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Shoulder Kinematics 
and Biomechanics
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After the human race evolved to be bipedal, the 
scapulohumeral complex also adapted. The bone 
continuity required in the weight-bearing joints is 
compromised to perform more complex move-
ments with the upper limb and increase the range 
of motion. This adaptation in bony structures of 
shoulder complex increased the importance of 
soft tissue in joint stability [1, 2]. Thus, more 
unstable but the most flexible joint in our body 
has been formed. This is called “mobility-
stability trade-off” [3].

The shoulder complex consists of four joints: 
glenohumeral joint (GH), acromioclavicular joint 
(AC), sternoclavicular joint (SC) joint, and 
scapulothoracic (ST) joint.

The GH joint is the main component of the 
shoulder complex. It connects the humerus and 
the scapula and is the joint with the widest range 
of motion in the human body. The mismatch 
between the humeral head and the relatively 
smaller glenoid creates instability, which pro-

vides a wide range of motion [4]. The GH joint 
can perform 180° of vertical abduction and 40° of 
vertical adduction (a), 180° of flexion and 55° of 
extension in the sagittal plane (b), 130° of hori-
zontal abduction and 40° of horizontal adduction 
(c), 70° of internal rotation and 90° of external 
rotation movements around the long axis of the 
humerus (d). The glenohumeral joint also allows 
translation in all directions, which also increases 
the shoulder range of motion [5] (Fig. 4.1).

Although the shoulder complex constitutes 
most of the upper limb, they are connected to the 
axial skeleton by a single joint, the sternoclavicu-
lar (SC) joint [6]. Keeping the shoulder complex 
steady in the trunk is done mainly with muscle 
strength than this single joint. The sternoclavicu-
lar joint is a plane synovial joint that allows eleva-
tion/depression, protraction/retraction, and axial 
rotation movements. The position of the lateral 
end of the clavicle defines elevation/depression 
and protraction/retraction movements; the rota-
tion is around the long axis of the clavicle. 
Besides, the medial end of the clavicle can trans-
late in the anterior/posterior, superior/inferior, and 
medial/lateral directions on the sternum. Stability 
is provided by a synovial capsule, joint disc, and 
three major ligaments [6, 7]. Since the clavicle is 
connected laterally to the scapula with the acro-
mioclavicular (AC) joint, the SC joint is also 
involved in the movement of the scapula [8, 9].

The acromioclavicular joint is the synovial 
plane joint between the lateral end of the clavi-
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Fig. 4.1  Glenohumeral Joint movements
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Fig. 4.1  (continued)
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cle and the acromion. Similar to the SC joint, 
stability is ensured by capsule, ligaments, and 
joint disc [10]. The acromioclavicular joint 
helps scapula move in harmony with the thorax 
that changes shape during shoulder movements 
[11]. It also allows the forces applied to the 
upper limb to be transferred to the trunk through 
the clavicle and are more susceptible to inju-
ries. Joint movements are limited because the 
joint surfaces between the scapula and the clav-
icle are incongruent. The number of studies 
describing the movements of this joint is 
limited.

The scapulothoracic joint forms the connec-
tion between the scapula and thorax. Still, the ST 
joint is not a real joint where the bone segments 
are connected by fibrous, synovial, and cartilage 
tissue. Thus, the ST joint is often referred to as 
“functional joint” in the literature [12]. 
Accordingly, the shoulder is mainly kept stable 
on the thorax by muscle contractions. The scap-
ula is attached to the clavicle with an AC joint. 
Therefore, every movement of the scapula affects 
the AC joint and SC joint [12–14]. The scapula is 
located on the thorax between the second and 
seventh ribs. It is positioned in 35–45° internal 
rotation, 10–15° anteriorly tilted, and 10° upward 
rotation [8]. The glenohumeral joint forms two-
thirds of the total range of motion of the shoulder, 
and scapula movements create one third. The 
regular movement of the scapula includes three 
components: upward and downward rotation 
around a horizontal axis perpendicular to the 
plane of the scapula (a), abduction and adduction 
(b), elevation and depression(c). During these 
movements, protraction and retraction occur with 
the help of the clavicle and acromioclavicular 
joint [15, 16] (Fig. 4.2).

The subacromial space, which is part of the 
glenohumeral joint, can also be considered 
another “functional joint.” The movements of this 
joint are essential in shoulder functions [12].

The shoulder complex allows more compli-
cated movements than other parts of the body as 
different types of joints work together in har-
mony. This large range of motion is allowed by a 
balanced interaction between static and dynamic 
stabilizers.

4.1	 �Shoulder Stability

Stability is the state that remains unchanged in 
the presence of forces that would change the cur-
rent situation [17]. Shoulder stability can be ana-
lyzed in two parts: glenohumeral stability and 
scapulothoracic stability.

4.1.1	 �Glenohumeral Stability

Glenohumeral stability is that the humeral head 
remains in the glenoid and maintains its anatomic 
alignment during and after shoulder movements. 
Glenohumeral joint instability has been the most 
studied shoulder problem since the time of 
Hippocrates [18]. The stabilization of the joint is 
analyzed in two parts: static stabilization and 
dynamic stabilization [19].

4.1.1.1	 �Static Stabilization

�Bony Static Stabilizers
Although the continuity between the humeral 
head and glenoid is low, bony structures are 
essential in ensuring shoulder stability. During 
rest, the inferior surface of the humeral head 
touches only a small area in the inferior part of 
the glenoid. Only 30% of the humeral articular 
surface is in contact with the glenoid articular 
surface at any time [20, 21]. Abduction increases 
the glenohumeral contact, and the pressure in the 
joint decreases [22]. When the pressure increases 
at the glenohumeral contact point, the humeral 
chondral surface can penetrate the glenoid chon-
dral surface up to 1.2  mm. However, it is still 
controversial in which movements the pressure 
increases [23].

The humeral head forms the distal joint sur-
face. The humeral head faces medially, superi-
orly, and posteriorly with regard to the humeral 
shaft and the condyles. The humeral head is ret-
roverted on average 19° (range 9–31°) and 
inclined on average 41° (range 34–47°); head 
radius measures 23 mm (range 17–28 mm), and 
medial and posterior head center offsets are on 
average 7 mm (range 4–12 mm) and 2 mm (range 
1–8 mm), respectively [24, 25].
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Fig. 4.2  Scapular movements
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Since the scapula is in internal rotation in the 
resting position, humeral retroversion increases 
the congruence of the glenohumeral joint by 
directing the humeral head toward the glenoid. 
Increased retroversion also increases the amount 
of external rotation of the humerus while decreas-
ing its internal rotation. This mechanism explains 
the increased humeral retroversion of the domi-
nant shoulders of the overhead athletes that have 
forced external rotation of the humerus during 
pitching [26, 27].

The shape of the glenoid fossa, which forms 
the proximal part of the joint, is also crucial in 
glenohumeral stability. The glenoid is a shallow 
socket that holds the humeral head; its mean 
depth is 2.5 mm on the anteroposterior direction 
and 9  mm in the superior-inferior direction. 
Therefore, different amounts of displacing forces 
must be applied to dislocate the shoulder in dif-
ferent directions [28, 29]. It is retroverted on 
average, 1.23° (range 9.5° of anteversion to 10.5° 
of retroversion), and inclined superiorly, on aver-
age 4.2° (range, 7° of inferior inclination to 15.8° 
of superior inclination) [30]. More than 10° of 
anteversion and more than 15° of retroversion is 

related to increased anterior and posterior insta-
bility, respectively [31–33]. Friedman and 
Kessler reported that its bending radius is greater 
than the humeral head radius in 93% of examined 
joints; the remainders have the glenoid and 
humeral head with the same bending radius [34].

Moroder et al. and Peltz et al. showed that the 
loss in glenoid concavity is related to glenohu-
meral instability. And patients with traumatic or 
atraumatic shoulder instability have a flatter gle-
noid cavity with a higher radius of curvature than 
healthy controls [35–37]. Weishaupt et al. men-
tioned that the dysplastic glenoid could also 
cause shoulder instability due to bone defects in 
the posterior glenoid rim. They defined three dif-
ferent glenoid forms according to bone defects in 
the posterior glenoid rim: pointed form (without 
any deficiency), rounded glenoid deficiency 
(“lazy J” form), and the triangular bony defi-
ciency (“delta” form) [38, 39].

Bone loss is also an important factor in shoul-
der instability. It usually occurs traumatically. In 
most cases, forced abduction and external rotation 
force cause the humeral head to dislocate ante-
rior-inferiorly [31]. Most important bony lesions 
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that result in instability occur after traumatic 
events and involve the anterior-inferior glenoid 
rim (Bony Bankart lesion) and the posterolateral 
aspect of the humeral head (Hill-Sachs lesion).

Bony Bankart lesions are significant if they 
involve more than 20% of the length of the gle-
noid. In this case, if the correct soft tissue repair is 
not performed, there is a high probability of recur-
rence. If Bony Bankart involves more than 50% of 
the glenoid, there will be more than a 30% reduc-
tion in shoulder stability [40]. Bony Bankart 
lesions are classified according to Bigliani et al.: 
type I, a displaced avulsion fracture with attached 
capsule; type II, a medially displaced fragment 
mal-united to the glenoid rim; type III, an erosion 
of the glenoid rim lower than 25% (III A) and 
more than 25% (III B) [41]. The PICO method 
suggested by Baudi et al. could be used to calcu-
late glenoid bone defect [42].

Hill-Sachs lesion occurs after anterior shoul-
der dislocation due to a compression fracture 
involving the posterior-lateral part of the humeral 
head. The effect of the lesion on shoulder stabil-
ity depends on the size and location. There are 
different classification methods. Calandra classi-
fication, which uses arthroscopy to measure the 
depth of the lesion, is the most frequently used 
method [43]. Apart from this, classification can 
be made according to radiography or magnetic 
resonance imaging [44, 45].

It is necessary to evaluate bone defects that 
cause instability in glenoid and humerus together 
and not to ignore injuries in soft tissue other than 
bone defects [46]. Glenoid track concept and its 
association with the concept of “engaging” and 
“non-engaging” lesions showed that the relation-
ship between the humerus and glenoid lesions 
determines stability [47, 48].

Posterior shoulder dislocations are much rarer. 
It usually occurs after direct trauma or seizure. It 
usually occurs after direct trauma or seizure. In this 
case, a compression fracture occurs in the anterior 
superior of the humeral head (Reverse Hill-Sachs 
Lesion or McLaughlin lesion), and another fracture 
may occur in the posteroinferior rim of the glenoid 
(Reverse Bankart Lesion) [49–51].

�Soft Tissue Static Stabilizers
Soft tissue static stabilizers include glenoid 
labrum, glenohumeral capsule, glenohumeral 

ligaments, rotator interval, negative intracapsular 
pressure, and adhesion cohesion mechanism.

�Glenoid Labrum
The glenoid labrum is a triangular section ring 
around the glenoid rim, deepening the relatively 
flat glenoid cavity. The upper part is more mobile 
than the lower part, which is more tightly attached 
to the glenoid rim [52]. The superior part joins 
the structure of the biceps anchor, and the long 
head of the biceps tendon.

The glenoid labrum increases the depth of the 
glenoid cavity by 50% and increases its congruity 
with the humeral head and contributes to the neg-
ative pressure required for shoulder stability [28]. 
It increases the contact surface between the 
humerus and the glenoid by 2 mm anteroposteri-
orly and 4.5 mm supero-inferiorly [53].

The negative pressure in the glenohumeral 
joint is 32  mmHg. This pressure is particularly 
effective against traction force, while it is less 
effective against shear forces [54]. The contribu-
tion of negative pressure to joint stability is 
higher in the hanging arm position, while it 
decreases with shoulder abduction [55]. Loss of 
intracapsular negative pressure can manifest 
itself as an anterior translation of the humeral 
head. The labrum creates an attachment site 
around the glenoid rim for the glenohumeral liga-
ments and joint capsule. It also acts as an anti-
shear bumper during mid-range movements [21].

When defining lesions in the labrum, it is nec-
essary to analyze anatomical variants such as 
sublabral foramen, meniscoid labrums, and cord-
like middle glenohumeral ligament do not require 
surgery [56].

The most common glenoid labrum injury is 
Bankart lesion. It accompanies 90% of traumatic 
anterior shoulder instability [57]. It is defined as 
a detachment of the anteroinferior aspect of the 
labrum and capsule. It occurs due to the detach-
ment of the middle glenohumeral ligament and 
inferior glenohumeral ligament from the glenoid. 
Despite its frequency, it cannot be considered as 
an isolated cause of instability [58].

Green and Christensen classified Bankart 
lesions in five arthroscopic types: type 1 refers to 
the entire labrum; type 2 is a simple detachment 
of labrum with no other significant lesions; type 
3 is an intra-parenchymal labrum tear; type 4 and 
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5 are complex tears with significant or complete 
degeneration of inferior glenohumeral ligament, 
respectively [59]. This classification also has a 
prognostic value: type 4 and 5 lesions have a high 
chance of recurrent instability after arthroscopic 
Bankart procedure of 87%.

Another lesion involving the anteroinferior 
aspect of the labrum is the ALPSA lesion (ante-
rior labroligamentous periosteal sleeve avulsion). 
The anterior labroligamentous complex rolls up 
in a sleeve-like fashion and becomes displaced 
medially and inferiorly on the glenoid neck [60].

The redislocation rate in ALPSA lesions and 
the probability of engaging the Hill-Sachs lesion 
are higher than those of Bankart lesions. 
Besides, the external rotation limitation devel-
oped after ALPSA lesion repair is another cru-
cial problem [61].

Specular lesions can be described for the pos-
terior aspect of the labrum. Reverse Bankart 
lesion involves the posterior labrum and the pos-
terior band of the inferior glenohumeral liga-
ment. POLPSA is the posterior labroligamentous 
sleeve avulsion. In chronic conditions, Bennett 
lesions may occur (an extra-articular calcification 
along the posteroinferior glenoid neck close to 
the posterior band of the glenohumeral ligament) 
[62, 63].

Reverse Bankart lesion is frequent in athletes, 
such as rugby players, with a 20% incidence 
reported in a study of 142 elite rugby player shoul-
der arthroscopy [64]. The injury mechanism could 
be traced to a direct blow to the anterior and lateral 
aspects of the shoulder, while the arm is adducted; 
a rare mechanism of injury is a posterior blow to 
the arm while holding a tackle shield [65].

Concerning superior labrum, a prevalent 
lesion in throwing overhead athletes is SLAP 
(superior labrum anterior and posterior) tear. This 
lesion is described for the first time by Snyder 
et al. [66]. Snyder classified SLAP tears into four 
types. Type 2 and type 4 are more likely to create 
instability as they involve both the labrum and 
the long head of the biceps.
Moreover, SLAP lesions are common in contact 
sports. Funk and Snow have reported a 35% inci-
dence of SLAP tears, arthroscopically diagnosed, 
in 51 rugby players’ shoulders [67].

�Capsuloligamentous Structures
Capsuloligamentous structures include joint cap-
sule and glenohumeral ligaments (superior, mid-
dle, and inferior). There are many cadaveric and 
clinical studies investigating the biomechanical 
properties of these structures.

The constitutional trait of laxity facilitates 
extensive motion in multiple planes and may be 
essential to athletic performance. On the other 
hand, capsular stretching is noted along with a 
Bankart lesion is up to 28% of patients with 
recurrent anterior instability [68].

Superior and middle glenohumeral ligaments, 
together with coracohumeral ligament, long head 
of the biceps, and a thin layer of capsule, help to 
form rotator interval, and they will be treated in 
detail later.

The inferior glenohumeral ligament is also 
called the inferior glenohumeral ligament com-
plex (IGHLC). It comprises three parts: two 
thicker bands on anterior and posterior and a 
thinner recess. During the abduction and external 
rotation, extension IGHLC moves anteriorly, 
forming a restraint to anterior translation of the 
humeral head.

During adduction, flexion, and internal rota-
tion, IGHLC moves posteriorly, forming a 
restraint to posterior translation. IGHLC suffers 
from initial plastic deformation during the initial 
dislocation, but the damage becomes more criti-
cal after several episodes [69]. The lesion could 
more frequently occur at the glenoid insertion 
(anteroinferior glenoid rim) and in the middle 
part or at the humeral insertion [70].
Capsular stretching is often noted along with a 
Bankart lesion in up to 28% of patients with 
recurrent anterior instability [68]. The posterior 
capsule can also be injured; repetitive sublux-
ations may lead to posterior instability by caus-
ing posterior capsular redundancy and increased 
joint volume.

�The Rotator Interval
The rotator interval is a triangular space in the 
anterosuperior of the shoulder. It was first 
described by Neer in 1970 [71]. It creates resis-
tance against extreme flexion, extension, adduc-
tion, and external rotation movements, limits 
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inferior translation of the humeral head during 
adduction, and limits posterior translation of the 
humeral head during flexion or external rotation 
with abduction [72].
Furthermore, the synovial fluid provides to gen-
erate adhesion cohesion mechanism. The force 
formed between the wet surfaces of the humeral 
head and the glenoid contributes to stability [4].

4.1.1.2	 �Dynamic Stabilization
Dynamic stabilization provides a wide range of 
motion while securing stability during the normal 
function of the joint. There is a delicate balance 
between stability in the shoulder and range of 
motion. The muscles surrounding the shoulder 
and the neuromuscular balance between them 
ensure the dynamic stability of the joint. The 
muscles surrounding the shoulder and the neuro-
muscular balance between them provide the 
dynamic stability of the joint.

�Proprioception
We know that capsuloligamentous structures also 
contribute to shoulder stability with their senso-
rimotor properties in addition to their mechanical 
functions. There are mechanoreceptors, espe-
cially in the anterior-inferior of the glenohumeral 
joint capsule. Proprioceptive information obtained 
from these structures contributes to shoulder sta-
bility by coordinating motor movements, reflexes, 
and joint stiffness.

As a result of the injuries in these structures, 
the decrease in proprioceptive information causes 
shoulder instability [73, 74]. Besides direct 
injury, capsular laxity has also been shown to 
cause a decrease in proprioception, leading to 
instability [75, 76].

Repairing of the capsuloligamentous struc-
tures restores the mechanical functions and ten-
sion of these tissues [77]. Retention allows joint 
capsule and ligamentous structures to sense 
mechanical stimulation and to facilitate proprio-
ceptive feedback [74, 78].

�Rotator Cuff Muscles
The rotator cuff is the common name of the struc-
ture consisting of muscles and tendons that con-
tributes to shoulder stability. The rotator cuff 

consists of four muscles. These are supraspinatus 
(SSP), infraspinatus (ISP), teres minor (TM), and 
subscapularis (SSC).

Rotator cuff muscles provide fine control of 
shoulder movement. They play an essential role 
in dynamic stability, as well as contribute to pro-
prioception [21].

Rotator cuff muscles compress the humeral 
head toward the glenoid and make an essential 
contribution to dynamic stabilization during 
shoulder movements. While symmetric rotator 
cuff contraction provides concavity compres-
sion, asymmetric contractions during shoulder 
movements rotate the humeral head. Joint reac-
tion force decreases in rotator cuff tears [29, 
79]. This stabilizing effect depends on the force 
couple formed by coordinated activation of the 
anterior and posterior fibers of the rotator cuff 
[80]. They act as an anti-shear force with the 
help of their mechanoreceptors. During the 
abduction, the rotator cuff tendon acts as a 
depressor for the humeral head and balances the 
pull of the deltoid muscle superiorly. Since this 
balance is disrupted after rotator cuff tears, the 
humeral head may be migrated superiorly [81]. 
A 50% reduction in rotator cuff force increases 
anterior dislocation by 46% and posterior dislo-
cation by 31% [82].

The SSC is larger than the other three rotator 
cuff muscles and alone creates as much force as the 
sum of SSP, ISP, and TM [83]. The attachments of 
the muscles can be as tendons or muscle bodies 
[84, 85]. Therefore, the symptoms vary depending 
on the location and size of the rupture [86].

�Long Head of the Biceps
The long head of the biceps (LHB) is a second-
ary stabilizer with a predominant role in the 
rotator cuff or capsuloligamentous deficiency. 
This tendon, originating from the supraglenoid 
tubercle and passing through the bicipital 
groove, acts as an anterior stabilizer during 
external rotation. During the late throwing 
phase, LHB reduces anterior translation, help-
ing to prevent excessive torsion of the glenohu-
meral joint with a flexing elbow. These concepts 
can explain why type II or IV SLAP lesions are 
widespread in throwing athletes. Also, patients 
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with rotator cuff insufficiency have hypertro-
phy in the tendon due to increased tension [87].

4.1.2	 �Scapulothoracic Joint 
Stability

The contribution of the scapula to upper extremity 
movements is better understood, especially in the 
last two decades [88]. The scapula provides a base 
to support the glenohumeral joint for regular upper 
limb movements [89, 90]. Since the scapulotho-
racic joint is not a real joint, its stability is provided 
only by dynamic stabilizers. The agonist, antago-
nist, and synergist contraction of the muscles 
adhering to both the thorax and the scapula ensures 
scapulothoracic joint stability. Scapular muscles 
dynamically coordinate the position of the glenoid, 
helping to create an effective glenohumeral joint 
movement. This harmonious relationship between 
the scapula and the humerus is called “scapulo-
humeral rhythm” [90, 91].

Upper and lower trapezius muscles, the serra-
tus anterior and rhomboids (major and minor) are 
the structures that contribute most to scapulotho-
racic stability [15, 92].

Trapezius, together with the serratus anterior, 
initiates the upward rotation and posterior tilt 
movement of the scapula. Lower fibers of the tra-
pezius contribute to the stability of the scapulo-
thoracic joint during the descending of the arm 
from maximum elevation [15].

The serratus anterior muscle pulls the scapula 
toward the thoracic wall and makes a protraction 
movement. It provides stability, especially during 
abduction and pushing or punching type activi-
ties [91].

The rhomboids (major and minor) are espe-
cially active during adduction and retraction. 
They control the medial border of the scapula. It 
is quite active during swimming strokes and pull-
ing [88]. It also takes part in the overhead throw-
ing, both by reducing the stress on the anterior 
structures by fully retracting the scapula and 
braking by contracting eccentrically during the 
follow-through phase of pitching [93, 94].
Most abnormal biomechanics and overuse inju-
ries in the shoulder girdle can be attributed to 

scapulothoracic joint instability [95, 96]. 
Alterations in joint movements due to weakness 
in scapular stabilizing muscles are called scapu-
lar dyskinesis [15, 97].

4.2	 �The Thrower’s Shoulder

Throwing consists of six stages: the windup, 
early cocking, late cocking, acceleration, decel-
eration, and follow-through. During throwing, 
large muscle groups work together [98]. The 
transition between late cocking and acceleration 
is critical, and most of the injuries occur in this 
segment. During the late cocking, the shoulder is 
in abduction, and external rotation, the anterior 
capsule, and the coracohumeral ligament are 
under tension. Repetitive stress may cause stains 
or tensile failure in these structures, causing ante-
rior shoulder instability [99, 100]. When the 
shoulder is in the 90°–90° position, the postero-
superior rotator cuff can be trapped between the 
greater tuberosity and the glenoid labrum, caus-
ing internal impingement. Shear forces also act 
on the posterosuperior labrum and biceps anchor 
in this position [101, 102]. In late cocking, struc-
tures in the posterior contract, when leading from 
late cocking to acceleration, the opposite hap-
pens. The anterior structures contract rapidly, 
allowing energy to be transferred to the ball. In 
acceleration, mainly the pectoralis major, latissi-
mus dorsi, triceps, and serratus anterior muscles 
contract. The rotator cuff contracts during decel-
eration. During follow-through, the posterior 
capsule and the posterior rotator cuff are under 
eccentric stress. In repetitive stress, posterior 
rotator cuff failure, thickening in the capsule, and 
decrease in compliance may occur [103, 104].
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