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Abstract. Prevalent wearables (e.g., smartwatches and activity trackers)
demand high secure measures to protect users’ private information, such as
personal contacts, bank accounts, etc. While existing two-factor authenti-
cation methods can enhance traditional user authentication, they are not
convenient as they require participations from users. Recently, manufac-
turing imperfections in hardware devices (e.g., accelerometers and WiFi
interface) have been utilized for low-effort two-factor authentications.
However, these methods rely on fixed device credentials that would require
users to replace their devices once the device credentials are stolen. In this
work, we develop a novel device authentication system, WatchID, that can
identify a user’s wearable using its vibration-based device credentials. Our
system exploits readily available vibration motors and accelerometers in
wearables to establish a vibration communication channel to capture wear-
ables’ unique vibration characteristics. Compared to existing methods, our
vibration-based device credentials are reprogrammable and easy to use.
We develop a series of data processing methods to mitigate the impact
of noises and body movements. A lightweight convolutional neural net-
work is developed for feature extraction and device authentication. Exten-
sive experimental results using five smartwatches show that WatchID can
achieve an average precision and recall of 98% and 94% respectively in var-
ious attacking scenarios.
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1 Introduction

Due to ever-advancing communication, computing, and sensing technologies,
wearables (e.g., smartwatches and activity trackers) have become increasingly
ubiquitous for people to use in their daily lives. Many manufacturers produce
such gadgets for activity tracking and vital signs monitoring in order to capitalize
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on the global rise in health and wellbeing awareness. More recently, building on
their convenience in usage and popularity among customers, wearables expand
their functionalities beyond health and activity monitoring into various applica-
tions in other fields, including mobile payment, smart home control, emailing and
texting, etc. The growing usage of these applications in wearables provides more
opportunities for attackers to compromise users’ private information (e.g., email
accounts, personal contact lists, etc.) and, more seriously, financial information
(e.g., banking and credit card accounts). As a result, it is becoming increasingly
vital to secure wearables to protect users’ privacy and financial assets.

Existing authentication methods on wearable devices have very limited
choices. Most wearables use passwords or PINs [17] to verify users’ identi-
ties. Recently two-factor authentication has been adopted, using additional user
inputs of text codes [2] or taking phone calls [14] for better protections. These
methods require additional inputs from users and can only verify the identity
of the user based on the knowledge of certain secrete information (i.e., pass-
word, PIN, the content of additional messages and calls). These types of infor-
mation are vulnerable to many attacks, such as shoulder surfing [22] and stolen
attacks [36]. Once the user’s credentials are compromised, the attacker can easily
log into the user’s accounts on the attacker’s own device. Then the attacker can
steal valuable personal information or abuse the user’s account (e.g., making pay-
ment without users’ permission, opening smart-door locks, etc.) inconspicously.

Recently, researchers have discovered that computing devices can be iden-
tified based on their unique physical properties. For example, the frequency
responses of smartphones’ speakers are studied by Zhou et al. [41] to generate
device identities using inaudible acoustic signals. The imperfections of radio fre-
quency (RF) transmitter (e.g., the digital-to-analog converter (DAC) errors and
the power amplifier (PA) non-linearity) are explored by Polak et al. [27] to iden-
tify wireless devices. The unique acceleration responses of motion sensors inside
mobile devices (e.g., smartphones) are explored in Accelprint [11] to distinguish
different mobile devices. These studies have shown that physical properties in
hardware can be exploited to create unique device credentials as a second fac-
tor to enhance security in users’ applications. However, most of the existing
device authentication methods are rigid and suffer from stolen attacks because
users cannot change their hardware-related device credentials. As a result, users
will be forced to use a new device if their device credentials are stolen. In this
work, we propose to utilize devices’ vibration characteristics, as reprogrammable
credentials, to enable practical device authentication in prevalent wearables.

Toward this end, we develop a device authentication system called WatchID,
illustrated in Fig. 1, to identify a wearable device using vibration motions gener-
ated by its vibration motor and captured by its accelerometers. The key to this
system is that the vibration motor and accelerometers of each individual wear-
able always have manufacture imperfections. As a result, the vibration signals
will exhibit unique device-wise characteristic which we utilize for the purpose of
device authentication. Compared to existing methods, WatchID is more flexible as
it allows users to generate and reprogram various vibration patterns that are asso-
ciated with different unique device credentials. Our system is also non-intrusive
so users just need to wear their wearables without any active participations.
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Fig. 1. Illustration of WatchID: the reprogrammable wearable authentication system
using vibration-based device credentials.

In addition, it is low-cost and practical since it only uses the built-in vibration
motors and accelerometers, which are readily available in wearables. In particular,
when a user launches an sensitive application on his/her wearable (e.g., accessing a
user account, using mobile payment, controlling smart home, etc.), our system uses
the wearable’s vibration motor to generate a predefined vibration pattern. Mean-
while, the wearable’s accelerometers capture the unique vibration signals prop-
agating through the device’s body and send them with the user’s credentials to
a cloud server, where the user has pre-registered the device. Once the wearable’s
device credential and user credential are verified by the cloud server, the wearable
receives the approval to proceed with the protected application.

In designing WatchID, we address several challenges to make it an accurate,
fast, and robust device authentication system. First, the vibration characteris-
tics that we use as device credentials should be unique enough to distinguish
different wearables for the purpose of device authentication. Second, built-in
vibration motors and accelerometers inside wearables are usually of low-quality
with unstable vibration signals and low sampling rates. Third, many interfering
factors such as wearable postures, body motions, and environmental noises can
contaminate the device credentials. To address these challenges, we study the
vibration motors and motion sensors in different models of wearables and develop
vibration patterns that are suitable for device authentication. In addition, we
apply vibration noise filtering methods to mitigate the impacts of motion arti-
facts and ambient noises to our system. With the denoised device credentials, our
system applies a deep neural network designed to performance a robust device
authentication process.

Through implementing WatchID, we have made several major contributions
as follows:

– We extensively investigate the uniqueness of vibration motors and accelerom-
eters in commodity wearables, analyze the vibration characteristics from dif-
ferent vibration patterns which are used for reprogrammable vibration-based
device credentials.

– We develop a novel device authentication system with a light-weight deep
neural network that can accurately and efficiently identify different wearables
based on their vibration-based device credentials.
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– We collect a large amount of experimental data using five commercial off-
the-shelf (COTS) smartwatches in various scenarios and different days. Our
results show that our device authentication system can achieve over 98% and
94% for precision and recall, respectively.

The rest of paper is organized as follows. Section 2 begins with an extensive
review of related work in authentication methods for mobile devices and consid-
ers the uniqueness and advantage of our system that can bring into this research
field. Section 3 provides attack models to WatchID. Section 4 describes feasi-
bility studies which are used as the basis for our system. Section 5 introduces
an overview of the design and process flow of our system. Section 6 explains
our vibration noise filtering method and vibration-based device authentication
method. Section 7 presents our experimental methodology and results of evalu-
ating this system. Section 8 concludes this work with discussion.

2 Related Work

Traditional user authentication methods for mobile devices usually require user
inputs such as usernames, passwords, graphic patterns, which are vulnera-
ble to knowledge-based attacks (e.g., shoulder attacks and smudge attacks).
Recently, researchers have proposed to use human biometrics for convenient
mobile user authentication. These biometric-based methods can be classified into
two types: behavioral-based and physiological-based approaches. The behavioral-
based approaches [30,34,37] identify users based on users’ activity patterns (e.g.,
keystroke entries, mouse movements, gaits in walking). Recently, Cong et al. [33]
propose a behavior-based user authentication system using commodity WiFi,
which is non-intrusive and low-cost. The physiological-based approaches are non-
intrusive and usually exploit fingerprints [7,29], iris patterns [31,32], respiratory
patterns [25,26] and cardiac patterns [23,24,38,40] to performuser authentication.

While the above mobile user authentication methods can effectively iden-
tify users, users’ credentials can still bed be compromised by various attacks
(e.g., fingerprint smudge attacks [39] and cardiac pattern attacks [13]). To solve
these problems, researchers have exploited and utilized hardware imperfections
as device credentials to verify whether certain sensitive operations originate from
a legitimate device. According to the source of these credentials, we can classify
the existing device credentials into three categories:

1. Acoustic-based Device Credentials. Variations in manufacturing pro-
cesses, although usually small, can often introduce product imperfections off
from pre-defined specifications. For example, microphones and speakers of
the same brand and model will produce and receive sounds differently. Das
et al. [9] exploit this observation to distinguish smartphones through playing
and recording a pre-recorded audio sample. Daniel et al. [15] study statistical
characterizations of frequency responses of microphones to identify different
devices. Zhou et al. [41] exploit inaudible acoustic signals from microphones
insides smartphones to generate unique device identity. All these acoustic-
based approaches require access to microphones in recording and thus can
create privacy concerns.
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2. RF-based Device Credentials. Researchers also find that RF signals from
mobile devices contain identifiable information related to the imperfections
of the analog circuits inside these devices. For example, Danev et al. [8] com-
pare several device identification systems using modulator circuitry, analog
circuitry, and clock skew of WiFi transmitters to identify wireless devices. For
the same purpose, Polak et al. [27,28] exploit the digital-to-analog converter
(DAC) errors and the power amplifier (PA) non-linearity of RF transmitter
components. Brik et al. [6] leverage differentiating artifacts of individual wire-
less frames in the modulation domain caused by the minute imperfections of
NICs. Among these RF-based approaches, the quality and speed of RF signal
acquisition and processing are easily impacted by environmental factors so
that the resulting device credential extraction is complex and difficult.

3. Motion Sensor-based Device Credentials. Motion sensors (i.e.,
accelerometers and gyroscopes) can also be used for fingerprinting as demon-
strated in [5,10,11]: Bojinov et al. [5] exploit the unique linear bias of the
accelerometer; Dey et al. [11] use vibration motors to stimulate accelerometers
in mobile phones; Das et al. [10] use audio signals to trigger both accelerom-
eters and gyroscopes in mobile phones with human motions. These research
have shown that the motion sensor-based approach is a promising research
field with further studies needed for utilizations of predefined vibration pat-
terns, different frequencies and amplitudes. Currently existing studies mostly
focus on mobile phones and tablets. And it remains unknown whether they
can adapt to wearable devices since the contact surface of human wrists is
very different from that of desks or human palms.

In this work, we develop a novel device authentication system for wearables to
generate vibration-based device credentials by vibration motors and capture the
credentials by accelerometers in wearables. Our work is close to [11] in exploring
imperfections with vibration motors and accelerometers, but focusing on wear-
able devices. Furthermore, our system is reprogrammable in allowing users to
change or customize the device credentials. By doing so, users can keep using
their wearable devices even after the original device credentials are compromised
by attackers.

3 Attack Model

Malicious users may attempt to attack WatchID in order to steal personal infor-
mation or deny a legitimate user from using services on the device. To study
the associated attack models, we assume that the attackers can not access the
wearable device directly but may have the following capabilities: 1) the attacker
has the capability of stealing the users’ credentials, including user names and
passwords for the target system; 2) the attacker may also have obtained the
device credential that the user registers with the system. Specially, we consider
the following attack strategies.

Random Attack/Blind Attacks. We assume that the attacker has obtained
a user’s credentials, but not the device credential, and the device is not in his
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possession. The attacker uses his device to generate some random vibration
patterns to match the device credential and bypass WatchID.

Jamming Attacks. The goal of this attack is to make WatchID unable to
authenticate legitimate devices. Researchers have found that motion sensors
(i.e., accelerometers and gyroscopes) can capture the vibration signals caused
by acoustic sounds (e.g., music and human speech) [35]. Based on this, attack-
ers can launch a jamming attack by generating loud acoustic signals (e.g., loud
music) with various frequencies near the wearable devices. As a result, vibration-
based device credentials may be severely interfered by these loud sounds so that
our system is not able to accurately verify the user’s device identity.

Credential Stealing Attacks. In the case when attackers have obtained a
user’s credential as well as the device’s credential, the attacker can impersonate
the legitimate user using both types of credentials to fool the system. Once the
attacker passes the authentication, he can steal the user’s personal and finan-
cial information or even perform illicit acts. Attackers can launch such attacks
by monitoring the communications between the device and the cloud part of
WachID at the device registration phase or during normal operations.

4 Feasibility Study

In this section, we conduct feasibility studies of using the vibration character-
istics to construct device credentials for the purpose of distinguishing different
wearables.

4.1 Device Credential Based on Vibrations

The Background of Vibration Motors. Mobile devices and wearables usu-
ally have built-in vibration motors that can be programmed to vibrate in various
patterns. Such vibrations are mostly used in mobile applications as an alterna-
tive notification mechanism for alarm clocks, incoming calls, text messages, etc.
Based on their operating principles, vibration motors in mobile devices and wear-
ables can be categorized into two types: eccentric rotating mass (ERM) vibration
motors and linear resonant actuator (LRA) vibration motors. The vibrations of
ERM motors are generated by the rotations of a non-symmetric mass, while the
vibrations of LRA motors are generated by linear movements of a magnet mass
interacting with a voice coil. Vibration motors of the both types in mobile devices
and wearable are of miniature size with varying degrees in vibration strengths,
stabilities, and frequency ranges due to the differences in their working principles
and manufacturers.

Vibration-Based Device Credentials. In this work, we consider that a wear-
able’s vibration motor, its device body, and accelerometers are working together
as a one-way communication system. The vibration motor (a transmitter) gen-
erates a vibration wave that propagate through the device body (a channel) and
are received by the accelerometers (receivers). During the propagation, the vibra-
tion wave experiences attenuation in its energy level along the transmitting path
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Fig. 2. Z-axis accelerometer readings of 5 smartwatches when the watches have two
repetitions of a vibration pattern (i.e., idle for 1 s and vibrating for 2 s with the vibration
strength of 50). Watch 1 to Watch 3 are Fossil Gen 5, Watch 4 and Watch 5 are Moto
360 Gen 3.

as well as multipath interference when the wave hits two different media bound-
aries. Consequently, the received vibration signals (i.e., accelerometer readings)
contain unique vibration characteristics as a result of manufacturing imperfec-
tions of the vibration motor and accelerometers, attenuations and the multipath
interference from the device body. We contemplate that such vibration charac-
teristics are unique for each wearable and can be utilized to identify wearables.

To demonstrate a proof of concept for utilizing such vibration characteristics
for device authentication, we develop an app to generate vibrations and collect
vibration data on five commodity smartwatches (Three Fossil Gen 5 watches
and two Moto 360 Gen 3 watches). Specifically we use Google Wear OS (version
2.27) [16] on these smartwatches to change the vibration strength of the built-in
vibration motors within a range of 0 to 255 and vibration durations. We place
each watch on a wooden table with its face up and program the app to keep
the watch still for 1 s and vibrating for 2 s with the vibration strength set to 50.
Meanwhile, the app uses the watch’s accelerometers to capture the vibration sig-
nals using their maximum sampling rate of 50 Hz. We repeat the same vibration
pattern for comparison. Figure 2 shows two repetitions of the vibration waves
(captured accelerations) along the vertical direction of the five smartwatches.
We can observe that the acceleration patterns of all the watches are obviously
different from each other in terms of their amplitudes and variations with some
resemblance among watches of a same brand.

We repeat the same experiment 50 times for eachwatch and examine some sum-
mary quantities (e.g., mean, standard deviation, maximum, minimum of vibration
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Fig. 3. Unique vibration characteristics of wearables: (a) a scatter plot of mean peak
values and inter-peak duration of 50 vibration signals from five watches; (b) a sequence
of z-axis accelerations captured when a smartwatch vibrates with five different vibration
strengths, each segment contains 1 s of data.

amplitudes, frequency of the vibration signals, etc.) of the captured vibrations sig-
nals to quantitatively understand the distinguishable vibration patterns on wear-
ables. Among these quantities, we pick the mean of peak values and inter-peak
duration and make a two-dimensional scatter plot in Fig. 3 (a), from which we
observe that the data points of the same watch are clustered together. We also
find that the clusters of different watches are separable, especially for the watches
of different brands (i.e., Fossil versus Moto). Moreover, we can see that the peak
values of all Fossil watches are higher but more varied than the Moto watches. In
contrast, the inter-peak duration of the Moto watches is more varied than that
for all Fossil watches. These observations suggest that each wearable has its own
unique vibration characteristics that can be utilized for device authentication.

4.2 Reprogrammable Vibration Patterns

Since existing device authentication methods use hardware manufacturing
imperfections to generate rigid and unchangeable device credentials, users are
forced to change their hardware to continue using their protected service in case
when these device credentials are stolen by attackers. This is neither convenient
nor economical. In contrast, WatchID uses the vibration characteristics as device
credentials for authentication so that the credentials are configurable in terms
of vibration amplitudes and durations. As a result, the corresponding vibration-
based device credentials are not only unique, but also programmable (setting to
patterns predefined by the manufacture or customized by users), thus making
device authentication more convenient and flexible.

To illustrate the programmable vibration-based device credentials, we set the
Fossil Gen 5 Watch 1 to vibrate at vibration strengths of 50, 100, 150, 200, and 255
for 1 s, respectively. Figure 3 (b) shows the z-axis accelerometer reading for this
experiment. We can observe that the vibration characteristics of the same watch
are significantly different when the vibration strength is set to different levels, even
when the duration is the same. In addition, we combine vibration strengths and
durations as our proposed device credentials for more accurate authentication.
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5 System Overview

In this section, we first present several challenges in building a wearable device
authentication system. Then we describe the system design of WatchID, which
addresses those challenges.

5.1 Challenges

In order to build an effective, robust, and flexible wearable device authentication
system using the vibrations generated and collected by wearable devices’ vibra-
tion motors and accelerometers respectively, we need to address the following
challenges for requiring:

– Effective Credential Using Vibration Motors and Accelerometers in
COTS Wearables. Due to size and battery limitations, COTS wearables are
usually equipped with vibration motors of lower quality and accelerometers
with sample rates no more 50 Hz. As a result, it is difficult to obtain fine-
grained measurements of the vibration signals from wearables in order to
extract effective credentials for the devices.

– Robust Vibration Signals for Practical Use. In practice, a user might
be moving or swinging his/her arms while the surrounding environment can
be noisy and vibrant. Therefore the vibration signals captured by accelerom-
eters from the user’s watch are often mixed with noises. This will make it
challenging to extract device credentials from the vibration signals for robust
device identification.

– Reprogrammable Device Credential. Device credentials along with regu-
lar user login information are subject to various attacks from malicious users.
When a particular set of device credential is compromised, the authentication
system will disable the device and make it unusable for its protected services.
In order to re-secure the device, the device authentication system should be
able to provide a reprogrammable functionality for a new device credential
thus to obsolete the stolen one.

5.2 System Design

To address the aforementioned challenges, we design WatchID as a repro-
grammable device authentication system leveraging low-cost vibration motors
and accelerometers in commodity wearables. The basic idea of the system is to
identify wearables devices based on the unique vibration characteristics induced
by the manufacture imperfection of wearables’ vibration motors and accelerom-
eters. When a wearable equipped with WatchID tries to perform a critical oper-
ation (e.g., mobile payment or online purchasing), it triggers WatchID to ver-
ify the authenticity of the operation by sending the user’s user credentials and
device credentials to a remote server. Figure 4 illustrates the overview of the
our system design. WatchID first performs Programmable Vibration Signal Gen-
eration to generate a vibration signal that has been pre-registered with the
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Fig. 4. Overview of the WatchID system.

remote server using the wearable’s built-in vibration motor. Meanwhile, the sys-
tem performs Vibration Data Collection to capture the vibration signals prop-
agating from the vibration motor by the wearable’s accelerometers. Then, the
Data Pre-processing module performs on the vibration signals: removing high-
frequency noises, standardizing sensing data, and aligning the signals’ orienta-
tions to ensure the robustness of the system with different activities and poses in
practice. Next, WatchID extracts the vibration-based device credential by exam-
ining the energy of the vibration signals in Device Credential Extraction. The
device credentials will be transmitted to the remote server and perform Device
Authentication Using Convolutional Neural Network to verify the identity of the
wearable using an advanced deep neural network. In particular, we develop a
lightweight convolutional neural network (CNN) to abstract a high-dimensional
representation of the device credential and determine whether the representa-
tion is highly close to the device credential pre-registered with the server. If the
answer is positive, WatchID verifies the identity of the user’s device and approves
the critical operation. Otherwise, WatchID will issue an rejection.

One significant advantage of WatchID is that WatchID allows the user to
use the same device but change the vibration-based device credentials by repro-
gramming the vibration motor to induce new, unique vibration characteristics
as device credentials. Compared to traditional device authentication methods
that use unchangeable device credentials, WatchID is more practical and conve-
nient if the device credentials are compromised. When WatchID rejects a device
authentication, it sends the user’s wearable device a warning message about
the attempted unauthorized operation. The user then has the option to use a
different vibration-based device credential by initiating Device Credential Re-
registration. Here the user just needs to generate vibration signals of a new
pattern on the wearable, preprocess the collected accelerometer data, extract
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the vibration-based device credentials, and send them to the server for registra-
tion through a secure channel. The user can define his/her own vibration pattern
in terms of vibration strengths and duration or use factory-predefined patterns.
After the registration, the user will be able to use the new device credential to
perform the device authentication.

6 Watch Identification Using Vibration

6.1 Reprogrammable Vibration Signal Generation and Vibration
Data Collection

The major advantage of WatchID is that the vibration-based device credentials
are reprogrammable on the same device. Specifically, a vibration signal can be
mainly determined by four independent parameters: vibration strength, vibration
duration, sleep duration (i.e., idle time between two vibrations), and vibration
frequency. Using different combinations of these four parameters, we can generate
a large group of vibration patterns used for distinctive vibration-based device
credentials.

In this work, we use Google WearOS (i.e., v2.27) [16] to configure the vibra-
tion strengths and vibration durations of the built-in vibration motors in com-
modity wearable via the VibrationEffect method. Here the vibration strength is
an integer value between 0 to 255, and the vibration duration and sleep duration
can be any length of time in seconds. We discover that the vibration strength
values do not reflect the amplitude of the generated vibration signals. More-
over, the same vibration strength will produce different readings from different
wearable’s accelerometers (see, e.g., Fig. 2). This device-wise input-output rela-
tionship further validate our usages of vibration characteristics in wearables for
the purpose of device authentication.

While there are many possible vibration patterns that can be generated as
the vibration-based device credentials, not all of them are suitable for device
authentication. The rule of thumb is that the vibration signals should be short
in time (i.e., about 1s in our work) so that the device authentication process
will have almost no impact to the user experience in using the device for normal
applications. In addition, when reprogramming a vibration signal to replace the
existing vibration-based device credential, it is important to choose a vibration
signal that are much different from the previous one for better security. In this
work, we use five vibration signals with different levels of the vibration strength
as shown in Fig. 3 (b). We note users can also create their own vibration patterns.

6.2 Data Pre-processing

The accelerometers capture vibration signals carrying the unique vibrations char-
acteristics of wearables as well as accelerations caused by human body move-
ments and gravity. To ensure the system can extract the vibration-based device
credentials accurately, we adopt the following methods to pre-process the vibra-
tion signals captured by the wearable’s accelerometers.
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Data Filtering. When collecting the vibration signals for device authentication
on a wearable, the accelerometers also capture noises (e.g., ambient sound and
thermal noise) and interferences (e.g., human body movements and background
music). WatchID filters the accelerometer data using a band-pass filter with
the passband centered at the vibration frequency of the generated vibration
signals to mitigate these noises and interferences. Specifically, we first use the
fast Fourier transform to discover that the range of all our wearables’ vibration
frequencies is between 11.3 Hz and 24.8 Hz. In addition, the frequency of most
human activities is below 10 Hz [4]. Therefore we develop a Butterworth band-
pass using the cutting-off frequencies of 10 Hz and 24.8 Hz to filter the vibration
noises and interferences outside of this range.

Vibration Standardization. The vibration signals collected by a wearable’s
accelerometer are accelerations of three dimensions along x, y, and z axis. The
range of values differ greatly among the three axes, even more among different
device models. To ensure the comparability of data, the system applies the Z-
score standardization method [21] to the accelerometer readings from each axis
as follows:

a′ =
a − μ

δ
,

where a is a vibration acceleration value along a certain axis, μ and δ are the
mean and standard deviation of the accelerations along the same axis respec-
tively. After the standardization, the accelerometer data (a′) is centered at 0 and
scaled to have the standard deviation of 1. Thus, the data from different devices
and dimensions are made to be comparable.

Orientation Alignment. Usually the orientation of a wearable keeps changing
because its owner’s wrist does not stay still for the most of the time. As a
result, the directions of the three axes of the built-in accelerometers are varying
accordingly. To ensure that our system can obtain the same device credentials
regardless of the wearable’s orientation, we need to subtract the gravitational
acceleration (9.8 m/s2) from the accelerometer readings projected in each of the
three directions. In particular, we adopt a low-pass filter [3] for this purpose:

a′′
i = (1 − β)(ai − gi), i = {x, y, z},
β =

dT

t + dT
,

where gi and ai are the projection of the gravitational acceleration and raw
acceleration captured by the accelerometer along the i-th axis respectively, β is
a filter factor determined by filter’s time constant t and event delivery rate dT .
Here, a′′

i will be used by the system as the aligned acceleration. In this work,
we empirically choose β to be 0.2.

6.3 Device Credential Extraction

After pre-processing the accelerometer data, WatchID needs to extract the
vibration-based device credential and send them to the remote server for device
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authentication. To ensure the robustness and accuracy of WatchID, we need to
precisely determine the starting and ending points of the vibration signals used
as the device credential. In particular, WatchID derives the short-time energy of
the pre-processed accelerometer readings based on a sliding window:

E(t) =
t+w∑

n=t

a2(n),

where a(n) is the accelerometer reading at the time n and w is the size of the
sliding window. The system examines E(t) and determines the starting and end-
ing points of the device credential depending on whether E(t) is above or below
the threshold, respectively. We empirically determine the threshold based on our
study with three volunteers and five watches. We find that even if the volunteers’
arms shake slightly, the short-time energy after Z-score standardization does not
exceed the value of 0.4 for the Fossil watches and 0.01 for the Moto watches.
Therefore, we set the threshold to 0.4 and 0.01 for the two types of watches
respectively. In practice, this process can be done fairly easily and quickly. In
addition, due to sampling variations in accelerometers, the number of samples
of the same vibration duration may be slightly different. To solve this prob-
lem, we employ the cubic spline interpolation [12] to ensure the extracted device
credentials have the same number of samples every time. Specifically, we inter-
polate each device credential to 200 samples, which can well preserve the details
of a device credential captured by the maximum sampling rate (i.e., 50 Hz) of
wearables’ accelerometers within 4 s.

6.4 Device Authentication Using Convolutional Neural Network

While the vibration-based device credentials are observed to be unique for differ-
ent wearables, modeling based analyses can quantitatively answer the question
whether the set of device credentials of a particular device is a legitimate one.
Toward this end, we propose to train a 1-dimensional convolutional neural net-
work (1D CNN) on the fine-grained representations of device credentials and
perform the device authentication on the remote server. With this approach,
there is no need for the feature extraction process, which is required for tra-
ditional machine learning methods. Instead we can directly utilize the device
credentials after pre-processing without loss of any information.

1D CNN has been used for signal processing and acceleration data analysis [1,
18,20]. In this work, we design a 1D CNN with 4 convolutional layers, 2 max
pooling layers, 1 flatten layer, 1 dropout layer and 1 fully connected layer. The
parameters of our 1D CNN are specified in Fig. 5. In the first two convolutional
layers, we define 64 kernels with a kernel size of 2. Max pooling layer is introduced
to reduce the complexity of the output of previous layer. In the third and fourth
convolutional layers, 256 kernels with a kernel size of 2 are designed to learn more
advanced features. A dropout layer is added to avoid overfitting and improve
the generalization of the CNN model. In the fully connected layer, a softmax
activation function is used to reduce the features to a vector of 2. We use the
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Fig. 5. Architecture of the 1D CNN used in WatchID.

binary cross entropy as the loss function. An Adam optimizer [19] with a learning
rate of 0.001 is used to optimize the neural network. The output of the softmax
activation function contains the probabilities of two labels (i.e., 1 for legitimate
device and 0 otherwise). Upon receiving a device credential, WatchID transforms
the device credential into a 4×200 vector and feeds the vector into the 1D CNN
to determine whether the received device credential matches the pre-registered
device credential of the legitimate wearable.

7 Evaluation

7.1 Experimental Hardware and Scenarios

We use three Fossil Gen 5 and two Moto 360 Gen 3 smartwatches to evalu-
ate the performance of WatchID. An app is developed to collect the vibration-
based device credentials on these smartwatches using Google Wear OS (version
2.27) [16]. The collected device credentials are downloaded to a desktop to per-
form the model training and device authentication.

We evaluate the system under two scenarios: on desk and on wrist for prac-
tical usage situations. In the first scenario, we collect the vibration-based device
credentials of each smartwatch when it is fixed on the desk, while in the second,
we carry the operation when the watch is worn on a human wrist.

7.2 Data Collection

In the on desk scenario, we focus on studying the efficacy of the vibration-
based device credentials. For each smartwatch, we collect 120 device credentials.
In the on wrist scenario, we collect device credentials with different settings
on the smartwatches to evaluate the efficacy and robustness of the system. In
particular, we conduct experiments with 5 different vibration patterns, and 3
jamming attacks under different sound noises. In total, we have two participants
collecting around 600 device credentials in the on desk scenario and 1680 device
credentials in the on wrist scenario across over 4 weeks.

Unless stated otherwise, we use the vibration strength of 50 with 1 s vibration
duration and 1 s sleep duration to generate vibrations. We use the maximum
sampling rate of the smartwatches’ accelerometers (i.e., 50 Hz) to collect data.
We randomly select 30 device credentials from a legitimate device and 30 device
credentials from the other four watches (as attackers) to construct a training
dataset. The rest of the data (i.e., 90 device credentials from the legitimate
user and 90 device credentials from the attacker) is used for testing. We repeat
the training and testing five times and use the average results to evaluate our
system’s performance.
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Fig. 6. Overall performance of WatchID with different smartwatches in different sce-
narios.

7.3 Evaluation Metrics

Precision. Precision is the ratio between the number of device credentials cor-
rectly predicted as from the legitimate user (i.e., true positive) to the overall
number of the device credentials predicted as from the legitimate user (i.e., true
positive + false positive). We want to have a high precision to avoid mistakenly
identifying the attacker’s device credentials as an legitimate one.

Recall. Recall is the ratio between the number of device credentials correctly
predicted as the legitimate (i.e., true positive) to the overall number of legitimate
device credentials (i.e., true positive + false negative). A low recall means a
sizable amount of legitimate user’s device credentials are mistakenly identified
as the illegitimate ones. This is not desirable for user experience.

Rejection Rate. We define the rejection rate as the ratio between the number
of the attacker’s device credentials successfully identified as the illegitimate ones
(i.e., true negative) to all the stolen device credentials (i.e., true negative + false
positive). We want to achieve a high rejection rate since none of the attacker’s
device credentials should pass the device authentication.

ROC Curve. ROC curve plots true positive rate (TPR) against false positive
rate (FPR). The TPR denotes the rate of the legitimate user’s device credentials
passing the system, while FPR denotes the rate of the attackers’ device creden-
tials passing the system. Through varying prediction thresholds, we can get a
series of TPR and FPR and draw ROC curves to evaluate the system perfor-
mance. The closer to the point (0, 1) the ROC curve, the better the performance.
Thus, we choose the TPR and FPR at the point closest to (0, 1) on the ROC
curve as our system’s optimal performance.

7.4 Overall Performance

We first evaluate the performance of our system with the watch on human wrist
or on the desk. For the on desk scenario, a watch is horizontally laying on the
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Fig. 7. Performance under jamming attacks and different vibration strengths.

surface of a desk with its face up and its belt taped the desk by sticky tapes. This
is quite an ideal case with few impacting factors to disturb the data collection
process. For the on wrist case, the watch is worn on a person’s wrist with his
forearm horizontally laying on the desk and the watch facing up. Specifically, 5
smartwatches are used to collect the vibration data. We alternatively select one
watch as a legitimate device and the other four watches as attackers. Figure 6
(a) shows the ROC curve of the on desk scenario, and we can observe that our
system can achieve an average optimal TPR of 98% and FPR of 2% among 5
smartwatches.

For the on wrist situation, our system can still achieve an average optimal
TPR of 95% and FPR of 5% as shown in Fig. 6 (b). From these two figures, we
find that human wrist slightly impacts the performance in our authentication
system. Moreover, the two Moto watches (i.e., Watch 4 and 5) have slightly better
performance than the three Fossil watches (i.e., Watch 1, 2, and 3). This obser-
vation is in line with our observations from Fig. 3 where the two Moto watches
have more distinguishable features from the Fossil watches. Overall, those results
demonstrate that our system have good authentication performances no matter
whether a watch is put on a desk or worn on human wrists. Therefore vibra-
tion signals from wearables can indeed serve as a reliable and consistent device
credential.

7.5 Effectiveness Under Different Attacks

Against Random Attacks. We first explore the robustness of our system
against random attacks. Specifically, we alternatively select two watches out of
the five with one as a legitimate watch and the other as an illegitimate watch.
Then, we train our system using the device credentials from those two selected
watches and use the other three unselected watches to mimick random attacks.
Our experimental results show that the three random attackers are always clas-
sified as the illegitimate watches by our system with a 100% rejection rate.
Therefore our system is robust against random attacks.
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Table 1. Performance under jamming attacks.

Noise(dB) Precision (%) Recall (%)

55 90.57 95.31

70 94.68 95.31

85 92.51 92.8

Fig. 8. Performance under different training sizes.

Against Jamming Attacks. We next test our system under jamming attacks
by playing different volumes (i.e., 55 dB, 70 dB, 85 dB) of background sound
noises. These volumes are selected to correspond to various real-life environmen-
tal noises. For instance, the average decibel level of human speech is near 55 dB.
Living room music, radio or TV-audio, and sound of vacuum cleaner are close
to 70 dB. Power mowers, motorcycles, diesel trucks can produce noises about
85 dB. As shown in Fig. 7 (a) and Table 1, our system can achieve an average
precision and recall around 92% and 94% under the jamming attacks at various
typical audio volumes. This result indicates that our system can still perform
well under realistic jamming attacks.

Against Credential Stealing Attacks. Here we assume an attacker has
gained access to a legitimate user’s device credential and our system has informed
the user to reset his/her device credential. Specifically, we select one watch as
the legitimate device and reset its credential by using a new vibration strength
(i.e., 100) from the original strength (i.e., 50 by default). The other four watches
are treated as illegitimate ones with their original device credentials.

After the legitimate user’s device credential is reset, we retrain a new 1D CNN
model after the same data collection and preprocessing steps. To simulate the
credential stealing attacks, the attacker will still try to use the previous legitimate
user’s device credential to bypass the system. Our experimental result show
that this type of requests are denied by our system using the newly trained 1D
CNN model with a 100% rejection rate. This demonstrates that reprogrammable
WatchID can successfully defend against credential stealing attacks.
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7.6 Robustness Under Different Vibration Patterns

Device credential reconfiguration plays an important role in the our system.
Hence, we study the robustness of our system under different vibration patterns
to generate the device credentials. We know that different vibration strengths
of a smartwatch can generate different device credentials as shown in Fig. 3(b).
In this study, we test 5 different device credentials of a legitimate user’s watch
(i.e., Watch 1) by setting 5 different vibration strengths (i.e., 50, 100, 150, 200,
255). And the device credentials of the other four watches (i.e., illegitimate
ones) are generated using the same vibration strength (i.e., 50). Figure 7 (b)
shows the ROC curves of our system under different vibration patterns. We find
that our system has a similar optimal performance (i.e., about 95% in TPR
and 5% in FPR) under different vibration patterns. Therefore our system has
achieved good authentication results under different levels vibration strengths
or associated vibration patterns.

Table 2. Performance under different training sizes (P: Precision (%); R: Recall (%)).

Training size Watch 1 Watch 2 Watch 3 Watch 4 Watch 5

P R P R P R P R P R

10 93.54 72.91 100 75.42 91.82 81.25 100 79.94 100 100

20 93.42 92.17 100 93.88 92.85 92.34 100 98.51 100 100

30 95.54 96.8 100 99.2 97.54 96.85 100 100 100 100

It is also worth noting that a larger vibration strength (e.g., 255) can gen-
erate a slightly better performance. However, since a lower vibration strength
generates more stable patterns as demonstrated in Sect. 4, we adopt the value
of 50 as the default vibration strength in WatchID.

7.7 Impact of Training Size

Amount of data required by an authentication system is an importance param-
eter in order to ensure and maintain a high level of performance. To study the
impact of different data sizes to our system, we generate 10, 20, 30 sets of device
credentials for each of the five watches. For a specific size (i.e., 10), we pick one
watch (i.e., Watch 1) as a legitimate device and use all the 10 sets of its creden-
tials with the label of 1 as a part of the training data, and pick another 10 sets
randomly from the other four watches with the labels of 0 as the other part of
the training data. Then WatchID performs the device authentication process for
this set of data. Our experimental results are presented in Fig. 8 and Table 2.

We observe that our system can achieve an average precision of 97% using
only 10 device credentials for a legitimate device (20 in total). As the size of
the training data grows, the system performance improves accordingly. More
specifically, the average precision and recall reach 98% and 99% respectively



WatchID: Wearable Device Authentication via Reprogrammable Vibration 831

when 20 or more device credentials for a legitimate device are used. These results
indicate our system can achieve good performance with only a limited number
of device credentials. As a result, our system is fast and efficient in training of
authentication models with a high level of performance.

8 Conclusion

In this paper, we devise WatchID, a vibration-based device authentication sys-
tem for wearables. The system can provide an extra layer of security to the
traditional user authentication methods without requiring a user’s participa-
tion. WatchID utilizes the manufacturing imperfections of a wearable’s vibration
motor, device body, and accelerometers to create unique vibration characteris-
tics, using them as device credentials to determine the wearable’s identity. Our
system is more practical and convenient than existing methods as the vibration-
based device credentials are reprogrammable by changing the vibration patterns
on wearables. We extensively study the vibration characteristics of different wear-
ables and develop data pre-processing methods to ensure the system’s robustness.
We also develop a lightweight CNN model to capture the unique vibration char-
acteristics and predict the wearable’s identity under various practical scenarios.
Over 2500 vibration-based device credentials are collected in the experiments
with five commodity smartwatches across 4 weeks. We demonstrate that our
system can achieve an average precision and recall of 98% and 94% under var-
ious scenarios of vibration patterns and training sizes. We also show that our
system can achieve a 100% rejection rate under different types of attacks.
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