several words; all the different features are aggregated /summed for
each word, as to obtain an overall tweet_value (Tv), normalized by the tweet_length
(Tct).The positive score (s+) and negative scores(s−) for each tweet are determined as
average of the both scores using Eq. 2 and Eq. 3 respectively. The overall Sentiment
Score (SC) is estimated for the locating the topic proportion.

s+ =
∑

i∈t pos_scorei
n

(2)

s− =
∑

i∈t neg_scorei
n

(3)

Overall Sentiment Score (SC) = (
s+ − s−)

(4)

To extract emotion from a tweet, the topical words (bigram) are taken from tweet content,
based on ‘item response theory’ [12] and further categorized using its unsupervised
features. The proposed algorithm is based on ‘Topic proportion’ that helps to identify
related sentiment terms located to a topic sentiment lexicon.
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Algorithm: Extracting SL and EQ of Tweet_objects
Input: Topic name (Tkw), No. of Tweets (ToI), and Emotion _name (Emo)
Output: Tweet_list, EQ, SL
Step 1: Cleaning up the tweets /*denoising the ttweets such as links,@,#,etc.*/

df['Tweet'] = df['Tweet'].apply(cleanUpTweets)
all_tweets=df['Tweet'].tolist() 

             df = df.drop(df[df['Tweet'] == ' '].index)
Step 2: Gathering and Storing Emotions                    /*text2emotion EQ value generated for each tweet*/
             dict = te.get_emotion(text)
             for key in dict:
                if (key == "Happy"):

Happy.append(dict[key])/*Similartly also for “Sad”,”Fear” etc*/
Step 3: Finding the dominating Emotion /*For each tweet, store the dominating emotion values  */
              for i in range(0,NoOfTweets):

maxel=max(Happy[i],Sad[i],Angry[i],Fear[i]) 
if((maxel==Happy[i])and(maxel!=0)): 

Happy2.append(all_tweets[i])            /*Similarly also for Sad2, Fear2 etc*/
Step 4: Finding the overall percentage of each emotion after analyzing each tweet on the topic
                                    /*All the values in each emotion are added and for each emotion percent is calculat-

ed by dividing summation of values for that emotion by the total sum*/
happysum = sum(Happy)
totalsum = zip(Happy, Sad, Angry, Surprise, Fear)
  for x in totalsum:

                   f or y in x:
      total = total + y; 

happypercent = (happysum / total) * 100/*Similarly the percentage 
of other emotions is calculated*/

Step5: Polarity analysis                                        /*For each tweet, polarity is analyzed& values are clas-
sified into three groups */

            for tweet in self.tweets:
               analysis = TextBlob(tweet.text)
               polarity += analysis.sentiment.polarity
                  if (analysis.sentiment.polarity== 0 neutral += 1; 
                 elif (analysis.sentiment.polarity> 0 and analysis.sentiment.polarity<0.3):wpositive += 1; 
                 elif (analysis.sentiment.polarity>0.3 and analysis.sentiment.polarity<=0.6): positive += 1; 
                 elif (analysis.sentiment.polarity> 0.6 and analysis.sentiment.polarity<= 1):spositive += 1; 

elif (analysis.sentiment.polarity> -0.3 and analysis.sentiment.polarity<= 0):wnegative += 1; 
elif (analysis.sentiment.polarity> -0.6 and analysis.sentiment.polarity<= -0.3): negative += 1; 
elif (analysis.sentiment.polarity> -1 and analysis.sentiment.polarity<= -0.6):snegative += 1; 

The proposed algorithm is driven on the topic model, as extracted tweet-object is a
mixture of one or more topics. A lexicon approach measures the sentiment of a group of
documents ‘corpus’, with the help of dictionary of words with associated polarity scores.
A dictionary of lexicons elements is added externally to the corpus for the purpose of
enhancing the embedded lexicons. The proposed lexicon-based sentiment estimation for
positive and negative sentiment using Eq. 5 and Eq. 6 respectively, and formalized as
following,

P(w |+) = Mw∣∣N+∣∣ (5)

P(w |−) = Mw∣∣N−∣∣ (6)
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Here,Mw is the set ofmessages containing lexical token ‘w’. Here, the estimated positive
and negative sentiments of amessage are coded asN+,N− respectively, for each implicit
message (message) ‘m’. The log likelihood ratio is calculated using theEq. 7 and utilized
inherently during the estimation of place of sentiment and emotion quotient estimation:

Sm =
∑n

i=1
log

(
P(wi |−)

P(wi |+)

)
(7)

Here, lexical unit of the dictionary is presented by w and n is the number of words and
collocations included in the dictionary, existences with the sentence m.

3.3 System Use-Cases of Sentiment and Emotional Analytics

The designed system is plugged with an interactive user interface (UI) for several types
of users. The UI aimed is to offer estimated statistics and processed data for the different
decision making and analytics purposes. There are several use-cases of designed system
listed during the design phase, e.g. related viral information to an emotional value,
comparing the emotional causes of more than one viral/trending information, etc.

The first use-case is coming from a naive user, as ‘basic search on social media data
for a sentiment and emotion value’, illustrated in Fig. 2. Here, two parts of UI steers user
cognitive tasks, e.g. search, exploration, browse, etc., on the real-time analytics. For a
user input ‘keyword/hashtag/emotion name’, the system extracts the related tweets and
prepares intermediate statistics to be shown in the graphical scheme.

Here,Part 1 illustrates both information using pie chartwith scores ‘as%values’, and
within it tweets lists of the user interest is available. In Part 2, the feature of compares
and explores offers a new dimension of the designed prototype. Here, a user may be
interested to compare effects of pair of viral and trending information, for playing with
the relevant social media data, further two trending or viral information or may delve
into the deeper view of these statistics and values and related tweets.

The second use-case is robust exploration into the relevant viral/trending information
for a user query. The designed system may be adapted for the social data exploration
within emotion quotient, illustrated in Fig. 3. The matching viral information easily
adapted for the analytics.

Further, third use-case is a capacity, to deliver a matching list of trending/viral
information’s for and matching viral the system for the exploration within the tweets
data for an input, ‘emotion quotient’. The viral/trending topics may be extracted with
the presence of the same emotional quotient values.

The fourth use-case is an inherent capability for systematic comparative view
between more than one user inputs (trending and viral information) and its detailed
view on the emotion quotients (EQs) and further exploration on the generated tweet
text, also illustrated in Fig. 4.

3.4 Working Example

TheOlympic is the world’s biggest sporting event, as plethora of sentiments and emotion
affect attached, as abundant amount of social media data is contributed globally on social
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Fig. 2. User Interface (UI) for 1st use-case, for the sentiment and EQs explorations.

Fig. 3. User interface for comparing SL and EQs with polarity (‘tokyo2020’ & ‘olympic’).

networking platforms. Similarly, the designed algorithm may be adapted for event, as
it caters diverse user and their relevant content and Meta data, e.g. comments, share,
tagging, repost, etc.

The designed prototype is configured over the twitter API and its settings. The
data relevant data may extract on real-time basis and subsequently pre-processed, using
traditional text processing. The interactive UI is designed to capture user cognitive
actions support visualizations of derived analytics for the provided social media data.
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Fig. 4. User interface for (‘tokyo2020’ & ‘olympic’ for 100 IoT) sentiment and EQ polarity.

Fig. 5. Estimated subjectivity and polarity analysis

For instance, the men’s single badminton player ‘Sai Praneeth’, who lost both his
initial matches and is out of the tournament, results to polarity positives (22.8%) is less
than negative’s (30.8%), here ‘Fear’ and ‘Surprise’ are dominating. Further, between
‘Sai Praneeth’ and ‘MirabaiChanu’ as trending pattern, polarity graph reveals interest-
ing patterns, despite difference on sport zones, in Fig. 5 under Subjectivity graph. In
subjectivity Happiness surrounds Mirabai Chanu with some sadness, for Sai Praneeth
surprise, Fear, Sadness is mostly visible.

Next, Sai Praneeth and KentoMomota are compared to evolving polarity patterns.
Subjectivity analysis appears similar, except to ‘fear’ emotion, as higher fear is sur-
rounded to ‘KentoMomota’, illustrated in Fig. 5, under Polarity graph, while polarity
graph reveals ‘KentoMomota’ with higher positivity, while ‘Sai Praneeth’ has trace of
‘weak negativity’.
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4 Performance Assessment and Evaluation

4.1 Data Settings

The experimental setup includes software used Jypter notebook, Visual Studio and
PyCharm. Twitter API isused for the real-time data extraction, at instance to be extracted
1 to 800 tweets for comparing 1 to 1600 tweets for analytics. There are several libraries,
e.g. tweepy, re, text2emotion, textblob, pandas, numpy, matplotlib, sys, csv and Tkinter
(for user interface). The hardware components includes, 2 PCs with specification as:
AMD Ryzen 5 2500U processer with Radeon Gfx 2.00 GHz, RAM 8 GB and another with
processor of Intel Core i5(8250U)CPU @ 1.60 GHz, Intel UHD graphics 620, 12 GB
RAM).

The user interface (UI) is designed using Python library Tkinter and statistics are
using Python library Matplotlib for extracted tweet objects for a user request. The real-
time extraction of tweets objects using API and further cleaned and stored into Pandas
Data Frame. The number of tweets for extraction is related to a user input, as for each
user input it is related. The experiments are conducted using the several input values, 1
to 1600 numbers of tweets extracted on real-time basis on the prototype.

4.2 Performance on Sentiments and Emotion Quotients (EQs) Estimation

The performance evaluation of the designed system for the real-time data processing to
estimate the underlying statistics outlines several insights, specific to system’s feasibility
and its viability for just-in-time decision making and analysis. The Query Length (QL),
Number of tweet of interests (ToI), and Performance (processing time) are employed as
key performance assessment parameters.

Here, QL defined as the dimension of the keywords/hashtasg, i.e. No. of characters
in the user input keywords or hashtags. For a user input ‘Tokyo2020’, QL is 9. Similarly,
ToI value directs system to extract at least these many recent tweets from API on in
real-time basis, e.g. ‘Tokyo2020’ with ToI value 20 fetches recent 20 tweets at the time.

Figure 6 illustrates the overall processing time, formalized as ‘total time required
for the preparation of both statistics on real-time’, real-time appearing viral topics dated
on 30 July 2021. For each topic, relevant tweet set is extracted and subsequently ranked
for implicit pre-processing. In this, at least 1000 tweets are fetched on co-located viral
topics, based on priority based preference. A generic estimation of processing time
usually increased with the higher no. of tweets, as higher no. of tweets harness increased
coverage of sentiments and emotions.

Figure 7 depicts the overall processing time for the user submitted query or selected
viral topics on real-time data. The different size of user input, as query length (QL) is
adapted for the assessment,with an aim to highlight the fact that asQL increased to a level
affects the overall computational time. In a generic settings, to different viral/trending
topics appearing, as to ensure the variable QL and observed the processing time patterns
for at least recent 1000 tweets on each viral or trending topics.
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Fig. 6. Overall processing time for analyzing multiple viral or trending topics

Fig. 7. Overall Query Response Time (QRT) for different size of user query, as ‘QL’
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4.3 Accuracy on Sentiment and Emotional Quotient Generation

The evaluation of accuracy in the detection of accurate sentiment levels (SLs), as senti-
ment levels are formalized as ‘the quantum of a sentiment contributes to viral informa-
tion, w.r.t user contributed data’, and each user specified inputs is pivotal for the analysis.
The performance statistics for the estimation of accuracy on specified sentiment-levels
are listed in Table 1. A brief comparison over 500 ToIs asserts overall accuracy 85% on
the prediction of sentiment-levels (e.g. positive, negative, and neutral as 89%, 88.58%,
and 77.62%).

Table 1. Accuracy on estimation of each specified sentiment-levels.

Predicted
Positive Negative Neutral

234 108 155

A
ct

ua
l Positive 181 143 14 24

Negative 177 54 86 37
Neutral 139 37 8 94

Table 2 lists the overall accuracy statistics for the generation of emotion quotients
(EQs), here EQ is formalized as ‘the emotion influx created by the viral information
on different fundamental emotions’. The designed algorithm predicts EQs accuracy of
87%, with 89%, 85.88%, 85.66%, 89.88% and 88% for spectrum of the emotions, e.g.
Happy, Sad, Fear, Surprise and Anger respectively.

Table 2. Accuracy on estimation of each specified emotion.

Predicted
Happy Sad Fear Surprise Anger

56 24 22 12 16

A
ct

ua
l 

Happy 33 22 5 2 2 2
Sad 40 15 6 8 6 5 

Fear 18 6 2 7 0 3 

Surprise 15 5 5 1 4 0 
Anger 24 8 6 4 0 6

4.4 Overall Retrieval Performance

The performance of a designed sentiment and EQs estimation on the traditional retrieval
metrics are key indicators for the feasibility for decision making and related functions.
The traditional metrics are adapted for the evaluation of the system performance, e.g.
Precision, recall and f-measure. The precision is adapted in its fundamental notion, as a
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measure of ‘precisely matched results to the user input’, and recall as a measure ‘closely
relevant result to the user query’. F-measure is a geometric mean of precision and recall.

Table 3 lists these indicators, when experimented with varying degree of user input
(Query length and ToI).

Table 3. Traditional retrieval metrics for sentiment level and emotion quotient estimation

Sentiment type Metric (scores)

Positive 

Precision 0.611

Recall 0.389

F-measure 0.475

Negative 

Precision 0.796

Recall 0.224

F-measure 0.351

Neutral 

Precision 0.606

Recall 0.240

F-measure 0.344

Emotion type Metric (scores)

Happy
Precision 0.393
Recall 0.259
F-measure 0.312

Sad 
Precision 0.250
Recall 0.113
F-measure 0.156

Fear 
Precision 0.318
Recall 0.108
F-measure 0.161

Surprise 
Precision 0.333
Recall 0.048
F-measure 0.084

Anger 
Precision 0.375
Recall 0.063
F-measure 0.107

5 Conclusion

The data generated over the various Social media platforms trigger significant changes
on the public sentiment and emotional flux. A novel algorithm is designed to estimate
the sentimental and emotional quotient of viral or trending information in real-time.
The work is in line with current need to textual emoticons mining in several real-life
application scenarios. The algorithm estimates sentiment and EQs of a user requested
viral/trending information over the twitter on just-in-time basis over real-time twitter
data. The approach builds a corpus of tweets and related fields where each tweet is
classified with respective emotion based on lexicon approach. The systematic evaluation
asserts the significance of delivered statistics for the user input ‘viral information’, and
its usability. The feasibility analysis of statistics for real-time analysis and decision-
making is uncovered using 04 use-cases, also outlines the key features of social media
data for the purpose.

The embedding interactive user interface is one of future scope of the current algo-
rithm. An intent model for the estimating the user interest and its correlation with current
trending or viral information in the social media platforms is another tentative direction.

References

1. Bikel, D.M., Sorensen, J.: If we want your opinion. In: International conference on semantic
computing (ICSC 2007), pp. 493–500 (2007). https://doi.org/10.1109/ICSC.2007.81

https://doi.org/10.1109/ICSC.2007.81


224 P. Kumar et al.

2. Cambria, E., Schuller, B., Xia, Y., Havasi, C.: New avenues in opinion mining and sentiment
analysis. IEEE Intell. Syst. 28(2), 15–21 (2013). https://doi.org/10.1109/MIS.2013.30

3. Chen, R., Xu, W.: The determinants of online customer ratings: a combined domain ontology
and topic text analytics approach. Electron. Commer. Res. 17(1), 31–50 (2016). https://doi.
org/10.1007/s10660-016-9243-6

4. Ding, X., Liu, B., Yu, P.S.: A holistic lexicon-based approach to opinion mining. In: Pro-
ceedings of the 2008 International Conference onWeb Search and Data Mining, pp. 231–240
(2008). https://doi.org/10.1145/1341531.1341561

5. Esuli, A., Sebastiani, F.: Sentiwordnet: a publicly available lexical resource for opinion
mining. In: Proceedings of 5th Language Resources and Evaluation, vol. 6, pp. 417–422
(2006)

6. Fei, G., Liu, B., Hsu, M., Castellanos, M., Ghosh, R.: A dictionary-based approach to identi-
fying aspects implied by adjectives for opinion mining. In: Proceedings of 24th International
Conference on Computational Linguistics, p. 309 (2012)

7. Feldman, R., Fresco, M., Goldenberg, J., Netzer, O., Ungar, L.: Extracting product compar-
isons from discussion boards. A model for senti-ment and emotion analysis of unstructured.
In: Seventh IEEE International Conference on Data Mining (ICDM 2007), vol. 197, no. 123,
pp. 469–474 (2007). https://doi.org/10.1109/ICDM.2007.27.

8. Godbole, N., Srinivasaiah, M., Skiena, S.: Large-scale sentiment analysis for news and blogs.
In: Proceedings of the International Conference on Weblogs and Social Media (ICWSM),
vol. 7, no. 21, pp. 219–222 (2007)

9. Hamouda, A., Rohaim, M.: Reviews classification using sentiwordnet lexicon. In: World
Congress on Computer Science and Information Technology (2011)

10. Jindal, N., Liu, B.: Mining comparative sentences and relations. In: Proceedings of the 21st
National Conference on Artificial Intelligence, vol. 2, pp. 1331–1336 (2006)

11. Van de Kauter, M., Breesch, D., Hoste, V.: Fine-grained analysis of explicit and implicit
sentiment in financial news articles. Expert Syst. Appl. 42(11), 4999–5010 (2015). https://
doi.org/10.1016/j.eswa.2015.02.007

12. Loper, E., Bird, S.: Nltk: The natural language toolkit. arXiv preprint cs/0205028 (2002)
13. Li, Y., Qin, Z., Xu, W., Guo, J.: A holistic model of mining product aspects and associated

sentiments fromonline reviews.MultimediaToolsAppl.74(23), 10177–10194 (2015). https://
doi.org/10.1007/s11042-014-2158-0

14. Liu, B.: Sentiment analysis and subjectivity. Handb. Nat. Lang. Process. 2, 627–666 (2010)
15. Liu, B.: Opinion mining and sentiment analysis. In:Web DataMining: Exploring Hyperlinks,

Contents, and Usage Data, pp. 459–526 (2011). https://doi.org/10.1007/978-3-642-19460-
3_11

16. Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol. 5(1),
1–167 (2012). https://doi.org/10.2200/S00416ED1V01Y201204HLT016

17. Liu, P., Gulla, J.A., Zhang, L.: Dynamic topic-based sentiment analysis of large-scale online
news. In: Cellary, W., Mokbel, M.F., Wang, J., Wang, H., Zhou, R., Zhang, Y. (eds.) WISE
2016. LNCS, vol. 10042, pp. 3–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-48743-4_1

18. Ma, Y., Chen, G., Wei, Q.: Finding users preferences from large-scale online reviews for
personalized recommendation. Electron. Commer. Res. 17(1), 3–29 (2017). https://doi.org/
10.1007/s10660-016-9240-9

19. Mo, S.Y.K., Liu, A., Yang, S.Y.: News sentiment to market impact and its feedback effect.
Environ. Syst. Decis. 36(2), 158–166 (2016). https://doi.org/10.1007/s10669-016-9590-9

20. Montoyo, A., MartíNez-Barco, P., Balahur, A.: Subjectivity and sentiment analysis: an
overview of the current state of the area and envisaged developments. Decis. Support Syst.
53(4), 675–679 (2012). https://doi.org/10.1016/j.dss.2012.05.022

https://doi.org/10.1109/MIS.2013.30
https://doi.org/10.1007/s10660-016-9243-6
https://doi.org/10.1145/1341531.1341561
https://doi.org/10.1109/ICDM.2007.27
https://doi.org/10.1016/j.eswa.2015.02.007
https://doi.org/10.1007/s11042-014-2158-0
https://doi.org/10.1007/978-3-642-19460-3_11
https://doi.org/10.2200/S00416ED1V01Y201204HLT016
https://doi.org/10.1007/978-3-319-48743-4_1
https://doi.org/10.1007/s10660-016-9240-9
https://doi.org/10.1007/s10669-016-9590-9
https://doi.org/10.1016/j.dss.2012.05.022


Extracting Emotion Quotient of Viral Information Over Twitter 225

21. Nassirtoussi, A.K., Aghabozorgi, S., Wah, T.Y., Ngo, D.C.L.: Text mining of newsheadlines
for forex market prediction: a multi-layer dimension reduction algorithm with semantics and
sentiment. Expert Syst. Appl. 42(1), 306–324 (2015). https://doi.org/10.1016/j.eswa.2014.
08.004

22. Ohana, B.: Opinion mining with the sentwordnet lexical resource. M.Sc. Dissertation, Dublin
Institute of Technology (2009)

23. Pang, B., Lee, L.: A sentimental education: sentiment analysis using subjectivity summariza-
tion based on minimum cuts. In: Proceedings of the 42nd Annual Meeting on Association for
Computational Linguistics, p. 271 (2004). https://doi.org/10.3115/1218955.1218990

24. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2(1–2),
1–135 (2008). https://doi.org/10.1561/1500000011

25. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using machine
learning techniques. In: Proceedings of the ACL-02 Conference on Empirical Methods in
Natural Language Processing, vol. 10, pp. 79–86 (2002). https://doi.org/10.3115/1118693.
1118704

26. Parkhe, V., Biswas, B.: Sentiment analysis of movie reviews: finding most important movie
aspects using driving factors. Soft. Comput. 20(9), 3373–3379 (2016). https://doi.org/10.
1007/s00500-015-1779-1

27. Peng, J., Choo, K.K.R., Ashman, H.: Astroturfing detection in social media: using binary
n-gram analysis for authorship attribution. In: Proceedings of the 15th IEEE International
Conference on Trust, Security and Privacy in Computing and Communications (TrustCom
2016), pp. 121–1286 (2016)

28. Peng, J., Choo, K.K.R., Ashman, H.: Bit-level n-gram based forensic authorship analysis
on social media: identifying individuals from linguistic profiles. J. Netw. Comput. Appl. 70,
171–182 (2016). https://doi.org/10.1016/j.jnca.2016.04.001

29. Peng, J., Detchon, S., Choo, K.K.R., Ashman, H.: Astroturfing detection in social media:
a binary n-gram-based approach. Concurrency Comput. Pract. Experience 29(17), e4013
(2016). https://doi.org/10.1002/cpe.4013

30. Pro¨llochs, N., Feuerriegel, S., Neumann, D.: Enhancing sentiment analysis of financial news
by detecting negation scopes. In: Proceedings of the 48th Hawaii International Conference
on System Sciences (HICSS), pp. 959–968 (2015). https://doi.org/10.1109/HICSS.2015.119

31. Robinson, R., Goh, T.T., Zhang, R.: Textual factors in online product reviews: a foundation
for a more influential approach to opinion mining. Electron. Commer. Res. 12(3), 301–330
(2012). https://doi.org/10.1007/s10660-012-9095-7

32. Rout, J., Dalmia, A., Choo, K.K.R., Bakshi, S., Jena, S.: Revisiting semi-supervised learning
for online deceptive review detection. IEEE Access 5(1), 1319–1327 (2017). https://doi.org/
10.1109/ACCESS.2017.2655032

33. Rout, J., Singh, S., Jena, S., Bakshi, S.:Deceptive reviewdetection using labeled and unlabeled
data. Multimedia Tools Appl. 76(3), 3187–3211 (2017). https://doi.org/10.1007/s11042-016-
3819-y

34. Sadegh, M., Ibrahim, R., Othman, Z.A.: Opinion mining and sentiment analysis: a survey.
Int. J. Comput. Technol. 2(3), 171–178 (2012)

35. Song, L., Lau, R.Y.K., Kwok, R.-W., Mirkovski, K., Dou, W.: Who are the spoilers in social
mediamarketing? Incremental learning of latent semantics for social spamdetection. Electron.
Commer. Res. 17(1), 51–81 (2016). https://doi.org/10.1007/s10660-016-9244-5

36. Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for sen-
timent analysis. Comput. Linguist. 37(2), 267–307 (2011). https://doi.org/10.1162/COLI_a_
00049

37. Tang, H., Tan, S., Cheng, X.: A survey on sentiment detection of reviews. Expert Syst. Appl.
36(7), 10760–10773 (2009). https://doi.org/10.1016/j.eswa.2009.02.063

https://doi.org/10.1016/j.eswa.2014.08.004
https://doi.org/10.3115/1218955.1218990
https://doi.org/10.1561/1500000011
https://doi.org/10.3115/1118693.1118704
https://doi.org/10.1007/s00500-015-1779-1
https://doi.org/10.1016/j.jnca.2016.04.001
https://doi.org/10.1002/cpe.4013
https://doi.org/10.1109/HICSS.2015.119
https://doi.org/10.1007/s10660-012-9095-7
https://doi.org/10.1109/ACCESS.2017.2655032
https://doi.org/10.1007/s11042-016-3819-y
https://doi.org/10.1007/s10660-016-9244-5
https://doi.org/10.1162/COLI_a_00049
https://doi.org/10.1016/j.eswa.2009.02.063


226 P. Kumar et al.

38. Turney, P.D.: Thumbs up or thumbs down?: semantic orientation applied to unsupervised
classification of reviews. In: Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, pp. 417–424 (2002). https://doi.org/10.3115/1073083.1073153

39. Wang, D., Li, J., Xu, K., Wu, Y.: Sentiment community detection: exploring sentiments and
relationships in social networks. Electron. Commer. Res. 17(1), 103–132 (2017). https://doi.
org/10.1007/s10660-016-9233-8

40. Zheng, L., Wang, H., Gao, S.: Sentimental feature selection for sentiment analysis of Chinese
online reviews. Int. J. Mach. Learn. Cybern. 9(1), 75–84 (2015). https://doi.org/10.1007/s13
042-015-0347-4

41. Alves, A.L.F.: A spatial and temporal sentiment analysis approach applied to Twitter
microtexts. J. Inf. Data Manag. 6, 118 (2015)

42. Chaabani, Y., Toujani, R., Akaichi, J.: Sentiment analysis method for tracking touristics
reviews in social media network. In: De Pietro, G., Gallo, L., Howlett, R.J., Jain, L.C. (eds.)
KES-IIMSS 2017. SIST, vol. 76, pp. 299–310. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-59480-4_30

43. Contractor, D.: Tracking political elections on social media: applications and experience. In:
Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence,
Buenos Aires, Argentina, 25–31 July 2015

44. Bai, H., Yu, G.: A Weibo-based approach to disaster informatics: incidents monitor in post-
disaster situation via Weibo text negative sentiment analysis. Nat. Hazards 83, 1177–1196
(2016)

45. Brynielsson, J., Johansson, F., Jonsson, C., Westling, A.: Emotion classification of social
media posts for estimating people’s reactions to communicated alert messages during crises.
Secur. Inform. 3(1), 1–11 (2014). https://doi.org/10.1186/s13388-014-0007-3

https://doi.org/10.3115/1073083.1073153
https://doi.org/10.1007/s10660-016-9233-8
https://doi.org/10.1007/s13042-015-0347-4
https://doi.org/10.1007/978-3-319-59480-4_30
https://doi.org/10.1186/s13388-014-0007-3


A Novel Modified Harmonic Mean
Combined with Cohesion Score for
Multi-document Summarization

Rajendra Kumar Roul1(B) and Jajati Keshari Sahoo2

1 Thapar Institute of Engineering and Technology, Patiala, Punjab, India
raj.roul@thapar.edu

2 BITS-Pilani, K.K. Birla Goa Campus, Goa, India
jksahoo@goa.bits-pilani.ac.in

Abstract. The abundance of textual information that is generated on
a daily basis on the web, social media, and other repositories makes it
critical and difficult to extract important information from a large cor-
pus. Automatic Text Summarization (ATS) works well in this direction,
which can review many documents and pull out the relevant informa-
tion from them. But the computational bottlenecks associated with ATS
need to be removed by finding efficient workarounds. Although exist-
ing research works have focused on this direction for further improve-
ments, there are still many limitations and challenges which need to be
addressed. The current work proposes a semantic-based word similarity
combined with sentence similarity to summarize a corpus of text docu-
ments. Finally, a relative entropy-based technique using KL-divergence
is proposed, which arranges the sentences in the final summary as per
their importance. Experimental results on DUC datasets are promising
and show the potential of the proposed technique compared to the other
state-of-the-art approaches.

Keywords: Cohesion · Extractive · Harmonic mean · Rouge ·
Semantic · Summarization

1 Introduction

Over the past few years, due to the growth of computational power and efficient
deep learning models, there have been new approaches for presenting text cor-
pus in a concise and human-cognizable manner. Automatic Text Summarization
(ATS) is a process that distills the most important and silent information from
a large collection of documents and generates a short-length text summary. It
involves tasks like ‘interpreting the text’, ‘extracting the relevant information’,
‘condensing extracted information’, ‘presenting summary representation to the
reader in natural language’ etc. [1]. The atomic stages of the summarization are
interpretation, transformation, and generation [2,3]. The central challenges in
ATS research include identifying silent parts of text correctly, avoiding redun-
dancy efficiently, and combining chosen segments in a way that guarantees read-
ability [4,5].
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ATS is either extractive or abstractive in nature. Extractive ATS concate-
nates the most important and silent sentences of a document without any mod-
ification. This mechanism can be put as mapping of a given input sequence
of words contained in the source document to a target sequence known as the
summary of the document. Abstractive ATS generates completely new sentences
conveying the same meaning as the original document [6]. Generally, extractive
summaries’ major requirements include fluency, saliency, coherency, information
correctness, and novelty. Technically, abstractive ATS is more challenging than
the extractive one because it is more grammar coherent and involves higher-level
techniques such as content organization, surface realization, and meaning repre-
sentation. This indicates that the research on the extractive method is numer-
ous, unlike abstractive ATS research. Although ATS has been a popular research
topic since 1958 [7], it is still challenging to summarize text automatically using
human-generated summary. This research area is still growing and needs much
effort in trying new strategies to access the level of human-generated summaries.
Based on the text data, the entire text summarization process is further cate-
gorized into two types- single-text and multi-text summarization. If the text is
summarized from only one document, then we call it as single document text
summarization. But if the system generates a coherent summary from multiple
documents, then it is called multi-document text summarization.

1.1 Motivation

There have been surplus of research works already done on text summarization.
Some of the existing techniques that have been proposed for text summarization
include ‘graph-based summarization [8]’, ‘clustering-based summarization [9]’,
‘machine learning based summarization [10]’, ‘summarization based on Fuzzy
logic’ [11], topic-modeling based summarization [12,13] etc. All these existing
text summarization techniques have some common limitations as mentioned
below:

– similar meaning can be inherited from two sentences composed out of entirely
different words.

– surface matching methods generally exclude stop-word like ‘a’, ‘an’, ‘the’ ‘of’,
etc., because they are very common to all the documents in the corpus. But
for computing the sentence similarity, these words play major role because
they carry structural information for interpreting the sentence meaning.

– meaning of the words in the context of the sentence is not taken into account.
– considering the equal weight to each word while computing the similarity

among the sentences are still missing.

The main objective of the paper is to develop a novel multi-document extrac-
tive text summarization model which can take care of the above limitations in
an efficient manner by using a combined approach of modified harmonic mean
(based on word similarity) and cohesion score of each sentence (based on sentence
similarity) and to evaluate its performance on DUC datasets.
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1.2 Contribution

The contributions of the paper can be summarized as follows.

i. The proposed approach considered the document as a sequence of words and
deals with all the words separately in a sentence according to their semantic
structure. It also includes all the stop-words because these words contain
syntactic information that cannot be ignored when either the sentence is
very lengthy or the text is very concise.

ii. To rank all the sentences in the final summary while giving equal algebraic
treatment to each word of a sentence, a modified harmonic mean score is
calculated for every word.

iii. In order to ensure a more information-rich summary at the end, the semantic
similarity between every pair of sentences of each document is computed.

iv. The task of organizing the extracted data and presenting them in a coherent
manner has not yet received the importance that it should. To avoid redun-
dancy, the proposed method computes the cohesion score of each sentence,
and based on these scores, it selects top m% sentences and discards the
remaining one from the final summary. This generates a coherent summary
at the end.

v. To arrange the sentences in the final summary as per their importance,
a relative entropy-based technique is proposed, which uses KL-divergence
method to give the required weightage to each sentence.

Experimental results on DUC datasets show that the proposed approach is
more efficient than the existing conventional extractive text summarization
approaches.

The paper is organized on the following lines: A precise technique to generate
a concise summary from a corpus of documents is discussed in Sect. 2. Experi-
mental work is carried out in Sect. 3. The conclusion of the proposed work with
some future enhancements is discussed in Sect. 4.

2 Proposed Approach

Consider a corpus C of documents D = {d1, d2, d3, · · · , dx}. In the beginning,
all the documents of C are merged into a set called Dlarge. This merging of
documents does not follow any particular order. Then Dlarge is divided into n
sentences, i.e., set S = {s1, s2, s3, · · · , sn} ∈ C. The following steps are used to
generate a coherent summary from the corpus C.

1. Word similarity calculation:
A database using WordNet [1] is created to compute the semantical similar-
ity between every pair of words wp and wq of the corpus C. In the semantic
database, the words are arranged in a hierarchical structure where a set of
similar words constitute a concept (also called synsets), and each concept
is represented as a node in the hierarchy as shown in Fig. 1. The ‘· · · ’ indi-
cates some more synonym words of a node. The version of WordNet used
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Fig. 1. Hierarchical semantic net

in the proposed work is WordNet 3.0, which has 206,941 words, organized
into 117,659 synsets. A public .Net framework called WordNet.Net1 is used
to extract the information from WordNet. In order to find the similarity
between a pair of words sim(wp, wq), the minimum (or shortest) path length
between the two synsets containing wp and wq is computed. For instance,
the shortest path between the words ‘girl’ and ‘kid’ in Fig. 1 is 4, i.e., girl-
female-person-juvenile-kid. The synset ‘person’ is called the subsumer (which
is generally close to the root of the hierarchy) of the words ‘girl’ and ‘kid’.
But the minimum path length is not sufficient to find the similarity between
two words. For example, the minimum path length between the words ‘girl’
and ‘teacher’ is 6, while it is 4 between ‘girl’ and ‘animal’. This does not
mean that ‘girl’ is more similar to ‘animal’ than ‘teacher’. To handle such
problem, in addition to ‘minimum path length’, ‘depth of the concept’ (or
subsumer) in the hierarchical structure is also required to compute. Hence,
sim(wp, wq) can be a function of minimum path length (min path) and
depth of the subsumer (depth sub) in the hierarchy and is represented in
Eq. 1.

sim(wp, wq) = function(f1(min path), f2(depth sub)) (1)

a. Computing minimum path length:
While computing the minimum path length between a pair of words wp

and wq, there can be three scenarios, and that can be handled on the
following lines:
i. wp and wq are in the same concept: in this case, a semantic path

length of 0 is assigned between them because they have the same
meaning.

1 http://en.wikipedia.org/wiki/Brown Corpus.

http://en.wikipedia.org/wiki/Brown_Corpus
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ii. wp and wq do not belong to the same concept, but their correspond-
ing concepts consist of one or more common words: in this case, the
similar words are partially shared by both the concepts and hence a
semantic path length of 1 is assigned.

iii. wp and wq neither belong to the same concept nor their corresponding
concept share any common words: in this case, the minimum path
length between the two concepts containing each word is computed
by ‘max-similarity’ algorithm [14] using Pywsd2, which take care of
‘word sense disambiguation’ problem.

Considering the above three scenarios, the f1(min path) of Eq. 1 is set to
be a monotonically decreasing function as shown in Eq. 2.

f1(min path) = e−α(min path) (2)

where α is a constant and α ∈ [0, 1], and it determines the contribution
of the path to the overall similarity of the pair of words. As α increases,
so does the contribution of path length.

b. Computing the depth of the subsumer:
The subsumer’s depth is computed by counting the levels from the sub-
sumer to the top of the hierarchical net. In the hierarchy, words at the
upper layers have more general meaning and less semantic concepts com-
pared to the words at the lower layers. This behavior needs to be taken
into consideration while computing the similarity. Hence, it is required
to scale up the sim(wp, wq) for subsuming words at the lower layers and
scale down the sim(wp, wq) for subsuming words at the upper layers.
This indicates f2(depth sub) of Eq. 1 should be monotonically increasing
function with respect to the depth sub and shown in Eq. 3.

f2(depth sub) =
eβ.depth sub − e−β.depth sub

eβ.depth sub + e−β.depth sub
(3)

where β is a smoothing factor and β ∈ [0, 1], and it determines the con-
tribution of subsumer depth. Comparing to α of Eq. 2, when β increases,
the relative contribution of subsumer depth decreases. When β > ∞, the
word’s depth in the hierarchy is not considered, and it is an extension of
Shepard’s law [15]. The ideal values of α and β are set to 0.2 and 0.46
respectively [16].

c. Finally, the semantic similarity between wp and wq is computed using
Eq. 4.

sim(wp, wq) =

e−α.min path ∗ eβ.depth sub − e−β.depth sub

eβ.depth sub + e−β.depth sub
(4)

The value of sim(wp, wq) ∈ [0, 1].
2 https://github.com/alvations/pywsd.

https://github.com/alvations/pywsd
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2. Modified Harmonic mean based word score:
Harmonic mean cannot be calculated ignoring any words of a corpus. It
gives equal weight to each word, and useful for qualitative data. This is why
harmonic mean has much uses in machine learning such as for prediction
of true positive and false positive rate, computation of F-measure etc. A
ranking score with respect to the entire corpus is calculated for each word
based on the modified Harmonic Mean (HM) formula is shown in Eq. 5.

HMq =
n − 1

∑

p,p�=q

1
sim(wp,wq)+k

(5)

Over here, n represents the total number of words in the corpus, sim(wp, wq)
represents the similarity score between the pair of words wp and wq as shown
in Eq. 4. We have taken a summation over all the pairs of words except the
reflexive pair. k is a factor that must be added to every similarity score in
the formula so as to make sure that even in the cases when the similarity
scores between two words are zero, the score, when divided by 1, does not
give an exception.

3. Selection of representative words:
After computing the modified harmonic score of each word of the corpus
C, top l% words3 are selected as the representative words of the corpus C
and stored in a list Listrep. Now cosine-similarity (cos-sim) between every
sentence s ∈ C and the list Listrep is computed as shown in Eq. 6.

cos-sim(s, Listrep) =
s.Listrep

||s|| ∗ ||Listrep|| (6)

Those sentences whose cosine similarity score is more than 0.75 (See Foot-
note 3) are considered, and the remaining sentences are discarded from C.
This way now the corpus size gets reduced.

4. Sentence similarity calculation:
Next, the similarity calculation between each pair of sentences of the reduced
corpus C is done using the following steps:
i. Constructing a joint word set:

To compute the similarity between a pair of sentences s1 and s2, first a
joint set of words Js = {w1, w2, w3, · · · , wn} is constructed, where each
wk, k ∈ [1, n] is a distinct word of s1 and s2. This indicates Js does not
contain any common words between s1 and s2. Js also contain function
words because they contain syntactic information. word form is main-
tained as they appear in the sentence. For example, ‘dog’, ‘dogs’, ‘mouse’,
and ‘mice’ are four distinct words and are all included in Js.

ii. Semantic sentence similarity:
Initially, lexical semantic vector (lsvi, i ∈ [1, 2]) of both sentences s1 and
s2 is calculated. Each entry of lsvi correspond to a word in Js. To calculate

3 decided by the experiment.
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the lsvi, i = 1 for s1 (denoted as lsv1), the following steps are used for
each word w ∈ Js. Before the process starts, a semantic vector sv is
considered whose all entries are initialize to 0.

case a. If w ∈ s1, then the corresponding entry in the sv is set to 1. This
value will multiply with the square of the value of w from corpus
statistics (discussed in step iii) and is shown in Eq. 7.

lsv1 = sv ∗ I(w)2 (7)

case b. If w /∈ s1, then a most similar word (denoted as w) is found out in
s1 by comparing the semantic similarity between w and each word
of s1 (semantic similarity computed using Eq. 4). If the similarity
exceeds a per-determined threshold value (See Footnote 3), then the
corresponding entry in the (sv)i is set to the calculated similarity, else
it is set to zero. Next, the value is multiplied with the value of w and
w from the corpus statistics as shown in the Eq. 8.

lsv1 = sv ∗ I(w) ∗ I(w) (8)

Similarly, the lexical semantic vector lsv2 is computed for the sentence
s2 by setting all the entries of sv to 0 initially, and repeating case a
and case b.

– The final value of the semantic sentence similarity is the cosine
coefficient between lsv1 and lsv2 as shown in the Eq. 9.

sim(lsv1, lsv2) =
lsv1.lsv2

||lsv1|| ∗ ||lsv2|| (9)

The value of sim(lsv1, lsv2) ∈ [0, 1].
iii. Statistics of the Corpus:

Using the corpus C statistics, we can weigh the importance of different
words in a sentence. This is very important, as we have to include the
stop-words which have less importance corresponding to other words in
a sentence as shown in Eq. 10.

I(w) = 1 − log(n + 1)
log(N + 1)

(10)

Here, n represents frequency of word w in C, N is total number of words
in C, To avoid zero, n and N are increased by 1. I(w) value is within the
interval [0, 1].

5. Computing the cohesion score of each sentence:
The cohesion score of each sentence with respect to the corresponding doc-
ument (i.e., sj ∈ di) is computed by finding the Euclidean distance between
the sentence sj and the centroid of the document di and is shown in Eq. 11.

coh(sj) = ||(sci − sj)|| (11)
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where sci represents the centroid of the document di and is computed using
Eq. 12.

sci =
∑n

i=1 si

n
(12)

where n is the total number of sentences in the document di.
6. Final summary list generation

Based on the cohesion score of each sentence (shown in Eq. 11), top m%
sentences are selected and stored in a new list NL which constitute the final
summary.

7. Arrangement of the sentences in the final summary as per their importance
To arrange all the sentences of NL as per their importance (i.e., weight), a
relative entropy-based technique is proposed, which is discussed below:
– Probability of the word w ∈ NL in a sentence s is shown in Eq. 13.

P (w|s) =
term-frequency(w, s)

|s| (13)

– Similarly, the probability of w ∈ NL in a document d is shown in Eq. 14.

P (w|d) =
term-frequency(w, d)

|d| (14)

A sentence s is assigned a weight based on its comparison with the doc-
ument d. Comparison is done using KL-divergence (KLD) [17] of s with
d as shown in the Eq. 15.

KLD(s, d) =
∑

w

P (w|s)log(
P (w|s)
P (w|d)

) (15)

The weight of the sentence s (denoted as Weights) is inversely propor-
tional to KLD(s, d) [17] and is computed using Eq. 16.

Weights =
1

KLD(s, d)
(16)

The sentences are arranged as per their weights in the final summary NL
and this constitutes the system generated summary of the corpus C.

2.1 Generating Extractive Gold Summaries

Sentences in a document can be classified as “Important” or “Not-Important”.
Sentences that contain valuable information are ideally labeled as “Important”,
and the ones which do not carry any valuable information are labeled as “Not-
Important”. Only the sentences that are labeled as “Important” are eligible to be
a part of the summary of that document. The steps mentioned below discussed
how the extractive gold summary gets generated from the four human written
summaries of DUC dataset Cduc.
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i) Each document d ∈ Cduc are parsed sentence by sentence. Natural Language
Toolkit4 is used for this purpose.

ii) All the words of the four human written gold summaries are stored in a list
L. For every sentence s ∈ d, the number of common words (say r) between
s and L is computed where r varies from sentence to sentence.

iii) The value of r determines the score for the sentence s. After the scores of
each sentence s ∈ d are obtained, the sentences are ranked based on these
scores and stored in a new list L′.

iv) Top m sentences are selected from L′ which generates the extractive gold
summary of d. To conduct the experiment, m value is considered as 5. In
this way every document of Cduc received an extractive gold summary of 5
sentences.

3 Experimental Framework

For experimental purposes, (DUC)5 datasets are used and Table 1 shows the
description of these datasets.

Table 1. DUC dataset

Datasets No. of sets No. of docs Avg. no. of sent per doc Length of summary Data source

DUC-2001 30 298 28.1 100 TREC-9

DUC-2002 59 566 32.55 100 TREC-9

DUC-2006 50 1249 30.22 250 AQUAINT

DUC-2007 45 1124 37.51 250 AQUAINT

3.1 ROUGE-N Score Evaluation

Most extractive ATS researches use ROUGE [18] as the standard evaluation
metric for measuring the correctness of summaries. ROUGE includes a set of
metrics to evaluate extractive ATS. ROUGE metrics are designed to measure the
similarity, i.e., the overlap of n-grams between the resulted (i.e., system gener-
ated summary) and reference summaries. Generally, researchers in the extractive
ATS field compare their results against a reference summary. Generally, there are
three main scores to evaluate the overlapping between words, which are Recall,
Precision, and F1. Often, ATS researchers choose ROUGE-F1 to measure three
ROUGE scores, which are ROUGE-1, to measure the overlap of unigrams, i.e.,
every single word, between the generated and reference summaries, ROUGE-2,
to measure the overlap of bigrams, i.e., every two consecutive words, between the
resulted and reference summaries, and ROUGE-SU4, an extension of ROUGE-
S(Skip-Bigram co-occurrence statistics). For demonstration purposes, the cohe-
sion scores (discussed in step 5 of Sect. 2) of 5 example sentences (randomly
4 http://www.nltk.org/.
5 http://www.duc.nist.gov.

http://www.nltk.org/
http://www.duc.nist.gov
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selected) of a document of DUC-2002 dataset is shown in Table 2. The extrac-
tive and human-written summary scores on different DUC datasets are shown
in Tables 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 and 18 respectively.

3.2 Performance Comparison on DUC-2002 Dataset

The ROUGE scores (average F-measure of extractive summary) using DUC-
2002 dataset (on the entire 296 documents) are compared with the results of the
five well established summary systems (URANK [19], ILP [20], TGRAPH [21],
NN SE [22], TextRank [23]). The ROUGE-1 and ROUGE-2 results are shown
in the Figs. 2 and 3 respectively.

Fig. 2. ROUGE-1 (DUC-2002) Fig. 3. ROUGE-2 (DUC-2002)

Table 2. D076B (DUC-2002)

Cohesion score Sentence

0.47216 BEIJING, January 5 (Xinhua) A delegation from the Carter
Center of the United States, led by Charles E Costello, director of
the center’s democracy program, arrived in Beijing this evening to
observe the election of township level people’s deputies

0.44545 Dr. Robert Pastor, who headed the center’s two inspection
delegations to China, said on his last trip,“Our entire delegation
was impressed by what we saw and by the commitment of the
villagers to have free and fair elections, by the competition, and by
the sincerity with which the Chinese officials try to make this
election successful”

0.43335 LAGOS, February 23 (Xinhua) Observers from the Organization
of African Unity (OAU) and the European Union (EU) have
commended the peaceful manner in Nigeria’s National Assembly
election and described the election as a qualified success, local
press reported Tuesday

0.21524 That should be an instructive example for a youngish
ex-president-to-be who is concerned about his own place in history

0.08779 Jimmy Carter, who was 52 when he was inaugurated in 1977, will
turn 75 on Friday
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Table 3. Extractive DUC-2001
(ROUGE-1)

Doc-no Recall Precision F-measure

D01A 0.67470 0.16120 0.26022

D02A 0.77724 0.10197 0.18029

D03A 0.59951 0.29545 0.39583

D07B 0.50481 0.34426 0.40936

D09B 0.74463 0.08446 0.15171

D10B 0.53012 0.25611 0.34537

D16C 0.49412 0.39179 0.43704

D17C 0.54726 0.25287 0.34591

D18C 0.61071 0.32138 0.42114

D20D 0.55847 0.34412 0.42584

D21D 0.38517 0.44722 0.41388

D23D 0.56782 0.34306 0.42771

D25E 0.59268 0.15831 0.24987

D26E 0.42410 0.32001 0.36477

D29E 0.57518 0.33241 0.42133

Table 4. Human written DUC-
2001 (ROUGE-1)

Doc-no Recall Precision F-measure

D01A 0.44363 0.20841 0.28359

D02A 0.67545 0.23602 0.34981

D03A 0.49339 0.26794 0.34729

D07B 0.44161 0.19836 0.27376

D09B 0.66033 0.23525 0.34691

D10B 0.44467 0.25728 0.32596

D16C 0.46725 0.19963 0.27974

D17C 0.47535 0.15517 0.23397

D18C 0.59443 0.24584 0.34783

D20D 0.40270 0.21912 0.28381

D21D 0.31047 0.23889 0.27002

D23D 0.32176 0.19306 0.24132

D25E 0.67138 0.27818 0.39337

D26E 0.54741 0.23091 0.32481

D29E 0.50806 0.26069 0.34458

From the results, it can be seen that the proposed model is better compared
to the above baseline models.

3.3 Performance Comparison on DUC-2006 Dataset

The ROUGE scores (average F-measure of extractive summary) of the proposed
model on DUC-2006 dataset (on the entire 1250 documents) are compared
with six of the well-known multi-document summarization techniques such as

Table 5. Extractive DUC-2002
(ROUGE-1)

Doc-no Recall Precision F-measure

D070F 0.43272 0.74536 0.54756

D071F 0.44991 0.77818 0.57017

D072F 0.37161 0.86548 0.51996

D073B 0.47492 0.79913 0.59577

D074B 0.55002 0.75213 0.63539

D075B 0.20626 0.89594 0.33532

D076B 0.71322 0.72053 0.71686

D077B 0.74887 0.68652 0.71634

D078B 0.40891 0.85113 0.55243

D079A 0.33214 0.86333 0.47974

D080A 0.47538 0.74504 0.58042

D081A 0.78038 0.71554 0.74656

D082A 0.45230 0.75985 0.56706

D083A 0.47950 0.78655 0.59579

D084A 0.68774 0.68914 0.68844

Table 6. Human written DUC-
2002 (ROUGE-1)

Doc-no Recall Precision F-measure

D070F 0.46290 0.22784 0.30537

D071F 0.51104 0.26883 0.35233

D072F 0.47225 0.60595 0.53082

D073B 0.68564 0.32935 0.44496

D074B 0.59351 0.22409 0.32534

D075B 0.19081 0.64403 0.29438

D076B 0.76017 0.17863 0.28927

D077B 0.58570 0.13852 0.22404

D078B 0.54838 0.33602 0.41671

D079A 0.35295 0.57364 0.43702

D080A 0.51152 0.27371 0.35659

D081A 0.61164 0.13118 0.21603

D078A 0.54473 0.28927 0.37787

D083A 0.52238 0.22174 0.31133

D084A 0.57045 0.32260 0.41213
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Table 7. Extractive DUC-2006
(ROUGE-1)

Doc-no Recall Precision F-measure

D0601A 0.56146 0.23396 0.33029

D0602B 0.50803 0.18031 0.26616

D0603C 0.55950 0.20181 0.29662

D0605E 0.48726 0.16758 0.24939

D0607G 0.54989 0.20156 0.29499

D0608H 0.53110 0.18317 0.27239

D0609I 0.53791 0.26928 0.35889

D0610A 0.72646 0.16829 0.27327

D0611B 0.46495 0.07593 0.13053

D0612C 0.49941 0.22496 0.31019

D0613D 0.68871 0.13661 0.22801

D0615F 0.68379 0.18473 0.29088

D0617H 0.72119 0.29372 0.41743

D0618I 0.39050 0.19786 0.26264

D0619A 0.46398 0.25795 0.33157

Table 8. Human written DUC-
2006 (ROUGE-1)

Doc-no Recall Precision F-measure

D0601A 0.68898 0.08076 0.14457

D0602B 0.58103 0.11069 0.18596

D0603C 0.64528 0.10264 0.17711

D0605E 0.58635 0.07996 0.14072

D0607G 0.57143 0.10895 0.18301

D0608H 0.66805 0.08856 0.15639

D0609I 0.65432 0.18861 0.29282

D0610A 0.74118 0.05570 0.10362

D0611B 0.54801 0.05227 0.09544

D0612C 0.63095 0.08516 0.15007

D0613D 0.64876 0.08579 0.15154

D0615F 0.84362 0.05473 0.10278

D0617H 0.62948 0.11961 0.20102

D0618I 0.57769 0.19385 0.29029

D0619A 0.74104 0.10954 0.19087

Table 9. Extractive DUC-2007
(ROUGE-1)

Doc-no Recall Precision F-measure

D0715A 0.54534 0.11413 0.18876

D0716A 0.58368 0.20607 0.30458

D0717A 0.51668 0.23307 0.32125

D0718A 0.55702 0.21626 0.31158

D0726B 0.49162 0.17401 0.25704

D0727B 0.30195 0.24291 0.26922

D0728B 0.51428 0.25863 0.34418

D0729B 0.79961 0.15010 0.25278

D0731C 0.38977 0.29898 0.33838

D0732C 0.67521 0.29780 0.41331

D0733C 0.46971 0.26006 0.33478

D0734C 0.47485 0.20707 0.28837

D0726D 0.44699 0.24967 0.32038

D0727D 0.59543 0.27757 0.37863

D0728D 0.54276 0.22413 0.31725

Table 10. Human written DUC-
2007 (ROUGE-1)

Doc-no Recall Precision F-measure

D0715A 0.73704 0.05486 0.10211

D0716A 0.67703 0.08787 0.15558

D0717A 0.44532 0.28572 0.34808

D0718A 0.71312 0.17921 0.28643

D0726B 0.61509 0.13159 0.21679

D0727B 0.48607 0.38487 0.42959

D0728B 0.49408 0.35921 0.41598

D0729B 0.76385 0.07789 0.14136

D0731C 0.60078 0.31341 0.41193

D0732C 0.76379 0.13692 0.23221

D0733C 0.63877 0.28189 0.39114

D0734C 0.62452 0.19246 0.29424

D0726D 0.67968 0.11084 0.19059

D0727D 0.58121 0.18062 0.27559

D0728D 0.61088 0.19124 0.29127
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Table 11. Extractive DUC-2001
(ROUGE-2)

Doc-no Recall Precision F-measure

D01A 0.12270 0.05760 0.07840

D02A 0.27298 0.09533 0.14131

D03A 0.16556 0.08982 0.11646

D07B 0.13553 0.06076 0.08390

D09B 0.20380 0.07257 0.10703

D10B 0.17137 0.09907 0.12555

D16C 0.14474 0.06168 0.08650

D17C 0.13428 0.04373 0.06597

D18C 0.21429 0.08846 0.12523

D20D 0.14363 0.07806 0.10115

D21D 0.09420 0.07242 0.08189

D23D 0.10441 0.06259 0.07826

D25E 0.26299 0.10887 0.15399

D26E 0.22944 0.09654 0.13590

D29E 0.17790 0.09116 0.12055

Table 12. Human written DUC-
2001 (ROUGE-2)

Doc-no Recall Precision F-measure

D01A 0.15676 0.03341 0.05508

D02A 0.27224 0.03209 0.05742

D03A 0.17473 0.07784 0.10771

D07B 0.08356 0.05090 0.06327

D09B 0.26738 0.02708 0.04918

D10B 0.14054 0.06061 0.08469

D16C 0.12533 0.08972 0.10458

D17C 0.13333 0.05524 0.07811

D18C 0.22554 0.10641 0.14460

D20D 0.17439 0.09426 0.12237

D21D 0.07219 0.07521 0.07367

D23D 0.14139 0.07650 0.09928

D25E 0.18733 0.04433 0.07169

D26E 0.06648 0.04372 0.05275

D29E 0.16757 0.08564 0.11335

Table 13. Extractive DUC-2002
(ROUGE-2)

Doc-no Recall Precision F-measure

D070F 0.26547 0.45739 0.33596

D071F 0.30685 0.53083 0.38889

D072F 0.26915 0.62704 0.37662

D073B 0.34113 0.57411 0.42796

D074B 0.37892 0.51823 0.43775

D075B 0.17577 0.76434 0.28579

D076B 0.46162 0.46633 0.46396

D077B 0.50025 0.45861 0.47853

D078B 0.31702 0.66006 0.42831

D079A 0.26957 0.70093 0.38937

D080A 0.29129 0.45658 0.35567

D081A 0.57446 0.52674 0.54957

D082A 0.29048 0.48813 0.36422

D083A 0.32334 0.53046 0.40177

D084A 0.41051 0.41135 0.41092

Table 14. Human written DUC-
2002 (ROUGE-2)

Doc-no Recall Precision F-measure

D070F 0.11553 0.05652 0.07588

D071F 0.12378 0.06472 0.08498

D072F 0.13555 0.17273 0.15192

D073B 0.22112 0.10551 0.14287

D074B 0.17938 0.06728 0.09787

D075B 0.07608 0.25528 0.11725

D076B 0.30041 0.07012 0.11368

D077B 0.16445 0.03863 0.06254

D078B 0.15735 0.09581 0.11908

D079A 0.07857 0.12687 0.09704

D080A 0.09777 0.05197 0.06789

D081A 0.13406 0.02857 0.04708

D082A 0.11667 0.06157 0.08058

D083A 0.07638 0.03217 0.04529

D084A 0.12334 0.06923 0.08869
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Table 15. Extractive DUC-2006
(ROUGE-2)

Doc-no Recall Precision F-measure

D0601A 0.18404 0.07664 0.10821

D0602B 0.17105 0.06065 0.08955

D0603C 0.17573 0.06330 0.09307

D0605E 0.11324 0.03890 0.05791

D0607G 0.18511 0.06776 0.09920

D0608H 0.16933 0.05834 0.08678

D0609I 0.14252 0.07126 0.09501

D0610A 0.23057 0.05336 0.08667

D0611B 0.12881 0.02099 0.03610

D0612C 0.12857 0.05788 0.07982

D0613D 0.30387 0.06014 0.10041

D0615F 0.17606 0.04753 0.07485

D0617H 0.32030 0.13030 0.18525

D0618I 0.09788 0.04953 0.06578

D0619A 0.12301 0.06836 0.08788

Table 16. Human written DUC-
2006 (ROUGE-2)

Doc-no Recall Precision F-measure

D0601A 0.11489 0.01247 0.02249

D0602B 0.15319 0.02713 0.04609

D0603C 0.21032 0.03183 0.05529

D0605E 0.08155 0.01041 0.01846

D0607G 0.10684 0.01947 0.03294

D0608H 0.20524 0.02587 0.04594

D0609I 0.18103 0.04988 0.07821

D0610A 0.25103 0.01798 0.03356

D0611B 0.10612 0.00992 0.01815

D0612C 0.17031 0.02090 0.03723

D0613D 0.13974 0.01750 0.03110

D0615F 0.39316 0.02457 0.04624

D0617H 0.22222 0.03939 0.06692

D0618I 0.14768 0.04685 0.07114

D0619A 0.26582 0.03712 0.06515

Table 17. Extractive DUC-2007
(ROUGE-2)

Doc-no Recall Precision F-measure

D0715A 0.15176 0.03174 0.05250

D0716A 0.17048 0.06014 0.08892

D0717A 0.18437 0.08290 0.11437

D0718A 0.18882 0.07321 0.10551

D0726B 0.20434 0.07221 0.10671

D0727B 0.07481 0.06012 0.06666

D0728B 0.18965 0.09511 0.12669

D0729B 0.36748 0.06886 0.11599

D0731C 0.13207 0.10125 0.11462

D0732C 0.25002 0.11016 0.15294

D0733C 0.18844 0.10421 0.13421

D0734C 0.12606 0.05489 0.07648

D0726D 0.13471 0.07520 0.09651

D0727D 0.23428 0.10905 0.14883

D0728D 0.18344 0.07560 0.10707

Table 18. Human written DUC-
2007 (ROUGE-2)

Doc-no Recall Precision F-measure

D0715A 0.28152 0.01986 0.03713

D0716A 0.16666 0.02073 0.03686

D0717A 0.17502 0.10554 0.13167

D0718A 0.22945 0.05465 0.08827

D0726B 0.16308 0.03228 0.05391

D0727B 0.12972 0.09811 0.11172

D0728B 0.14816 0.10376 0.12204

D0729B 0.22781 0.02222 0.04048

D0731C 0.18931 0.09505 0.12656

D0732C 0.24474 0.04097 0.07019

D0733C 0.22985 0.09581 0.13524

D0734C 0.21993 0.06464 0.09992

D0726D 0.22448 0.03506 0.06065

D0727D 0.21365 0.06251 0.09672

D0728D 0.23771 0.07074 0.10903

CTMSUM [24], IIITH-Sum [25], OnModer [26], TopicalN [27], SFU v36 [28], and
RMSUM [29]. The comparison details are shown in Figs. 4, 5 and 6 respectively.
Results demonstrate that ROUGE-2 score of the proposed model is either com-
parable or less than CTMSUM and IIITH-sum model. ROUGE-1 and ROUGE-
SU4 scores are better compared to all the models. This shows the effectiveness
of the proposed approach.
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Fig. 4. ROUGE-1 (DUC-2006) Fig. 5. ROUGE-2 (DUC-2006)

Fig. 6. ROUGE-SU4 (DUC-2006)

Table 19. Summary readability methods

Readability method Formula

Flesch kincaid grade level (FKGL) 0.39 * (words/sentences) + 11.8 * (syllables/words) − 15.59

Coleman liau (CL) 5.89 * (characters/words) − 0.3 * (sentences/words) − 15.8

Automated readability index (ARI) 4.71 * (characters/words) + 0.5 * (words/sentences) − 21.43

3.4 Performance Comparisons Using Summary Readability

Summary readability says how better others can read and understand the system
generated summary, which is affected by many parameters like the density of a
sentence, length and weight of a sentence, number of title words in a sentence,
etc. [30]. Many statistical methods are available to compute the summary read-
ability [31], and the proposed approach used some of them as shown in Table 19.
The high the score, the better is the system generated summary for easy reading
and understanding. Based on these statistical methods, the proposed approach
is compared with other baseline approaches using DUC2002 and 2006 datasets,
and the results are shown in Figs. 7 and 8 respectively.
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Fig. 7. Summary readability comparison
(DUC-2002)

Fig. 8. Summary readbility comparison
(DUC-2006)

4 Conclusion

This paper proposed a novel approach to summarize multi-documents of a given
corpus by combining the word similarity based on modified harmonic mean with
sentence similarity based on cohesion score. The sentences in the final summary
are arranged based on a relative entropy-based technique using KL-divergence.
The summarization technique is extractive in nature. The experimental work
of the proposed approach is carried out using different DUC datasets. Empiri-
cal results on DUC-2002 and DUC-2006 datasets show the effectiveness of the
proposed approach compared to the conventional approaches. This work can be
improved further by achieving a more grammatically coherent and information-
rich summary using the abstractive text summarization technique. A possible
step towards achieving fully abstractive summarization would be to reduce the
size of the summary units (sentences in the present case) to phrases that are
smaller than sentences. It is possible to extract the key phrases using a similar
technique. It can then connect these key phrases using a set of predefined gram-
mar rules to form summaries that can be more dense content-wise compared to
the ones generated by the proposed method.
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Abstract. In this paper, we perform the classification of Alzheimer’s disease
(AD) using 3D structural magnetic resonance imaging (sMRI) images through
2D convolutional neural networks (CNNs). Most existing methods that use 2D
convolutional neural networks for AD classification, extract 2D image slices from
each 3D MRI scan along the three anatomical planes of view of the brain. A
CNN is trained separately on images from each plane of view. However, these
methods only consider images from one plane of view at a time which leads
to loss of 3D information. We address this issue by proposing a novel way of
using an ensemble of multi-channel convolutional neural networks wherein, given
a location in the brain, a multi-channel model looks at images from all three
planes of view at a time around that location to obtain 3D information from 2D
images. Multiple such locations from the brain are considered, and ensemble
learning is used to give predictions at a subject level. Transfer learning is adopted
wherein each channel in the multi-channel network utilizes state-of-the-art pre-
trained CNNs, customized to the classification task. The proposed model obtains
98.33% accuracy for the Alzheimer’s disease (AD) vs Cognitively Normal (CN)
classification task, outperforming current state-of-the-art methods.

Keywords: Alzheimer’s disease · Deep learning · Multi-channel model ·
Transfer learning · 2D CNN

1 Introduction

Alzheimer’s disease is a chronic irreversible neurological disease that wreaks havoc on
memory and other cognitive abilities [3, 4]. It is the most prevalent cause of dementia,
which is characterized by a progressive loss of cognitive, behavioural, and social abilities
that impairs a person’s capacity to operate freely [3]. Although, it is not possible to undo
the initial pathological changes, it is essential to give diagnosis as early and accurately
as possible. In some cases, early diagnosis of the disease or risk of disease is beneficial
so that the individual and their families have time to make decisions and plan for the
future, as well as to provide access to medicines that can help manage symptoms [4].

Since the gradual deterioration of the brain structures and volume change in char-
acteristic locations can be detected in Magnetic Resonance Imaging (MRI) scans, they
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have been used extensively for the early diagnosis of AD [5, 6]. Latest trends in the
current literature show that the deep learning methods i.e. CNNs are very efficient in
classifying subjects with Alzheimer’s disease. Since neuroimaging provides 3D MRI
scans, and there is information from all three views of the brain in a single scan, 3D
CNNs have become quite mainstream. They take as input, either the whole 3D MRI
scan, or a particular 3D Region-of-Interest (ROI). However, taking the whole scan as a
single input, results in high feature dimensionality and makes training computationally
expensive. Choosing predefined ROIs is not without issues. The abnormal tissue arising
due to AD can take up a very small part of a pre-defined ROI, or it can span over multiple
ROIs. Thus, leads to a loss of discriminative information [14].

2D CNNs are a great alternative to 3D CNNs for AD classification. They are compu-
tationally inexpensive to train and no requirement for ROI identification. Instead of the
whole 3D MRI scan, they use 2D slices as an input. Thus, the resulting network is sim-
plified, and consists of a very few number of parameters. But, by far the best advantage
that they offer over 3D CNNs is Transfer Learning (TL) which caters specifically to 2D
images. TL has demonstrated to be amazing for cross-domain classification problems,
for example, networks which are trained on natural images utilized for classification of
medical images. 2D CNNs that employ TL have extensively been used for AD detec-
tion and have been known to significantly decrease training time and improve accuracy
compared to 3D CNNs [19].

Even though 2D CNNs are easier to train, and can support TL, they are not efficient
in encoding the spatial information of the 3D images due to the absence of kernel sharing
across the third dimension [27]. To overcome this limitation, in this paper, we propose
the methodology – given a particular location in the brain, we take into consideration, in
parallel, three perpendicular planes of view that pass through that point, before making
a decision. These three planes of view are called Coronal (x-y plane), Axial (z-x plane)
and Sagittal (y-z plane) planes in the MRI literature. Thus, we propose a multi-channel
neural network with three channels – one for each of the brain’s three planes of view.
Projections from each one of the three planes about a point in the brain act as inputs for
each of the three channels. First, each channel extracts features from its respective plane
of view. These features are concatenated in parallel at some point, later, these features
are passed to a softmax activation all within the samemodel. This lets the model not only
learn information from the three planes of view about a point in the brain individually,
but also learn the relationship between the three planes of view about that point. Multiple
suchmulti-channel models are trained for multiple intersection points in the brain. These
intersection points are selected intelligently so as to gain maximum information from
the brain, using image entropy. An ensemble of all these multi-channel models, each
trained to predict on one intersection point in the brain, utilized to finally offer good
accuracy at a subject level.

Pre-trained models are employed as a base and customization is applied for all the
three channels. A variety of popular and latest pre-trained CNN architectures such as
InceptionV3 [7], ResNet50 [10], and DenseNet121 [8] have been used for this purpose.
We have experimented with numerous combinations of these architectures on the three
channels, as well as the optimal number of intersection points in the brain to maximize



Multi-channel Deep Model for Classification of Alzheimer’s Disease 247

the accuracy for AD classification. We used sMRI scans provided by the Alzheimer’s
Disease Neuroimaging Institute (ADNI) [1].

Our main contributions are two folds:

1. A novel end-to-end multi-channel framework that factors in all three views of an
MRI scan is proposed for the detection of AD.

2. Although, each channel has a different view of the brain as an input source, we show
that through TL, and concatenating the feature maps from the three channels at the
right time, the model is able to learn the relationship between the three planes of
views very well.

The remainder of this paper is divided as follows: We review related work in Sect. 2.
Then in Sect. 3, we provide a detailed explanation of our method. The results and their
discussion are provided in Sect. 4. Section 5 summarizes and concludes our work.

2 Related Works

Many studies in the literature have made use of deep learning approaches to build clas-
sifiers using medical imaging data, primarily in the form of MRI, and clinical measures
for the diagnosis of Alzheimer’s Disease.

Korolev et al. [15] readapted the classical architectures VGGNet [9] and ResNet
[10] to 3D MRI. Both of the readapted architectures obtained similar results, and set a
baseline accuracy of 80% on the AD vs CN classification task using the ADNI dataset.
Network attention areas for a CN subject were generated to find areas most affected by
AD. Recently, 3D CNN was utilized by Xia et al. [16], used six layer 3D CNN to learn
informative features, and then leveraged a 3D Convolutional Long Short Term Memory
(3DCLSTM) layer to further extract the channel-wise higher-level information. Further,
authors adopted Grad-CAM and plotted heatmaps to find out the regions with critical
importance in diagnosing AD. Subsequently, Long Short Term Memory (LSTM) net-
works were applied for AD detection by Feng et al. [17] wherein a 3D CNN is employed
to extract features from bothMRI and Positron Emission Tomography (PET)modalities,
and extracted high level semantic and spatial information from the output of the 3DCNN
using fully stacked bi-directional LSTM. Oh et al. [18] developed an inception mod-
ule based 3D convolutional autoencoder for the AD classification task. Unsupervised
learning was first performed extract a sparse visual representation of neuroimaging data.
Supervised fine-tuning was applied later to build the AD vs CN classifier. Unsupervised
pre-training improved the accuracy by 10.85% compared to training from scratch for
the AD vs CN task.

However, it should be noted that 3D CNN approaches are extremely cost intensive.
Better results can be obtained by using 2D CNNs with reduced model complexity and
reduced training time. For instance, Xing et al. [19] were able to improve the accuracy
obtained by a baseline 3D CNN approach on the AD vs CN task by 9.5% and with only
20% of its training time by using a 2D CNN pre-trained on the ImageNet dataset [12]
indicating the high effectiveness of 2D CNNs as compared to 3D CNNs. In [20], TL
by pre-training on ImageNet was performed earlier, and adapted pre-trained VGG16
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[9] and InceptionV4 [8] architectures to AD classification by using 2D image slices
from the OASIS dataset [2]. The 32 most informative scans were taken from the axial
plane of each 3D scan. The accuracy of 96.25% is reported on AD vs CN task, and
demonstrated that even with a small training dataset, and without training the entire
deep model from scratch, TL can help to achieve highly accurate classification of AD.
On the same dataset, Maqsood et al. [21] fine-tuned an ImageNet pre-trained AlexNet
[11] to performmulticlass AD classification tasks. The last three layers of AlexNet were
replaced with a SoftMax, fully connected and output classification layer in order to
extract class specific features of the OASIS dataset, and able to attain 92.8% multiclass
accuracy.

Another TL method utilized 2D image slices is proposed by Islam et al. [22]. MRI
scans were taken from the ADNI dataset, sliced into 2D images along the coronal planes,
and passed to DenseNet architecture pre-trained on ImageNet dataset. Wang et al. [28]
employed TL by first pretraining an expedited CNN on the OASIS dataset. This pre-
trained model was then repurposed for the Mild Cognitive Impairment (MCI) vs CN
classification taskwith subjects from theADNI dataset. Pre-training onOASIS improved
the accuracy by 9.2%. In addition, data augmentation is adopted to deal with limited
training data.

Choi et al. [23] created an ensemble of 2D deep CNNs for AD detection where the
weights of each deep CNN member were optimized by designing a deep ensemble gen-
eralization loss which takes into consideration the interaction and cooperation between
the deep CNNs.

An ensemble of 2DCNNs for AD detection was also employed by Pan et al. [29]. For
each view of the brain, authors created sets wherein each set composed of a single slice
from that view of the brain from the training subjects. Multiple such sets corresponding
to multiple slices from a particular view were created, and a 2D CNN classifier was
trained on each set of each view. From each view, an ensemble classifier composed of
the 5 best performing classifiers was created. Finally, another ensemble classifier was
built on top of the three single-view ensemble classifiers using max-voting to give the
final subject-level prediction.

Aderghal et al. [24] proposed amodel to focus on only a few slices of the hippocampal
region of the brain and combined features from sMRI and Diffusion Tensor Imaging
(DTI) modalities using images from the ADNI dataset. Authors obtained an accuracy
of 92.3% by using LeNet architecture, and a combination of two TL schemes: 1) cross-
modal TL between sMRI and DTI brain images, and 2) cross-domain TL from MNIST
dataset [13] to medical brain scans.

Nonetheless, it should be noted that 2DCNN approaches are limited to a single chan-
nel, i.e., a single view of the brain. They do not take into account the 3D information of
the MRI scan. In contrary to all these approaches, we propose a multi-channel ensemble
model that makes a decision on a subject after taking into account all three planes of
view of the brain from intelligently selecting intersection points of the brain.
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3 Methods and Materials

In this section,wepresent themethodology includes data collection, pre-processing, slice
selection, multi-channel network architecture, and proposed ensemble of multi-channel
networks.

3.1 Data Selection

For our work, we used sMRI data from [1]. Specifically, T1-weighted MRI data from
the ADNI1: Annual 3 Yr 1.5T dataset is utilized. Within this dataset, MRI scans that
are already reviewed for quality and Gradient inhomogeneity correction (Gradwarp), B1
non-uniformity corrected andN3 processed (to reduce residual intensity non-uniformity)
are chosen. A total of 327 subjects (150 AD and 177 CN) are MRI scans that fit this
criterion. Out of these 327 subjects, 300 subjects (150 AD and 150 CN) are randomly
selected. Moreover, one MRI scan is utilized per subject.

3.2 Data Preprocessing

All the MRI scans belong to the ADNI database and go through three phases of prepro-
cessing before being utilized as an input for the proposed deep model. Initially, all the
scans are of dimensions 256 × 256 × 166.

Phase 1: The raw scans contain non-brain areas such as the neck, nose, skull, etc. in
which we are not interested. The first step is to remove these areas by performing cortical
reconstruction using the recon-all-autorecon1 function provided by the Freesurfer tool.
This function performs the following five transformations on the scans – 1) Motion Cor-
rection and Conform, 2) NU (Non-Uniform intensity normalization), 3) Talairach trans-
form computation, 4) Intensity Normalization 1, and 5) Skull Strip. After this phase of
pre-processing, skull-stripped MRI scans of dimensions 256 × 256 × 256 are obtained.

Phase 2:Depending upon the position of the head of the subject, the type of scanner
and coils used, there can be differences in size and how the images are aligned. Thus,
affine registration is adopted to translate, rotate, zoom and shear one image to match
it with another. All images are registered with the MNI152 T1 template MRI scan.
Registration has been done using the “nibabel” and “dipy” libraries in Python. After this
phase, scans are consistent in shape, position and alignment, with dimensions of 182 ×
218 × 182.

Phase 3: In order to save memory without compromising the classification, and
retaining enough slices from each view, all the MRI scans are downsampled to 112 ×
112 × 112 as suggested by Suk et al. [30].

Because, the brain is a 3D structure, any location in the brain can be localized using
three planes - Sagittal, Coronal and Axial. After preprocessing, each MRI scan is a 3D
image of dimensions 112 × 112 × 112. Thus, we have 112, 2D slices from each of the
three planes of view.
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3.3 Slice Selection

From each pre-processed scan, ‘N’ 2D slices are selected from each view, around the
corresponding view’smost informative slice. Fromagiven view, the slicewith the highest
entropy has the most variation and can be considered the most informative slice of that
view [20]. The Shannon entropy [31] of an image can be defined as:

H = −
n∑

i=1

pi × log2 pi

where n is the number of gray levels and pi is the probability of a pixel in the image
having gray level i.

For each subject, we first calculate the image entropy of every slice from all three
views using Shannon entropy. For each view, the slice that has highest Shannon entropy
the most number of times over all the subjects is selected as the most informative slice.

We call themost informative slice from theSagittal view asMIS, themost informative
slice from the Coronal view as MIC, and the most informative slice from the Axial view
as MIA. Ultimately, we select slices − 1) MIS - floor(N /2) to MIS + ceil(N /2) − 1 from
the Sagittal view, 2) MIC - floor(N /2) to MIC + ceil(N /2) − 1 from the Coronal view,
and 3) MIA - floor(N /2) to MIA + ceil(N /2) − 1 from the Axial view. Here, floor(x)
represents the greatest integer ≤ x, and ceil(x) defines the greatest integer ≥ x. This
yields a total of N slices around each view’s most informative slice. Figure 1 shows
the image slices belonging to Sagittal, Coronal and Axial views of two MRI scans after
preprocessing.

Fig. 1. Slices from the Sagittal, Coronal and Axial views of two MRI scans after pre-processing.

3.4 Multi-channel Network Architecture

Each channel utilizes aCNNpre-trained on the ImageNet dataset [12], initially. The input
shapes for the Coronal, Axial and Sagittal base models are set to (142, 142, 3), (178,
142, 3) and (178, 142, 3), moreover, the topmost classification layer of each base model
is removed. We define a ‘BN-D-DP-BN’ block as a sequence of a Batch Normalization
layer, a Dense Layer of 64 units, a Dropout layer of 0.5 and another Batch Normalization
layer (more details see Fig. 2).

Each pre-trained model is connected to a BN-D-DP-BN block. The outputs of each
BN-D-DP-BNblock are concatenated, and passed to another BN-D-DP-BNblock before
being passed to a softmax layer. The BN-D-DP-BN blocks are added to learn, to turn
the old features of the pre-trained models into predictions on the current classification
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Fig. 2. A BN-D-DP-BN block.

task. Figure 3 show the architecture of the proposed multi-channel model for AD clas-
sification. By using this architecture, efficient features from Sagittal, Coronal and Axial
are combined to perform the final classification task.

Fig. 3. Proposed multi-channel architecture for AD classification.

From Fig. 3, we depict that each channel learns 2D information of its respective
plane of view for a particular location. When feature maps from all the three channels
are concatenated, the network learns the relationship between the three views about a
particular location. Essentially, the model learns 3D information from 2D slices.

The following three pre-trained networks are utilized as base CNN models corre-
sponding to Sagittal, Coronal and Axial image slices features’ extraction. In addition,
we can depict the network architecture of InceptionV3, ResNet, and DenseNet in Fig. 4.

1. InceptionV3 [7] is aCNNnetwork from the Inception family built byGoogle. It intro-
duced a regularizing component called label smoothing to prevent overfitting, 7 × 7
convolutions that factorized into smaller symmetric and asymmetric convolutions,
and Batch Normalization in the auxiliary classifiers.

2. The ResNet architecture [10] has won the ImageNet contest in 2015 and demon-
strated the possibility to greatly improve the depth of the network while having fast
convergence. Authors, observed that with an increase in network depth, accuracy
gets saturated, and then degrades rapidly. To overcome this, residual or skip connec-
tions is introduced to provide an alternative pathway for data and gradients to flow.
ResNet50 model consists of 5 stages with the last 4 stages consisting of a stack of
residual blocks. Each residual block consists of a stack of layers where the activation
from a previous layer gets added with the activation of a deeper layer in the block,
through a skip connection.

3. When CNNs get deeper, the path between input and output becomes so big that
information vanishes as it reaches the other side. DenseNet [9] is an architecture
developed to solve this problem and provide maximum information flow in very
deepneural networks, by using shorter connections.DenseNet121,Densenet160, and
DenseNet210 are the different architectures in the DenseNet family. Each variant
of the DenseNet architecture is composed of a stack of ‘Dense Blocks’ in which
each layer adds features on top of existing feature maps through concatenation.
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DenseNet121 with 4 Dense Blocks, is utilized in this paper as it has a lesser number
of parameters than the other two architectures, and is thus relatively computationally
inexpensive.

Moreover, Table 1 shows the number of parameters utilized in InceptionV3,
ResNet50 and DenseNet121 at the time of model training.

For each multi-channel model, different combinations of these three pre-trained
CNNs are utilized as base models to the three channels to maximize accuracy.

(a)

(b)

(c)

  Convolution;   MaxPool;   AvgPool;   Concat

Fig. 4. Network architectures of the three base models - (a) InceptionV3, (b) ResNet50, (c)
DenseNet121 with the topmost classification layers removed.

Table 1. Number of parameters for each base model

InceptionV3 ResNet50 DenseNet121

Total parameters 21,802,784 23,564,800 7,037,504

Trainable parameters 21,768,352 23,519,360 6.953,856

Non-trainable parameters 34,432 45,440 83,648
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3.5 Ensemble of Multi-channel Model

For any particular subject, there are N input features:
[(MIS - floor(N /2)+ i)th Sagittal slice, (MIC - floor(N /2)+ i)th Coronal slice, (MIA

− floor(N /2) + i)th Axial slice], 0 ≤ i < N.
Every input feature is a location in the brain or an ‘intersection point’ that can be

observed from three different views. The N such input features for one subject give such
N locations or intersection points in that subject’s brain. Each point is incrementally
diagonal i.e. no two locations are on the same plane. This gives us three distinct planes
of view for each intersection point.

Corresponding to each of N intersection points, N multi-channel models are first
trained individually, and a max-voting ensemble of N models is composed to give
predictions at a subject level.

Figure 5 shows an ensemble classifier is composed on top ofN multi-channelmodels,
each trainedon its respective intersectionpoint, to providepredictions for a single subject.

Fig. 5. Proposed framework of ensemble approach.
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4 Results and Discussions

As aforementioned, 150 subjects with Alzheimer’s Disease and 150 subjects who are
Cognitively Normal are considered and N images from each of the three views are taken
from each subject as one input feature. The hold-out method is applied to obtain the
results, with 80% of the data used for training, and 20% of the data utilized for testing.
The 10% of the training data is used as a validation dataset. The split is made at a subject
level, and not at a slice/feature level, thus avoiding any data leakage.

The train-validation-test split yields, 108 train subjects, 12 validation subjects, and
30 test subjects. Corresponding to each of N intersection points, N datasets are created
with each dataset containing 108 training features, 12 validation features, and 30 testing
features, and a single multi-channel model is trained on each of N datasets. To give
predictions at a subject level, predictions are made on each of N intersection points
by the corresponding multi-channel model, and the predictions which we get from the
majority of the models (max-voting ensemble) are utilized as the final prediction for that
subject.

While training the multi-channel models, the weights of each base model are frozen
and not updated during training. After one round of learning, a round of fine tuning is
applied and some layers from the top of each basemodel are unfrozen, and trained jointly
along with the newly added classification layers. Data augmentation is applied on the
fly to reduce overfitting. The input slices for each base model are randomly rotated by
[−30, 30], randomly zoomed in and out by [−0.2, 0.2], randomly shifted horizontally
and vertically by [−0.1, 0.1], and randomly flipped horizontally and vertically.

The same training parameters are utilized for all the three types of multi-channel
models. During the first round of learning, the Adam optimization model is applied
with the following parameters – learning rate: 0.001, beta1: 0.9, beta2: 0.999 and batch
size: 32. Moreover, the learning rate is reduced to 0.0001 during fine tuning to prevent
overfitting.

The experiments are performed using Keras v2.4.0 framework with a Tensorflow
v2.4.2 backend on the Kaggle server [32] with a NVIDIA Tesla P100 GPU (16 GB).

Using Shannon entropy, the most informative slices from each view are calculated
first for each subject. For a given view, the slice which happened to be the most informa-
tive for the majority of the patients is selected as the most informative slice for that view.
Table 2 shows the number of slices of Sagittal, Coronal, and Axial as a most informative
slice from each view.

Table 2. Most informative slice from each view.

View Most informative slice

Sagittal 48

Coronal 73

Axial 42
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4.1 Effect of Base Models and Optimal Value of N

We consider InceptionV3 (IV3), ResNet50 (R50) and DenseNet121 (D121) as base pre-
trained models to the three channels. All possible combinations of these base models are
experimented with various values ofN (i.e. 3, 5, 10, 15, and 20), to determine the optimal
number of intersection points, and the best combination of the pre-trained models.

Results obtained by the top 5 best performing multi-channel ensembles along with
the 5 different values of N are shown in Table 3.

Table 3. Performance of top 5 multi-channel models with different values of N.

Coronal
base model

Axial base
model

Sagittal
base model

No. of
intersection
points (N)

Accuracy Precision Recall F1-Score

D121 R50 I3 3 91.66 91.71 91.66 91.66

5 95.00 95.05 95.00 94.99

10 91.66 91.71 91.66 91.66

15 95.00 95.05 95.00 94.99

20 95.00 95.05 95.00 94.99

R50 R50 I3 3 90.00 90.00 90.00 90.00

IRV2 D121 IRV2 5 96.66 96.87 96.66 96.66

IRV2 IRV2 D121 10 93.33 93.52 93.33 93.32

IRV2 D121 D121 15 95.00 95.05 95.00 94.99

IRV2 D121 IRV2 20 95.00 95.05 95.00 94.99

D121 D121 D121 3 91.66 91.71 91.66 91.66

5 96.66 96.87 96.66 96.66

10 95.00 95.45 95.00 94.98

15 95.00 95.45 95.00 94.98

20 95.00 95.45 95.00 94.98

R50 R50 D121 3 93.33 93.52 93.33 93.32

5 96.66 96.87 96.66 96.66

10 91.66 92.85 91.66 91.60

15 96.66 96.87 96.66 96.66

20 95.00 95.45 95.00 94.98

D121 R50 D121 3 96.66 96.87 96.66 96.66

5 98.33 98.38 98.33 98.33

10 96.66 96.87 96.66 96.66

15 98.33 98.38 98.33 98.33

20 96.66 96.87 96.66 96.66
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The highest accuracy of 98.33% is obtained by setting the number of intersection
points to 5, and applying DenseNet121, ResNet50, and DenseNet121 as the Sagittal,
Coronal and Axial base models, respectively, and we choose this combination as our
proposed model. Moreover, the training and validation of accuracy and loss for the
proposed multi-channel model for its best performing intersection point is presented in
Fig. 6.

Fig. 6. Training and Validation Accuracy, and Loss for the best performing intersection point of
the proposed model.

It is observed that the optimal number of intersection points as defined in Sect. 3.4
is 5. From Fig. 7, we can depict that the accuracy increases with an increase in N, peaks
at N = 5, and does not increase with a further increase in N. Even though, a similar
accuracy is achieved with N = 15 and N = 20, model training time for these is far
greater than the training with N = 5 (4085 s), as 10 and 15 more multi-channel models
need to be trained for N = 15 (12032 s) and N = 20 (16113 s) as compared to N = 5.

Fig. 7. Influence of N on top 5 best performing models.
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The results of this model are compared with state-of-the-art methods [15–27]. From
Table 4,we depict that ourmodels outperforms the existingmodels based on the accuracy
and other performance metrics, thus, shows the usefulness of our models.

Table 4. Comparison with existing models for AD vs CN classification.

Ref. Dataset Classifier Accuracy (%)

[15] ADNI VoxResNet 80

[18] ADNI Inception module based CAE 86.60

[25] ADNI 2D CNN SqueezeNet (TL) + LSTM 90.62

[19] ADNI 2D CNN + Attention Mechanism 92

[26] ADNI LSTM 92.2

[24] ADNI Two level TL on 2D CNN (LeNet) 92.3

[21] OASIS 2D CNN AlexNet (TL) 92.8

[27] ADNI Multi Modal 3D CNN 93.26

[23] ADNI Ensemble of 2D CNNs with optimal fusion weights 93.15

[16] ADNI 3D CNN + 3D CLSTM 94.19

[17] ADNI 3D CNN and FSBi LSTM 94.82

[22] ADNI 2D CNN DenseNet121 (TL) 94.97

[20] OASIS 2D CNN Inception V4 (TL) 96.25

Our ADNI Multi-Channel Ensemble of 2D CNNs 98.33

5 Conclusion

In this paper, using ADNI dataset, we proposed a novel multi-channel ensemble 2D
CNN model for the diagnosis of AD wherein each channel takes as input images from
one of the three views of the brain. Prior works employed 2D CNNs and failed in
considering the fact of spatial relationship from 3D MRI scans. Given an intersection
point in the brain, our proposed model takes into account all three views of the brain
around that point, and efficiently learns the relationship between these three brain views
and preserves this spatial relationship. The most informative 2D slices from each view
are selected using image entropy. The number of intersection points and combination
of base models are experimented extensively. The proposed model uses pre-trained
DenseNet121, ResNet50, and DenseNet121 as a base models for the Sagittal, Coronal,
and Axial channels, respectively and performing an ensemble over 5 intersection points
of the brain. Our model outperforms state-of-the-art models for AD classification and
reported the highest accuracy of 98.33%. In future work, we plan to integrate other
modalities such as PET scans to construct multi-modal networks for AD classification,
and take into account intermediate stages of AD for multiclass classification tasks.
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Abstract. Multiple Choice Questions (MCQs) feature more and more
in modern-day assessments due to more straightforward exams and faster
checking. However, with this comes the challenge of creating a diverse
pool of MCQs specific to a given subject matter. This work proposes an
MCQ generation system that uses linguistic features and Deep Learn-
ing techniques to create MCQs from a given text. The entire process
has three steps: i) The pre-trained DL state-of-the-art model summa-
rizes a text paragraph to get relevant information. ii) Linguistic features
generate question (stem) and answer (key) pairs. iii) Distractor genera-
tion using the key or correct answer. DL-based paraphrasing models are
used to augment the MCQs dataset with questions of similar type and
difficulty level.

Keywords: MCQ generation · Question answer system · Deep
learning · Text linguistic features

1 Introduction

The rise of e-learning technologies has immensely facilitated education, but also
poses a challenge for the people involved in assessment due to the compounded
effect of a large number of examinees to be assessed at once; a lack of variation
in the questions compared to prior assessments; and finally, it being a tedious
task to manually delve into subject literature to formulate a sufficient number
of questions. All these factors led to the research in computer-aided systems to
generate questions.

Natural Language Processing (NLP) has been the obvious choice to tackle
the problem of Automatic Question Generation (AQG). However, with the pop-
ularisation and increased accessibility of Machine Learning and Deep Learning,
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these are being employed to gain novel perspectives in AQG. Still many chal-
lenges persist [7], making this problem riveting and one worth exploring.
Moving on, MCQs are easier to administer and evaluate than essay-type ques-
tions, and are thus explicitly used in mass and online testing scenarios. This
work also focuses on auto generation of MCQs for a given text. Some important
terminologies regarding MCQs are:

1. Stem/Question-Sentence: precedent that the question relies on, containing
sufficient information for an examinee to figure out the correct answer.

2. Key: correct answer to the question posed by the stem.
3. Distractors: set of alternatives present with the key, contextually and seman-

tically close to the key to deter guessing by the examinee while also being
unambiguously wrong.

This paper aims at outlining a pipeline for the generation of interrogative type
MCQ questions and proposes a method to increase the obtained question pool
by leveraging paraphrasing techniques.

2 Related Work

One of the best, most comprehensive, and recent survey papers is [5]. Some other
essential survey papers that we came across are [6] and [7]. [5] discusses not only
the prominent research done in the field but also outlines a generic workflow for
how MCQs are to be generated from a text.

Dhole et al. [4] have developed a rule-dependent framework SynQG, for pro-
ducing questions by outlining brief answers using dependency trees, semantic
roles identified for predicates’ verb arguments, named entities, state of various
actors over time, and by verb-specific semantic-roles assigned to the participants.

Bhatia et al. [8] creates a reference set of sentences by replacing the ‘Wh
phrases’ with the first option in existing MCQs, which is used to find potential
stems and keys, for a given text input. For distractor generation, an attribute set
is created using tabular data on Wikipedia, for a key. Wikipedia is again searched
for related candidates from the same category as the key using modifiers from
the attribute set.

Majumder et al. [1] improve the sentence selection used by [8] using various
preprocessing techniques. The parse trees in the reference set and the parse trees
of input text are compared for finding stems, identifying the key in a candidate
stem, question formation from the stem, and the generation of distractors.

Santhanavijayan et al. [3] devise a system to collect relevant text for a user-
specified domain. A fireflies-based preference learning summarization is applied
to the collected text, to filter informative sentences. Keys are found using POS
tagging and a preference mechanism for identified POS tags. Distractors are
produced using metrics of similarity (hyponyms and hypernyms).

3 Methodology

The MCQ generation system, is compartmentalized to perform various sub-tasks
associated with the system. Figure 1 depicts its workflow.
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Fig. 1. Basic workflow for the MCQ generation process used in this paper.

3.1 Extraction

At first, the user provides a pdf file as input from which text is extracted using
Pypdf. It is a pure-Python library built as a PDF toolkit. Some of its capabili-
ties that are required for a question generation system are extracting document
information and splitting documents page by page.

3.2 Summarization

The system utilizes BERT Extractive Summarizer [11] to summarize the text.
It parses the meaning by consolidating the relevant sentences, as well as reduces
the number of irrelevant sentences.

Coreference resolution and sentence simplification are applied to the sentences
extracted by BERT, as it extracts complex and compound sentences, that are inap-
propriate for further processes. NeuralCoref, a pipeline extension for spaCy based
on [13], is employed for coreference resolution while Multilingual Unsupervised
Sentence Simplification (MUSS) [9] is used for sentence simplification.

3.3 SynQG

The SynQG framework by Dhole et al. [4] generates numerous question-answer
pairs from a single statement using universal dependencies, shallow semantic
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parsing, lexical resources, and custom rules. SynQG modifies the argument of
each predicate into the form of semantic roles, according to a predefined set of
rules. It also identifies the named entity and other generic entities that are part
of the statement.

3.4 Distractor Generation

In MCQs, distractors are incorrect answers that obfuscate the correct answer to
make the examinee think about the study material. This is done by finding words
that are conceptually close or belong to the same category as the key. Sense2Vec
[10] (with automatically compiled lexicons from a text corpus) is used for the
generation of distractors.

3.5 Paraphrasing

Sometimes it is advantageous to use paraphrased questions to have a set of
similar questions with equal difficulty. We are using the text to text transfer
transformer (T5) [12] model to achieve this. Unlike BERT models that only
either produce a class label or a span of an input, T5 input and output are
always text strings.

4 Experiments and Results

Regarding human evaluation, two predominant approaches exist. [8] uses domain
relevance, quality of the selected key, question formation, level of information
provided by the question, ‘distractors’ closeness to key, etc. as parameters. On
the other hand, [1] only asked the evaluators if the questions were ‘good’ or ‘not
good’.

For this paper, evaluators are only asked to mark questions as ‘pass’ or ‘fail’
based on their understanding of the passage provided while being mindful of
factors like grammar, semantics, contextual closeness to input text, distractor
quality, the difficulty of the questions, and naturalness (if questions look human
enough). Evaluators’ response is collected via Google forms and success rate is
calculated for each assessor as follows:

Success percentage =
Number of questions passed

Total number of questions
(1)

50 human assessors participated in the evaluation, wherein they are provided
a text from a high school history textbook, followed by 25 MCQs from the same
text. The average success rate for the aforementioned text is 77.14 %, as per
Eq. 1.
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5 Conclusion

Most of the prior works used blank question types as they are easier to gen-
erate and yield higher accuracy, but we target generating simple interrogative
questions or ‘Wh’ question type MCQs. First input text is summarized. Coref-
erence resolution and sentence simplification are applied to the obtained sum-
mary to get stems. SynQG took these stems as input to yield question-answer
couplets, for which distractors were generated using Sens2vec. Some of these
questions were paraphrased using a T5 Transformer to augment the question
pool. Human evaluators then evaluated the system using high school history
texts. After a thorough analysis of the evaluation results, it can be concluded
that the accuracy of the model can be improved by better pre-processing of the
input texts and enhancing the SynQG model to recognize a variety of sentence
structures. Summarization can also be improved to recognize more informative
and complete sentences.
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Abstract. Hate Speech is an expression that expresses hatred towards
people of a specific ethnic group or nationality and incites hatred. Even
though many countries have anti-hate speech legislation, hate speech can
spread in the native language on social media platforms, resulting in vio-
lent riots and protests that spiral out of control and result in anti-social
events. Hence, hate speech has caused a crucial social issue. Thus, vari-
ous intelligent mechanisms have been employed to classify hate speech,
depending on the category. A deep learning model has certain limita-
tions for providing n-gram features for text classification of the native
language. As a result, in this paper, the Multi-kernel uniform capsule
network for multilingual languages is proposed. The proposed method
employs a Multi-kernel uniform capsule network to improve feature selec-
tion performance by utilizing the capsule network routing algorithm. The
experiments were carried out on political, COVID-19 and vaccination,
lockdown, and multilingual dataset. The experimental results demon-
strate that the proposed methods achieve adequate results when com-
pared with other machine learning models for hate speech detection.

Keywords: Capsule network · COVID-19 · Hate speech · Lockdown ·
Multilingual · US election · Vaccination

1 Introduction

The popularity and the user’s growth on social websites are increasing day by
day. Social networking websites provide a platform for every user to express
their sentiments and share readily attainable comments through the Internet
[4,7]. There are numerous advantages to utilizing social media to unite people,
bring people together, and serve businesses which are developing faster every day.
Nevertheless, it has drawbacks; this technology increases cyberhate and hateful
content about a particular group or a person which spread rapidly [6]. Recently,
we have also been able to post on social media sites in our native language. As the
usage of social networking websites grows in each country, cyberhate attracts the
attention of researchers and those working in multilingual domain. Thus, we need
c© Springer Nature Switzerland AG 2022
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to stop hate speech in all native languages around the world. According to the
research literature, biased people can spread hatred content, who have negative
sentiments toward some communities, minority groups, characteristics, women,
etc. Hence, these hateful messages directly impact the victims and their families
[6]. Certain events, such as cyberhate propaganda, racist communications, and
comment threads on social networking websites, are usually enough to start a
chain reaction [1,4,7]. Therefore hate speech detection is essential in order to
stop hate crimes.

2 Related Work

In 2021, a BERT code mixed algorithm was proposed to effectively detect hate
speech. It focuses on code-mixed multilingual language and classifies with the
help of the BERT model, in which necessary features have been selected for
the BERT embedding approach [11]. After that, transformers and their vari-
ants method have originated to detect the ambiguous nature of data. Also, a
Multi-channel uses BERT for English and Chinese language datasets with a
multi-channel BERT model and illustrated trustworthy accuracy for hate speech
classification [10]. Some researchers have offered a unique method of one-class
type and focus on rumor detection over social media, as rumor can cause and
propagate hate [3]. Hana et al. have created and developed a multi-label classifi-
cation of Indonesian Hate speech with a support vector machine (SVM) to help
identity and detection online public shaming. The SVM concept has been used
to attain better results and simultaneously reduce computational time [5]. The
code-switched text messages approach compares different feature word embed-
ding techniques with word-level and character-level n-gram to check the accu-
racy of various multilingual languages [8]. Patricia et al. have classified English
and French language abuse tweets using an attention mechanism using sentence
embedding with bi-directional long short-term memory (LSTM) [2]. The pro-
posed paradigm identifies the ambiguity in the sentence for a more reliable clas-
sification. Recently, researchers and developers have been employing the autoen-
coder (AE) to detect hate speech. Thus, deep learning AE-based hate speech
detection has been performed to handle the ambiguous data for enhancing the
performance [14]. Based on the above discussion, we can conclude that a single
deep learning model cannot provide n-gram features for native language text
classification. As a result, in this paper a the Multi-kernel capsule network for
multilingual languages is proposed and evaluated on various datasets.

3 Methods

In this section, we describe the dataset and the proposed model in detail.

3.1 Data Sets

We use three types of data sets in this paper for hate speech detection. The
monolingual data sets contain topics related to the 2020 US election (DS1),
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Fig. 1. Multi-Kernel uniform CapsNet

Indian Farms Act protest (DS2), Lockdown 2020 (DS3), Lockdown 2021 (DS4),
and COVID-19 vaccinations (DS5) [9]. We use the three data sets published
by Hate Speech and Offensive Content Identification in Indo-European Lan-
guages (HASOC 2019) [4,12,13] with Hindi (MDS1), English (MSD2), and Ger-
man (MSD3) languages. To add another language, we also use a data set in
the Korean (MSD4) language1. Besides, the mixture of three multilingual data
sets, namely English-Hindi (CMSD1), English-German (CMSD2), and English-
Korean (CMSD3), are created using the above-mentioned MDS1, MDS2, MDS3,
and MDS4 datasets. To remove unwanted noise from the datasets, we use lemma-
tization from the nltk library [9].

3.2 Classification Model

In this section, we describe the proposed method for hate speech detection.
This paper proposed a Multi-kernel capsule network (MKU-CapsNet) method, as
shown in Fig. 1. A single kernel of a capsule network (CapsNet) can exhibit bias
towards a specific class. To overcome the bias towards a particular class, MKU-
CapsNet employs three different kernel uniforms: GLOROT, HE, and NORMAL
uniform. Furthermore, the model combines three different kernels k by calculat-
ing the square root of the summation of three kernels based on individual kernel
weights given in Eq. (1). As a result, the proposed method has been used to
derive a generalized fit from an independent kernel uniform.

kn =
√

k12 + k22 + k32 (1)

In text classification, a large dimensional corpus is built because each unique
word is a feature. Thus, the proposed MKU-CapsNet method helps when a

1 https://www.kaggle.com/junbumlee/lgbt-hatespeech-comments-at-naver-news-
korean.

https://www.kaggle.com/junbumlee/lgbt-hatespeech-comments-at-naver-news-korean
https://www.kaggle.com/junbumlee/lgbt-hatespeech-comments-at-naver-news-korean
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Table 1. Performance of various algorithms on monolingual political, COVID-19
datasets, multilingual, and composition of multilingual datasets.

SVM LSTM CNN GRU CapsNet MKU-CapsNet

DS1 77.02 88.71 94.35 91.69 93.46 97.92

DS2 95.57 99.35 98.95 99.31 99.01 99.34

DS3 96.55 99.80 99.72 99.73 99.10 99.38

DS4 97.27 97.34 97.27 98.52 97.13 97.69

DS5 88.50 99.13 99.10 99.09 97.03 98.47

DS6 85.19 99.30 99.42 99.33 97.28 98.81

MDS1 78.32 73.51 73.85 74.93 66.33 74.78

MDS2 88.88 86.07 81.25 85.63 86.73 88.37

MDS3 65.95 63.44 62.94 63.44 61.65 65.66

MDS4 72.49 82.75 80.34 82.21 83.80 84.08

CMDS1 70.29 69.82 68.32 68.47 65.89 69.09

CMDS2 72.88 73.24 68.35 71.29 72.07 75.10

CMDS3 72.22 78.08 76.14 75.52 72.69 76.47

single kernel extracts and performs dynamic routing on each unique feature.
The CapsNet network can’t understand the word’s feature meaning and actual
ground truth, as the single word feature may contain different contexts based on
the sentence. For a broad feature set, a single kernel fails to pass the test. The
CapsNet for text classification uses a single kernel and performs dynamic routing
depending on the features selected from the embedding layer. So the CapsNet is
legged for large and complex datasets and cannot understand the ground truth
of a word in dynamic routing; if a single kernel with a large feature matrix is
applied. So, we have used the MKU-CapsNet for vital feature selection and,
those features pass to the network for dynamic routing for better performance.
Once we get the ground truth of each feature word, it is easy for the CapsNet to
perform dynamic routing to overcome the issue of a large-scale feature set, where
a single kernel does not identify the relationship between words in a sentence.

4 Experiments

This section describes the experiments and comparative analysis of the results
obtained from different models.

4.1 Experimental Setup

We investigate in six models namely SVM, LSTM, Convolutional Neural Net-
works (CNN), Gated recurrent unit (GRU), CapsNet and the proposed MKU-
CapsNet on the datasets mentioned in Sect. 3.1. We use binary-cross entropy loss
function and report the accuracy on the test set. The hyperparameters of the
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proposed model are convolution filters: 100, numbers of capsules: 10, routing: 05,
dimensions of capsule: 16. All the experiments were implemented using standard
Python library.

4.2 Results

In Table 1, the testing performed for the DS1 dataset ranges from 88.0% to 94.0%
for the individual deep learning model. The varying skills of the deep learning
model to specify the input data contribute to this difference within the out-
come. Among competing deep learning models, CNN has a worthy performance
of 94.35%. However, the proposed MKU-CapsNet model in the DS1 dataset
performs 97.92% and outperforms other models. The proposed technique out-
performed the other architectures by 99.34%. Besides, the LSTM model attained
the highest accuracy of 99.35% for data set DS2, which is slightly higher than the
MKU-CapsNet model. The best result was obtained for the monolingual data set
DS3 with 99.38%. Aside from that, the proposed MKU-CapsNet model delivers
good results and outperforms single kernel CapsNet on all datasets. Still, GRU
obtains more accuracy of 0.1% to 0.5% for the DS4, DS5, and DS6 than the
proposed MKU-CapsNet Model.

For the Multilingual datasets MDS1, MDS2, and MDS3, the proposed model
achieves higher accuracy than the single kernel uniform CapsNet and lower accu-
racy than the GRU for MDS1, SVM for MDS1, MDS2, and MDS3. Also, the
proposed MKU-CapsNet performance better and increased accuracy ranges from
0.01% to 10.00% for other deep learning models. The performance of the pro-
posed method for MDS4 is 84.08%, which is higher than the performance of all
models. For the composition of multilingual dataset CMDS1 and CMDS3, the
proposed model achieves better accuracy than the single kernel uniform CapsNet
and lower than the LSTM for CMDS1 and CMDS3, SVM for CMDS1. Also, the
performance is decent than the other deep learning models, ranging from 0.01%
to 5.00%. For CMDS2, the proposed method outperformed all models and the
single kernel CapsNet approach by 75.10%. Observations for other data sets are
also noted with the effect of the uncertainty of the text, overcoming the limita-
tions of using a single uniform CapsNet learning method. Overall, the outcomes
show that the proposed strategy can efficiently deal with the text uncertainty
effect, overcoming the constraints of most deep learning models and single kernel
uniform methods.

5 Conclusion

This paper proposes a Multi-Kernel Uniform Capsule Network approach for
English, multilingual, and composition of English multilingual dataset for hate
speech text classification. The main contribution is fusing the three different
uniform kernels to improve generalization and decrease bias. The proposed app-
roach achieves better or comparable results than other baseline models and out-
performs CapsNet on all datasets. Multi-kernel dynamic routing has excellent
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capabilities while working with a multilingual feature set compared to traditional
methods. Capsule networks perform well on image datasets. Thus in our future
study, we will look into hybrid models to comprehend feature heterogeneity using
image hate speech datasets. It will further improve the detection of hate speech.
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