
A Distributed Computation Offloading
Strategy for Edge Computing Based on

Deep Reinforcement Learning

Hongyang Lai1, Zhuocheng Yang1, Jinhao Li1, Celimuge Wu2(B) ,
and Wugedele Bao3

1 University of Electronic Science and Technology of China, Chengdu, China
2 The University of Electro-Communications, Tokyo, Japan

celimuge@uec.ac.jp
3 Hohhot Minzu College, Hohhot, China

Abstract. Mobile edge computing (MEC) has emerged as a new key
technology to reduce time delay at the edge of wireless networks, which
provides a new solution of distributed computing. But due to the het-
erogeneity and instability of wireless local area networks, how to obtain
a generalized computing offloading strategy is still an unsolved prob-
lem. In this research, we deploy a real small-scale MEC system with one
edge server and several smart mobile devices and propose a task offload-
ing strategy for one subject device on optimizing time and energy con-
sumption. We formulate the long-term offloading problem as an infinite
Markov Decision Process (MDP). Then we use deep Q-learning algo-
rithm to help the subject device to find its optimal offloading decision in
the MDP model. Compared with a strategy with fixed parameters, our
Q-learning agent shows better performance and higher robustness in a
scenario with an unstable network condition.

Keywords: Mobile edge computing · Computation offloading ·
Markov Decision Process · Deep reinforcement learning

1 Introduction

With the development of Internet of Things (IoT) technology, the number of
smart devices increases explosively. These IoT devices have the functions of sens-
ing, computation, and communication which can be connected to the Internet
and collaboratively implement various applications, such as home automation,
health monitoring, automated industry, and smart transportation. By 2025, it is
estimated there will be an installed base of 75.44 billion IoT connected devices
worldwide [1].

Since IoT devices are usually limited by computing and storage capabilities.
In traditional methods, most computing tasks are offloaded to the cloud, which
is called mobile cloud computing (MCC) [7]. However, due to the relatively large

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2022

Published by Springer Nature Switzerland AG 2022. All Rights Reserved

C. T. Calafate et al. (Eds.): MONAMI 2021, LNICST 418, pp. 73–86, 2022.

https://doi.org/10.1007/978-3-030-94763-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94763-7_6&domain=pdf
http://orcid.org/0000-0001-6853-5878
https://doi.org/10.1007/978-3-030-94763-7_6

74 H. Lai et al.

distance between IoT devices and cloud servers, this leads to high transmission
delays and affects delay-sensitive applications [14]. In the past decade, through
the rapid development of artificial intelligence (AI) technologies such as com-
puter vision and natural language processing, the number of delay-sensitive intel-
ligent applications largely increases. But the latency of public cloud providers
usually exceeds 100 milliseconds, which is unacceptable [12]. Mobile edge com-
puting (MEC) has emerged as new architecture and a key technology for IoT
networks to face this problem. MEC [9,16] can provide computing services at
the edge of wireless networks with low latency. Therefore, in recent years, we
have witnessed a paradigm shift from centralized MCC to MEC. Compared with
MCC, MEC can provide lower latency and computational agility in computa-
tional offloading. For each smart mobile device (SMD), it can migrate its com-
puting tasks to edge nodes or cloudlets [17]. However, computing power means
high expenses and energy consumption, which is not economically friendly. In
addition, computational offloading can cause greater interference in ultra-dense
networks and unexpected transmission delays [4]. Therefore, offloading all the
computing tasks to the MEC server is not always the optimal strategy.

In a multi-user MEC scenario, computing offloading involves three parts:
application partitioning, task allocation, and task execution [13]. In general,
an offloading decision is to make a viable task allocation decision, which may
result in any of the three types of offloading strategies: local execution, full
offloading, and partial offloading, which is a trade-off result between time and
energy consumption. To minimize the weighted sum of tasks completion time
and energy consumption, a SMD should determine not only whether and how
much to offload, but also offloading target. Such a problem can be generally
formulated as integer programming problems due to the existence of binary
offloading variables.

Many related engineering models for offloading decision problems and
resource allocation problems in MEC networks show attractive theoretical
results. Lei [11] considered it as a dynamic programming problem and formulated
it into a continuous-time Markov decision process model. Chen [3] proposed a
game theory for multi-user situations and made a trade-off between energy con-
sumption and time delay, trying to achieve a Nash equilibrium. Dinh [5] also
modeled it with game theory and extended the problem to a practical scenario,
where the number of processed CPU cycles is time-varying and unknown. In
this case, he applied Q-learning to learn SMDs’ long-term offloading strategies
to maximize their long-term utilities.

In most of the related works, the MEC system is stable and fixed, where it
is uncomplicated to calculate the time consumption. However, a real MEC net-
work is heterogeneous and flexible, whose structure may change at any time, and
therefore it is impossible to reach a general solution. Hence, existing integer pro-
gramming algorithms are not suitable for making real-time offloading decisions
in a real MEC network. To improve the real-time performance, it is more prac-
tical to design a multi-user offloading mechanism, where SMDs can learn and
adjust their offloading strategy at any time based on the reward and network

A Distributed Computation Offloading Strategy for Edge Computing 75

information observed after each offloading action. In addition, most researches
are based on simulations and analytical evaluations, which are not rigorous
enough. The processing time for the same task varies from one SMD to another,
which is not linear additive while offloading.

In this paper, we deploy a real small-scale multi-user MEC system, which has
unique characteristics and topological network structure. All the SMDs have a
certain ability of communication and computation and have the option to process
computing tasks received from other SMDs. For instance, we use the Raspberry
Pi as a SMD and apply YOLO algorithm to perform image analysis on multiple
photos taken by the camera and offload the photos from SMD (Raspberry Pi)
to MEC server connected to AP or other SMDs (other Raspberry Pi). To sim-
ulate the time variation and instability of a MEC system, we manually connect
or disconnect SMDs at a random time. We measure the authentic processing
time and calculate its power consumption according to its offloading strategy.
Then, for the MEC system, the offloading process is formulated as a Markov
decision process (MDP) model. Iterative methods such as Q-learning can be
used to solve the above-mentioned MDP model. However, a challenge known as
the curse of dimensionality [15] lies in the convergence of Q-table when simply
applying Q-learning. To overcome the problem of dimensionality, we apply a
better estimation alternative is to adopt a neural network which is known as
Deep Q-Network (DQN). Eventually, the optimized offloading time and energy
consumption can be obtained by employing the DQN to solve the MDP.

There are three main contributions of this article as follows.

1) The proposed offloading strategy not only includes local computing and MEC
servers but also takes the computing ability of other SMDs into account,
which contributes to practical optimization in industrial applications.

2) We consider both time delay and energy consumption and apply Deep Q-
Network to solve the MDP model, giving a general offloading strategy for
different scenarios.

3) Unlike most related works using simulation software to verify the offloading
scheme, we build an actual MEC network system. In this case, the network
structure and communication reliability may vary at any time. Besides, each
offloading decision affects the whole MEC system, for example, CPU using
rate of another SMD. In our work, we provide real data to evaluate its
performance.

The remainder of this paper is organized as follows. In Sect. 1, the system
model including network model and computation model will be introduced.
Section 2 presents the offloading time and energy optimization according to
MDP model and DQN strategy. Experiment settings and results are discussed
in Sects. 3 and 4. Section 5 concludes the paper.

76 H. Lai et al.

2 MEC System Model and Problem Formulation

2.1 MEC Network Model

We deploy a real MEC system for the IoT application, in which a MEC server
connected to the access point (AP) provides service for N smart mobile devices
(SMD) in an ad-hoc network as shown in Fig. 1, where the N is a flexible number
because other SMDs may be offline at any time except for the subject smart
mobile device (SSMD) in blue color. We choose Raspberry Pi as the smart
mobile devices comprised of computing, communication, and storage modules.
Considering a scenario of computer vision, the main task of this system is to
analyze images using YOLO [2] in a real-time monitoring system. We suppose
that the SSMD has several pictures to be processed as the original data, which
is the basic task unit that cannot be divided anymore. However, Raspberry pi
has a limited computing capability while a monitoring system is usually time-
sensitive. Also, in the real-time monitoring system, since it is designed to operate
constantly, the energy consumption cannot be ignored. To meet the demands for
shorter delay and energy saving, the original data can be offloaded to the MEC
server connected to AP or other SMDs for remote computing, to improve time
efficiency and reduce energy consumption. The decision on computation process
for executing tasks can be described as an action a.

Fig. 1. Network model. (Color figure online)

a =

⎧
⎪⎪⎨

⎪⎪⎩

0, computing locally
1, offloading to MEC server
2, offloading to another SMD
3, standby

(1)

For example, a = 1 represents offloading the task to MEC server and a = 2 means
offloading to another SMD. When offloading, the original data are transmitted
and then the processed data will be sent back.

A Distributed Computation Offloading Strategy for Edge Computing 77

2.2 Computation Model

In the proposed network model, when SSMD has to complete ith computation
task τ = {di, ci}, where di is the size of data under processing and ci represents
the total number of CPU cycles required to complete the computing task. As for
SSMD, it can choose either to execute all the tasks locally or to offload them to
another SMD or the MEC server to execute remotely or remains in the standby
state.

(1) Local Computing: We consider that the CPU in SSMD is operating at fre-
quency fL. While executing locally on SSMD, the computation time delay
tL is

tL =
ci
fL

(2)

The energy consumption of SSMD can be calculated as

eL = κ(fL)3tL (3)

where κ is a coefficient that depends mostly on the chip architecture and
κ = 10−26 [6,19].

(2) Edge Computing: In the transmission process of offloading, the achievable
uplink transmission rate can be expressed as

r = log2(1 +
PT ∗ h

σ2
) (4)

where PT is the transmission power and h is the channel gain between SSMD
and MEC server or SSMD and another SMD. σ2 is the noise power. Let fC

denotes the number of CPU cycles frequency of the MEC server connected to
AP or another SMD. In this case, the total time delay consists of transmission
time and computation time, which can be expressed as

tE =
di
r

+ tC (5)

where tC = ci/fC means the computation time in MEC server or another
SMD. The energy consumption of the MEC server or another SMD can be
calculated as

eE = PT ∗ di
r

+ PC ∗ tC (6)

where PC is the computation power consumption of the MEC or another
SMD.

(3) Standby: We consider there is a standby mode for CPU in SSMD, which means
no offloading and computation actions will be performed. In this case, the total
standby time is tS and the energy consumption during standby state is

eS = tS ∗ PS (7)

78 H. Lai et al.

where we consider PS is a small value shows the basic power consumption of idle
CPU in SSMD. The introduction of the standby state is based on the instability
and latency of the proposed network. When the last task is already offloaded,
since the communication time is much lower than the computation time, the
current calculation progress is unknown until SSMD obtains the returned result.
So it may not be the optimal way to continue to perform task offloading or
computation, then SSMD turns to the standby state to wait and reduce power
consumption.

2.3 Problem Formulation

When making offloading decisions, both the total execution time of the task and
the total power consumption need to be taken into consideration. To make a
trade-off between those two factors, we define a weighting factor w(w ∈ [0, 1])
to indicate the degree of importance to time delay and power consumption. To
meet the needs of specific scenarios, the weighting factor can be adjusted to
emphasize a certain aspect [8].

According to (2) and (3), the weighted sum GL of time and energy consump-
tion in the process of computing locally, can be defined as

GL = wtL + (1 − w)eL (8)

Similarly, according to (5) and (6) the energy consumption and time delay
in the MEC server and in another SMD can be calculated respectively as

GE
M = wtEM + (1 − w)eEM (9)

GE
A = wtEA + (1 − w)eEA (10)

Lastly, according to (7), the weighted sum GS of energy and time consump-
tion in the standby state, can be defined as

GS = wtS + (1 − w)eS (11)

Therefore, the overhead of the subject SMD can be obtained by

G = w(
s1∑

tL +
s2∑

tEM +
s3∑

tEA +
s4∑

tS)

+ (1 − w)(
s1∑

eL +
s2∑

eEM +
s3∑

eEA +
s4∑

eS)

= w(TL + TE
M + TE

A + TS) + (1 − w)(EL + EE
M + EE

A + ES)
= wT + (1 − w)E

(12)

where s1, s2, s3, s4 are the counters for recording the number of actions the trade-
off has performed in order to complete all the tasks of SSMD and T,E represent
the total sum of time and energy consumption in executing all the tasks of SSMD.

A Distributed Computation Offloading Strategy for Edge Computing 79

Then in the designated network model, to investigate the tradeoff between energy
and time consumption for SSMD, we can formulate the optimization problem as
follows.

min w1
T − TExp

TExp
+ w2

E − EExp

EExp

s.t. C1 : 0 ≤ TExp ≤ Tmax

C2 : 0 ≤ EExp ≤ Emax

C3 : w1 + w2 = 1 (13)

Here we introduce the expected minimum of total delay TExp and total energy
consumption EExp to normalize the objective function. Constraint C1 and C2
limit the range of those manually giving value. Constraint C3 restricts the sum
of weight factors to 1.

3 Offloading Time and Energy Optimization

In this section, we use MDP to represent the task execution and offloading pro-
cess of the entire MEC system and use a deep reinforcement learning algorithm
to solve the optimization problem.

3.1 MDP Model Formulation

In this section, we will analyze the stochastic process of the system state and for-
mulate a Markov Decision Process (MDP) problem to minimize the normalized
weighted sum of total time delay and power consumption in offloading process.
When SSMD makes an offloading decision, it not only considers the current
state but also considers the impact of the current decision on the future total
reward. MDP considers the immediate and delayed rewards brought about by
current decisions, and makes the expected optimal action under uncertain cir-
cumstances. There are five crucial elements in our MDP model: decision epoch,
state, action, state transition probability, and reward function. Considering our
MEC system model and offloading process, the details are as follows.

Decision Epochs: The period SSMD making offloading decision is called an epoch
[18]. In the continuous decision epochs, time is described as sequence T , consist-
ing of K discrete time slots, where K denotes the number of executing tasks.

T = {1, 2, ..., t, ...,K}, t ∈ T (14)

States: A state includes the communication quality, the number of returned
results, the number of remaining tasks, the number of tasks being processed,
and the operating frequency of all the SMDs and the MEC server. The state
vector S involves all possible states during the offloading process for the MEC
system and is defined as follows.

S = Nall × CQ × RR × RT × PT × f (15)

80 H. Lai et al.

where × represents the Cartesian product. Nall includes all the nodes of the
proposed network, Nall = {NSSMD, NMEC , NASMD}. CQ denotes the commu-
nication quality by the possibility of channel failure. RR, RT and PT represent
the numbers of returned results, tasks that remain and are under processing,
respectively. f denotes the operating frequency of SMDs and the MEC server.
All the states values can be normalized and range from [0, 1]. In this case, for
any certain decision epoch t in (14), the current state can be described as s, a
3 × 5 dimension vector. An example state table is shown in Table 1.

Table 1. An example table of the current state.

CQ RR RT PT f

SSMD 0.9 0.5 0.5 0.1 0.5

MEC 0.8 0.7 0.4 0.2 0.6

ASMD 0.7 0.4 0.2 0.2 0.7

Actions: For each epoch, SSMD needs to select a corresponding action in the
action space (1), where at = {0, 1, 2, 3}. at = 0 denotes that for the ith computa-
tion task it is executed locally in SSMD. at = 1 denotes offloading to the MEC
server. at = 2 denotes offloading to another SMD (ASMD). at = 3 denotes that
SSMD turns into standby state. The set of all actions selected to complete the
task is defined as A.

A = {a = (a1, a2, ..., at)} (16)

Transition Probability: The probability of Markov state may transfer from s to
state s′ by selecting action a. In our case, the state is 3 × 5 dimension vector.
In order to simplify the model of transition probability, we take the MEC server
node as the focus node from all the nodes and its operating frequency is also
fixed. The transition probability of MEC server node is derived by

P (s′|s, a) =
{

P (RR′|RR)P (RT ′|RT)P (PT ′|PT), CQ′ = CQ
ρ, CQ′ �= CQ

where ρ ∈ [0, 1] represents the failure probability that the channel between
MEC server and SSMD. P(RR′—RR) denotes the probability of the number
of returned results in the next state. P(RR′—RR) is described by

P (RR′|RR) =
{

η, RR′ = RR
ξ, RR′ �= RR

where η represents the probability of the number of returned results staying at
the same number, 0 ≤ η ≤ 1. Alternatively, ξ denotes the probability of the
number of returned results changes to another number, and ξ is expressed as
follows

ξ = (1 − η)/RT (17)

A Distributed Computation Offloading Strategy for Edge Computing 81

P(RT′—RT) denotes the probability of the number of remaining tasks in the
next state. P(RT′—RT) is described by

P (RT ′|RT) =
{

φ, RT ′ = RT
ϕ, RT ′ �= RT

where φ represents the probability of the number of remaining tasks staying at
the same number, 0 ≤ φ ≤ 1. Alternatively, ϕ denotes the probability of the
number of remaining tasks changes to another number, and ϕ is expressed as
follows

ϕ = (1 − φ)/(RT − 1) (18)

P(PT′—PT) denotes the probability of the number of processing tasks in the
next state. P(PT′—PT) is described by

P (PT ′|PT) =
{

λ, PT ′ = PT
μ, PT ′ �= PT

where λ represents the probability of the number of processing tasks staying at
the same number, 0 ≤ λ ≤ 1. Alternatively, μ denotes the probability of the
number of processing tasks changes to another number, and μ is expressed as
follows:

μ = (1 − λ)/(RT + PT − 1) (19)

Based on the above equations, the transition probability of the focus node
and then all the nodes can be calculated and formulated as a state vector.

Reward Function: In order to evaluate the instant benefit of choosing an action
in the current state, we introduce the reward function r(s, a), which reflects the
instant reward when SSMD makes an offloading decision in the current MEC
system state. According to the objective optimization function (13) mentioned
before, the reward function r(s, a) is defined as follows

r(s, a) =

⎧
⎪⎪⎨

⎪⎪⎩

GL, a = 0
GE

M , a = 1
GE

A, a = 2
GS , a = 3

where
{
GL, GE

M , GE
A, GS

}
are already defined by (8–11), respectively.

In our case, iterative methods such as Q-learning can be used to solve the
above-mentioned MDP model. Therefore, we will discuss the use of Q-learning
and Deep Q-Network in solving MDP model as follows.

3.2 Deep Q-Network

In the Q-learning algorithm, a Q-table is used to store Q-values of all state-action
pairs [10]. According to Bellman equation, Q-learning Q(st, at) can be expressed
as

82 H. Lai et al.

Q(st, at) = Q(st, at) + α[r(st, at) + γ(max
a′

Q(st+1, a
′) − Q(st, at))] (20)

where α is the learning rate, γ is the discount factor. In traditional Q-learning,
we use a table to record Q-value Q(s, a) of all the state-action pairs as shown
in (20). However, there are too many latent states of our practical MEC system
to fit in the Q-table, which is generally known as the curse of dimensionality
[15]. Therefore, we can’t store states through tables. It is necessary for us to
compress the dimensions of the state. One solution is to approximate the value
function approximation. Then a neural network is built for fitting and regression,
approximate the Q-values function of different state-action pairs via prediction.

The discrete action mentioned above is Q-value function, where the value
function Q here is not a specific value, but a set of vectors. In the neural net-
work, the weight of the network is θ, which is represented by a Q-value function
Q(s, a, θ), and the θ after the final neural network converges is the value function.
Therefore, the core of the whole process determines the θ to approximate the
value function. We adopt the most classic method, gradient descent, to minimize
the loss function to continuously adjust the network weight θ. The loss function
is defined as

Li(θt) = E(s,a,r,st)[(r(st, at) + γ max
a′

Q(s′, a′; θ′) − Q(s, a; θ))2] (21)

θ′
i denotes the target network parameter of the ith iteration and θi denotes the

network parameter of evaluation network. The next step is to find the gradient
of θ, as follows

∂Lt(θt)
∂θt

= E(s,a,r,st)[(r(st, at) + γ max
a′

Q(s′, a′; θ′) − Q(s, a; θ))2] (22)

In addition, during the learning process, trained quadruple is stored in a
replay memory, where the training network structure is read by mini-batch dur-
ing the learning process, which is called the experience replay. In this scenario,
the reason we add experience replay is that the states are monitored consec-
utively under the MEC system, so the relevance of the samples is too large.
Without experience replay, a problem that the gradient descent will be in the
same direction with a continuous period occurs. In this condition, the gradient
may not converge under the same step size. Therefore, experience replay is to
randomly select some experience from a memory pool and then find the gradient,
thus avoiding this underlying problem.

The target network and evaluation network share the same structure with
different parameters, both of which consist of two fully connected layers. The
structure of the DQN is shown in Fig. 2.

As shown in Algorithm 1, we first initialize the MEC system and all the
network parameters. A few pre-train steps are set to get some experiences
through random actions stored in the experience pool, and the training of the
Q-evaluation network is completed in the pre-training stage. During training, it
extracts minibatch experience from the experience pool every step to train the
Q network. Eventually, update the parameters of the target network with the
evaluation network’s every C steps.

A Distributed Computation Offloading Strategy for Edge Computing 83

Fig. 2. DQN structure.

4 Experiment

4.1 Experiment Settings

In this part, we deploy a real MEC system to conduct the experiment. The
experimental network model consists of one SSMD, three other SMDs, and the
MEC server. We use Raspberry Pi 4b (Broadcom BCM2711, Quad core Cortex-
A72 (ARM v8) 64-bit SoC @ 1.5 GHz) as smart mobile devices, and its power
consumption is at 6.4w for regular operating and, at 2.7w for idle mode. The
MEC server offers a GPU of Geforce GTX 1650 Ti. All the mobile devices are
deployed in one ad-hoc based on IEEE 802.11ac in a scattered way in a radius of
about 1.5 m. To simulate a real-time monitoring system, 16 unprocessed 256 * 256
images are generated in the SSMD per second as one episode. We have tested
that all the SMDs and the MEC server satisfy the requirement of running YOLO
algorithm to perform image analysis.

4.2 Experiment Results

To simulate a long-term unstable scenario, we set the episode number with 650,
DQN memory batch size with 200, and keep the communication quality and
computation stability of SMDs varying. The normalized reward value shows as
Fig. 3(a). The figure illustrates a dynamic approach to the optimal strategy for
this long-term dynamic MEC system, whose expected reward value increases
monotonically over episodes and converges to about 0.67. Besides, it shows that
the reward value declines quite frequently and with large amplitude in the early
stage, indicating the learning and adapting period of DQN. To show its robust-
ness, we set another comparing group with manual parameters that fix the cur-
rent system well. It seems to be stable at first, but as the MEC system status

84 H. Lai et al.

Algorithm 1. Deep Q-learning algorithm
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights θ
Initialize target action-value function Q′ with weights θ′ = θ
for episode=1,M do

Initialize the MEC system with all the images unprocessed
while tasks are not fully processed do

Observe the system state st
With probability ε select a random action at

Otherwise select at = arg maxa Q(φ(st), a; θ)
Execute action at as an offloading decision and observe reward rt
Store transition (st, at, rt, φt+1) in D
Sample random minibatch of transitions φj , aj , rj , φj+1 from D

Set yj =

{
rj , if episode terminates at j + 1

rj + γ maxa′ Q′(φj+1, a
′; θ′), otherwise

Perform a gradient descent step on the loss Q(si, ai; θt) − yi)
2 with respect to

the network parameter θ
Reset Q′ = Q every r(st, at)C steps

end while
end for

(a) DQN algorithm (b) Manual parameter strategy

Fig. 3. Performance comparison.

change goes beyond its scope at around 100 episodes, the whole strategy crashed.
Due to its fixed parameter, the agent cannot make any proper decision until we
set new parameters at around episode 160. Without preset parameters, our DQN
agent can choose appropriate offloading actions corresponding to MEC system
states after sufficient working episodes. With the prolonged working episodes
under the same system, the decisions made are more precise and less likely to
be interfered by other random interferences.

A Distributed Computation Offloading Strategy for Edge Computing 85

5 Conclusion

In this paper, we design a practical MEC system with computation time and
energy taken into account and propose an offloading strategy based on MDP
model. We formulate a minimization problem that minimizes the weighted sum
of the average delay and power consumption of the subject smart mobile device.
We apply Deep Q-learning algorithm to learn from the offloading experience of a
certain past period to improve its offloading action and predict viable decisions
under unknown circumstances through regression. Compared with other tradi-
tional computation strategies, our method shows higher robustness. Especially
even though the MEC system is flexible, the algorithm can make adjustments
and offloading decisions in time. In our future work, we may design a larger-scale
network with multiple MEC servers and take the resource allocation problem into
consideration.

Acknowledgement. This research was supported in part by the National Natural
Science Foundation of China under Grant No. 62062031, in part by Inner Mongolia nat-
ural science foundation grant number 2019MS06035, and Inner Mongolia Science and
Technology Major Project, China, in part by ROIS NII Open Collaborative Research
21S0601, and was supported in part by JSPS KAKENHI grant numbers 18KK0279,
19H04093, 20H00592, and 21H03424.

References

1. Ahmad, I.: Discover Internet of Things editorial, inaugural issue. Disc. Internet
Things 1(1), 1–4 (2021). https://doi.org/10.1007/s43926-021-00007-6

2. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy
of object detection. arXiv preprint arXiv:2004.10934 (2020)

3. Chen, X., Jiao, L., Li, W., Fu, X.: Efficient multi-user computation offloading for
mobile-edge cloud computing. IEEE/ACM Trans. Netw. 24(5), 2795–2808 (2015)

4. Deng, M., Tian, H., Lyu, X.: Adaptive sequential offloading game for multi-cell
mobile edge computing. In: 2016 23rd International Conference on Telecommuni-
cations (ICT), pp. 1–5 (2016). https://doi.org/10.1109/ICT.2016.7500395

5. Dinh, T.Q., La, Q.D., Quek, T.Q., Shin, H.: Learning for computation offloading
in mobile edge computing. IEEE Trans. Commun. 66(12), 6353–6367 (2018)

6. Guo, S., Liu, J., Yang, Y., Xiao, B., Li, Z.: Energy-efficient dynamic computation
offloading and cooperative task scheduling in mobile cloud computing. IEEE Trans.
Mob. Comput. 18(2), 319–333 (2018)

7. Guo, S., Xiao, B., Yang, Y., Yang, Y.: Energy-efficient dynamic offloading and
resource scheduling in mobile cloud computing. In: IEEE INFOCOM 2016 - The
35th Annual IEEE International Conference on Computer Communications, pp.
1–9 (2016). https://doi.org/10.1109/INFOCOM.2016.7524497

8. Guo, S., Xiao, B., Yang, Y., Yang, Y.: Energy-efficient dynamic offloading and
resource scheduling in mobile cloud computing. In: IEEE INFOCOM 2016-The
35th Annual IEEE International Conference on Computer Communications, pp.
1–9. IEEE (2016)

9. Hu, Y.C., Patel, M., Sabella, D., Sprecher, N., Young, V.: Mobile edge computing-a
key technology towards 5g. ETSI White Paper 11(11), 1–16 (2015)

https://doi.org/10.1007/s43926-021-00007-6
http://arxiv.org/abs/2004.10934
https://doi.org/10.1109/ICT.2016.7500395
https://doi.org/10.1109/INFOCOM.2016.7524497

86 H. Lai et al.

10. Iqbal, A., Tham, M.L., Chang, Y.C.: Double deep q-network-based energy-efficient
resource allocation in cloud radio access network. IEEE Access 9, 20440–20449
(2021)

11. Lei, L., Xu, H., Xiong, X., Zheng, K., Xiang, W.: Joint computation offloading and
multiuser scheduling using approximate dynamic programming in NB-IoT edge
computing system. IEEE Internet Things J. 6(3), 5345–5362 (2019)

12. Li, A., Yang, X., Kandula, S., Zhang, M.: CloudCmp: comparing public cloud
providers. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet
Measurement, IMC 2010, pp. 1–14. Association for Computing Machinery, New
York (2010). https://doi.org/10.1145/1879141.1879143

13. Lin, L., Liao, X., Jin, H., Li, P.: Computation offloading toward edge comput-
ing. Proc. IEEE 107(8), 1584–1607 (2019). https://doi.org/10.1109/JPROC.2019.
2922285

14. Pan, J., McElhannon, J.: Future edge cloud and edge computing for internet of
things applications. IEEE Internet Things J. 5(1), 439–449 (2018). https://doi.
org/10.1109/JIOT.2017.2767608

15. Peng, S.: Stochastic Hamilton-Jacobi-Bellman equations. SIAM J. Control. Optim.
30(2), 284–304 (1992)

16. Satyanarayanan, M.: The emergence of edge computing. Computer 50(1), 30–39
(2017). https://doi.org/10.1109/MC.2017.9

17. Satyanarayanan, M., Chen, Z., Ha, K., Hu, W., Richter, W., Pillai, P.: Cloudlets:
at the leading edge of mobile-cloud convergence. In: 6th International Conference
on Mobile Computing, Applications and Services, pp. 1–9. IEEE (2014)

18. Yang, G., Hou, L., He, X., He, D., Chan, S., Guizani, M.: Offloading time opti-
mization via Markov decision process in mobile-edge computing. IEEE Internet
Things J. 8(4), 2483–2493 (2020)

19. Zhang, W., Wen, Y., Guan, K., Kilper, D., Luo, H., Wu, D.O.: Energy-optimal
mobile cloud computing under stochastic wireless channel. IEEE Trans. Wirel.
Commun. 12(9), 4569–4581 (2013). https://doi.org/10.1109/TWC.2013.072513.
121842

https://doi.org/10.1145/1879141.1879143
https://doi.org/10.1109/JPROC.2019.2922285
https://doi.org/10.1109/JPROC.2019.2922285
https://doi.org/10.1109/JIOT.2017.2767608
https://doi.org/10.1109/JIOT.2017.2767608
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/TWC.2013.072513.121842
https://doi.org/10.1109/TWC.2013.072513.121842

	A Distributed Computation Offloading Strategy for Edge Computing Based on Deep Reinforcement Learning
	1 Introduction
	2 MEC System Model and Problem Formulation
	2.1 MEC Network Model
	2.2 Computation Model
	2.3 Problem Formulation

	3 Offloading Time and Energy Optimization
	3.1 MDP Model Formulation
	3.2 Deep Q-Network

	4 Experiment
	4.1 Experiment Settings
	4.2 Experiment Results

	5 Conclusion
	References

