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Abstract. The realization that selfish interests need to be accounted for
in the design of algorithms has produced many interesting and valuable
contributions in computer science under the general umbrella of algo-
rithmic mechanism design. Novel algorithmic properties and paradigms
have been identified and studied in the literature. Our work stems from
the observation that selfishness is different from rationality; agents will
attempt to strategize whenever they perceive it to be convenient accord-
ing to their imperfect rationality. Recent work in economics [18] has
focused on a particular notion of imperfect rationality, namely absence of
contingent reasoning skills, and defined obvious strategyproofness (OSP)
as a way to deal with the selfishness of these agents. Essentially, this def-
inition states that to care for the incentives of these agents, we need not
only pay attention about the relationship between input and output, but
also about the way the algorithm is run. However, it is not clear to date
what algorithmic approaches ought to be used for OSP. In this paper,
we rather surprisingly show that, for binary allocation problems, OSP is
fully captured by a natural combination of two well-known and exten-
sively studied algorithmic techniques: forward and reverse greedy. We
call two-way greedy this underdeveloped algorithmic design paradigm.

Our main technical contribution establishes the connection between
OSP and two-way greedy. We build upon the recently introduced cycle
monotonicity technique for OSP [9]. By means of novel structural prop-
erties of cycles and queries of OSP mechanisms, we fully characterize
these mechanisms in terms of extremal implementations. These are pro-
tocols that ask each agent to consistently separate one extreme of their
domain at the current history from the rest. Through the natural con-
nection with the greedy paradigm, we are able to import a host of known
approximation bounds to OSP and strengthen the strategic properties
of this family of algorithms. Finally, we begin exploring the full power of
two-way greedy (and, in turns, OSP) in the context of set systems.
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1 Introduction

An established line of work in computer science recognizes the important role
played by self interests. If ignored, these self interests can misguide the algorithm
or protocol at hand and lead to suboptimal outcomes. Mechanism design has
emerged as the framework of reference to deal with this selfishness. Mechanisms
are protocols that interact with the selfish agents involved in the computation;
the information elicited through this interaction is used to choose a certain out-
come (via an algorithm). The goal of a mechanism is that of reconciling the
potentially contradictory aims of agents with that of the designer (i.e., optimize
a certain objective function). The agents attach a utility (typically defined as
quasi-linear function of the transfers defined by the mechanism and the agent’s
type – i.e., cost or valuation – for the solution) to each outcome and are there-
fore incentivized to force the output of an outcome that maximizes their utility
(rather than maximizing the objective function). The quality of a mechanism is
assessed against how well it can approximate the objective function whilst giving
the right incentives to the agents.

In this context, one seeks to design strategyproof (SP) mechanisms—these
guarantee that agents will not strategize as it will be in their best interest to
adhere to the rules set by the mechanism—and aims to understand what is
the best possible approximation that can be computed for the setting of inter-
est. For example, it is known how for utilitarian problems (roughly speaking,
those whose objective function is the sum of all the agents’ types) it is pos-
sible to simultaneously achieve optimality and strategyproofness, whilst some
non-utilitarian objective (such as, min-max) cannot be approximated too well
(irrespectively of computational considerations), see, e.g., [21]. These results can
be proved purely from an algorithmic perspective – that ignores incentives and
selfishness – in that it is known how strategyproofness is equivalent to a certain
monotonicity property of the algorithm used by the mechanism to compute the
outcome. This monotonicity relates the outcomes of two instances, connected by
SP constraints, and limits what the algorithm can do on them. For example, if
an agent is part of the solution computed on instance I and becomes “better”
(e.g., faster) in instance I ′ then the algorithm must select the agent also in the
solution returned for instance I ′, all other things unchanged.

Recent research in mechanism design has highlighted how cognitive limita-
tions of the agents might mean that SP is too weak a desideratum for mecha-
nisms. Even for the simplest setting of one-item auction, there is experimental
evidence that people strategize against the sealed-bid implementation of second-
price auction, whilst ascending-price auction seems easier to grasp [1,14]. The
concept of obvious strategyproofness (OSP) has been defined in [18] to capture
this particular form of imperfect rationality, which is shown to be equivalent to
the absence of contingent reasoning skills. Intuitively, for an agent it is obvious
to understand if a strategy is better than another in that the worst possible
outcome for the former is better than the best one for the latter.
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Can we, similarly to SP, derive bounds on the quality of OSP mechanisms
that are oblivious to strategic considerations?

There are two obstacles to getting a fully algorithmic approach to OSP mech-
anisms due to their structure. Whereas SP mechanisms are pairs comprised of
an algorithm and transfer (a.k.a., payment) function, in OSP we have a third
component (the so-called implementation tree) which encapsulates the execution
details (e.g., sealed bid vs ascending price) of the mechanisms and the obvious-
ness of the strategic constraints. (For OSP, in fact, the implementation details
matter and the classical Revelation Principle does not hold [18].) A technique,
known as cycle monotonicity (CMON), allows to express the existence of SP
payments for an algorithm in terms of the weight of the cycles in a suitably
defined graph. Specifically, it is known that it is sufficient to look at cycles of
length two for practically all optimization problems of interest [22]—this yields
the aforementioned property of monotone algorithms. Recent work [8,9] extends
CMON to OSP and allows to focus only on algorithms and implementation
trees. Whilst this has allowed some progress towards settling our main question
in the context of single-parameter agents, some unsatisfactory limitations are
still present. Firstly, handling two interconnected objects, namely algorithm and
implementation tree, simultaneously is hard to work with: e.g., novel ad-hoc
techniques (dubbed CMON two-ways in [9]) had to be developed to prove lower
bounds. Secondly, the CMON extension to OSP is shown to require the study
of cycles of any length, thus implying that the “monotonicity” of the combina-
tion algorithm/implementation tree needs to hold amongst an arbitrary number
of instances, as opposed to two as in the case of SP. Thirdly, the mechanisms
constructed in [8,9] only work for three-value domains since they rely on the
simpler two-instance monotonicity (referred to as monotonicity henceforth).

Our Contributions. The technical challenge left open by previous work was
to relate monotonicity to many-instance monotonicity. In this paper, we solve
this challenge by providing a characterization of OSP mechanisms for binary
allocation problems (for which the outcome for each agent is either to be selected
or not). This enables us to show that the shape of the implementation tree is
essentially fixed and answer the question above in the positive. It turns out that
the exact algorithmic structure of OSP mechanisms is intimately linked with a
(slight generalization of a) well known textbook paradigm:

OSP can be achieved if and only if the algorithm is two-way greedy.

What does it mean for an algorithm to be two-way greedy? The literature in
computer science and approximation algorithms has extensively explored what
we call forward greedy. These are algorithms that use a (possibly adaptive) (in-
)priority function and incrementally build up a solution by adding therein the
agent with the highest priority, if this preserves feasibility. It is known that if
the priority rule is monotone in each agent’s type then this leads to a SP direct-
revelation mechanism (see, e.g., [17]). What we show here is that the strat-
egyproofness guarantee is actually much stronger and can deal with imperfect
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rationality. This is achieved with a simple implementation of forward greedy that
sweeps through each agent’s domain from the best possible type to the worst.
Another relevant approach known in the literature is Deferred Acceptance auc-
tions (DAAs) or reverse greedy algorithms [7,12]. These use a (possibly adaptive)
(out-)priority function and build a feasible solution by incrementally throwing
out the agents whose type is not good enough with respect the current prior-
ity (i.e., whose cost (valuation) is higher (lower) than the out-priority) until a
feasible solution is found. It is already known that DAAs are OSP [20] but not
the extent to which focusing on them would be detrimental to finding out the
real limitations of OSP mechanisms. Two-way greedy algorithms combine in-
and out-priorities; each agent faces either a greedy in- or out-priority; in the
former case, they are included in the solution if feasibility is preserved while in
the latter they are excluded from it if the current solution is not yet feasible.
The direction faced can depend on which agents have been included in or thrown
out from the eventual solution at that point of the execution; in this sense, these
are particular adaptive priority algorithms. For a formal definition, please see
Sect. 4 and Algorithm 3.

Two-way greedy algorithms stem from our characterization of OSP mecha-
nisms in terms of “extremal implementation trees”; roughly speaking, in these
mechanisms we always query each agents about (the same) extreme of their
domain at the current history. To prove this characterization, we first give a
couple of structural properties of OSP mechanisms. We specifically show (i)
when a query can be made to guarantee OSP; and, (ii) how a mechanism that is
monotone but not many-instance monotone looks like. We use the former prop-
erty to show that, given an OSP mechanism, we can modify the structure of
its implementation tree to make it extreme whilst guaranteeing that the many-
instance monotonicity is preserved (i.e., the structure (ii) is not possible). We
also show that extremal mechanisms are monotone and that structure (ii) can
never arise, thus proving the sufficient condition of our characterization. One
caveat about these extremal mechanisms and two-way greedy is necessary. This
has to do with a technical exception to the rule of never interleaving top queries
(asking for the maximum of the current domain) with bottom queries (asking
for the minimum) to an agent. An OSP mechanism can in fact interleave those
when, at the current history, an agent becomes revealable, that is, the threshold
separating winning bids from losing ones, becomes known. In other words, this
is a point in which the outcome for this agent (but not necessarily the entire
solution) is determined for all but one of her types. OSP mechanisms can at
this point use any query ordering to find out what the type of the agent is; this
does not affect the incentives of the agents. Accordingly, in a two-way greedy
algorithm an agent can face changes of priority direction (e.g., from in- to out-
priority) in these circumstances.

To the best of our knowledge this is one of the first known cases of a relation-
ship between strategic properties and an algorithmic paradigm, as opposed to a
property about the solution output by the algorithm. Two possible interpreta-
tions of this connection can be given. On a conceptual level, the fact that the
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Revelation Principle does not hold true for OSP means that we care about the
implementation details and thus the right algorithmic nature has to be paradig-
matic rather than being only about the final output. On a technical level, given
that monotonicity (i.e., two-cycles) is not sufficient for OSP, the need to study
many-instance monotonicity (i.e., any cycle) requires to go beyond an output
property and look for the way in which the algorithm computes any solution.

Our OSP characterization is related to the Personal Clock Auctions (PCAs)
in [18]. Roughly speaking, Li proves that for binary allocation problems, each
agent faces either an ascending-price auction (where there is an increasing trans-
fer going rate to be included in the solution) or a descending-price auction (where
there is a decreasing transfer going rate to be excluded from the solution). There
are conceptual and technical differences between our characterization and Li’s.
His focus is on characterizing the auction format (i.e., social choice function,
payments and implementation tree) whereas ours concentrates on algorithms.
Studying the approximation guarantee of PCAs requires to disentangle these
three components. We defer to the full version of this paper a concrete example
taken from the corrigendum of [18] that shows how the technical definition of
PCA (contrarily to its intuitive and informal description) does not allow for a
simple algorithmic characterization in terms of greedy. It turns out that PCAs
require to reason about strategies over the extensive-form implementation as
opposed to type profiles – this makes them unsuitable and underspecified from
the algorithmic point of view. From the technical perspective, Li requires con-
tinuous domains whereas we assume that these are finite, mainly because of
the inherent limitations of the OSP CMON technique [9]. For one, our setup
is arguably more interesting for OSP, as it is notoriously harder to understand
how to execute extensive-form games in the continuous case. Secondly, our proof
technique cannot rely on the existence of a unique threshold (there are two
threshold values in discrete domains, i.e., extreme winning and losing reports do
not “meet” in the limit) unlike [18]. Importantly, our results allow for a more
workable notion of OSP mechanisms for binary allocation problems; our app-
roach and terminology are closer to computer science and algorithms and give a
specific recipe to reason about design and analysis of these mechanisms.

We give a host of bounds on the approximation guarantee of OSP mecha-
nisms by relying on our characterization and the known approximation guaran-
tees of forward greedy algorithms, cf. Table 1 below. The strategic equivalence
of forward and reverse greedy is one of the most far reaching consequences of
our results, given (i) the rich literature on the approximation of forward greedy,
and (ii) the misconception about the apparent weaknesses of accepting, rather
than rejecting, auctions [20] (see Sect. 4). We expect our work to spawn fur-
ther research about OSP, having fully extracted the algorithmic nature of these
mechanisms. The power and limitations of OSP can now be fully explored, in
the context of binary allocation problems. We present some initial bounds on the
quality of these algorithms/mechanisms (see Sect. 4). Notably, we close the gap
for the approximation guarantee of OSP mechanisms for the knapsack auctions
studied in [7]. We show that the logarithmic upper bound provided therein is
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basically tight, not just for reverse greedy (as shown in [7]) but for the whole
class.

Since our main objective is that of establishing the power of OSP mechanisms,
in terms of algorithmic tools and their approximation, we do not primarily focus
on their computational complexity. Consequently, our lower bounds are uncon-
ditional. We discuss this aspect and more opportunities for further research in
the conclusions (see Sect. 5). The proofs missing due to lack of space are deferred
to the full version of this paper.

2 Preliminaries and Notation

We define a set N of n selfish agents and a set of feasible outcomes S. Each
agent i has a type ti ∈ Di, where Di is the domain of i. The type ti is assumed
to be private knowledge of agent i. We let ti(X) ∈ R denote the cost of agent i
with type ti for the outcome X ∈ S. When costs are negative, it means that the
agent has a profit from the solution, called valuation.

A mechanism has to select an outcome X ∈ S. For this reason, the mechanism
interacts with agents. Specifically, agent i takes actions (e.g., saying yes/no)
that may depend on her presumed type bi ∈ Di (e.g., saying yes could “signal”
that the presumed type has some properties that bi enjoys). To stress this we
say that agent i takes actions compatible with (or according to) bi Note that
the presumed type bi can be different from the real type ti. For a mechanism
M , we let M(b) denote the outcome returned by M when agents take actions
according to their presumed types b = (b1, . . . , bn) (i.e., each agent i takes
actions compatible with the corresponding bi). This outcome is given by a pair
(f, p), where f = f(b) = (f1(b), . . . , fn(b)) (termed social choice function or,
simply, algorithm) maps the actions taken by the agents according to b to a
feasible solution in S, and p = p(b) = (p1(b), . . . , pn(b)) ∈ R

n maps the actions
taken by the agents according to b to payments. Note that payments need not
be positive.

Each selfish agent i is equipped with a quasi-linear utility function ui : Di ×
S → R: for ti ∈ Di and for an outcome X ∈ S returned by a mechanism M ,
ui(ti,X) is the utility that agent i has for the implementation of outcome X
when her type is ti, i.e., ui(ti,M(bi,b−i)) = pi(bi,b−i) − ti(f(bi,b−i)). In this
work we will focus on single-parameter settings, that is, the case in which the
private information of each bidder i is a single real number ti and ti(X) can
be expressed as tiwi(X) for some publicly known function wi. To simplify the
notation, we will write tifi(b) when we want to express the cost of a single-
parameter agent i of type ti for the output of social choice function f on input
the actions corresponding to a bid vector b. In particular, we will consider binary
allocation problems, where fi(b) ∈ {0, 1}, i.e., each agent either belongs to the
returned solution (fi(b) = 1) or not (fi(b) = 0). A class of binary allocation
problems of interest are set systems (E,F), where E is a set of elements and
F ⊆ 2E is a family of feasible subsets of E. Each element i ∈ E is controlled by
a selfish agent, that is, the cost for including i is known only to agent i and is



Two-Way Greedy: Algorithms for Imperfect Rationality 9

equal to some value ti. The social choice function f must choose a feasible subset
of elements X in F that minimizes

∑n
i=1 bi(X). When the ti’s are non-negative

(non-positive, respectively) then this objective is called social cost minimization
(social welfare maximization, respectively).

Extensive-Form Mechanisms and Obvious Strategyproofness. We now
introduce the concept of implementation tree and we formally define (determin-
istic) obviously strategy-proof mechanisms. Our definition is built on [19] rather
than the original definition in [18]. Specifically, our notion of implementation
tree is equivalent to the concept of round-table mechanisms in [19], and our
definition of OSP is equivalent to the concept of SP-implementation through a
round table mechanism, that is proved to be equivalent to the original definition.

Let us first formally model how a mechanism works. An extensive-form mech-
anism M is a triple (f, p, T ) where, as above, the pair (f, p) determines the
outcome of the mechanism, and T is a tree, called implementation tree, s.t.:

– Every leaf � of the tree is labeled with a possible outcome of the mechanism
(X(�), p(�)), where X(�) ∈ S and p(�) ∈ R;

– Each node u in the implementation tree T defines the following:
• An agent i = i(u) to whom the mechanism makes some query. Each

possible answer to this query leads to a different child of u.
• A subdomain D(u) = (D(u)

i ,D
(u)
−i ) containing all types that are compatible

with u, i.e., with all the answers to the queries from the root down to
node u. Specifically, the query at node u defines a partition of the current
domain of i, D

(u)
i into k ≥ 2 subdomains, one for each of the k children

of node u. Thus, the domain of each of these children will have as the
domain of i, the subdomain of D

(u)
i corresponding to a different answer

of i at u, and an unchanged domain for the other agents.

Observe that, according to the definition above, for every profile b there is
only one leaf � = �(b) such that b belongs to D(�). Similarly, to each leaf �
there is at least a profile b that belongs to D(�). For this reason, we say that
M(b) = (X(�), p(�)). Two profiles b, b′ are said to diverge at a node u of T
if this node has two children v, v′ such that b ∈ D(v), whereas b′ ∈ D(v′). For
every such node u, we say that i(u) is the divergent agent at u.

Definition 1 (OSP mechanisms). An extensive-form mechanism M is obvi-
ously strategy-proof (OSP) if for every agent i with real type ti, for every vertex
u such that i = i(u), for every b−i,b′

−i (with b′
−i not necessarily different from

b−i), and for every bi ∈ Di, with bi �= ti, s.t. (ti,b−i) and (bi,b′
−i) are compat-

ible with u, but diverge at u, it holds that ui(ti,M(ti,b−i)) ≥ ui(ti,M(bi,b′
−i)).

Roughly speaking, OSP requires that, at each time step agent i is asked to
take a decision that depends on her type, the worst utility that she can get
if she behaves according to her true type is at least the best utility she can
get by behaving differently. We stress that our definition does not restrict the
alternative behavior to be consistent with a fixed type. Each leaf of the tree
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rooted in u, denoted Tu, corresponds to a profile b = (bi,b′
−i) compatible with

u: then, our definition implies that the utility of i in the leaves where she plays
truthfully is at least as much as the utility in every other leaf of Tu.

Cycle-Monotonicity Characterizes OSP Mechanisms. We next describe
the main tools in [9] showing that OSP can be characterized by the absence
of negative-weight cycles in a suitable weighted graph over the possible strategy
profiles. For ease of exposition, we will focus on non-negative costs but the results
hold no matter the sign. We consider a mechanism M with implementation tree
T for a social choice function f , and define the following concepts:

– Separating Node: A node u in the implementation tree T is (a,b)-
separating for agent i = i(u) if a and b are compatible with u (that is,
a,b ∈ D(u)), and the two types ai and bi belong to two different subdomains
of the children of u (thus implying ai �= bi).

– OSP-graph: For every agent i, we define a directed weighted graph OT
i

having a node for each profile in D = ×iDi. The graph contains edge (a,b) if
and only if T has some node u which is (a,b)-separating for i = i(u), and the
weight of this edge is w(a,b) = ai(fi(b) − fi(a)). Throughout the paper, we
will denote with a → b an edge (a,b) ∈ OT

i , and with a � b a path among
these two profiles in OT

i .
– OSP Cycle Monotonicity (OSP CMON): We say that the OSP cycle

monotonicity (OSP CMON) holds if, for all i, the graph OT
i does not contain

negative-weight cycles. Moreover, we say that the OSP two-cycle monotonic-
ity (OSP 2CMON) holds if the same is true when considering cycles of length
two only, i.e., cycles with only two edges.

Theorem 1 ([9]). A mechanism with implementation tree T for a social func-
tion f is OSP on finite domains if and only if OSP CMON holds.

3 A Characterization of OSP Mechanisms

Given the theorem above, we henceforth assume that the agents have finite
domains. In this section we present our characterization of OSP mechanisms for
binary allocation problems. We begin by setting the scene and then give three
useful structural properties of OSP mechanisms.

Observation 1 (Basic Properties of the OSP-graph). The weight of an
edge (a,b) is non-zero for: fi(a) = 0 and fi(b) = 1, in which case the weight is
w(a,b) = +ai (positive-weight edge); or, fi(a) = 1 and fi(b) = 0, in which
case the weight is w(a,b) = −ai (negative-weight edge). If OSP 2CMON
holds, then (i) for every positive-weight edge as above, we have bi < ai and, by
symmetry, (ii) for every negative-weight edge as above, we have ai < bi. Note
that these inequalities are strict since ai �= bi for every edge as above.

Definition 2 (0-always, 1-always, unclear). For sel ∈ {0, 1}, indicating
whether i is selected, a generic type ti ∈ D

(u)
i , and a node u of the implementa-

tion tree, we define: (i) ti is sel-always if fi(t) = sel for all t−i ∈ D
(u)
−i ; (ii) ti is
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sel-sometime if fi(t) = sel for some t−i ∈ D
(u)
−i . Moreover, ti is unclear if it is

neither 0-always nor 1-always, i.e., both 0-sometime and 1-sometime.

Structure of the Implementation Tree. We first observe that, w.l.o.g., we
can always assume that each node u in the implementation tree has two children.

Observation 2. For any OSP mechanism M = (f, p, T ) where T is not a
binary tree, there is an OSP mechanism M ′ = (f, p, T ′) where T ′ is a binary
tree.

The mechanism then partitions D
(u)
i into two subdomains L(u) and R(u).

In general, the two parts L(u) and R(u) can be any partition of the subdomain
D

(u)
i , and they are not necessarily ordered. For example, if D

(u)
i = {1, 2, 5, 6, 7},

a query “is your type even?” results in L(u) = {1, 5, 7} and R(u) = {2, 6}, with
these two subdomains being “incomparable”. However, we will see that in an
OSP mechanism these sets L(u) and R(u) share a special structure.

Structure of Admissible Queries. We begin with a simple observation about
the structure of the parts implied by a simple application of OSP 2CMON.

Observation 3. Assume OSP 2CMON holds. At every node u where the subdo-
main is separated into two parts L and R the following holds. Every 0-sometime
type l in one side (say L) implies that all types in the other side that are bigger
(r ∈ R with r > l) must be 0-always. Similarly, every 1-sometime type l in one
side implies that all types in the other side that are smaller must be 1-always.

Next lemma characterizes the admissible queries in OSP mechanisms.

Lemma 1 (Admissible Queries). Let M be an OSP mechanism with imple-
mentation tree T and let u be a node of T where the query separates the current
subdomain into L and R. Then one of the following conditions must hold:

1. At least one of the two parts, some P ∈ {L,R}, is homogeneous meaning that
either all p ∈ P are 0-always or all p ∈ P are 1-always.

2. Agent i is revealable at node u, meaning that D
(u)
i has the following structure:

D
(u)
i = {d1 < d2 < · · · < da︸ ︷︷ ︸

1-always

< d∗ < d′
1 < d′

2 < · · · d′
b︸ ︷︷ ︸

0-always

} (1)

where each subset of 1-always and 0-always types may be empty, and d∗ may
or may not be 1-always or 0-always. Moreover, the two parts P ∈ {L,R} must
have the following structure:

P = {p1 < · · · < pa︸ ︷︷ ︸
1-always

< p∗ < p′
1 < · · · < p′

b︸ ︷︷ ︸
0-always

} (2)

with at most one type in D
(u)
i being unclear (neither 0-always nor 1-always).
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Structure of Negative-Weight Cycles. A crucial step is to provide a simple
local-to-global characterization of OSP mechanisms which (essentially) involves
only four type profiles. The following theorem states that, if there is a negative-
weight cycle with more than two edges but no length-two negative cycle (OSP
CMON is violated but OSP 2CMON holds), then there exists a cycle with a
rather special structure, and this special structure is fully specified by only four
profiles (the cycle itself may involve several profiles though).

Theorem 2 (Four-Profile Characterization). Let M be a mechanism with
implementation tree T and social choice function f that is OSP 2CMON but not
OSP CMON. Then, every negative-weight cycle C in some OSP graph OT

i is of
the following form: C = b(2) → b(1) � b(3) → b(4) � b(2) where these four
profiles satisfy (i) b

(1)
i < b

(2)
i < b

(3)
i < b

(4)
i , (ii) fi(b(1)) = fi(b(3)) = 1, and (iii)

fi(b(2)) = fi(b(4)) = 0. Moreover, there is no edge between b(2) and b(3) in OT
i .

This characterization will enable us to provide a simple local transformation
of the queries of an OSP mechanisms where we use only top or bottom queries.

Definition 3 (Top and Bottom Queries). Let i = i(u) for a node u of
the implementation tree. If the query at u partitions D

(u)
i into {min D

(u)
i } and

D
(u)
i \ {min D

(u)
i } then we call the query at u a bottom query. A top query at u,

instead, separates the maximum of D
(u)
i from the rest.

3.1 OSP is Equivalent to Weak Interleaving

In this section, we show that without loss of generality, we can focus on OSP
mechanisms where each agent is asked only top queries or only bottom queries,
except when her type becomes revealable (Condition 2. in Lemma 1). In that
sense, these mechanisms interleave top and bottom queries for an agent only in
a “weak” form.1 Specifically, let us begin by providing the following definition.

Definition 4 (Extremal, No Interleaving, Weak Interleaving). A mech-
anism is extremal if every query is a bottom query or a top query (both types of
queries may be used for the same agent).

An extremal mechanism makes no interleaving queries if each agent is con-
sistently asked only top queries or only bottom queries at each history where she
is divergent (some agents may be asked top queries only, and other agents bottom
queries only).

A weak interleaving mechanism satisfies the condition that, if top queries and
bottom queries are interleaved for some agent i at some node u in the imple-
mentation tree, then agent i is revealable at u in the sense of Condition 2. in
Lemma 1.

1 It may appear that an alternative formalization of the interleaving between in- and
out-priorities could be a query where the type is fully revealed; this would not work
as there is still one type for which the outcome is undetermined.
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Theorem 3. For each binary outcome problem, an OSP mechanism exists if
and only if an extremal mechanism with weak interleaving exists.

The Proof. We start with the necessary condition and prove the following
chain of implications: OSP mechanism ⇒ OSP extremal mechanism ⇒
OSP weak interleaving mechanism. Intuitively, given the structure of admis-
sible queries in Lemma 1, we show below that we can locally replace every query
with a homogeneous part (Condition 1.) by a “homogeneous” sequence of only
top queries or only bottom queries. Moreover, these queries can also be used
when the agent becomes revealable (Condition 2.). To this aim, we use the four-
profile characterization of negative-weight cycles in Theorem 2.

Theorem 4. Any OSP mechanism M = (f, p, T ) can be transformed into an
equivalent extremal OSP mechanism M ′ = (f, p, T ′).

Proof Sketch. Since the mechanism M is OSP, then OSP CMON must hold
(Theorem 1). Let u be a node of T where M is not extreme, and let i = i(u) be
the corresponding divergent agent at u. Assume that all previous queries of i in
the path from the root to u are extremal (if not, we can apply the argument to
the first query that is not extremal and reiterate).

We locally modify T in order to make a suitable sequence of bottom queries
and top queries about a certain subset Q of types, before we make any further
query in the two subtrees of u. It can be shown that this local modification does
not affect OSP CMON of agents different from i and it preserves OSP 2CMON
for all agents. The proof uses the following main steps and key observations:

1. If OSP CMON is no longer true for T ′, then there exists a negative-weight
cycle C ′ which was not present in OT

i and therefore must use some added
edges a(1) → a(2) that were not present in OT

i and that have been added to
OT ′

i because of the new queries for types in Q;
2. The negative-weight cycle C ′ must be of the form specified by Theorem 2;

in particular, the edge b(2) → b(3) does not exist in OT ′
i (which helps to

determine properties of the four profiles characterizing C ′);
3. We use the following bypass argument to conclude that in the original graph

there is a negative-weight cycle, thus contradicting OSP CMON of the orig-
inal mechanism. Specifically, for every added edge a(1) → a(2), the orig-
inal graph OT

i contains a bypass path a(1) → b(bp) → a(2) such that
w(a(1) → b(bp) → a(2)) ≤ w(a(1) → a(2)). By replacing every added edge
in C ′ with the corresponding bypass path, we get a cycle C with negative
weight, w(C) ≤ w(C ′) < 0. 	


We are now ready to show that one can think of weak interleaving OSP
mechanisms without loss of generality.

Theorem 5. Let M be an OSP extremal mechanism with implementation tree
T . For any node u ∈ T , if agent i = i(u) is not revealable at node u, then M
has no interleaving for agent i at u.
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The proof of Theorem 3 is completed below with the sufficiency.

Theorem 6. An extremal mechanism with weak interleaving is OSP.

4 Two-Way Greedy Algorithms

We reiterate that our characterization does not require costs to be positive;
so it holds true for negative costs, that is, valuations. We will then now talk
simply about type when we refer to the agents’ private information, be it costs
or valuations. We will also sometimes use the terminology of in-query (out-query,
respectively) to denote a bottom (top) query for costs and a top (bottom) query
for valuations.

Definition 5 ((Anti-)Monotone Functions). We say that a function is
monotone (antimonotone, resp.) in the type if it is decreasing (increasing, resp.)
in the cost, and increasing (decreasing, resp.) in the valuation.

In this section, we translate our characterization into algorithmic insights
on OSP mechanisms and show a connection between their format and a certain
family of adaptive priority algorithms that they use. As a by-product, we show
the existence of a host of new mechanisms. We are able to provide the first
set of upper bounds on the approximation guarantee of OSP mechanisms, that
are independent from domain size (as in [8,9]) or assumptions on the designer’s
power to catch and punish lies (as in [10,11]), see Table 1. The table also contains
the new bounds we can prove on the approximation of OSP mechanisms, by
leveraging our algorithmic characterization (i.e., Theorems 7–10).

Table 1. Bounds on the approximation guarantee of OSP mechanisms. (The result
for CAs has been observed in [6]. The mechanisms for matroids also follows from
Corollary 2.)

Problem Bound

Known Single-Minded Combinatorial Auctions (CAs)
√

m ([17] + Corollary 1)

MST (& weighted matroids) 1 ([15] + Corollary 1)

Max Weighted Matching 2 ([2] + Corollary 1)

p-systems‡ p ([13] + Corollary 1)

Weighted Vertex Cover 2 ([5] + Corollary 1)

Shortest Path ∞ (Theorem 7)

Restricted Knapsack Auctions Ω(
√

n) (Theorem 8)

Asymmetric Restricted Knapsack Auctions (3 values)
√

n − 1 (Theorem 9)

Knapsack Auctions Ω(
√
lnn) (Theorem 10)

‡A p-system is a downward-closed set system (E, F) where there are at most p
circuits, that is, minimal subsets of E not belonging to F [13].

Immediate-Acceptance Auctions and Forward Greedy. Let us begin by
discussing forward greedy.
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Definition 6 (Forward Greedy). A forward greedy algorithm uses functions
g
(in)
i : R×R

k → R, k ≤ n−1, to rank the bids of the players and builds a solution
by iteratively adding the agent with highest rank if that preserves feasibility (cf.
Algorithm 1). A forward greedy algorithm is monotone if each g

(in)
i is monotone

in i’s private type (i.e., its first argument).

Algorithm 1: Forward greedy algorithm
1 Let b1, . . . , bn the input bids
2 P ← F (P is the set of all feasible solutions)
3 I ← ∅ (I is the set of infeasible agents, i.e., agents that cannot be included in

the final solution)
4 A ← N (A is the set of active or infeasible agents)
5 while |P| > 1 do

6 Let i = arg maxk∈A\I g
(in)
k (bk,bN\A)

7 if there are solutions S in P such that i ∈ S then
8 Drop from P all the solutions S such that i �∈ S (if any)
9 A ← A \ {i}

10 else
11 I ← I ∪ {i}
12 Return the only solution in P

A few observations are in order for Algorithm 1. Firstly, it is not too hard to
see that it will always return a solution (i.e., there will eventually be a unique
feasible solution in P). To see this consider the case in which (at least) two
solutions S, S′ are in P. Then there must exist an agent j such that j ∈ SΔS′,
Δ denoting the symmetric difference between sets. This means that j ∈ A \ I
and the forward greedy algorithm will decide in the next steps whether j is part
of the solution or not (and consequently whether to keep S or S′). Secondly,
we stress how forward greedy algorithms belong to the family of adaptive pri-
ority algorithms [4]. At Line 6, Algorithm 1 (potentially) updates the priority
as a function of the bids of those bidders who have left the auction (i.e., that
are not active anymore). A peculiarity of the algorithm (to do with its OSP
implementation) is that the adaptivity does not depend on bidders who despite
their high priority cannot be part of the eventual solution (i.e., the agents we
add to I).2 This distinction would not be necessary if the problem at hand were
upward closed (i.e., if a solution S is feasible then any S′ ⊃ S would be in F
too). Thirdly, a notable subclass of forward greedy algorithms are fixed-priority
algorithms, where Line 6 and the while loop are swapped (and priority functions
only depend on the agents’ types). (These algorithms do not need to keep record

2 Note that a syntactically (but not semantically) alternative definition of forward
greedy algorithms could do without I by requiring an extra property on the priority
functions (i.e., adaptively floor all the priorities of infeasible players).
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of I either.) This algorithmic paradigm has been applied to different optimiza-
tion problems (e.g., Kruskal’s Minimum Spanning Tree (MST) algorithm [15]).
We define Immediate-Acceptance Auctions (IAAs) as mechanisms using only
in-queries.

Corollary 1. An IAA that uses algorithm f is OSP if and only if f is monotone
forward greedy.

We note how all fixed-priority algorithms are OSP but not all OSP mecha-
nism must use a fixed-priority algorithm. In fact, for a fixed-priority algorithm
the sufficiency proof alone would go through; the second parameter of the pri-
ority functions is only needed for the opposite direction.

Algorithm 2: Reverse greedy algorithm
1 Let b1, . . . , bn the input bids
2 P ← F (P is the set of all feasible solutions)
3 I ← ∅ (I is the set of in agents, i.e., those that cannot be dropped)
4 A ← N (A is the set of active or in agents)
5 while |P| > 1 do

6 Let i = arg maxk∈A\I g
(out)
k (bk,bN\A)

7 if there are solutions S in P such that i �∈ S then
8 Drop from P all the solutions S such that i ∈ S (if any)
9 A ← A \ {i}

10 else
11 I ← I ∪ {i}
12 Return the only solution in P

It is important to compare the result above with [20, Footnote 15], where it is
observed how the strategic properties of forward and reverse greedy algorithms
are different. The remark applies to auctions where these algorithms are aug-
mented by the so-called threshold payment scheme. Our result shows that there
exist alternative OSP payment schemes for this important algorithmic design
paradigm.

Deferred-Acceptance Auctions and Reverse Greedy. Another algorithmic
approach that can be used to obtain OSP mechanisms is reverse greedy (see
Algorithm 2), that is, having an out-priority function that is antimonotone with
each agent’s type and drops agents accordingly. In its auction format, this is
known as Deferred-Acceptance Auctions (DAAs), see, e.g., [20].

Definition 7 (Reverse Greedy). A reverse greedy algorithm uses functions
g
(out)
i : R × R

k → R, k ≤ n − 1, to rank the bids of the players and iteratively
excludes the player with highest rank (if feasible) until only one solution is left
(cf. Algorithm 2). A reverse greedy algorithm is antimonotone if each g

(out)
i is

antimonotone in i’s private type (i.e., its first argument).



Two-Way Greedy: Algorithms for Imperfect Rationality 17

Similarly to the case of forward greedy, the algorithm need not use I for
downward-closed problems (i.e., every subset of a feasible solution is feasible as
well). Incidentally, this is the way it is discussed in [7].

Corollary 2 ([20]). A DAA using algorithm f is OSP if and only if f is anti-
monotone reverse greedy.

Algorithm 3: Two-way greedy algorithm
1 Let b1, . . . , bn the input bids
2 P ← F (P is the set of all feasible solutions)
3 I ← ∅ (I is the set of infeasible and in agents)
4 A ← N (A is the set of all agents that are active or infeasible or in)
5 while |P| > 1 do

6 Let i(in) = arg maxk∈A\I g
(in)
k (bk,bN\A)

7 Let i(out) = arg maxk∈A\I g
(out)
k (bk,bN\A)

8 Let i be the agent corresponding to

max
{
g
(in)

i(in)(bi(in) ,bN\A), g
(out)

i(out)(bi(out) ,bN\A)
}

9 if i = i(in)∧ there are solutions S in P such that i ∈ S then
10 Drop from P all the solutions S such that i �∈ S (if any)
11 A ← A \ {i}
12 else if i = i(out)∧ there are solutions S in P such that i �∈ S then
13 Drop from P all the solutions S such that i ∈ S (if any)
14 A ← A \ {i}
15 else
16 I ← I ∪ {i}
17 Return the only solution in P

It is convenient to discuss the relative power of forward and reverse greedy
algorithms. We now know from Corollaries 1 and 2 that they are strategically
equivalent. Algorithmically, however, there are some differences. There are algo-
rithms and problems, such as, Kruskal algorithm for MST, where we can take
the reverse version of forward greedy (e.g., for MST, start with the entire edge
set, go through the edges from the most expensive to the cheaper, and remove
an edge whenever it does not disconnect the graph) without any consequence
to the approximation guarantee. For the minimum spanning tree problem (and,
more generally, for finding the minimum-weight basis of a matroid), the reverse
greedy algorithm is just as optimal as the forward one. In general (and even for,
e.g., bipartite matching), the reverse version of a forward greedy algorithm with
good approximation guarantee can be bad [7].

OSP Mechanisms and Two-Way Greedy. We show that the right algorith-
mic technique for OSP is a suitable combination of forward and reverse greedy.
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Definition 8 (Two-way Greedy). A two-way greedy algorithm uses functions
g
(in)
i : R×R

k → R and g
(out)
i : R×R

k → R, k ≤ n− 1, for each agent i, to rank
the bids, and iteratively and greedily includes (if highest priority is defined by
g(in)) or excludes (if highest priority is defined by g(out)) whenever possible the
player with the highest rank until one feasible solution is left (cf. Algorithm 3).
A two-way greedy is all-monotone if each g

(in)
i is monotone in i’s private type

and g
(out)
i is antimonotone in i’s private type (i.e., their first argument).

To fully capture the strategic properties of two-way greedy algorithms, we
need to define one more property for which we need some background defi-
nitions. Consider the total increasing3 ordering ϕ of the 2

∏
i |Di| functions4

{g
(�)
i (b,b)}i∈N,b∈Di,b∈D−i,�∈{in,out} used by a two-way greedy algorithm. Given

ϕ� = g
(�)
i (bi,bN\A�

), the �-th entry of ϕ, we let D≺
j (�) (D�

j (�), respectively)

denote the set of types b ∈ Dj such that g
(�)
j (b,bN\A) > ϕ� (g(�)j (b,bN\A) < ϕ�,

respectively) with A ⊇ A� (A ⊆ A�, respectively). Moreover, we add bi (the
bid defining ϕ�) to D≺

i (�). In words, once in the ordering we reach the �-th
entry for a certain agent type and a given “history” (i.e., bN\A�

) with D≺
j (�)

we denote all the types that the algorithm has already explored for agent j at
this point (that is, for a compatible prior history bN\A�

with A ⊇ A�). Simi-
larly, D�

j (�) denotes those types in Dj that are yet to be considered from this
history onwards. Finally, for d ∈ {in, out} we let d be a shorthand for the other
direction.

Definition 9 (Interleaving Algorithm). We say that a two-way greedy algo-
rithm is interleaving if for each i and A ⊆ N the following occurs. For each
ϕ� = g

(d)
i (b,bN\A) such that for some A′ ⊆ A it holds g

(d)
i (b′,bN\A′) = ϕ�′ with

b′ ∈ D�
i (�) (and then �′ > �) we have g

(�)
i (x,bN\A′) > g

(�)
j (y,bN\A′) for each

y ∈ D�
j (�′) and for all (but at most one) x in D�

i (�′) (� ∈ {in, out}).

The definition above captures in algorithmic terms the weak interleaving
property of extensive-form implementations. Whenever there is a change of direc-
tion (from d to d) for a certain agent i and two compatible histories (cf. condition
A′ ⊆ A) then it must be the case that i is revealable and all the other unexplored
types (but at most one) must be explored next.

Example 1 (Interleaving Algorithm). Consider a setting with three agents, called
x, y and z. The valuation domain is the same for all the agents and has maximum
tmax and minimum tmin. Consider the two-way greedy algorithm with the fol-
lowing ordering ϕ: g

(in)
x (tmax) > g

(in)
y (tmax) > g

(out)
z (tmin) > g

(out)
y (tmin) > . . .

(where the second argument is omitted since it is ∅). Let us focus on ϕ2 =
3 For notational simplicity, we here assume that there are not ties between the priority

functions.
4 The algorithm must not necessarily have a definition for the priority functions for

all the combinations of type/history as some might never get explored. In this case,
we set all the undefined entries to sufficiently small (tie-less, for simplicity) values.
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g
(in)
y (tmax). Here D≺

x (2) and D≺
y (2) is {tmax} (as it has been already considered

for both agents) whilst D�
x (2) and D�

y (2) is equal to the original domain but
tmax. For z, instead, D≺

z (2) = ∅ and D�
z (2) is still the original domain. At ϕ4

there is a change of direction for agent y. The two-way greedy is interleaving if
the domain has only three types (since there are no constraints on the in/out
priority for third type in the domain of y). For larger domains, instead, we need
to look at the next entries of ϕ to ascertain whether the algorithm is interleaving
or not.

Corollary 3. A mechanism using algorithm f is OSP if and only if f is an
all-monotone interleaving two-way greedy algorithm.

Given the corollary above, we will henceforth simply say two-way greedy
(algorithm) and avoid stating the properties of all-monotonicity and interleaving.
We next analyse the approximation guarantee of two-way greedy algorithms,
whilst a comparison with forward/reverse greedy is deferred to the full version.

Approximation Guarantee of Two-Way Greedy Algorithms. We next
prove that the approximation ratio of two-way greedy algorithms is unbounded
in set systems where we want to output the solution with minimum social cost
for some (minimal) structure of F . Examples include the shortest path problem.
For such problems, a two-way greedy algorithm must commit immediately to a
solution after the first decision in either Line 10 or 13.

Theorem 7 (Social Cost). For any ρ ≥ 1, there exists a set system such that
no two-way greedy algorithm returns a ρ-approximation to the optimal social
cost, even if there are only two feasible solutions and four agents.

We now consider the case where the players have valuations and we are
interested in maximizing the social welfare. We call this setup where no fur-
ther assumption on the structure of the feasible solutions in F can be made, a
restricted knapsack auction problem.

Theorem 8 (Social Welfare). There exists a set system for which any two-
way greedy algorithm has approximation Ω(

√
n) to the optimal social welfare,

even if there are only two feasible solutions.

Interestingly the result above uses a so-called asymmetric instance [7] where one
solution is a singleton and the other is comprised of all the remaining bidders.
We now prove that the analysis above is tight at least for three-value domains.

Theorem 9. There is a
√

n − 1-approximate forward greedy algorithm for
the asymmetric restricted knapsack auctions, when bidders have a three-value
domain {tmin, tmed, tmax}.

We now turn our attention to downward-closed set systems for social welfare
maximization. This is a generalization of the setting studied in [7], called knap-
sack auctions : There are n bidders and m copies of one item; each bidder has
a private valuation vi to receive at least si copies of the item, si being public
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knowledge. A solution is feasible if the sum of items allocated to bidders is at
most m. The objective is social welfare maximization. The authors of [7] give a
O(ln m)-approximate DAA/reverse greedy algorithm and prove a lower bound
of lnτ m, for a positive constant τ , limited to DAA/reverse greedy. We next show
that the upper bound is basically tight for the entire class of OSP mechanisms.

Theorem 10 (Social Welfare Downward-Closed Set Systems). There is
a downward-closed set system for which every two-way greedy algorithm has
approximation Ω(

√
ln n) to the optimal social welfare.

5 Conclusions

OSP has attracted lots of interest in computer science and economics, see, e.g.,
[6,8–11,16,19]. Our work can facilitate the study of this notion of incentive-
compatibility for imperfectly rational agents. Just as the characterization of
DAAs in terms of reverse greedy [20] has given the first extrinsic reason to study
the power and limitations of these algorithms [7,12], we believe that our charac-
terization of OSP in terms of two-way greedy will lead to a better understanding
of this algorithmic paradigm. In this work, we only began to investigate their
power and much more is left to be done. For example, different optimization
problems and objective functions could be considered. Moreover, whilst in gen-
eral OSP mechanisms do not compose sequentially, see, e.g., [3], we could study
under what conditions two-way greedy algorithms compose.
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