
1© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 
M. R. Zaidi, D. A. Liebermann (eds.), Gadd45 Stress Sensor Genes, Advances in Experimental 
Medicine and Biology 1360, https://doi.org/10.1007/978-3-030-94804-7_1

GADD45 in Stress Signaling, Cell 
Cycle Control, and Apoptosis

Arslon Humayun and Albert J. Fornace Jr

Abstract

GADD45 is a gene family consisting of 
GADD45A, GADD45B, and GADD45G that 
is often induced by DNA damage and other 
stress signals associated with growth arrest 
and apoptosis. Many of these roles are carried 
out via signaling mediated by p38 mitogen-
activated protein kinases (MAPKs). The 
GADD45 proteins can contribute to p38 acti-
vation either by activation of upstream 
kinase(s) or by direct interaction, as well as 
suppression of p38 activity in certain cases. In 
vivo, there are important tissue and cell type 
specific differences in the roles for GADD45 in 
MAPK signaling. In addition to being 
p53-regulated, GADD45A has also been 
found to contribute to p53 activation via p38. 
Like other stress and signaling proteins, 

GADD45 proteins show complex regulation 
and numerous effectors. More recently, aber-
rant GADD45 expression has been found in 
several human cancers, but the mechanisms 
behind these findings largely remain to be 
understood.
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1.1	 �Overview

GADD45 was first identified based on increased 
mRNA levels following stress-induced growth 
arrest and was therefore given the acronym 
Growth Arrest and DNA Damage (GADD) as its 
name (Fornace et al. 1989). GADD45, now desig-
nated GADD45A, shows no sequence homology 
with the other original members of the GADD 
gene group (Kastan et al. 1992; Zhan et al. 1994), 
and was subsequently found to be a member of a 
highly conserved three-gene family consisting of 
GADD45A (GADD45A, DDIT1, GADD45α), 
GADD45B (GADD45β, MYD118), and 
GADD45G (GADD45γ, cytokine responsive 6 or 
CR6). The GADD genes were first cloned from 
Chinese hamster ovary (CHO) cells, which were 
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subsequently found to be p53-deficient, as a sub-
set of transcripts that were consistently upregu-
lated after exposure to ultraviolet (UV) radiation 
and in many cases to other DNA-damaging 
agents, including methyl methanesulfonate 
(MMS), hydrogen peroxide, and N-acetoxy-2-
acetylaminofluorene, as well as to other growth 
cessation signals, such as medium depletion/star-
vation or hydroxyurea (Fornace et  al. 1988). 
GADD45A was the 45th member of this collec-
tion of over a hundred cDNA clones (Fornace 
et al. 1988). GADD45A is responsive to a myriad 
of agents implicated in DNA damage, apoptosis, 
cell cycle checkpoint control, cell injury, and 
other growth regulatory processes. The GADD45 
proteins have likewise been implicated in a wide 
variety of cellular processes often associated with 
stress signaling and with other growth regulatory 
pathways (Gao et  al. 2009; Zhang et  al. 2014). 
Many GADD45 binding proteins have been iden-
tified using methods such as two-hybrid 
(Vinayagam et al. 2011) and affinity chromatog-
raphy (Gao et al. 2013). Some of the prominent 
interactions of the GADD45 proteins are summa-
rized in Fig.  1.1, which highlights regulatory 
pathways and downstream targets. As shown in 
this figure, GADD45 has a broad scope of poten-
tial roles in many cellular processes that will be 
covered in this and subsequent chapters, with 
emphasis in this chapter on growth control and 
apoptosis.

Among the radiation-response genes, 
GADD45A was unique at the time because it 
could be induced in an ATM-dependent and pro-
tein kinase C-independent manner following 
human cell exposure to ionizing radiation (IR) 
(Papathanasiou et  al. 1991). This 
IR-responsiveness was subsequently found to be 
p53-regulated (Kastan et  al. 1992); indeed, 
GADD45A was the first stress gene discovered 
that was regulated by p53 at the transcriptional 
level (Hollander and Fornace 2002). GADD45B 
was originally cloned as a gene expressed after 
terminal differentiation and growth arrest of 
M1D+ myeloid precursor cells induced by IL-6 
(Selvakumaran et al. 1994). GADD45G was orig-
inally cloned as an early IL-2 response gene in T 
cells (Zhang et al. 1999). All three members show 

responsiveness to a variety of environmental cues 
associated with growth control. These three pro-
teins are highly conserved among Metazoa 
although insects have only a single GADD45 
gene that is most similar to GADD45G, indicat-
ing this may be the ancestral gene. The proteins 
are all small (18 kDa), highly negatively charged 
(in the top two percentile of proteins in the ratio 
of negative charge to amino acids) (Zhan et  al. 
1994), and localized to the nucleus (Cretu et al. 
2009). GADD45A is the best-characterized iso-
form and will be a major focus of this review 
although the other family members have impor-
tant characteristics that will also be discussed.

Like most signaling proteins, the GADD45 
proteins are small, highly regulated at both the 
transcriptional and post-transcriptional levels, 
and have multiple roles in mediating stress sig-
naling and growth regulation. In addition to 
repair and apoptosis, cell injury, particularly in 
response to genotoxic stress, is known to trigger 
growth delays in prokaryotes and eukaryotes 
(Friedberg 2006). GADD45 proteins have been 
shown to play important roles in these processes. 
There is also a remarkable overlap between 
responses to genotoxic stress and aberrant growth 
signaling by oncogenes, referred to as oncogenic 
stress, which triggers a variety of responses 
involving GADD45. Many of these genotoxic 
and oncogenic stress responses are highlighted in 
Fig. 1.1. While they are discussed individually in 
more detail below, this overview diagram exem-
plifies the complexity of GADD45 regulation and 
function in these processes.

The stress mitogen-activated protein kinases 
(MAPK), namely the JNK and particularly the 
p38 MAPK, have complex regulatory roles 
involving GADD45. Other growth-arrest associ-
ated regulatory factors such as p53, BRCA1, 
FOXOA3, C/EBP, and ATF participate in tran-
scriptional regulation of GADD45A and to some 
extent of the less-studied GADD45B and 
GADD45G genes, which in multiple cases can have 
roles distinct from GADD45A.  The GADD45 
proteins are involved, directly or as part of regu-
latory pathways, in cell cycle checkpoints and 
stimulation of DNA repair. They interact with a 
wide variety of cellular proteins and protein com-
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plexes, including cyclin-dependent kinase 1 
(CDK1), for which it is a strong inhibitor of 
CDK1-Cyclin B1 activity both in  vivo and 
in  vitro and a component of certain G2 check-
point events (Wang et al. 1999; Zhan et al. 1999; 
Vairapandi et al. 2002). Interestingly, like some 
other highly acidic proteins such as SET1, the 
GADD45 proteins bind directly to nucleosome 
histones and modify DNA accessibility, particu-
larly on damaged chromatin (Carrier et al. 1999), 
which is one role reported for GADD45 in DNA 
repair (Smith et al. 2000). As shown in Fig. 1.1, 
the GADD45 proteins interact with and/or influ-
ence a variety of proteins involved in DNA repair, 

including APE (Jung et al. 2007), XPG (Barreto 
et al. 2007), PCNA (Smith et al. 1994), and p53. 
GADD45A in particular has been shown to play 
a role in heterochromatin relaxation (Chen et al. 
2016). It has also been shown to bind to R-loops 
to promote DNA demethylation (Arab et  al. 
2019). These interactions will be discussed fur-
ther in Chap. 4: GADD45 in DNA Demethylation 
and DNA Repair.

Although most of the interactions shown in 
Fig. 1.1 were initially discovered in cell culture 
systems, multiple functions of GADD45 have 
since been demonstrated using genetic 
approaches, both in vivo with mouse models and 
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Fig. 1.1  Schematic representation of upstream regulators 
of GADD45 and its downstream effects. Blue lines indi-
cate upstream regulators, while black lines indicate down-
stream effects. Arrows indicate positive regulation, while 
blocked lines indicate negative regulation. Note that the 
interactions shown are primarily for GADD45A but may 
also occur for GADD45B and GADD45G. For example, 
all three proteins upregulate MTK1, but TGFβ (not shown 
in figure) is known to induce only GADD45B. Additionally, 

all GADD45 proteins are able to interact with each other 
and form homo- or hetero-dimers, which are crucial for 
GADD45 functions. Note that this is by no means a com-
plete picture of all GADD45 interactions, but rather an 
overview of key interactions in stress signaling, cell cycle 
control, and apoptosis. For a discussion of GADD45 
interactions involving methylation, please refer to Chap. 
4: GADD45 in DNA Demethylation and DNA Repair

1  GADD45 in Stress Signaling, Cell Cycle Control, and Apoptosis

https://doi.org/10.1007/978-3-030-94804-7_4
https://doi.org/10.1007/978-3-030-94804-7_4


4

in vitro with primary cells such as mouse embryo 
fibroblasts (MEFs). Among these findings, a con-
sistent feature has been the prominent role of p38 
MAPK signaling in  vivo. For example, 
GADD45A-null mice lack the normal p53-
mediated sunburn response in skin. As discussed 
in more detail later in this chapter, this is due to 
the requirement for p38  in p53 activation after 
stresses such as UV radiation (Hildesheim and 
Fornace 2004). Detailed studies in  vivo and in 
MEF showed that GADD45 proteins can contrib-
ute to p38 activation either directly (Bulavin et al. 
2003) or via MTK1, a MAPK kinase kinase 
(MAP3K) (Takekawa and Saito 1998) which is 
encoded by the MAP3K4 gene. Additionally, p38 
can directly phosphorylate regulatory sites in 
p53, such as Ser 46 (implicated in proapoptotic 
signaling) (Bulavin et al. 1999), and thus upregu-
late downstream effectors including GADD45A, 
which will then contribute to p38 activation. 
Thus, p38-p53-GADD45A defines a stress-
activated regulatory loop, as shown in Fig. 1.2. 
While this positive feedback loop is transient 

during genotoxic-stress-induced growth arrest, it 
is necessary for oncogene-induced permanent 
growth arrest, i.e., premature senescence (Bulavin 
et  al. 2003). Consistent with these findings, 
GADD45A-null mice show increased carcino-
genesis after genotoxic stresses such as IR 
(Hollander et  al. 1999) or UV radiation 
(Hildesheim et al. 2002).

1.2	 �GADD45 Regulation 
in Growth Arrest 
and Apoptosis

As outlined in Fig. 1.1 and Table 1.1, GADD45 is 
regulated in response to genotoxic stress and 
other growth-arrest signals at both the transcrip-
tional and post-transcriptional levels (Gao et al. 
2009). GADD45 plays an important role in stress-
induced growth arrest, such that it is one of only 
a few genes that is upregulated consistently after 
IR in numerous conventional and gene expres-
sion profiling studies of p53 wild-type (wt) cells 
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Fig. 1.2  Central role for p38 signaling in the GADD45A 
phenotype. Arrows indicate positive regulation, while 
blocked lines indicate negative regulation. Green circles 
indicate proteins typically considered tumor suppressors, 
while red circles indicate potential oncogenes. As 
described in the text, p38, p53, and GADD45A can func-
tion in a positive feedback loop (indicated by black circle 

with arrows) to maintain p53 signaling and growth arrest. 
GADD45 proteins are positive effectors for p38 activation 
after many stresses. As discussed in Chap. 5, GADD45A 
has a prominent role in the alternative p38 activation path-
way in T cells and immunity by modulating ZAP70 
activity
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(Snyder and Morgan 2004). For example, in the 
NCI60 cell screen panel, only p53  wt human 
tumor lines showed appreciable GADD45A 
induction (Weinstein et al. 1997). Although ubiq-
uitous, basal GADD45 expression is usually very 
low and varies through the cell cycle, with high-
est levels during G1 and lowest levels during S 
phase (Kearsey et al. 1995).

As highlighted in Fig. 1.1, GADD45A expres-
sion is induced by MAPK signaling via p38 and 
JNK kinases. These kinases activate c-Jun, 
which, similarly to p53, binds to the third intron 

of GADD45A and promotes transcription; this 
finding is not surprising since AP-1-binding sites 
have been identified both in the promoter region 
and the third intron of GADD45A (Gao et  al. 
2009). It is of interest that transient ERK signal-
ing induces GADD45A expression, whereas sus-
tained signaling represses it (Gao et  al. 2009); 
this GADD45A induction might be due to tran-
sient activation of other MAPK pathways through 
crosstalk. Sustained or oncogene-driven ERK 
signaling also promotes upregulation of p16 
(Bulavin et al. 2003), which plays an important 
role in G1/S cell cycle arrest, as shown in Fig. 1.2. 
Estrogen receptor β (ERβ) can bind to the 
GADD45A promoter in a ligand-independent 
manner and recruits c-Jun and NCOA2 to stimu-
late transcription and subsequent G2/M arrest 
(Paruthiyil et  al. 2011). Indeed, in a panel of 
human breast cancer samples, GADD45A 
expression was found to depend on estrogen 
receptor expression (Tront et al. 2013). BRCA1, 
a breast (and other) cancer tumor suppressor, has 
also been implicated in GADD45A gene regula-
tion with binding sites in both the first and third 
exon of this gene (Harkin et al. 1999; Pietrasik 
et al. 2020).

1.2.1	 �Transcriptional Regulation 
of GADD45

At the transcriptional level, there are several 
tumor suppressor genes that induce GADD45A 
expression. As mentioned earlier, one well-
characterized mechanism of GADD45A induc-
tion involves the binding of p53 to a conserved 
site within the third intron of the GADD45A gene 
(Kastan et al. 1992). This binding is induced by 
genotoxic stress but is necessary only in the case 
of IR exposure and not in the GADD45A response 
to UV radiation or MMS although loss of p53 
does attenuate subsequent GADD45A induction. 
WT1, a transcription factor that is mutated in 
various tumors and congenital defects, can bind 
to the GADD45A promoter and induce transcrip-
tion in a p53-dependent manner (You et al. 2019) 
but in the absence of direct p53-DNA binding in 
the response to non-ionizing radiation (Zhan 

Table 1.1  GADD45 effectors with roles in growth con-
trol and apoptosis. Note that this is not a complete sum-
mary of all GADD45 interactions, but rather a list of key 
protein interactors involved in growth control and apopto-
sis. Protein interactors involved in methylation, such as 
ING1, will be discussed further in Chap. 4: GADD45 in 
DNA Demethylation and DNA Repair

p38 Cell cycle arrest, apoptosis, induction of 
senescence, negative regulation of T cell 
activation, full activation of innate 
immune cells

MTK1 Activation that signals to p38 and JNK 
branches of MAPK pathways

p53 p53 activation via p38 signaling, 
required for sunburn response in skin

CDK1 Inhibits CDK1/CLNB1 activity and 
contributes to G2 checkpoint activation

CDKN1A 
(p21)

Positive role in chondrocyte senescence 
(GADD45B); negative regulation of 
p21 in keratinocytes allowing nucleotide 
excision repair

APC Destruction of ß-catenin via p38 
signaling

ß-catenin Inhibition of its pro-invasion program, 
increased ß-catenin plasma membrane 
localization and cell–cell adhesion

JNK Cell cycle arrest and apoptosis; can be 
mediated by MTK1 signaling

EF-1A Release of BIM, apoptosis
PCNA S-phase arrest; DNA repair and 

demethylation
Aurora-A Maintenance of genomic stability
NEK2 Maintenance of genomic stability
mTOR Suppression of tumor angiogenesis by 

inhibition of mTOR signaling
STAT3 Inhibition of STAT3 promotion of tumor 

angiogenesis
ING1 Tumor suppression via DNA 

methylation
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et al. 1998). BRCA1 induces GADD45A expres-
sion indirectly by interacting with the transcrip-
tion factors OCT-1 and NF-YA.  The CCAAT/
enhancer-binding protein-α (C/EBPα) and other 
C/EBP proteins can induce GADD45G expres-
sion as well (Gao et al. 2009; Jung et al. 2000).

GADD45A has been identified as a direct tar-
get gene of FOXO3A, a tumor suppressor that is 
a member of the mammalian family of forkhead 
transcription factors. FOXO3A binds to 
GADD45A at the promoter region and promotes 
transcription in response to treatment with phos-
phoinositol-3 kinase inhibitor (Tran et al. 2002) 
or oxidative stress (Sengupta et  al. 2011). 
However, FOXO3A has been observed to sup-
press the induction of GADD45B (Lee et  al. 
2008), suggesting a different possible role of 
GADD45B in response to stress (Tran et  al. 
2002). As shown in Fig. 1.1, activating transcrip-
tion factor-4 (ATF-4) has a central role in cellular 
stress responses and induces GADD45A tran-
scription in response to arsenite exposure, leu-
cine deprivation, inhibition of the proteasome, 
and endoplasmic reticulum stress; GADD45A 
protein levels rise after arsenite exposure or pro-
teasome inhibition, showing a sophisticated regu-
lation of GADD45A, which responds differentially 
to various cellular stressors (Gao et  al. 2009; 
Chang et al. 2007; Song et al. 2006). The TNF 
superfamily ligand APRIL also induces GADD45 
transcription. Binding of APRIL to the receptor 
BCMA triggers JNK2 phosphorylation, 
FOXO3A activation, and GADD45 transcription, 
inhibiting cell proliferation in hepatocellular car-
cinoma cells through cell cycle arrest at the G2/M 
checkpoint (Notas et al. 2012).

The interaction of GADD45 with BRCA1, a 
key breast cancer tumor suppressor, plays an 
important role in cell cycle control and DNA 
repair (Pietrasik et  al. 2020). BRCA1 has been 
shown to induce GADD45 transcription after 
γ-radiation treatment of cells (Li et al. 2000; Park 
et al. 2008). Similarly, overexpression of BRCA1 
resulted in increased GADD45 expression and 
also stimulation of nucleotide excision repair 
(NER) in a GADD45-dependent manner 
(Hartman and Ford 2002). Since BRCA1-
deficient cells are hypersensitive to cisplatin, this 

suggests a defect in NER of cisplatin adducts 
(Husain et al. 1998). Additionally, in response to 
hypoxic shock or anisomycin treatment, ATF2 
binds to BRCA1, NF-1, and OCT-1 to stimulate 
transcription of GADD45A (Maekawa et  al. 
2008), such that BRCA1 indirectly and directly 
(Park et  al. 2008) activates transcription of 
GADD45A. The importance of BRCA1  in the 
DNA damage response (DDR) is well known 
(Wu et al. 2010), and these findings highlight the 
importance of GADD45 as a downstream effec-
tor of BRCA1. This will be discussed further in 
Chap. 10: GADD45 in Breast Cancer.

As shown in Fig.  1.1, there are also several 
growth stimulatory factors that are involved in 
negative regulation of GADD45A. Transcriptional 
repression by c-MYC and AKT proto-oncogenes 
expression highlights the frequent association of 
GADD45 with cell growth suppression (Gao 
et al. 2009; Bulavin and Fornace 2004; Brown-
Clay and Fornace Jr 2018). MYC regulates 
GADD45A gene expression by inhibiting 
FOXO3A-dependent transcription of GADD45A 
(Amente et  al. 2011). AKT inhibition of 
GADD45A is also mediated by FOXO3A inacti-
vation (Amente et al. 2011).

More recently, clinical studies have demon-
strated the role of miRNA in regulating 
GADD45A expression. In Sertoli cells of patients 
with Sertoli-cell-only syndrome, miR-4270 has 
been found to inhibit GADD45A mRNA expres-
sion by binding to its 3′-UTR (Wang et al. 2020). 
In blood samples from patients with chronic 
myeloid leukemia, increased miR-362-5p levels 
were associated with decreased GADD45A lev-
els (Yang et al. 2015).

1.2.2	 �Post-transcriptional 
Regulation of GADD45

Early on, it became evident that GADD45A regu-
lation at the post-transcriptional level is complex 
and can be regulated based on the mRNA stabil-
ity of GADD45A and other GADD genes 
(Jackman et al. 1994). In unstressed cells, AUF1 
destabilized GADD45A mRNA and TIAR1 hin-
dered its translation, potently inhibiting expres-
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sion of the GADD45A protein. After cell 
exposure to MMS or UV radiation, these proteins 
dissociate rapidly from GADD45A mRNA and 
allow robust expression of the protein. Conversely, 
the mRNA stabilizing protein, nucleolin, binds 
GADD45A mRNA after cellular stimulation with 
arsenic chloride or NF-κB inhibition and potently 
increases both mRNA and protein levels (Lal and 
Gorospe 2006). MAPK kinases (MAP2Ks) 
upstream of p38 have been shown to phosphory-
late three proteins involved in RNA regulation, 
HNRNPA0, TIAR, and PARN, resulting in stabi-
lization of GADD45A mRNA (Reinhardt et  al. 
2010). In the same report, p38/MK2 complex 
was found to relocalize from the nucleus to the 
cytoplasm, where MK2 phosphorylated 
hnRNPA0, and stabilized GADD45A mRNA, 
while p38 was found to phosphorylate and release 
the translational inhibitor TIAR.  At the post-
translational level, arsenite stimulation of cells 
induces formation of an IκB-kinase-β (IKKβ)/
NF-κB p50 subunit complex that reduces ubiqui-
tinated GADD45A levels and its subsequent pro-
teasomal degradation (Yang et al. 2009).

1.2.3	 �GADD45 and NF-κB

The role of NF-κB in the regulation of GADD45 
is complicated and appears to depend on cellular 
context. NF-κB signaling is often considered a 
pro-survival response and was reported to reduce 
GADD45A and GADD45G expression and 
escape from apoptosis in cancer cells (Zerbini 
et al. 2004). NF-κB activation of EGR-1 leads to 
direct EGR-1-mediated transcriptional activation 
of GADD45A. The NF-κB-activating kinases, 
IKKα and IKKβ, are also able to induce GADD45 
expression through a NF-κB-independent mecha-
nism. The p65 (RelA) subunit of NF-κB binds 
directly to three κB elements in the GADD45B 
promoter and activates its transcription. However, 
NF-κB also inhibits GADD45A and GADD45G 
expression by activating c-MYC (Zhang et  al. 
2014). This differential regulation of GADD45A 
might therefore contribute to the observed pro- 
and anti-oncogenic actions of NF-κB although 
the mechanisms that govern this switch are not 

well understood (Yang et al. 2009). In the case of 
GADD45B- and GADD45G-specific mecha-
nisms of transcriptional regulation, the p65 
(RelA) subunit of NF-κB binds directly to three 
κB elements in the promoter of GADD45B and 
activates its transcription (Yang et  al. 2009). 
Nucleus accumbens-1 (NAC1) is a transcription 
factor associated with embryonic stem cell self-
renewal and pluripotency that is also upregulated 
in several cancer types, particularly chemoresis-
tant, recurring ovarian carcinomas. NAC1-
mediated GADD45G downregulation has been 
shown to contribute to paclitaxel resistance in 
ovarian cancer cells (Jinawath et al. 2009).

1.2.4	 �GADD45A Reporter 
as an Assessor of Genotoxicity

GADD45A mRNA and proteins are frequently 
induced by a plethora of stresses and types of 
injury, and this responsiveness can be used to 
monitor for such events. As discussed earlier, 
GADD45A regulation is complex and involves 
multiple regulatory factors that contribute to 
stress responsiveness. In addition to a classic 
p53-binding site in its third intron (Kastan et al. 
1992) and a WT1 site in its promoter that can also 
contribute to p53 signaling (Zhan et  al. 1998; 
Johnson et al. 2013), there are a variety of regula-
tory elements, such as OCT-1, AP-1, C/EBP, 
GRE, and EGR-1 in the GADD45A gene that can 
contribute to stress responsiveness (Zhang et al. 
2014; Takahashi et al. 2001); for a complete list-
ing, see https://www.genecards.org/cgi-bin/card-
disp.pl?gene=GADD45A. There are numerous 
reports of GADD45A responsiveness to various 
types of injury in  vivo. In TK6 cells, a human 
lymphoblastoid line used in many toxicology 
assays, GADD45A mRNA levels were rapidly 
increased following exposure to a variety of 
genotoxic agents such as heavy metals, resulting 
in the unfolded protein response (UPR), oxida-
tive stress, medium (nutrient) depletion, and inhi-
bition of glycolysis and certain other pathways of 
energy metabolism (Amundson et  al. 2005; Li 
et al. 2017). While many such stresses can rap-
idly induce GADD45A mRNA expression, geno-

1  GADD45 in Stress Signaling, Cell Cycle Control, and Apoptosis
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toxic stress agents typically trigger stronger 
responses (Li et  al. 2015, 2017), such that 
GADD45A induction may have utility in moni-
toring for genotoxic stress that is triggered either 
directly by DNA damage or indirectly by agents 
such as topoisomerase poisons and DNA synthe-
sis inhibitors. Importantly, there is a need for 
newer assays to assess for genotoxic stress 
because the current in vitro testing battery, espe-
cially mammalian cell assays, has high sensitiv-
ity but suffers from low specificity, leading to 
high rates of false or irrelevant positive findings 
(Li et  al. 2007, 2017; Snyder and Green 2001; 
Kirkland et  al. 2005; Goodsaid et  al. 2010; 
Krewski et  al. 2020). GADD45A promoter 
reporter constructs have been employed by a 
variety of laboratories to assess for genotoxicity 
since first reported (Todd et  al. 1995). Using 
Green Fluorescent Protein (GFP) reporter, a 
study of 75 genotoxic and non-genotoxic com-
pounds demonstrated that the assay could respond 
positively to various classes of genotoxic damage 
with high specificity and high sensitivity 
(Hastwell et  al. 2006). This and other groups 
(Xin et al. 2015; Simpson et al. 2013; Luzy et al. 
2013; Walmsley and Tate 2012; Röckner et  al. 
1989) have developed high-throughput screening 
approaches to apply GADD45A reporter con-
structs to assess for genotoxicity with rapid 
in vitro methodology.

While the GADD45A reporter construct 
approach has merit, concern may arise because a 
variety of non-genotoxic stress stimuli are known 
to induce GADD45A as discussed above. To 
complement these approaches, a variety of labo-
ratories have proposed toxicogenomics 
approaches to assess for genotoxicity (Amundson 
et al. 2005; Li et al. 2007, 2015; Liu et al. 2019; 
Ellinger-Ziegelbauer et al. 2009; Cui and Paules 
2010; Herwig et  al. 2016; Moffat et  al. 2015; 
Chepelev et  al. 2015). Many of these reports 
include assessment of GADD45A mRNA levels. 
The advantage here is that bioinformatic 
approaches can be implemented to develop a 
more accurate prediction of genotoxicity rather 
than reliance on a single gene alone. As an 
example, a panel of 64 genes including GADD45A 
was developed to assess genotoxicity in TK6 

cells, and prediction of genotoxicity was high 
using a panel of genotoxic and non-genotoxic 
agents (Li et  al. 2015, 2017). Notably, 90% of 
non-genotoxic agents that were positive in the 
traditional mammalian cell genotoxicity assays 
were classified as non-genotoxic with this gene 
expression approach (Li et al. 2017). This toxi-
cogenomic approach also has the capability for 
high-throughput screening (Li et  al. 2017; Cho 
et  al. 2019a) and offers an exciting strategy to 
complement classic in  vitro toxicology in the 
assessment of genotoxicity (Krewski et al. 2020).

1.3	 �GADD45A Effectors 
in Growth Arrest 
and Apoptosis

GADD45A, GADD45B, and GADD45G share 
quite a bit in common when it comes to down-
stream effectors. However, the literature for 
GADD45A is much larger, so it will be discussed 
first. As can be anticipated for a protein that is 
predominantly stress-induced, many of the well-
characterized GADD45A functions are associ-
ated with growth arrest and apoptosis. Although 
limited direct biochemical mechanisms have 
been shown for GADD45A, it has been found 
repeatedly to form complexes with a variety of 
proteins and even with chromatin. It thus seems 
likely that its biologic effects are due to its ability 
to facilitate protein–protein interactions as well 
as to directly affect protein conformation, as in 
the case of MTK1. These interactions and their 
effects are highlighted for selected proteins in 
Fig. 1.1 and Table 1.1.

1.3.1	 �GADD45A Effectors in Growth 
Arrest

As shown in Fig. 1.1, GADD45A has important 
roles in both S phase and G2/M arrest (Hollander 
and Fornace 2002; Smith et al. 1994). GADD45A 
knockdown is associated with G2/M checkpoint 
abrogation following endoplasmic reticulum 
stress (Lee et  al. 2019). It can displace PCNA 
from the cyclin D1 complex, possibly inhibiting 
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DNA replication during S phase (Smith et  al. 
1994). Likewise, GADD45A can inhibit CDK1 
activity by promoting dissociation of CDK1/
Cyclin B1, arresting the cell cycle at the G2/M 
checkpoint (Zhang et al. 2014; Wang et al. 1999; 
Zhan et al. 1999). GADD45A can directly inhibit 
purified CDK1/Cyclin B1 activity in vitro (Zhan 
et al. 1999). In the case of control of S phase pro-
gression, loss of GADD45A results in centro-
some amplification, particularly when S phase 
progression is chemically inhibited; in normal 
cells, initiation of S phase and centrosome activ-
ity are tightly coordinated by GADD45A 
(Hollander and Fornace 2002). GADD45A inter-
acts with the tumor suppressor cyclin-dependent 
kinase inhibitor 1a (encoded by CDKN1A), also 
known as p21, CIP1, or WAF1, such that deletion 
of both GADD45A and p21 is associated with 
attenuated S-phase arrest (Hollander et  al. 
2005a). The two protein products compete for 
interaction with PCNA, and GADD45A seems to 
negatively regulate CDKN1A expression in kera-
tinocytes, allowing nucleotide excision repair 
(NER) after UV radiation (Gao et al. 2009).

GADD45A has been found to play a role in 
the inhibition of β-catenin signaling, a pro-
growth pathway (Hildesheim et al. 2004, 2005). 
Following exposure to UV radiation, GADD45A 
stimulates p38  in the dephosphorylation of gly-
cogen synthase kinase 3β (GSK3 β). This acti-
vates the adenomatous polyposis coli (APC) 
destruction complex, which increases β-catenin 
phosphorylation and degradation. GADD45A 
also increases p38 positive regulation of APC 
translocation to the nucleus, an important step in 
β-catenin degradation, as well as localization of 
β-catenin at the plasma membrane. This prevents 
activation of the pro-invasion transcriptional pro-
gram and increases its interaction with caveolin-
1, strengthening cell–cell adhesion (Gao et  al. 
2009). Consistent with its tumor suppressor-like 
properties, GADD45A inhibits tumor cell inva-
sion and migration induced by high β-catenin 
levels (Hildesheim and Fornace 2004).

As mentioned above, GADD45A is often 
required in oncogene-induced senescence 
(Bulavin et al. 2003) and DNA damage-induced 
establishment of the senescent phenotype (Passos 

et al. 2010). In both cases, GADD45A signaling 
via p38 is essential for induction of this pheno-
type and for full transactivation of p53, whose 
activity is essential for cell entry into a senescent 
state. In senescent human fibroblasts, p53 prefer-
entially occupies the promoters, resulting in a 
unique combination of phosphorylated p53 sites 
(Gao et  al. 2009). The positive feedback loop 
between GADD45A, p38, and p53 (Fig. 1.2) is 
thus essential for induction and maintenance of 
the senescent phenotype after oncogene overex-
pression or severe DNA damage in fibroblasts 
and keratinocytes, and likely in other cell types as 
well. This will be discussed further in Chap. 8: 
GADD45 in Senescence. In addition to premature 
senescence, differentiation can be used to remove 
damaged or potentially tumorigenic cells from 
the growth compartment. GADD45A upregula-
tion in response to genotoxic conditions is asso-
ciated with increased terminal differentiation of 
hematopoietic stem cells (Wingert and Rieger 
2016; Wingert et al. 2016).

1.3.2	 �GADD45A Effectors 
in Apoptosis

GADD45A has been repeatedly associated with 
apoptosis after oncogenic and genotoxic stresses. 
Its level rises notably in mammalian apoptotic 
cells, and inhibition of GADD45A expression 
reduces apoptosis in response to DNA damage. 
p38 and JNK often mediate the proapoptotic 
effects of GADD45A.  All three GADD45 pro-
teins bind the N-terminus of MTK1, which acti-
vates p38 and JNK signaling, inducing a 
conformational change that results in its auto-
phosphorylation, activation, and a strong apop-
totic response (Takekawa and Saito 1998; Mita 
et  al. 2002). As shown in Fig.  1.2, GADD45A 
activation of p38 and JNK signaling, which are 
upstream activators of GADD45A (as well as of 
p53, which also induces GADD45A expression), 
forms the basis of a positive feedback loop that 
raises levels of these tumor suppressive signaling 
molecules in the event of genotoxic stress and 
unresolved DNA damage. Furthermore, 
GADD45A expression is necessary for sustained 
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p38 and JNK signaling and consequent growth 
arrest or apoptosis in keratinocytes after UV radi-
ation (Hildesheim et  al. 2002). The sunburn 
response, which has a prominent apoptotic com-
ponent, requires p53, p38, and GADD45A 
(Hildesheim and Fornace 2004), whereas 
GADD45A is necessary for normal p53 activa-
tion after UV radiation of keratinocytes in vivo 
and in primary culture, it is not needed in dermal 
fibroblasts (Hildesheim et  al. 2002). How p53 
signaling compensates in GADD45A-null der-
mal fibroblasts is uncertain, but it has been shown 
that the other GADD45 proteins are expressed 
more abundantly in this cell type. This observa-
tion thus highlights the cell specificity for some 
in vivo roles of GADD45.

GADD45A has also been suggested to be 
involved in early events of the apoptotic cascade 
through interactions with the cytoskeleton. 
Elongation factor 1α (EF-1α) is a microtubule-
severing protein that plays a key role in cytoskel-
etal stability by binding, bundling, and promoting 
microtubule assembly. Increased GADD45A 
expression results in interactions with EF-1α that 
inhibit microtubule bundling and destabilize the 
cytoskeleton (Tong et  al. 2005). This causes 
release of BIM, a BCL-2 family proapoptotic 
protein, from microtubule-associated complexes 
and allows for BIM translocation to the mito-
chondria, triggering cytochrome C release into 
the cytoplasm and initiation of apoptosis (Gao 
et al. 2009).

At the same time, there are other features of 
GADD45A that can have an opposing effect on 
apoptosis potential. This is not surprising, as 
checkpoint activation and DNA repair can also 
enhance cell survival. For example, GADD45A 
deficiency sensitizes cells to cisplatin and UV 
radiation, implying subtleties to the proapoptotic 
effects of this protein that likely result in reduced 
DNA repair in the absence of GADD45A.  In 
hematopoietic cells exposed to UV radiation, 
GADD45A is implicated in a NF-κB-p38 sur-
vival pathway (Cretu et  al. 2009). GADD45A 
also protects neurons from apoptotic cell death 
after withdrawal of nerve growth factor in spinal 
cord ligation (Lin et  al. 2011). The first two 
examples can be explained as GADD45A 

enhancing survival by mitigating the effects of 
genotoxic stress, that is, arresting cell replication 
and stimulating DNA repair. The last example is 
clearer evidence of a GADD45A pro-survival 
function and of pronounced tissue specificity in 
GADD45A action.

1.3.3	 �Other Notable GADD45A 
Effectors

GADD45A, through its involvement in cell cycle 
control, DNA repair, apoptosis, and p53 signal-
ing, thus, has a key role in maintaining genomic 
stability. This is particularly evident in 
GADD45A-null cells and mice that exhibit cen-
trosome amplification and incomplete chromo-
some condensation during mitosis. Mitotic 
abnormalities lead to defective chromosome seg-
regation, which likely leads to the chromosome 
and chromatid aberrations often seen in this gen-
otype (Hollander and Fornace 2002). The 
genomic instability phenotype resembles that of 
p53-null mice although GADD45A-null mice do 
not show the marked spontaneous tumorigenesis 
seen in p53-null mice. In the case of centrosome 
instability, GADD45A physically associates with 
Aurora-A protein kinase, whose deregulated 
expression produces centrosome abnormality and 
strongly inhibits its activity (Shao et  al. 2006). 
Conversely, GADD45A and BRCA1 are both 
needed for full, physiological transcriptional 
upregulation of NEK2 (Wang et  al. 2004), the 
correct concentration of which is essential for 
timely centrosome separation (Gao et al. 2009).

GADD45A also has the ability to stimulate 
DNA repair, as discussed in detail in Chap. 4: 
GADD45  in DNA Demethylation and DNA 
Repair. In vitro and cell culture assays show that 
recombinant GADD45A can stimulate NER in 
chromatin-bound DNA (Smith et al. 1994; Tran 
et al. 2002), whereas loss of GADD45A expres-
sion in ex vivo assays of lymphoblasts results in 
substantially reduced NER (Gao et al. 2009). The 
ability of GADD45A to interact with acetylated 
or UV radiation-exposed mononucleosomes and 
increase local DNA accessibility might facilitate 
stimulation of DNA repair (Ma et al. 2009).
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Also discussed in more detail in Chap. 4 is the 
role of GADD45A-related excision repair events 
in the removal of DNA methylation, which is an 
epigenetic marker associated with repression of 
transcriptional initiation. GADD45A interacts 
directly with the four core histones and increases 
DNase accessibility to DNA with hyperacety-
lated mononucleosomes in vitro, perhaps allow-
ing access of demethylation and DNA repair 
complexes to DNA in chromatin. TATA-binding 
protein-associated factor 12 (TAF12) was found 
to recruit GADD45A and the nucleotide excision 
repair complex to the ribosomal DNA promoter 
and induce its transcription in a demethylation-
dependent manner (Schmitz et  al. 2009). 
GADD45 interacts directly with various nuclear 
hormone receptors, including constitutive active/
androstane receptor (CAR) (Yamamoto et  al. 
2010), RXRα, RARα, ERα, PPARα, PPARβ, and 
PPARγ2, perhaps mediating or facilitating tran-
scriptional initiation of their target genes (Ma 
et  al. 2009). GADD45A- and GADD45B-
mediated DNA demethylations are also neces-
sary for full expression of epidermal 
differentiation-inducing genes during calcium-
triggered differentiation of epidermal stem cells 
(Sen et al. 2010).

Although p38 is typically discussed in the 
context of growth arrest, it also has key stimula-
tory roles in lymphocytes. GADD45A has been 
shown to have an important regulatory role in the 
case of T cell activation via p38 signaling 
(Salvador et  al. 2005a, b; Ashwell 2006). 
Surprisingly, GADD45A is a negative regulator 
of p38 signaling during T cell activation and sub-
sequent proliferation, as discussed in Chap. 5: 
GADD45  in Immunity. Briefly, p38 is activated 
by an alternate pathway involving autophosphor-
ylation of p38 at Tyr323, and it is this pathway 
that is inhibited by GADD45A (Ashwell 2006). 
Interestingly, inhibition of the p38 alternative 
activation pathway in infiltrating T cells inhibits 
pancreatic cancer progression (Alam et al. 2015). 
This was demonstrated with a plasma mem-
brane–permeable GADD45A peptide, so in this 
case, GADD45A may well have a tumor 
suppressor effect by inhibiting tumor-promoting 
inflammation (Alam et al. 2015).

1.4	 �Roles for GADD45B 
and GADD45G

As mentioned earlier, less is known about 
GADD45B and GADD45G compared to 
GADD45A.  However, GADD45B and 
GADD45G are clearly defined as proapoptotic, 
growth-arrest proteins that share several simi-
larities with GADD45A.  Both proteins inhibit 
CDK1 activity and have a role in S and G2/M 
checkpoints. Loss of GADD45B is associated 
with G2/M checkpoint arrest and premature 
senescence in mouse embryo fibroblasts (MEFs) 
(Magimaidas et  al. 2016). Like GADD45A, 
GADD45B promotes dissociatio of CDK1/
Cyclin B1 (Zhang et al. 2014). Both GADD45B 
and GADD45G activate MTK1 to trigger JNK 
signaling (Takekawa and Saito 1998; Yang et al. 
2009). They also interact with p21, and 
GADD45B positively regulates its expression in 
senescing chondrocytes (Ijiri et  al. 2005) 
although the result of this interaction is unclear 
in other tissues and contexts (Gao et al. 2009). 
GADD45B facilitates p38-mediated activation 
of retinoblastoma tumor suppressor protein (Rb) 
by enhancing their interaction after Fas stimula-
tion in murine hepatocytes (Cho et al. 2010). It 
also mediates TGF-induced apoptosis in murine 
hepatic cells in a p38- and SMAD-dependent 
manner, as well as both GADD45B and 
GADD45G overexpression-induced apoptosis 
in HeLa cells. GADD45G is associated with 
neuronal cell death and GADD45B with the 
apoptotic response in neural ischemia (Cretu 
et al. 2009; Cho et al. 2019b). GADD45G levels 
are significantly lower in anaplastic thyroid can-
cer cells compared to primary cultured thyro-
cytes, and its reintroduction by viral expression 
has been shown to inhibit proliferation (Yang 
et al. 2009).

Both GADD45B and GADD45G have been 
suggested to have roles in the growth and devel-
opment of specific tissues in the embryo, such 
that they are differentially expressed during 
embryonic development. For example, 
GADD45B is expressed in the chorion, whereas 
GADD45G is expressed in the mouse brain 
(Kaufmann et  al. 2011). At the cellular level, 

1  GADD45 in Stress Signaling, Cell Cycle Control, and Apoptosis

https://doi.org/10.1007/978-3-030-94804-7_4
https://doi.org/10.1007/978-3-030-94804-7_5


12

GADD45 genes are expressed in cells undergo-
ing differentiation, including forming somites 
and neuronal precursors, and their expression 
pattern is consistent with a potential role in cell 
cycle arrest.

1.4.1	 �GADD45B and GADD45G 
in p38 and JNK Signaling

GADD45B has been reported to mediate TNFα-
induced NF-κB suppression of JNK-induced 
apoptosis by directly binding to MKK7 and 
inhibiting its catalytic activity (Karin 2014). 
However, as discussed previously, the role for 
GADD45B in NF-κB signaling was somewhat 
uncertain since GADD45B-null mice do not show 
a clear phenotype, as might be expected for dele-
tion of an upstream inhibitor of NF-κB.  Still, 
NF-κB is frequently over-expressed in tumor 
cells, and suppression of JNK-induced apoptosis 
has been shown to be mediated by direct binding 
of GADD45B to MKK7. Additionally, develop-
ment of a specific inhibitor that blocks GADD45B 
inhibition of MKK7 has been shown to trigger 
cell death in a panel of multiple myeloma cell 
lines with high constitutive levels of GADD45B 
(Tornatore et al. 2014a). The GADD45B-MKK7 
complex has thus been suggested as a therapeutic 
target in the treatment of multiple myeloma 
(Tornatore et  al. 2014b). GADD45B has also 
been described to suppress JNK signaling in 
hematopoietic cells in response to UV treatment 
(Yang et al. 2009). In mouse hepatocytes, stimu-
lation of CAR also induces its interaction with 
GADD45B, leading to GADD45B-mediated 
repression of JNK signaling and subsequent cell 
death (Yamamoto et  al. 2010). The role of 
GADD45B in TGFβ-mediated apoptosis was 
shown using a genetic approach in GADD45B-
null hepatocytes, confirming the need for 
GADD45B in p38 activation (Yoo et  al. 2003). 
GADD45B promotes liver regeneration in  vivo 
(Papa et  al. 2008) and protects retinal ganglion 
cells in response to neuronal injury, oxidative 
stress, TNFα, and glutamate cytotoxicity (Liu 
et al. 2009).

GADD45B and GADD45G show both simi-
larities and differences to GADD45A in immune 
cells. Unlike GADD45A, they potentiate p38 sig-
naling in Th1 and CD8+ cytotoxic T cells in order 
to promote full effector function; like GADD45A, 
they are negative regulators of T cell activation and 
proliferation (Lu 2006; Ju et al. 2009). In addition, 
GADD45B is necessary for full expression of the 
Th1 lineage-inducing proteins, T-bet, and Eomes 
(Ju et  al. 2009). The GADD45 family members 
thus seem to work together to promote full matura-
tion and function of Th1 and CD8+ cells, but they 
also prevent inappropriate overexpression, except 
under certain pathological conditions.

These results highlight the complex roles for 
the GADD45 proteins in MAPK signaling. As 
shown in Fig. 1.2, the GADD45 proteins clearly 
stimulate the stress-mediated activation of 
MTK1, which is upstream of p38 and JNK, as 
well as more directly for p38. However, 
GADD45B has an opposing effect on JNK sig-
naling by inhibition of upstream MKK7, and 
GADD45A has a specialized role in dampening 
p38’s role in T cell activation, as discussed in 
Chap. 5: GADD45 in Immunity. Taken together, 
one can conclude that the GADD45 proteins are 
important components of MAPK signaling and 
can have either stimulatory or inhibitory effects 
depending on the cellular context.

1.4.2	 �Notable Roles 
of GADD45G Only

With primarily genetic approaches, GADD45 has 
been found to have several features distinct from 
other GADD45 proteins. Recently, GADD45G 
has been suggested to play a role in cardiomyo-
cytes following stress. GADD45G expression is 
elevated following myocardial infarction in 
murine cardiomyocytes, and it is associated with 
increased p38 MAPK-dependent apoptosis and 
heart failure (Lucas et  al. 2015). Additionally, 
miR-128-1-5p has been shown to decrease 
GADD45G expression and apoptosis in cardio-
myocytes following myocardial ischemia/reper-
fusion injury (Wan et al. 2020).
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GADD45G has also been shown to have a 
specific role in gonad development, male fer-
tility, and sex determination (Gierl et al. 2012; 
Warr et al. 2012; Johnen et al. 2013). Notably, 
mice deficient in GADD45G show an unex-
pected male-to-female sex reversal phenotype. 
GADD45G-deficient XY mice on a mixed 
129/C57BL/6 background have varying 
degrees of disorders of sexual development, 
ranging from male infertility to complete 
gonadal dysgenesis (Johnen et al. 2013). On a 
pure C57BL/6 background, all GADD45G−/− 
XY mice were born as completely sex-reversed 
XY-females (Gierl et  al. 2012; Warr et  al. 
2012; Johnen et  al. 2013). The GADD45G 
expression pattern is not sexually dimorphic. 
GADD45G levels are similar in wt XY and 
XX gonads during the sex determination 
period, and peak at the time of primary sex 
differentiation, when SRY is also present. 
GADD45A and GADD45B are not expressed 
in purified somatic supporting precursor cells. 
Only GADD45G expression is induced 
robustly in embryonic gonads and in somatic 
precursor cells (Johnen et al. 2013).

In male gonads, SRY plays a key role in the 
male developmental pathway by promoting dif-
ferentiation of a somatic supporting cell lineage 
into Sertoli cells. In the absence of SRY in XX 
gonads, SOX9 is downregulated, and a female-
specific gene expression program is activated, 
leading to differentiation of the somatic sup-
porting lineage into granulosa cells, which sup-
port oocyte development. Surprisingly, 
GADD45G, but not GADD45A or GADD45B, 
is necessary for activation of the male sex-
determining pathway in mice, such that its 
absence leads to the development of female 
gonads. Lack of GADD45G decreases SRY 
expression and blocks SOX9 expression, result-
ing in ovary and Müllerian duct development, 
whereas lack of GADD45A and/or GADD45B 
has no effect on testis development (Johnen 
et  al. 2013). Although it remains to be deter-
mined how GADD45G regulates SRY expres-
sion, it is proposed that GADD45G is needed to 
promote MAP3K4-mediated activation of p38 

signaling in murine embryonic gonadal somatic 
cells. p38 can phosphorylate GATA4 and then 
phospho-GATA4 might bind and activate the 
SRY promoter to induce the male program 
(Gierl et  al. 2012; Warr et  al. 2012). In utero 
exposure to Di (2-ethylhexyl) phthalate (DEHP) 
has been shown to inhibit the GADD45G-
dependent sex determination pathway in mice 
(Wang et al. 2015).

1.5	 �Involvement of GADD45 
in Tumorigenesis

Loss of GADD45A has been shown to confer a 
tumor-prone phenotype after genotoxic stress. 
GADD45A has been shown to inhibit autoph-
agy in tumors, which likely provides a nutrient 
advantage to tumor cells, by inhibiting BECN1-
PIK3C3 interactions (Zhang et  al. 2015). 
Studies in GADD45A-null mice illustrate that 
GADD45A-dependent protection against UV 
irradiation-induced skin tumors requires func-
tional p38 (Hildesheim et  al. 2002). Abolition 
of either GADD45A or p38 activity results in 
compromised negative regulation of β-catenin 
via the APC destruction complex (Gao et  al. 
2009). p53-signaling in the sunburn response 
requires GADD45A for effective p38 activa-
tion, which then signals p53 (Hildesheim et al. 
2002), as shown in Fig.  1.2. GADD45A-null 
mice also show increased rates of IR- or 
dimethylbenzanthracene-induced tumors, with 
a shorter latency period than controls (Hollander 
et al. 1999, 2001). Deletion of GADD45A in an 
XPC−/− mouse model of lung cancer led to an 
increase in lung tumor malignancy, and allelic 
deletion of GADD45A is associated with mul-
tiple tumor types, including lung (Hollander 
et  al. 2005b) and mammary tissue (Pietrasik 
et al. 2020). Loss of GADD45A is also associ-
ated with worse outcomes in chronic myeloid 
leukemia in mice (Mukherjee et al. 2017), and 
similar findings have been demonstrated with 
loss of GADD45B as well (Sha et  al. 2018). 
Increased expression of lncRNA NEAT1 and 
binding to BRG1 are associated with decreased 
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GADD45A expression and reduced survival for 
gastric cancer in mice (Ma et  al. 2020). 
Sustained ERK1/2 signaling in an acute 
myeloid leukemia model cell line downregu-
lates GADD45A, and the reintroduction of 
expression induces S phase arrest and apoptosis 
(Cretu et al. 2009). Simultaneous H-RAS over-
expression and GADD45A knockout are suffi-
cient to transform cells, indicating that 
GADD45A knockout can function as one of the 
“two hits” in oncogenic transformation (Bulavin 
et al. 2003).

GADD45 has been shown to play a role in 
the inhibition of angiogenesis, which is an 
important component of tumorigenesis. 
GADD45A is central to suppression of tumor 
angiogenesis by blocking the mTOR/STAT3 
pathway. Lack of GADD45A increases STAT3 
phosphorylation at Ser727 and elevates 
STAT3 transcriptional activity. This process 
induces the expression and secretion of vascu-
lar endothelial growth factor (VEGF-A) and 
promotes formation of tumor blood vessels. 
Moreover, GADD45A can interact with 
mTOR and suppress STAT3 phosphorylation, 
leading to downregulated expression of 
VEGF-A (Yang et al. 2013).

1.5.1	 �GADD45 Expression in Clinical 
Studies

Aberrant GADD45 expression has been found in 
an increasing number of clinical studies. These 
findings are summarized in Table 1.2 and in the 
text below. The GADD45A promoter is methyl-
ated in a majority of breast cancers and a signifi-
cant fraction of prostate cancers, whereas the 
GADD45G promoter is likewise hypermethyl-
ated in several human hepatocellular carcinomas, 
in both cases with subsequent downregulation of 
expression (Cretu et  al. 2009). However, the 
pregnane X receptor can activate GADD45B/p38 
MAPK signaling to induce a change in morphol-
ogy and migration in a hepatocellular carcinoma 
cell line (Kodama and Negishi 2011). Increased 
GADD45A expression is associated with 
improved prognosis in patients with ovarian can-
cer (Yuan et al. 2015). Decreased expression of 
GADD45A and GADD45G is associated with 
worse prognosis in patients with gastric cardia 
adenocarcinoma (Guo et  al. 2013a). Loss of 
GADD45A in acute myeloid leukemia (Wang 
et al. 2012; Perugini et al. 2013) similarly carries 
a worse prognosis. Increased GADD45B expres-
sion is associated with worse prognosis in 

Table 1.2  Examples of aberrant GADD45 protein expression in various human cancers. Based on mouse model stud-
ies, reduced expression (↓) of GADD45 proteins in human cancers would be expected, but there are also a limited 
number of examples where increased expression (↑) has also been found

Tumor type Expression Prognosis
Breast ↓ GADD45A Worse

Prostate ↓ GADD45A Worse

Hepatocellular carcinoma ↓ GADD45G Worse

Ovarian ↑ GADD45A Improved

Gastric cardia adenocarcinoma ↓ GADD45A+G Worse

Acute myeloid leukemia ↓ GADD45A Worse

Papillary thyroid carcinoma ↑ GADD45B Worse

Colorectal ↑ GADD45B, ↓ GADD45G Worse

Esophageal squamous carcinoma ↓ GADD45A&G Worse

Pancreatic ↑ GADD45A, ↓ GADD45G Worse

Thyroid ↑ GADD45A Worse

Lung ↓ GADD45G Worse

Lymphoma ↓ GADD45G Worse

Nasopharyngeal carcinoma ↓ GADD45G Worse

Cervical carcinoma ↓ GADD45G Worse

Pituitary adenoma ↓ GADD45G Worse
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patients with papillary thyroid carcinoma 
(Barros-Filho et al. 2020) and colorectal cancer 
(Wang et al. 2012; Zhao et al. 2018). Decreased 
expression of GADD45A and GADD45G is 
associated with worse prognosis in patients with 
esophageal squamous cell carcinoma (ESCC) 
(Ishiguro et  al. 2016; Guo et  al. 2013b). More 
recently, GADD45G has been suggested to 
inhibit ESCC migration and invasion through its 
interactions with E-cadherin (Li et al. 2020).

Although GADD45 has clear tumor suppres-
sor features, it might also offer pro-growth advan-
tages to certain malignant cells, in line with its 
roles in cell growth arrest and DNA repair. In one 
study, point mutations were found in exon four of 
the GADD45A gene in 14% of pancreatic cancer 
samples, and GADD45A expression in p53-
positive tumors was associated with a lower 
patient survival rate (Yamasawa et  al. 2002). 
GADD45A induction can protect melanoma cells 
from UV radiation-induced death (Jean et  al. 
2001). Lack of GADD45A induction in cervical 
carcinomas correlates with a good clinical 
response to radiotherapy (Gao et  al. 2009). In 
addition, despite decreased FOXO3A transcrip-
tional activity, GADD45A expression is upregu-
lated in thyroid cancers (Karger et al. 2009).

In cancer, given the higher reported rate of 
promoter hypermethylation or upregulation of 
GADD45-repressed transcription of a multitude 
of different proteins, multiple GADD45 functions 
could be important as alteration of a single func-
tion might be insufficient to induce or intensify 
the tumor phenotype. GADD45G is also deficient 
in several tumors. Its gene promoter region is 
hypermethylated and its transcription is repressed 
in a significant number of non-small cell lung 
cancers (Na et  al. 2010), lymphomas, nasopha-
ryngeal carcinomas, cervical carcinomas, esoph-
ageal carcinomas, pituitary adenomas, and 
gastric, colorectal, and pancreatic cancers (Yang 
et al. 2009; Zhang et al. 2010); however, genetic 
mutation and inactivation are rare. Exogenous 
reintroduction of GADD45G results in G2/M 
arrest in a number of tumor cell lines, including 
prostate carcinoma and pituitary adenoma (Yang 
et al. 2009).
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