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Preface

This volume contains all regular papers and abstracts presented at the 17th Conference
on Web and Internet Economics (WINE 2021). WINE 2021 was held as an Internet
event during December 14–17, 2021, organized at the Hasso Plattner Institute,
Potsdam, Germany.

Over the last 17 years, the WINE conference series has become a leading inter-
disciplinary forum for the exchange of ideas and scientific progress across continents
on incentives and computation arising in diverse areas, such as theoretical computer
science, artificial intelligence, economics, operations research, and applied mathe-
matics. WINE 2021 built on the success of previous editions of WINE (named the
Workshop on Internet and Network Economics until 2013) which were held annually
from 2005 to 2020.

We tried for the first time having a Senior Program Committee, which was com-
posed of 27 researchers from the field; the Program Committee had 63 researchers. The
committees reviewed 136 submissions and decided to accept 41 papers. Each paper had
at least three reviews, with additional reviews solicited as needed. We are very grateful
to all members of the Senior Program Committee and the Program Committee for their
insightful reviews and discussions. We thank EasyChair for providing a virtual plat-
form to organize the review process. We also thank Springer for publishing the pro-
ceedings and offering support for Best Paper and Best Student Paper Awards.

In addition to the contributed talks, the program included four invited talks by
leading researchers in the field: Eli Ben Sasson (Technion – Israel Institute of Tech-
nology), Colin Camerer (California Institute of Technology, USA), Annie Liang
(Northwestern University, USA), and Jenn Wortman Vaughan (Microsoft Research,
USA).

Also for the first time we invited Spotlights Beyond WINE talks; the nomination
and selection of these talks was adjudicated by Costis Daskalakis, Fuhito Kojima, Ruta
Mehta, and Jamie Morgenstern.

Our special thanks go to the general chairs, Ágnes Cseh and Pascal Lenzner, and the
local organization team, as well as the poster chair Gagan Aggarwal and the global
outreach chair Francisco Marmolejo.

November 2021 Michal Feldman
Hu Fu

Inbal Talgam-Cohen
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Two-Way Greedy: Algorithms
for Imperfect Rationality

Diodato Ferraioli1, Paolo Penna2, and Carmine Ventre3(B)

1 Università di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
dferraioli@unisa.it

2 ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
paolo.penna@inf.ethz.ch

3 King’s College London, Strand, London WC2R 2LS, UK
carmine.ventre@kcl.ac.uk

Abstract. The realization that selfish interests need to be accounted for
in the design of algorithms has produced many interesting and valuable
contributions in computer science under the general umbrella of algo-
rithmic mechanism design. Novel algorithmic properties and paradigms
have been identified and studied in the literature. Our work stems from
the observation that selfishness is different from rationality; agents will
attempt to strategize whenever they perceive it to be convenient accord-
ing to their imperfect rationality. Recent work in economics [18] has
focused on a particular notion of imperfect rationality, namely absence of
contingent reasoning skills, and defined obvious strategyproofness (OSP)
as a way to deal with the selfishness of these agents. Essentially, this def-
inition states that to care for the incentives of these agents, we need not
only pay attention about the relationship between input and output, but
also about the way the algorithm is run. However, it is not clear to date
what algorithmic approaches ought to be used for OSP. In this paper,
we rather surprisingly show that, for binary allocation problems, OSP is
fully captured by a natural combination of two well-known and exten-
sively studied algorithmic techniques: forward and reverse greedy. We
call two-way greedy this underdeveloped algorithmic design paradigm.

Our main technical contribution establishes the connection between
OSP and two-way greedy. We build upon the recently introduced cycle
monotonicity technique for OSP [9]. By means of novel structural prop-
erties of cycles and queries of OSP mechanisms, we fully characterize
these mechanisms in terms of extremal implementations. These are pro-
tocols that ask each agent to consistently separate one extreme of their
domain at the current history from the rest. Through the natural con-
nection with the greedy paradigm, we are able to import a host of known
approximation bounds to OSP and strengthen the strategic properties
of this family of algorithms. Finally, we begin exploring the full power of
two-way greedy (and, in turns, OSP) in the context of set systems.

Diodato Ferraioli is supported by GNCS-INdAM and the Italian MIUR PRIN 2017
Project ALGADIMAR “Algorithms, Games, and Digital Markets”. Carmine Ven-
tre acknowledges funding from the UKRI Trustworthy Autonomous Systems Hub
(EP/V00784X/1).

c© Springer Nature Switzerland AG 2022
M. Feldman et al. (Eds.): WINE 2021, LNCS 13112, pp. 3–21, 2022.
https://doi.org/10.1007/978-3-030-94676-0_1
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1 Introduction

An established line of work in computer science recognizes the important role
played by self interests. If ignored, these self interests can misguide the algorithm
or protocol at hand and lead to suboptimal outcomes. Mechanism design has
emerged as the framework of reference to deal with this selfishness. Mechanisms
are protocols that interact with the selfish agents involved in the computation;
the information elicited through this interaction is used to choose a certain out-
come (via an algorithm). The goal of a mechanism is that of reconciling the
potentially contradictory aims of agents with that of the designer (i.e., optimize
a certain objective function). The agents attach a utility (typically defined as
quasi-linear function of the transfers defined by the mechanism and the agent’s
type – i.e., cost or valuation – for the solution) to each outcome and are there-
fore incentivized to force the output of an outcome that maximizes their utility
(rather than maximizing the objective function). The quality of a mechanism is
assessed against how well it can approximate the objective function whilst giving
the right incentives to the agents.

In this context, one seeks to design strategyproof (SP) mechanisms—these
guarantee that agents will not strategize as it will be in their best interest to
adhere to the rules set by the mechanism—and aims to understand what is
the best possible approximation that can be computed for the setting of inter-
est. For example, it is known how for utilitarian problems (roughly speaking,
those whose objective function is the sum of all the agents’ types) it is pos-
sible to simultaneously achieve optimality and strategyproofness, whilst some
non-utilitarian objective (such as, min-max) cannot be approximated too well
(irrespectively of computational considerations), see, e.g., [21]. These results can
be proved purely from an algorithmic perspective – that ignores incentives and
selfishness – in that it is known how strategyproofness is equivalent to a certain
monotonicity property of the algorithm used by the mechanism to compute the
outcome. This monotonicity relates the outcomes of two instances, connected by
SP constraints, and limits what the algorithm can do on them. For example, if
an agent is part of the solution computed on instance I and becomes “better”
(e.g., faster) in instance I ′ then the algorithm must select the agent also in the
solution returned for instance I ′, all other things unchanged.

Recent research in mechanism design has highlighted how cognitive limita-
tions of the agents might mean that SP is too weak a desideratum for mecha-
nisms. Even for the simplest setting of one-item auction, there is experimental
evidence that people strategize against the sealed-bid implementation of second-
price auction, whilst ascending-price auction seems easier to grasp [1,14]. The
concept of obvious strategyproofness (OSP) has been defined in [18] to capture
this particular form of imperfect rationality, which is shown to be equivalent to
the absence of contingent reasoning skills. Intuitively, for an agent it is obvious
to understand if a strategy is better than another in that the worst possible
outcome for the former is better than the best one for the latter.
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Can we, similarly to SP, derive bounds on the quality of OSP mechanisms
that are oblivious to strategic considerations?

There are two obstacles to getting a fully algorithmic approach to OSP mech-
anisms due to their structure. Whereas SP mechanisms are pairs comprised of
an algorithm and transfer (a.k.a., payment) function, in OSP we have a third
component (the so-called implementation tree) which encapsulates the execution
details (e.g., sealed bid vs ascending price) of the mechanisms and the obvious-
ness of the strategic constraints. (For OSP, in fact, the implementation details
matter and the classical Revelation Principle does not hold [18].) A technique,
known as cycle monotonicity (CMON), allows to express the existence of SP
payments for an algorithm in terms of the weight of the cycles in a suitably
defined graph. Specifically, it is known that it is sufficient to look at cycles of
length two for practically all optimization problems of interest [22]—this yields
the aforementioned property of monotone algorithms. Recent work [8,9] extends
CMON to OSP and allows to focus only on algorithms and implementation
trees. Whilst this has allowed some progress towards settling our main question
in the context of single-parameter agents, some unsatisfactory limitations are
still present. Firstly, handling two interconnected objects, namely algorithm and
implementation tree, simultaneously is hard to work with: e.g., novel ad-hoc
techniques (dubbed CMON two-ways in [9]) had to be developed to prove lower
bounds. Secondly, the CMON extension to OSP is shown to require the study
of cycles of any length, thus implying that the “monotonicity” of the combina-
tion algorithm/implementation tree needs to hold amongst an arbitrary number
of instances, as opposed to two as in the case of SP. Thirdly, the mechanisms
constructed in [8,9] only work for three-value domains since they rely on the
simpler two-instance monotonicity (referred to as monotonicity henceforth).

Our Contributions. The technical challenge left open by previous work was
to relate monotonicity to many-instance monotonicity. In this paper, we solve
this challenge by providing a characterization of OSP mechanisms for binary
allocation problems (for which the outcome for each agent is either to be selected
or not). This enables us to show that the shape of the implementation tree is
essentially fixed and answer the question above in the positive. It turns out that
the exact algorithmic structure of OSP mechanisms is intimately linked with a
(slight generalization of a) well known textbook paradigm:

OSP can be achieved if and only if the algorithm is two-way greedy.

What does it mean for an algorithm to be two-way greedy? The literature in
computer science and approximation algorithms has extensively explored what
we call forward greedy. These are algorithms that use a (possibly adaptive) (in-
)priority function and incrementally build up a solution by adding therein the
agent with the highest priority, if this preserves feasibility. It is known that if
the priority rule is monotone in each agent’s type then this leads to a SP direct-
revelation mechanism (see, e.g., [17]). What we show here is that the strat-
egyproofness guarantee is actually much stronger and can deal with imperfect
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rationality. This is achieved with a simple implementation of forward greedy that
sweeps through each agent’s domain from the best possible type to the worst.
Another relevant approach known in the literature is Deferred Acceptance auc-
tions (DAAs) or reverse greedy algorithms [7,12]. These use a (possibly adaptive)
(out-)priority function and build a feasible solution by incrementally throwing
out the agents whose type is not good enough with respect the current prior-
ity (i.e., whose cost (valuation) is higher (lower) than the out-priority) until a
feasible solution is found. It is already known that DAAs are OSP [20] but not
the extent to which focusing on them would be detrimental to finding out the
real limitations of OSP mechanisms. Two-way greedy algorithms combine in-
and out-priorities; each agent faces either a greedy in- or out-priority; in the
former case, they are included in the solution if feasibility is preserved while in
the latter they are excluded from it if the current solution is not yet feasible.
The direction faced can depend on which agents have been included in or thrown
out from the eventual solution at that point of the execution; in this sense, these
are particular adaptive priority algorithms. For a formal definition, please see
Sect. 4 and Algorithm 3.

Two-way greedy algorithms stem from our characterization of OSP mecha-
nisms in terms of “extremal implementation trees”; roughly speaking, in these
mechanisms we always query each agents about (the same) extreme of their
domain at the current history. To prove this characterization, we first give a
couple of structural properties of OSP mechanisms. We specifically show (i)
when a query can be made to guarantee OSP; and, (ii) how a mechanism that is
monotone but not many-instance monotone looks like. We use the former prop-
erty to show that, given an OSP mechanism, we can modify the structure of
its implementation tree to make it extreme whilst guaranteeing that the many-
instance monotonicity is preserved (i.e., the structure (ii) is not possible). We
also show that extremal mechanisms are monotone and that structure (ii) can
never arise, thus proving the sufficient condition of our characterization. One
caveat about these extremal mechanisms and two-way greedy is necessary. This
has to do with a technical exception to the rule of never interleaving top queries
(asking for the maximum of the current domain) with bottom queries (asking
for the minimum) to an agent. An OSP mechanism can in fact interleave those
when, at the current history, an agent becomes revealable, that is, the threshold
separating winning bids from losing ones, becomes known. In other words, this
is a point in which the outcome for this agent (but not necessarily the entire
solution) is determined for all but one of her types. OSP mechanisms can at
this point use any query ordering to find out what the type of the agent is; this
does not affect the incentives of the agents. Accordingly, in a two-way greedy
algorithm an agent can face changes of priority direction (e.g., from in- to out-
priority) in these circumstances.

To the best of our knowledge this is one of the first known cases of a relation-
ship between strategic properties and an algorithmic paradigm, as opposed to a
property about the solution output by the algorithm. Two possible interpreta-
tions of this connection can be given. On a conceptual level, the fact that the
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Revelation Principle does not hold true for OSP means that we care about the
implementation details and thus the right algorithmic nature has to be paradig-
matic rather than being only about the final output. On a technical level, given
that monotonicity (i.e., two-cycles) is not sufficient for OSP, the need to study
many-instance monotonicity (i.e., any cycle) requires to go beyond an output
property and look for the way in which the algorithm computes any solution.

Our OSP characterization is related to the Personal Clock Auctions (PCAs)
in [18]. Roughly speaking, Li proves that for binary allocation problems, each
agent faces either an ascending-price auction (where there is an increasing trans-
fer going rate to be included in the solution) or a descending-price auction (where
there is a decreasing transfer going rate to be excluded from the solution). There
are conceptual and technical differences between our characterization and Li’s.
His focus is on characterizing the auction format (i.e., social choice function,
payments and implementation tree) whereas ours concentrates on algorithms.
Studying the approximation guarantee of PCAs requires to disentangle these
three components. We defer to the full version of this paper a concrete example
taken from the corrigendum of [18] that shows how the technical definition of
PCA (contrarily to its intuitive and informal description) does not allow for a
simple algorithmic characterization in terms of greedy. It turns out that PCAs
require to reason about strategies over the extensive-form implementation as
opposed to type profiles – this makes them unsuitable and underspecified from
the algorithmic point of view. From the technical perspective, Li requires con-
tinuous domains whereas we assume that these are finite, mainly because of
the inherent limitations of the OSP CMON technique [9]. For one, our setup
is arguably more interesting for OSP, as it is notoriously harder to understand
how to execute extensive-form games in the continuous case. Secondly, our proof
technique cannot rely on the existence of a unique threshold (there are two
threshold values in discrete domains, i.e., extreme winning and losing reports do
not “meet” in the limit) unlike [18]. Importantly, our results allow for a more
workable notion of OSP mechanisms for binary allocation problems; our app-
roach and terminology are closer to computer science and algorithms and give a
specific recipe to reason about design and analysis of these mechanisms.

We give a host of bounds on the approximation guarantee of OSP mecha-
nisms by relying on our characterization and the known approximation guaran-
tees of forward greedy algorithms, cf. Table 1 below. The strategic equivalence
of forward and reverse greedy is one of the most far reaching consequences of
our results, given (i) the rich literature on the approximation of forward greedy,
and (ii) the misconception about the apparent weaknesses of accepting, rather
than rejecting, auctions [20] (see Sect. 4). We expect our work to spawn fur-
ther research about OSP, having fully extracted the algorithmic nature of these
mechanisms. The power and limitations of OSP can now be fully explored, in
the context of binary allocation problems. We present some initial bounds on the
quality of these algorithms/mechanisms (see Sect. 4). Notably, we close the gap
for the approximation guarantee of OSP mechanisms for the knapsack auctions
studied in [7]. We show that the logarithmic upper bound provided therein is
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basically tight, not just for reverse greedy (as shown in [7]) but for the whole
class.

Since our main objective is that of establishing the power of OSP mechanisms,
in terms of algorithmic tools and their approximation, we do not primarily focus
on their computational complexity. Consequently, our lower bounds are uncon-
ditional. We discuss this aspect and more opportunities for further research in
the conclusions (see Sect. 5). The proofs missing due to lack of space are deferred
to the full version of this paper.

2 Preliminaries and Notation

We define a set N of n selfish agents and a set of feasible outcomes S. Each
agent i has a type ti ∈ Di, where Di is the domain of i. The type ti is assumed
to be private knowledge of agent i. We let ti(X) ∈ R denote the cost of agent i
with type ti for the outcome X ∈ S. When costs are negative, it means that the
agent has a profit from the solution, called valuation.

A mechanism has to select an outcome X ∈ S. For this reason, the mechanism
interacts with agents. Specifically, agent i takes actions (e.g., saying yes/no)
that may depend on her presumed type bi ∈ Di (e.g., saying yes could “signal”
that the presumed type has some properties that bi enjoys). To stress this we
say that agent i takes actions compatible with (or according to) bi Note that
the presumed type bi can be different from the real type ti. For a mechanism
M , we let M(b) denote the outcome returned by M when agents take actions
according to their presumed types b = (b1, . . . , bn) (i.e., each agent i takes
actions compatible with the corresponding bi). This outcome is given by a pair
(f, p), where f = f(b) = (f1(b), . . . , fn(b)) (termed social choice function or,
simply, algorithm) maps the actions taken by the agents according to b to a
feasible solution in S, and p = p(b) = (p1(b), . . . , pn(b)) ∈ R

n maps the actions
taken by the agents according to b to payments. Note that payments need not
be positive.

Each selfish agent i is equipped with a quasi-linear utility function ui : Di ×
S → R: for ti ∈ Di and for an outcome X ∈ S returned by a mechanism M ,
ui(ti,X) is the utility that agent i has for the implementation of outcome X
when her type is ti, i.e., ui(ti,M(bi,b−i)) = pi(bi,b−i) − ti(f(bi,b−i)). In this
work we will focus on single-parameter settings, that is, the case in which the
private information of each bidder i is a single real number ti and ti(X) can
be expressed as tiwi(X) for some publicly known function wi. To simplify the
notation, we will write tifi(b) when we want to express the cost of a single-
parameter agent i of type ti for the output of social choice function f on input
the actions corresponding to a bid vector b. In particular, we will consider binary
allocation problems, where fi(b) ∈ {0, 1}, i.e., each agent either belongs to the
returned solution (fi(b) = 1) or not (fi(b) = 0). A class of binary allocation
problems of interest are set systems (E,F), where E is a set of elements and
F ⊆ 2E is a family of feasible subsets of E. Each element i ∈ E is controlled by
a selfish agent, that is, the cost for including i is known only to agent i and is
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equal to some value ti. The social choice function f must choose a feasible subset
of elements X in F that minimizes

∑n
i=1 bi(X). When the ti’s are non-negative

(non-positive, respectively) then this objective is called social cost minimization
(social welfare maximization, respectively).

Extensive-Form Mechanisms and Obvious Strategyproofness. We now
introduce the concept of implementation tree and we formally define (determin-
istic) obviously strategy-proof mechanisms. Our definition is built on [19] rather
than the original definition in [18]. Specifically, our notion of implementation
tree is equivalent to the concept of round-table mechanisms in [19], and our
definition of OSP is equivalent to the concept of SP-implementation through a
round table mechanism, that is proved to be equivalent to the original definition.

Let us first formally model how a mechanism works. An extensive-form mech-
anism M is a triple (f, p, T ) where, as above, the pair (f, p) determines the
outcome of the mechanism, and T is a tree, called implementation tree, s.t.:

– Every leaf � of the tree is labeled with a possible outcome of the mechanism
(X(�), p(�)), where X(�) ∈ S and p(�) ∈ R;

– Each node u in the implementation tree T defines the following:
• An agent i = i(u) to whom the mechanism makes some query. Each

possible answer to this query leads to a different child of u.
• A subdomain D(u) = (D(u)

i ,D
(u)
−i ) containing all types that are compatible

with u, i.e., with all the answers to the queries from the root down to
node u. Specifically, the query at node u defines a partition of the current
domain of i, D

(u)
i into k ≥ 2 subdomains, one for each of the k children

of node u. Thus, the domain of each of these children will have as the
domain of i, the subdomain of D

(u)
i corresponding to a different answer

of i at u, and an unchanged domain for the other agents.

Observe that, according to the definition above, for every profile b there is
only one leaf � = �(b) such that b belongs to D(�). Similarly, to each leaf �
there is at least a profile b that belongs to D(�). For this reason, we say that
M(b) = (X(�), p(�)). Two profiles b, b′ are said to diverge at a node u of T
if this node has two children v, v′ such that b ∈ D(v), whereas b′ ∈ D(v′). For
every such node u, we say that i(u) is the divergent agent at u.

Definition 1 (OSP mechanisms). An extensive-form mechanism M is obvi-
ously strategy-proof (OSP) if for every agent i with real type ti, for every vertex
u such that i = i(u), for every b−i,b′

−i (with b′
−i not necessarily different from

b−i), and for every bi ∈ Di, with bi �= ti, s.t. (ti,b−i) and (bi,b′
−i) are compat-

ible with u, but diverge at u, it holds that ui(ti,M(ti,b−i)) ≥ ui(ti,M(bi,b′
−i)).

Roughly speaking, OSP requires that, at each time step agent i is asked to
take a decision that depends on her type, the worst utility that she can get
if she behaves according to her true type is at least the best utility she can
get by behaving differently. We stress that our definition does not restrict the
alternative behavior to be consistent with a fixed type. Each leaf of the tree
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rooted in u, denoted Tu, corresponds to a profile b = (bi,b′
−i) compatible with

u: then, our definition implies that the utility of i in the leaves where she plays
truthfully is at least as much as the utility in every other leaf of Tu.

Cycle-Monotonicity Characterizes OSP Mechanisms. We next describe
the main tools in [9] showing that OSP can be characterized by the absence
of negative-weight cycles in a suitable weighted graph over the possible strategy
profiles. For ease of exposition, we will focus on non-negative costs but the results
hold no matter the sign. We consider a mechanism M with implementation tree
T for a social choice function f , and define the following concepts:

– Separating Node: A node u in the implementation tree T is (a,b)-
separating for agent i = i(u) if a and b are compatible with u (that is,
a,b ∈ D(u)), and the two types ai and bi belong to two different subdomains
of the children of u (thus implying ai �= bi).

– OSP-graph: For every agent i, we define a directed weighted graph OT
i

having a node for each profile in D = ×iDi. The graph contains edge (a,b) if
and only if T has some node u which is (a,b)-separating for i = i(u), and the
weight of this edge is w(a,b) = ai(fi(b) − fi(a)). Throughout the paper, we
will denote with a → b an edge (a,b) ∈ OT

i , and with a � b a path among
these two profiles in OT

i .
– OSP Cycle Monotonicity (OSP CMON): We say that the OSP cycle

monotonicity (OSP CMON) holds if, for all i, the graph OT
i does not contain

negative-weight cycles. Moreover, we say that the OSP two-cycle monotonic-
ity (OSP 2CMON) holds if the same is true when considering cycles of length
two only, i.e., cycles with only two edges.

Theorem 1 ([9]). A mechanism with implementation tree T for a social func-
tion f is OSP on finite domains if and only if OSP CMON holds.

3 A Characterization of OSP Mechanisms

Given the theorem above, we henceforth assume that the agents have finite
domains. In this section we present our characterization of OSP mechanisms for
binary allocation problems. We begin by setting the scene and then give three
useful structural properties of OSP mechanisms.

Observation 1 (Basic Properties of the OSP-graph). The weight of an
edge (a,b) is non-zero for: fi(a) = 0 and fi(b) = 1, in which case the weight is
w(a,b) = +ai (positive-weight edge); or, fi(a) = 1 and fi(b) = 0, in which
case the weight is w(a,b) = −ai (negative-weight edge). If OSP 2CMON
holds, then (i) for every positive-weight edge as above, we have bi < ai and, by
symmetry, (ii) for every negative-weight edge as above, we have ai < bi. Note
that these inequalities are strict since ai �= bi for every edge as above.

Definition 2 (0-always, 1-always, unclear). For sel ∈ {0, 1}, indicating
whether i is selected, a generic type ti ∈ D

(u)
i , and a node u of the implementa-

tion tree, we define: (i) ti is sel-always if fi(t) = sel for all t−i ∈ D
(u)
−i ; (ii) ti is
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sel-sometime if fi(t) = sel for some t−i ∈ D
(u)
−i . Moreover, ti is unclear if it is

neither 0-always nor 1-always, i.e., both 0-sometime and 1-sometime.

Structure of the Implementation Tree. We first observe that, w.l.o.g., we
can always assume that each node u in the implementation tree has two children.

Observation 2. For any OSP mechanism M = (f, p, T ) where T is not a
binary tree, there is an OSP mechanism M ′ = (f, p, T ′) where T ′ is a binary
tree.

The mechanism then partitions D
(u)
i into two subdomains L(u) and R(u).

In general, the two parts L(u) and R(u) can be any partition of the subdomain
D

(u)
i , and they are not necessarily ordered. For example, if D

(u)
i = {1, 2, 5, 6, 7},

a query “is your type even?” results in L(u) = {1, 5, 7} and R(u) = {2, 6}, with
these two subdomains being “incomparable”. However, we will see that in an
OSP mechanism these sets L(u) and R(u) share a special structure.

Structure of Admissible Queries. We begin with a simple observation about
the structure of the parts implied by a simple application of OSP 2CMON.

Observation 3. Assume OSP 2CMON holds. At every node u where the subdo-
main is separated into two parts L and R the following holds. Every 0-sometime
type l in one side (say L) implies that all types in the other side that are bigger
(r ∈ R with r > l) must be 0-always. Similarly, every 1-sometime type l in one
side implies that all types in the other side that are smaller must be 1-always.

Next lemma characterizes the admissible queries in OSP mechanisms.

Lemma 1 (Admissible Queries). Let M be an OSP mechanism with imple-
mentation tree T and let u be a node of T where the query separates the current
subdomain into L and R. Then one of the following conditions must hold:

1. At least one of the two parts, some P ∈ {L,R}, is homogeneous meaning that
either all p ∈ P are 0-always or all p ∈ P are 1-always.

2. Agent i is revealable at node u, meaning that D
(u)
i has the following structure:

D
(u)
i = {d1 < d2 < · · · < da︸ ︷︷ ︸

1-always

< d∗ < d′
1 < d′

2 < · · · d′
b︸ ︷︷ ︸

0-always

} (1)

where each subset of 1-always and 0-always types may be empty, and d∗ may
or may not be 1-always or 0-always. Moreover, the two parts P ∈ {L,R} must
have the following structure:

P = {p1 < · · · < pa︸ ︷︷ ︸
1-always

< p∗ < p′
1 < · · · < p′

b︸ ︷︷ ︸
0-always

} (2)

with at most one type in D
(u)
i being unclear (neither 0-always nor 1-always).
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Structure of Negative-Weight Cycles. A crucial step is to provide a simple
local-to-global characterization of OSP mechanisms which (essentially) involves
only four type profiles. The following theorem states that, if there is a negative-
weight cycle with more than two edges but no length-two negative cycle (OSP
CMON is violated but OSP 2CMON holds), then there exists a cycle with a
rather special structure, and this special structure is fully specified by only four
profiles (the cycle itself may involve several profiles though).

Theorem 2 (Four-Profile Characterization). Let M be a mechanism with
implementation tree T and social choice function f that is OSP 2CMON but not
OSP CMON. Then, every negative-weight cycle C in some OSP graph OT

i is of
the following form: C = b(2) → b(1) � b(3) → b(4) � b(2) where these four
profiles satisfy (i) b

(1)
i < b

(2)
i < b

(3)
i < b

(4)
i , (ii) fi(b(1)) = fi(b(3)) = 1, and (iii)

fi(b(2)) = fi(b(4)) = 0. Moreover, there is no edge between b(2) and b(3) in OT
i .

This characterization will enable us to provide a simple local transformation
of the queries of an OSP mechanisms where we use only top or bottom queries.

Definition 3 (Top and Bottom Queries). Let i = i(u) for a node u of
the implementation tree. If the query at u partitions D

(u)
i into {min D

(u)
i } and

D
(u)
i \ {min D

(u)
i } then we call the query at u a bottom query. A top query at u,

instead, separates the maximum of D
(u)
i from the rest.

3.1 OSP is Equivalent to Weak Interleaving

In this section, we show that without loss of generality, we can focus on OSP
mechanisms where each agent is asked only top queries or only bottom queries,
except when her type becomes revealable (Condition 2. in Lemma 1). In that
sense, these mechanisms interleave top and bottom queries for an agent only in
a “weak” form.1 Specifically, let us begin by providing the following definition.

Definition 4 (Extremal, No Interleaving, Weak Interleaving). A mech-
anism is extremal if every query is a bottom query or a top query (both types of
queries may be used for the same agent).

An extremal mechanism makes no interleaving queries if each agent is con-
sistently asked only top queries or only bottom queries at each history where she
is divergent (some agents may be asked top queries only, and other agents bottom
queries only).

A weak interleaving mechanism satisfies the condition that, if top queries and
bottom queries are interleaved for some agent i at some node u in the imple-
mentation tree, then agent i is revealable at u in the sense of Condition 2. in
Lemma 1.

1 It may appear that an alternative formalization of the interleaving between in- and
out-priorities could be a query where the type is fully revealed; this would not work
as there is still one type for which the outcome is undetermined.
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Theorem 3. For each binary outcome problem, an OSP mechanism exists if
and only if an extremal mechanism with weak interleaving exists.

The Proof. We start with the necessary condition and prove the following
chain of implications: OSP mechanism ⇒ OSP extremal mechanism ⇒
OSP weak interleaving mechanism. Intuitively, given the structure of admis-
sible queries in Lemma 1, we show below that we can locally replace every query
with a homogeneous part (Condition 1.) by a “homogeneous” sequence of only
top queries or only bottom queries. Moreover, these queries can also be used
when the agent becomes revealable (Condition 2.). To this aim, we use the four-
profile characterization of negative-weight cycles in Theorem 2.

Theorem 4. Any OSP mechanism M = (f, p, T ) can be transformed into an
equivalent extremal OSP mechanism M ′ = (f, p, T ′).

Proof Sketch. Since the mechanism M is OSP, then OSP CMON must hold
(Theorem 1). Let u be a node of T where M is not extreme, and let i = i(u) be
the corresponding divergent agent at u. Assume that all previous queries of i in
the path from the root to u are extremal (if not, we can apply the argument to
the first query that is not extremal and reiterate).

We locally modify T in order to make a suitable sequence of bottom queries
and top queries about a certain subset Q of types, before we make any further
query in the two subtrees of u. It can be shown that this local modification does
not affect OSP CMON of agents different from i and it preserves OSP 2CMON
for all agents. The proof uses the following main steps and key observations:

1. If OSP CMON is no longer true for T ′, then there exists a negative-weight
cycle C ′ which was not present in OT

i and therefore must use some added
edges a(1) → a(2) that were not present in OT

i and that have been added to
OT ′

i because of the new queries for types in Q;
2. The negative-weight cycle C ′ must be of the form specified by Theorem 2;

in particular, the edge b(2) → b(3) does not exist in OT ′
i (which helps to

determine properties of the four profiles characterizing C ′);
3. We use the following bypass argument to conclude that in the original graph

there is a negative-weight cycle, thus contradicting OSP CMON of the orig-
inal mechanism. Specifically, for every added edge a(1) → a(2), the orig-
inal graph OT

i contains a bypass path a(1) → b(bp) → a(2) such that
w(a(1) → b(bp) → a(2)) ≤ w(a(1) → a(2)). By replacing every added edge
in C ′ with the corresponding bypass path, we get a cycle C with negative
weight, w(C) ≤ w(C ′) < 0. 	


We are now ready to show that one can think of weak interleaving OSP
mechanisms without loss of generality.

Theorem 5. Let M be an OSP extremal mechanism with implementation tree
T . For any node u ∈ T , if agent i = i(u) is not revealable at node u, then M
has no interleaving for agent i at u.
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The proof of Theorem 3 is completed below with the sufficiency.

Theorem 6. An extremal mechanism with weak interleaving is OSP.

4 Two-Way Greedy Algorithms

We reiterate that our characterization does not require costs to be positive;
so it holds true for negative costs, that is, valuations. We will then now talk
simply about type when we refer to the agents’ private information, be it costs
or valuations. We will also sometimes use the terminology of in-query (out-query,
respectively) to denote a bottom (top) query for costs and a top (bottom) query
for valuations.

Definition 5 ((Anti-)Monotone Functions). We say that a function is
monotone (antimonotone, resp.) in the type if it is decreasing (increasing, resp.)
in the cost, and increasing (decreasing, resp.) in the valuation.

In this section, we translate our characterization into algorithmic insights
on OSP mechanisms and show a connection between their format and a certain
family of adaptive priority algorithms that they use. As a by-product, we show
the existence of a host of new mechanisms. We are able to provide the first
set of upper bounds on the approximation guarantee of OSP mechanisms, that
are independent from domain size (as in [8,9]) or assumptions on the designer’s
power to catch and punish lies (as in [10,11]), see Table 1. The table also contains
the new bounds we can prove on the approximation of OSP mechanisms, by
leveraging our algorithmic characterization (i.e., Theorems 7–10).

Table 1. Bounds on the approximation guarantee of OSP mechanisms. (The result
for CAs has been observed in [6]. The mechanisms for matroids also follows from
Corollary 2.)

Problem Bound

Known Single-Minded Combinatorial Auctions (CAs)
√

m ([17] + Corollary 1)

MST (& weighted matroids) 1 ([15] + Corollary 1)

Max Weighted Matching 2 ([2] + Corollary 1)

p-systems‡ p ([13] + Corollary 1)

Weighted Vertex Cover 2 ([5] + Corollary 1)

Shortest Path ∞ (Theorem 7)

Restricted Knapsack Auctions Ω(
√

n) (Theorem 8)

Asymmetric Restricted Knapsack Auctions (3 values)
√

n − 1 (Theorem 9)

Knapsack Auctions Ω(
√
lnn) (Theorem 10)

‡A p-system is a downward-closed set system (E, F) where there are at most p
circuits, that is, minimal subsets of E not belonging to F [13].

Immediate-Acceptance Auctions and Forward Greedy. Let us begin by
discussing forward greedy.
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Definition 6 (Forward Greedy). A forward greedy algorithm uses functions
g
(in)
i : R×R

k → R, k ≤ n−1, to rank the bids of the players and builds a solution
by iteratively adding the agent with highest rank if that preserves feasibility (cf.
Algorithm 1). A forward greedy algorithm is monotone if each g

(in)
i is monotone

in i’s private type (i.e., its first argument).

Algorithm 1: Forward greedy algorithm
1 Let b1, . . . , bn the input bids
2 P ← F (P is the set of all feasible solutions)
3 I ← ∅ (I is the set of infeasible agents, i.e., agents that cannot be included in

the final solution)
4 A ← N (A is the set of active or infeasible agents)
5 while |P| > 1 do

6 Let i = arg maxk∈A\I g
(in)
k (bk,bN\A)

7 if there are solutions S in P such that i ∈ S then
8 Drop from P all the solutions S such that i �∈ S (if any)
9 A ← A \ {i}

10 else
11 I ← I ∪ {i}
12 Return the only solution in P

A few observations are in order for Algorithm 1. Firstly, it is not too hard to
see that it will always return a solution (i.e., there will eventually be a unique
feasible solution in P). To see this consider the case in which (at least) two
solutions S, S′ are in P. Then there must exist an agent j such that j ∈ SΔS′,
Δ denoting the symmetric difference between sets. This means that j ∈ A \ I
and the forward greedy algorithm will decide in the next steps whether j is part
of the solution or not (and consequently whether to keep S or S′). Secondly,
we stress how forward greedy algorithms belong to the family of adaptive pri-
ority algorithms [4]. At Line 6, Algorithm 1 (potentially) updates the priority
as a function of the bids of those bidders who have left the auction (i.e., that
are not active anymore). A peculiarity of the algorithm (to do with its OSP
implementation) is that the adaptivity does not depend on bidders who despite
their high priority cannot be part of the eventual solution (i.e., the agents we
add to I).2 This distinction would not be necessary if the problem at hand were
upward closed (i.e., if a solution S is feasible then any S′ ⊃ S would be in F
too). Thirdly, a notable subclass of forward greedy algorithms are fixed-priority
algorithms, where Line 6 and the while loop are swapped (and priority functions
only depend on the agents’ types). (These algorithms do not need to keep record

2 Note that a syntactically (but not semantically) alternative definition of forward
greedy algorithms could do without I by requiring an extra property on the priority
functions (i.e., adaptively floor all the priorities of infeasible players).
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of I either.) This algorithmic paradigm has been applied to different optimiza-
tion problems (e.g., Kruskal’s Minimum Spanning Tree (MST) algorithm [15]).
We define Immediate-Acceptance Auctions (IAAs) as mechanisms using only
in-queries.

Corollary 1. An IAA that uses algorithm f is OSP if and only if f is monotone
forward greedy.

We note how all fixed-priority algorithms are OSP but not all OSP mecha-
nism must use a fixed-priority algorithm. In fact, for a fixed-priority algorithm
the sufficiency proof alone would go through; the second parameter of the pri-
ority functions is only needed for the opposite direction.

Algorithm 2: Reverse greedy algorithm
1 Let b1, . . . , bn the input bids
2 P ← F (P is the set of all feasible solutions)
3 I ← ∅ (I is the set of in agents, i.e., those that cannot be dropped)
4 A ← N (A is the set of active or in agents)
5 while |P| > 1 do

6 Let i = arg maxk∈A\I g
(out)
k (bk,bN\A)

7 if there are solutions S in P such that i �∈ S then
8 Drop from P all the solutions S such that i ∈ S (if any)
9 A ← A \ {i}

10 else
11 I ← I ∪ {i}
12 Return the only solution in P

It is important to compare the result above with [20, Footnote 15], where it is
observed how the strategic properties of forward and reverse greedy algorithms
are different. The remark applies to auctions where these algorithms are aug-
mented by the so-called threshold payment scheme. Our result shows that there
exist alternative OSP payment schemes for this important algorithmic design
paradigm.

Deferred-Acceptance Auctions and Reverse Greedy. Another algorithmic
approach that can be used to obtain OSP mechanisms is reverse greedy (see
Algorithm 2), that is, having an out-priority function that is antimonotone with
each agent’s type and drops agents accordingly. In its auction format, this is
known as Deferred-Acceptance Auctions (DAAs), see, e.g., [20].

Definition 7 (Reverse Greedy). A reverse greedy algorithm uses functions
g
(out)
i : R × R

k → R, k ≤ n − 1, to rank the bids of the players and iteratively
excludes the player with highest rank (if feasible) until only one solution is left
(cf. Algorithm 2). A reverse greedy algorithm is antimonotone if each g

(out)
i is

antimonotone in i’s private type (i.e., its first argument).
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Similarly to the case of forward greedy, the algorithm need not use I for
downward-closed problems (i.e., every subset of a feasible solution is feasible as
well). Incidentally, this is the way it is discussed in [7].

Corollary 2 ([20]). A DAA using algorithm f is OSP if and only if f is anti-
monotone reverse greedy.

Algorithm 3: Two-way greedy algorithm
1 Let b1, . . . , bn the input bids
2 P ← F (P is the set of all feasible solutions)
3 I ← ∅ (I is the set of infeasible and in agents)
4 A ← N (A is the set of all agents that are active or infeasible or in)
5 while |P| > 1 do

6 Let i(in) = arg maxk∈A\I g
(in)
k (bk,bN\A)

7 Let i(out) = arg maxk∈A\I g
(out)
k (bk,bN\A)

8 Let i be the agent corresponding to

max
{
g
(in)

i(in)(bi(in) ,bN\A), g
(out)

i(out)(bi(out) ,bN\A)
}

9 if i = i(in)∧ there are solutions S in P such that i ∈ S then
10 Drop from P all the solutions S such that i �∈ S (if any)
11 A ← A \ {i}
12 else if i = i(out)∧ there are solutions S in P such that i �∈ S then
13 Drop from P all the solutions S such that i ∈ S (if any)
14 A ← A \ {i}
15 else
16 I ← I ∪ {i}
17 Return the only solution in P

It is convenient to discuss the relative power of forward and reverse greedy
algorithms. We now know from Corollaries 1 and 2 that they are strategically
equivalent. Algorithmically, however, there are some differences. There are algo-
rithms and problems, such as, Kruskal algorithm for MST, where we can take
the reverse version of forward greedy (e.g., for MST, start with the entire edge
set, go through the edges from the most expensive to the cheaper, and remove
an edge whenever it does not disconnect the graph) without any consequence
to the approximation guarantee. For the minimum spanning tree problem (and,
more generally, for finding the minimum-weight basis of a matroid), the reverse
greedy algorithm is just as optimal as the forward one. In general (and even for,
e.g., bipartite matching), the reverse version of a forward greedy algorithm with
good approximation guarantee can be bad [7].

OSP Mechanisms and Two-Way Greedy. We show that the right algorith-
mic technique for OSP is a suitable combination of forward and reverse greedy.
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Definition 8 (Two-way Greedy). A two-way greedy algorithm uses functions
g
(in)
i : R×R

k → R and g
(out)
i : R×R

k → R, k ≤ n− 1, for each agent i, to rank
the bids, and iteratively and greedily includes (if highest priority is defined by
g(in)) or excludes (if highest priority is defined by g(out)) whenever possible the
player with the highest rank until one feasible solution is left (cf. Algorithm 3).
A two-way greedy is all-monotone if each g

(in)
i is monotone in i’s private type

and g
(out)
i is antimonotone in i’s private type (i.e., their first argument).

To fully capture the strategic properties of two-way greedy algorithms, we
need to define one more property for which we need some background defi-
nitions. Consider the total increasing3 ordering ϕ of the 2

∏
i |Di| functions4

{g
(�)
i (b,b)}i∈N,b∈Di,b∈D−i,�∈{in,out} used by a two-way greedy algorithm. Given

ϕ� = g
(�)
i (bi,bN\A�

), the �-th entry of ϕ, we let D≺
j (�) (D�

j (�), respectively)

denote the set of types b ∈ Dj such that g
(�)
j (b,bN\A) > ϕ� (g(�)j (b,bN\A) < ϕ�,

respectively) with A ⊇ A� (A ⊆ A�, respectively). Moreover, we add bi (the
bid defining ϕ�) to D≺

i (�). In words, once in the ordering we reach the �-th
entry for a certain agent type and a given “history” (i.e., bN\A�

) with D≺
j (�)

we denote all the types that the algorithm has already explored for agent j at
this point (that is, for a compatible prior history bN\A�

with A ⊇ A�). Simi-
larly, D�

j (�) denotes those types in Dj that are yet to be considered from this
history onwards. Finally, for d ∈ {in, out} we let d be a shorthand for the other
direction.

Definition 9 (Interleaving Algorithm). We say that a two-way greedy algo-
rithm is interleaving if for each i and A ⊆ N the following occurs. For each
ϕ� = g

(d)
i (b,bN\A) such that for some A′ ⊆ A it holds g

(d)
i (b′,bN\A′) = ϕ�′ with

b′ ∈ D�
i (�) (and then �′ > �) we have g

(�)
i (x,bN\A′) > g

(�)
j (y,bN\A′) for each

y ∈ D�
j (�′) and for all (but at most one) x in D�

i (�′) (� ∈ {in, out}).

The definition above captures in algorithmic terms the weak interleaving
property of extensive-form implementations. Whenever there is a change of direc-
tion (from d to d) for a certain agent i and two compatible histories (cf. condition
A′ ⊆ A) then it must be the case that i is revealable and all the other unexplored
types (but at most one) must be explored next.

Example 1 (Interleaving Algorithm). Consider a setting with three agents, called
x, y and z. The valuation domain is the same for all the agents and has maximum
tmax and minimum tmin. Consider the two-way greedy algorithm with the fol-
lowing ordering ϕ: g

(in)
x (tmax) > g

(in)
y (tmax) > g

(out)
z (tmin) > g

(out)
y (tmin) > . . .

(where the second argument is omitted since it is ∅). Let us focus on ϕ2 =
3 For notational simplicity, we here assume that there are not ties between the priority

functions.
4 The algorithm must not necessarily have a definition for the priority functions for

all the combinations of type/history as some might never get explored. In this case,
we set all the undefined entries to sufficiently small (tie-less, for simplicity) values.
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g
(in)
y (tmax). Here D≺

x (2) and D≺
y (2) is {tmax} (as it has been already considered

for both agents) whilst D�
x (2) and D�

y (2) is equal to the original domain but
tmax. For z, instead, D≺

z (2) = ∅ and D�
z (2) is still the original domain. At ϕ4

there is a change of direction for agent y. The two-way greedy is interleaving if
the domain has only three types (since there are no constraints on the in/out
priority for third type in the domain of y). For larger domains, instead, we need
to look at the next entries of ϕ to ascertain whether the algorithm is interleaving
or not.

Corollary 3. A mechanism using algorithm f is OSP if and only if f is an
all-monotone interleaving two-way greedy algorithm.

Given the corollary above, we will henceforth simply say two-way greedy
(algorithm) and avoid stating the properties of all-monotonicity and interleaving.
We next analyse the approximation guarantee of two-way greedy algorithms,
whilst a comparison with forward/reverse greedy is deferred to the full version.

Approximation Guarantee of Two-Way Greedy Algorithms. We next
prove that the approximation ratio of two-way greedy algorithms is unbounded
in set systems where we want to output the solution with minimum social cost
for some (minimal) structure of F . Examples include the shortest path problem.
For such problems, a two-way greedy algorithm must commit immediately to a
solution after the first decision in either Line 10 or 13.

Theorem 7 (Social Cost). For any ρ ≥ 1, there exists a set system such that
no two-way greedy algorithm returns a ρ-approximation to the optimal social
cost, even if there are only two feasible solutions and four agents.

We now consider the case where the players have valuations and we are
interested in maximizing the social welfare. We call this setup where no fur-
ther assumption on the structure of the feasible solutions in F can be made, a
restricted knapsack auction problem.

Theorem 8 (Social Welfare). There exists a set system for which any two-
way greedy algorithm has approximation Ω(

√
n) to the optimal social welfare,

even if there are only two feasible solutions.

Interestingly the result above uses a so-called asymmetric instance [7] where one
solution is a singleton and the other is comprised of all the remaining bidders.
We now prove that the analysis above is tight at least for three-value domains.

Theorem 9. There is a
√

n − 1-approximate forward greedy algorithm for
the asymmetric restricted knapsack auctions, when bidders have a three-value
domain {tmin, tmed, tmax}.

We now turn our attention to downward-closed set systems for social welfare
maximization. This is a generalization of the setting studied in [7], called knap-
sack auctions : There are n bidders and m copies of one item; each bidder has
a private valuation vi to receive at least si copies of the item, si being public
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knowledge. A solution is feasible if the sum of items allocated to bidders is at
most m. The objective is social welfare maximization. The authors of [7] give a
O(ln m)-approximate DAA/reverse greedy algorithm and prove a lower bound
of lnτ m, for a positive constant τ , limited to DAA/reverse greedy. We next show
that the upper bound is basically tight for the entire class of OSP mechanisms.

Theorem 10 (Social Welfare Downward-Closed Set Systems). There is
a downward-closed set system for which every two-way greedy algorithm has
approximation Ω(

√
ln n) to the optimal social welfare.

5 Conclusions

OSP has attracted lots of interest in computer science and economics, see, e.g.,
[6,8–11,16,19]. Our work can facilitate the study of this notion of incentive-
compatibility for imperfectly rational agents. Just as the characterization of
DAAs in terms of reverse greedy [20] has given the first extrinsic reason to study
the power and limitations of these algorithms [7,12], we believe that our charac-
terization of OSP in terms of two-way greedy will lead to a better understanding
of this algorithmic paradigm. In this work, we only began to investigate their
power and much more is left to be done. For example, different optimization
problems and objective functions could be considered. Moreover, whilst in gen-
eral OSP mechanisms do not compose sequentially, see, e.g., [3], we could study
under what conditions two-way greedy algorithms compose.
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Abstract. We consider a Bayesian persuasion problem where the sender
tries to persuade the receiver to take a particular action via a sequence
of signals. This we model by considering multi-phase trials with differ-
ent experiments conducted based on the outcomes of prior experiments.
In contrast to most of the literature, we consider the problem with con-
straints on signals imposed on the sender. This we achieve by fixing some
of the experiments in an exogenous manner; these are called determined
experiments. This modeling helps us understand real-world situations
where this occurs: e.g., multi-phase drug trials where the FDA deter-
mines some of the experiments, start-up acquisition by big firms where
late-stage assessments are determined by the potential acquirer, multi-
round job interviews where the candidates signal initially by presenting
their qualifications but the rest of the screening procedures are deter-
mined by the interviewer. The non-determined experiments (signals) in
the multi-phase trial are to be chosen by the sender in order to persuade
the receiver best. With a binary state of the world, we start by deriv-
ing the optimal signaling policy in the only non-trivial configuration of
a two-phase trial with binary-outcome experiments. We then generalize
to multi-phase trials with binary-outcome experiments where the deter-
mined experiments can be placed at arbitrary nodes in the trial tree.
Here we present a dynamic programming algorithm to derive the opti-
mal signaling policy that uses the two-phase trial solution’s structural
insights. We also contrast the optimal signaling policy structure with
classical Bayesian persuasion strategies to highlight the impact of the
signaling constraints on the sender.

Keywords: Information design · Bayesian persuasion · Signaling
games

1 Introduction

Information design studies how informed agents (senders) persuade uninformed
agents (receivers) to take specific actions by influencing the uninformed agents’
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beliefs via information disclosure in a game. The canonical Kamenica-Gentzkow
model [16] is one where the sender can commit to an information disclosure policy
(signaling strategy) before learning the true state. Once the state is realized, a
corresponding (randomized) signal is sent to the receiver. Then, the receiver
takes an action, which results in payoffs for both the sender and the receiver.
Senders in information design problems only need to manipulate the receivers’
beliefs with properly chosen signals. The manipulated beliefs will create the right
incentives for the receiver to spontaneously take specific actions that benefit the
sender (in expectation). In (classical) mechanism design, however, the story is
different: the designer is unaware of the agents’ private information, and the
agents communicate their private information to the designer, who then has
to provide incentives via (monetary) transfers or other means. The flexibility
afforded by information design that allows the sender to benefit from information
disclosure without implementing utility-transfer mechanisms has led to greater
applicability of the methodology: various models and theories can be found in
survey papers such as [3] and [15].

Our work is motivated by many real-world problems where persuasion
schemes are applicable, but the sender is constrained in the choice of signals avail-
able for information design. Specifically, we are interested in problems that are
naturally modeled via multi-phase trials where the interim outcomes determine
the subsequent experiments. Further, we insist that some of the experiments are
given in an exogenous manner. This feature imposes restrictions on the sender’s
signaling space, and without it, we would have a classical Bayesian persuasion
problem with an enlarged signal space. Our goal is to study the impact of such
constraints on the optimal signaling scheme, and in particular, to contrast it
with the optimal signaling schemes in classical Bayesian persuasion.

The following motivating example describes a possible real-world scenario.

Example 1 (Motivating example - Acquiring funds from a venture capital firm).
We consider a scenario where a start-up is seeking funds from a venture capital
firm. The process for this will typically involve multiple rounds of negotiation and
evaluation: some of these will be demonstrations of the start-up’s core business
idea, and the others will be assessments by the venture capital firm following their
own screening procedures. The start-up will have to follow the venture capital
firm’s screening procedures but chooses its product demonstrations. Based on
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Fig. 1. Example of a negotiation process – a startup vs. a venture capital firm.
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these stipulations, the start-up needs to design its demonstrations to maximize
its chance of getting funded.

In the example above, the start-up (sender) has to generate an informa-
tion disclosure scheme to get the desired funds from the venture capital firm
(receiver). Then the screening procedures set by the venture capital firm are
analogous to our determined experiments, and the demonstrations carried out
by the start-up are the (sender) designed experiments. For example, in Fig. 1 we
present one plausible interaction where the start-up company designs demon-
strations A, B, and C (circles in the figure) and the venture capital firm has pre-
determined screening examinations W, X, Y, and Z (rectangles in the figure).
Whereas we have illustrated this example via a balanced tree, if we have an
unbalanced tree owing to the receiver deciding in the middle, we can modify it
to a balanced tree by adding the required number of dummy stages.

The sender’s reduced flexibility on her signaling strategies under some prede-
termined experiments with arbitrary positions and informativeness differentiates
our work from the growing literature on dynamic information design. Our model
considers a problem with the following features: a static state space, a sequential
information disclosure environment, and a signaling space restricted by some
exogenous constraints whose harshness may depend on the proposed singling
schemes. Models with a static state space, an unrestricted signal space but a vari-
ety of sequential information disclosure environments have been studied to cap-
ture features in different real-world problems: e.g., with multiple senders [12,19],
with costly communication [14,22], allowing for sequential decision making [10],
or with partial commitment [1,22]. Models with dynamic states and sequen-
tial information disclosure environments are usually studied under an informed
sender with the knowledge of dynamically changing state(s); a variety of works in
this category lie in state change detection [9,11] or routing games [21]. Although
several works [7,13,18] also consider constrained signaling schemes, these works
either consider the signal space to be smaller than the action space [7,13] or
consider a noisy signaling environment [18]. Models with exogenous informa-
tion [4,5,17], can be viewed as sequential information disclosure problems with
exogenous determined experiments placed in determined phases. The sequential
information disclosure in our model, which actually enlarges the signal space,
makes our work different from above works. To keep the focus of the paper
on sequential trials, we discuss the broader literature on constrained senders,
algorithmic information design, and works related to the receiver’s experiment
design1 in our online version [23].

According to the motivating example illustrated in Fig. 1, the persuasion
problem considers a sequence of experiments where experiments further along
in the tree depend on the outcomes of previous phases. The experiment to be
run in each phase is either exogenously determined or chosen by the sender. In
the game, the sender chooses designed experiments with knowledge of the prior,
the determined experiments, and the receiver’s utility function, but before the

1 See Section 5 in [23] for details.
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state of the world is realized. After the sender commits to the experiments (i.e.,
the signaling strategy), the state of the world is realized, and a specific sequence
of experiments is conducted based on the realization of the underlying random
variables. The receiver then takes an action depending on the entire sequence of
outcomes. The prior, the sender’s and receiver’s utility functions, the determined
experiments, and the designed experiments (after the sender finalizes them) are
assumed to be common knowledge. We study this problem for binary states of the
world, first for two-phase binary-outcome trials, and then generalized to multi-
phase binary-outcome trials. We then generalize to non-binary experiments (still
with an underlying binary state space). In the online version [23] we add games
with an additional stage where the receiver moves before the sender to decide
some or all of the determined experiments, perhaps with some constraints.

Contributions: The main contributions of this work are:

1. To the best of our knowledge, within the multi-phase Bayesian persuasion
framework, we are the first to study the design of sender’s signaling schemes
with exogeneously determined experiments in arbitrary positions. Our results
highlight the difference between “exogenously determined experiments” and
“exogenously given information” in the dynamic information design, where
the former gives greater flexibility and allows for more heterogeneity.

2. We explicitly solve the optimal signaling scheme in two-phase trials. Moreover,
using structural insights gained from two-phase trials, we present a dynamic
programming algorithm to derive the optimal signaling in general multi-phase
trials via backward iteration.

3. We analyze the impact of constraints on the sender via the determined exper-
iments by contrasting the performance with the classical Bayesian persua-
sion setting and when using classical Bayesian persuasion optimal signaling
schemes when the sender is constrained. As a part of this, we provide a suffi-
cient condition for when a sequential trial is equivalent to classical Bayesian
persuasion with a potentially enlarged signal space.

2 Problem Formulation

There are two agents, a sender (Alice) and a receiver (Bob), participating in the
game. We assume binary states of the world, Θ = {θ1, θ2}, with a prior belief
p := P(θ1) known to both agents. The receiver has to take an action Φ ∈ {φ1, φ2}
which can be thought of as a prediction of the true state. We assume that the
receiver’s utility is given by ur(φi, θj) = 1{i=j} for all i, j ∈ {1, 2}. To preclude
discussions on trivial cases and to simplify the analysis, we assume that the
sender always prefers the action φ1, and her utility is assumed to be us(φ1, θi) = 1
and us(φ2, θi) = 0 for all i ∈ {1, 2}.

Before the receiver takes his action, a trial consisting of multiple phases will
be run, and the outcome in each phase will be revealed to him. In each phase,
one experiment will be conducted, which is chosen according to the outcomes in
earlier phases. Hence, the experiment outcomes in earlier phases not only affect
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the interim belief but also influence the possible (sequence of) experiments that
will be conducted afterward. In the most sender-friendly setup where the sender
can choose any experiment in each phase without any constraints, the problem is
equivalent to the classical Bayesian persuasion problem with an enlarged signal
space. However, when some experiments are pre-determined conditional on a set
of outcomes, the sender must take these constraints into account to design her
optimal signaling structure.

To present our results on the influence of multiple phases on the sender’s sig-
naling strategy, we start with a model of two-phase trials with binary-outcome
experiments in the rest of this section. We then analyze the optimal signaling
strategy of this model in Sect. 3. After that, we will introduce the general model
of multiple-phase trials with binary-outcome experiments and propose a system-
atic approach to analyze the optimal signaling structure in Sect. 4.

2.1 Model of Binary-Outcome Experiments in Two-Phase Trials

There are two phases in the trial: phase I and phase II. Unlike in the classical
Bayesian persuasion problem, our goal is for the sender to not have the ability
to choose the experiments to be conducted in both phases of the trial. We will
start by assuming that the sender can choose any binary-outcome experiment
in phase I, but both the phase-II experiments (corresponding to the possible
outcomes in phase I) are determined. Formally, in phase I, there is a binary-
outcome experiment with two possible outcomes ω1 ∈ Ω1 = {ωA, ωB} and each
outcome corresponds to a determined binary-outcome experiment, EA or EB ,
which will be conducted in phase II, respectively. The sender can design the
experiment in phase I via choosing a probability pair (p1, p2) ∈ [0, 1]2, where
pi = P(ωA|θi). Once the probability pair (p1, p2) is chosen, the interim belief of
the true state P(θ1|ω1) can be calculated (while respecting the prior) as follows:

P(θ1|ωA) =
pp1

pp1 + (1 − p)p2
and P(θ1|ωB) =

p(1 − p1)
p(1 − p1) + (1 − p)(1 − p2)

. (1)

On the other hand, the phase-II experiments are given in an exogenous man-
ner beyond the sender’s control. In phase II, one of the binary-outcome experi-
ments, E ∈ {EA, EB} will be conducted according to the outcome, ωA or ωB of
the phase-I experiment. If ωA is realized, then experiment EA will be conducted
in phase II; if ωB is realized, the experiment EB will be conducted in phase
II. Similarly, we can denote the possible outcomes ω2 ∈ Ω2X = {ωXP , ωXF }
when the experiment EX is conducted, where notation P, F can be interpreted
as passing or failing the experiment. Likewise, the phase-II experiments can be
represented by two probability pairs E1 = (qA1, qA2) and E2 = (qB1, qB2), where
qXi denotes the probability that the outcome ωXP is realized conditional on the
experiment EX and the state θi, i.e., qXi = P(ωXP |θi, EX).

In real-world problems, regulations, physical constraints, and natural limits
are usually known to both the sender and the receiver before the game starts.
Hence, we assume that the possible experiments E1, E2 that will be conducted
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in phase II are common knowledge. Given the pairs (qA1, qA2), (qB1, qB2), the
sender’s objective is to maximize her expected utility by manipulating the pos-
terior belief (of state θ1) in each possible outcome of phase II. However, since the
phase II experiments are predetermined, the sender can only indirectly manipu-
late the posterior belief by designing the probability pair (p1, p2) of the phase-I
experiment. As the sender prefers the action φ1 irrespective of the true state, her
objective is to select an optimal probability pair (p1, p2) to maximize the total
probability that the receiver is willing to take action φ1. Recalling the receiver’s
utility function discussed above, the receiver’s objective is to maximize the prob-
ability of the scenarios where the action index matches the state index. Thus,
the receiver will take action φ1 if the posterior belief P(θi|ω) ≥ 1

2 and take action
φ2 otherwise. After taking the receiver’s objective into the account, the sender’s
optimization problem can be formulated as below:

max
p1,p2

∑

ω2∈{ωAP ,ωAF ,ωBP ,ωBF }
P(φ1, ω2) (2)

s.t.
(
P
(
θ1|ωAY , qA1, qA2, p1, p2

) − 1
2

)(
P(φ1, ωAY ) − 1

2

)
≥ 0 ∀ Y ∈ {P, F},

(
P
(
θ1|ωBY , qB1, qB2, p1, p2

) − 1
2

)(
P(φ1, ωBY ) − 1

2

)
≥ 0 ∀ Y ∈ {P, F},

P(ωAP ) = pp1qA1 + (1 − p)p2qA2,

P(ωBP ) = p(1 − p1)qB1 + (1 − p)(1 − p2)qB2,

P(ωAP ) + P(ωAF ) = pp1 + (1 − p)p2,
P(ωBP ) + P(ωBF ) = p(1 − p1) + (1 − p)(1 − p2),
P(φ1, ω2) ∈ [0, 1] ∀ω2 ∈ {ωAP , ωAF , ωBP , ωBF }, p1, p2 ∈ [0, 1].

In the sender’s optimization problem (2), the first two inequalities are constraints
of incentive-compatibility (IC) that preclude the receiver’s deviation. The IC
constraints can be satisfied when both terms in the brackets are positive or neg-
ative. That is to say; the sender can only persuade the receiver to take action
φ1/φ2 when the posterior belief (of θ1) is above/below 0.5. While we have writ-
ten the IC constraints in a nonlinear form for compact presentation, in reality
they’re linear constraints. The next four equations are constraints that make
the sender’s commitment (signaling strategy) Bayes plausible2. Hence, there are
4 IC constraints and 4 Bayes-plausible constraints in the optimization problem
for a two-phase trial. However, in an N -phase trial, both the number of IC con-
straints and the number of Bayes-plausible constraints will expand to 2N each.
Although the linear programming (LP) approach can solve this optimization
problem, solving this LP problem in large Bayesian persuasion problems can be
computationally hard [8]. Hence, instead of solving this optimization problem
via an LP, we aim to leverage structural insights discovered in the problem to
derive the sender’s optimal signaling structure.

2 A commitment is Bayes-plausible [16] if the expected posterior probability of each
state equals its prior probability, i.e.,

∑
ω∈Ω P(ω)P(θi|ω) = P(θi).
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We end this section by emphasizing that this model is the only non-trivial
two-phase trial configuration when determined and designed experiments coex-
ist. In other configurations such that some of the phase-II experiments can be
designed by sender, the model can be reduced to a corresponding single-phase
trial in the sense that the single-phase trial will yield the same payoffs for both
sender and receiver when they play optimally. (Note that the reduced model
may have a different prior if the experiment in phase-I is determined).

3 Binary-Outcome Experiments in Two-Phase Trials

In this section the sender’s optimization problem presented in (2) Sect. 2.1, is
solved starting with the simplest non-trivial case. There are only two phases
in the trial studied here, and from this we will develop more insight into how
different types of experiments (determined versus sender-designed) influence the
optimal signaling strategy of the sender. To be more specific, we will analyze
how two determined experiments (in phase II) and one sender-designed exper-
iment (in phase I) will impact the sender’s optimal signaling strategy. Before
we present the general case, we discuss a subset class of two-phase trials that
are similar to single-phase trials. In this class of two-phase trials, in one of the
phase-II experiments, called a trivial experiment, the outcome distribution is
independent of the true state. Trivial experiments [2], also called (Blackwell)
non-informative experiments in some literature, are frequently used as bench-
marks to compare the agents’ expected utility change under different signaling
schemes/mechanisms, e.g., [20–22]. This two-phase model with a trivial exper-
iment tries to capture real-world problems with one actual (and costly) exper-
iment, e.g., clinical trials, venture capital investments, or space missions. Since
the experiment is costly, a screening procedure is provided to decide whether
it is worth conducting the experiment. We will then analyze the optimal sig-
naling strategy in the general scenario, where both experiments in phase II are
non-trivial.

3.1 Experiments with Screenings

We start by analyzing the sender’s optimal strategy (signaling structure) in a
simple scenario where there is one non-trivial experiment conducted in phase
II. The sender’s authority on choosing the probability pair (p1, p2) controls the
screening process. To avoid any ambiguity, we first define what a trivial experi-
ment is.

Definition 1. An experiment E is trivial if the distribution of its outcomes �E

is independent of the state of the world: �E = �E|θi
for all θi ∈ Θ.

When a trivial experiment (in phase II) is conducted, the posterior belief of
the state stays the same as the interim belief derived in (1). When there exists a
trivial experiment in the two phase-II trial options, then Lemma 1 states that the
sender and the receiver’s expected utility under the optimal signaling strategy
is the same as in the (single-phase) classical Bayesian persuasion problem.
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Lemma 1. When the state space is binary, both sender and receiver’s expected
utilities are the same in the following two Bayesian persuasion schemes under
each scheme’s optimal signaling strategy:

1. Bayesian persuasion in a single-phase trial,
2. Bayesian persuasion in a two-phase trial with a sender-designed phase-I

experiment and a trivial experiment in phase II.

In the single-trial classical Bayesian persuasion setting, the optimal signaling
strategy only mixes the two possible states in one outcome (e.g., when the pros-
ecutor claims the suspect is guilty). On the other outcome, the sender reveals
the true state with probability one (e.g., when the prosecutor says the suspect is
innocent). When there is a trivial experiment in phase II, the other experiment
(supposing that it will be conducted at outcome ωB) will be rendered defunct by
the sender’s choice of experiments in phase I. This phenomenon occurs because
the sender can always choose to reveal the true state when the non-trivial exper-
iment is to be conducted, i.e., by setting P(θ1|EB) = 1 or P(θ2|EB) = 1; and
the classical Bayesian persuasion strategy can be replicated. In essence, having
a trivial experiment in the phase-II trial does not constrain the sender.

3.2 Assumptions and Induced Strategies

Next we detail the optimal signaling strategy in our two-phase trial setting with
general binary-outcome experiments. To aid in the presentation and to avoid
repetition, we make two assumptions without loss of generality and introduce
several explanatory concepts before the analysis.

Lemma 2. We can make the following two assumptions WLOG.

1. The probability of passing a phase-II experiment under θ1 is greater than or
equal to the probability under θ2, i.e., qA1 ≥ qA2 and qB1 ≥ qB2.

2. When the true state is θ1, the experiment conducted when outcome ωA occurs
is more informative3 than the experiment conducted when outcome ωB occurs,
i.e., qA1 ≥ qB1.

The sender’s strategy consists of the following: choice of phase-I experiment
parameters (p1, p2) and the persuasion strategies in phase-II for each outcome
of the phase-I experiment. To understand better the choices available to the
sender and her reasoning in determining her best strategy, we will study the
possible persuasion strategies in phase-II; these will be called induced strategies
to distinguish them from the entire strategy. Given the assumptions above on
phase-II experiments, it’ll turn out we can directly rule out one class of induced
strategies from the sender’s consideration. The other set of induced strategies
will need careful assessment that we present next.

3 In terms of the Blackwell informativeness from [6].
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Claim. When the inequalities of the assumption qA1 ≥ qA2 and qB1 ≥ qB2 in
Lemma 2 are strict, for any phase-II experiment EX ∈ {EA, EB}), taking action
φ1 when EX fails but taking action φ2 when EX passes is not an incentive
compatible strategy for the receiver for any interim belief P(θ1|EX) ∈ [0, 1].

The above claim can be verified by comparing the posterior belief P(θ1|ω) of
each possible outcome ω ∈ {ωXP , ωXF } and the receiver’s corresponding best
response. Therefore, upon the outcome of a phase-I experiment being revealed
(to be either ωA or ωB), the sender only has three different classes of “induced
strategies” by which to persuade the receiver in phase II:

(αX) Suggest action φ1 only when the phase-II experiment outcome is a pass;
(βX) Suggest action φ1 no matter the result of phase-II experiment; and
(γX) Suggest action φ2 irrespective of the result of phase-II experiment,
which is equivalent to not persuading the receiver to take the sender-preferred
action.

Given these three classes of induced strategies and the freedom to choose
different induced strategies based on the phase-I experiment’s outcome, the
sender can use any combination of these 32 choices to form a set of strategies
S. To simplify the representation, we use (cA, dB), c, d ∈ {α, β, γ} to represent
a “type of strategy” of the sender. Note that to specify a strategy S within
the set of strategies, i.e., S ∈ S, the probability pair (p1, p2) has to be deter-
mined first. Before we analyze the different strategies, we discuss the relationship
between the given phase-II experiments, induced strategies, and the incentive-
compatibility requirements from the sender’s side (to avoid profitable deviations
by the receiver). To avoid ambiguity, hereafter, when we mention incentive com-
patibility/incentive compatible requirements/IC strategies, we mean the condi-
tion/requirements/strategies of a sender’s commitment satisfying the following
statement: for every possible realized signal under this commitment, the receiver
taking the sender-suggested action is incentive-compatible.

3.3 Constraints Given by Phase-II Experiments

By her choice of the experiment in phase I, the sender decides how to split the
prior into the interim beliefs for the two experiments available in phase-II. The
resulting interim-beliefs then lead to certain induced strategies at stage-II being
applicable, i.e., incentive compatible (for the receiver). In other words, the prob-
ability pair (p1, p2) must make each (applied) induced strategy yield the maxi-
mum utility for the receiver. These requirements constrain the sender’s choice of
(p1, p2), and the sender needs to account for the (reduced) choice while deciding
the split of the prior. Table 1 summarizes the impact in terms of the parameters
of the phase-I experiment via primary requirements on (p1, p2) driven by the
incentive compatibility while using each class of induced strategies. Hereafter,
when we use IC requirements without additional specification, we mean pri-
mary IC requirements. From the entries in the table, it is clear that the phase-II
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experiments (indirectly) limit the sender’s strategy selection where this limita-
tion arises due the receiver’s IC requirements for each induced strategy (when
that induced strategy is used).

With this in mind, the sender’s experiment design in phase I, essentially, is to
select between different combinations of these induced strategies such that each
induced strategy satisfies the constraint listed in Table 1. Hence, we next seek to
understand how these IC constraints collectively determine the sender’s strat-
egy selection. To answer this, we first discuss the relationship between induced
strategies, IC requirements, and the sender’s expected utility.

Table 1. IC requirements of the sender’s commitment based on the induced strategy

Induced strategy Primary IC requirement Induced strategy Primary IC requirement

αA p1 ≥ 1−p
p

qA2
qA1

p2 αB 1 − p1 ≥ 1−p
p

qB2
qB1

(1 − p2)

βA p1 ≥ 1−p
p

1−qA2
1−qA1

p2 βB 1 − p1 ≥ 1−p
p

1−qB2
1−qB1

(1 − p2)

γA p1 ≤ 1−p
p

qA2
qA1

p2 γB 1 − p1 ≤ 1−p
p

qB2
qB1

(1 − p2)

From the sender’s perspective, each induced strategy and its corresponding
signals provide a path to persuade (or dissuade) the receiver to take action φ1.
Since the sender’s objective is to maximize the probability that action φ1 is taken,
she would like to use the “most efficient”4 pair of induced strategies to persuade
the receiver5. To better understand the “efficiency” of induced strategies, we
evaluate each induced strategy under a given phase-II experiment EX :

• αX strategy: To persuade receiver to take action φ1 via this induced strat-
egy, the sender needs to ensure that P(θ1|ωXP ) ≥ 1

2 . Hence, the interim

belief P(θ1|EX) must satisfy P(θ1|EX) ∈
[

qX2
qX1+qX2

, 1−qX2
2−qX1−qX2

]
, otherwise a

commitment using αX induced strategy will never be incentive-compatible.
From the sender’s perspective, the most efficient strategy to persuade the
receiver using αX induced strategy is to design the phase-I experiment
such that P(θ1|EX) = qX2

qX1+qX2
. At this interim belief, the sender experi-

ences a relative expected utility 2qX1 (with respect to the prior). When
P(θ1|EX) ∈

(
qX2

qX1+qX2
, 1−qX2
2−qX1−qX2

)
, the sender’s marginal expected utility

when the interim belief increases is qX1 − qX2.
• βX strategy: To persuade receiver to take action φ1 with this induced strat-

egy the sender needs to ensure that both inequalities P(θ1|ωXP ) ≥ 1
2 and

P(θ1|ωXF ) ≥ 1
2 hold. Given the assumption in Lemma 2, namely qX1 ≥ qX2,

the only constraint that can be tight is P(θ1|ωXF ) ≥ 1
2 . Hence, IC com-

mitments using βX induced strategy exist only when the interim belief
P(θ1|EX) ≥ 1−qX2

2−qX1−qX2
. From the sender’s perspective, the most efficient

4 The efficiency of a strategy is defined as P(φ1|interim belief, the induced strategy used)
P(θ1|interim belief, the induced strategy used)

.
5 When the prior falls in the region where the optimal signaling strategy is non-trivial.
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strategy to persuade the receiver using a βX induced strategy is to design
the phase-I experiment such that P(θ1|EX) = 1−qX2

2−qX1−qX2
with the resulting

relative expected utility 1+ 1−qX1
1−qX2

. Unlike an αX induced strategy where the
sender still gets a positive utility gain when the interim belief increases, for
a βX induced strategy the sender’s marginal expected utility gain when the
interim belief increases is 0 when P(θ1|EX) > 1−qX2

2−qX1−qX2
.

• γX strategy: Since the sender suggests the receiver to take action φ2 in this
strategy, the sender’s expected utility is 0 when using this induced strategy.

According to the discussion above, it is clear that the sender will not use the
set of strategies corresponding to (γA, γB) unless the prior p = 0. Besides, we
know that different induced strategies provide different relative expected utility
to the sender. When induced strategies are used in the most efficient manner,
the relative expected utility under a αX induced strategy is at most 2qX1, and
the average expected utility under a βX induced strategy is at most 1 + 1−qX1

1−qX2
.

Since these two values capture the best scenario that the sender can achieve
by tailoring the interim belief under the given experiment, we define this pair
of ratios, (2qX1, 1 + 1−qX1

1−qX2
) as a function of (the given) experiment, denoted by

PerP (EX); this pair is called the persuasion potential.

Definition 2. Given an experiment EX = (qX1, qX2), the persuasion potential
of this experiment, PerP (EX), is the pair

(
2qX1, 1 + 1−qX1

1−qX2

)
.

To provide some insights on the importance and use of the persuasion potential
we preview Corollary 1. Corollary 1 states that the sender only uses induced
strategies in the most efficient manner, i.e., P(θ1|EX) = qX2

qX1+qX2
when an

induced strategy αX is used and P(θ1|EX) = 1−qX2
2−qX1−qX2

when an induced strat-
egy βX is used. Thus, the persuasion potential can simplify the sender’s search
for the optimal signaling strategy. When a particular induced strategy is used in
the most efficient manner described in the above parameter, the interim belief is
now determined. Therefore, the sender does not need to search for the optimal
signaling strategy from the whole set of IC strategies but only needs to search
from a small number of strategies that generate the particular interim beliefs.

3.4 Persuasion Ratio and the Optimal Signaling Structure

Since the sender wants to maximize the total probability of action φ1, she needs
to compare different sets of strategies formed by different pairs of induced strate-
gies. To compare each set of strategies, we introduce the persuasion ratio of a
set of strategies for a given value of the prior.

Definition 3. Given a set of incentive-compatible strategies S, e.g., S =
(cA, dB) with c, d ∈ {α, β, γ} which satisfying IC requirements, the persuasion
ratio of the set of strategies S is the maximum total probability of action φ1

is taken (under a strategy within the set) divided by the prior p, PR(S, p) =
maxS∈S

P(φ1|S)
p .
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Careful readers may notice that if we multiply the persuasion ratio with the
prior, the value will be the (maximum) expected utility the sender can achieve
from the given set of strategies. Since the sender’s expected utility is monotone
increasing in the prior p regardless of which set of strategies the sender adopts,
the persuasion ratio under a given prior can be viewed as the relative utility
gain this set of strategies can offer to the sender. Hence, given a specific prior,
if a set of strategies has a higher persuasion ratio with respect to another set of
strategies, the sender should use a strategy in the former instead of the latter.

According to this discussion, we can draw a persuasion ratio curve for each
set of strategies as the prior is varied in [0, 1]. Abusing notation, we represent the
persuasion ratio curve by PR(S). It may appear that an optimization needs to
be carried out for each value of the prior. However, structural insights presented
in the following two lemmas considerably simplify the analysis. Properties pre-
sented in Lemma 3 narrow down the space where the sender needs to search for
the optimal signaling strategy. This allows us to depict persuasion ratio curves
PR(S) for some basic strategies. On top of that, Lemma 4 provides a systematic
approach to derive persuasion ratio curves for all types of strategies.

Lemma 3. Given a type of strategy S and a prior p, there exists a (sender’s)
optimal strategy S ∈ S which satisfies one of the following two conditions:

1. At least one IC requirement of the constituent induced strategies is tight;
2. There is a signal that will be sent with probability 1 under S.

Before discussing the simplifications that Lemma 3 yields in terms of the key
properties for solving the problem, we give an intuitive outline of the proof of
Lemma 3. When the IC requirements of the two induced strategies are not tight
and both signals are sent with non-zero probability in a strategy S, the sender
can increase her expected utility by slightly raising the probability of the signal
with a higher persuasion ratio (and adjust the probability of the other signal to
respect the prior) to form a strategy S+. The sender can keep doing this ‘slight’
modification of her strategies until either one of the IC conditions is satisfied or
the signal is sent with probability one.

Given this lemma, the persuasion ratio curve of the following types of strate-
gies: (αA, γB), (βA, γB), (γA, αB), (γA, βB) can be determined immediately since
the IC requirement can never be tight for the γ class induced strategy. For the
remaining four types of strategies: (cA, dB), c, d ∈ {α, β}, the following lemma
aids in solving for the strategy meeting the persuasion ratio without a point-wise
calculation. As a preview of result of Lemma 5, once we derive the persuasion
ratio curve for each type of strategies via Lemma 4, we can immediate identify
the optimal signaling strategy by overlaying those curves in one figure.

Lemma 4. Given the persuasion ratio curves of the types of strategies (cA, γB)
and (γA, dB), denoted by PR((cA, γB), p) and PR((γA, dB), p), respectively, the
persuasion ratio curve of the set of incentive compatible strategies (cA, dB),
denoted by PR((cA, dB), p), is the generalized concave hull6 of the functions
6 If PR((cA, γB), ·) and PR((γA, dB), ·) were the same function f(·), then this would

be its convex hull.
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PR((cA, γB), p) and PR((γA, dB), p) when S(cA,dB)(p) �= ∅:

PR((cA, dB), p) = max
x,u,v∈[0,1],

xu+(1−x)v=p

xPR((cA, γB), u) + (1−x)PR((γA, dB), v)), (3)

where S(cA,dB)(p) is the set of IC strategies of (cA, dB) at p.

The proof of Lemma 4 uses the structure of the sender’s expected utility
when no γ induced strategy is used in the types of strategies employed. The
sender’s expected utility function under (cA, dB) at prior p can be represented
as a linear combination of her utility function under (cA, γB) at prior u and
her utility function under (γA, dB) at prior v, then the optimization problem of
solving the optimal phase-I experiment parameters (p1, p2) can be transformed
to the maximization problem in the statement of Lemma 4. As we have discussed
the means to determine each type of strategy’s persuasion ratio curve, Lemma 5
illustrates the persuasion ratio curve of the optimal signaling strategy.

Lemma 5. The persuasion ratio curve of the optimal signaling strategy PR∗(p)
is the upper envelope of the different types of strategies’ persuasion curves. Fur-
ther, the optimal signaling strategy (under a given prior) is the strategy that
reaches the frontier of the persuasion ratio curve (at that prior).

Since a higher persuasion ratio indicates a higher (sender’s) expected utility
for every given prior, the sender will choose the upper envelope of the per-
suasion curves of the different types of strategies. Because the set S(cA,dB)(p)
could be empty for some prior values with a corresponding persuasion ratio
PR(cA, dB), p) = 0, the main effort in proving Lemma 5 is to show the existence
of an incentive-compatible commitment on the frontier of the persuasion ratio
curve at every possible prior. Finally, once the persuasion ratio curve of the
optimal signaling strategy is determined, we can immediately infer an optimal
signaling strategy S∗ under a specific prior.

For a two-phase trial or to solve the last two phases of a trial with more
than two phases studied in Sect. 4, the following corollary can further simplify
the sender’s optimization procedure.

Corollary 1. Let Π∗(p) represents the optimal signaling strategy at prior p. If
P(φ1|Π∗(p)) < 1, then the following two statements are true:

1. When αX is used in Π∗(p), the interim belief is PΠ∗(p)(θ1|EX) = qX2
qx1+qX2

.
2. When βX is used in the optimal signaling strategy Π∗(p), the interim belief

is PΠ∗(p)(θ1|EX) = 1−qX2
2−qx1−qX2

.

With Corollary 1, the Eq. (3) in Lemma 4 reduces to a linear equation. Hence,
the comparison in Lemma 5 and the computation in Lemma 4 can be reduced
to a comparison of the (unique) corresponding IC strategies (if one exists) under
the interim belief listed in Corollary 1 for different types of strategies.
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3.5 Comparison with Classical Bayesian Persuasion Strategies

Given the optimal signaling strategy derived in Lemma 5, one natural follow-
up question is the quantification of the sender’s utility improvement obtained
by adopting the optimal signaling strategy in comparison to using strategies
structurally similar to the optimal strategies in classical Bayesian persuasion for
a binary state of the world. Owing the page limit, we directly define a class of
strategies structurally similar to the classical Bayesian persuasion strategy below
and provide the justification in our online version [23].

Definition 4. With binary states of the world, a (binary-state) Bayesian per-
suasion (BBP) strategy is a strategy that “mixes two possible states in one signal
and reveals the true state on the other signal”.

Given the model defined in Sect. 2.1, a BBP strategy is forced to use at
least one γX induced strategy7. Given a fixed type of strategy, e.g., (αA, γB),
an optimal BBP strategy using this type of strategy can be solved by the con-
cavification approach after the calculation of the sender’s expected utility under
interim beliefs. After solving the optimal BBP strategy of a given strategy type
via concavification respectively, the optimal BBP strategy is the strategy in the
set of {(αA, γB), (βA, γB), (γA, αB), (γA, βB)} which yields the highest expected
utility for the sender. Figure 2 plots the sender’s expected utility for the optimal
signaling strategy and the optimal BBP strategy under a given pair of phase-
II experiments: (qA1, qA2) = (0.8, 0.2), (qB1, qB2) = (0.7, 0.3). The blue line in
Fig. 2 is the benchmark of the sender’s maximum expected utility in a single-
phase scenario where the sender chooses the experiment. Note this would also
be the optimal performance if one of phase-II trials were changed to a triv-
ial experiment. As we can see, the sender’s expected utility is lowered owing
to the determined phase-II experiments. For low-priors, the optimal signaling
strategy derived in Sect. 3.4 and the optimal BBP strategy give the sender the
same expected utility8. However, as the prior increases, a utility gap between

Fig. 2. Sender’s utility under different problem settings and strategies (Color figure
online)

7 Because using either αX , βX requires a mixture of two possible states in one signal.
8 Because the optimal signaling strategy in the low-prior region is (αA, γB) here.
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the optimal signaling strategy derived in Sect. 3.4 and the optimal BBP strat-
egy appears and then increases until the receiver will take φ1 with probability
one. The utility gap starts when the optimal signaling strategy uses strategies
(αA, βB) or (αB , βA) which are not considered in BBP strategies.

4 Binary-Outcome Experiments in Multi-phase Trials

This section generalizes the structural results in Sect. 3 to multi-phase trials.
First, we generalize the model in Sect. 2.1 to multi-phase trials and then propose
a dynamic programming algorithm to solve for the optimal signaling strategy.
The state for the dynamic program will be the interim belief on the state of the
world that results at any node in the extensive-form delineation of the problem.
As the belief at each level is determined based on the actions in earlier stages (if
any), in the backward iteration procedure, we will determine the optimal choice
of experiments by the sender (if there is a choice) for any possible interim belief.
In this dynamic programming, there is only a terminal reward that arises from
the receiver’s action based on the outcome of the final trial and based on the
receiver’s resulting posterior beliefs.

4.1 Model of Binary-Outcome Experiments in Multi-phase Trials

There are N phases in a trial where one binary-outcome experiment will be
conducted in each phase. However, as in the two-phase-trial settings, the spe-
cific experiment conducted in each phase is determined by the earlier phases’
outcomes. Therefore, we can model an N -phase trial by a height-N binary tree
where each leaf node represents an outcome revealed to the receiver, and each
non-leaf node represents an experiment. With this binary tree, experiment Ei,j

represents the jth experiment to be conducted at level i. When j is odd, an exper-
iment Ei,j will be conducted only if the experiment Ei−1,(j+1)/2 is conducted
and passed. Similarly, when j is even, an experiment Ei,j will be conducted only
if the experiment Ei−1,j/2 is conducted but it fails. In this binary tree, some
experiments, e.g., Ei,j , are determined. However, some experiments, e.g., Ek,l,
can be designed by the sender; all the parameters are chosen before any experi-
ment is conducted and are common knowledge. In such experiments, the sender
can choose a probability pair, e.g., (pkl1, pkl2) ∈ [0, 1]2. In contrast to the model
defined in Sect. 2.1, here determined experiments and sender-designed experi-
ments can be at any level of the tree with the placement arbitrary but carried
out before the sender receives her signals. In other words, unlike the model in
Sect. 2.1, a sender may be able to design an experiment at final level (phase N)
owing to a determined experiment outcome at phase N − 1.

In this model, the prior, the experiments that are determined (their location
on the tree and their parameters), and the sender-designed experiments (their
location on the tree) are common knowledge. The sender has to design all her
experiments simultaneously and before the game starts (when the state is real-
ized); the designed experiments’ parameters are then revealed to the receiver
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(again before the game starts). Given the experiments designed by the sender
and the realized outcome of a sequence of experiments, the receiver will take an
action to guess the true state of the world. For simplicity of analysis, we keep
the sender and the receiver’s utilities the same as in Sect. 2. Then, the sender’s
objective is to jointly design the set of experiments that she has the flexibility
to choose to maximize her expected utility, which is nothing but the probabil-
ity of the receiver taking action φ1. Before proceeding, we point out that this
model can be easily generalized to unbalanced binary trees straightforwardly by
adding dummy nodes with determined trivial experiments defined in Sect. 3.1 to
construct an equivalent balanced binary tree.

4.2 Determined Versus Sender-Designed Experiments

Given the model, the sender can manipulate the phase-K interim belief only
when designing an experiment at phase K − 1. If an experiment at phase K − 1
is determined, then the phase-K interim belief is a function of interim belief
at phase K − 1. Therefore, figuring out how these two types of experiments,
determined and sender-designed experiments, will influence every given phase’s
interim belief is the key to solving for the optimal signaling strategy. We start by
noting that if the posterior belief at a leaf node is given, then the receiver’s action
is determined - he will take the action with the highest posterior probability
unless there is a tie, in which case he is indifferent and will follow the sender’s
recommendation. Therefore, we can use backward iteration and the principle of
optimality to determine the optimal signaling. We start by considering the last
phase’s experiments when the sender can design them.

Experiments at Phase N . Recall the result we have discussed in Sect. 3.2, a
determined experiment in the last phase (phase-II in Sect. 3.2) limits the sender’s
strategy choice to one of three induced strategies. Besides, the best scenario
that the sender can achieve via using these induced strategies (without violating
the IC requirement) is captured by the persuasion potential of the determined
experiment. However, when there is a sender-designed experiment at phase N
and the interim belief9 p̃ ≤ 1

2 , the sender can always design an experiment
which makes two states equally likely when this experiment passes and reveal
the less-preferred state (by sender) when it fails. If we cast this sender-designed
experiment in terms of a determined experiment, the sender-designed experiment
will have a persuasion potential (2, 2)10. Thus, no matter the type of experiment
at phase N , we can capture the sender’s optimal set of induced strategies via a
persuasion potential.

9 See the corresponding footnote in [23] for the discussion of the interim belief p̃ > 1
2
.

10 See the corresponding footnote in [23] for the detailed derivation.
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ALGORITHM 1: Dynamic programming approach for multi-phase trials

Input: The set of determined experiments ED, the binary tree structure
Output: The optimal persuasion ratio curve
1. For each experiment at phase N , EN,i i ∈ {1, ..., 2N}, solve its persuasion potential
Prep(EN,i)
2. For each experiment at phase N − 1, EN−1,i i ∈ {1, ..., 2N−1}, find the optimal
persuasion ratio curve using (Prep(EN,2i−1), P rep(EN,2i)).
3. K=N-2
4. while K > 0 do

For each experiment at phase K, EK,i i ∈ {1, ..., 2K}, find the optimal persuasion
ratio curve using equation (4) or Claim 2
K=K-1

end
5. Return the optimal persuasion ratio curve at phase 1

Experiments in Phase N − 1. In the second-last phase, results in Sect. 3.4
describe a sender-designed experiment’s role in the optimal signaling strategy:
pick the strategy on the frontier of all persuasion-ratio curves. However, if the
experiment is determined in the second-last phase, an additional constraint on
the interim belief between the second-last phase and the last phase is enforced.
That is to say, the set of (feasible) strategies will shrink. Fortunately, after enforc-
ing the constraints, the process of searching for the optimal signaling strategy
under a determined experiment is the same as the sender-designed experiment,
i.e., pick the strategy in the frontier of all persuasion ratio curves. Therefore,
at each possible branch of phase N − 1, we can plot an optimal persuasion
ratio curve capturing the sender’s optimal signaling strategy at phase N −1 and
phase N .

Experiments in Earlier Phases. Now we consider experiments in earlier
phases. When we have a determined experiment in phase-K, e.g., Ek,i =
(qKi1, qKi2), and we have solved the optimal persuasion ratio curves of its suc-
ceeding phase ((K +1)), i.e., PR∗

K+1,2i−1(p) and PR∗
K+1,2i(p), then the optimal

persuasion ratio curve at this determined phase-K experiment Ek,i is just a lin-
ear combination of PR∗

K+1,2i−1(p) and PR∗
K+1,2i(p) can be written as follows:

PR∗
K,i(p) = (pqKi1 + (1 − p)qKi2)PR∗

K+1,2i−1

(
pqKi1

pqKi1+(1−p)qKi2

)
+ (p(1 − qKi1)

+ (1 − p)(1 − qKi2))PR∗
K+1,2i

(
p(1−qKi1)

p(1−qKi1)+(1−p)(1−qKi2)

)
(4)

For a sender-designed experiment at phase K, e.g., EK,j , if we have already
solved the optimal persuasion ratio curves of its succeeding phase-(K+1) experi-
ments EK+1,2j−1 and EK+1,2j , the sender’s best design at EK,j is to find a linear
combination of PR∗

K+1,2j−1(p) and PR∗
K+1,2j(p) which yield the highest persua-

sion ratio for every phase-K interim belief p. Since the persuasion ratio curve
is monotone decreasing in the belief, the optimal persuasion ratio curve can be
constructed similar to Lemma 4 as shown in Corollary 2.



Bayesian Persuasion in Sequential Trials 39

Corollary 2. Given two persuasion ratio curves at phase K+1, PR∗
K+1,2j−1(p)

and PR∗
K+1,2j(p), the optimized persuasion ratio curve PR∗

K,j(p) at phase K is
the maximum convex combination of PR∗

K+1,2j−1(p) and PR∗
K+1,2j(p), i.e.,

PR∗
K,j(p) = max

x,u,v∈[0,1],xu+(1−x)v=p
xPR∗

K+1,2j−1(u) + (1 − x)PR∗
K+1,2j(v) (5)

Non-binary Outcome Experiments. When the experiments have non-binary
outcomes, the same approach derived above works with an increased number of
phases (if complexity is not an issue).

For general non-binary experiments, see the proof of Lemma 6 in [23] for a
detailed construction from non-binary to binary experiments.

Lemma 6. Given a non-binary experiment E = {q1,1, ..., q1,n; q2,1, ..., q2,n}, we
can replace it by 	log2 n
 levels of binary outcome experiments.

4.3 Multi-phase Model and Classical Bayesian Persuasion

At the end of this section, we mention a class of special multi-phase trials where the
sender’s expected utility under the optimal signaling strategy is equivalent to util-
ity obtained from a single-phase Bayesian persuasion model. Inspired by the two-
phase example with a trivial experiment in Lemma 1, the sender can implement
a signaling strategy similar to single-phase Bayesian persuasion when there exists
a trivial experiment in the last phase and she can design experiments in earlier
phases. When the sender can design all earlier phases, she can voluntarily reduce
the signal space in effect via designing the experiment Ei,j to be Ei,j = (1, 1) or
Ei,j = (0, 0), i.e., a non-informative experiment. By doing this, the sender can
reduce the multi-phase trial to an equivalent two-phase trial model and then a
straightforward extension of Lemma 1 will hold when there exists a trivial exper-
iment in the last phase. The following Lemma 7 further generalizes the class of
multi-phase models where the sender has the same expected utility as a single-
phase Bayesian persuasion problem with a necessary pruning process defined in
Definition 5. Owing to the page limit, explanations and some preliminary analysis
about the robustness of signaling strategies under small perturbations from trials
satisfying Lemma 7 is only available in our online version [23].

Definition 5. Given an N-phase trial model M , a pruned N-phase trial model
Prun(M) is a model which recursively replaces every subtree of M by a revealing
experiment Eθ = (1, 0) if the subtree satisfies the following condition, starting
from the leaves: the (sub)root of this subtree has a trivial (determined) experiment
EX with at least one of its succeeding experiments non-trivial (but determined).

Note that the pruned tree will potentially be unbalanced.

Lemma 7. Given an N -phase trial M with binary-outcome experiments, if there
exists a pruned N-phase trial model Prun(M) such that the following two condi-
tions hold, then the sender’s expected utility is given by an equivalent single-phase
Bayesian persuasion model.
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1. For every non-trivial determined experiment, its sibling is either a trivial or
a sender-designed experiment.

2. There exists a least one sender-designed experiment in each (from root to leaf)
experiment sequence of Prun(M).
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Abstract. We consider a multiproduct monopoly pricing model. We
provide sufficient conditions under which the optimal mechanism can be
implemented via upgrade pricing—a menu of product bundles that are
nested in the strong set order. Our approach exploits duality methods to
identify conditions on the distribution of consumer types under which (a)
each product is purchased by the same set of buyers as under separate
monopoly pricing (though the transfers can be different), and (b) these
sets are nested.

We exhibit two distinct sets of sufficient conditions. The first set of
conditions weakens the monotonicity requirement of types and virtual
values but maintains a regularity assumption, i.e., that the product-by-
product revenue curves are single-peaked. The second set of conditions
establishes the optimality of upgrade pricing for type spaces with mono-
tone marginal rates of substitution (MRS)—the relative preference ratios
for any two products are monotone across types. The monotone MRS
condition allows us to relax the earlier regularity assumption.

Under both sets of conditions, we fully characterize the product bun-
dles and prices that form the optimal upgrade pricing menu. Finally, we
show that, if the consumer’s types are monotone, the seller can equiva-
lently post a vector of single-item prices: upgrade pricing and separate
pricing are equivalent.

Keywords: Revenue maximization · Mechanism design · Strong
duality · Upgrade pricing

1 Introduction

1.1 Motivation and Results

Pricing multiple goods with market power is a canonical problem in the theory of
mechanism design. It is also a challenge of growing importance and complexity
c© Springer Nature Switzerland AG 2022
M. Feldman et al. (Eds.): WINE 2021, LNCS 13112, pp. 41–58, 2022.
https://doi.org/10.1007/978-3-030-94676-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94676-0_3&domain=pdf
http://orcid.org/0000-0003-4740-2376
https://doi.org/10.1007/978-3-030-94676-0_3


42 D. Bergemann et al.

for online retailers and service providers, such as Amazon and Netflix. Both in
theory and in practice, designing the optimal mixed bundling mechanism, (i.e.,
pricing every subset of products) becomes exceedingly complex in the presence
of a large number of goods.

A natural question is then whether simpler pricing schemes are optimal under
suitable demand conditions. A simple, commonly used mechanism consists of
upgrade pricing, whereby the available options are ranked by set inclusion, i.e.,
some goods are only available as add-ons, Ellison (2005). For example, many
online streaming services use a tiered subscription model, whereby users can
pay to upgrade to a “premium package”—a subscription with a larger selection
of the provider’s content relative to the “basic package”, Philips (2017).

In this paper, we obtain sufficient conditions under which upgrade pricing
maximizes the seller’s revenue. Our approach consists of first identifying condi-
tions under which the consumer’s types can be ordered in terms of their absolute
or relative willingness to pay for the seller’s goods, and then ranking the goods
themselves by the profitability of selling them to larger sets of consumer types.
Our sufficient conditions not only establish the optimality of some upgrade pric-
ing menu: they also show that the optimal bundles are deterministic, and they
reveal the order in which they are ranked in the menu. That is, we identify all
the nested bundles that appear in the seller’s menu, and the profit-maximizing
price for each one.

Our results consist of two distinct sets of conditions. The first set of conditions
(Theorem 1) illustrates the essence upgrade pricing optimality in what we label
as “regular” settings. While these conditions are reminiscent of regularity in
one dimension, they are in fact weaker than the monotonicity of the buyer’s
multidimensional types and of the (item by item) Myersonian virtual values.
What we require is for the consumer’s types to be ranked in such a way that the
virtual values for each item are negative over an initial and positive over a final
segment. Furthermore, we require any consumer with a positive virtual value for
an item to also have a larger value for that item, relative to any type with a
negative virtual value. At the optimal prices, the lowest type buying each good is
indifferent between buying it and not buying it. Finally, the sets of types buying
each item are nested under the weak monotonicity property, which implies the
optimal allocation can be implemented via upgrade pricing.

The second set of conditions (Theorem 2) describes our best attempt at
extending our approach to non-regular distribution of types. In order to further
weaken the regularity requirement, we restrict attention to type spaces for which
the relative preference ratios for any two goods are monotone across types. An
example of ordered relative preferences is if higher types have a stronger prefer-
ence for good 2 over good 1. We refer to such a condition as “monotone marginal
rates of substitution” (monotone MRS).

The intuition for our two results can be grasped by considering the demand
functions for each good separately. Under monotonicity and monotone MRS, the
optimal monopoly prices for each of the goods are ranked. In the special case
where the Myersonian virtual values for our ordered types
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φk
i = θk

i − 1 − Fi

fi

(
θk

i+1 − θk
i

)

are also monotone for each item k, the first set of conditions applies.
When virtual values are not monotone, however, they can cross zero more

than once. In that case, the result still holds, but the proof requires the right
ironing procedure. Our ironing procedure relaxes the standard approach of
Myerson (1981) and the literature up to Haghpanah and Hartline (2020). Specifi-
cally, we do not iron with the goal of monotone virtual values, which corresponds
to a concave revenue curve. Rather we iron towards single-crossing virtual values
which leads to a quasiconcave revenue curve. We then use the structure implied
by monotone MRS to derive a dual certificate of optimality.

Under either set of conditions, each good is purchased by the same set of
buyers that would buy it if that were the seller’s only product. We further show
(Theorem 3) that, if the consumer’s types are (not weakly) monotone, the seller
can equivalently post the vector of single-item monopoly prices—i.e., bundling
is redundant. For example, in the case of two goods sold separately, monotone
type spaces mean that no consumer type will buy good 2 without also buying
good 1. More generally, the seller benefits from restricting the set of bundles
the consumer can purchase through a proper menu of options with the upgrade
property. However, examples also show that implementability through separate
pricing is neither necessary nor sufficient for the optimality of upgrade pricing.

1.2 Related Literature

First and foremost, our paper contributes to the economics literature on product
bundling. The profitability of mixed bundling relative to separate pricing was
first examined by Adams and Yellen (1976), and further generalized by McAfee
et al. (1989). More recently, a number of contributions have studied the optimal
selling mechanisms in the case of two or three goods, and derived conditions for
the optimality of pure bundling (see, for example, Manelli and Vincent (2006)
and Pavlov (2011)). Daskalakis et al. (2017) use duality methods to character-
ize the solution of the multiproduct monopolist’s problem, and show how the
optimal mechanism may involve a continuum of lotteries over items. Bikhchan-
dani and Mishra (2020) derive conditions under which the optimal mechanism is
deterministic when the buyer’s utility is not necessarily additive. Finally, Ghili
(2021) establishes conditions for the optimality of pure bundling when buyers’
values are interdependent. Relative to all these papers, we focus on a specific
class of simple mechanisms, which includes pure bundling as a special case.

Hart and Nisan (2017) and Babaioff et al. (2014) also study the properties
of simpler schemes. The former derives a lower bound on the revenue obtained
from separate item pricing. The latter obtains an upper bound on the revenue
of the optimal mechanism, relative to the better of pure bundling and separate
pricing.

In the context of nonlinear pricing, Wilson (1993) suggested a “demand pro-
file” approach that determines the price of each incremental unit by treating it as
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separate market. This approach is particularly attractive in settings where there
is a natural ordering over the items. This in particular is the case when there
is a homogeneous good that is offered in various quantities, such as in energy
markets for electricity or water. This approach naturally generates a sequence of
upgrade prices. The demand profile approach, and in particular the incremen-
tal pricing rule implied by it, does not always yield an optimal mechanism as
consumers may wish to obtain earlier units in order to obtain the later units.
Thus, a contribution of the current paper is to determine when upgrade pricing
is exactly optimal and then to find the upgrade prices as solutions to the global
revenue maximization problem rather than the incremental item problem. Other
papers make assumptions that make sure that a demand profile-type approach
yields an optimal mechanism. In Johnson and Myatt (2003), buyers have unit
demand and sellers offer different varieties of a single good. The approach in
their paper is to assume a quality ranking on the varieties and to solve for the
upgrade prices—the additional payments required to buy a better variety. The
survey of the nonlinear pricing literature by Armstrong (2016) covers related
approaches that optimize upgrades separately.

Our formulation of the dual problem follows Cai et al. (2016), who present a
general duality approach to Bayesian mechanism design. Cai et al. (2016) formu-
late virtual valuations in terms of dual variables, state the weak and the strong
duality results, and use them to establish lower bounds for relative performance
of simple mechanisms. An important contribution by Haghpanah and Hartline
(2020) exploits the duality machinery to provide sufficient conditions for the
exact optimality of a specific, simple mechanism—pure bundling—consisting of
offering a maximal bundle at a posted price. Under their sufficient conditions,
the dual variables can be recovered from a single-dimensional problem in which
the seller is restricted to bundle all items together.

We follow the approach of Haghpanah and Hartline (2020) by leveraging the
duality approach to provide sufficient conditions for the optimality of a particu-
lar class of mechanisms. Haghpanah and Hartline (2020) gave a characterization
of the optimality of the grand bundle, we provide a characterization for upgrade
pricing. As upgrade pricing allows multiple bundles to be present in the menu, we
cannot assign the dual variables by solving a one-dimensional problem. Instead,
we develop a novel ironing algorithm that generates these variables by ironing
different item’s revenue curves for different types. Under our sufficient conditions,
the so-constructed virtual surplus is maximized by an element-wise monotone
allocation that can be implemented by upgrade pricing; by complementary slack-
ness, this certifies the optimality of upgrade pricing. Because pure bundling is
one instance of upgrade pricing, our conditions differ from those of Haghpanah
and Hartline (2020).

Our ironing differs from existing ironing approaches using duality and tackles
a more general problem. In comparison to Haghpanah and Hartline (2020), we
prove optimality for mechanisms with menu size surpassing two. Fiat et al. (2016)
studies a two-parameter model, and uses an ironing approach that leads from
the revenue curves to their concave closure. Devanur et al. (2020) generalizes
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Fiat et al. (2016) to more general orders on the second parameter. Our approach
tackles optimality for an arbitrary finite number of items and varies the ironing
procedure. On a technical level, our ironing procedure yields quasi-concave ironed
revenue curves, whereas the ironed revenue curves in Haghpanah and Hartline
(2020); Fiat et al. (2016); Devanur et al. (2020) are concave.

Our results also feed into a literature specifying optimal finite mechanisms
for multi-dimensional types. (Daskalakis et al. 2017, section 7) for example char-
acterizes the optimal mechanisms for the two-good monopolist problem if the
optimal mechanism has a particular structure. While Daskalakis et al. (2017)
requires that the region of the type space that is not allocated any item is
not adjacent to all regions getting specific constant allocations, upgrade pricing
mechanisms consistently break this requirement.

1.3 Structure of the Paper

The model is introduced in Sect. 2. The first set of sufficient condition is presented
in Sect. 3. In Sect. 4, we present our results for monotone MRS type spaces. In
Sect. 5, we discuss the relationship between separate pricing and upgrade pricing.
We conclude in Sect. 6.

2 Model

We consider a standard multiple-good monopoly setting. There is a single seller
of d ≥ 1 goods and a single buyer. The seller’s marginal costs of production
are normalized to zero. The buyer’s utility function is additive across goods. We
refer to the vector of marginal utilities θi ∈ R

d as the buyer’s type. Therefore,
the utility of buyer type θi from the consumption vector q ∈ [0, 1]d is given by

U(θi, q) =
d∑

k=1

θk
i qk.

We also adopt the shorthand notation 〈θi, q〉 :=
∑d

k=1 θk
i qk. As a convention,

we denote types by subscripts and items by superscripts. The buyer’s utility is
quasi-linear in transfers and her outside option is also normalized to zero.

The buyer knows her type. From the seller’s perspective, the buyer’s type is
distributed over a finite set Θ ⊆ R

d
+, with |Θ| = n, according to the distribution

f ∈ Δ(Θ). For any positive integer n, we adopt the convention that [n] :=
{1, 2, . . . , n}, and we index types by i ∈ [n]. We let fi := f(θi) and denote the
cumulative distribution sequence by Fi =

∑i
j=1 fj , i ∈ [n].

The seller aims to maximize revenue. By the revelation principle, we can
focus on direct mechanisms (q, t) = (qi, ti)i∈{0}∪[n]. These mechanisms can be
interpreted as menus with n+1 items so that item i delivers consumption vector
qi at price ti and item (q0, t0) := (0, 0) captures the buyer’s outside option.

We call a menu upgrade pricing if {q0, q1, . . . , qn} can be ordered in the
component-wise partial order on R

d given by q ≤ q′ ⇔ ∀k ∈ [d] : qk ≤ (q′)k. Our
main goal is to provide conditions under which upgrade pricing maximizes the
seller’s revenue among all direct mechanisms.
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3 Optimal Mechanisms for Regular Distributions

We will make prominent use of the (partial) Lagrangian duality-based certificate
of optimality used by Cai et al. (2016). We state the underlying duality result
to fix notation.

3.1 Duality

In what follows, we will associate with λji the Lagrange multiplier of the incen-
tive compatibility constraint of type θj deviating to type θi, j ∈ [n], i ∈ {0}∪ [n]:

〈qj , θj〉 − tj ≥ 〈qi, θj〉 − ti.

We note that the incentive constraints corresponding to λj0, j ∈ [n] are type
j’s individual rationality constraints. As a main tool in our analysis, we define
the multi-dimensional virtual values associated with Lagrange multipliers λ ∈
R

n × R
n+1 as

φλ
i := θi − 1

fi

n∑

j=1

λji(θj − θi). (1)

Lemma 1. A mechanism (qi, ti)i∈{0}∪[n] maximizes revenue if and only if there
exist multipliers λji, j ∈ [n], i ∈ {0} ∪ [n] such that

1. λji ≥ 0 (Non-Negativity)
2. (qi)i∈[n] optimizes max(qi)i∈[n]∈[0,1]n

∑n
i=1 fi〈qi · φλ

i 〉 (Virtual Welfare Maxi-
mization)

3. fi =
∑n

j=0 λij − ∑n
j=1 λji for all i ∈ [n] (Feasibility of Flow)

4. λji(〈qj , θj〉−tj −〈qi, θj〉−ti) = 0 for all j ∈ [n], i ∈ {0}∪ [n] (Complementary
Slackness)

5. There are transfers t such that (q, t) is incentive compatible and individually
rational (Implementability)

We call the dual variables λji, j ∈ [n], i ∈ [n] ∪ {0} flows from type j to
type i whenever they are non-negative and satisfy Lemma 1 item 3. This name is
inspired by flow conservation constraints from the maximum flow and minimum
cost flow problem in discrete mathematics (Korte and Vygen 2011).

The proof of this lemma is contained in the full version of this paper
Bergemann et al. (2021a).

3.2 A Sufficient Condition for Regular Distributions

Our first set of sufficient conditions for upgrade pricing optimality consists of a
weak monotonicity condition and a regularity condition.

We call a type distribution F weakly monotone with cutoffs i1, i2, . . . , id ∈ [n]
if for any i, j ∈ [n] and k ∈ {1, 2, . . . , d},

i ≤ ik ≤ j =⇒ θk
i ≤ θk

j .
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Note that weak monotonicity is strictly weaker than monotonicity: for each item,
only order comparisons with respect to a cutoff type need to hold, whereas types
above or below the cutoff can be arbitrarily ordered.

Similarly, a type distribution F is regular with respect to cutoffs
i1, i2, . . . , id ∈ [n] if for any i, j ∈ [n] and k ∈ {1, 2, . . . , d},

i ≤ ik ≤ j =⇒ φk
i ≤ 0 ≤ φk

j , (2)

where φi denotes the initial d-dimensional virtual values

φi := θi − 1 − Fi

fi
(θi+1 − θi). (3)

The initial d-dimensional virtual values can be seen as multi-dimensional versions
of the virtual values in Myerson (1981).

We say that a type distribution F is compatibly weakly monotone and regular
if it is both weakly monotone and regular with respect to the same set of cutoffs.
When such cutoffs ik exist, they are essentially unique except between contiguous
types of vanishing virtual value φk

i and monotone types θk
i , i ∈ [n], k ∈ [d].

Subfigure 1a illustrates a type distribution with this property.
Our regularity condition can be equivalently stated in terms of the pseudo-

revenues
Rk

i := (1 − Fi−1)θk
i . (4)

Subfigure 1c depicts pseudo-revenues. We call (4) pseudo-revenue because, with-
out an assumption that the values are monotone with respect to the component-
wise partial order, the pseudo-revenue does not correspond to the revenue from
sales of item k at a posted price of θk

i . In particular, because we have

Rk
i − Rk

i+1

fi
=

(1 − Fi−1)θk
i − (1 − Fi)θk

i+1

fi

=
fiθ

k
i − (1 − Fi)(θk

i+1 − θk
i )

fi
= θk

i − 1 − Fi

fi
(θk

i+1 − θk
i ) = φk

i , (5)

imposing regularity with respect to the cutoffs ik is equivalent to requiring that
Rk

i is single-peaked with peak ik. While pseudo-revenues do not have immediate
economic meaning, they are an important technical tool, in particular for our
analysis of non-regular distributions in Sect. 4.

Theorem 1. If the type distribution F is compatibly weakly monotone and regu-
lar with respect to cutoffs (ik)k∈[d], then upgrade pricing is optimal. In particular,
the following mechanism is optimal:

qk
i :=

{
1 i ≥ ik

0 else.
, i ∈ [n], k ∈ [d]. (6)
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Fig. 1. Types, virtual values and pseudo-revenues for type space Θ = {(9/128,
27/64), (1/4, 3/2), (1/2, 2), (1, 1)} and type distribution f = (7/16, 3/16, 1/8, 1/4). The opti-
mal mechanism sells good 2 at a price of 1 and good 1 as an upgrade, also at a price
of 1. All types except θ1 buy good 2, and only type θ4 buys good 1.

Proof of Theorem 1. Define the dual variables

λ̂ji =

{
1 − Fi if j = i + 1
0 else.

(7)

Observe that, by definition, λ̂ induces the initial virtual values, φi = φλ̂
i .

We check the properties of Lemma 1. Virtual welfare maximization,
Condition 2, follows from

qk
i = 1

(6)⇐⇒ Rk
i ≥ Rk

i+1

(5)⇐⇒ φk
i ≥ 0.

For flow preservation, Condition 3, observe that

n∑

j=1

λ̂ij −
n∑

j=0

λ̂ji = 1 − Fi−1 − (1 − Fi) = fi.

The mechanism is implementable, Condition 5, by assumption of compatible
weak monotonicity and regularity.

Finally, we need to check that complementary slackness (Condition 4) holds.
Observe that λ̂ij > 0 implies j = i − 1. Hence, all types must be indifferent
between their allocation and payment and the allocation and payment of the
next lower type. If the next lower type has the same allocation and payment,
this is clearly satisfied. Otherwise, this is the first type buying an upgrade. If
this type were not indifferent between buying it and not buying it, the price of
the upgrade could be raised, and the revenue increased, without affecting other
types’ incentives. Thus, this type must be indifferent between their allocation
(and payment) and the next lower type’s allocation. �
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Our assumptions of regularity and weak monotonicity relax the monotonicity
of types and Myersonian virtual values by allowing for permutations above and
below the monopoly price. These assumptions nonetheless require that the set
of types that buy each object remains an upper selection, and conversely the set
of types that do not buy remains a lower selection. The intuition for why this
works is similar to the idea that the monopoly price does not depend on the
valuations of types that are not marginally buying, just as long as they do not
become marginal buyers.

These assumptions depend on the fixed order of types we have introduced
in the model. Thus, if there exists an order that satisfies these assumptions,
upgrade pricing is optimal. Furthermore, multiple orders of types might satisfy
the theorem’s conditions for a given type distribution F . In this case, the theorem
can be used to certify optimality of mechanism (6), based on the different orders.
As optimality of a mechanism for a distribution F does not depend on the order
on types, the revenue of (6) must be the same for all orders with which the
conditions of Theorem 1 are satisfied.

Our next set of conditions imposes similar requirements, strengthened appro-
priately to allow for non-regular type distributions, which require ironing.

4 Optimal Mechanisms for Non-regular Distributions

We now establish the optimality of an upgrade pricing mechanism in settings
without regularity. The weaker sufficient conditions will replace the regularity
condition and will allow for ironing to be part of the optimal mechanism. The
new sufficient conditions will serve to allow us to perform the ironing procedure
item-by-item, and limit the interaction of constraints across items. We say that
a type space Θ has monotone marginal rates of substitution if

1 ≤ i ≤ j ≤ n and 1 ≤ k ≤ l ≤ d =⇒ θl
i

θk
i

≤ θl
j

θk
j

.

for any i, j ∈ [n], l, k ∈ [d].
Recall that pseudo-revenue is given by Rk

i = (1 − Fi)θk
i .

We call a scalar sequence (Ri)i∈[n], quasi-concave if there is a cutoff i′ ∈ [n]
such that i′ ≤ i ≤ j or j ≤ i ≤ i′ implies Ri ≥ Rj . We call the point-wise
smallest quasi-concave sequence that point-wise dominates (Ri)i∈[n] its quasi-
concave closure and denote it by (Ri)i∈[n].
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Fig. 2. Type space and pseudo-revenues for type space Θ = {(57/64, 1), (1, 5/4),
(2, 3), (9/4, 5)} and type distribution f = (3/8, 1/4, 1/8, 1/4). The optimal mechanism sells
good 1 at a price of 57/64, and good 2 as an upgrade at a price of 5. All types buy good
1, and only type θ4 buys good 2.

We will make regular use of the sequence (R
k

i )i∈[n], the quasi-concave closure
of the pseudo-revenue for item k.

To allow for our construction of a dual certificate of optimality, we need
additional assumptions. These will be formulated in terms of candidate ironing
intervals. For a pseudo-revenue R, we call a set of contiguous types I ⊆ [n] with

R
k

i = Rk
i (8)

for all i ∈ I such that there is no superset of contiguous types I ′ ⊇ I such that
(8) holds for all i ∈ I ′, a candidate ironing interval for item k. (With slight
abuse of language, we refer to discrete sets of contiguous types as intervals.)
Every item k may have several candidate ironing intervals, and every type can
be contained in a candidate ironing interval for different items.

We relax the regularity assumption on pseudo-revenues Rk
i . Instead of assum-

ing regularity, i.e. Rk
i to be single-peaked with peak ik, we assume two properties

that are in combination weaker than regularity. We call a type distribution F
mostly regular if for some cutoffs ik ∈ arg maxi∈[n] R

k
i and any i such that

ik < i ≤ ik+1, the following hold:

1. (No partial overlap) If I is a candidate ironing interval of item k and J is a
candidate ironing interval of item k + 1, then either I ∩ J = ∅ and there is
i ∈ [n] such that I < i < J or J < i < I, or one of I, J is a subset of the
other excluding its endpoints.

2. (No ironing on neighboring maxima) For any ironing candidate interval I of
item k, ik, ik+1 /∈ I.

3. (Not too shuffled) For any candidate ironing interval I ⊆ {ik + 1, ik +
2, . . . , ik+1 − 1} and i ∈ I,

θk+1
min I ≤ θk+1

i θk
max I ≤ θk

max I+1

Finally, we call a distribution compatibly weakly monotone and mostly regular
if it is weakly monotone and mostly regular with respect to the same cutoffs ik,
k ∈ [d].
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Note that monotone MRS by itself is not a restrictive assumption. For exam-
ple, in two dimensions, every type set can be ordered in order of monotone MRS.
In combination with compatible weak monotonicity and mostly regularity, this
assumption becomes stronger.

Subfigure 2a shows the type space of a compatibly weakly monotone and
mostly regular type distribution, and Subfig. 2b its pseudo-revenues.

Fig. 3. Failure of no overlap: {2, 3} is a candidate ironing interval for item 2, {3, 4} is
a candidate ironing interval for item 1.

Conversely, Fig. 3 shows an instance of a distribution over a monotone MRS
type space that is not mostly regular. In particular, this example fails the first
condition, because it involves overlapping candidate ironing intervals. We will
use our assumptions to construct dual variables (λij)i,j∈[n] by ironing pseudo-
revenues for each item. In our proof that there is an optimal mechanism with
an upgrade pricing allocation, we will use monotone MRS to show that for each
type, ironing is only needed for two items, the lowest item in the MRS order that
the type bought, and the highest item in the MRS order that she didn’t buy.
We will use the first two conditions of mostly regularity to show that from these
two items, we can select a single item to iron at a time, while not changing the
other item’s virtual values in a way that will break virtual welfare maximization
of the allocation. As in Theorem 1, weak monotonicity ensures implementability
of an upgrade pricing allocation, i.e., the existence of a price vector (ti)i∈[n] such
that the mechanism (q, t) is incentive compatible and individually rational. To
allow for our ironing procedure to work, we also need a mild requirement on the
monotonicity of types beyond weak monotonicity. While weak monotonicity was
a requirement that could be formulated item-by-item, this requirement links the
type order of neighboring items.

Theorem 2. Let Θ have monotone marginal rates of substitution. If the type
distribution F is compatibly weakly monotone and mostly regular with respect
to cutoffs (ik)k∈[d], then upgrade pricing is optimal. In particular, the following
mechanism is optimal:

qk
i :=

{
1 i ≥ ik

0 else,
i ∈ [n], k ∈ [d]. (9)
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Note that the allocation (9) is the allocation that arises from separate
monopoly pricing.1

To prove Theorem 2, we will construct a sequence of flows λi from i = n
down to i = 1, starting with λ̂, the initial flow that induces Myersonian multi-
dimensional virtual values. Given a definition of pseudo-revenue implied by a
flow, our Ironing Algorithm will, for each type i and for at least one item k,
iron to match induced pseudo-revenue with the quasi-concave closure of multi-
dimensional Myersonian pseudo-revenue, R

k

i . This is illustrated in Fig. 4.
The main steps in this proof are to show that the ironing is well-defined in

that such implied pseudo-revenue is attainable with a non-negative and feasible
flow (Lemma 6 and Lemma 4, respectively). The most technical part of the proof
consists of showing that the Ironing Algorithm produces dual variables that max-
imize virtual welfare (Lemma 3 and Lemma 7 (a)), and satisfy complementary
slackness (Lemma 7 (b)).

Our first lemma is a main structural tool to link different items’ virtual
values and is tightly connected to monotone MRS. For k ∈ [d], i ∈ [n], and flow
λ, denote the normalized virtual value by

νλ,k
i :=

φk,λ
i

θk
i

.

The property that we will use repeatedly is that νλ,k
i has the same sign as φλ,k

i .
We call a flow downward if λji > 0 for i, j ∈ [n] implies that j > i.

Lemma 2. Let Θ have monotone MRS. For any non-negative downward flow
λ, νλ,k

i ≥ νλ,l
i for any 1 ≤ k ≤ l ≤ d and i ∈ [n].

Proof. It follows from definitions and monotone marginal rates of substitution
that

φλ,k
i

θk
i

=
θk

i − 1
fi

∑n
j=1 λji(θk

j − θk
i )

θk
i

= 1 +
1
fi

n∑

j=i

λji − 1
fi

n∑

j=i

λji

θk
j

θk
i

≥ 1 +
1
fi

n∑

j=i

λji − 1
fi

n∑

j=i

λji

θl
j

θl
i

=
θl

i − 1
fi

∑n
j=1 λji(θl

j − θl
i)

θl
i

=
φλ,l

i

θl
i

.

�
The next Lemma shows that virtual welfare maximization reduces to virtual

welfare maximization for the neighboring items, i.e., the last item that a type
buys and the first item that a type does not buy—with respect to the MRS
order.

1 In Sect. 5, we further explore the relationship between upgrade pricing and separate
pricing, by showing conditions under which the allocation (9) can be implemented
by a vector of single-item prices.
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Lemma 3. Assume Θ has monotone MRS and mostly regular and that there
exists a non-negative downward flow λ such that for any i ∈ [n] such that ik ≤
i ≤ ik+1, we have φλ,k

i ≥ 0 and φλ,k+1
i ≤ 0. Then, the allocation in (9) maximizes

virtual welfare.

Proof. Fix i ∈ [n] such that ik ≤ i ≤ ik+1. Note that as φλ,k
i and νλ,k

i are positive
multiples of each other, Lemma 2 implies the implications

φλ,k+1
i ≤ 0 =⇒ φλ,l

i ≤ 0, l ≥ k + 1

φλ,k
i ≥ 0 =⇒ φλ,l

i ≥ 0, l < k.

Therefore, the assumption implies that φλ,l
i ≤ 0 for any l > k and φλ,l

i ≥ 0 for
any l ≤ k, which ensures virtual welfare maximization of (9). �

For k = 0 and k = d this Lemma reduces virtual welfare maximization for all
items, and ironing for all items, to virtual welfare maximization for the first resp.
last item. Finding a flow that maximizes virtual welfare reduces to ironing the
(one-dimensional) virtual values φ1

i and φd
i . For types i ≤ i1 and i ≥ id, we can

hence use techniques from one-dimensional ironing and iron the pseudo-revenue
to its concave closure in a discrete variant of Myerson (1981)’s procedure. From
now, our discussion therefore focuses on k ∈ [d − 1] and i ∈ [ik + 1, ik+1], i.e.
types where an ironing that ensures virtual welfare maximization for both item
k and item k + 1 is needed.

The following algorithm will make use of λ̂ as defined in (7), the initial flow
and of a generalization of the pseudo-revenue. The pseudo-revenue associated to
a flow λ, Rλ,k

i is

Rλ,k
i =

n∑

j=i

fjφ
λ,k
j .

This generalization is intuitive, as virtual values are, as in (5), slopes of pseudo-
revenues

Rλ,k
i − Rλ,k

i+1

fi
=

∑n
j=i fjφ

λ,k
j − ∑n

j=i+1 fjφ
λ,k
j

fi
= φλ,k

i . (10)

Our algorithm will adjust a flow by raising one point in a revenue sequence at
a time, from right to left. We will prove that this will yield slopes of revenue
sequences—i.e. virtual values—which have the correct sign for virtual welfare
maximization of (9). This is non-trivial, as pseudo-revenues for different items
might not move in the same direction when dual variables are changed.
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λ ← λ̂;
for i = n to 1 do

Let γi ∈ [0, 1] be maximal such that for

λ′
ji ← γiλji, ∀j : n > j > i

λ′
j(i−1) ← λj(i−1) + (1 − γi)λji, ∀j : n > j > i

λ′
i(i−1) ← λi(i−1) − (1 − γi)

n∑

i′=i

λi′i,

(11)

R
λ′,κ(i)
i = R

κ(i)

i holds;
λ ← λ′;

Return λ′;
Algorithm: Ironing, parameterized by an ironing mapping κ : [n] → [d]

The flow (11) was used earlier in Haghpanah and Hartline (2020). An impor-
tant difference is that Haghpanah and Hartline (2020) choose γi to iron the
revenue sequence of the grand bundle to the concave closure of pseudo-revenue.
Instead, we iron to the quasi -concave closure of (their equivalent of) pseudo-
revenue of an item κ(i). The parameter γi can be found as solution to a system
of linear equations. We show that a solution γi ∈ [0, 1] exists in Lemma 6.

We first observe that the Ironing Algorithm outputs a flow which is non-
negative and feasible. The proofs of the next two statements are in the full
version of this paper Bergemann et al. (2021a).

Lemma 4. The output of the Ironing Algorithm is a flow, i.e. non-negative and
satisfies flow preservation, Lemma 1 Item 3.

Next observe that in the Ironing Algorithm, iteration i changes the revenue
(for any item k) only for type i. Hence, our ironing algorithm raises pseudo-
revenue for one type at a time.

Lemma 5. For any iteration i, Rλ′,k
j = Rλ,k

j for any j = i. In particular,

φλ′,k
j = φλ,k

j for j /∈ {i − 1, i}.
Before showing that γi in the algorithm always exists, we define the ironing

function κ(i).
By no ironing on neighboring maxima, each candidate ironing interval I must

be contained in an interval {ik, ik +1, . . . , ik+1}. By this condition, in addition to
no partial overlap, for each type i, there is a unique inclusion maximal candidate
among the candidate ironing intervals for items k and k + 1. We let κ(i) denote
the item this interval is a candidate ironing interval for. If i is not part of any
ironing interval, we set κ(i) arbitrarily in {k, k+1}. We call κ(i) the ironed item
for type i and piece-wise constant intervals of κ ironing intervals.

Lemma 6. Assume that F is mostly regular. Then, for each i ∈ [n], γi such that
R

λi(γi),κ(i)
i = R

κ(i)

i exists. In particular, the Ironing Algorithm is well-defined.
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Proof. We prove this statement by induction from i = n down to 1. Let i ∈ [n]
and assume that R

λ,κ(i)
i+1 = R

λ,κ(i)

i+1 . If i is not part of an ironing interval, then

by definition of ironing intervals and Lemma 5, Rλ,k
i = R

λ,k

i , and the induction

step is trivial by choosing γi = 1, yielding R
λ′(1),k
i = R

λ′(1),k
i . Otherwise, i is in

an ironing interval. Let κ(i) = k. By no partial overlap, if i + 1 is part of an
ironing interval, it must be part of the same ironing interval, in particular must
have been ironed for item k. Hence, by the induction hypothesis, Rλ,k

i+1 = R
λ,k

i+1.
Denote

φ
k

i =
R

k

i − R
k

i+1

fi

the slope of the quasi-concave closure of pseudo-revenue of item k at type i. By
definition of the quasi-concave closure, the slope of the revenue curve must be
non-positive,

φ
k

i ≤ 0.

As all types are non-negative, we get that

φk
i ≤ 0 ≤ θk

i = φ
λ′(0),k
i . (12)

Again by Lemma 5, R
k

i+1 = R
λ′(0),k
i+1 . Therefore

R
k

i = fiφk
i + R

k

i+1 = fiφk
i + R

λ′(0),k
i+1

≤ fiφ
λ′(0),k
i + R

λ′(0),k
i+1 = R

λi(0),k
i .

In particular, R
k

i ≤ R
λi(0),k
i .

Also, by Lemma 5 and the definition of the quasi-concave closure, R
λ′(1),k
i =

Rλ,k
i ≤ R

k

i . As γ �→ R
λ′(γ),k
i is a continuous function, the existence of the desired

γ ∈ [0, 1] follows from the Intermediate Value Theorem. ��

Fig. 4. Ironing of virtual values and corresponding pseudo-revenues.

The last lemma before the proof of Theorem 2 shows that the output of
the algorithm satisfies complementary slackness and the condition of Lemma 3,
which is sufficient for virtual welfare maximization.
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Lemma 7. Assume that Θ is has monotone MRS, and that F is mostly regular.
Then, q maximizes virtual welfare and satisfies the requirements of Lemma 3 with
respect to λ′, the output of the Ironing Algorithm.

The proof of this statement is in the full version of this paper Bergemann et
al. (2021a). Having this result, we are ready to finish the proof of Theorem 2.

Proof of Theorem 2. Implementability follows from weak monotonicity and the
definition of the optimal mechanism, (9). Non-negativity and feasibility of flow
are properties of the Ironing Algorithm shown in Lemma 4. Virtual welfare
maximization and complementary slackness have been shown in Lemma 7. ��

5 Upgrade Pricing and Separate Pricing

In both Theorem 1 and Theorem 2, we established the optimality of an upgrade
pricing mechanism that yields the same allocation as separate (item by item)
monopoly pricing, though not necessarily the same transfers. We will show in
this section that, under monotonicity with respect to the component-wise par-
tial order, separate pricing and upgrades become equivalent—upgrade pricing is
redundant.

We say that the type space Θ is monotone if θk
i ≤ θk

j for any i < j ∈ [n] and
k ∈ [d].

We call a mechanism separate pricing if a type separately chooses whether to
buy each item k at a price pk. Formally, a mechanism satisfies separate pricing
if it can be written as:

qk
i =

{
1 θk

i ≥ pk

0 else,
ti =

d∑

k=1

pk1qk
i =1.

Theorem 3. If the type space Θ is monotone, then the outcome of any upgrade
pricing mechanism can be implemented via separate pricing, and conversely.
When the type space is not monotone, neither implication needs to hold.

The proof of this statement is in the complete version of the paper Bergemann et
al. (2021a). Whenever an upgrade pricing mechanism implements the allocation
of optimal separate pricing, each marginal type θk is indifferent by construction
between the two consecutive bundles bk−1 and bk. Theorem 3 then implies that
the outcome of this mechanism can be implemented by the separate monopoly
prices.

Corollary 1. If Θ is monotone, q is an allocation of an optimal upgrade pricing
mechanism, and q is the allocation of separate monopoly pricing, then separate
monopoly pricing is optimal.

Adding a monotonicity condition to both of our main theorems, Theorem 1
and Theorem 2, we hence obtain two sets of sufficient conditions under which
separate monopoly pricing is optimal.
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Corollary 2. If Θ is monotone and F is regular, separate monopoly pricing is
optimal.

Corollary 3. If Θ is monotone and has a monotone marginal rates of substitu-
tion, and F is mostly regular, then separate monopoly pricing is optimal.

6 Conclusion

It is a common practice for a seller to offer bundles of products or services
that are ordered in a way that more expensive bundles contain all items from
less expensive bundles as well as some extra items. In this paper, we provide
sufficient conditions under which such “upgrade pricing” schemes are exactly
optimal for a monopolist seller.

There are several ways in which the current analysis could be extended.
First, our conditions could be relaxed to account for richer type spaces and type
distributions, such as a continuum of types in the d-dimensional space. One
natural extension can be obtained immediately: assume that a type distribution
can be split into several type cohorts, in fact quantized type space, such that
each type cohort satisfies the conditions of our theorems. Our results imply that
the optimal mechanisms in each respective cohort are upgrade pricing. In this
respect, Bergemann et al. (2021b) show that in nonlinear pricing problems, the
revenue of the continuous type space is generally well approximated by a finite
quantized type space.

Second, our sufficient conditions for the optimality of upgrade pricing may be
complemented by necessary conditions. In doing so, one may want to distinguish
between conditions on type distributions and type spaces. For example, one may
ask which type spaces guarantee that upgrade pricing is optimal irrespective of
the type distribution.

Finally, throughout the paper we highlight the interplay between optimality
of different pricing schemes: bundling, upgrade pricing, and separate sales. It
would be instructive to provide a more complete characterization of the cases in
which one of these schemes strictly outperforms another.
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Abstract. We consider a revenue-maximizing seller with multiple items
for sale to a single population of buyers. Our main result shows that for
a single population of additive buyers with independent (but not nec-
essarily identically distributed) item values, bundling all items together
achieves a constant-factor approximation to the revenue-optimal item-
symmetric mechanism.

We further motivate this direction via fairness in ad auctions. In ad
auction domains the items correspond to views from particular demo-
graphics, and recent works have therefore identified a novel fairness con-
straint : equally-qualified users from different demographics should be
shown the same desired ad at equal rates. Prior work abstracts this to
the following fairness guarantee: if an advertiser places an identical bid
on two users, those two users should view the ad with the same proba-
bility [27,34]. We first propose a relaxation of this guarantee from worst-
case to Bayesian settings, which circumvents strong impossibility results
from these works, and then study this guarantee through the lens of sym-
metries, as any item-symmetric auction is also fair (by this definition).
Observe that in this domain, bundling all items together corresponds to
concealing all demographic data [23].

Keywords: Symmetry · Fairness · Multi-dimensional ad auctions

1 Introduction

Ad auctions are a significant source of revenue for numerous firms, causing their
theoretical study to be a mainstay in both the Economics and Computer Science
communities. Classical works typically design and analyze auctions that optimize
the participants’ collective utility (i.e. the sum of bidders’ values for items they
receive, also called the welfare) [20,30,49], or perhaps just the auctioneer’s utility
(i.e., her revenue) [42]. Recently, the ubiquity of ad auctions in domains where
fairness constraints are first-order concerns has motivated a new desideratum for
consideration: the items’ utility for the outcome selected.

While it makes little sense to consider the utility of an apple or orange, recall
that the items in ad auction domains are in fact users. That is, when an advertiser
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(bidder) wins an item (impression on a particular user), that item (the user) also
enjoys some utility.

In practice, these utilities are hard to quantify (even moreso than typical
values for an item), and this side of the market is typically not monetized. As a
result, there are no ‘bids’ or ‘utilities’ of the items/users to consider. However,
some examples of high-utility ads include those for desirable jobs, low-interest
loans, etc. and are subject to anti-discrimination laws. Specifically, it is con-
sidered unfair for users who are equally qualified for jobs/loans/etc. to view
protected ads at different rates. Therefore, recent works have proposed consid-
ering the utility of users (items) through the lens of fairness [27,34]. That is,
these works propose to still consider the utility of the auctioneer and bidders in
the classical sense, but to additionally ensure that the outcomes are fair to the
users/items.

In practice, a non-discriminatory advertiser might submit identical bids for
equally-qualified users of different demographics. But [27] observes that this
fair behavior is insufficient to achieve a fair outcome. Indeed, protected ads are
bidding against non-protected ads (e.g. Men’s Shoes, Maternity Clothes, etc.)
which legally place discriminatory bids. If discriminatory advertisers place higher
bids on demographic A than B, then the price of impressions for demographic
A will be higher, and then even a non-discriminatory ad will be displayed in a
discriminatory manner.

To have a simple example in mind (taken from [27]), consider the case that
the auctioneer runs a second-price auction on each of two items. This auction
format is ostensibly fair: there is nothing in its description that seems to bias
it against any item or bidder. But consider when Bidder One (a protected ad)
submits a bid of 1 for both items, and Bidder Two (a non-protected ad) submits
a bid of 2 for item one and 0 for item two. Then Bidder One wins item two,
and Bidder Two wins item one. As a result, the demographic corresponding to
item one views no protected ads, while the demographic corresponding to item
two views protected ads with probability one. That is, despite the fact that the
protected advertiser bids in a non-discriminatory manner, and that the auction
is ostensibly fair, the result is an unfair outcome (assuming that users prefer to
see the protected ad).

While the above example is clearly stylized, this phenomenon is not just of
theoretical concern. Indeed, automated systems are constantly making decisions
that affect our daily lives. These systems rely on advanced algorithms and big
data to make decisions which, in theory, have the potential to be better informed
and more equitable. However, studies have shown that they may instead internal-
ize and perpetuate societal biases [1,2,19,35,38,44]. Efforts on mitigating bias
have ranged from examinations of the data [8,48,50], to machine learning algo-
rithmic contributions [7,46,52], to theoretical analyses [14,27,34]. In our domain
of study, works indeed find that impressions for female users are more expensive
than impressions for male users, and that female users are less likely to see ads
for high paying jobs [25] and STEM jobs [37], even when advertisers for such
jobs are unbiased [3].
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[27,34] posit that it is the job of the auction designer to guarantee fair
outcomes, and propose formal fairness definitions motivated by individual fair-
ness [26]. Requiring an auction to satisfy these constraints of course limits the
auctioneer’s ability to optimize its revenue and/or the bidders’ welfare, so these
works study the tradeoff between fairness and optimality. Our work follows this
same paradigm, but deviates from prior work in a few fundamental ways, high-
lighted below.1

Bayesian vs. Worst-Case. [14,27,34] consider worst-case definitions of fair-
ness. For example, they might demand that for all possible bids of non-protected
advertisers, if a protected advertiser submits an identical bid for two demograph-
ics, those demographics view the protected ad with (almost) equal probability.
These definitions arise naturally from the fairness literature upon which they
build, but unfortunately also lead to strong impossibility results.

Ad auctions, however, are executed millions of times daily, and auctioneers
have quite extensive Bayesian priors. Indeed, revenue optimization is typically
studied in Bayesian settings, where the designer seeks to maximize their expected
revenue. We propose to also consider a Bayesian, rather than worst-case, notion
of fairness. Indeed, unfairness is undesirable exactly when it is systemic, and
Bayesian notions are best suited to capture systemic phenomena. A formal def-
inition appears in Sect. 2, and a discussion appears in Section A.1 of the long
version. By considering a Bayesian notion of fairness, we’re able to circumvent
the impossibility results proved in [34].

Revenue vs. Welfare. [14,27,34] consider auctions that attempt to maximize
welfare (more specifically: they attempt to maximize the “declared welfare,” but
don’t assume that the declared bids correspond to the bidders’ actual values). In
the absence of fairness constraints, such auctions are extremely well-understood,
and are particularly simple in the settings considered (e.g. if the bidders are
additive2, welfare is maximized by awarding the item to the highest bidder).

However, if an auctioneer truly wishes to optimize their expected revenue,
it is well-understood that revenue-optimal auctions are significantly more com-
plex [17,21,22,32,41,43,47]. We propose to consider an auctioneer who wishes to
optimize their expected revenue in a multi-dimensional Bayesian setting, rather
than one who wishes to optimize the declared welfare. Our model is the stan-
dard setup for multi-dimensional mechanism design (formally defined in Sect. 2):
the auctioneer has multiple items for sale, and bidders’ values for the items are
drawn independently.

Direct vs. Indirect Competition. [14,27,34] consider advertisers who directly
compete to display their ads to a limited supply of users. In such settings, even a
benevolent platform must fail to show some ads to some users. While our model
is rich enough to capture this setting, our analysis isolates a different source of
competition.

1 The below paragraphs distinguish our model from [14,27,34]. We discuss other
related works such as [11] in Sect. 1.2.

2 A valuation function v(·) is additive if for all sets S of items, v(S) =
∑

j∈S v({j}).



62 M. Essaidi and S. M. Weinberg

Specifically, even when there is unlimited supply, a revenue-maximizing
designer may choose not to show every ad to every user. Indeed, if they can-
not offer different prices to different advertisers, they may achieve greater rev-
enue by setting a high price that excludes some advertisers from purchasing. In
this sense, advertisers indirectly compete with each other: one advertiser’s bids
affect the impressions sold to another due to the fact that the seller wishes to
optimize their revenue, rather than due to limited supply. We study the seller’s
revenue objective (rather than the limited supply of users) as a driving source of
unfairness.

Connection to Symmetries. We adopt (a Bayesian version of) the individual
fairness notion proposed in [27]: an auction is fair if whenever a bidder submits
an identical bid for two items, they receive those items with the same probability
(in expectation over other bidders’ bids). We further observe that this notion is
implied by the stronger definition of item-symmetric [24]. Specifically, an auction
is item-symmetric if whenever a bidder swaps their bids for two items, this swaps
the probabilities with which they receive those items (in expectation over other
bidders’ bids).

Item-symmetric auctions have been studied in the multi-dimensional mech-
anism design literature for their own sake as a tool to optimize revenue in a
computationally-efficient manner [24,36], but we use them here as a tool to
guarantee fair outcomes. Specifically, we target the design of item-symmetric
auctions.

1.1 Results and Technical Highlights

The previous paragraphs motivate our modeling decisions within the multi-
dimensional mechanism design domain: we consider a single seller with m items
for sale, and the buyers’ values are drawn from a distribution known to the seller
(Bayesian vs. Worst-Case). The seller’s goal is to design a truthful auction that
optimizes their expected revenue (Revenue vs. Welfare). We focus on the case
where there is unlimited supply, which can alternatively be represented by a
single population of potential bidders (Direct vs. Indirect Competition).3

From here, we wish to study item-symmetric auctions, and do so through the
lens of simplicity vs. optimality [12,13,31,33]: is there a simple, approximately-
optimal item-symmetric auction? For example, one particularly simple auction
is to bundle the items together (that is, pick a price p and allow the buyer
to receive all items for price p, or no items). It is also easy to see that this
auction is item-symmetric (and therefore fair). Indeed, in the language of ad
auctions, it corresponds to an auction which does not use personalized data at
all, and chooses to display an ad to whatever user shows up independently of
their demographics [23].

3 To quickly see why the unlimited supply setting is equivalent to the single bidder
setting: Because there are no supply constraints, it is feasible to pick any single-
bidder mechanism and just use it for every bidder.
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Another particularly simple auction is to sell the items separately (that is,
for each item j, pick a price pj , and allow the buyer to pick any set of items
S to purchase at price

∑
j∈S pj). Auctions of this format, while simple, are not

necessarily item-symmetric (nor fair): if p1 > p2, then an advertiser could submit
an identical bid of p2 for both items yet receive only item two. A proper subclass
of such auctions, which is item-symmetric (and therefore fair), is to sell the items
separately and symmetrically (that is, set a single price p, and allow the buyer to
pick any set of items and pay p per item). In the language of ad auctions, selling
separately and symmetrically corresponds to setting a price of p to display an
ad (independently of any data), but letting the advertisers choose any subsets
of demographics to display their ads.

Our main result is that bundling the items together achieves a constant-
factor approximation to the revenue-optimal item-symmetric mechanism, and
that this factor can be improved by considering the better of bundling together
and selling separately and symmetrically.

Main Result (See Theorems 1 and 2): For a single additive buyer, and any num-
ber of independent items, bundling together achieves a O(1)-approximation to
the revenue-optimal item-symmetric mechanism. The maximum between bund-
ling together and selling separately and symmetrically improves this constant.

We also provide several auxiliary results in Appendix F of the long ver-
sion, which study the relationships between simple mechanisms such as bundling
together, selling separately, and selling separately and symmetrically.

Brief Technical Highlight. Almost all prior work on simple vs. optimal multi-
dimensional mechanism design consider selling separately as a simple mechanism,
and are perfectly content to argue that the maximum between selling separately
and some other simple mechanism achieves a constant-factor approximation [5,6,
9,10,16,28,29,45,51]. These works proceed by proving elegant upper bounds on
the optimal achievable revenue, and breaking these bounds into terms which can
be approximated by simple mechanisms. In particular, there is usually a term
that corresponds to “revenue achieved when a bidder has an unusually high value
for some item” (e.g.,“the tail” in [4,5,16,39,45], SINGLE in [6,9,10,28,29]), and
this term is easily approximated by the revenue of selling separately (typically,
this term is also the most straight-forward to approximate).

In our setting however, selling separately is not a symmetric mechanism, and
in fact could be up to a factor of Ω(#items) better than the optimal symmetric
mechanism (See Example 3 in Appendix C.2 of the long version). Therefore we
need to target an upper bound that in some cases is even tighter than the revenue
achieved by selling separately.

At a very high level, prior bounds leverage the fact that “the auctioneer
cannot both extract revenue ≈ v when the buyer has a high value v for item
j and revenue ≈ 2v when the buyer has an even higher value 2v for item j,
because the buyer with value 2v can always lie and pretend that their value
is v instead.” Our bound instead must leverage the fact that “the auctioneer
cannot both extract revenue ≈ v when the buyer has a high value v for some
item j and also revenue ≈ 2v when the buyer has an even higher value 2v for
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some other item �.” This is because if the auctioneer extracts revenue ≈ v when
the buyer has value v for item j, they must also extract revenue ≈ v when
the buyer has value v for item � (by item-symmetry), and then the buyer with
value 2v for item � can always pretend that their value is instead v. The main
technical challenge is figuring out a way to leverage this intuition into a concrete
bound. Once we find the right approach, the complete proof is fairly clean, and
is able to leverage existing machinery in the simple vs. optimal literature for
multi-dimensional mechanism design.

1.2 Related Work

Multi-dimensional Mechanism Design. At a technical level, the most closely
related field to our work is that of simple vs. optimal multi-dimensional mech-
anism design. For example, our proof outline is reminiscent of [5,39], and we
provide an alternative proof outline reminiscent of [9]. Note also that our main
result (that bundling together is a constant-factor approximation of the opti-
mal revenue from any symmetric auction) implies one result from [39] (that
bundling together is a constant-factor approximation of the optimal revenue
when all items are i.i.d.).4 [23] were the first to explicitly note the connection
between the sale of an “uncertain item” (e.g. an impression to a user whose
demographic is known only to the designer) and the classic multi-dimensional
mechanism design setting.

The simple vs. optimal agenda within multi-dimensional mechanism design
was initiated in seminal works [12,13,31] (and the simple vs. optimal agenda in
general was initiated in [33]), and there is now a vast body of works building
on these techniques [5,6,9,10,15,16,18,28,29,39,40,45,51]. At a technical level,
our work bears some similarity to these works, because we rely on the same
fundamental building blocks. The technical novelty in our work derives from
consideration of symmetries. Prior work has also considered item-symmetric auc-
tions, but only by finding the optimal item-symmetric auction computationally
efficiently [24], or using the optimal item-symmetric auction to approximate the
asymmetric optimum [36]. In contrast, our work aims to approximate the optimal
item-symmetric auction with something simpler.

Individual Fairness in Auction Design. To our knowledge, [27] were the first
to consider fairness in auction design from a theoretical perspective. Their work
provides fairness definitions based on individual fairness and motivating exam-
ples demonstrating that unfair outcomes can arise from ostensibly fair auctions
and non-discriminatory behavior of auctioneers. Follow-up works such as [14,34]
proceed in similar models. These works provide strong impossibility results in the
worst-case, but also provide matching positive results (and improve the guar-
antees of these positive results under restrictions on the otherwise worst-case
input). Section 1 discusses extensively several ways in which our work contributes
to this line of work, along with the technical differences.

4 This follows as the optimal auction when all items are i.i.d. is in fact item-symmetric.
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The other related work in this direction is [11], who also consider the the-
oretical design of fair auctions from the perspective of a revenue-maximizing
seller. The biggest difference between their work and ours is that they essen-
tially consider a single-dimensional setting (that is, they seek to optimize the
Myersonian virtual value of the winning bidder for each item), but place fairness
constraints across auctions for different items. They formulate a linear program
in their setting and optimize their problem (exactly) computationally efficiently.
Put another way, their work exclusively considers auctions which “sell items sep-
arately” from a revenue perspective, but with cross-item constraints concerning
fairness.

One simple way to compare our work to these is that we focus on a simple
notion of fairness, but in the sophisticated multi-dimensional mechanism design
setting, whereas these prior works consider more sophisticated/quantitative
notions of fairness but in simpler auction settings (either welfare-maximization
or single-dimensional revenue-maximization).

Empirical Studies of Fairness in Auction Design. Empirical studies on
the rate at which ads are displayed to different demographics motivate the line
of work to which we contribute [3,25,37]. For example, [25] finds that ads for
high-paying jobs are shown to more men than women, and [37] draws the same
conclusion for STEM jobs. The empirical studies in [3] support the conjecture
that this is due to “spillover effects” caused by higher competition for female
views.

2 Preliminaries

Our main results consider a single seller (the advertising platform) with m items
for sale (each item corresponds to an impression for a different demographic of
user) to a single buyer (representing the population of advertisers, who do not
directly compete for limited supply). However, we instantiate our model with
n ≥ 1 buyers (directly competing advertisers), in order to best compare with
prior work.

Each buyer i has a value vij for each item j, and has value
∑

j∈S vij for set
S (that is, the bidders are additive). Each vij is drawn independently from a
distribution Dij , and we define Di := ×jDij to represent the ith population of
advertisers,5 and a particular �vi represents a particular advertiser. We denote by
D := ×iDi as the entire population, and �v as a particular profile of advertisers.
When there is just a single bidder, we abuse notation and let D := D1, and
�v := �v1. For discrete distributions, we let fD(�v) := Pr�w←D[�w = �v]. For a single

5 For example, it could be that Di = Di′ for all i, i′, and each bidder is drawn
from the same population. This represents settings where the platform cannot price-
discriminate based on properties of the advertiser. It could also be that Di �= Di′ .
In such settings, perhaps Di is the population of ‘big’ advertisers, and Di′ is the
population of ‘small’ advertisers, and the platform knows from which population
each individual advertiser is drawn.
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variable discrete distribution D, we let FD(·) denote the CDF, so FD(v) :=∑
w∈[0,v] f

D(w).
The seller’s goal is to design a truthful mechanism that maximizes their

expected revenue. Specifically, a mechanism consists of a mapping from valua-
tion profiles �v to ex-post allocation probabilities xij(�v) for all bidders i and items
j, and an ex-post price pi(�v) for all bidders i. This denotes the probability that
bidder i gets item j when the full vector of bids is �v, and the price that bidder i
pays (respectively). The interim allocation rule is a mapping from valuation vec-
tor �vi to the interim allocation probability πij(�vi) := E�v−i←D−i

[xij(�vi;�v−i)]. The
interim price paid is qi(�vi) := E�v−i←D−i

[pi(�vi;�v−i)].6 These quantities denote
the probability that bidder i receives item j and the price bidder i pays (respec-
tively), conditioned on reporting �vi and in expectation over the remaining bids
being drawn from D−i. If we wish to emphasize that these terms come from a
specific mechanism M , we will write xM

ij (·), pM
i (·), etc. We say that a mechanism

is truthful if it is Bayesian individually rational (BIR) and Bayesian incentive
compatible (BIC). That is:

∑

j

vij · πij(�vi) − qi(�vi) ≥ 0, ∀i, �vi. (BIR)

∑

j

vij · πij(�vi) − qi(�vi) ≥
∑

j

vij · πij(�v′
i) − qi(�v′

i),∀i, �vi, �v
′. (BIC)

The seller’s goal is to find, over all truthful mechanisms, the one maximiz-
ing her expected revenue (which can be written either as E�v←D[

∑
i pi(�v)] or∑

i E�vi←Di
[qi(�vi)]).

Fairness and Symmetries. Motivated by the discussion in Sect. 1, we define an
auction to be fair if whenever an advertiser places the same bid for an impression
for two different demographics, those two demographics view the ad with the
same probability. After mapping from advertiser to buyer, and demographics to
items, this yields the following two definitions, depending on whether we seek a
guarantee ex-post or in the interim.

Definition 1 (Fair Auction). An auction is ex-post fair with respect to bidder
i if for all valuation profiles �v, and items j, k:

vij = vik ⇒ xij(�v) = xik(�v) ∀i.

An auction is interim fair if for all bidders i, valuation vectors �vi, and items
j, k:

vij = vik ⇒ πij(�vi) = πik(�vi).

Intuitively, an auction is ex-post fair with respect to bidder i if no matter the
bids of the other bidders (advertisers), when bidder i places an identical bid for
two items (views from particular demographics), they receive those items with
6 We use the standard notation �v−i to refer to the vector of bids excluding bidder i,

and D−i to refer to the distribution over valuation profiles, excluding bidder i.
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the same probability (those demographics view the ad with the same probabil-
ity). An auction is interim fair with respect to bidder i if when bidder i places an
identical bid for two items, they receive those items with the same probability in
expectation over the other bidders’ bids (assuming they are drawn from D−i).

Both definitions are implied by the following stronger definitions (respec-
tively), which require that the auction be invariant under relabeling of items.
Below, the notation σ(�v) refers to a vector satisfying (σ(�v))iσ(j) = �vij for all i, j
(that is, the items/demographics have been relabeled according to σ).

Definition 2 (Symmetric Auction). An auction is ex-post symmetric with
respect to bidder i if for all permutations σ on [m], valuation vectors �vi, and
partial valuation profiles �v−i:

σ(�xi(�vi;�v−i)) = �xi(σ(�vi), �v−i).

An auction is interim symmetric if for all permutations σ, bidders i, and
valuation vectors �vi:

σ(�πi(�vi)) = �πi(σ(�vi)).

Intuitively, an auction is symmetric if permuting a valuation vector by σ
permutes the allocation vector by σ as well. We briefly observe that symmetry
implies fairness.

Observation 1. If an auction is ex-post (respectively, interim) symmetric, it is
also ex-post (respectively, interim) fair.

Proof. Let vij = vik, and consider the permutation σ which swaps j and k. Then
σ(�vi) = �vi. Symmetry therefore implies7 that xij(�vi;�v−i) = xiσ(j)(σ(�vi);�v−i)) =
xik(�vi;�v−i). This completes the proof for ex-post.

Similarly by symmetry: πij(�vi) = πiσ(j)(σ(�vi)) = πik(�vi). This completes the
proof for interim.

A Stronger Fairness Guarantee via Symmetry. The fairness guarantees
above (and those in prior work) demand that equally-valued users are shown
an ad with the same probability. A stronger fairness guarantee might instead
demand that if demographic i is valued higher by an advertiser than demographic
j, then users from demographic i are shown that ad at least as often as those
from demographic j. We term this property strong monotonicity in fairness,
defined below (after mapping from advertiser to buyer, and demographics to
items).

Definition 3 (Strong Monotonicity in Fairness). An auction satisfies ex-
post strong monotonicity in fairness with respect to bidder i, if for all valuation
profiles �v, and items j, k:

vij ≥ vik ⇒ xij(�v) ≥ xik(�v) ∀i.

7 To see this, recall that σ(�x(�vi;�v−i)) is a vector that puts xij(�vi;�v−i)) in the i, σ(j)
coordinate.



68 M. Essaidi and S. M. Weinberg

An auction is interim strong monotonicity in fairness if for all bidders i,
valuation vectors �vi, and items j, k:

vij ≥ vik ⇒ πij(�vi) ≥ πik(�vi).

Note that ex-post (resp. interim) fairness does not imply ex-post (resp.
interim) strong monotonicity in fairness. Interestingly, however, [24] has already
previously studied interim strong monotonicity in fairness (under the name
strong monotonicity), and shown that it is implied by interim symmetry! That
is, while previously studied notions of fairness alone do not imply this stronger
fairness notion, symmetry does. Below we briefly repeat their observation (and
it’s short proof, for completeness).

Observation 2 ([24]). If an auction is interim symmetric and Bayesian Incen-
tive Compatible, then it satisfies interim strong monotonicity in fairness.

Proof. By Observation 1, any auction that is interim symmetric is also interim
fair. This means that if vij = vik, then πij(�vi) ≥ πik(�vi), so the conditions for
interim strong monotonicity in fairness hold whenever vij = vik, and we need
only consider the case when vij > vik.

Assume for contradiction that vij > vik but πij(�v) < πik(�v). Advertiser i
could lie and swap vij and vik. By symmetry, this swaps πij(�v) and πik(�v), and
strictly increases the advertiser’s interim expected value (by (vij −vik) ·(πik(�v)−
πij(�v)). The auctioneer still charges advertiser i the same interim expected price
(also by symmetry), giving them strictly more expected utility, and contradicting
that the auction is Bayesian Incentive Compatible.

We briefly note that ex-post symmetry and ex-post incentive compatibility
also imply ex-post strong monotonicity in fairness, and the proof outline is iden-
tical (but we will not formally state/prove this, as we did not formally define
ex-post incentive compatibility).

Observation 3. If an auction satisfies ex-post (respectively, interim) strong
monotonicity in fairness, then it is also ex-post (respectively, interim) fair.

Proof. Let vij = vik, then vij ≥ vik and vij ≤ vik. By ex-post strong mono-
tonicity in fairness, we get xij(�v) ≥ xik(�v) and xij(�v) ≤ xik(�v). Therefore,
xij(�v) = xik(�v).

Similarly, by interim strong monotonicity in fairness, we get πij(�v) ≥ πik(�v)
and πij(�v) ≤ πik(�v). Therefore, πij(�v) = πik(�v). This completes the proof for
ex-post.

Selling Separately and Bundling Together. For a single bidder distribution
D, we use the following notation:

– RevM (D): the revenue of a particular mechanism M for distribution D.
– Rev(D): the optimal revenue achieved by any truthful mechanism for D

(formally, this is: supM,M is truthful{RevM (D)}). Observe that mechanisms
achieving Rev(D) are not necessarily fair nor symmetric.
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– SymRev(D): the optimal revenue achieved by any truthful and interim sym-
metric mechanism for D. By definition, the mechanism giving SymRev(D)
is symmetric.

– SRev(D): the optimal revenue achieved by selling separately to a bidder
drawn from D. That is, the seller sets a price pj := arg maxp{p · Prv←Dj

[v ≥
p]} on item j, and the buyer purchases all items for which vj ≥ pj . Observe
that such mechanisms are not necessarily fair nor symmetric. In the context
of our running example, this corresponds to the platform setting a different
price to display an ad to each demographic, and allowing each advertiser to
choose which demographic views to purchase.

– SSRev(D): the optimal revenue achieved by symmetrically selling sepa-
rately to a bidder drawn from D. That is, the seller sets the same price
p := arg maxq{q · ∑

j Prv←Dj
[v ≥ q]} on all items, and the buyer purchases

all items for which vj ≥ p. Observe that such mechanisms are both fair and
symmetric. In the context of our running example, this corresponds to the
platform setting the same price to display an ad to each demographic, and
allowing each advertiser to choose which demographic views to purchase.

– BRev(D): the optimal revenue achieved by bundling together. That is, the
seller sets a price p := arg maxq{q · Pr�v←D[

∑
j vj ≥ q]} on the grand bundle

of all items, and the buyer either purchases all items at total price p (when∑
j vj ≥ p), or nothing. Observe that such mechanisms are both fair and

symmetric. In the context of our running example, this corresponds to the
platform ignoring all demographic information, and allowing advertisers to
show their ads to all users or none.

Mapping Between ad Auctions and Multi-dimensional Mechanism
Design. We briefly repeat the connection between ad auctions and the clas-
sical multi-item auction setup formally identified by [23, Theorem 2]. An item j
in the classic setting corresponds to a demographic j in the ad auction domain.
Moreover, awarding the buyer item j with probability xj corresponds to showing
a user with type j their ad with probability xj . Therefore, if advertisers have
a value of vj per click from demographic j, and demographic j represents a
dj fraction of the population, then the advertiser’s value for an allocation �x is∑

j vj · djxj . Observe that when each demographic represents the same fraction
of the population (e.g. male/female) that the advertiser’s valuation is simply
additive. Therefore, our main results on item-symmetric mechanisms with an
additive buyer directly have bite in the ad auction domain when each demo-
graphic is equally likely.8

We also remind the reader that [23, Theorem 2] observes that bundling items
together in the classic setting corresponds to concealing demographic data in the
ad auction setting. Similarly, selling separately in the classic setting corresponds
to setting a price pj to display an ad to demographic j, and letting advertisers

8 We also note that it is an interesting open direction to extend our main results from
an additive bidder to a ’scaled additive’ bidder so that this connection holds even
for non-uniform demographic distributions.



70 M. Essaidi and S. M. Weinberg

choose which subset of demographics to target. Selling separately and symmet-
rically further enforces that pi = pj for all i, j.

Now that our model is formally defined, we revisit the discussion of Sect. 1
with concrete examples in Appendix A of the long version. In the next section,
we present our main results.

3 Main Result: BRev is a Constant-Factor Approximation
to SymRev

In this section, we prove our main result: BRev is a constant factor approxima-
tion to SymRev. Recall that in our setting, BRev corresponds to the optimal
revenue achieved by a mechanism which ignores demographic data entirely.

Theorem 1. Let D be any additive single-bidder distribution over any number
of independent items. Then 204BRev(D) ≥ SymRev(D).

We prove Theorem 1 in two steps. The first step is the main step, and proves
a theorem reminiscent of the main result of [5], establishing that either BRev(D)
or SSRev(D) is a constant-factor approximation to SymRev(D) (Theorem 2).
The second step argues that in fact BRev(D) is a constant factor approximation
to SSRev(D) (Proposition 1).

Theorem 2. Let D be any additive single-bidder distribution over any number
of independent items. Then 24BRev(D) + 20SSRev(D) ≥ SymRev(D).

Proposition 1. Let D be any additive single-bidder distribution over any num-
ber of independent items. Then 9BRev(D) ≥ SSRev(D).

We defer the proof of Theorem 1 to Appendix B of the long version. In
Appendix B.1 we show how to upper bound SymRev(D) with Rev(D′) for a
modified distribution D′. To prove Theorem 2, we will first provide a modified
distribution D′, show that its revenue is close to that of D, and then design
a flow for D′. In Appendix B.2 we upper bound Rev(D′) with 24BRev(D) +
20SSRev(D), and we provide a proof based on tools used in [31]. In Sect. 3.1
we prove Proposition 1.

In Appendix C of the long version, we provide an alternative proof based
on the [9] duality framework (for the case when the distribution of the bidder’s
maximum value for the items is regular). In Appendix C.2 we also overview a
naive attempt at applying their framework (using their “canonical flow”), which
helps provide intuition for the need to go through D′.

3.1 Comparing BREV to SSREV

In this section, we prove Proposition 1: BRev is a constant factor approximation
to SSRev. Recall that in our setting, BRev corresponds to the optimal revenue
achieved by a mechanism which ignores demographic data entirely, while SSRev
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corresponds to the optimal revenue achieved by a mechanism which sets the same
price to display an ad to each demographic, and allows each advertiser to choose
which demographic views to purchase.

To prove Proposition 1, consider any mechanism that sets price p on each item
separately, and let qj(p) denote the probability that the bidder purchases item
j (that is, that vj ≥ p), and let q(p) :=

∑
j qj(p) denote the expected number of

items purchased at price p (and therefore, SSRev(D) := supp{p ·q(p)}). We will
show that there is always a price p′ for the grand bundle that collects a constant
fraction of p · q(p).

We will first consider the case where q(p) ≤ 8 (that is, at most 8 items are
sold at price p in expectation). Unsurprisingly, in this case it suffices to set a
price p′ := p on the grand bundle.

Lemma 1. Let q(p) ≤ 8. Then selling the grand bundle at price p generates
expected revenue at least p · q(p)/9.

Proof. The proof follows from straight-forward calculations:

Pr
�v←D

[
∑

j

vj ≥ p] ≥ Pr
�v←D

[max
j

{vj} ≥ p] = 1 − Pr
�v←D

[∀j, vj < p]

= 1 −
∏

j

Pr
vj←Dj

[vj < p] = 1 −
∏

j

(1 − qj(p))

≥ 1 −
∏

i

e−qj(p) = 1 − e−q(p)

≥ q(p)/9.

Above, the first line holds since the distribution for
∑

j vj stochastically
dominates maxj vj . The second line follows as values are independent. The third
line holds as e−qj(p) ≥ 1 − qj(p), and the last line holds for all values q(p) ≤ 8.
In particular, this means that we can set price p on the grand bundle, and it will
sell with probability at least q(p), completing the proof.

This completes our analysis of the first case. We now consider the case where
q(p) > 8, and we set the grand bundle price to be p′ = q(p)p/2. We will also use
the notation σ2(p) to denote the variance of the random variable

∑
j I(vj ≥ p).

We quickly observe a bound on σ2(p), which follows as all values are independent.

Observation 4. σ2(p) =
∑

j qj(p)(1 − qj(p)) ≤ ∑
j qj(p) = q(p).

Lemma 2. Let q(p) > 8. Then selling the grand bundle at price p · q(p)/2 gen-
erates expected revenue at least p · q(p)/9.

Proof. Observe that certainly
∑

j vj ≥ p · q(p)/2 when there are at least q(p)/2
items with value greater than p. We lower bound the probability of this event
using Chebyshev’s inequality:
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Pr
�v←D

[
∑

j

vj ≥ p · q(p)/2] ≥ Pr
�v←D

[
∑

j

I(vj ≥ p) ≥ 1
2
x(p)]

≥ Pr
�v←D

[|
∑

i

I(vj ≥ p) − q(p)| ≤ 1
2
x(p)]

≥ 1 − σ2(p)
q(p)2/4

≥ 1 − 4/q(p) ≥ 1/2

Proposition 1 now follows from Lemma 1 and Lemma 2.
While not related to our main result, we also explore the relationship between

SSRev and BRev in the other direction, and include a proof in Appendix E of
the long version. The outline is similar to a related claim in [5].

Theorem 3 (SSRev is a log approximation of BRev). For any distribu-
tion D for a single additive buyer and m not necessarily independent items,
BRev(D) ≤ 5 log(m)SSRev(D).

In Appendix D of the long version, we analyze several examples demonstrat-
ing the relationship between BRev and SSRev.

4 Conclusions

Motivated by recent works which consider fairness constraints in welfare-
maximizing or single-dimensional auctions [11,14,27,34], we introduce fairness
considerations in multi-dimensional mechanism design. We study interim (rather
than worst-case) notions of fairness, and use this to motivate the study of simple
item-symmetric auctions. Our main technical result is that the simple auction
which ignores demographic information entirely is a constant-factor approxima-
tion to the optimal item-symmetric auction.
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1 Introduction

Optimal mechanism design is very challenging in multi-dimensional settings such
as those for selling multiple items, such as those that arise in the sale of wire-
less spectrum licenses or the allocation of advertisements to slots in internet
advertising. Recognizing this challenge, there is considerable interest in adopt-
ing algorithmic approaches to address these problems of economic design. These
include polynomial-time black-box reductions from multi-dimensional revenue
maximization to the algorithmic problem for virtual welfare optimization, e.g.,
[6–8], and the application of methods from linear programming [12,13] and
machine learning [16,18,19] to automated mechanism design.

Moreover, it is common in practical settings that it is important consider both
social welfare (efficiency) and revenue. For example, national governments that
use auctions to sell wireless spectrum licenses care both about the efficiency of
the allocation as this promotes valuable use as well as the revenue that flows from
auctions into the budget. In regard to online advertising, there are various works
that explore this trade-off between welfare and revenue. Display advertising has
focused on yield optimization (i.e., maximizing a combination of revenue and the
quality of ads shown) [3], and work in sponsored search auctions has considered a
squashing parameter that trades off efficiency and revenue [25]. At the same time,
there is a surprisingly small theoretical literature that considers both welfare and
revenue properties together (e.g., [15]).

At the same time, the use of computational methods for economic design
often comes with a limitation, which is that the output mechanism may only
be approximately incentive compatible (IC); e.g., the black-box reductions are
approximately IC when the algorithmic problems are solved in polynomial time,
the LP approach works on a discretized space to reduce computational cost but
thereby achieves a mechanism that is only approximately IC in the full space, and
the machine learning approaches train a mechanism over finite training data and
achieve approximate IC on the full type distribution. While it has been debated
as to whether approximate incentive compatibility may suffice, e.g., [1,11,26],
this does add an additional layer of unpredictability to the performance of a
designed mechanism. First, the fact that an agent can gain only a small amount
from deviating does not preclude strategic behavior—perhaps the agent can
easily identify a useful deviation, for example through repeated interactions, that
reliably provides increased profit. This can be a problem when strategic responses
lead to an unraveling of the desired economic properties of the mechanism (we
provide such an example in this paper). The possibility of strategic reports by
participants has additional consequences as well, for example making it more
challenging for a designer to confidently measure ex-post welfare after outcomes
are realized.

For the above reasons, there is considerable interest in methods to transform
an ε-Bayesian incentive compatible (ε-BIC) mechanism to an exactly BIC mech-
anism [9,14,28], or an ε-expected ex-post IC (ε-EEIC) mechanisms [16,18] into
an exactly BIC mechanism. The main question we want to answer in this paper
is:
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Given an ε-BIC/ ε-EEIC mechanism, is there an exact BIC mechanism
that maintains social welfare and achieves negligible revenue loss compared
with the original mechanism under truthful reports? If so, can we find the
transformed, BIC mechanism efficiently?

In this paper, we provide the first ε-BIC to BIC transform that is welfare-
preserving while also ensuring only negligible revenue loss relative to the baseline
mechanism. This simultaneous attention to the properties of both welfare and
revenue is of practical importance. An immediate corollary of our main result
is the well known result from economic theory, namely that efficient allocations
can be implemented in an incentive-compatible way. For example, the transform
can be applied to a first-price, sealed-bid auction to achieve an efficient and BIC
auction.

Our approach is different from the previous replica-surrogate matching meth-
ods and we directly make use of a directed and weighted type graph (induced
by the types’ regret), one for each agent. The transformation runs a fractional
rotation step and a payment reducing step iteratively to make the mechanism
Bayesian incentive compatible.

The transform also satisfies another appealing property, which is that of
allocation-invariance. The transformed mechanism maintains the same distribu-
tion on outcomes, allocations for example, as the baseline mechanism (focusing
here on the non-monetary part of the output of the mechanism).1 This property
is useful in many scenarios. Consider, for example, a principal such as Amazon
that is running a market and also incurs a resource cost for different outcomes
(e.g. warehouse storage cost). With this allocation-invariance property, then not
only is the welfare the same (or better) and the revenue loss negligible, but
the resource cost (averaged over iterations of the mechanism) of the principal is
preserved by the transform.

1.1 Model and Notation

We consider a general mechanism design setting with a set of n agents N =
{1, . . . , n}. Each agent i has a private type ti. We denote the entire type profile
as t = (t1, . . . , tn), which is drawn from a joint distribution F . Let Fi be the
marginal distribution of agent i and Ti be the support of Fi. Let t−i be the joint
type profile of the other agents, F−i be the associated marginal type distribution.
Let T = T1 ×· · ·×Tn and T−i be the support of F and F−i, respectively. In this
setting, there is a set of feasible outcomes denoted by O, typically an allocation
of items to agents. Later in the paper, we sometimes also use “outcome” to
refer to the output of the mechanism, namely the allocation together with the
payments, when this is clear from the context.

We focus on the discrete type setting, i.e., Ti is a finite set containing mi

possible types, i.e., |Ti| = mi. Let t
(j)
i denote the jth possible type of agent i,

1 This allocation-invariance is ex ante, i.e., it is with respect to the prior distribution
over types.
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where j ∈ [mi]. For all i and ti, vi : (ti, o) → R≥0 is a valuation that maps a type
ti and outcome o to a non-negative real number. A direct revelation mechanism
M = (x, p) is a pair of allocation rule xi : T → Δ(O), possibly randomized, and
expected payment rule pi : T → R≥0. We slightly abuse notation, and also use vi

to define the expected value of bidder i for mechanism M, with the expectation
taken with respect to the randomization used by the mechanism, that is

∀i, t̂ ∈ T , vi(ti, x(t̂)) = Eo∼x(t̂)[vi(ti, o)], (1)

for true type ti and reported type profile t̂. When the reported types are t̂ =
(t̂1, . . . , t̂n), the output of mechanism M for agent i is denoted as Mi(t̂) =
(xi(t̂), pi(t̂)). We define the utility of agent i with true type ti and a reported type
t̂i given the reported type profile t̂−i of other agents as a quasilinear function,

ui(ti,M(t̂)) = vi(ti, x(t̂)) − pi(t̂). (2)

For a multi-agent setting, it will be useful to also define the interim rules.

Definition 1 (Interim Rules of a Mechanism). For a mechanism M with
allocation rule x and payment rule p, the interim allocation rule X and pay-
ment rule P are defined as, ∀i, ti ∈ Ti,Xi(ti) = Et−i∈F−i

[xi(ti; t−i)], Pi(ti) =
Et−i∈F−i

[pi(ti; t−i)].

In this paper, we assume we have oracle access to the interim quantities of
mechanism M.

Assumption 1 (Oracle Access to Interim Quantities). For any mecha-
nism M, given any type profile t = (t1, . . . , tn), we receive the interim allocation
rule Xi(ti) and payments Pi(ti), for all i, ti.

We define the menu of a mechanism M in the following way.

Definition 2 (Menu). For a mechanism M, the menu of bidder i is the set
{Mi(t)}t∈T . The menu size of agent i is denoted as |Mi|.

In mechanism design, there is a focus on designing incentive compatible mech-
anisms, so that truthful reporting of types is an equilibrium. This is without loss
of generality by the revelation principle.

It has also been useful to work with approximate-IC mechanisms, and these
have been studied in various papers, e.g. [2,9,10,14,16,18–20,24,28].

In this paper, we focus on two definitions of approximate incentive compati-
bility, ε-BIC and ε-expected ex post incentive compatible (ε-EEIC).

Definition 3 (ε-BIC Mechanism). A mechanism M is ε-BIC iff for all i, ti,

Et−i∼F−i
[ui(ti,M(t))] ≥ max

t̂i∈Ti

Et−i∼F−i
[ui(ti,M(t̂i; t−i))] − ε

Definition 4 (ε-expected ex post IC (ε-EEIC) Mechanism [18]). A mech-
anism M is ε-EEIC if and only if for all i,

Et

[
max
t̂i∈Ti

ui(ti,M(t̂i; t−i)) − ui(ti,M(t))
]

≤ ε
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A mechanism M is ε-EEIC iff no agent can gain more than ε ex post regret,
in expectation over all type profiles t ∈ T (where ex post regret is the amount
by which an agent’s utility can be improved by misreporting to some t̂i given
knowledge of t, instead of reporting its true type ti). A 0-EEIC mechanism is
essentially DSIC.2

We can also consider an interim version of ε-EEIC, termed as ε-expected
interim IC (ε-EIIC), which is defined as

Eti∼Fi

[
Et−i∼F−i

[ui(ti, M(ti; t−i))]
]

≥ Eti∼Fi

[
max
t′
i∈Ti

Et−i∼F−i

[
ui(ti, M(t′i; t−i))

]
]

− ε

All our results for ε-EEIC to BIC transformation hold for ε-EIIC mechanism.
Indeed, we prove that any ε-EEIC mechanism is also ε-EIIC in Lemma 1 in
Appendix.

Another important property of mechanism design is individual rational-
ity (IR), and we define two standard versions of IR (ex-post/interim IR) in
Appendix. The transformation that we provide from ε-BIC/ε-EEIC to BIC pre-
serves individual rationality: if the original mechanism is interim IR then the
mechanism achieved after transformation is interim IR, and if the original mech-
anism is ex-post IR then the mechanism achieved after transformation is ex-post
IR.

For a mechanism M, let RM(F) and WM(F) represent the expected rev-
enue and social welfare, respectively, when agent types are sampled from F and
they play M truthfully3. This definition applies equally to an IC or non-IC
mechanism.

Definition 5 (Expected Social Welfare and Revenue). For a mechanism
M = (x, p) with agents’ types drawn from distribution F , the expected revenue
for truthful reports is RM(F) = Et∼F [

∑n
i=1 pi(t)], and the expected social welfare

for truthful reports is WM(F) = Et∼F [
∑n

i=1 vi(ti, x(t))].

In this work, we focus on the following transformation.

Definition 6 (Welfare-preserving Transformation with Negligible Rev-
enue Loss). Given an ε-BIC/ε-EEIC mechanism M over type distribution F , a
welfare-preserving transform that provides negligible revenue loss outputs a mech-
anism M′ such that, WM′

(F) ≥ WM(F) and RM′
(F) ≥ RM(F) − r(ε), where

r(ε) → 0 as ε → 0.

2 For discrete type settings, 0-EEIC is exactly DSIC. For the continuous type case, a
0-EEIC mechanism is DSIC up to zero measure events.

3 In this paper, we consider the revenue and welfare performance of the untruthful
mechanisms with truthful reports, which is commonly used in the literature. It is an
interesting future direction to consider the performance of untruthful mechanisms
under equilibrium reporting.
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1.2 Previous ε-BIC to BIC Transformations

There are existing algorithms for transforming any ε-BIC mechanism to an
exactly BIC mechanism with only negligible revenue loss [9,14,28]. The central
tools and reductions in these papers build upon the method of replica-surrogate
matching [4,21,22]. Here we briefly introduce replica-surrogate matching and its
application to an ε-BIC to BIC transformation.

Replica-Surrogate Matching. For each agent i, construct a bipartite graph
Gi = (Ri ∪ Si, E). The nodes in Ri are called replicas, which are types sam-
pled i.i.d. from the type distribution of agent i, Fi. The nodes in Si are called
surrogates, and also sampled from Fi. In particular, the true type ti is added in
Ri. There is an edge between each replica and each surrogate. The weight of the
edge between a replica r

(j)
i and a surrogate s

(k)
i is induced by the mechanism,

and defined as

wi(r
(j)
i , s(k)) = Et−i∈F−i

[
vi(r

(j)
i , x(s

(k)
i , t−i))

]
− (1 − η) · Et−i∈F−i

[
pi(s

(k)
i , t−i)

]
. (3)

The replica-surrogate matching computes the maximum weight matching in
Gi.

ε-BIC to BIC Transformation by Replica-Surrogate Matching [14]. We
briefly describe this transformation, deferring the details to Appendix. Given a
mechanism M = (x, p), this transformation constructs a bipartite graph between
replicas (include the true type ti) and surrogates, as described above. The app-
roach then runs VCG matching to compute the maximum weighted matching for
this bipartite graph, and charges each agent its VCG payment. For unmatched
replicas in the VCG matching, the method randomly matches a surrogate. Let
M′ = (x, (1 − η)p) be the modified mechanism. If the true type ti is matched
to a surrogate si, then agent i uses si to compete in M′. The outcome of M′ is
x(s), given matched surrogate profile s, and the payment of agent i (matched in
VCG matching) is (1− η)pi(s) plus the VCG payment from the VCG matching,
where η is the parameter in replica-surrogate matching. If ti is not matched in
the VCG matching, the agent gets nothing and pays zero.

This replica-surrogate matching transform does not preserve welfare. Indeed,
the replica-surrogate matching transformation must suffer welfare loss in some
cases.4 Turning to revenue, the revenue loss of the replica-surrogate matching
mechanism relative to the orginal mechanism M is guaranteed to be at most
ηRev(M)+O

(
nε
η

)
[14,28], and has both a multiplicative and an additive term.

Cai et al. [9] propose a polynomial time algorithm for performing this trans-
form with only sample access to the type distribution and query access to the
4 The previous ε-BIC to BIC transformations [9,14,28] don’t state the welfare loss

guarantee clearly. Consider Example 1 shown in Sect. 1.3, the original ε-BIC mecha-
nism already maximizes welfare and the optimal allocation is unique, any unmatched
type in replica-surrogate matching creates a welfare loss. Particularly, the welfare
loss is unbounded when (inappropriately) choosing η < ε√

m−1
in replica-surrogate

matching.
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original ε-BIC mechanism. The transform extends replica-surrogate matching
and Bernoulli factory techniques proposed by [17] to handle negative weights
in the bipartite graph and provides the same revenue property as the previous
work [14,28], without preserving social welfare.5 In this work, we assume oracle
access to the interim quantities of the original ε-BIC mechanism, following the
model of [4,14,21,22,28]. How to generalize the proposed transform to the set-
ting that only has sample access to the type distribution and runs in polynomial
time will be an interesting future work.

The black-box reduction of [4] focuses on preserving welfare only. Indeed,
it can be regarded as a special case of this replica-surrogate matching method,
where the weight of the bipartite graph only depends on the valuations and not
the prices (η = 1 in Eq. (3)), and the replicas and surrogates are both Ti (there is
no sampling for replicas and surrogates). For this reason, the transform described
in [4] can preserve social welfare but may provide arbitrarily bad revenue (see
Example 1).

1.3 Our Contributions

We first state the main result of the paper, which provides a welfare-preserving
transform from approximate BIC to exact BIC with negligible revenue loss. This
result holds for the general mechanism design setting with n ≥ 1 agents and
independent private types and is not restricted to allocation problems.

Main Result 1 (Theorem 6). With n ≥ 1 agents and independent private
types, and an ε-BIC and IR mechanism M that achieves W expected social
welfare and R expected revenue given truthful reports, there exists a BIC and
IR mechanism M′ that achieves at least W social welfare and R −

∑n
i=1 |Ti|ε

revenue. The transformation is (ex ante) allocation-invariant. Given an oracle
access to the interim quantities of M, the running time of the transformation
from M to M′ is at most poly(

∑
i |Ti|).

The transformation works directly on the type graph of each agent, and it
is this that allows us to maintain social welfare— indeed, we may even improve
social welfare in our transformation. In contrast, the transformation from [4]
can incur unbounded revenue loss (see Example 1, in which it loses all revenue)
and existing approaches [9,10,14,28] with negligible revenue loss can lose social
welfare (see Example 1).

5 Dughmi et al. [17] propose a general transformation from any black-box algorithm
A to a BIC mechanism that only incurs negligible loss of welfare, with only poly-
nomial number queries to A, by using Bernoulli factory techniques. This approach
has no guarantee on the revenue loss. Cai et al. [9] generalize Bernoulli factory tech-
niques in the replica-surrogate matching to transform any ε-BIC mechanism to a
BIC mechanism that only incurs negligible loss of revenue, with polynomial number
queries to the original ε-BIC mechanism and polynomial number samples from the
type distribution.



Welfare-Preserving ε-BIC to BIC Transformation 83

Choosing η =
√

ε, the revenue loss of existing transforms [9,10,14,28] is
at most

√
εRev(M) + O(n

√
ε), with both a multiplicative and an additive-

loss in revenue, while our revenue loss is additive. In the case that the orig-
inal revenue, Rev(M), is order-wise smaller than the number of types, i.e.,
Rev(M) = o(

∑
i |Ti|), the existing transforms provide a better revenue bound

(at some cost of welfare loss). But when the revenue is relatively larger than
the number of types, i.e., Rev(M) = Ω(

∑
i |Ti|), our transformation can achieve

strictly better revenue than these earlier approaches while also preserving wel-
fare.

Before describing our techniques we illustrate these properties through a
single agent, two outcome example in Example 1. We show that even for the case
that Rev(M) = o(

∑
i |Ti|), our transformation can strictly outperform existing

transforms w.r.t revenue loss.

Example 1. Consider a single agent with m types, T = {t(1), · · · , t(m)}, where
the type distribution is uniform. Suppose there are two outcomes, the agent with
type t(j)(j = 1, . . . , m − 1) values outcome 1 at 1 and values outcome 2 at 0.
The agent with type t(m) values outcome 1 at 1 + ε and outcome 2 at

√
m. The

mechanism M we consider is: if the agent reports type t(j), j ∈ [m−1], M gives
outcome 1 to the agent with a price of 1, and if the agent reports type t(m), M
gives outcome 2 to the agent with a price of

√
m. M is ε-BIC, because the agent

with type t(m) has a regret ε. The expected revenue achieved by M is 1+
√

m−1
m .

In addition, M maximizes social welfare, 1 +
√

m−1
m .

Our transformation decreases the payment of type t(m) by ε for a loss of ε
m

revenue and preserves the social welfare.
The transformation by [4] preserves the social welfare, however, the VCG

payment (envy-free prices) is 0 for each type. Therefore, the approach proposed
in [4] loses all revenue.

Moreover, the approaches that make use of replica-surrogate matching [9,
14,28, e.g.] lose at least ε

m + ε√
m−1

revenue, which is about (
√

m + 1) times
larger than the revenue loss of our transformation. We argue this claim by a
case analysis,

– If η ≥ ε√
m−1

, the VCG matching is the identical matching and the VCG

payment is 0 for each type. In total, the agent loses at least η ·
√

m+m−1
m ≥

ε
m + ε√

m−1
expected revenue.

– If η < ε√
m−1

, the agent with type t(m) will be assigned outcome 1 (t(m) is

matched to some t(j), j ∈ [m − 1], in VCG matching) and the VCG payment
is η. Thus, type t(m) loses at least

√
m − (1 − η) − η =

√
m − 1 revenue.

For any type t(j), j ∈ [m − 1], if t(j) is matched in VCG matching, the VCG
payment is 0, since it will be matched to another type t(k), k ∈ [m − 1]. Each
type t(j), j ∈ [m − 1] loses at least η revenue. Overall the agent loses at least√

m−1
m expected revenue. In addition, since the type t(m) is assigned outcome

1, we lose at least
√

m−1−ε
m expected social welfare.
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Moreover, there is a chance that a type is not matched, in which case the
social welfare is reduced.

Our transformation satisfies also satisfies an appealing allocation-invariance
property (see Definition 7). Given an ε-BIC mechanism M = (x, p), the trans-
form outputs a BIC mechanism M′ = (x′, p′) that satisfies

∑
t∈T f(t)x′(t) =∑

t∈T f(t)x(t). As noted above, this property would be of interest, for example,
to a principal who is operating the logistics for provisioning goods sold through
the mechanism. Because of allocation-invariance, the principal knows that the
distribution on goods sold is unchanged as a result of the transform and thus
logistical aspects in regard to inventory storage are unchanged. The previous
transformations [4,9,14,28] don’t satisfy this allocation-invariance property.

We also support ε-expected ex-post IC (ε-EEIC), which is motivated by work
on the use of machine learning to achieve approximate IC mechanisms in multi-
dimensional settings [16,18,19]. In comparison with ε-BIC, the ε-EEIC metric
only guarantees at most ε ex-post gain in expectation over type profiles, with no
interim guarantee for any particular type. It is incomparable in strength with
ε-BIC because ε-EEIC also strengthens ε-BIC in working with ex-post regret
rather than interim regret. Our second main result shows how to transform
an ε-EEIC mechanism to a BIC mechanism. For this, we need the additional
assumption of a uniform type distribution and prove that this is necessary to
achieve a transform with suitable properties.

Main Result 2 (Informal Theorems 5 and 6). For n ≥ 1 agents with inde-
pendent uniform type distribution, our ε-BIC to BIC transformation can be
applied to an ε-EEIC mechanism and all results in Main Result 1 hold here. For
a non-uniform type distribution, we show an impossibility result for an ε-EEIC
to BIC, welfare-preserving transformation with only negligible revenue loss, even
for the single agent case.

Moreover, we also argue that our revenue loss bounds are tight given the
requirement to maintain social welfare. This holds for both ε-BIC mechanisms
and ε-EEIC mechanisms.

Main Result 3 (Informal Theorems 2 and 7). There exists an ε-BIC/ε-
EEIC and IR mechanism for n ≥ 1 agents with independent uniform type distri-
bution, for which any welfare-preserving transformation must suffer Ω(

∑
i |Ti|ε)

revenue loss.

We also apply the transform to automated mechanism design in Sect. 5, con-
sidering both a linear-programming and machine learning framework and looking
to maximize a linear combination of expected revenue and social welfare, i.e.,
μλ(M,F) = (1−λ)RM(F)+λWM(F), for some λ ∈ [0, 1] and type distribution
F . We summarize the result of this application.

Main Result 4 (Informal Theorems 10 and 11). For n agents with inde-
pendent type distribution ×n

i=1Fi on T = T1 × · · · × Tn and an α-approximation
LP algorithm ALG to output an ε-BIC (ε-EEIC) and IR mechanism M on
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F with μλ(M,F) ≥ αOPT, there exists a BIC and IR mechanism M′, s.t.,
μλ(M′,F) ≥ αOPT − (1 − λ)

∑n
i=1 |Ti|ε. Given oracle access to the interim

quantities of M, the running time to output the mechanism M′ is at most
poly(

∑
i=1 |Ti|, rtALG(x)), where rtALG(·) is the running time of ALG and x is

the bit complexity of the input. Similar results hold for a machine-learning based
approach, in a PAC learning manner.

Compared with the previous transformations that are able to achieve negligi-
ble revenue loss [9,14,28], our transformation achieves a better blended objective
of welfare and revenue when λ is close to 1 since we preserve welfare of the orig-
inal mechanism after transformation.

1.4 Our Techniques

Instead of constructing a bipartite replica-surrogate graph, our transformation
makes use of a directed, weighted type graph, one for each agent. For simplicity
of exposition, we can consider a single agent with a uniform type distribution.

Given an ε-BIC mechanism, M, we construct a graph G = (T , E), where
each node represents a possible type of the agent and there is an edge from node
t(j) to t(k) if the output of the mechanism for type t(k) is weakly preferred by the
agent for true type t(j) in M, i.e. u(t(j),M(t(k))) ≥ u(t(j),M(t(j))). The weight
wjk of edge (t(j), t(k)) is defined as the regret of type t(j) by not misreporting
t(k), i.e.,

wjk = u(t(j),M(t(k))) − u(t(j),Mε(t(j))). (4)

The transformation method then iterates over the following two steps, con-
structing a transformed mechanism from the original mechanism. We briefly
introduce the two steps here and defer to Appendix for detailed description.

Step 1. If there is a cycle C in the type graph with at least one positive-weight
edge, then all types in this cycle weakly prefer their descendant in the cycle
and one or more strictly prefers their descendant. In this case, we “rotate” the
outcome and payment of types against the direction of the cycle, to let each type
receive a weakly better outcome compared with its current outcome. We repeat
Step 1 until all cycles in the type graph are removed.

Step 2. We pick a source node, if any, with a positive-weight outgoing edge
(and thus regret for truthful reporting). We decrease the payment made by this
source node, as well as decreasing the payment made by each one of its ancestors
(note the lack of cycles at this point) by the same amount, until we create a new
edge in the type graph with weight zero, such that the modification to payments
is about to increase regret for some type. If at any point we create a cycle, we
move to Step 1. Otherwise, we repeat Step 2 until there are no source nodes
with positive-weight, outgoing edges.

The algorithm works on the type graph induced by the original, approxi-
mately IC mechanism, M, and directly modifies the mechanism for each type,
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to make the mechanism IC. This allows the transformation to preserve welfare
and provides negligible revenue loss. Step 2 has no effect on welfare, since it only
changes (interim) payment for each type. Step 1 is designed to remove cycles
created in Step 2 so that we can run Step 2, while preserving welfare simultane-
ously. Both steps reduce the total weight of the type graph, which is equivalent
to reducing the regret in the mechanism to make it IC. We show the transform
in Fig. 1.

Fig. 1. Visualization of the transformation for a single agent with a uniform type
distribution: we start from a type graph G(T , E), where each edge (t(1), t(2)) represents
the agent weakly prefers the allocation and payment of type t(2) rather than his true
type t(1). The weight of each edge is denoted in Eq. (4). In the graph, we use solid
lines to represent the positive-weight edges, and dashed lines to represent zero-weight
edges. We first find a shortest cycle, and rotate the allocation and payment along the
cycle and update the graph (Step 1). We keep doing Step 1 to remove all cycles. Then
we pick a source node t(1), and decrease the payment of type t(1) and all the ancestors
of t(1) until we reduce the weight of one outgoing edge from t(1) to zero or we create a
new zero-weight edge from t′ to t(1) or one of the ancestors of t(1) (Step 2).

For a single agent with non-uniform type distribution, we handle the unbal-
anced density probability of each type by redefining the type graph, where the
weight of the edge in type graph is weighted by the product of the probability
of the two nodes that are incident to an edge. We propose a new Step 1 by
introducing fractional rotation, such that for each cycle in the type graph, we
rotate the allocation and payment with a fraction for any type t(j) in the cycle.
By carefully choosing the fraction for each type in the cycle, we can argue that
our transformation preserves welfare and provides negligible revenue loss.
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The multi-agent setting reduces to the single-agent case, building a type
graph for each agent induced by the interim rules (see Appendix for the con-
struction of this type graph). With oracle access to the interim quantities of the
original mechanism, we build the type graph of each agent i in poly(|Ti|) time.
We then apply the transform for each type graph of agent i, induced by the
interim rules.

This is analogous to a replica-surrogate matching approach, which also
defines the weights between replicas and surrogates by interim rules and runs the
replica-surrogate matching for the reported type of each agent. Replica-surrogate
matching uses this sampling technique to make the distribution of reported types
of each agent equal to the distribution of the true type. In comparison, Steps 1
and 2 of our transform leave the type distribution unchanged, so that the trans-
form attains this property for free. Then we can apply our transformation for
each type graph separately. The new challenge in our transformation is feasibil-
ity, i.e., establishing consistency of the agent-wise rotations to interim quantities.
We show the transformation for each type graph guarantees feasibility by appeal
to Border’s lemma [5]. Our transformation can also be directly applied to an ε-
EEIC mechanism in the case that each agent has an independent uniform type
distribution.6

2 Warm-Up: Single Agent with Uniform Type
Distribution

In this section, we consider the case of a single agent and a uniformly distributed
type distribution F , i.e. ∀j ∈ [m], f(t(j)) = 1

m . Even for this simple case, the
proof is non-trivial. Moreover, the technique for this simple case can be extended
to handle more intricate cases. The main result in this section is Theorem 1,
which makes use of a constructive proof to modify a ε-EEIC/ε-BIC mechanism
to a BIC mechanism. An interesting observation is that ε-EEIC may only provide
mε-BIC for a uniform type distribution, which indicates that transforming ε-
EEIC may incur a worse revenue loss bound. However, Theorem 1 shows we can
achieve the same revenue loss bound for both ε-BIC and ε-EEIC.

Theorem 1. Consider a single agent, with m types T =
{
t(1), t(2), · · · , t(m)

}
,

and a uniform type distribution F . Given an ε-EEIC/ε-BIC and IR mechanism
M, which achieves W expected social welfare and R expected revenue, there exists
a BIC and IR mechanism M′ that achieves at least W expected social welfare
and R − mε revenue. Given an oracle access to M, the running time of the
transformation from M to M′ is at most poly(|T |).

6 This need to transform an infeasible, IC mechanism into a feasible and IC mechanism
also arises in [27], who use a method from [23] to correct for feasibility violations
that result from statistical machine learning while preserving strategy-proofness.
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2.1 Lower Bound on Revenue Loss

In the transformation shown in Fig. 2 in Appendix, the revenue loss is bounded
by mε. This revenue loss bound is tight up to a constant factor while insisting
on maintaining social welfare.

Theorem 2. There exists an ε-BIC (ε-EEIC) and IR mechanism M for a single
agent with uniform type distribution for which any ε-BIC and IR to BIC and
IR transformation (without loss of social welfare) must suffer at least Ω(mε)
revenue loss.

2.2 Tighter Bound of Revenue Loss for Settings with Finite Menus

In some settings, the total number of possible types of an agent may be very
large and yet the menu size can remain relatively small. In particular, suppose
that a mechanism M has a small number of outputs, i.e., |M| = C and C 	 m,
where m is the number of types and C is the menu size. Given this, we can
provide a tighter bound on revenue loss for this setting in the following theorem.
The complete proof is deferred to Appendix.

Theorem 3. Consider a single agent with m types T = {t(1), t(2), · · · , t(m)},
sampled from a uniform type distribution F . Given an ε-BIC mechanism M
with C different menus (C 	 m) that achieves S expected social welfare and
R revenue, there exists an BIC mechanism M′ that achieves at least S social
welfare and R − Cε revenue.

3 Single Agent with General Type Distribution

In this section, we consider a setting with a single agent that has a non-uniform
type distribution. A naive idea is that we can “divide” a type with a larger
probability to several copies of the same type, each with equal probability, and
then apply our proof of Theorem 1 to get a BIC mechanism. However, this would
result in a weak bound on the revenue loss, since we would divide the m types
into multiple, small pieces. This section is divided into two parts. First we show
our transformation for an ε-BIC mechanism in this setting. Second, we show an
impossibility result for an ε-EEIC mechanism, that is, without loss of welfare,
no transformation can achieve negligible revenue loss.

3.1 ε-BIC to BIC Transformation

We propose a novel approach for a construction for the case of a single agent with
a non-uniform type distribution. The proof is built upon Theorem 1, however,
there is a technical difficulty to directly apply the same approach for this non-
uniform type distribution case. Since each type has a different probability, we
cannot rotate the allocation and payment in the same way as in Step 1 in the
proof of Theorem 1.
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We instead redefine the type graph G = (T , E), where the weight of the edge
is now weighted by the product of the probability of the two nodes that are
incident to an edge. We also modify the original rotation step shown in Fig. 3
in Appendix: for each cycle in the type graph, we rotate the allocation and
payment with the fraction of f(t(k))

f(t(j))
for any type t(j) in the cycle, where f(t(k))

is the smallest type probability of the types in the cycle. This step is termed as
“fractional rotation step.” We summarize the results in Theorem 4 and show the
proof in Appendix.

Theorem 4. Consider a single agent with m types, T =
{
t(1), t(2), · · · , t(m)

}
drawn from a general type distribution F . Given an ε-BIC and IR mechanim M
that achieves W expected social welfare and R expected revenue, there exists a
BIC and IR mechanism M′ that achieves at least W social welfare and R − mε
revenue.

Allocation-Invariant Transformation. In addition to the welfare and rev-
enue guarantee achieved by this transformation, the transform has another
desired property, as defined below.

Definition 7 (Allocation-invariance property). Two mechanisms M =
(x, p) and M′ = (x′, p′) are (ex ante) allocation-invariant if and only if∑

t∈T f(t)x(t) =
∑

t∈T f(t)x′(t).

For the single agent setting with a general type distribution, the transform
only changes the allocation rules in Step 1. Since we use the fractional rotation
in Step 1, the quantity

∑
t∈T f(t)x(t) is maintained after each Step 1. Then, it

is straightforward to show that the transform satisfies this allocation-invariance
property.7

3.2 Impossibility Result for ε-EEIC Transformation

As mentioned above, given any ε-BIC for a single agent with a general type
distribution, we can transform to an exactly BIC mechanism with no loss of
welfare and negligible loss of revenue. However, the same claim doesn’t hold for
ε-EEIC. Theorem 5 shows that no transformation can achieve negligible revenue
loss while insisting on welfare preservation. The proof is provided in Appendix.

Theorem 5. There exists a single agent with a non-uniform type distribution,
and an ε-EEIC and IR mechanism, for which there is no IC transformation that
preserves social welfare and IR and achieves negligible revenue loss.

7 By contrast, the previous transformations [9,14,28] cannot preserve the distribution
of the allocation, even for the single agent and uniform type distribution case.



90 V. Conitzer et al.

4 Multiple Agents with Independent Private Types

First, we state our positive result for a setting with multiple agents and indepen-
dent, private types (Theorem 6). We assume each agent i’s type ti is indepen-
dently drawn from Fi (Fi can be non-uniform). Then F is a product distribution
that can be denoted as ×n

i=1Fi. The complete proof of the following theorem is
shown in Appendix.

Theorem 6. With n agents and independent private types, and an ε-BIC and
IR mechanism M that achieves W expected social welfare and R expected rev-
enue, there exists a BIC and IR mechanism M′ that achieves at least W social
welfare and R−

∑n
i=1 |Ti|ε revenue. The same result holds for an ε-EEIC mech-

anism with multiple agents, in the case that each agent has an independent uni-
form type distribution. Given an oracle access to the interim quantities of M,
the running time of the transformation from M to M′ is at most poly(

∑
i |Ti|).

Allocation-Invariant Transformation. The transformation for multiple
agents with independent private types is also allocation-invariant. To prove this,
we can observe for M = (x, p) that

∑
t∈T

f(t)x(t) =
∑

ti∈Ti

fi(ti) · Et−i∼F−i
[x(ti, t−i)] =

∑
ti∈Ti

fi(ti)Xi(ti).

Then, we have
∑

t∈T f(t)x′(t) =
∑

t∈T f(t)x(t) for the transformed mecha-
nism M′ = (x′, p′), by Eq. (8) in the proof of Theorem 6 in Appendix.
Lower Bound on Revenue Loss. Similarly to single agent case, we can also
prove a lower bound of revenue loss of any welfare-preserving transformation
for multiple agents with independent private types. We summarize this result in
Theorem 7, and show the proof in Appendix.

Theorem 7. For any number n ≥ 1 of agents with independent uniform type
distribution, there exists an ε-BIC/ε-EEIC and IR mechanism, for which any
welfare-preserving transformation must suffer at least Ω(

∑
i |Ti|ε) revenue loss.

4.1 Impossibility Results

In our main positive result (Theorem 6), we assume independent private types
and the target of transformation is BIC mechanism. These two assumptions are
near-tight. The proofs are deferred to Appendix.

Theorem 8 (Failure of interdependent type). There exists an ε-BIC mech-
anism M w.r.t an interdependent type distribution F (see Definition 9 in
Appendix), such that no BIC mechanism over F can achieve negligible revenue
loss compared with M.

Theorem 8 provides a counterexample to show that if we allow for interde-
pendent types, where the value of one agent depends on the type of another,
there is no way to construct a BIC mechanism without negligible revenue loss
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compared with the original ε-BIC mechanism even if we remove the require-
ment of welfare preservation. This leaves an open question is whether there is a
counterexample for an ε-BIC transform for correlated, private types.

Theorem 9 (Failure of DSIC target). There exists an ε-BIC mechanism
M defined on a type distribution F , such that no DSIC mechanism over F can
achieve negligible revenue loss compared with M.

Theorem 9 gives an impossibility result for the setting that we start from
an ε-BIC mechanism We leave open the question as to whether it is possible
to transform an ε-EEIC mechanism to a DSIC mechanism with zero loss of
social welfare and negligible loss of revenue, for multiple agents with independent
uniform type distribution.

5 Application to Automated Mechanism Design

In this section, we apply the transform to linear-programming based and
machine-learning based approaches to automated mechanism design (AMD) [12],
where the mechanism is automatically created for the setting and objective at
hand.

We state the main results for the following, blended design objective of rev-
enue and welfare, for a given λ ∈ [0, 1] and type distribution F ,

μλ(M,F) = (1 − λ)RM(F) + λWM(F). (5)

Let OPT = maxM:M is BIC and IR μλ(M,F) be the optimal objective achieved
by a BIC and IR mechanism defined on F . We consider two different AMD
approaches, an LP-based approach and a machine-learning based approach.

LP-based AMD. As explained in more details in Appendix, an LP-based app-
roach to BIC mechanism design introduces a decision variable for each outcome
and each type profile. In practice, the type space of each agent may be expo-
nential in the number of items for multi-item auctions, and the number of type
profiles is exponential in the number of agents. To address this challenge, it is
necessary to discretize Ti to a coarser space T +

i , (|T +
i | 	 |Ti|) and construct the

coupled type distribution F+
i . (e.g., by rounding down to the nearest points in

T +
i , that is, the mass of each point in Ti is associated with the nearest point

in T +
i .) Then we can apply an LP-based AMD approach for type distribution

F+ = (F+
1 , · · · ,F+

n ). Even though the LP returns an mechanism defined only
on T +, the mechanism M can be defined on T , by the same coupling technique.
For example, given any type profile t ∈ T , there is a coupled t+ ∈ T +, and
the mechanism M takes t+ as the input. This coupling technique makes the
mechanism only approximately IC. Suppose, in particular, that we have an α-
approximation LP algorithm that outputs an ε-BIC and IR mechanism M over
F , such that μλ(M,F) ≥ αOPT. By an application of the transform to M, we
have the following theorem.
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Theorem 10 (LP-based AMD). For n agents with independent type distri-
bution ×n

i=1Fi, and an LP-based AMD approach for coarsened distribution F+

on coarsened type space T + that gives an ε-BIC and IR mechanism M on F ,
with (1 − λ)R + λW ≥ αOPT, for some λ ∈ [0, 1], and some α ∈ (0, 1), then
there exists a BIC and IR mechanism M′ such that μλ(M′,F) ≥ αOPT − (1 −
λ)

∑n
i=1 |Ti|ε. Given oracle access to the interim quantities of M on F and an

α-approximation LP solver with running time rtLP (x), where x is the bit com-
plexity of the input, the running time to output the mechanism M′ is at most
poly(

∑
i |Ti|, rtLP (poly(

∑
i |T +

i |, 1
ε )).

Machine-Learning Based AMD. RegretNet uses an artificial neural net-
work to learn approximately-incentive compatible auctions for multi-dimensional
mechanism design [16]. See Appendix for more details of the application of
RegretNet to a setting in which the design goal is a blend of revenue and welfare.
RegretNet outputs an ε-EEIC mechanism. Suppose that RegretNet is used in a
setting with an independent, uniform type distribution F . To train RegretNet,
we randomly draw S samples from F to form a training data S and train the
model on S. Let H be the function space modeled by RegretNet and suppose
a PAC-learner that outputs an ε-EEIC mechanism M ∈ H on F , such that
μλ(M,F) ≥ supM̂∈H μλ(M̂,F) − ε holds with probability at least 1 − δ, by
observing S = S(ε, δ) i.i.d samples from F . By an application of the transform
to M, we have the following theorem.

Theorem 11 (RegretNet AMD). For n agents with independent uniform
type distribution ×n

i=1Fi over T = (T1, · · · , Tn), and RegretNet to generate an
ε-EEIC and IR mechanism M on F with μλ(M,F) ≥ supM̂∈H μλ(M̂,F) − ε
holds with probability at least 1 − δ, for some λ ∈ [0, 1], trained on S = S(ε, δ)
i.i.d samples from F , where H is the function class modeled by RegretNet, then
there exists a BIC and IR mechanism M′, with probability at least 1 − δ, such
that μλ(M′,F) ≥ supM̂∈H μλ(M̂,F) − (1 − λ)

∑n
i=1 |Ti|ε − ε. Given oracle

access to the interim quantities of M on F and a PAC-learner with running
time rtNet(x), where x is the bit complexity of the input, the running time to
output the mechanism M′ is at most poly(

∑
i |Ti|, ε, rtNet(poly(S, 1

ε )).
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Abstract. We study the approximability of k-Facility Location games
on the real line by strategyproof mechanisms without payments. To cir-
cumvent impossibility results for k ≥ 3, we focus on γ-(perturbation)
stable instances, where the optimal agent clustering is not affected by
moving any subset of consecutive agent locations closer to each other by a
factor at most γ ≥ 1. We show that the optimal solution is strategyproof
in (2+

√
3)-stable instances, if it does not include any singleton clusters,

and that allocating the facility to the agent next to the rightmost one
in each optimal cluster is strategyproof and (n − 2)/2-approximate for
5-stable instances (even if singleton clusters are present), where n is the
number of agents. On the negative side, we show that for any k ≥ 3 and
any δ > 0, deterministic anonymous strategyproof mechanisms suffer an
unbounded approximation ratio in (

√
2 − δ)-stable instances. Moreover,

we prove that allocating the facility to a random agent of each optimal
cluster is strategyproof and 2-approximate in 5-stable instances.

1 Introduction

We consider k-Facility Location games, where k ≥ 2 facilities are placed on
the real line based on the preferences of n strategic agents. Such problems are
motivated by natural scenarios in Social Choice, where a local authority plans
to build a fixed number of public facilities in an area (see e.g., [36]). The choice
of the locations is based on the preferences of local people, or agents. Each agent
reports her ideal location, and the local authority applies a (deterministic or
randomized) mechanism that maps the agents’ preferences to k facility locations.

The agents evaluate the mechanism’s outcome according to their connection
cost, i.e., the distance of their ideal location to the nearest facility. The agents
seek to minimize their connection cost and may misreport their ideal locations in
an attempt of manipulating the mechanism. Therefore, the mechanism should be
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strategyproof, i.e., it should ensure that no agent can benefit from misreporting
her location, or even group strategyproof, i.e., resistant to coalitional manipu-
lations. The local authority’s objective is to minimize the social cost, namely
the sum of agent connections costs. In addition to allocating the facilities in a
incentive compatible way, which is formalized by (group) strategyproofness, the
mechanism should result in a socially desirable outcome, which is quantified by
the mechanism’s approximation ratio to the optimal social cost.

Since Procaccia and Tennenholtz [37] initiated the research agenda of approx-
imate mechanism design without money, k-Facility Location has served as the
benchmark problem in the area and its approximability by deterministic or ran-
domized strategyproof mechanisms has been studied extensively in virtually all
variants and generalizations. For instance, previous work has studied multiple
facilities on the line (e.g., [25,26,34]), in general metric spaces [24,33]), different
objectives (e.g., social cost, maximum cost, the L2 norm of agent connection
costs [22,26,37]), restricted metric spaces more general than the line (cycle,
plane, trees, see e.g., [2,16,29,35]), facilities that serve different purposes (e.g.,
[31,32,42]), and different notions of private information about the agent prefer-
ences that should be declared to the mechanism (e.g., [15,20]).

The basic question of approximating the optimal social cost by strategyproof
mechanisms for k-Facility Location on the line is relatively well-understood. For
k = 1, placing the facility at the median location is optimal and group strate-
gyproof. For k = 2 facilities, the best possible approximation ratio is n−2 and is
achieved by a natural group strategyproof mechanism that places the facilities at
the leftmost and rightmost locations [25,37]. Yet, for k ≥ 3 facilities, there do not
exist any deterministic anonymous1 strategyproof mechanisms with a bounded
(in terms of n and k) approximation ratio [25]. On the positive side, there is a
randomized anonymous group strategyproof mechanism with an approximation
ratio of n [26] (see also Sect. 1.1 for a selective list of more references).

Perturbation Stability in k-Facility Location Games. Our work aims to
circumvent the strong impossibility result of [25] and is motivated by the recent
success on the design of polynomial-time exact algorithms for perturbation stable
clustering instances (see e.g., [3,9–11,38]). An instance of a clustering problem,
like k-Facility Location (a.k.a. k-median), is γ-perturbation stable (or simply, γ-
stable), for some γ ≥ 1, if the optimal clustering is not affected by scaling down
any subset of the entries of the distance matrix by a factor at most γ. Pertur-
bation stability was introduced by Bilu and Linial [12] and Awasthi, Blum and
Sheffet [7] (and has motivated a significant volume of followup work since then,
see e.g., [3,9,11,38] and the references therein) in an attempt to obtain a theo-
retical understanding of the superior practical performance of relatively simple
clustering algorithms for well known NP-hard clustering problems. Intuitively,
the optimal clusters of a γ-stable instance are somehow well separated, and thus,
relatively easy to identify (see also the main properties of stable instances in
Sect. 3). As a result, natural extensions of simple algorithms, like single-linkage,
1 A mechanism is anonymous if its outcome depends only on the agent locations, not

on their identities.
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can recover the optimal clustering in polynomial time, provided that γ ≥ 2 [3],
and standard approaches, like dynamic programming (resp. local search), work
in almost linear time for γ > 2 +

√
3 (resp. γ > 5) [1].

In this work, we investigate whether restricting our attention to stable
instances allows for improved strategyproof mechanisms with bounded (and ide-
ally, constant) approximation guarantees for k-Facility Location on the line,
with k ≥ 2. We note that the impossibility results of [25] crucially depend on
the fact that the clustering (and the subsequent facility placement) produced
by any deterministic mechanism with a bounded approximation ratio must be
sensitive to location misreports by certain agents (see also Sect. 6). Hence, it is
very natural to investigate whether the restriction to γ-stable instances allows
for some nontrivial approximation guarantees by deterministic or randomized
strategyproof mechanisms for k-Facility Location on the line.

To study the question above, we adapt to the real line the stricter2 notion of
γ-metric stability [3], where it is also required that the distances form a metric
after the γ-perturbation. In our notion of linear γ-stability, the instances should
retain their linear structure after a γ-perturbation. Hence, a γ-perturbation of a
linear k-Facility Location instance is obtained by moving any subset of pairs of
consecutive agent locations closer to each other by a factor at most γ ≥ 1. We
say that a k-Facility Location instance is γ-stable, if the original instance and
any γ-perturbation of it admit the same unique optimal clustering. Interestingly,
for γ sufficiently large, γ-stable instances of k-Facility Location have additional
structure that one can exploit towards the design of strategyproof mechanisms
with good approximation guarantees (see also Sect. 3).

From a conceptual viewpoint, our work is motivated by a reasoning very sim-
ilar to that discussed in [13] and summarized in “clustering is hard only when
it doesn’t matter” by Roughgarden [40]. In a nutshell, we expect that when k
public facilities (such as schools, libraries, hospitals, representatives) are to be
allocated to some communities (e.g., cities, villages or neighborhoods, as repre-
sented by the locations of agents on the real line) the communities are already
well formed, relatively easy to identify and difficult to radically reshape by small
distance perturbations or agent location misreports. Moreover, in natural practi-
cal applications of k-Facility Location games, agents tend to misreport “locally”
(i.e., they tend to declare a different ideal location in their neighborhood, trying
to manipulate the location of the local facility), which usually does not affect
the cluster formation. In practice, this happens because the agents do not have
enough knowledge about locations in other neighborhoods, and because “large
non-local” misreports are usually easy to identify by combining publicly avail-

2 The notion of γ-metric stability is “stricter” than standard γ-stability in the sense
that the former excludes some perturbations allowed by the latter. Hence, the class
of γ-metric stable instances includes the class of γ-stable instances. More generally,
the stricter a notion of stability is, the larger the class of instances qualified as stable,
and the more general the positive results that one gets. Similarly, for any γ′ > γ ≥ 1,
the class of γ(-metric) stable instances includes the class of γ′(-metric) instances.
Hence, a smaller value of γ makes a positive result stronger and more general.
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able information about the agents (e.g., occupation, address, habits, lifestyle).
Hence, we believe that the class of γ-stable instances, especially for relatively
small values of γ, provides a reasonably accurate abstraction of k-Facility Loca-
tion instances that a mechanism is more likely to deal with in practice. We feel
that our work takes a small first step towards justifying that (not only clustering
but also) strategyproof facility location is hard only when it doesn’t matter.

Contributions and Techniques. Our conceptual contribution is that we ini-
tiate the study of efficient (wrt. their approximation ratio for the social cost)
strategyproof mechanisms for the large and natural class of γ-stable instances
of k-Facility Location on the line. Our technical contribution is that we show
the existence of deterministic (resp. randomized) strategyproof mechanisms with
a bounded (resp. constant) approximation ratio for 5-stable instances and any
number of facilities. Moreover, we show that the optimal solution is strategyproof
for (2 +

√
3)-stable instances, if the optimal clustering does not include any sin-

gleton clusters (which is likely to be the case in virtually all practical applica-
tions). To provide evidence that restriction to stable instances does not make
the problem trivial, we strengthen the impossibility result of [25]. Specifically,
we show that for any k ≥ 3 and any δ > 0, there do not exist any deterministic
anonymous strategyproof mechanisms for k-Facility Location on (

√
2− δ)-stable

instances with bounded (in terms of n and k) approximation ratio.
At the conceptual level, we interpret the stability assumption as a prior on the

class of true instances. Namely, we assume that the mechanism has only to deal
with γ-stable true instances, a restriction motivated by (and fully consistent with)
how the stability assumption is used in the literature on efficient algorithms for
stable clustering (see e.g., [3,9,11,12], where the algorithms are analyzed for sta-
ble instances only). More specifically, our mechanisms expect as input a declared
instance such that in the optimal clustering, the distance between any two consec-
utive clusters is at least (γ−1)2

2γ times larger than the diameters of the two clusters
(a.k.a. cluster-separation property, see Lemma 1). This condition is necessary (but
not sufficient) for γ-stability and can be easily checked. If the declared instance
does not satisfy the cluster-separation property, our mechanisms do not allocate
any facilities. Otherwise, our mechanisms allocate k facilities (even if the instance
is not stable). We prove that for all γ-stable true instances (with the exact sta-
bility factor γ depending on the mechanism), if agents can only deviate so that
the declared instance satisfies the cluster-separation property (and does not have
singleton clusters, for the optimal mechanism), our mechanisms are strategyproof
and achieve the desired approximation guarantee. Hence, if we restrict ourselves
to γ-stable true instances and to agent deviations that do not obviously violate
γ-stability, our mechanisms should only deal with γ-stable declared instances, due
to strategyproofness. On the other hand, if non-stable true instances may occur,
the mechanisms cannot distinguish between a stable true instance and a declared
instance, which appears to be stable, but is obtained from a non-stable instance
through location misreports.

The restriction that the agents of a γ-stable instance are only allowed to
deviate so that the declared instance satisfies the cluster-separation property
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conceptually resembles the notion oflocal verification (see e.g., [4,6,14,27,28]),
where the set of each agent’s allowable deviations is restricted to a so-called
correspondence set, which typically depends on the agent’s true type, but not on
the types of the other agents. Instead of restricting the correspondence set of each
individual agent independently, we impose a structural condition on the entire
declared instance, which restricts the set of the agents’ allowable deviations,
but in an observable sense. Hence, we can actually implement our notion of
verification, by checking some simple properties of the declared instance, instead
of just assuming that any deviation outside an agent’s correspondence set will
be caught and penalized (which is the standard approach in mechanisms with
local verification [4,14], but see e.g., [6,24] for noticeable exceptions).

On the technical side, we start, in Sect. 3, with useful properties of stable
instances of k-Facility Location. We show (i) the cluster-separation property
(Lemma 1), i.e., that in any γ-stable instance, the distance between any two con-
secutive clusters is at least (γ−1)2

2γ times larger than their diameters; and (ii) the
so-called no direct improvement from singleton deviations property (Lemma 2),
i.e., that in any 3-stable instance, no agent who deviates to a location, which
becomes a singleton cluster in the optimal clustering of the resulting instance,
can improve her connection cost through the facility of that singleton cluster.

In Sect. 4, we show that for (2+
√

3)-stable instances whose optimal clustering
does not include any singleton clusters, the optimal solution is strategyproof
(Theorem 1). For the analysis, we observe that a misreport cannot be profitable
for an agent, unless it results in a different optimal clustering. The key step is to
show that for (2 +

√
3)-stable instances without singleton clusters, a profitable

misreport cannot change the optimal clustering, unless the instance obtained
from the misreport violates the cluster-separation property. To the best of our
knowledge, the idea of penalizing (and thus, essentially forbidding) a whole class
of potentially profitable misreports by identifying how they affect a key structural
property of the original instance, which becomes possible due to our restriction
to stable instances, has not been used before in the design of strategyproof
mechanisms for k-Facility Location.

We should also motivate our restriction to stable instances without singleton
clusters in their optimal clustering. So, let us consider the rightmost agent xj of
an optimal cluster Ci in a γ-stable instance �x. No matter the stability factor γ, it
is possible that xj performs a so-called singleton deviation. Namely, xj deviates
to a remote location x′ (potentially very far away from any location in �x), which
becomes a singleton cluster in the optimal clustering of the resulting instance.
Such a singleton deviation might cause cluster Ci to merge with (possibly part
of the next) cluster Ci+1, which in turn, might bring the median of the new
cluster much closer to xj . It is not hard to see that if we stick to the optimal
solution, where the facilities are located at the median of each optimal cluster,
there are γ-stable instances3, with arbitrarily large γ ≥ 1, where some agents

3 E.g., let k = 2 and consider the Θ(γ)-stable instance (0, 1 − ε, 1, 6γ, 6γ + ε, 6γ +
1, 6γ + 1 + ε, 6γ + 2), for any γ ≥ 1. Then, the agent at location 6γ can decrease its
connection cost (from 1) to ε by deviating to location (6γ)2.
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can deviate to a remote location and gain, by becoming singleton clusters, while
maintaining the desirable stability factor of the declared instance.

To deal with singleton deviations, we place the facility either at a location
close to an extreme one, as we do in Sect. 5 with the AlmostRightmost mecha-
nism, or at a random location, as we do in Sect. 7 with the Random mechanism.
More specifically, in Sect. 5, we show that the AlmostRightmost mechanism,
which places the facility of any non-singleton optimal cluster at the location
of the second rightmost agent, is strategyproof for 5-stable instances (even if
their optimal clustering includes singleton clusters) and achieves an approxima-
tion ratio at most (n − 2)/2 (Theorem 2). Moreover, in Sect. 7, we show that
the Random mechanism, which places the facility of any optimal cluster at a
location chosen uniformly at random, is strategyproof for 5-stable instances and
achieves an approximation ratio of 2 (Theorem 4).

To obtain a deeper understanding of the challenges behind the design of
strategyproof mechanisms for stable instances of k-Facility Location on the line,
we strengthen the impossibility result of [25, Theorem 3.7] so that it applies to γ-
stable instances with γ <

√
2 (Sect. 6). Through a careful analysis of the image

sets of deterministic strategyproof mechanisms, we show that for any k ≥ 3,
any δ > 0, and any ρ ≥ 1, there do not exist any ρ-approximate deterministic
anonymous strategyproof mechanisms for (

√
2−δ)-stable instances (Theorem 3).

The proof of Theorem 3 requires additional ideas and extreme care (and some
novelty) in the agent deviations, so as to only consider stable instances, compared
against the proof of [25, Theorem 3.7]. Interestingly, singleton deviations play a
crucial role in the proof of Theorem 3.

1.1 Other Related Work

Previous work has shown that deterministic strategyproof mechanisms can only
achieve a bounded approximation ratio for k-Facility Location on the line, only if
we have at most 2 facilities [25,37]. Notably, stable (called well-separated in [25])
instances with n = k+1 agents play a key role in the proof of inapproximability of
k-Facility Location by deterministic anonymous strategyproof mechanisms [25,
Theorem 3.7]. On the other hand, randomized mechanisms are known to achieve
a better approximation ratio for k = 2 facilities [34], a constant approximation
ratio if we have k ≥ 2 facilities and only n = k + 1 agents [18,26], and an
approximation ratio of n for any k ≥ 3 [26]. Fotakis and Tzamos [24] considered
winner-imposing randomized mechanisms that achieve an approximation ratio
of 4k for k-Facility Location in general metric spaces. In fact, the approximation
ratio can be improved to Θ(ln k), using the analysis of [5].

For the objective of maximum agent cost, Alon et al. [2] almost completely
characterized the approximation ratios achievable by randomized and determin-
istic strategyproof mechanisms for 1-Facility Location in general metrics and
rings. Fotakis and Tzamos [26] presented a 2-approximate randomized group
strategyproof mechanism for k-Facility Location on the line and the maximum
cost objective. For 1-Facility Location on the line and the objective of minimizing
the sum of squares of the agent connection costs, Feldman and Wilf [22] proved
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that the best approximation ratio is 1.5 for randomized and 2 for deterministic
mechanisms. Golomb and Tzamos [30] presented tight (resp. almost tight) addi-
tive approximation guarantees for locating a single (resp. multiple) facilities on
the line and the objectives of the maximum cost and the social cost.

Regarding the application of perturbation stability, we follow the approach of
beyond worst-case analysis [38], where researchers seek a theoretical understand-
ing of the superior practical performance of certain algorithms by formally ana-
lyzing them on practically relevant instances. The beyond worst-case approach
is not anything new for Algorithmic Mechanism Design. Bayesian analysis is
standard in revenue maximization when we allocate private goods (see e.g., [39])
and has led to many strong and elegant results for social welfare maximization in
combinatorial auctions by truthful posted price mechanisms (see e.g., [17,21]).
However, in this work, instead of assuming (similar to Bayesian analysis) that
the mechanism designer has a relatively accurate knowledge of the distribution
of agent locations on the line (and use e.g., an appropriately optimized percentile
mechanism [43]), we employ a deterministic restriction on the class of instances
(namely, perturbation stability), and investigate if deterministic (resp. random-
ized) strategyproof mechanisms with a bounded (resp. constant) approximation
ratio are possible for locating any number k ≥ 2 facilities on such instances. To
the best of our knowledge, the only previous work where the notion of pertur-
bation stability is applied to Algorithmic Mechanism Design (to combinatorial
auctions, in particular) is [23] (but see also [8,19] where the similar in spirit
assumption of endowed valuations was applied to combinatorial markets).

2 Notation, Definitions and Preliminaries

We let [n] = {1, . . . , n}. For any x, y ∈ R, we let d(x, y) = |x−y| be the distance
of locations x and y on the real line. For a tuple �x = (x1, . . . , xn) ∈ R

n, we let
�x−i denote the tuple �x without coordinate xi. For a non-empty set S of indices,
we let �xS = (xi)i∈S and �x−S = (xi)i�∈S . We write (�x−i, a) to denote the tuple �x
with a in place of xi, (�x−{i,j}, a, b) to denote the tuple �x with a in place of xi

and b in place of xj , and so on. For random variable X, E(X) is the expectation
of X. For an event E in a sample space, Pr(E) is the probability that E occurs.

Instances. We consider k-Facility Location with k ≥ 2 facilities and n ≥ k + 1
agents on the real line. We let N = {1, . . . , n} be the set of agents. Each agent
i ∈ N resides at a location xi ∈ R, which is i’s private information. We usually
refer to a locations profile �x = (x1, . . . , xn) ∈ R

n, x1 ≤ · · · ≤ xn, as an instance.
By slightly abusing the notation, we use xi to refer both to the agent i’s location
and sometimes to the agent i (i.e., the strategic entity) herself.

Mechanisms. A deterministic mechanism M for k-Facility Location maps an
instance �x to a k-tuple (c1, . . . , ck) ∈ R

k, c1 ≤ · · · ≤ ck, of facility locations. We
let M(�x) denote the outcome of M in instance �x, and let Mj(�x) denote cj , i.e.,
the j-th smallest coordinate in M(�x). We write c ∈ M(�x) to denote that M(�x)
places a facility at location c. A randomized mechanism M maps an instance �x
to a probability distribution over k-tuples (c1, . . . , ck) ∈ R

k.
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Connection Cost and Social Cost. Given a k-tuple �c = (c1, . . . , ck), c1 ≤ · · ·
≤ ck, of facility locations, the connection cost of agent i wrt. �c, denoted
d(xi,�c), is d(xi,�c) = min1≤j≤k |xi − yj |. Given a deterministic mechanism M
and an instance �x, d(xi,M(�x)) denotes i’s connection cost wrt. the outcome
of M(�x). If M is a randomized mechanism, i’ expected connection cost is
E�c∼M(�x)(d(xi,�c)). The social cost of a deterministic mechanism M for instance �x

is cost(�x,M(�x)) =
∑n

i=1 d(xi,M(�x)). The social cost of a facilities profile �c ∈ R
k

is cost(�x,�c) =
∑n

i=1 d(xi,�c). The expected social cost of a randomized mecha-
nism M �x is cost(�x,M(�x)) =

∑n
i=1 E�c∼M(�x)(d(xi,�c)) . The optimal social cost for

an instance �x is cost∗(�x) = min�c∈Rk

∑n
i=1 d(xi,�c). For k-Facility Location, the

optimal social cost can be found in O(kn log n) time by dynamic programming.

Approximation Ratio. A mechanism M has an approximation ratio of ρ ≥ 1,
if for any instance �x, cost(�x,M(�x)) ≤ ρ cost∗(�x). We say that the approximation
ratio ρ of M is bounded, if ρ is bounded from above either by a constant or by
a (computable) function of n and k.

Strategyproofness. A deterministic mechanism M is strategyproof, if no agent
can benefit by misreporting her location. I.e., M is strategyproof, if for all loca-
tion profiles �x, any agent i, and all locations y, d(xi,M(�x)) ≤ d(xi,M((�x−i, y)).
A randomized mechanism M is strategyproof (in expectation), if for all location
profiles �x, any agent i, and all y ∈ R, E�c∼M(�x)(d(xi,�c)) ≤ E�c∼M((�x−i,y)(d(xi,�c)).

Clusterings. A clustering (or k-clustering, if k is not clear from the context) of
an instance �x is any partitioning �C = (C1, . . . , Ck) of �x into k sets of consecutive
agent locations. We index clusters from left to right. I.e., C1 = {x1, . . . , x|C1|},
C2 = {x|C1|+1, . . . , x|C1|+|C2|}, and so on. We refer to a cluster Ci with |Ci| = 1
as a singleton cluster. We sometimes use (�x, �C) to highlight that we consider �C
as a clustering of instance �x.

Two clusters C and C ′ are identical, denoted C = C ′, if they include the
exact same locations. Two clusterings �C = (C1, . . . , Ck) and �Y = (Y1, . . . , Yk)
of an instance �x are the same, if Ci = Yi, for all i ∈ [k]. Abusing the notation,
we say that a clustering �C of an instance �x is identical to a clustering �Y of a
γ-perturbation �x′ of �x (see also Definition 1), if |Ci| = |Yi|, for all i ∈ [k].

We let xi,l and xi,r denote the leftmost and the rightmost agent of each
cluster Ci. Then, xi−1,r < xi,l ≤ xi,r < xi+1,l, for all i ∈ {2, . . . , k − 1}. We
extend this notation to refer to other agents by their relative location in each
cluster. Namely, xi,l+1 (resp. xi,r−1) is the second agent from the left (resp.
right) of cluster Ci . The diameter of a cluster Ci is D(Ci) = d(xi,l, xi,r). The
distance of clusters Ci and Cj is d(Ci, Cj) = minx∈Ci,y∈Cj

{d(x, y)}.
A k-facilities profile �c = (c1, . . . , ck) forms a clustering �C = (C1, . . . , Ck) of

an instance �x by assigning each agent/location xj to the cluster Ci with facility
ci closest to xj . The optimal clustering of an instance �x is the clustering of �x
induced by the facility locations profile with minimum social cost.

The social cost of a clustering �C induced by a k-facilities profile �c on �x is
simply cost(�x,�c). We sometimes refer to the social cost cost(�x, �C) of a clustering
�C for �x, without any explicit reference to the corresponding facilities profile.
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3 Perturbation Stability: Definition and Properties

Next, we introduce the notion of γ-(linear) stability and prove some useful prop-
erties of γ-stable instances of k-Facility Location.

Definition 1 (γ-Pertrubation and γ-Stability). Let �x = (x1, . . . , xn) be a
locations profile. A locations profile �x′ = (x′

1, . . . , x
′
n) is a γ-perturbation of �x, for

some γ ≥ 1, if x′
1 = x1 and for every i ∈ [n − 1], d(xi, xi+1)/γ ≤ d(x′

i, x
′
i+1) ≤

d(xi, xi+1). A k-Facility Location instance �x is γ-perturbation stable (or sim-
ply, γ-stable), if �x has a unique optimal clustering (C1, . . . , Ck) and every γ-
perturbation �x′ of �x has the same unique optimal clustering (C1, . . . , Ck).

Our notion of linear perturbation stability naturally adapts the notion of
metric perturbation stability [3, Definition 2.5] to the line. We note, the class
of γ-stable linear instances, according to Definition 1, is at least as large as the
class of metric γ-stable linear instances, according to [3, Definition 2.5].

Similarly to [3, Theorem 3.1] (see also [40, Lemma 7.1] and [7, Corollary 2.3]),
we can show that for all γ ≥ 1, every γ-stable instance �x, which admits an opti-
mal clustering C1, . . . , Ck with optimal centers c1, . . . , ck, satisfies the following
γ-center proximity property: For all cluster pairs Ci and Cj , with i �= j, and all
locations x ∈ Ci, d(x, cj) > γd(x, ci). We regularly use the following consequence
of γ-center proximity (see [40, Lemma 7.2]).

Proposition 1. Let γ ≥ 2 and let �x be any γ-stable instance, with unique opti-
mal clustering C1, . . . , Ck and optimal centers c1, . . . , ck. Then, for all clusters Ci

and Cj, with i �= j, and all locations x ∈ Ci and y ∈ Cj, d(x, y) > (γ−1)d(x, ci).

We next show that for γ large enough, the optimal clusters of a γ-stable
instance are well-separated, in the sense that the distance of two consecutive
clusters is larger than their diameters.

Lemma 1 (Cluster-Separation Property). For any γ-stable instance on the
line with optimal clustering (C1, . . . , Ck) and all clusters Ci and Cj, with i �= j,
d(Ci, Cj) > (γ−1)2

2γ max{D(Ci),D(Cj)}.

The cluster-separation property of Lemma 1 is proven in [1] as a consequence
of γ-cluster proximity. Setting γ ≥ 2 +

√
3, we get that:

Corollary 1. Let γ ≥ 2 +
√

3 and let �x be any γ-stable instance with unique
optimal clustering (C1, . . . , Ck). Then, for all clusters Ci and Cj, with i �= j,
d(Ci, Cj) > max{D(Ci),D(Cj)}.

The following is an immediate consequence of the cluster-separation property.

Observation 1 Let �x be a k-Facility Location with a clustering �C =
(C1, . . . , Ck) such that for any two clusters Ci and Cj, max{D(Ci),D(Cj)} <
d(Ci, Cj). Then, if in the optimal clustering of �x, there is a facility at the location
of some x ∈ Ci, no agent in Ci is served by a facility at xj �∈ Ci.
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Next, we establish the so-called no direct improvement from singleton devia-
tions property, used to show the strategyproofness of the AlmostRightmost
and Random mechanisms.

Lemma 2. Let �x be a γ-stable instance with γ ≥ 3 and optimal clustering �C =
(C1, ..., Ck) and cluster centers (c1, ..., ck), and let an agent xi ∈ Ci \ {ci} and
a location x′ such that x′ is a singleton cluster in the optimal clustering of the
resulting instance (�x−i, x

′). Then, d(xi, x
′) > d(xi, ci).

The following shows that for 5-stable instances �x, an agent cannot form a
singleton cluster, unless she deviates by a distance larger than the diameter of
her cluster in �x’s optimal clustering.

Lemma 3. Let �x be any γ-stable instance with γ ≥ 5 and optimal clustering
�C = (C1, ..., Ck). Let xi ∈ Ci \{ci} be any agent and x′ any location such that x′

is a singleton cluster in the optimal clustering of instance �x′ = (�x−i, x
′), where

xi has deviated to x′. Then, d(x′, xi) > D(Ci).

4 Optimal is Strategyproof for (2 +
√
3)-Stable Instances

We next show that allocating the facilities optimally is strategyproof for (2+
√

3)-
stable instances of k-Facility Location, if the optimal clustering does not include
any singleton clusters. More specifically, in this section, we analyze Mechanism 1.

Since placing the facility at the median in a single cluster is strategyproof, a
deviation can be profitable only if it results in a k-clustering different from the
optimal clustering (C1, . . . , Ck) of �x. For γ sufficiently large, γ-stability implies
that the optimal clusters are well identified, so that any attempt to alter the opti-
mal clustering (without introducing singleton clusters and without violating the
cluster separation property) results in an increased cost for the deviating agent.
We should highlight that Mechanism 1 may also “serve” non-stable instances
that satisfy the cluster separation property. We next prove that Optimal is
strategyproof if the true instance is (2 +

√
3)-stable and its optimal clustering

does not include any singleton clusters:

Theorem 1. The Optimal mechanism applied to (2 +
√

3)-stable instances of
k-Facility Location without singleton clusters in their optimal clustering is strat-
egyproof and minimizes the social cost.

Mechanism 1: OPTIMAL
Result: An allocation of k facilities
Input: A k-Facility Location instance �x.

1 Compute the optimal clustering (C1, . . . , Ck) of �x.
2 Let ci be the left median point of each cluster Ci.
3 if

(∃i ∈ [k] with |Ci| = 1
)
or

(∃i ∈ [k − 1] with
max{D(Ci), D(Ci+1)} ≥ d(Ci, Ci+1)

)
then

Output: “FACILITIES ARE NOT ALLOCATED”.
4 else

Output: The k-facility allocation (c1, . . . , ck).
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Proof. We let cost(X, �C) =
∑

x∈X d(xj , �C) denote the cost of a set of agents X

in a clustering �C = (C1, . . . , Ck) of an instance �x. Moreover, cost(�y, �C) denotes
the cost of instance �y in clustering �C with the same centers as in �C for �x.

Since optimality is given, we only need to establish strategyproofness. We
show the following: Let �x be any (2+

√
3)-stable k-Facility Location instance with

optimal clustering �C = (C1, . . . , Ck). For any agent i and any location y, let �Y be
the optimal clustering of instance �y = (�x−i, y) resulting from i’s deviation from
xi to y. Then, if y is not a singleton cluster in (�y, �Y ), either d(xi, �C) < d(xi, �Y ),
or there is an i ∈ [k − 1] for which max{D(Yi),D(Yi+1)} ≥ d(Yi, Yi+1).

So, we let xi ∈ Ci deviate to a location y, resulting in �y = (�x−i, y) with
optimal clustering �Y . Since y is not a singleton cluster, it is clustered with
agents belonging in one or two clusters of �C, say either in cluster Cj or in
clusters Cj−1 and Cj . By optimally of �C and �Y , the number of facilities serving
Cj−1∪Cj ∪{y} in (�y, �Y ) is no less than the number of facilities serving Cj−1∪Cj

in (�x, �C). Hence, there is at least one facility in either Cj−1 or Cj .
Wlog., suppose that a facility is allocated to an agent in Cj in (�y, �Y ). By

Corollary 1 and Observation 1, no agent in Cj is served by a facility in �x \ Cj in
�Y . Thus we get the following cases:

Case 1: y is not allocated a facility in �Y : This can happen in one of two ways:
Case 1a y is clustered together with some agents from cluster Cj and no

facility placed in Cj serves agents in �x \ Cj in �Y .
Case 1b: y is clustered together with some agents from a cluster Cj and at

least one of the facilities placed in Cj serve agents in �x \ Cj in �Y .
Case 2: y is allocated a facility in �Y . This can happen in one of two ways:

Case 2a: y only serves agents that belong in Cj (by optimality, y must be
the median location of the new cluster, which implies that either y < xi,l

and y only serves xi,l or xj,l ≤ y ≤ xj,r).
Case 2b: In �Y , y serves agents that belong in both Cj−1 and Cj .

We next show that cost(�y, �C) < cost(�y, �Y ). Hence, Optimal would also
select �C for �y, rendering xi’s deviation to y non-profitable. Specifically,

cost(�y, �C) < cost(�y, �Y ) ⇔
cost(�x, �C) + d(y, �C) − d(xi, �C) < cost(�x, �Y ) + d(y, �Y ) − d(xi, �Y ) ⇔

d(y, �C) − d(y, �Y ) < cost(�x, �Y ) − cost(�x, �C) + d(xi, �C) − d(xi, �Y )

Since xi gains by deviating to y, d(xi, �C) − d(xi, �Y ) > 0. So, it suffices to show:

d(y, �C) − d(y, �Y ) ≤ cost(�x, �Y ) − cost(�x, �C)

= cost(Cj , �Y ) − cost(Cj , �C) + cost(�x \ Cj , �Y ) − cost(�x \ Cj , �C) (1)

We start with Case 1a and Case 2a, i.e., the cases where �Y allocates facilities
to agents of Cj (between xj,l and xj,r) serving only agents in Cj . Note that in
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Case 2a, y can also be located outside Cj and serve only xi,l. We treat this case
as Case 1a, since it is equivalent to placing the facility on xi,l serving y.

Then, (1) holds if �Y allocates a single facility to agents in Cj ∪ {y}, because
the facility is allocated to the median of Cj ∪ {y}, hence d(y, �C) − d(y, �Y ) =
cost(Cj , �Y ) − cost(Cj , �C), while cost(�x \ Cj , �Y ) − cost(�x \ Cj , �C) ≥ 0, since �C
is optimal for �x. So, we focus on the most interesting case where the agents in
Cj ∪ {y} are allocated at least two facilities. We observe that (1) follows from:

d(y, �C) − d(y, �Y ) ≤ 1
γ

(
cost(�x \ Cj , �Y ) − cost(�x \ Cj , �C)

)
(2)

cost(Cj , �C) − cost(Cj , �Y ) ≤
(
1 − 1

γ

) (
cost(�x \ Cj , �Y ) − cost(�x \ Cj , �C)

)
(3)

To establish (2) and (3), we first consider the valid γ-perturbation of instance
�x where all distances between consecutive agent pairs to the left of Cj (i.e. agents
{x1, x2, . . . , xj−1,r}) and between consecutive agent pairs to the right of Cj (i.e.
agents {xj+1,l, . . . , xk,r}) are scaled down by γ. By stability, the clustering �C
remains the unique optimal clustering for the perturbed instance �x′. Moreover,
since agents in �x \Cj are not served by a facility in Cj in �C and �Y , and since all
distances outside Cj are scaled down by γ, while all distances within Cj remain
the same, the cost of the clusterings �C and �Y for the perturbed instance �x′ is
cost(Cj , �C)+ cost(�x\Cj , �C)/γ and cost(Cj , �Y )+ cost(�x\Cj , �Y )/γ, respectively.
Using cost(�x′, �C) < cost(�x′, �Y ) and γ ≥ 2, we obtain:

cost(Cj , �C) − cost(Cj , �Y ) < 1
γ

(
cost(�x \ Cj , �Y ) − cost(�x \ Cj , �C)

)
(4)

≤
(
1 − 1

γ

) (
cost(�x \ Cj , �Y ) − cost(�x \ Cj , �C)

)
(5)

Moreover, if Cj ∪ {y} is served by at least two facilities in �Y , the facility
serving y (and some agents of Cj) is placed at the median location of �Y ’s cluster
that contains y. Wlog., we assume that y lies on the left of the median of Cj .
Then, the decrease in the cost of y due to the additional facility in �Y is equal to
the decrease in the cost of xi,l in �Y , which bounds from below the total decrease
in the cost of Cj due to the additional facility in �Y . Hence,

d(y, �C) − d(y, �Y ) ≤ cost(Cj , �C) − cost(Cj , �Y ) (6)

We conclude these cases, by observing that (2) follows from (6) and (4).
Finally, we study Case 1b and Case 2b, i.e., the cases where some agents of

Cj are clustered with agents of �x\Cj in �Y . Let C ′
j1 and C ′

j2 denote the clusters of
(�y, �Y ) including all agents of Cj (i.e., Cj ⊆ C ′

j1∪C ′
j2). By hypothesis, at least one

of C ′
j1 and C ′

j2 contains an agent z ∈ �x \ Cj . Suppose this cluster is C ′
j1. Then,

D(C ′
j1) > D(Cj), since by Corollary 1, for any γ ≥ (2+

√
3), the distance of any

agent z outside Cj to the nearest agent in Cj is larger than Cj ’s diameter. But
since both C ′

j1 and C ′
j2 contain agents of Cj , we have that d(C ′

j1, C
′
j2) < D(Cj).

Thus, D(C ′
j1) > d(C ′

j1, C
′
j2), violating the cluster-separation property. Hence

instance �y is not γ-stable and Mechanism 1 allocates no facilities. 
�
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5 Dealing with Singleton Deviations Deterministically

Next, we present a deterministic strategyproof mechanism for 5-stable instances
whose optimal clustering may include singleton clusters. To make singleton clus-
ter deviations non profitable, cluster merging has to be discouraged by the facility
allocation rule. So, we allocate facilities near the edge of each optimal cluster, end-
ing up with Θ(n)-approximation and a requirement for larger stability, in order
to achieve strategyproofness. Specifically, we now need to ensure that no agent
can become a singleton cluster close enough to her true location. Also, we need
to easily ensure that no agent can gain by being allocated a facility as a member
a neighboring cluster, which is achieved by allocating on near to edge agents of
clusters. Finally, since agents can now gain by splitting their (true) optimal clus-
ter, we need to ensure that such deviations are either non-profitable or violate the
cluster-separation property. Formalizing, we can prove the following:

Theorem 2. AlmostRightmost (Mechanism 2) is strategyproof for 5-stable
instances of k-Facility Location and achieves an approximation ratio of (n−2)/2.

Mechanism 2: AlmostRightmost
Result: An allocation of k facilities
Input: A k-Facility Location instance �x.

1 Find the optimal clustering �C = (C1, . . . , Ck) of �x.
2 if there are two consecutive clusters Ci and Ci+1 with

max{D(Ci), D(Ci+1)} ≥ d(Ci, Ci+1) then
Output: “FACILITIES ARE NOT ALLOCATED”.

3 for i ∈ {1, . . . , k} do
4 if |Ci| > 1 then
5 Allocate a facility to the second rightmost agent of Ci, i.e., ci ← xi,r−1.
6 else
7 Allocate a facility to the single agent location of Ci: ci ← xi,l .
8 end

9 end
Output: The k-facility allocation �c = (c1, . . . , ck).

6 Inapproximability by Deterministic Mechanisms

We next extend the impossibility result of [25, Theorem 3.7] to
√

2-stable
instances of k-Facility Location on the line, with k ≥ 3. We start with some basic
facts about strategyproof mechanisms and by adapting the technical machinery
of well-separating instances from [25, Sect. 2.2] to stable instances.

Image Sets and Holes. Given a mechanism M , the image set Ii(�x−i) of an
agent i wrt. instance �x−i is the set of facility locations i can obtain by varying her
reported location. Formally, Ii(�x−i) = {a ∈ R : ∃y ∈ R with M(�x−i, y) = a}.

If M is strategyproof, any image set Ii(�x−i) is a collection of closed intervals
(see e.g., [41, p. 249]). Moreover, M places a facility at the location in Ii(�x−i)
nearest to the declared location of agent i. Formally, for any agent i, all instances
�x, and all locations y, d(y,M(�x−i, y)) = infa∈Ii(�x−i){d(y, a)}.
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Some care is due, because we consider mechanisms that need to be strate-
gyproof only for γ-stable instances (�x−i, y). The image set of such a mechanism
M is well defined (possibly by assuming that all facilities are placed to essen-
tially +∞), whenever (�x−i, y) is not γ-stable. Moreover, the requirement that
M places a facility at the location in Ii(�x−i) nearest to the declared location y of
agent i holds only if the resulting instance (�x−i, y) is stable. We should underline
that all instances considered in the proof of Theorem 3 are stable (and the same
holds for the proofs of the propositions adapted from [25, Sect. 2.2]).

Any (open) interval in the complement of an image set I ≡ Ii(�x−i) is called
a hole of I. Given a y �∈ I, we let ly = supa∈I{a < y} and ry = infa∈I{a > y} be
the locations in I nearest to y on the left and on the right, respectively. Since I is
a collection of closed intervals, ly and ry are well-defined and satisfy ly < y < ry.
For convenience, given a y �∈ I, we refer to the interval (ly, ry) as a y-hole in I.

Well-Separated Instances. Let M be a deterministic strategyproof mecha-
nism with a bounded approximation ρ ≥ 1 for k-Facility Location. An instance
�x is (x1| · · · |xk−1|xk, xk+1)-well-separated if x1 < · · · < xk < xk+1 and
ρd(xk+1, xk) < mini∈{2,...,k}{d(xi−1, xi)}. We call xk and xk+1 the isolated pair
of the well-separated instance �x. Hence, given a ρ-approximate mechanism M , a
well-separated instance includes a pair of nearby agents at distance to each other
less than 1/ρ times the distance between any other pair of consecutive agents.
Therefore, any ρ-approximate mechanism serves the two nearby agents by the
same facility and serve each of the remaining “isolated” agents by a different
facility. We remark that well-separated instances are also ρ-stable.

We can adapt some useful properties of well-separated instances from [25,
Sect. 2.2] so that they hold for

√
2-stable instances.

Lemma 4 (Proposition 2.2, [25]). Let M be any deterministic strategyproof
mechanism with approximation ratio ρ ≥ 1. For any (x1| · · · |xk−1|xk, xk+1)-well-
separated instance �x, Mk(�x) ∈ [xk, xk+1].

Lemma 5 (Proposition 2.4, [25]). Let M be any deterministic strate-
gyproof mechanism with approximation ratio ρ ≥ 1, and let �x be a
(x1| · · · |xk−1|xk, xk+1)-well-separated instance with Mk(�x) = xk+1. Then,
for every (x1|...|xk−1|x′

k, x′
k+1)-well-separated instance �x′ with x′

k+1 ≤ xk+1,
Mk(�x′) = x′

k+1.

The Proof of the Impossibility Result. For the following, we build on the
proof of [25, Theorem 3.7]. However, we need some additional ideas and to be
more careful with agent deviations, since we can only rely on

√
2-stable instances.

Theorem 3. For every k ≥ 3 and any δ > 0, any deterministic anonymous
strategyproof mechanism for (

√
2 − δ)-stable instances of k-Facility Location on

the real line with n ≥ k + 1 agents has an unbounded approximation ratio.

Proof. We only consider the case where k = 3 and n = 4 (the proof applies to
any k ≥ 3 and n ≥ k + 1). To reach a contradiction, let M be any deterministic
anonymous strategyproof mechanism for (

√
2 − δ)-stable instances of 3-Facility

Location with n = 4 agents and with an approximation ratio of ρ ≥ 1.
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We consider a (x1|x2|x3, x4)-well-separated instance �x. For a large enough
λ � ρ and a very large (practically infinite) B � 6ρλ, we let �x = (0, λ, 6B +
λ, 6B + λ + ε), for some small enough ε > 0 (ε � λ/ρ). By choosing λ and ε
appropriately, the instance �x becomes γ-stable, for γ � √

2.
By Lemma 4, M3(�x) ∈ [x3, x4]. Wlog., we assume that M3(�x) �= x3 (the case

where M3(�x) �= x4 is fully symmetric). Then, by moving agent 4 to M3(�x), which
results in a well-separated instance and, by strategyproofness, requires that M
keeps a facility there, we can assume wlog. that M3(�x) = x4.

Since �x is well-separated and M is ρ-approximate, both x3 and x4 are served
by the facility at x4. Hence, there is a x3-hole h = (l, r) in the image set I3(�x−3).
Since M(�x) places a facility at x4 and not in x3, the right endpoint r of h lies
between x3 and x4, i.e. r ∈ (x3, x4]. Moreover, since M is ρ-approximate and
strategyproof for (

√
2−δ)-stable instances, agent 3 should be served by a facility

at distance at most ρλ to her, if she is located at 4B. Hence, the left endpoint
of the hole h is l > 3B. We distinguish two cases based on the distance of the
left endpoint l of h to x4.
Case 1: x4 − l >

√
2λ. We consider the instance �y = (�x−3, a), where a > l is

arbitrarily close to l (i.e., a � l) so that d(a, x4) =
√

2λ. Since d(x1, x2) = λ,
d(x2, a) is quite large, and d(a, x4) =

√
2λ, the instance �y is (

√
2 − δ)-stable, for

any δ > 0. By strategyproofness, M(�y) places a facility at l, since l ∈ I3(�x−3).
Now, we consider the instance �y′ = (�y−4, l). Since we can choose a > l so

that d(l, a) � λ, the instance �y′ is (x1|x2|l, a)-well-separated and (
√

2−δ)-stable.
Hence, by strategyproofness, M(�y′) keeps a facility at l, because l ∈ I4(�y−4).

Then, by Lemma 5, y′
4 = a ∈ M(�y′), because for the (x1|x2|x3, x4)-well-

separated instance �x, M3(�x) = x4, and �y′ is a (x1|x2|l, a)-well-separated instance
with y′

4 ≤ x4. Since both l, a ∈ M(�y′), either agents 1 and 2 are served by the
same facility of M(�y′) or agent 2 is served by the facility at l. In both cases, the
social cost of M(�y′) becomes arbitrarily larger than a − l, which is the optimal
social cost of the 3-Facility Location instance �y′.
Case 2: x4 − l ≤ √

2λ. This case is similar to Case 1. 
�

7 A Randomized O(1)-Approximate Mechanism

We show that a simple randomized mechanism is strategyproof for 5-stable
instances, deals with singleton clusters and achieves approximation ratio of 2.

The intuition is that AlmostRightmost can be easily transformed to a
randomized mechanism, using the same key properties to guarantee strate-
gyproofness, but achieving a 2-approximation. Specifically, Random (see also
Mechanism 3) again finds the optimal clusters, but then places a facility at the
location of an agent selected uniformly at random from each optimal cluster.
We use the cluster-separation property, as a necessary condition for stability
of the optimal clustering. The stability properties required to guarantee strate-
gyproofness are very similar to those required by AlmostRightmost, because
the set of possible profitable deviations is very similar for AlmostRight-
most and Random. Finally, we note that the cluster-separation property step
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of Random (step 2) now makes use that due to Lemma 1, it must be that
1.6 · max{D(Ci),D(Ci+1)} < d(Ci, Ci+1) for 5-stable instances.

Mechanism 3: Random
Result: An allocation of k facilities
Input: A k-Facility Location instance �x.

1 Find the optimal clustering �C = (C1, . . . , Ck) of �x.
2 if there are two consecutive clusters Ci and Ci+1 with

1.6 · max{D(Ci), D(Ci+1)} ≥ d(Ci, Ci+1) then
Output: “FACILITIES ARE NOT ALLOCATED”.

3 for i ∈ {1, . . . , k} do
4 Allocate the facility to an agent ci selected uniformly at random from the

agents of cluster Ci

5 end
Output: The k-facility allocation �c = (c1, . . . , ck).

Theorem 4. Random (Mechanism 3) is strategyproof and achieves an approx-
imation ratio of 2 for 5-stable instances of k-Facility Location on the line.

Proof (Sketch.). We present here only the main steps. The approximation guar-
antee is straightforward. We need to cover the key deviation cases. In particular,
we show that a deviating agent xi ∈ Cj cannot gain in the following cases:

Case 1: xi deviates and becomes a member of another cluster;
Case 2: xi deviates and becomes a self-serving center;
Case 3: xi deviates and causes Cj either to merge or to split.

The most interesting case is Case 1: xi ∈ Cj deviates to y and is clustered
together with agents from a different cluster of �C, in order to gain, without
splitting Cj . We show that all such deviations will cause the condition of step 2
to be satisfied, hence becoming non-profitable. 
�
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Abstract. Trees on farms provide environmental benefits to society and improve
agricultural productivity for farmers. We study incentive schemes for afforesta-
tion on farms through the lens of contract theory, designing conditional cash
transfer schemes that encourage farmers to sustain tree growth. We capture the
tree growth process as a Markov chain whose evolution is affected by the agent’s
(farmer’s) choice of costly effort. The principal has imperfect information about
the agent’s costs and chosen effort, and wants to find the minimal payments that
maximize long-run tree survival. We derive the form of optimal contract structure
and show how to calculate optimal payments in polynomial time. Notably, even
when costs are time-invariant, the optimal contract can involve time-varying pay-
ments that are typically higher in earlier periods and may end early. We surveyed
farmers partnered with an afforestation program in Uganda to collect data on tree
maintenance costs and we derive the optimal payment contract for the reported
costs.

1 Introduction

The UN’s Sustainable Development Goal #15 challenges society to sustainably manage
forests, combat desertification, halt and reverse land degradation, and halt biodiversity
loss. Meanwhile, governments and corporations around the world have set ambitious
carbon removal and reduction goals. Microsoft, for instance, has pledged to be carbon
negative by 2030 [21]. Afforestation and reforestation, which attempt to reverse land
degradation and sustain biodiversity as well as capturing carbon, have recently gained
attention as a clear next step towards achieving these intertwined goals [11]. One oppor-
tunity for afforestation is to grow trees on agricultural land owned by farmers. Mature
indigenous trees on farms not only improve biodiversity and carbon storage capacity,
but also deliver robust water and soil quality which improves the long-term health of the
farm. However, smallholder farmers in developing countries often either do not grow
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trees or abandon them before reaching maturity. While our survey results indicate farm-
ers value trees on their farms, the slow and risky nature of the growing process often pro-
hibits them from having trees present. This is exacerbated by farmers’ cash constraint
and limited labor capacity. This raises a large set of questions regarding how best to help
farmers overcome barriers and how to operationalize afforestation programs, giving rise
to a growing literature on payments for environmental goods [6,7,15].

A typical afforestation program offers a many-year-long contract which is a pay-
ment schedule conditional on tree survival. Such programs have benefited from recent
advancements in machine learning and AI to process remote sensing data (satellite
imagery), which have made it possible to monitor land use change cheaply [3,8,16,19].
Participants get paid a percentage of the total payment at each monitoring round but
the exact payment might be adjusted downwards if not all the trees have survived. For
example, in [14], the author conducted a randomized controlled trial in Malawi where
farmers were asked to grow trees over a period of 3 years. They were paid in equal
installments after 6 months, then, 1, 2 and 3 years adjusted by the number of survived
trees. The author observed that farmers had private information regarding their like-
lihood of following through to the end of the 3 year period, and that some farmers
dropped out of the contract over time even though they all initially agreed to take up the
task. Motivated by this experiment, we ask: if afforestation programs are designed for
the long term and at a large scale, can the program designer optimize over the contract
space to minimize abandonment of this slow and costly task?

Our research is a first attempt to create an analytical framework for afforestation
incentive schemes using contract theory. We set up a principal-agent model, where the
principal (referred to as she) can be an NGO, a local government, or any buyer of
ecosystem services, and the agent (referred to as he) represents a smallholder farmer.
The principal contracts with the agent to procure tree-growing services on his farm.
The goal of the principal is to maximize the success of the program as measured by
density of mature trees grown and maintained by the agent, and to minimize the pay-
ments needed to incentivize this growth. There is a large literature on canonical contract
design [9,20], dynamic contract design [4] and, more recently, robust contract design
[2,5]. A closely related work with ours is [18] which is also a dynamic contracting
problem where both adverse selection and moral hazard may be present; further, there
is two-sided limited liability. The author shows that it is sufficient to consider station-
ary contracts when searching for optimal dynamic contracts. This work contributes to a
growing literature on payments for environmental goods [6,7,15].

A key feature of our model is that environmental benefits depend on the state of the
world and are not just a stochastic outcome of the agent’s action. The dynamics of tree
growth follow a Markov Chain where the state space is the tree age (or, similarly, tree
height or canopy size). Natural risks and the agent’s efforts both influence the steady
state distribution of this Markov chain. Further, the effort choices of the agent are influ-
enced by the natural risks, the payments from the principal, and also their private type
(e.g., whether the farmer has a “green-thumb” or how well-suited their land is to grow-
ing trees) which determines the cost of their effort. Agent types are multi-dimensional,
with costs that may vary as a function of the maturity of their trees. As our model has a
temporal aspect, we assume that agents are forward-looking and time-discounting, and
seek to maximize total time-discounted lifetime utility.
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The principal can observe the state of the tree, but does not know an agent’s type
nor effort. The population of agents is assumed to have been pre-selected to participate
in the afforestation program, so the principal’s task is to construct a contract such that
each agent will take up the contract and follow through in the long run. The principal
is assumed to be more patient than the agent, since agents are individual farmers and
the principal is a large centralized program that cares about long-run afforestation out-
comes. Thus, among contracts that incentivize the population of farmers hired by the
principal to follow through by exerting effort each round, the principal prefers those
with lower average payments in the steady-state of the resulting Markov process.

We show that the optimal (i.e., minimum-cost) payment structure can be computed
in time polynomial in the type space and has clear economic interpretations. For exam-
ple, if tree maintenance costs are constant over time then the optimal payment structure
can be computed in linear time. We show payments are deceasing with time in this
case. This is caused by two forces. As the principal is more patient than the agents,
she prefers to front-load payments. However, she is constrained by how much she can
do so as she needs to satisfy the incentive constraints (to prevent agents from dropping
out and re-entering just to collect the payments). We conclude with some discussion of
practical considerations for real-world implementation.

To further illustrate the application of our model, we run our algorithm on data
collected from a survey of farmers participating in an afforestation program in Uganda
managed by theWorld Agroforestry Center (ICRAF). Our survey included self-reported
estimates of costs to grow and maintain trees at different levels of maturity. We find that
the optimal payment contract under these estimates has a very natural structure, where
payments are initially high, quickly fall to a regular baseline payment that is maintained
for the majority of the program, then fall to zero as the tree approaches maturity. We
find that this general structure is quite robust to perturbations of the agent costs and
model parameters, suggesting a natural form of contract with practical applicability.

Outline. We set up our model in Sect. 2, then show how to compute the optimal contract
in Sect. 3. In Sect. 4 we provide additional theoretical insight into the structure of the
optimal contract for the special case of time-invariant costs. Then in Sect. 5 we apply our
algorithm to real-world survey data and discuss the structure of the resulting contracts.

2 Model

State Space. We use a Markov chain with finite state space S = {0, 1, . . . ,M} to
model the state of a tree. M is the number of periods (years) that a tree takes to mature.
State 0 represents no tree, states 1 to M − 1 represents the growing process and the
final state M represents maturity. At time step t = 0, the agent starts in state s = 0. We
assume M ≥ 2, so that there is at least one intermediate state before reaching maturity.
We assume the principal has a monitoring technology available, so the state is publicly
observable.

Agent Actions and Type. In every period, the agent chooses a binary action a from set
A = {0, 1} where a = 0 means no effort and a = 1 means exerting effort. The action
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is unobservable to the principal. Action a = 0 is costless but action a = 1 has a non-
negative cost cs when taken in state s,∀s ∈ {0, . . . , M −1} and cost 0 at maturity state
M .1 The profile of costs c = (cs)s<M are private information known to the agent, and
form the agent’s type. The type c is drawn from a distribution F with support [0, c̄]M .
The principal has the knowledge of the distribution F but not the agent’s individual
type.2 Note that we will tend to write c−s to mean all elements of c except for the
one indexed by s, so that (c−s, c

′
s) means profile c with entry s replaced with c′

s, and
similarly for other profiles and vectors.

We say that the agents satisfy uniform costs if, for each type c ∈ SUPP(F ), we have
cs = cs′ for each s and s′. In a slight abuse of notation we will tend to think of a type
in the uniform costs model as a real number c ≥ 0 such that cs = c for all s. As another
special case, we say that the agents satisfy fixed relative costs if there exists a sequence
of values (fs)s<M such that, for each c ∈ SUPP(F ), there exists a constant t ≥ 0 such
that cs = t · fs for each s < M . That is, all agents agree on the relative cost to care for
trees in different stages, but differ in their absolute costs. Note that uniform costs is a
special case of fixed relative costs, in which fs = 1 for all s.

Exogenous Shocks. In every period, a tree might die due to some natural risk out of
the farmer’s control. We model this risk as a probabilistic exogenous shock – in each
period where the tree is in state s, a shock does not occur with probability qs. For most
of the paper we assume constant shock probability qs = q, but our results extend to
state-dependent shocks (such as younger trees being more vulnerable to natural risk).

Transition Probability. The transition probabilities depend on the agent’s behavior and
exogenous shocks. If, at time t, the state is st ∈ {0, 1, . . . ,M}, then st+1 = min{st +
1,M} (i.e., the tree grows or stays at maturity if already mature) if and only if the agent
chooses a = 1 and no exogenous shock occurs. Otherwise, st+1 = 0 (i.e., the tree is
lost) if the agent chooses a = 0 or if the shock occurs.

Value at Maturity. A tree in state s delivers value vs ≥ 0 to an agent. We will assume
that vs = 0 for s �= M , meaning that the agent has no value for an immature tree.3

Indeed, we can think of “maturity” as representing the stage of growth at which the tree
provides intrinsic value to the agent, rather than a biologically terminal state, so that the
tree’s value vM is enjoyed in each round where the state is M .

Principal’s Payment. In each round the principal can transfer a payment to the agent.
Payments from the principal can depend on the evolution of the state but not the agent’s
action. Informally, we would like the payment to depend on the current state, normal-
ized so that the payment in state 0 is 0. This is without loss, as we focus on Markovian

1 Our survey results suggest that the cost is positive but small in the final state, and less than the
value of a mature tree. Our model can accommodate this by additively shifting the cost and
value in state M . Our chosen normalization is for notational convenience.

2 In our construction the principal will only make use of knowledge about the support of F , but
not the distribution itself.

3 Though we assume these values are 0, we still introduce the notation for technical convenience
when describing utilities.
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strategies. One slight subtlety is that because state M transitions to itself, we would like
to distinguish between payment made when first transitioning from state M − 1 to M ,
and the payment made when transitioning from M to itself. (Indeed, if the value vM is
high enough, one might hope to avoid making transfers to maintain a mature tree.)

With this in mind, we describe a contract as a profile of payments p = {ps}s∈S ∈
R

M+1
+ . For each s < M , ps is the payment transferred upon reaching state s + 1 from

state s. We emphasize the indexing: for example, p0 is the payment made when the agent
reaches state 1. (This choice is for notational convenience when comparing payments
with costs, as we describe below.) This leaves pM , which is the payment transferred in
state M when the previous state was also M (i.e., the payment the agent receives for
keeping a mature tree alive). Note that no transfer occurs in state 0.

Summary: Timing. To summarize the model up to this point, we describe the timing
within each round. Round t begins in some state st ∈ S. The agent then chooses an
action at ∈ {0, 1}, and pays cost cst

if at = 1. We then resolve the exogenous shock to
determine whether the tree survives. If the tree does survive, the agent receives payoff
vst

. The state then transitions to st+1, determined by the exogenous shock and action
at. Finally, the principal observes the new state and provides payment pst

. This ends
round t, and the game proceeds to round t + 1.

Agent Utility. The agent is risk neutral and his utility is linear in the payment. In what
follows, we assume the action choice of the agent is Markovian, i.e., does not depend
on the history. This assumption is without loss in Markovian games. Suppose round t
begins in state s. If the agent chooses action at = 0, then his stage utility for round twill
be 0 regardless of the state s. This is because he exerts no costly effort and his payment
will necessarily be 0. If he chooses action at = 1, his stage utility will be ps + vs − cs

if the tree survives and −cs otherwise. Taken together, his expected stage utility (over
the realization of the exogenous shock) is qs(ps + vs) − cs. Note that the stage utility
depends only on the action taken and the current state s. We will therefore write us(a)
for the stage utility of taking action a in state s. A Markovian strategy is then described
by an action as to take in each state s. We focus on deterministic strategies without loss
of generality, and we assume that the agent always chooses to exert effort (the option
preferred by the principal) when the agent is indifferent.

The agent discounts the future with discounting rate δ < 1. Assuming the
agent employs strategy a = (as), his continuation utility beginning in state s0 is∑∞

t=1 δtust
(ast

) where st is a random variable denoting the state after t transitions,
following strategy a, beginning from state s0. Thus the total expected utility of such an
agent, beginning in state s0, is

E

[ ∞∑

t=0

δtust
(ast

)

]

. (1)

Given a choice of contract p = {ps}, we can therefore write ap(c) for the utility-
optimizing strategy (i.e., choice of action in each state) for an agent of type c given
contract p. That is, the agent will choose to take action ap

s (c) in state s. Given any
fixed strategy a = (as), we will write Da for the steady-state distribution of the Markov
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process that results from the agent applying strategy a. It will also be convenient to write
D1 for the steady-state distribution for the strategy that chooses action 1 (exert effort)
every round.

2.1 The Principal’s Problem

The principal’s objective is to find the least-costly contract such that all agent types
c ∈ SUPP(F ) (i.e., all agents in the population of farmers hired to grow trees) exert
effort each round. That is, the objective function is

min
p

Es∼D1 [ps] (2)

s.t.aps (c) = 1 for all c ∈ SUPP(F ) and s ∈ S.

where the expectation is over the steady state distribution D1 of the Markov chain con-
ditional on all agents choosing to exert effort every period, and the choice of p = {ps}
is subject to the constraint that ap

s (c) = 1 for all c and s. Our focus on the steady-state
is motivated by the fact that, in practice, the principal will be interacting with many
agents who have many trees, in which case the steady-state of the process is a proxy
for the aggregate outcome. The principal focuses on contracts that induce its contracted
agents to always exert effort and hence successfully grow trees. Given a choice of p,
the principal’s payoff is determined by the agent’s utility-maximizing choice of actions,
which is endogenous to this payment and induces the steady state of the Markov chain.
There is an implicit expectation over c ∈ F in the objective (2), but it can be omitted
because of the constraint that the contract induces effort from each type, which means
the steady-state (and hence long-run payments) are independent of the agent’s type. We
also assume the principal faces a limited liability constraint, which in this setting means
that all payments are non-negative.

The minimization problem in (2) is restricted to the set of contracts for which the
utility-maximizing choice of action is to exert effort each round. In Sects. 3.1 and 3.2
we show how to encode these constraints with respect to the model primitives.

3 Computing the Optimal Contract

3.1 The Agent’s Perspective

The agent can choose between two actions in every state, leading to 2M+1 potential
strategies. But we note that due to the structure of the Markov process it suffices to
consider the following restricted set of stationary strategies.

Definition 1 (Agent strategies). The set of strategies, denoted as φ ∈ {0, . . . , M,∞},
correspond to choosing to exert effort only up to a certain state. Explicitly, in strategy
φ ∈ {1, . . . , M} the agent chooses as = 1 in states s < φ and chooses as = 0 in states
s ≥ φ. Strategy φ = 0 corresponds to choosing a = 0 for all states (not participating)
and φ∞ corresponds to choosing a = 1 in every state.

To see why it is without loss to consider this restricted class of strategies, note that if
as = 0 for some s then the Markov process will never reach beyond state s. The agent’s
payoffs and the state evolution therefore depend only on the longest prefix of states for
which the agent always exerts effort.
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Expected Costs and Payments. For each strategy φ, the expected cost, evaluated at some
state s, is the sum of the current period cost and the discounted expected future cost of
choosing φ. We denote this as ECφ

s (c). Since strategy φ only ever reachest states s ≤ φ,
we define ECφ

s (c) only for s ≤ φ. Recall here that c = (cs)s<M denotes the type of the
agent, which we think of as being fixed. The expectation is therefore only with respect
to the evolution of the Markov chain given strategy φ. We can compute this cost for
each φ < ∞ by solving a set of φ + 1 linear equations following the Markov chain
dynamics. These linear equations are as follows:

ECφ
s (c) = cs + δqECφ

s+1(c) + δ(1 − q)ECφ
0 (c),∀s ∈ {0, . . . , φ − 1} (3)

ECφ
φ (c) = δECφ

0 (c) (4)

The first term in Eq. (3) represents the cost of effort in state s. The second two terms
are weighted by the agents’ discount factor δ. The second term captures the future dis-
counted cost given no exogenous shock; the third captures the case with an exogenous
shock. Equation (4) uses the fact that, in round φ, strategy φ does not exert effort and
therefore suffers no costs and transitions to state 0 with probability 1. For notional con-
venience, we define ECφ(c) ≡ ECφ

0 (c) to be the expected total (future discounted) cost
for the agent c in equilibrium, as evaluated at state 0.

Solving the set of inequalities described by (3) and (4) yields

ECφ(c) =
1

Zφ

φ−1∑

s=0

(δq)scs, Zφ = 1 − δ(δq)φ − δ(1 − q) · 1 − (δq)φ

1 − δq
(5)

where Zφ is a fixed normalizing constant independent of the type c.
We can similarly calculate the expected total cost of strategy φ = ∞, as evaluated

at state 0. The only difference is that (4) is replaced with EC∞
M (c) = δqEC∞

M (c) +
δ(1 − q)EC∞

0 (c) to account for the possibility of remaining in the mature state in the
absence of an exogenous shock. Solving for EC∞

M (c) then yields

EC∞(c) =
1

Z∞

M−1∑

s=0

(δq)scs, Z∞ = 1 − δ(1 − q) · 1
1 − δq

(6)

Similarly, we can calculate the agent’s expected total payments from a given pay-
ment plan and from having mature trees. The expected payments of strategy φ given
payment plan p = (ps)s<M is denoted EBφ(p). Note that EB0 = 0 as agents are not
paid unless they enroll and plant a seedling. For φ < ∞, we then have

EBφ
s (p) = qps + δqEBφ

s+1(p) + δ(1 − q)EBφ
0 (p),∀s ∈ {0, . . . , φ − 1} (7)

EBφ
φ(p) = δEBφ

0 (p) (8)

Note that the only distinction with (3) and (4) is the additional factor of q that multiplies
the stage payments; this accounts for the fact that the agent is only paid in the event that
an exogenous shock does not prevent the growth of the tree. Solving for ECφ(c), and
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modifying for φ = ∞ in the same way as costs, yields

EBφ(p) =
1

Zφ
· q ·

φ−1∑

s=0

(δq)sps for all φ < ∞, EB∞(p) =
1

Z∞ · q ·
M−1∑

s=0

(δq)sps

(9)
where Zφ and Z∞ are the same normalizing constants as in (5) and (6).

Finally, we denote the total long-run expected value of a tree when the agent chooses
strategy φ, evaluated at stage 0, to be Evφ

A. Note that Evφ
A = 0 for all strategies except

for φ = ∞. We can solve for Ev∞
A in a manner similar to cost and payments to yield

Ev∞
A =

1
Z∞ · (δq)

M

1 − δq
· vM . (10)

Given a payment plan p = (ps)s<M , an agent of type c entering the program will
choose a strategy φ ∈ {0, . . . , M,∞} that maximizes his expected utility evaluated at
stage 0. We will write this utility as EUφ(c,p) = EBφ(p) − ECφ(c) + Evφ

A.

3.2 Encoding the Principal’s Problem

Recall that the principle’s goal is to find the least-costly contract such that for each
c ∈ SUPP(F ), an agent with cost c will choose φ = ∞. We will show how to compute
this optimal payment schedule.4

In order for the agent with cost c to choose φ = ∞, we must satisfy the incentive
compatibility (IC) constraint that no agent would gain by deviating to a different strat-
egy from any stage. That is, we require that EUφ

s ≤ EU∞
s for all φ and s. Because

agents are Bayesian and hence time-consistent, it suffices to restrict attention to agent
decisions at stage s = 0, leading to the following M IC constraints: ∀φ ∈ 1, . . . , M
and c ∈ SUPP(F ),

EBφ(p) − ECφ(c) ≤ EB∞(p) − EC∞(c) + Ev∞
A . (11)

We also require the individual rationality constraint (IR) that EU∞ ≥ 0 for each agent
c ∈ SUPP(F ), which can be written as

EB∞(p) − EC∞(c) + Ev∞
A ≥ 0. (12)

The principle’s problem can therefore be expressed as minimizing the total long-run
expected average payment, (2), subject to constraints (11) and (12) for each type c ∈
SUPP(F ).

3.3 How Much to Pay

We now construct a contract that minimizes the expected total payments required to
have a given population C ⊆ SUPP(F ) of agent types always complete the tree-growing
process. The principal’s problem can then be solved by taking C = SUPP(F ). Our

4 Note that this assumes that such a contract exists, which we have not yet shown.
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ALGORITHM 1: Algorithm FINDPRICES

1 Initialize ps ← 0 for all s ∈ {0, 1, . . . , M − 1};
2 X ← maxc∈C EC∞(c) − Ev∞

A ;
3 for s = 0, 1, . . . , M − 1 do
4 pIC

s ←
max

{
p′
s ≥ 0 : Bs+1(p−s, p

′
s) ≤ ECs+1(c) + X − EC∞(c) + Ev∞

A ∀c ∈ C
}
;

5 pIR
s ← min {p′

s ≥ 0 : B∞(p−s, p
′
s) = X};

6 ps ← min{pIC
s , pIR

s };
7 if pIR

s ≤ pIC
s then break

8 end
9 pM ← min {p′

M ≥ 0 : B∞(p−M , p′
M ) = X};

10 return (p0, p1, . . . , pM )

algorithm is listed in pseudocode as Algorithm 1. Roughly speaking, our algorithm first
determines the minimum value of EB∞(p) that would satisfy the IR constraint (12)
for all agent types. Then, starting with all payments set to 0, it raises prices greedily,
making earlier payments as high as possible subject to IC constraints (11). It does so
until it constructs a schedule of payments p such that the target valueB∞(p) is reached,
at which point the algorithm terminates.

In more detail, we first define X = maxc∈C EC∞(c)−Ev∞
A . This is the maximum

long-run disutility of any agent for exerting effort every period, which determines our
IR constraint. Our algorithm will compute payments such that the total lifetime benefit
from payments when exerting effort every round, EB∞(p), is precisely equal to X ,
matching the IR constraint (12). We then calculate payments iteratively. We initially
set ps = 0 for all s. Then, for each s = 0, 1, . . . in sequence, we calculate the largest
payment ps that satisfies the IC constraints: each agent type c ∈ C would prefer strategy
φ = ∞ to strategy φ = s, given all previous payments. This largest payment is pIC

s . We
also calculate the smallest payment pIR

s that would set the total lifetime benefit from
payments equal to the target level X; this is pIR

s .5 If pIC
s < pIR

s , then the IC constraints
bind: we set ps equal to pIC

s and move on to setting the payment for round s + 1. If
pIR

s ≤ pIC
s then we have met the IR constraint while satisfying all IC constraints, so

we set ps equal to pIR
s and terminate. Note that in this case all payments for subsequent

rounds are set to 0. Finally, if the IR constraint is still not satisfied when we exit the
loop, we set payment pM high enough so that B∞(p0, . . . , pM−1, pM ) is equal to our
target X . Note that this can only occur if we run through all iterations of the for loop
without triggering the break condition; otherwise we will have pM = 0.

We now prove that the resulting payments satisfy all IC and IR constraints, and
moreover form the minimal-cost contract that does so. We first show that the payments
are valid, in that they satisfy all IC and IR constraints and hence every agent type will
choose to exert effort in every state.

Theorem 1. Given any subpopulation C ⊆ SUPP(F ), Algorithm FINDPRICES com-
putes a payment schedule p such that aps (c) = 1 for all c ∈ C.

5 Note that the value of pIR
s that sets B∞(p−s, p

′
s) = X − Ev∞

A will be generically unique.
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The proof is omitted due to space constraints. The most technical part of the argu-
ment is showing that even if the algorithm exits the main loop on some iteration s,
the IC and IR constraints will still hold for strategies s′ > s. Intuitively, since pay-
ments beyond round s are set to 0, the constraints for any strategy s′ > s achieving
non-negative utility will be dominated by the constraints for strategy s.

We next show that the prices returned by Algorithm FINDPRICES are in fact opti-
mal, in the sense that they minimize expected long-run payments by the principle among
all contracts that satisfy the IC and IR constraints.

Theorem 2. Given any subpopulation C ⊆ SUPP(F ), Algorithm FINDPRICES com-
putes the least-cost payment schedule such that each c ∈ C will choose to exert effort
in every period.

The proof of Theorem 2 proceeds in two steps. We first show that, given our choice
to have the IR constraint bind with equality for some agent type, our method of con-
structing prices greedily (by frontloading prices as much as possible given the IC con-
straints) is optimal. The second step is to show that this choice to have the IR constraint
bind with equality is optimal. That is, it is optimal to choose a p that minimizes B∞(p)
subject to the IR constraint. Note that this second step is not immediate! It might seem
intuitive that we wouldn’t want to “waste money” by giving agents more total pay-
ment than necessary to get them to enroll in the program. However, a higher total pay-
ment relaxes the IC constraints, which enables higher payments in earlier rounds where
money goes further due to time-discounting. Our proof shows that the higher early pay-
ments will not make up for the loss due to increasing B∞(p). The details are omitted
due to space constraints.

3.4 Computation

We note that Algorithm 1 runs in time O(M × |C|), where |C| is the size of the type
space, as we iterate over all IC constraints (one for each type in C) for each strategy
s = 0, 1, . . . ,M − 1. When F is represented as a discrete list of types along with
probabilities, this method runs in polynomial time. More generally, if F is described
implicitly as a continuous distribution, one could proceed by discretizing the space
of possible types. Assuming an upper bound c̄ on the maximum possible cost within
a single round, one can discretize costs up to a small error ε > 0 resulting in (c̄/ε)M

possible types, at an additive loss of ε in the resulting efficiency and incentive properties.
This general reduction results in an algorithm with runtime O(M(c̄/ε)M ), which

may be plausible when M (the number of rounds of growth) is small. For larger M , one
might be able to reduce the number of potential types under some structural assumptions
on agent costs. For example, recall under the assumption of fixed relative costs, the cost
for agent i to care for a tree in stage s is ci

s = ti · fs where ti ∈ [0, c̄]. Under such a
model, one could discretize the space of multipliers ti to multiples of ε > 0, resulting
in a total runtime of O(M · c̄/ε), again at an additive loss of ε in the resulting efficiency
and incentive properties.
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3.5 Discussion: Payment to Maintain a Mature Tree

In the optimal payment schedule, the final state payment pM rewards transitions from
M to M . In an afforestation program, it’s intuitive to compensate a participant for
tree growing efforts which involve non-zero payments in p0, . . . , pM−1. Once a tree
matures, it is no longer costly for the agent to keep the tree alive. A positive payment
pM may appear to be unnecessary but in the optimal solution, the principal may have
to keep paying the agent even after a tree reaches M so that the agent does not cut it
down and reenter the program.6 However, the principal does not need to pay the agent
a positive price to keep a mature tree if the value of a mature tree to the agent is large.

Corollary 1. For every F and C ⊆ SUPP(F ), there is a sufficient large value of vM

such that, in the optimal payment schedule p where all c ∈ C exert effort every round,
we have pM = 0.

Although vM is exogenous in our model, in reality it can be partially affected by design.
By working with local stakeholders, the principal can offer tree seedling options pre-
ferred by farmers and educate them the benefit of agroforestry.7

4 Special Case: Uniform Costs

In the special case that cost vectors are uniform across time for each agent, a type is
described by a real number c ≥ 0 such that cs = c for each round s. In this case we
can further analyze and interpret the structure of the optimal contract that incentivizes
all cost types in a sub-interval [cl, ch] to grow and maintain mature trees. As we will
show, the early payments are dictated by the incentive constraints of the high-cost type
whereas the late payments are dictated by the incentive constraints of the low-cost types.
In particular, it is important to curtail late-stage payments to prevent low-cost types from
dropping out as soon as a tree reaches maturity and re-entering the program to accrue
cash benefits.

4.1 The Agent’s Perspective – Uniform Costs

When costs are uniform, the constraints in (5) that define an agent’s costs for strategy φ
immediately imply that costs scale linearly with c. That is,

ECφ
0 (c) = Kφc,∀φ ∈ {1, . . . , M}, (13)

where the coefficients Kφ depend on q, δ, and φ. We can also define K0 ≡ 0. We are
then able to observe that

0 = K0 < K1 < · · · < KM , KM > K∞ > 0. (14)

6 In reality, a reentering decision may look like planting more trees. In our model, we consider
an agent who have reached his land capacity. Thus, the agent only reenter through cutting
down existing trees, claiming to have lost them through an exogenous shock, and planting new
ones.

7 See, for example, the “Trees on Farms for Biodiveristy” project at the World Agroforestry
Center: https://treesonfarmsforbiodiversity.com/about-trees-on-farms/.

https://treesonfarmsforbiodiversity.com/about-trees-on-farms/
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In other words, strategies φ ≤ M get more costly as φ increases, since the agent spends
more time exerting effort in expectation. The exception is φ∞, which is less costly than
strategy φ = M because the agent can keep the tree mature without any cost.

4.2 Who Drops Out and When

One might expect that if a contract causes the agent with a high cost to follow through
(i.e., choose strategy ∞), one with a lower cost would follow through as well. How-
ever, this is not always the case: as we next show, the agent with lower costs might be
incentivized to drop out of the program “late” (i.e., just before the tree reaches maturity)
then reenter with a new tree in order to collect more payments. This is because an agent
with lower costs obtains higher net utility from early payments, and may find this utility
from collecting cash rewards more attractive than maintaining the tree at maturity.

We now make this more formal. Suppose that EB∞(p) is fixed. Denote EB̄φ(c)
to be the minimal expected payments that type c needs to receive in order to weakly
prefer strategy φ to ∞ given EB∞(p). By definition, EB̄φ(c) ≡ ECφ(c)−EC∞(c)+
EB∞(p)+Ev∞

A . The term EB̄φ(c) measures how much expected payment from strat-
egy φ an agent requires in order to cause deviation from the principal’s desired strategy,
∞. The following lemma demonstrates that high-cost types are prone to choosing early
drop-out strategies and low-cost types are prone to choosing late drop-out strategies.

Lemma 1. For any pair of cl < ch in the support of F (c), there exists a state
ŝ ∈ {0, . . . , M} such that ∀φ < ŝ, ch = argminc∈[cl,ch] EB̄φ(c) and ∀φ ≥ ŝ, cl =
argminc∈[cl,ch] EB̄φ(c).

Proof. From the definition of EB̄φ(c) and Equation (14), we can write EB̄φ(c) =
(Kφ − K∞)c + κ for some constant κ. As K0 < K∞ < KM and Kφ is increasing
for 0 ≤ φ ≤ M , there must be some intermediate state ŝ such that Kφ − K∞ < 0 for
all φ < ŝ and Kφ − K∞ ≥ 0 for all φ ≥ ŝ. When Kφ − K∞ < 0, the minimum of
EB̄φ(c) is achieved by ch proving the first claim. Likewise, when Kφ − K∞ ≥ 0 the
minimum of EB̄φ(c) is achieved by cl proving the second claim.

4.3 Structure of Optimal Payments Under Uniform Costs

We now discuss the structure of the contract that minimizes the expected total payments
required to have a given subpopulation always complete the tree-growing process. This
contract is described in Sect. 3.3, but we can describe it more explicitly in the case of
uniform costs. Our first observation is that if the agent with costs cl and ch choose
φ = ∞, then any agent with cost c ∈ [cl, ch] will choose it as well. It therefore suffices
to consider subpopulations corresponding to cost intervals. Theorem 3 describes the
optimal payments for a given cost interval.

Theorem 3. In the case of uniform costs, given any subpopulation [cl, ch] ⊆ SUPP(F ),
the least cost contract is the payment schedule p∗, that solves the following set of M+1
equations. For all s ∈ {1, . . . , ŝ − 1} (where ŝ is as defined in Lemma 1):

EBs(p) = ECs(ch), (15)
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Otherwise, for s ≥ ŝ, either

EBs(p) = ECs(cl) + EB∞(p) + Ev∞
A − EC∞(cl), (16)

or ps = 0. Finally,
EC∞(ch) = EB∞(p) + Ev∞

A . (17)

The proof follows directly by interpreting the construction from Sect. 3.3 in the
special case where agent types are totally ordered. In this case, the value of X in Algo-
rithm 1 will always be determined by the highest type agent, ch. Then, as in Sect. 3.3,
it is optimal for the principal to greedily maximize payments in earlier states as long as
the constraints in Eq. (11) are satisfied. As in Theorem 2, this is due to the difference in
discounting factors between the agent and the principal. Second, we identify a small set
of binding constraints. We reduce the number of constraints from (|c|+1)× (M +1) to
M+1 by utilizing the analysis in Sect. 3.1 and Lemma 1. In particular, the IC constraint
will bind always for the highest agent type ch up until some iteration ŝ, after which the
IC constraint will bind for the lowest agent type cl.8

Discussion: Binding Constraints. It’s intuitive to see that in the optimal solution, the
IR constraint for agent ch binds (Eq. (17)). The agent ch is indifferent between φ = ∞
and not participating. It’s sufficient to have IR satisfied for ch because IR will also be
satisfied for all lower types. Regarding IC constraints, although the principal prefers to
shift payments to earlier states, there is a limit on how much shifting is possible. As we
increases early stage payments (ps,∀s ∈ {0, . . . , ŝ − 2}), the IC constraint of the agent
ch will be violated first; this causes ch to choose early drop-out strategies (Eq. (15)).
Similarly, late-stage payments (ps,∀s ∈ {ŝ − 1, . . . , M}) cannot exceed the minimal
payments that keeps low-type cl indifferent between dropping out in intermediate stages
and strategy φ = ∞ (Eq. (16)). The threshold state ŝ comes from Lemma 1.

Take-Up and Follow-Through Behavior. What happens if we target a subpopulation
[cl, ch] that is a strict subset of SUPP(F )? Given the optimal payment schedule, all
intermediate types in [cl, ch] choose φ = ∞, any types higher than ch choose φ0, and
the types lower than cl choose φM . Even though the principal only intends to have
c ∈ [cl, ch] to take up and follow through the contract, she cannot prevent lower types
c < cl from taking up but not following through. This is consistent with the self-
selection observations made in [12]. Further, the low cost agent (c < cl) chooses to
drop out before the tree reaches maturity even in the absence of exogenous shocks. If
the contract is not properly designed, then this intentional drop out behavior will be
exacerbated. In [13], the authors argue that exogenous shocks cause participants to not
follow through, thus lowering program cost-efficiency. While this is consistent with our
model, we further contribute to this discussion by showing that another possible reason
for drop-out is that front-loaded payments (even the optimal payments) can incentivize
some agent type to join the program to collect early payouts but then abandon trees. For

8 |c| can be thought as the size of the discretization of the agent type space between cl and ch;
there are M IC constraints and 1 IR constraint for each type; there are M + 1 number of
limited liability constraints.
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this reason, a principal must be careful when allowing open enrollment to an afforesta-
tion program, as agents with costs outside the anticipated range may reduce program
effectiveness due to incentivized drop-outs.

5 Application: Optimal Payments for Real-World Cost Data

We partnered with theWorld Agroforestry Center (ICRAF) to collect survey data from a
collection of farmers enrolled in an afforestation program in Uganda. The survey asked
for demographic information and information about the quantity and type of trees on
the farmer’s land. Most relevant to this work, the survey asked about estimated costs to
care for trees at different stages of growth. This was described in the language of hours
per week: farmers were asked to estimate care time for trees that are 0–3 months old,
4–6 months, 6–12, 12–24, and 24–48. We also asked farmers to indicate an effective
value (in money) for time spent on informal labor, both with respect to how much they
are typically paid for informal work and how much they pay others. We received 408
responses from farmers enrolled in the ICRAF program. After excluding responses with
invalid or missing cost data, we were left with 382 entries.

We use the responses from the survey to estimate an instance of our model. There
are 12 rounds, each corresponding to a 3-month period. Our default estimate of time
preferences is a discount rate of 0.35 per year, corresponding to δ = (0.35)1/4 = 0.77
in our model. This default choice reflects the observation that poorer individuals, like
many in our survey response pool, tend to discount the future more heavily than wealthy
families [17].9 We estimate q = 0.51/4 = 0.84 (probability of tree survival given effort)
using a recent study that estimates a 50% survival rate of trees in farm afforestation
programs, conditional on the agent exerting effort.10

To estimate the pool of agent types C, we fit the raw survey response data to a
parameterized model of fixed relative costs. In this model, each agent i has a type ci =
(ci

s) of the form ci
s = ti · fs where ti ≥ 0 and fs = (eαs+β + γ). Here we think of

ti ≥ 0 as an agent-specific type, and the parameterized function fs = (eαs+β + γ) as
modeling the declining cost of maintaining trees as they grow.11 We then fit the data to a
choice of parameters (α, β, γ) and agent-specific types ti. The best-fit parameterization
has an R2 of 0.87. We omitted outliers in which the factor ti deviates from the median
by a factor greater than 10, leaving 371 non-outlier responses. The resulting profile of
relative costs, along with the distribution of scaling factors, are presented in Fig. 1.

Finally, to estimate vM , we consider the reported cost to maintain a tree for those
respondents who report keeping trees on their property without further compensation.

9 As noted in many studies ([1,17,22]), attempts to empirically estimate annual discount factors
for particular populations (including poor urban and farming populations) have been inconsis-
tent, leading to estimates ranging from near-zero to 0.75. We chose an intermediate value of
0.35 as our baseline, and include a robustness check that compares different choices for δ.

10 Ideally we would obtain tree survival estimates more specifically tailored to the ICRAF envi-
ronment, but the afforestation program is still in its infancy and does not yet have that data
available. We therefore compare the outcomes with many different values of q to check robust-
ness to this choice of parameter.

11 The particular form of this model was chosen post-hoc after noting that most reported costs
tended to decline exponentially to a baseline minimal effort level.
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Fig. 1. Surveyed tree maintenance costs and resulting optimal payments. Reported costs were fit
to a parametric model of the form cis = ti · fs, where s denotes time in quarterly periods. (a) The
fit curve of relative costs fs, with round s on the x-axis. (b) A histogram showing the distribution
of multipliers ti in the surveyed population. (c) The optimal schedule of quarterly payments for
this collection of costs, with s along the x-axis, calculated using higher (blue, circle) and lower
(orange, triangle) estimates of tree value. (Color figure online)

To obtain a conservative estimate of vM , we set it equal to the largest reported cost
among non-outliers to maintain trees at 24–48 months. The motivation is that such
respondents are intrinsically motivated to at least maintain near-mature trees at this
level of effort. We also consider a less-conservative estimate in which we use reported
costs to maintain trees at 0 − 3 months as a bound on tree value. The idea being that,
given a hypothetical guarantee that such a tree would survive and immediately mature,
it would be worthwhile to plant and care for it.

Given these estimates, we implemented our algorithm for computing optimal pay-
ments. See Fig. 1(c). As expected, we find that the optimal contract front-loads pay-
ments toward the earlier part of the care period, and reduces payments over time. It
was common for the optimal contract to then settle into a stable quarterly payment,
set at a level that disincentivizes departure from the program. In the last few periods,
the payments can decline as they are replaced by the intrinsic value of maintaining a
mature tree. When the value of a tree is estimated to be very low (conservative estima-
tion method), we find that it is necessary to maintain positive payments even for mature
trees. This is because of the presence of high-cost individuals in the dataset who neces-
sitate very large early payments; such payments encourage low-cost types to drop out
and re-enter the program unless encouraged to keep their trees in perpetuity. When the
value of a tree is estimated higher using the less conservative estimation method, the
optimal contract can reduce payments to 0 for near-mature and mature trees.

5.1 Restricting the Pool of Agents

The optimal payment contract for the cost reports we collected involves a very large up-
front payment. Looking at the distribution of agent value multipliers in Fig. 1(b), one
might guess that this is due to the impact of a small minority of high-cost respondents
who must be incentivized to participate. Given such a candidate pool, the principal may
wish to structure payments that do not incentivize participation from the highest types,
and instead target a smaller subpopulation that includes all agents with multipliers in
a range [0, θ]. This results in fewer trees due to lower enrollment, but potentially at a
much lower payment per unit of mature trees maintained.
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To explore this, we calculated the optimal payment contract for the subset of n
lowest-cost farmers (with respect to our fit parameterized model), for each n ≤ 371, and
calculated the long-run effective payment of the principal under the resulting contract.
As these contracts incentivize full exertion of effort from the target population, the long-
run quantity of mature trees scales linearly with the chosen n. What will change non-
linearly is the resulting aggregate long-run payment per agent. We plot this in Fig. 2(a).
As one can see, the long-run payment per farmer increases moderately up to around
n = 250, then increase more quickly up to n = 350, at which point it increases sharply.
This suggests that it is indeed a tail of high-cost individuals who have an outsized effect
on the budget necessary to maintain all trees at maturity. In Fig. 2(b) we also plot out
the optimal contract for different choices of n. As we exclude more of the high-cost
agents, we find that the resulting savings are the result of multiple effects: the high
initial payment and baseline stable level of quarterly payments are both reduced, and
the point at which payments decrease from the stable level to 0 occurs earlier.

Fig. 2. The impact of excluding high-cost agents on total payment and optimal contract structure.
(a) The average long-run payment at steady-state per agent for the contract that targets the lowest-
cost n respondents. (b) The optimal contract that targets the n lowest-cost respondents.

5.2 Robustness Checks

To check our choice to fit reported data to a parameterized model with fixed relative
costs, we also computed optimal payments for the raw reported costs. See Fig. 3(a)
for a comparison, plotted in the scenario with a higher estimate of tree value. We find
that the overall structure of the optimal contract is unchanged, though payments for the
raw costs are consistently higher. One possible explanation for this difference is a floor
effect, where even respondents with very low costs tended to report at least one hour
per week of maintenance time, which distorts the relative costs for agents at the low
end of the cost curve. In contrast, our parameterized model extrapolates values below
1 h for those with low reported costs, leading to lower costs on average.

To check our choices for δ and q, we also explored the effect of changing these
parameters on the resulting payments. This again results in a similar pattern of optimal
payment; see Fig. 3. When farmers are more patient, the intrinsic value of a tree is
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higher at intermediate rounds and hence payments can be reduced more quickly. Also,
when tree survival rates increase, there is less inherent risk and hence lower total cost,
and hence payments can be uniformly decreased.

Fig. 3. Robustness checks. (a) Comparing the optimal payments for raw reported costs (red) ver-
sus fit data (blue). (b) Optimal payments under different choices of δ. (c) Optimal payments under
different choices of q. (Color figure online)

6 Limitations and Extensions

In our model, the agent’s cost type is the sole source of heterogeneity. Other poten-
tial sources of heterogeneity to consider include the agent’s discounting rate and risk
preference [10,14]. We assume that the principal has the knowledge of the support of
possible agent costs throughout the tree growing stages. This further advocates the need
for robustness considerations. The fact that the optimal contract depends only on the
support of the type distribution, and not the distribution itself, provides some measure
of robustness, but it would be useful to also explore the impact of perturbations to the
support.

One might also consider a model with stochastic agent costs, where in every period
the agent cost is redrawn from some distribution. The stochastic agent cost model aims
to answer how payments can be designed to alleviate dropout due to stochastic shocks,
including income shocks, which might be modeled as a sudden increase in effective
tree-maintenance cost.
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Abstract. We reexamine three classical settings of optimization under
uncertainty, which have been extensively studied in the past, assuming
that the several random events involved are mutually independent. Here,
we assume that such events are only pair-wise independent; this gives rise
to a much richer space of instances. Our aim has been to explore whether
positive results are possible even under the more general assumptions.
We show that this is indeed the case.

Indicatively, we show that, when applied to pair-wise independent dis-
tributions of buyer values, sequential posted pricing mechanisms get at
least 1

1.299
of the revenue they get from mutually independent distribu-

tions with the same marginals. We also adapt the well-known prophet
inequality to pair-wise independent distributions of prize values to get
a 1/3-approximation using a non-standard uniform threshold strategy.
Finally, in a stochastic model of generating random bipartite graphs
with pair-wise independence on the edges, we show that the expected
size of the maximum matching is large but considerably smaller than
in Erdős-Renyi random graph models where edges are selected indepen-
dently. Our techniques include a technical lemma that might find appli-
cations in other interesting settings involving pair-wise independence.

Keywords: Posted pricing · Auctions · Prophet inequality · Revenue
maximization · Bipartite matching

1 Introduction

Optimization in environments with uncertainty has received much attention in
several research areas. It plays a central role in modern EconCS research (see,
e.g., [7,10] for early surveys in bayesian mechanism design) and is also pervasive,
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more broadly, in TCS (the rich theory of random graphs [3] is an example). Uncer-
tainty manifests itself in many different ways as the following three settings indi-
cate:

Sequential Posted Pricing: A seller has a single item to sell to n buyers. Each
buyer has a random value vi for the item distributed as vi ∼ Fi. The seller
knows distributions {Fi}n

i=1 and approaches buyers one by one in an arbitrary
or fixed order. She offers the item to buyer i at a price pi, which i takes when
vi ≥ pi and pays pi to the seller. The goal is to find a pricing scheme that
maximizes the seller’s revenue in expectation.

Optimal Stopping: A gambler plays a series of n games, each game i ∈ [n] has
a prize vi distributed according to distribution Fi. The order of the games
and the distribution of the prize values are known in advance to the gambler.
Once the prize vi for game i is realized, the gambler must decide whether
to keep this prize and abandon the remaining games, or to discard this prize
and continue playing. The gambler wants to maximize the expected reward.

Random Graph Models: Well-known models for the generation of random
graphs assume a fixed set of nodes and produce each edge e between a pair
of distinct nodes with a marginal probability pe. Several graph parameters
(e.g., the size of the maximum matching) have important meaning in areas like
brain science, networking, or social sciences, and bounding these parameters
is the subject of much research in many fields.

A simplifying assumption in most studies of the above settings is that the
marginal distributions are mutually independent, i.e., the joint distribution is a
product distribution. Under such an assumption, it is well-known that sequential
posted pricing yields approximately-optimal revenue in single-parameter settings
and generalizes nicely to multi-parameter environments [6]. Also, the optimal
stopping strategy for the gambler can be computed by backward induction. A
celebrated result, known as the prophet inequality [15], suggests that a simple
threshold strategy can give an expected reward to the gambler that is at least
50% of the reward that could be achieved by a very powerful prophet, who
has access to the maximum realized prize value [10,14]. Finally, in the random
graph model where edges among pairs of n fixed nodes are drawn independently
with the same probability p, a value of p = Ω (ln n/n) is sufficient so that a
hamiltonian cycle and, hence, a perfect matching exists, with high probability
(see [3] for related results in random graphs). Unfortunately, such results (i.e.,
tight bounds or good approximations to revenue, gambler reward, or size of the
maximum matching) do not hold for arbitrary joint distributions.

On the other hand, a recent line of work [5,9] on the monopoly problem for an
additive buyer has proposed an alternative correlation-robust framework to study
general distributions from the robust optimization perspective (see also [1,2]). In
this framework, the algorithm designer knows only marginal distributions {Fi}n

i=1

of each piece of the input and is given no information about correlation across dif-
ferent pieces in the joint distribution. The evaluation of the algorithm’s perfor-
mance is then taken in the worst-case, over the uncertainty of the problem, i.e.,
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over all possible joint distributions with the specified set of marginal distributions
{Fi}n

i=1. The fact that the joint distribution is not explicitly given has an impor-
tant practical advantage. Indeed, the representation and sampling complexity for
learning correlated multidimensional distributions is exponential in the dimen-
sion n. In this respect, learning and operating with information about separate
marginals is a much simpler task that does not suffer from the curse of dimension-
ality. However, the correlation-robust framework does not allow to incorporate any
extra information about the distribution beyond the marginals. For example in the
monopoly problem, there is no obstacle for the seller to acquire additional informa-
tion, say, about dependencies between pairs of items by doing more extensive mar-
ket research. On the other hand, the expected performance guarantees in the cor-
relation robust framework are rather pessimistic compared to the mutually inde-
pendent case and the worst-case joint distribution of the input often admits strong
dependencies between its parts. The latter is not something we usually expect in
practice, where it is more likely to see rather weak dependencies and significant
variability between any given pair of input’s components.

Our goal in this work is to model and study such situations with poten-
tial (weak) dependencies between input components. A straightforward approach
would be to extend the correlation robust framework as follows: (i) specify the set
of marginal distributions for any pair of input components {Fi,j}i,j∈[n] (e.g., the
joint distribution of values for each pair of items (vi, vj) ∼ Fi,j) and (ii) evalu-
ate the expectation in the worst-case over all feasible joint distributions that agree
with {Fi,j}i,j∈[n]. Unfortunately, not all such pair-wise distributions (even consis-
tent with singleton marginals {Fi}n

i=1) would admit a feasible joint distribution1.
Even when there exists a feasible joint distribution the set of pair-wise marginal
distributions can sometimes uniquely identify the joint distribution. Moreover, the
extra information does not necessarily help when we compare to the worst case dis-
tribution π∗ for {Fi}n

i=1. Indeed, one can take the worst-case joint distribution π∗

and write down the restriction of π∗ to {π∗
i,j}i,j∈[n]. Then, the performance for this

set of pair-wise marginals would not be better than that for π∗.
To avoid these complications we consider an important special case where

pair-wise marginal distributions {Fi,j}i,j∈[n] are all independent, i.e., Fi,j =
Fi ×Fj for all i, j ∈ [n]. In other words, we assume that joint distribution is pair-
wise independent. At first glance, pair-wise independence might appear rather
similar to the standard mutually independence assumption. However, there are
some important differences which we discuss below. We will also highlight the
importance of this robust optimization approach assuming a pair-wise indepen-
dent joint distribution.

1. (Statistics vs. probability model). The idealistic model with mutually inde-
pendent distributions is a probability model that is not easy to verify in the
proper statistical sense. Indeed, the joint distribution has exponential depen-
dency on the number of components, so it would take a super-polynomial
number of samples to confirm that the input distribution is close in total

1 For example, if value of item B is always equal to the values of items A and C, then
items A and C cannot be independent.
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variation distance to the specific product distribution. On the other hand,
the pair-wise independence condition is a statistical condition that can be
checked in practice with only polynomially many samples.

2. (Robustness to weak dependencies of data). In practice, a multi-dimensional
data distribution usually exhibits some form of mutual dependency that might
be noticeable at the level of pair-wise marginal distributions. However, these
dependencies are often weak and it is still reasonable to approximate each
marginal pair distribution Fi,j as the product distribution Fi × Fj . In other
words, we might want to allow small approximation errors in our model (using
a pair-wise independent distribution) to the real joint distribution. The mutu-
ally independent model is a specific distribution, and as such can be too far
from the most likely distribution matching the data. On the other hand, a
robust guarantee for any pair-wise independent distribution is still meaning-
ful even if the pair-wise marginals of the true input distribution are slightly
perturbed compared to Fi × Fj .

3. (Large class of distributions). To understand the size of the class of pair-wise
independent distributions, let us consider the case of finite discrete supports,
i.e., each marginal distribution Fi has finite support of size |Fi|. In this case
the dimension of the simplex of feasible joint distributions is |F1|·. . .·|Fn| and
the mutually independent distribution is a single point. On the other hand,
there are not more than

∑
i<j |Fi| · |Fj | linear constraints in the description

of a pair-wise independent distribution. The product distribution is pair-wise
independent and has positive probability (i.e., the inequality Pr [v] ≥ 0 is not
tight) for any point v in the support. Hence, the dimension of the pair-wise
independent distribution is at least

∏n
i=1 |Fi| −∑i<j |Fi| · |Fj |.

1.1 Our Results and Techniques

In this paper we study the three settings we discussed in the beginning of this
section. We show that any sequential posted pricing mechanism with a given set
of prices {pi}n

i=1 has an expected revenue that is at most 1.299 times larger in
the case of mutually independent distributions of buyer values compared to the
case of pair-wise independent distributions with the same marginals. Our result
only requires that prices {pi}n

i=1 are offered in Pareto-optimal order, i.e., from
higher to lower prices. The main tool we exploit to prove this result is a lemma
that is conceptually similar to Lovász Local Lemma (LLL; see [13]). Recall that
LLL bounds the probability that none among a series of events happens in terms
of the marginal probabilities of these events, provided that they have a certain
structure of dependencies. Our LLL-type statement bounds the probability that
none among a series of pair-wise independent events happen in terms of their
marginal probabilities. We believe that this lemma will find application beyond
the scope of the current paper. We give an example that shows that our lemma is
essentially tight; this implies that our bound on the revenue of sequential posted
pricing is tight as well.

We also present variations of the prophet inequality when prizes have pair-
wise independent values. A non-standard uniform threshold strategy yields the
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following guarantee. The worst expected reward of the gambler among all pair-
wise independent prize value distributions with given marginals is at least 1/3 of
the best expected prophet’s reward over all pair-wise independent distributions
with the same marginals. Again, we exploit an alternative expression of our local
lemma. Interestingly, we show that uniform threshold strategies cannot yield a
guarantee better than 40%, in contrast to the 50% guarantee of the classical
prophet inequality [15] (see also [10,14]) for mutually independent distributions.
A non-uniform threshold strategy (exploiting ideas from [6]) is shown to break
this barrier and achieve a 41.4% guarantee, at least for continuous pair-wise
independent distributions. It is slightly more complicated though and requires
additional information on the joint distribution besides the marginals.

Notice that the prophet inequality bounds are not universal like the ones
for sequential posted pricing. Specifically, we show that there exists a uni-
form threshold strategy that achieves constant approximation to the prophet’s
reward for a mutually independent prize value distribution but achieves very
low expected reward for a pair-wise independent distribution with the same
marginals. Our results indicate that sequential posted pricing and optimal stop-
ping are two economic settings where positive results are possible by relaxing
independence to pair-wise independence. We demonstrate that such results are
not possible for second price auctions. Broadening the class of economic problems
that are “friendly” to the pair-wise independence assumption is an important
direction for future research.

Finally, we consider a stochastic model for generating random bipartite
graphs with n nodes in each side of the bipartition, so that each edge exists
with some (non-necessarily uniform) probability. We assume that the expected
degree of any node is Δ. When edges exist in the graph mutually independently,
folklore results (e.g., see [3]) suggest that a perfect matching exists almost cer-
tainly, provided that Δ = Ω(ln n). Furthermore, we can show that the expected
size of the maximum matching is n − n · O(exp(−Δ)). In contrast, in the case
of pair-wise independence (on the existence of edges), the lower bound we can
show is n − n/

√
Δ, which leaves open the possibility of non-existence of per-

fect matchings for all interesting range of values for parameter Δ. Our proof is
based on a second-moment argument and exploits the fact that the maximum
matching has the same size with the minimum vertex cover in a bipartite graph.
We also present a non-trivial pair-wise independent distribution over bipartite
graphs that shows that our bound is essentially tight. These results indicate that
a revision of classical results on random graphs under the pair-wise independence
lens might reveal a very interesting new picture.

1.2 Roapmap

The rest of the paper is structured as follows. We present our local-lemma-type
statement in Sect. 2. Sequential posted pricing is studied in Sect. 3. Our results
for prophet inequalities are presented in Sect. 4. Section 5 is devoted to proving
our bounds for random bipartite matchings.
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2 A Local-Lemma-Type Probability Statement

We begin by proving an LLL-style probability statement for pair-wise indepen-
dent distributions. The lemma will be particularly useful in Sects. 3 and 4 but
we believe that it will find applications in other settings as well.

Let {Ei}n
i=1 be a set of random events with Pr [Ei] = qi. We are interested in

the probability that at least one of the random events happens. If these events
are mutually independent, this probability is exactly

Pr

[
n∨

i=1

Ei

]

= 1 −
n∏

i=1

(1 − qi).

We want to lower bound this probability when the events are only known to
be pair-wise independent. In Lovász local lemma (LLL), these random events
are either mutually independent or worst-case correlated, and LLL gives a low
bound on the probability that none of the events happens. In a sense, the two
lemmas both relax the independence assumption to a “local” assumption but
in different directions. LLL models situations where the dependencies are only
happening locally: an event is mutually independent with all other events except
its neighbors. In our lemma, we model the setting where independence is only
guaranteed locally: any pair of events are independent with each other but not
necessarily globally. We prove that, in any pair-wise independent distribution,
the probability is at least a constant fraction of the probability in the mutually
independent setting.

Lemma 1. Let {Ei}n
i=1 be a set of random events. Let Find and Fπ be a mutu-

ally independent and a pair-wise independent distribution over these events,
respectively, with Pr

Find

[Ei] = Pr
Fπ

[Ei] = qi. Then,

Pr
Fπ

[
n∨

i=1

Ei

]

≥
∑n

i=1 qi

1 +
∑n

i=1 qi

and

Pr
Fπ

[
n∨

i=1

Ei

]

≥ 1
1.299

Pr
Find

[
n∨

i=1

Ei

]

=
1

1.299

(

1 −
n∏

i=1

(1 − qi)

)

.

Proof. We prove only the first inequality here; the proof of the second one is
omitted. We denote by Xi the indicator random variable for event Ei and define
the random variable X =

∑n
i=1 Xi. Then

∨n
i=1 Ei (the event we are interested

in) is the random event {X > 0}. By definition, we have E [Xi] = qi and thus
E [X] =

∑n
i=1 qi.

Since the random variables {Xi}n
i=1 are pair-wise independent, we have

Var [X] =
n∑

i=1

Var [Xi] + 2
∑

i<j

Cov(Xi,Xj) =
n∑

i=1

Var [Xi] =
n∑

i=1

qi(1 − qi).
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Let fk = Pr
X∼Fπ

[X = k] for all i ∈ [n]. Using this notation and applying Cauchy-

Schwartz’s inequality, we have

Pr
X∼Fπ

[X > 0] =
n∑

k=1

fk ≥ (
∑n

k=1 k · fk)2
∑n

k=1 k2 · fk
=

E [X]2

E [X2]

=
E [X]2

Var [X] + E [X]2
=

(
∑n

i=1 qi)2∑n
i=1 qi(1 − qi) + (

∑n
i=1 qi)2

.

This immediately gives us Pr
Fπ

[
∨n

i=1 Ei] = Pr
X∼Fπ

[X > 0] ≥ (
∑n

i=1 qi)
2

∑n
i=1 qi+(

∑n
i=1 qi)2

=
∑n

i=1 qi

1+
∑n

i=1 qi
. ��

The upper bound of 1.299 in the statement of Lemma 1 is almost tight. Here,
we give an example where the gap between Pr

Find
[
∨n

i=1 Ei] and Pr
Fπ

[
∨n

i=1 Ei] is at

least 1.296. In the example, qi = q = 2/(n−1) for all i ∈ [n]. For the distribution
Find, we have Pr

Find
[
∨n

i=1 Ei] = 1 − (1 − q)n, which approaches 1 − e−2 as n goes

to infinity.
Now consider the following probability distribution. With probability 2n

3(n−1)

a set of exactly three events among {Ei}n
i=1 happen. These three events are

chosen uniformly at random among the
(
n
3

)
possible choices. With the remaining

probability of 1 − 2n
3(n−1) no event happens. In this distribution, the probability

that at least one event happens approaches 2
3 as n goes to infinity. The ratio

between the two probabilities approaches (1 − e−2)/( 23 ) = 1.29699.
It remains to show that this distribution is pair-wise independent. Indeed,

for any i �= j, we have:

Pr [Ei ∧ Ej ] =
2n

3(n − 1)
·
(
n−2
1

)

(
n
3

) =
4

(n − 1)2
= q2,

Pr
[
Ei ∧ Ej

]
= Pr

[
Ei ∧ Ej

]
=

2n

3(n − 1)
·
(
n−2
2

)

(
n
3

) =
2(n − 3)
(n − 1)2

= q(1 − q), and

Pr
[
Ei ∧ Ej

]
= 1 − q2 − 2q(1 − q) = (1 − q)2,

as desired.

3 Sequential Posted Pricing

In this section, we consider the setting with a seller, who aims to sell a single
item to n potential buyers. Buyer i ∈ [n] has value vi distributed according
to distribution Fi. The seller uses a sequential posted pricing mechanism. He
considers the buyers one by one according to their index; when considering buyer
i, the seller offers her the item at price pi. We consider Pareto-efficient pricing
schemes that satisfy p1 ≥ p2 ≥ ... ≥ pn. In this way, the seller does not risk to
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loose revenue to low price buyers, who will have their chance only after the item is
offered to other buyers at a higher price. Our aim is to analyze sequential posted
pricing mechanisms assuming that the distributions Fi are pair-wise independent
and compare their revenue to the revenue they would have when applied to
mutually independent valuations with the same marginals.

Let us consider the simple case where a uniform price p is offered to all buyers.
In this case, we can directly use Lemma 1 to conclude that the expected revenue
over any pair-wise independent distribution is at least 1

1.299 of the revenue of
a corresponding mutually independent distribution. Indeed, denote by Ei =
{vi ≥ p} the event that buyer i accepts the price. As the price is the same for
all buyers, the probability guarantee immediately translates into the revenue
guarantee. Hence, the revenue of the mechanism when the events Ei are pair-
wise independent is at least 1

1.299 times the revenue of the mechanism when these
events are mutually independent but have the same probabilities.

For the general case where prices can be different, we also need to pay atten-
tion to who gets the item. To do so, we apply Lemma 1 n times, each time
considering the first k buyers for k = 1, 2, · · · , n. Let λ = 1.299 be the approx-
imation guarantee from Lemma 1. Let Xi be the random variable indicating
whether the value of buyer i is at least pi, and let qi be the probability that
Xi = 1. Using the second inequality from Lemma 1, we have

λ · Pr

[
k∑

i=1

Xi > 0

]

≥ 1 −
k∏

i=1

(1 − qi).

We multiply this inequality by the price difference pk − pk+1 to get

λ(pk − pk+1)Pr

[
k∑

i=1

Xi > 0

]

≥ (pk − pk+1)

(

1 −
k∏

i=1

(1 − qi)

)

,

where pn+1 = 0. After summing these inequalities for k ∈ {1, . . . , n}, we get

λ ·
n∑

k=1

pk · Pr [Xk = 1, ∀i < k, Xi = 0] ≥
n∑

k=1

pkqk

k−1∏

i=1

(1 − qi) (1)

Observe that the LHS of equation (1) is equal to λ times the revenue generated
by the sequential posted pricing mechanism, while the RHS of (1) is equal to
the revenue the mechanism would have if the valuations of buyers were mutually
independent. We summarize this observation in the following statement.

Theorem 1. A posted pricing mechanism under a pairwise independent distri-
bution of buyer valuations achieves at least 1/1.299 fraction of the revenue under
a mutually independent distribution with the same marginals.

Our lower bound from Sect. 2 directly translates to a posted pricing instance
with uniform prices. Thus, a sequential posted pricing mechanism for mutually
independent distributions can generate revenue at least 1.296 time more than
for pair-wise independent distributions.
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We note that such robust properties do not necessary hold in other mecha-
nism design settings. In particular, in a second price auction, the revenue gap in
the cases of pair-wise independent and mutually independent buyer valuations
can be huge. The reason is that in the mutually independent case, the second
largest bid is high with large probability, while in the pairwise independent case,
this probability can be very small.

First, consider the following setting. There are n i.i.d. buyers. Each buyer has
value 1 with probability 1

n−1 and value 0 otherwise. The revenue of the second
price auction is then the probability that at least two buyers have value 1, i.e.,

1 −
(
1 − 1

n−1

)n

− n
n−1

(
1 − 1

n−1

)n−1

= 1 − 2
(
1 − 1

n−1

)n−1

≥ 1 − 2/e.
We now construct a pairwise independent distribution in which the value

of each buyer is 1 with probability 1
n−1 and 0 otherwise, and under which the

generated revenue is very small. In this distribution, there are two kinds of val-
uation profiles. The first profile appears with probability 1

(n−1)2 and all buyers
have value 1. In the second profile, one buyer, selected uniformly at random,
has value 1 and the rest of the buyers have value 0. The second price auction
has expected revenue of 1

(n−1)2 as it gets a revenue of 1 only on the first pro-
file. One can easily verify that the probability distribution is indeed pair-wise
independent.

4 Prophet Inequality

Sequential posted pricing is closely related to the prophet inequality from optimal
stopping theory [15]. In this scenario a gambler plays sequentially a series of n
games. Each game i ∈ [n] has prize vi distributed according to distribution Fi.
The order of the games and the distribution of the prize values are known in
advance to the gambler. Once the prize vi for game i is realized, the gambler
must decide whether to keep this prize and abandon the remaining games, or
to discard this prize and continue playing. A prophet in this setting knows the
realization of all prizes in advance and therefore can stop at the right moment
and take the highest prize.

4.1 A Uniform Threshold Policy

It is well-known that the gambler can achieve a 2-approximation of the optimal
prize by following a simple uniform threshold strategy, which is given by a single
threshold v̂ and requires the gambler to accept the first prize i with vi ≥ v̂.
The standard assumption in the prophet inequality literature is that the prize
distributions {Fi}n

i=1 for different games are mutually independent.2 Here, we
only assume that the distributions {Fi}n

i=1 are pair-wise independent.
2 We note that prophet inequalities for classes of prize distributions with limited cor-

relation have been studied before. The survey of Hill and Kertz [11] discusses early
related results in stopping theory while the papers [4,8,12] are representative of
recent related work by the EconCS community. However, such results are rarely
based on the use of simple threshold strategies as the one we use here.
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Theorem 2. For any set of marginal prize distributions {Fi}n
i=1, there exists a

threshold v̂ such that the expected reward of the uniform threshold strategy for
any pair-wise independent joint distribution is at least 1/3 of the expected value
of the maximum prize3.

Proof. Let REF denote the expected reward of the prophet, i.e., the expected
maximum prize E [maxi vi], and APX denote the expected reward of the gambler
with a uniform threshold strategy. We denote by v̂ the uniform threshold (to be
defined later). Let x =

∑n
i=1 Pr [vi ≥ v̂].

We use the same upper bound for REF as in the standard exposition of the
prophet inequality (e.g., see [10,14]).

REF = E
v∼F

[
max

i
vi

]
≤ v̂ + E

v∼F

[
max

i
(vi − v̂)+

]
≤ v̂ +

∑

i

E
vi∼Fi

[
(vi − v̂)+

]
.

We note that this upper bound holds for any joint distribution with the given
marginal distributions (not necessary pair-wise independent). In this bound the
RHS depends only on the marginal distributions.

We will split the gambler’s reward APX into two parts: (i) the first part,
APX1, is the guaranteed contribution of v̂ if some reward is taken and (ii) the
second part, APX2, is the extra contribution of vi − v̂ when i is chosen. To bound
APX1, we use Lemma 1:

APX1 = Prπ

[
max

i
vi ≥ v̂

]
· v̂ ≥

∑n
i=1 Pr [vi ≥ v̂]

1 +
∑n

i=1 Pr [vi ≥ v̂]
· v̂ =

x

1 + x
· v̂, (2)

where x
def=
∑n

i=1 Pr [vi ≥ v̂]. In general, the notation Prπ [·] is used when pair-
wise independent prizes are considered.

To bound APX2, we define the event Ei,v
def= {v |vi = v; ∀j �= i, vj < v̂ } for

every v ≥ v̂, i.e., the reward in game i is vi = v while all the remaining prizes
are below the threshold. The crucial property of any joint pair-wise independent
distribution π is that Prπ [Ei,v] ≥ (1 − x)PrFi

[vi = v] which we show below.
Indeed, by definition

Prπ [Ei,v] = PrFi
[vi = v] · Prπ

⎡

⎣
⋂

j �=i

[vj < v̂]

∣
∣
∣
∣
∣
∣
vi = v

⎤

⎦ .

By the union bound, we have

Pr
π

⎡

⎣
⋂

j �=i

[vj < v̂]

∣
∣
∣
∣
∣
∣
vi = v

⎤

⎦ ≥ 1 −
∑

j �=i

Pr
π

[vj ≥ v̂|vi = v] .

3 We remark that, while the expectation for the threshold strategy is taken in the worst
case over any pair-wise independent distribution, the expectation for the prophet is
taken in the best case over any distribution with the given marginals.
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Due to pair-wise independence, Prπ [vj ≥ v̂|vi = v] = PrFj
[vj ≥ v̂]. By defini-

tion of x, we know that
∑

j �=i Pr [vj ≥ v̂] ≤ x. Hence,

Pr [Ei,v] ≥ Pr [vi = v] ·
⎛

⎝1 −
∑

j �=i

Pr [vj ≥ v̂]

⎞

⎠ ≥ (1 − x)Pr [vi = v] .

When Ei,vi
happens, we get the additional contribution of vi − v̂. As all

random events {Ei,vi
}i∈[n],vi≥v̂ are disjoint, we have

APX2 ≥ (1 − x)
n∑

i=1

∫

vi≥v̂

(vi − v̂) dFi(vi) = (1 − x)
n∑

i=1

E
[
(vi − v̂)+

]
. (3)

Since
∑n

i=1 E [(vi − v̂)+] is a continuous function of v̂ decreasing to zero when
v̂ → ∞, we can choose4 the threshold v̂ so that

v̂ = 2 ·
n∑

i=1

E
[
(vi − v̂)+

]
.

Then, by the definition of REF, we have

v̂ ≥ 2
3

· REF, and
n∑

i=1

E
[
(vi − v̂)+

] ≥ 1
3

· REF.

If x ≥ 1, then the lower bound (3) is trivial and we only use (2) to get

APX ≥ APX1 ≥ 1
2

· v̂ ≥ 1
3

· REF.

Otherwise, if 0 ≤ x ≤ 1, we combine (2) and (3) to get

APX = APX1 + APX2 ≥
(

2
3

x

1 + x
+

1
3
(1 − x)

)

REF

≥
(

2
3

x

2
+

1
3
(1 − x)

)

REF =
1
3

· REF.

This completes the proof. ��
4 If the distributions were continuous, we could choose the threshold v̂ so that x =√

5−1
2

. For this value of x we have x
1+x

= 1 − x = 3−√
5

2
= 0.382. Then, we could get

a lower bound on APX by combining (2) and (3) as follows:

APX = APX1 + APX2 ≥ 0.382

(

v̂ +
n

∑

i=1

E
[

(vi − v̂)+
]

)

≥ 0.382 · REF.

In our proof, we assume that distributions can be discontinuous and, thus, we may
not be able to set v̂ to get a particular value of x.
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We now present limitations of uniform threshold strategies for pair-wise inde-
pendent distributions. These limitations come in contrast with the case of mutu-
ally independent distributions, where some of such policies can give at least 50%
of the prophet’s value as reward.

Theorem 3. Uniform threshold strategies cannot guarantee more than 40% of
prophet’s value for some pair-wise independent distributions of prize values.

Proof. In the proof, we use the following distribution. There are n + 2 items.
Item 1 has a deterministic value of 1. Item n + 2 has value n with probability
1
n and value 0 otherwise. The values of items 2, ..., n + 1 have identical marginal
distributions: value 2 with probability 1

n and 0 with probability n−1
n . The joint

distribution π is constructed as follows. When item n + 2 has value n:

– With probability 1
n − 1

n2 , all items 2, ..., n + 1 have value 0.
– With probability 1 − 1

n , exactly one item among 2, ..., n + 1 has value 2 and
the remaining items have value 0. The high-value item is selected uniformly
at random among the items 2, ..., n + 1.

– With probability 1
n2 , items 2, ..., n + 1 have all values 2.

When item n + 2 has value 0,

– With probability n−1
2n , items 2, ..., n + 1 have all value 0.

– With probability 1
n , exactly one item (selected uniformly at random) among

2, ..., n + 1 has value 2 and the remaining items have value 0.
– With probability n−1

2n , exactly two items among 2, ..., n + 1 have value 2 and
the remaining items have value 0. The two items are chosen uniformly at
random among the

(
n
2

)
possible pairs.

It is straightforward to verify that this is a pair-wise independent distribution.
The expected value of the prophet is

n · 1
n

+
(

1 − 1
n

)

·
(

1 · n − 1
2n

+ 2 · n + 1
2n

)

=
5
2

− 1
n

− 1
2n2

.

Using a threshold that is smaller than 1, the reward of the gambler is (deter-
ministically) 1. Using a threshold higher than 2, her expected reward is n · 1

n = 1,
too. Now, assume that a threshold in (1, 2] is used. Then, the expected reward
of the gambler is

1
n

(

n

(
1
n

− 1
n2

)

+ 2
(

1 − 1
n

+
1
n2

))

+
(

1 − 1
n

)(

2 · n + 1
2n

)

= 1+
3
n

− 4
n2

+
2
n3

.

Hence, as n approaches infinity, the reward of the prophet approaches 5/2, while
the reward of the gambler approaches 1 when using any uniform threshold strat-
egy. The theorem follows. ��

We have proved that there exists a threshold such that prophet inequality
still holds with a slightly worse constant. However, unlike the case of sequential
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posted pricing where a constant gap holds for any choice of prices, this is not true
for all choices of thresholds in the prophet inequality setting. We give an example
where a certain threshold strategy achieves constant fraction of the maximum
welfare in the mutually independent case, but it gets almost zero fraction in the
pairwise independent case.

Our example has four items. The values of the first three items are 0 and 1,
equally likely; the fourth item has large deterministic value V > 1. Assuming
mutually independent values, the expected gain of the gambler when she uses
a uniform threshold strategy with the threshold 1 is 7+V

8 . Now, consider the
following pair-wise independent distribution, in which the gambler always gets a
value of 1 when she uses 1 as a uniform threshold. The first three items have val-
ues (1, 1, 1), (0, 1, 0), (1, 0, 0), (0, 0, 1) with equal probabilities. Our claim follows
for large values of V .

4.2 Non-uniform Threshold Strategies

We now demonstrate that non-uniform threshold strategies can be more powerful
than uniform ones. We adapt a technique from [6]. The gambler uses different
thresholds τ1, τ2, ..., τn and n coins where the probability of the i-th coin toss to
be heads is qi. At step i, if the award has not been given before and the prize vi

exceeds the thresholds τi, the gambler tosses the i-th coin and gets the prize if it
comes heads. In our analysis, we assume that the prize values follow continuous
distributions.

Theorem 4. For any set of continuous marginal prize distributions {Fi}n
i=1,

there exist thresholds (τi)i∈[n] and probabilities (qi)i∈[n] so that the expected
reward of the gambler’s strategy is at least

√
2 − 1 ≈ 41.4% of the expected

value of the maximum prize.

Proof. For i = 1, 2, ..., n, let pi = Pr [vi ≥ vj ,∀j ∈ [n]] and define τi to be such
that Pr [vi ≥ τi] = pi. Then, E [vi · 1{vi ≥ vj ,∀j ∈ [n]}] ≤ E [vi · 1{vi ≥ τi}] and

E
[
max

i
vi

]
≤
∑

i

E [vi · 1 {vi ≥ τi}] . (4)

For i = 1, 2, ..., n, let Ri be the event that no award has been given at steps
1, 2, ..., i − 1, Pi the event that vi ≥ τi (i.e., Pr [Pi] = pi), and Qi the event that
the random coin toss at step i comes heads (i.e., Pr [Qi] = qi). For i ≥ 2, we
have

Pr [Ri|vi = v] = Pr
[
Ri−1 ∧ Pi−1 ∧ Qi−1 | vi = v

]

≥ Pr [Ri−1 | vi = v] + Pr
[
Pi−1 ∧ Qi−1 | vi = v

]− 1
≥ Pr [Ri−1 | vi = v] − pi−1qi−1. (5)

The first inequality uses the property Pr [A ∧ B] = Pr [A] + Pr [B] −
Pr [A ∨ B] ≥ Pr [A] +Pr [B]− 1. The second inequality follows since the events
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Pi−1 and Qi−1 and {vi = v} are independent. Summing the inequalities (5) for
i = 2, ..., n together with the obvious fact Pr [R1|vi = v] = 1, we get

Pr [Ri|vi = v] ≥ 1 −
∑

j<i

pjqj . (6)

The expected award APX of the gambler is

APX =
n∑

i=1

∫ ∞

τi

vPr [Ri|vi = v] qi dFi(vi)

≥
n∑

i=1

qi(1 −
∑

j<i

pjqj)
∫ ∞

τi

v dFi(vi)

≥ min
i

⎧
⎨

⎩
qi

⎛

⎝1 −
∑

j<i

pjqj

⎞

⎠

⎫
⎬

⎭
·
∑

i

E [vi 1 {vi ≥ τi}]

≥ min
i

⎧
⎨

⎩
qi

⎛

⎝1 −
∑

j<i

pjqj

⎞

⎠

⎫
⎬

⎭
· E
[
max

i
vi

]
. (7)

The first inequality follows by (6). The second one is obvious and the third one
follows by (4).

We will now define the qi’s appropriately so that mini

{
qi

(
1 −

∑
j<i pjqj

)}
≥ √

2 − 1. The theorem will then follow by (7). Let α =
√
2−1
2

and β = (1 +
√

2)2 and define the function g : [0, 1] → R≥0 with g(x) =
√

α
β−x .

It can be verified by tedious calculations that

g(x)
(

1 −
∫ x

0

g(t)dt

)

= 2α =
√

2 − 1

for every x ∈ [0, 1]. Now, let qi = g
(∑

j<i pj

)
and observe that

∑
j<i pjqj ≤

∫∑
j<i pj

0 g(t)dt (as g(t) is a decreasing function and the integral in the right hand
side is larger than its Riemann sum for the partition into the intervals of lengths
(pj)j<i). Hence, for every i ∈ [n], we have

qi

⎛

⎝1 −
∑

j<i

pjqj

⎞

⎠ ≥ g

⎛

⎝
∑

j<i

pj

⎞

⎠

(

1 −
∫ ∑

j<i pj

0

g(t)dt

)

=
√

2 − 1

as desired. ��

5 Matchings in Random Bipartite Graphs

In this section, we consider a stochastic graph model for bipartite graphs,
extending the classical Erdős-Renyi model. In particular, the stochastic model
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G(L,R, {pe}e∈L×R) is a distribution over bipartite graphs G = (L,R,E) with
E ⊆ R × L, such that the marginal probability of each edge e ∈ R × L to
appear in G is equal to PrG∼G [e ∈ E(G)] = pe. We are interested in the case of
stochastically Δ-regular n-vertex models, which generate bipartite graphs with
|L| = |R| = n and average degree Δ, i.e.,

E
G∼G

[deg(u)] =
∑

e:{u}×R

pe = Δ and E
G∼G

[deg(v)] =
∑

e:L×{v}
pe = Δ

for every vertex u ∈ L and v ∈ R, respectively.
Note that there might be many Δ-regular n-vertex models with fixed

marginal probabilities. The most well studied case is the adaptation of the
Erdős-Renyi model Gind, where the events e ∈ E(G) are mutually indepen-
dent for e ∈ L × R with pe = p for all e ∈ L × R. Here, we focus on models Gπ

where these events are pair-wise independent. Our aim is to prove bounds on
the expected size μ(G) of the maximum matching of graph G ∼ Gπ. It is well-
known that for the model Gind, the expected size of the maximum matching is
n−O(exp(−Δ)) and, hence, perfect matchings exist with high probability when
Δ becomes (super)logarithmic. Such results are not possible in the more general
pair-wise independent case; still, the expected size of the maximum matching is
quite large.

Theorem 5. Let Gπ be a stochastic Δ-regular n-vertex model with marginals
{pe}e∈L×R such that the events {e ∈ E(G)}e∈L×R for G ∼ Gπ are pair-wise
independent. Then, the expected size of the maximum matching of a randomly
generated graph G ∼ Gπ is at least EG∼Gπ

[μ(G)] ≥ n − n/
√

Δ.

Proof. The main idea of the proof is to look at the aggregate distribution of the
vertex degrees of the whole graph G. On the one hand, the pairwise independence
condition allows us to calculate precisely the expectation and variance of the
degree of any particular vertex. On the other hand, the non-existence of a large
matching μ(G) in a realized graph G ∼ Gπ implies a large deviation of degrees
of many vertices from their mean Δ. This allows us to get the desired bound on
the following random variable f(G), where G ∼ Gπ.

f(G) def=
∑

v∈L∪R

(dv − Δ) 2, where dv is the degree of each vertex v in G.

In any graph G ∼ Gπ, let Ev
def= {e ∈ E(G)

∣
∣e is incident to v} for each v ∈ L∪R.

The variance of a vertex degree dv is equal to

E
G∼Gπ

[
(dv − Δ)2

]
= Var

G∼Gπ

[dv] = Var
G∼Gπ

[
∑

e∈Ev

1 {e ∈ E(G)}
]

=
∑

e∈Ev

Var
G∼Gπ

[1 {e ∈ E(G)}] =
∑

e∈Ev

pe · (1 − pe)

=
∑

e∈Ev

pe −
∑

e∈Ev

p2e ≤ Δ,
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where the first equality is due to the definition of variance and the fact that
E [dv] = Δ, the third equality is due to the property of variance and the fact
that random variables 1{e ∈ E(G)} are pairwise independent for all e ∈ Ev,
and the fourth equality follows since e ∈ E(G) is a Bernoulli random variable.
Therefore,

E
G∼Gπ

[f(G)] = E
G∼Gπ

[
∑

v∈L∪R

(dv − Δ) 2

]

=
∑

v∈L∪R

E
G∼Gπ

[
(dv − Δ) 2

] ≤ 2 · n · Δ. (8)

We also observe that if a realized graph G ∼ Gπ has a small maximum matching
μ(G) < n, then many vertex degrees in G must significantly deviate from Δ. To
this end, we first establish the following lemma (its proof is omitted).

Lemma 2. Let dv be the degree in G of each vertex v ∈ L ∪ R. Then, ∀δ ≥ 0

∑

v∈L∪R

(dv − δ)2 ≥ 2δ2(n − μ(G))2

n
.

We can now combine Lemma 2 for δ = Δ with (8) to get

2nΔ ≥ E
G∼Gπ

[f(G)] = E
G∼Gπ

[
∑

v∈L∪R

(dv − Δ) 2

]

≥ E
G∼Gπ

[
2Δ2(n − μ(G))2

n

]

≥ 2Δ2

n
E

G∼Gπ

[n − μ(G)]2

Thus, E
G∼Gπ

[n − μ(G)] ≤ n√
Δ

and the theorem follows. ��

5.1 A Tight Upper Bound

We now show that our bound in Theorem 5 is tight for a wide range of values
of parameter Δ (compared to n). We do so using the following stochastic model
Gπ. In our construction we assume that n−Δ = Ω(n) and Δ ≥ 2 is an integer5.

1. With probability 1 − α (where α is a parameter which we will specify later),
we select uniformly at random a Δ-regular bipartite graph with |L| = |R| =
n vertices. Denote by Dreg the uniform probability distribution over these
graphs.

2. With the remaining probability α, we select uniformly at random a subset
A ⊂ L of size |A| = n

2

(
1 − 1

c
√

Δ

)
, where c is the closest to 1 number such

that |A| is an integer. Note that c would get arbitrary close to 1 as n goes
5 Our construction can be extended to cover the case of non-integer Δ with some

minor adjustments.
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to infinity. Similarly, we select uniformly at random a subset B ⊂ R of size
|B| = n

2

(
1 + 1

c
√

Δ

)
= n−|A|. Next, we describe two distributions D(x1) and

D(x2), each parametrized by a selection probability. In each distribution, we
draw edges between the sets A and B and between the sets L\A and R\B i.i.d.
with probability x1 in D(x1) and with probability x2 in D(x2). In particular:
(a) with probability 0.5, we generate a bipartite graph G ∼ D(x1);
(b) with probability 0.5, we generate a bipartite graph G ∼ D(x2).
We choose x1 and x2 so that the expected degree of the graph G drawn
from the mixture of D(x1) and D(x2) is exactly Δ. In particular, we set
x1

def= x(1 − δ) and x2
def= x(1 + δ), where x

def= Δ·n
2·|A|·|B| and δ2

def= 1
(n−1)c2Δ−n .

We choose probability

α
def=

(n − Δ)
(
(n − 1)c2Δ − n

)

n(n − 1)c2Δ − n2 + Δn2 − 2(n − 1)c2Δ2
. (9)

Theorem 6. The model Gπ is pairwise independent over the set of edges, has
probability p = Δ

n for every edge to be realised, and generates bipartite graphs

with a maximum matching of expected size EG∼Gπ
[μ(G)] ≤ n

(
1 − Ω

(
1√
Δ

))

as long as n − Δ = Ω(n) and Δ ≥ 2.

The formal proof of Theorem 6 is omitted due to lack of space.
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Abstract. We consider the problem of fairly allocating a set of indivis-
ible goods to a set of strategic agents with additive valuation functions.
We assume no monetary transfers and, therefore, a mechanism in our set-
ting is an algorithm that takes as input the reported—rather than the
true—values of the agents. Our main goal is to explore whether there
exist mechanisms that have pure Nash equilibria for every instance and,
at the same time, provide fairness guarantees for the allocations that cor-
respond to these equilibria. We focus on two relaxations of envy-freeness,
namely envy-freeness up to one good (EF1), and envy-freeness up to any
good (EFX), and we positively answer the above question. In particular,
we study two algorithms that are known to produce such allocations in
the non-strategic setting: Round-Robin (EF1 allocations for any number
of agents) and a cut and choose algorithm of Plaut and Roughgarden [35]
(EFX allocations for two agents). For Round-Robin we show that all of
its pure Nash equilibria induce allocations that are EF1 with respect to
the underlying true values, while for the algorithm of Plaut and Rough-
garden we show that the corresponding allocations not only are EFX but
also satisfy maximin share fairness, something that is not true for this
algorithm in the non-strategic setting! Further, we show that a weaker
version of the latter result holds for any mechanism for two agents that
always has pure Nash equilibria which all induce EFX allocations.

1 Introduction

Fair division refers to the problem of distributing a set of resources among a set
of agents in such a way that everyone is “happy” with the overall allocation.
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Capturing this “happiness” can be elusive, as it may be determined by com-
plicated underlying social dynamics; however, two well-motivated (and mathe-
matically conducive) interpretations are those of envy-freeness [22,23,38] and
proportionality [37]. When an allocation is envy-free, each agent values the set
of resources that she receives at least as much as the set of any other agent,
while when an allocation is proportional, each agent receives at least 1/n of her
total value for all the goods, assuming there are n agents. Since the first math-
ematically formal treatment of fair division by Banach, Knaster and Steinhaus
[37], the multifaceted questions that arise for the different variants of the problem
have been studied in a diverse group of fields, including mathematics, economics,
and political science. As many of these questions are inherently algorithmic, fair
division questions, especially the ones related to the existence, computation,
and approximation of different fairness notions have been very actively studied
during the last two decades (see, e.g., [11,32,36] for surveys of recent results).

In the standard discrete fair division setting we study here, the resources are
indivisible goods and the agents have additive valuation functions over them.
Typically, there is the additional assumption that all the goods need to be allo-
cated. This discrete setting poses a significant conceptual challenge, as the classic
notions of fairness originally introduced for divisible goods, such as envy-freeness
and proportionality, are impossible to satisfy. The example that illustrates this
situation needs only two agents and just one positively valued good. Whoever
does not receive the good will not consider the result to be either envy-free
or proportional. However, this should not necessarily be considered an unfair
outcome, as it is done out of necessity, not malice: the only other (determin-
istic) option would be to deprive both agents of the good. To define what is
fair in this context, a number of weaker fairness notions have been proposed.
Among the most prevalent of those are envy-freeness up to one good (EF1),
envy-freeness up to any good (EFX), and maximin share fairness (MMS). The
notions of EF1 and EFX were introduced by Lipton et al. [31], Budish [15], and
Gouvrès et al. [27], Caragiannis et al. [17] respectively, and they can be seen as
additive relaxations of envy-freeness. Both of them are based on the following
rationale: an agent may envy another agent but only by the value of the most
(for EF1), or the least (for EFX) desirable good in the other agent’s bundle.
It is straightforward that EF1 is weaker than EFX, and indeed this is reflected
to the known results for the two notions. The concept of the maximin share of
an agent was introduced by Budish [15] as a relaxation to the proportionality
benchmark. The corresponding fairness notion, maximin share fairness, requires
that each agent receives the maximum value that this agent would obtain if she
was allowed to partition the goods into n bundles and then take the worst of
them (see Definitions 3 and 4).

From an algorithmic point of view, there are many results regarding the exis-
tence and the computation of these notions (see Related Work). Here, however,
we are interested in exploring the problem from a game theoretic perspective. We
assume that the agents are strategic, which means that it is possible for an agent
to intentionally misreport her values for (some of) the goods in order to end up



Allocating Indivisible Goods to Strategic Agents: PNE and Fairness 151

with a bundle of higher total value. We see this as a very natural direction, as it
captures what may happen in practice in real-life scenarios where fair division
solutions can be applied, e.g., in a divorce settlement. It should be noted here
that, in accordance to the existing literature on truthful allocation mechanisms
[1,3,16,21,28,33,34], we assume there are no monetary transfers. Therefore, a
mechanism in our setting is just an algorithm that takes as input the, possibly
misreported, values that the agents declare. The existence of truthful mecha-
nisms, i.e., mechanisms where no agent has an incentive to lie, was studied in
the same setting by Amanatidis et al. [1] who showed that, even for two agents,
truthfulness and fairness are incompatible by providing impossibility results for
several fairness notions. So, the next natural question to ask is:

Are there non-truthful mechanisms whose equilibria define fair allocations?

Our main quest is to investigate whether there exist mechanisms that have pure
Nash equilibria for every instance and each allocation corresponding to an equi-
librium provides fairness guarantees with respect to the true valuation functions
of the agents. The stability notion of a pure Nash equilibrium describes a state
where each agent plays a deterministic strategy (namely, reports her value for
each good) and no agent can gain more value by deviating to a different strategy.

Our Contribution. To the best of our knowledge, our work is the first to
consider the above question. Our results are mostly positive, as we show that
the class of mechanisms that are implementable in polynomial time, have pure
Nash equilibria for every instance, and provide some fairness guarantee at these
equilibria is non-empty. Specifically, in Sect. 3, we study a mechanism adaptation
of the Round-Robin algorithm which is known to produce EF1 allocations in the
non-strategic setting [17] and, under some mild assumptions which we show
that can be lifted, always has pure Nash equilibria [7]. Further, in Sect. 4, we
consider the stronger notion of EFX. We focus on the case of two agents and
study a mechanism adaptation of the algorithm of Plaut and Roughgarden [35],
Mod-Cut&Choose, which is known to always produce EFX allocations in the
non-strategic setting. Our main results can be summarized as follows:

– Round-Robin always has pure Nash equilibria (see the full version [2]) and
these induce allocations that are EF1 with respect to the underlying true
values (Theorem 3). That is, Round-Robin retains its fairness properties at
its equilibria, even when the input is given by strategic agents! To show this,
we rely on a novel recursive construction of “nicely structured” bid profiles.

– For two agents, Mod-Cut&Choose always has pure Nash equilibria and these
induce allocations that are EFX and MMS with respect to the underlying
true values (Theorem 5). It should be noted that in the non-strategic setting
the allocations returned by Mod-Cut&Choose are not necessarily MMS!

– We generalize a weaker version of the latter. All mechanisms that have pure
Nash equilibria for every instance with two agents and these equilibria induce
allocations that are always EFX provide stronger MMS guarantees in these
allocations than generic EFX allocations do (Theorems 6 and 7).
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Related Work. The non-strategic version of the problem of fairly allocating
goods to additive agents has been studied extensively. We provide a summary
of indicative results mostly for the notions that we consider. In particular, EF1
allocations always exist and can be computed in polynomial time [17,31,32]. For
the stronger notion of EFX, the picture is not that clear. It is known that such
allocations always exist for 2 or 3 agents [17,18,27], and in the former case they
can be efficiently computed using Mod-Cut&Choose [35]. The existence of com-
plete EFX allocations for 4 or more agents remains one of the most intriguing
open problems in fair division. Finally, MMS allocations always exist for only 2
agents, although computing them is NP-hard [39], but for 3 or more agents exis-
tence is not guaranteed [30]. However, there are algorithms that run in polyno-
mial time and produce constant factor approximation guarantees [5,9,24,26,30],
with 3

4 + 1
12n being the current state of the art [25].

The works of Caragiannis et al. [16] and Amanatidis et al. [1,3] are very
relevant to ours in the sense that they all studied the exact same strategic discrete
fair division setting. As we mentioned earlier, though, their focus was different as
they were only interested in truthful mechanisms. Amanatidis et al. [1] provided
strong impossibility results in this direction: for instances with two agents, no
truthful mechanism can consistently produce EF1 (and thus EFX) allocations
when there are more than 4 goods, while the best possible approximation with
respect to MMS declines linearly with the number of goods.

Aziz et al. [7] studied the existence of pure Nash equilibria of Round-Robin
and showed that when no agent values any two goods equally, there always exists
a pure Nash equilibrium. In addition, they provided a linear time algorithm
that computes the preference rankings (i.e., the orderings of the goods that
correspond to the reported values) that leads to this equilibrium, thus giving a
constructive solution. Aziz et al. [6] showed that computing best responses for
Round-Robin, and for sequential mechanisms more generally, is NP-hard, fixing
an error in the work of Bouveret and Lang [12] on the same topic.

We conclude by pointing out that in contrast to the case of indivisible goods,
the problem of fairly allocating a set divisible goods to a set of strategic agents
has been repeatedly studied. For some indicative papers in this line of work, we
refer the reader to [10,13,14,19,20].

2 Preliminaries

We consider the problem of allocating a set of indivisible goods to a set of
agents in a fair manner under the presence of incentives. For a ∈ N we use
[a] to denote the set {1, 2, . . . , a}. An instance to our problem is an ordered
triple (N,M,v), where N = [n] is a set of n agents, M = {g1, . . . , gm} is a set
of m goods, and v = (v1, . . . , vn) is a vector of the agents’ additive valuation
functions. In particular, each agent i has a non-negative value vi({g}) (or simply
vi(g)) for each good g ∈ M , and for every S, T ⊆ M with S ∩ T = ∅ we have
vi(S∪T ) = vi(S)+vi(T ). Equivalently, the value of an agent is simply the sum of
the values of the goods that she got. We assume there is no free disposal, which
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means that all the goods must be allocated. Thus, an allocation (A1, . . . , An),
where Ai is the bundle of agent i, is a partition of M . It is often useful to refer
to the order of preference an agent has over the goods. We say that a valuation
function vi induces a preference ranking �i if g �i g′ ⇔ vi(g) ≥ vi(g′) for all
g, g′ ∈ M . We use 
i if the corresponding preference ranking is strict, i.e., when
g �i g′ ∧ g′ �i g ⇒ g = g′, for all g, g′ ∈ M .

2.1 Fairness Notions

There is a significant number of different notions one can use to determine which
allocations are “fair”. The most prominent such notions are envy-freeness (EF)
[22,23,38] and proportionality (PROP) [37], and, in the discrete setting we study
here, their relaxations, namely envy-freeness up to one good (EF1) [15], envy-
freeness up to any good (EFX) [17], and maximin share fairness (MMS) [15].
Particularly for additive valuation functions, we have that EF ⇒ EFX ⇒ EF1
and EF ⇒ PROP ⇒ MMS, where X ⇒ Y means that any allocation that
satisfies fairness criterion X always satisfies fairness criterion Y as well.

Definition 1. An allocation (A1, . . . , An) is

– envy-free (EF), if for every i, j ∈ N , vi(Ai) ≥ vi(Aj).
– envy-free up to one good (EF1), if for every pair of agents i, j ∈ N , with

Aj = ∅, there exists a good g ∈ Aj, such that vi(Ai) ≥ vi(Aj \ {g}).
– envy-free up to any good (EFX), if for every pair i, j ∈ N , with Aj = ∅ and

every good g ∈ Aj with vi(g) > 0, it holds that vi(Ai) ≥ vi(Aj \ {g}).

While these notions rely on comparisons among the agents, proportionality
focuses on everyone receiving at least a 1/n fraction of the total value.

Definition 2. An allocation (A1, . . . , An) is proportional (PROP), if for every
i ∈ N , vi(Ai) ≥ vi(M)/n.

In the same direction, but adjusted for indivisible goods, a number of fairness
notions have been based on the notion of maximin shares [15]. Imagine that agent
i is asked to partition the goods into n bundles, under the condition that she
will receive the worst bundle among those. If the resources were divisible, then
she would clearly split everything evenly into n bundles of value vi(M)/n each,
thus capturing the benchmark required for proportionality. However, now that
the goods are indivisible, agent i would like to create a partition maximizing the
minimum value of a bundle. This value is her maximin share.

Definition 3. Given a subset S ⊆ M of goods, the n-maximin share of agent
i with respect to S is µi(n, S) = max

A∈Πn(S)
min

Aj∈A
vi(Aj), where Πn(S) is the set of

all partitions of S into n bundles.

From the definition and the preceding discussion, we have that n · µi(n, S) ≤
vi(S). When S = M , we call µi(n,M) the maximin share of agent i and denote
it by µi as long as it is clear what n and M are.



154 G. Amanatidis et al.

Definition 4. An allocation A = (A1, . . . , An) is called an α-maximin share
fair (α-MMS) allocation if vi(Ai) ≥ α · µi , for every i ∈ N . When α = 1 we
just say that A is an MMS allocation.

Besides MMS, there exist other fairness criteria based on maximin shares, like
pairwise maximin share fairness (PMMS) [17] and groupwise maximin share
fairness (GMMS) [8]. While we are not going into more details about them, we
note that PMMS ⇒ EFX [17] and that for n = 2, MMS, PMMS, and GMMS
coincide. In particular, we need the following result of Caragiannis et al. [17].

Theorem 1 (Follows from Theorem 4.6 of [17]). For n = 2, any MMS
allocation is also an EFX allocation.

One can also consider how the approximate versions of EF1, EFX and MMS
relate to each other (see [4]). Here we need the following result about the worst
case MMS guarantee of an EFX allocation for the case of two agents.

Theorem 2 (Follows from Proposition 3.3 of [4]). For n = 2, any EFX
allocation is also a 2

3 -MMS allocation. This is tight, i.e., for every δ > 0 there
exists an EFX allocation that is not a

(
2
3 + δ

)
-MMS allocation, for any m ≥ 4.

2.2 Mechanisms and Equilibria

We are interested in mechanisms that produce allocations with fairness guar-
antees. In our setting there are no payments, so an allocation mechanism M is
an algorithm that takes its input from the agents and allocates all the goods.
We use this distinction in terminology to highlight that this reported input may
differ from the actual valuation functions. In particular, we assume that each
agent i reports a bid vector bi = (bi1, . . . , bim), where bij ≥ 0 is the value agent
i claims to have for good gj ∈ M . A mechanism M takes as input a bid profile
b = (b1, . . . , bn) of bid vectors and outputs an allocation M(b). In our setting
we assume that the agents are strategic, i.e., an agent may misreport her true
values if this results to a better allocation from her point of view. Hence, in
general, bi = (vi(g1), . . . , vi(gm)). While bi is defined as a vector, for a generic
good h ∈ M it is often convenient to use the function notation bi(h) to denote
the bid value bi�, where � is such that h = g�; extending this we may write bi(S)
for

∑
h∈S bi(h). We say that a bid vector bi induces a preference ranking �i if

g �i g′ ⇔ bi(g) ≥ bi(g′) for all g, g′ ∈ M , and use 
i for strict rankings.
We focus on the fairness guarantees of the pure equilibria of the mechanisms

we study. Given a profile b = (b1, . . . , bn), we write b−i to denote (b1, . . . , bi−1,
bi+1, . . . , bn) and, given a bid vector b′

i, we use (b′
i,b−i) to denote the pro-

file (b1, . . . , bi−1, b
′
i, bi+1, . . . , bn). For the next definition we abuse the notation

slightly: given an allocation A = (A1, . . . , An), we write vi(A) instead of vi(Ai).

Definition 5. Let M be an allocation mechanism and consider a profile b =
(b1, . . . , bn). We say that bi is a best response to b−i if for every b′

i ∈ R
m
≥0,

we have vi(M(b′
i,b−i)) ≤ vi(M(b)). The profile b is a pure Nash equilibrium

(PNE) if, for each i ∈ N , bi is a best response to b−i.
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When b is a PNE and M(b) has a fairness guarantee, e.g., M(b) is EF1, we
attribute the same guarantee to the profile itself, i.e., we say that b is EF1.

Remark 1. The mechanisms we consider run in polynomial time. However there
are computational complexity questions that go beyond the mechanisms them-
selves. For instance, how does an agent compute a best response or how do all
the agents reach an equilibrium? We do not study such questions here and we
only focus on the fairness properties of PNE. It should be noted, however, that
such problems are typically hard. For instance, computing a best response for
Round-Robin is NP-hard in general [6] (although for fixed n it is not [40]), and
we show that the same is true for Mod-Cut&Choose (Proposition 1).

Remark 2. An easy observation on the main question of this work is that any
PNE of any α-approximation mechanism for computing MMS allocations is an
α-MMS allocation. Indeed, this is true, not only for MMS but for any fair-
ness notion that depends on agents achieving specific value benchmarks that
depend on their own valuation function, e.g., it is also true for PROP. While
this is definitely interesting to note, nothing is known on the existence of PNE of
any constant factor approximation algorithm for computing MMS allocations in
the literature. Clearly, an existence result for any such algorithm [5,9,24–26,30]
would imply an analogue of Theorem 3 for approximate MMS.

3 Fairness of Nash Equilibria of Round-Robin

In this section we focus on one of the simplest and most well-studied allocation
algorithms, Round-Robin, a draft algorithm where the agents take turns and in
each turn the active agent receives her most preferred available (i.e., unallocated)
good. Below we state Round-Robin as a mechanism (Mechanism 1) that takes
as input a bid profile rather than the valuation functions of the agents. In its
full generality, Round-Robin should also take a permutation N as an input to
determine the priority of the agents. Here, for the sake of presentation, we assume
that the agents in each round (lines 3–6) are always considered according to their
“name”, i.e., agent 1 is considered first, agent 2 s, and so on. This is without loss
of generality, as it only requires renaming the agents accordingly.

While it is long known that truth-telling is generally not a PNE in sequential
allocation mechanisms (a special case of which is Round-Robin) [29], we present
here a minimal example that illustrates the mechanics of manipulation. Let
N = {1, 2} and M = {a, b, c} with the valuation functions being as shown in
the table on the left. The circles show the allocation returned by Round-Robin
when the agents bid their true values, while the superscripts indicate in which
order were the goods assigned. Given that agent 2 is not particularly interested
to good a, agent 1 can manipulate the mechanism into giving her {a, b} instead
{a, c} by claiming that these are her top goods as in the table on the right.

a b c

v1 : 6
1

5 4
3

v2 : 4 6
2

5

a b c

b1 : 5
3

6
1

4

v2 : 4 6 5
2
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Mechanism 1. Round-Robin(b1, . . . , bn)
1: S = M ; (A1, . . . , An) = (∅, . . . , ∅); k = �m/n�
2: for r = 1, . . . , k do // Each value of r determines the corresponding round.
3: for i = 1, . . . , n do
4: g = arg maxh∈S bi(h) // Break ties lexicographically (hence we use “=”).
5: Ai = Ai ∪ {g} // Current agent receives her “favorite” available good.
6: S = S \ {g} // The good is no longer available.
7: return A = (A1, . . . , An)

Thus, bidding according to v1, v2 is not a PNE. The example is minimal, in
the sense that with just 1 agent or less than 3 goods truth-telling is a PNE of
Round-Robin almost trivially.

Before moving to the main technical part of this section, we discuss some
assumptions that again are without loss of generality. As we have mentioned
in the Introduction, it is known that, as an algorithm, Round-Robin outputs
EF1 allocations when all agents have additive valuation functions [17,32]. Also
Round-Robin as a mechanism is known to have PNE for any instance where
no agent values two goods exactly the same, and at least some such equilibria
(namely, the ones consistent with the so-called bluff profile) are easy to compute
[7]. From a technical point of view, this assumption that all the valuation func-
tions induce strict preference rankings is convenient, as it greatly reduces the
number of corner cases one has to deal with. However, as we show in the full
version of this paper [2], this assumption is benign and the result of Aziz et al. [7]
extends to general additive valuation functions. On a different but related note,
we assume, for the remainder of this section, that all the bid vectors induce strict
preference rankings (but not necessarily consistent with the preference rankings
induced by the corresponding valuation functions). This is without loss of gen-
erality, because even if a bid vector contains some bids that are equal to each
other, a strict preference ranking is imposed by the lexicographic tie-breaking of
the mechanism itself. So, formally, when we abuse the notation and write g 
i h
we mean that either bi(g) > bi(h), or bi(g) = bi(h) and g has a lower index than
h in the standard naming of goods as g1, g2, . . . , gm.

We next state the main result of our work. Despite its proof being rather
involved, the intuition behind it is simple. On one hand, whenever an agent bids
truthfully, she sees the resulting allocation as being EF1. On the other hand,
no matter what an agent bids, we show it is possible to “replace” her with an
imaginary version of herself who does not affect the allocation, and not only bids
truthfully, but she considers the bundles of the allocation to be as valuable as the
original agent thought they were. The rather elaborate formal argument relies
on the recursive construction of auxiliary valuation functions and bids, and on
the fact that small changes in a single preference ranking minimally change the
“history” of available goods during the execution of the mechanism.

Theorem 3. For any fair division instance I = (N,M,v), every PNE of
the Round-Robin mechanism is EF1 with respect to the valuation functions
v1, . . . , vn.
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As we will see shortly, proving Theorem 3 reduces to showing that the agent
who “picks first” in the Round-Robin mechanism views the final allocation as
envy-free, as long as she bids a best response to other agents’ bids. While Theo-
rem 4 sounds very much like the standard statement about the first agent in the
algorithmic setting, its proof relies on a technical lemma that carefully builds a
“nice” instance which is equivalent, in some sense, to the original. Recall that
we have assumed that the agents’ priority is indicated by their indices.

Theorem 4. For any fair division instance I = (N,M,v), if the reported bid
vector b1 of agent 1 is a best response to the (fixed) bid vectors b2, . . . , bn of all
other players, then agent 1 does not envy (with respect to v1) any bundle in the
allocation outputted by Round-Robin(b1, . . . , bn).

Note that since we are interested in PNE, it is always the case that each
agent’s bid is a best response to other agents’ bids. As mentioned above, Theorem
4 is essentially a corollary to Lemma 1. The lemma shows the existence of an
alternative version of agent 1 who is truthful, her presence does not affect the
original allocation, and, as long as the allocation is the same, she shares the same
values with the original agent 1. While its proof is rather involved, the high level
idea is that we recursively construct a sequence of bids and valuation functions,
each pair of which preserves the original allocation and the view of agent 1 for it,
while being closer to being truthful. To achieve this we occasionally move value
between the goods originally allocated to agent 1 and update the bid accordingly.

Lemma 1. Suppose that the valuation function v1 induces a strict preference
ranking on the goods, i.e., for any g, h ∈ M , v1(g) = v1(h) ⇒ g = h. Let b =
(b1, b2, . . . , bn) be such that b1 is a best response of agent 1 to b−i = (b2, . . . , bn).
Then there exists a valuation function v∗

1 with the following properties:

– If b∗
1 = (v∗

1(g1), . . . , v
∗
1(gm)), i.e., b∗

1 is the truthful bid for v∗
1 , then Round-

Robin(b) and Round-Robin(b∗
1,b−1) return the same allocation (A1, . . . , An).

– v∗
1(A1) = v1(A1).

– For every good g ⊆ M \ A1, it holds that v∗
1(g) = v1(g).

Due to space constraints, we defer the proof of the lemma to the full version
of our paper [2] and move on to the proofs of Theorems 3 and 4.

Proof of Theorem 4. Consider an arbitrary instance I = (N,M,v) and assume
that the input of Round-Robin is b = (b1, b2, . . . , bn), where b1 is a best response
of agent 1 to b−i = (b2, . . . , bn) according to her valuation function v1. Let
(A1, . . . , An) be the output of Round-Robin(b). In order to apply Lemma 1,
we need v1 to induce a strict preference ranking over the goods. For the sake of
presentation, we assume here that this is indeed the case, and we treat the general
case formally in the full version [2]. So, we now consider the hypothetical scenario
implied by Lemma 1 in this case: keeping agents 2 through n fixed, suppose that
the valuation function of agent 1 is the function v∗

1 given by the lemma, and her
bid b∗

1 is the truthful bid for v∗
1 . The first part of Lemma 1 guarantees that the

output of Round-Robin(b∗
1,b−i) remains (A1, . . . , An).
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It is known that, no matter what others bid, if the agent with the highest
priority (here agent 1 with v∗

1) reports her true values to Round-Robin, the
resulting allocation is EF from her perspective (see, e.g., the proof of Theorem
12.2 in [32]). In our hypothetical scenario this is the case for agent 1 and it
translates into having v∗

1(A1) ≥ v∗
1(Ai) for all i ∈ N . Then the second and third

parts of the lemma imply that v1(A1) ≥ v1(Ai) for all i ∈ N , i.e., agent 1 does
not envy any bundle in the original instance. ��

Given Theorem 4, the proof of Theorem 3 is of similar flavor to the proof on
Round-Robin producing EF1 allocations in the non-strategic setting [32].

Proof of Theorem 3. Let b = (b1, . . . , bn) be a PNE of the Round-Robin mech-
anism for the instance I. By Theorem 4, it is clear that the allocation returned
by Round-Robin(b) is EF, and hence EF1, from the point of view of agent 1. We
fix an agent �, where � ≥ 2. For i ∈ [�−1], let hi be the good that agent i claims
to be her favourite among the goods that are available when it is her turn in the
first round, i.e., hi = arg maxh∈M\{h1...,hi−1} bi(h). Right before agent � is first
assigned a good, all goods in H = {h1, . . . , h�−1} have already been allocated.
We consider the instance I ′ = (N ′,M ′,v′) in which all goods in H are missing.
That is, N ′ = N , M ′ = M\H, and v′ = (v′

1, . . . , v
′
n) where v′

i = vi|M ′ , for i ∈ [n],
is the restriction of the function vi on M ′. Similarly define b′

i = bi|M ′ , for i ∈ [n],
the restrictions of the bids to the available goods, and b′ = (b′

1, . . . , b
′
n). Finally,

we consider the version of Round-Robin, call it Round-Robin�, that starts with
agent � and then follows the indices in increasing order.

We claim that for Round-Robin� the bid b′
� is a best response for agent �

assuming that the restricted bid vectors of all the other agents are fixed. To see
this, notice that for any c� = (c�1, c�2, . . . , c�m), the bundles given to agent � by
Round-Robin(c�,b−�) and Round-Robin�(c�|M ′ ,b′

−�) are the same! In fact, the
execution of Round-Robin�(c�|M ′ ,b′

−�) is identical to the execution of Round-
Robin(c�,b−�) from its �th step onward. So, if b′

� was not a best response in the
restricted instance, then there would be a profitable deviation for agent �, say
b∗

� , so that � would prefer her bundle in Round-Robin�(b∗
� ,b

′
−�) to her bundle

in Round-Robin�(b′). This would imply that any extension of b∗
� to a bid vector

for all goods in M (by arbitrarily assigning numbers to goods in H) would be a
profitable deviation for agent � in the profile b for Round-Robin, contradicting
the fact that b is a PNE.

Now we may apply Theorem 4 for Round-Robin� (where agent � plays the
role of agent 1 of the theorem’s statement) for instance I ′ and bid profile b′.
The theorem implies that agent � does not envy any bundle in the alloca-
tion (A1, . . . , An) outputted by Round-Robin�(b′), i.e., v′

�(A�) ≥ v′
�(Ai), for

all i ∈ [n]. Using the observation made above about the execution of Round-
Robin�(b′) being identical to the execution of Round-Robin(b) after � − 1
goods have been allocated, we have that Round-Robin(b) returns the alloca-
tion (A1 ∪ {h1}, . . . , A�−1 ∪ {h�−1}, A�, . . . , An). So, for any i < � we have
v�(A�) = v′

�(A�) ≥ v′
�(Ai) = v�(Ai) = v�(Ai ∪ {hi}) − v�(hi), while for i > � we

simply have v�(A�) = v′
�(A�) ≥ v′

�(Ai) = v�(Ai). Thus, the allocation returned
by Round-Robin(b) is EF1 from the point of view of agent �. ��
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4 Towards EFX Equilibria: The Case of Two Agents

As we saw, Round-Robin has PNE for every instance, and the corresponding
allocations are always EF1. The natural next question is can we have a simi-
lar guarantee for a stronger fairness notion? In particular, we want to explore
whether an analogous result is possible when we consider envy-freeness up to
any good. When the agents are not strategic, it is known that EFX allocations
exist when we have at most 3 agents [17,18]. It should be noted that for the case
of 3 agents no polynomial time algorithm is known, and it is unclear whether
the constructive procedure of Chaudhury et al. [18] has any PNE. For n ≥ 4,
the existence of EFX allocations remains a major open problem. Therefore, we
turn our attention to the case of two agents.

4.1 A Mechanism with EFX Nash Equilibria

A polynomial-time algorithm that outputs EFX allocations when we have two
agents is given by Plaut and Roughgarden [35]. This is a cut and choose algo-
rithm where the cut (lines 3–5) is produced using a variant of the envy-cycle-
elimination algorithm of Lipton et al. [31] on two copies of agent 1, and then
agent 2 “chooses” the best bundle among the two (line 6). We state it as mech-
anism Mod-Cut&Choose below (recall the notation bi(S) for

∑
h∈S bi(h)). We

should point out that this mechanism is not truthful, since there is no truthful
mechanism for two agents that produces EF1 (or EFX for that matter) allo-
cations for more than four goods [1]. Interestingly, we show that although not
truthful, Mod-Cut&Choose always has at least one PNE for any instance, while
all its equilibria are MMS and, by Theorem 1, EFX.

Mechanism 2. Mod-Cut&Choose(b1, b2)
1: (E1, E2) = (∅, ∅)
2: (h1, h2, . . . , hm) is M sorted in decreasing order with respect to v1

// Break ties lexicographically.
3: for i = 1, . . . , m do
4: j = arg mink∈[2] b1(Ek) // Identify worst bundle w.r.t. b1; ties in favor of E1.

5: Ej = Ej ∪ {hi} // Add the next good to that bundle.

6: � = arg maxk∈[2] b2(Ek) // Identify best bundle w.r.t. b2; ties in favor of E1.

7: return A = (M \ E�, E�) // Give this to agent 2 and the other bundle to agent 1.

By Theorem 2, there is no reason to expect that the mechanism would guar-
antee more than 2µi/3 to each agent. Indeed, seen as an algorithm, it does not
always produce MMS allocations unless P = NP! To see this, first notice that
when the agents are identical, that would mean that we can run the algorithm to
exactly find their maximin share. This is equivalent to having an oracle for the
classic PARTITION problem. As the algorithm’s running time is polynomial,
that would imply that P = NP. The same simple argument shows that it is
NP-hard to compute a best response bid vector for agent 1.
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Proposition 1. Computing a best response b1 of agent 1 for Mod-Cut&Choose,
given b2, is NP-hard.

We begin with the following lemma on the “cut” part of Mod-Cut&Choose,
stating that agent 1 may create any desirable partition of the goods (up to the
ordering of the two sets). This is a necessary component of the proof of the main
result of this section. Its proof is deferred to the full version [2].

Lemma 2. Let (X1,X2) be a partition of M . Agent 1, by bidding accord-
ingly, can force Mod-Cut&Choose to construct E1, E2 in lines 3–5, such that
{E1, E2} = {X1,X2}.

In particular, agent 1 can force the mechanism to construct E1, E2, such that
min{v1(E1), v1(E2)} = µ1. Such a pair (E1, E2) is called a µ1- partition. At least
one µ1- partition exists, by the definition of µ1.

Corollary 1. Agent 1 can force Mod-Cut&Choose to construct a µ1- partition
in lines 3–5.

We can now proceed to the main theorem of this section on the existence
and fairness properties of the PNE of Mod-Cut&Choose.

Theorem 5. For any instance I = ({1, 2},M,v), the Mod-Cut&Choose mech-
anism has at least one PNE. Moreover, every PNE of the mechanism is MMS
and EFX with respect to the valuation functions v1, v2.

Proof. Given a partition X = (X1,X2) we are going to slightly abuse the
notation—as we do in our pseudocode—and consider arg minX∈X v2(X) to be
a single set in X rather than a subset of {X1,X2}. To do so, we assume that
ties are broken in favor of the highest indexed set (here X2) and tie-breaking is
applied by the arg min operator.

We will define a profile (b1, b2) and show that it is a PNE. First, let b2 =
(v2(g1), v2(g2), . . . , v2(gm)) be the truthful bid of agent 2. Next b1 is the bid
vector (as defined within the proof of Lemma 2) that results in Mod-Cut&Choose
constructing a partition in

arg max
X∈Π2(M)

v1
(
arg max

X∈X
v2(X)

)
.

To see that there exists such b1, notice that the set Π2(M) of all possible par-
titions is finite, and, by Lemma 2, every possible partition can be produced by
Mod-Cut&Choose given the appropriate bid vector of agent 1. So, agent 1 forces
the partition that maximizes, according to v1, the value of the least desirable
bundle according to v2. Now it is easy to see that given the bidding strategy of
agent 2, i.e., playing truthfully, there is no deviation for agent 1 that is profitable
(by definition). Moreover, agent 2 gets the best of the two bundles according to
her valuation function (regardless of the partition, truth telling is a dominant
strategy for her), thus there is no profitable deviation for her either. Therefore,
(b1, b2) is a PNE for I.
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Regarding the second part of the statement, suppose for a contradiction that
there is a PNE b, where an agent i does not achieve her µi in the allocation
returned by Mod-Cut&Choose(b). If this agent is agent 1, then according to
Corollary 1, there is a bid vector b′

1 she can report, so that the algorithm will
produce a µ1- partition. By deviating to b′

1, regardless of the set given to agent 2,
agent 1 will end up with a bundle she values at least µ1. As this would be a strict
improvement over what she currently gets, it would contradict the fact that b is
a PNE. So, it must be the case where agent 2 gets a bundle she values strictly
less than µ2. Notice that, regardless of the partition which Mod-Cut&Choose to
constructs in lines 3–5, by declaring her truthful bid, agent 2 gets a bundle of
value at least v2(M)/2. By Definition 3, it is immediate to see that this value is
at least µ2, i.e., deviating to her truthful bid is a strict improvement over what
she currently gets by Mod-Cut&Choose(b), which is a contradiction.

It remains to show that the allocation returned by Mod-Cut&Choose(b) is
also EFX. However, since here n = 2, this directly follows from Theorem 1. ��

4.2 The Enhanced Fairness of EFX Nash Equilibria

As it was discussed before Proposition 1, it is surprising that the EFX equilibria
of Mod-Cut&Choose impose stronger fairness guarantees compared to generic
EFX allocations or even EFX allocations produced by Mod-Cut&Choose itself in
the non-strategic setting. In this section we explore whether something similar
holds for every mechanism with EFX equilibria. Specifically, we consider the
(obviously non-empty) class of mechanisms that have PNE for every instance
and these equilibria always lead to EFX allocations. Our goal is to determine if
these allocations have better fairness guarantees (with respect to the underlying
true valuation functions) than EFX allocations in general. To this end, we start
by examining instances of two agents and 4 goods and we prove that for every
mechanism of this class, all allocations at a PNE are MMS allocations. The
reason we start from this restricted set of instances is that it already provides
a clear separation with the non-strategic setting. Recall from Theorem 2 that
there are instances with just 4 goods where an EFX allocation may not be a(
2
3 + δ

)
-MMS allocation, for any δ > 0.

Theorem 6. Let M be a mechanism that has PNE for any instance ({1, 2},M,
(v1, v2)) with |M | = 4, and all these equilibria lead to EFX allocations with
respect to v1, v2. Then each such EFX allocation is also an MMS allocation.

The proof of Theorem 6 (which is deferred to the full version [2]) relies on
extensive case analysis, where in each case assuming that the allocation is EFX
but not MMS eventually contradicts the fact that the current profile is a PNE.
When we consider instances with 5 or more goods, this approach is not fruitful
anymore. The reason for that is not solely the increased number of cases one has
to handle, but rather the fact that now some of the cases do not seem to lead to
a contradiction at all.

Although we suspect that the theorem is no longer true for more than 4 goods,
we are able prove a somewhat weaker property that still separates the EFX



162 G. Amanatidis et al.

allocations in PNE from generic EFX allocations in the non-strategic setting. In
particular, for general mechanisms that have PNE for every instance and these
equilibria are always EFX, we show that the corresponding allocations always
guarantee an approximation to MMS that is strictly better than 2/3.

Theorem 7. Let M be a mechanism that has PNE for any instance ({1, 2},M,
(v1, v2)), and all these equilibria lead to EFX allocations with respect to v1, v2.
Then each such EFX allocation is also an α-MMS allocation for some α > 2/3.

Proof. Suppose for a contradiction that this is not the case. This means that
there exists such a mechanism M and an instance ({1, 2},M, (v1, v2)), for which
there is a PNE b = (b1, b2) that results in an EFX allocation A = (A1, A2),
where vi(Ai) ≤ 2µi/3 for at least one i ∈ [2]. Without loss of generality, assume
v1(A1) ≤ 2µ1/3 and notice that this means that v1(A1) = 2µi/3, as v1(A1)
cannot be smaller than 2µi/3, by Theorem 2. This implies that v1(A2) ≥ 4µi/3,
since v1(M) ≥ 2µ1 by Definition 3.

Initially, we will restrict the number of the goods with positive value (accord-
ing to v1) in A2. Let S ⊆ A2 be the set of such goods, i.e., S = {g ∈ A2 | v1(g) >
0}. Let |S| = k and notice that k cannot be 0 or 1 since otherwise v1(A1) ≥ µ1.
Finally, let x ∈ arg ming∈S v1(g) be a minimum valued good for agent 1 in S.
We have

2
3
µ1 = v1(A1) ≥ v1(S \ {x}) ≥ v1(S) − v1(S)

k
=

(k − 1)
k

v1(A2) ≥ (k − 1)
k

4
3
µ1,

where the first inequality follows from (A1, A2) being EFX. Given our observa-
tion that k ≤ 2, the above implies that k = 2. Name h1 and h2 the goods of
S, and observe that if v1(A2) = v1({h1, h2}) > 4µ1/3, then (A1, A2) cannot be
EFX from the perspective of agent 1. Thus, we get that v1(A2) = 4µ1/3, which
in conjunction with EFX implies v1(h1) = v1(h2) = 2µ1/3.

Next we argue that A1 contains at least 2 goods that have positive value
for agent 1. Indeed, if all the goods in A1 had zero value, then we would have
v1(A1) = 0 < 2µ1/3 as A2 contains two positively valued goods, while if there
was just one positively valued good in A1, this would imply that only three
goods have positive value for agent 1, and each one of them has value 2µ1/3.
The latter would make the existence of a µ1- partition impossible, which is a
contradiction. So, since there are at least two positively valued goods in A1 for
agent 1, we arbitrarily choose two of them, and we name them h3 and h4. We
arbitrarily name the remaining goods h5, h6, . . . , hm.

Consider now a different valuation instance v∗ = (v∗, v∗) where the agents
have identical values over the goods. The valuation function is defined as

v∗(hj) =

⎧
⎨

⎩

1.2 j = 1
1 j ∈ {2, 3}
ε j ∈ {4, . . . , m}

where ε > 0 and (m−3) ·ε < 0.2. It is easy to see that for this valuation instance
there are only two EFX allocations, namely, X = ({h1, h4, . . . , hm}, {h2, h3}),
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and its symmetric Y = ({h2, h3}, {h1, h4, . . . , hm}). According to our assump-
tion, there must be a bidding vector b∗ = (b∗

1, b
∗
2) that is a PNE of M for the

instance ({1, 2},M,v∗), and since all PNE of M are also EFX, M(b∗) must
output one of X and Y. Moreover, observe that the value agent 2 receives (with
respect to V ∗) in these allocations is 2 and 1.2 + (m − 3)ε < 1.4 respectively.

For now assume that b1 = b∗
1 and b2 = b∗

2. We will show that, in this
case, running M with input b′ = (b∗

1, b2) results to agent 2 receiving a bundle
of value strictly better than 2 according to v∗. This contradicts the fact that
b∗ = (b∗

1, b
∗
2) is a PNE under v∗ = (v∗, v∗). Recall that b = (b1, b2) is a

PNE under v = (v1, v2), that v1(h1) = v1(h2) = v1(A1) = 2µ1/3, and that
v1(h3), v1(h4) are strictly positive. So, let us examine what each agent may get
if agent 1 deviates from b to b′ = (b∗

1, b2):

– In case the bundle of agent 1 contains good h1, it cannot contain any good
from {h2, h3, h4}; otherwise b = (b1, b2) would not be a PNE under v =
(v1, v2). Thus, {h2, h3, h4} is part of the bundle of agent 2.

– In case the bundle of agent 1 contains good h2, it cannot contain any good
from {h1, h3, h4}; otherwise b = (b1, b2) would not be a PNE under v =
(v1, v2). Thus, {h1, h3, h4} is part the bundle of agent 2.

– In case the bundle of agent 1 does not contain any of h1 and h2, then it is
possible for her to get any subset T ⊆ {h3, h4, . . . , hm}. However, {h1, h2} is
part the bundle of agent 2.

Thus, in the allocation returned by M(b′), agent 2 gets a bundle that contains
{h2, h3, h4} or {h1, h3, h4} or {h1, h2}. Consider the value of these sets according
to v∗:

v∗({h2, h3, h4}) = 2 + ε , v∗({h1, h3, h4}) = 2.2 + ε , v∗({h1, h2}) = 2.2 .

That is, in every single case the value agent 2 derives under v∗ = (v∗, v∗) when
the profile b′ = (b∗

1, b2) is played is strictly better than 2. However, 2 is the
maximum possible value that agent 2 could derive under v∗ when the profile
b∗ is played. This contradicts the fact that b∗ is a PNE under v∗, as b2 is a
profitable deviation for agent 2.

The remaining corner cases are straightforward to deal with. To begin with,
it is not possible to have b1 = b∗

1 and b2 = b∗
2, as X = A and Y = A.

Next, assume that b1 = b∗
1 and b2 = b∗

2. This directly contradicts the fact
that b∗ is a PNE under v∗ = (v∗, v∗). To see this, starting from b∗ let agent
2 deviate to b2. She then gets A2 which contains h1, h2 and has value for her
v∗(A2) ≥ 2.2 > 2.

Finally, assume that b1 = b∗
1 and b2 = b∗

2. This directly contradicts the fact
that b is a PNE under v = (v1, v2). To see this, starting from b let agent 1
deviate to b∗

1. She either gets {h1, h4, . . . , hm} of value at least v1(h1)+v1(h4) >
2µ1/3 = v1(A1) or she gets {h2, h3} of value v1(h2) + v1(h3) > 2µ1/3 = v1(A1).

Since every possible case leads to a contradiction, we conclude that every
allocation that corresponds to a PNE of a mechanism in the class of interest,
guarantees to each agent i value that is strictly better than 2µi/3, for i ∈ [2]. ��
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5 Discussion

In this work we studied the problem of fair allocating a set of indivisible goods, to
a set of strategic agents. Somewhat surprising—given the existing strong impos-
sibilities for truthful mechanisms—our results are mostly positive. In particular,
we showed that there exist mechanisms that have PNE for every instance, and
at the same time the allocations that correspond to PNE have strong fairness
guarantees with respect to the true valuation functions.

We believe that there are several interesting directions for future work that
follow our research agenda. For instance, it would be interesting to explore how
algorithms that compute EF1 allocations for richer valuation function domains
(e.g., the Envy-Cycle-Elimination algorithm [31]) behave in the strategic setting
we study in this work. Here the question is twofold. On one hand, it is unclear
whether such algorithms have PNE for every valuation instance, while on the
other, it would be important to determine if they maintain their fairness proper-
ties at their equilibria or not. The existence of PNE for algorithms that compute
approximate MMS allocation is on a similar direction and, as we mentioned in
Sect. 2, in this case we get the MMS guarantee on the equilibria for free.

Theorems 6 and 7 leave an open question on the MMS guarantee that the
equilibria of mechanisms that always have PNE and these are EFX. Although
we suspect that the corresponding allocations are not always MMS, such a result
would immediately imply that for every such mechanism which runs in polyno-
mial time, finding a best response of an agent is a computationally hard problem.
Going beyond the case of two agents here seems to be a highly nontrivial problem
as it is not very plausible that the current state of the art for the non-strategic
setting could be analysed under incentives.

Finally, while we did not really focus on complexity questions, it is clear that
computing best responses is generally hard. However, when they are not, for
instance when the number of agents in Round-Robin is fixed [40], we would like
to know if best response dynamics always converge to a PNE or there might be
cyclic behavior (as it happens with better response dynamics [7]).
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Abstract. We study a Bayesian persuasion setting in which the receiver
is trying to match the (binary) state of the world. The sender’s util-
ity is partially aligned with the receiver’s, in that conditioned on the
receiver’s action, the sender derives higher utility when the state of the
world matches the action.

Our focus is on whether in such a setting, being constrained helps
a receiver. Intuitively, if the receiver can only take the sender’s pre-
ferred action with smaller probability, the sender might have to reveal
more information, so that the receiver can take the action more specif-
ically when the sender prefers it. We show that with a binary state of
the world, this intuition indeed carries through: under very mild non-
degeneracy conditions, a more constrained receiver will always obtain
(weakly) higher utility than a less constrained one. Unfortunately, with-
out additional assumptions, the result does not hold when there are more
than two states in the world, which we show with an explicit example.

Keywords: Bayesian persuasion · Information design · Signaling
games

1 Introduction

In this paper, we study situations akin to the following stylized dialog, which
will likely be familiar to anyone who has ever served on hiring committees:

ALICE: I see that you wrote strong recommendation letters for your Ph.D.
graduates Carol and Dan. Can you compare them for us?

BOB: They are both great! Carol made groundbreaking contributions to . . .;
Dan made groundbreaking contributions to . . ..

ALICE: Which of the two would you say is stronger?
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BOB: They are hard to compare. You really need to interview both of them!
ALICE: We can only invite one of them for an interview.
BOB: I guess Carol is a bit stronger.

What happened in this example? Alice and Bob were involved in a signaling
setting, in which Bob had an informational advantage. Bob’s goal was to get as
many of his students interviews as possible, while Alice wanted to only invite
the strong students. While Bob knew which of his students were strong (or how
strong), Alice had to rely on information from Bob. As is standard in signal-
ing settings, Bob could use this fact to improve his own utility. In this sense,
the example initially was virtually identical to the standard “judge/prosecutor”
example in the seminal paper of Kamenica and Gentzkow [21].

However, a change happened along the way. When Alice revealed that she
was constrained in her actions (to one interview at most), this changed the
utility that Bob could obtain from his previous strategy. For example, if he had
insisted on not ranking the students, Alice might have flipped a coin. Implicitly,
while Bob wanted both of his students to obtain interviews, when forced to
choose, he knew he would obtain higher utility from the stronger of his students
being interviewed. In this sense, his utility function was “partially aligned” with
Alice’s; this partial alignment, coupled with Alice’s constraint, resulted in Alice
obtaining more information, and thus higher utility.

The main goal of the present paper is to investigate to what extent the
behavior illustrated informally in the dialog above arises in a standard model of
Bayesian persuasion. Specifically, if the utilities of the sender and receiver are
“partially aligned,” will it always benefit a receiver to be more constrained in
how she can choose her actions?

1.1 The Model: An Overview

Our model—described fully in Sect. 2—is based on the standard Bayesian per-
suasion model of Kamenica and Gentzkow [21]. For our main result, we assume
that the state space is binary: Θ = {θ1, θ2}. These states could correspond to a
student being bad/good in our introductory example, a defendant being inno-
cent/guilty in the example of Kamenica and Gentzkow [21], or a stock about to
go up or down. The sender and receiver share a common prior Γ for the distri-
bution of the state θ. In addition, the sender will observe the actual state θ, but
only after committing to a signaling scheme (also called information structure).

A signaling scheme is a (typically randomized) mapping φ : Θ → Σ. The
receiver observes the (typically random) signal σ = φ(θ); based on this observa-
tion, she takes an action a ∈ A. Here, we assume that—like the state space—the
action space is binary, i.e., A = {a1, a2}. Based on the true state of the world
and the action taken by the receiver, both the sender and receiver derive util-
ities US(θ, a), UR(θ, a). The receiver will choose her action (upon observing σ)
to maximize her own expected utility; the sender, knowing that the receiver
is rational, will commit to a signaling scheme to maximize his expected utility
under rational receiver behavior.
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Motivated by many practical applications, we assume that the receiver prefers
to match the state of the world, in the sense that UR(θ1, a1) ≥ UR(θ1, a2) and
UR(θ2, a2) ≥ UR(θ2, a1). For instance, in our introductory example, Alice prefers
to interview strong candidates and to not interview weak ones; in the judge-
prosecutor example, the judge prefers convicting exactly the guilty defendants;
and an investor prefers to buy stocks that will go up and sell stocks that will go
down. Our assumption about the “partial alignment” of the sender and receiver
utilities is formalized as an action-matching preference of the sender, stated
as follows: US(θ1, a1) ≥ US(θ2, a1) and US(θ2, a2) ≥ US(θ1, a2). That is, if a
candidate is being interviewed, Bob prefers it to be a strong candidate over
a weak one (but may still prefer a weak candidate being interviewed over a
strong/weak candidate not being interviewed); similarly, if a prosecutor sees
a defendant convicted, he would prefer the defendant to be guilty (but may
still prefer an innocent defendant being convicted over going free); similarly, an
investment platform may want to entice a client to buy stock, but conditioned
on the client buying stock, the platform may prefer for the stock to go up.

In addition to the assumption of partial alignment, our main addition to the
standard Bayesian persuasion model is to consider constraints on the receiver’s
actions. Specifically, we assume that there are (lower and upper) bounds b, b on
the probability with which the receiver is allowed to take action1 a1. Such a con-
straint corresponds to a department only being willing to interview at most 10%
of their applicants, a judge having a quota for how many defendants (at most)
to convict, or a conference having an upper bound on its number/fraction of
accepted papers. Such a constraint creates dependencies between the receiver’s
actions under different received signals, and may force her to randomize between
actions, contrary to the standard Bayesian persuasion setting in which the
receiver may deterministically choose any utility-maximizing action conditioned
on the observed signal σ. To see this, consider a prior under which a candidate
is strong with probability 1

3 , and the receiver obtains utility 1 from interviewing
a strong candidate and −1 from interviewing a weak candidate (and 0 from not
interviewing). If the sender reveals no information, the receiver would prefer to
interview no candidates, but a lower-bound constraint may force her to do so,
in which case she would randomize the decision to interview the smallest total
number of candidates. We write π : Σ → A for the receiver’s (typically random-
ized) mapping from signals to actions. Note that the constraint applies across all
sources of randomness (the state of the world, the sender’s randomization, and
the receiver’s randomization), so it is required that b ≤ PΓ,φ,π[π(φ(θ)) = a1] ≤ b.

To avoid trivialities, we assume that PΓ [θ = θ1] ∈ [b, b], that is, if the sender
revealed the state of the world perfectly, the receiver would be allowed to match
it. We say that a receiver with constraints (b′, b

′
) is more constrained than one

with constraints (b, b) iff b′ ≥ b and b
′ ≤ b.

1 This implies constraints of 1− b, 1− b on the probability of taking action a2. A more
general model and its specialization to binary actions is discussed in Sect. 2.3.
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1.2 Our Results

Our main result is that when the state of the world is binary, a receiver is always
(weakly) better off when more constrained. We state this result here informally,
and revisit it more formally (and prove it) in Sect. 3.

Theorem 1 (Main Theorem (stated informally)). Consider a Bayesian
persuasion setting in which the state and action spaces are binary, the receiver
is trying to match the state of the world, and the sender is action-matching.
Then, a more constrained receiver always obtains (weakly) higher utility than a
less constrained one.

Unfortunately, this insight does not extend to more fine-grained states of the
world: even for a ternary state of the world, there are examples with partially
aligned sender and receiver in which a more constrained receiver is strictly worse
off. We discuss such an example in depth in Sect. 4. It is possible to obtain
some positive results recovering versions of Theorem 1 by imposing additional
constraints on the sender’s and receiver’s utility functions. However, many of
these constraints are strong, and have only limited applicability to real-world
settings. We discuss some of these approaches in Sect. 5—whether there are less
restrictive conditions recovering Theorem 1 for more states of the world is an
interesting direction for future work.

1.3 Related Work

In general, information design as an area is concerned with situations in which
a better-informed sender or information designer can influence the behavior of
other agents via the provision of information. The literature generally studies
problems in which the underlying game between the agents is given and fixed,
but where the sender can influence the outcome by an appropriate choice of
information to be disclosed. The core difference between Bayesian persuasion
[3,5,6,20,21] and other standard paradigms that study information transmission
(such as cheap talk [11], verifiable messages [17,27] or signaling games [33]) is
the commitment power of the sender. In Bayesian persuasion models, the sender
moves first and commits to a (typically randomized) mapping from states of the
world to signals. Subsequently, the sender observes the state of the world and
applies the mapping. Based on the mapping and the observed signal, the rational
recipients (called receivers) choose actions.

The study of Bayesian persuasion was initiated in the seminal work of
Kamenica and Gentzkow [21] and Rayo and Segal [31]. In their work, the sender
can commit to sending any distribution of messages before (accurately) observ-
ing the state of the world; the receiver, on the other hand, only has knowledge of
the prior. The full commitment setting allows for an equivalence to an alternate
model where the sender publicly chooses the amount of information (regard-
ing the state of the world) he will privately observe and then (strategically)
decides how much of this information to share with the receiver via verifiable
messages. Follow-up work of Bergemann and Morris [3,5] established a useful
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and important equivalence between the set of outcomes achievable via informa-
tion design and Bayes correlated equilibria. Since these seminal works, there has
been a large body of work on Bayesian persuasion with theoretical developments
as well as a multitude of applications. To keep our discussion focused, for the
broader literature, we refer the reader to survey articles [6,20].

The literature closest to our work studies information design with a con-
strained sender: the constraints arise through a diverse set of assumptions. The
work in [29,30] shows that pooling equilibria result if the receiver either prefers
lower complexity (for a certification process) or performs a validation of the
sender’s signal; this holds whether the signals of the sender are exogenously con-
strained or not. A growing body of work considers constraints on the sender
that arise either due to communication costs for signaling [10,16,19,28], capac-
ity limitations for signaling [13,25], the sender’s signal serving multiple purposes
(such as convincing a third party to take a payoff-relevant action) [7], or costs to
the receiver for acquiring additional information [26]. The contributions are then
to characterize either the applicability of the concavification approach [21], the
optimal signaling structure, or the conditions for the optimality of certain signal-
ing structures. In [22], constraints on the sender arise from the receiver having
access to some publicly available information. Within this context, Kolotilin [22]
studies comparative statics on the sender’s utility based on the quality of the
sender’s information or the public information. There is also a burgeoning lit-
erature on constraints on the sender arising from a privately informed receiver
(e.g., [8,9,12,18,24]). The main contributions in this line of research are to char-
acterize the optimal signaling structure with a key aspect being the fact that
the sender constructs a different signal for each receiver type.

Based on the discussion above, clearly there is significant literature studying
a constrained sender’s optimal signaling scheme and utility. However, work that
studies constraints on the receiver, or their impact on the receiver’s utility, is
extremely limited. To the best of our knowledge, [2] is the only work to analyze a
constrained receiver problem. The authors impose ex ante and ex post constraints
on the receiver’s posterior beliefs, characterize the dimensionality of the optimal
signaling structure and develop low-complexity approximate welfare maximizing
algorithms. In our work, we have two important differences: first, we impose
constraints on the receiver’s actions as opposed to posterior beliefs; and second,
we explore when these constraints result in increased utility for the receiver.

2 Problem Formulation

Our model is based on the standard Bayesian persuasion model [21]. Two players,
a sender and a receiver, interact in a signaling game. The sender can observe the
state of the world, while the receiver can take an action. The sender can convey
information about the state of the world to the sender. Both players receive
utility as a function of both the state of the world and the action chosen by the
receiver. Since their utility functions typically do not align, the sender will be
strategic in the information he reveals to the receiver.
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2.1 State of the World, Actions, and Utilities

The (random) state of the world θ is drawn from a state space Θ. For our main
result, we assume that the state space is binary (Θ = {θ1, θ2}); however, we
define the model in more generality. The sender and receiver share a common-
knowledge prior distribution Γ ∈ Δ(Θ) for θ. When the state space is binary,
this prior is fully characterized by p = PΓ [θ = θ1].

Only the receiver can take an action a ∈ A. Again, for our main result, we
assume that the action space is binary: A = {a1, a2}. Both the sender’s and the
receiver’s utilities are functions of the true state θ and the action taken; they are
captured by the functions US : Θ×A → R and UR : Θ×A → R. As discussed in
Sect. 1.1, we assume that the receiver tries to match the state of the world with
her action.

Definition 1 (State-Matching Receiver). We say that the receiver’s utility
function is state-matching if it satisfies the following: for all i, j, k with i ≤ j ≤ k
or i ≥ j ≥ k, we have that

UR(θi, aj) ≥ UR(θi, ak). (1)

When the state of the world is binary, the condition simplifies to:

UR(θ1, a1) ≥ UR(θ1, a2) and UR(θ2, a2) ≥ UR(θ2, a1). (2)

In words, a state-matching receiver always prefers an action closer to the true
state; however, the definition does not enforce any comparisons between choosing
an action that is too high vs. too low compared to the true state.

The key notion for our analysis is a partial alignment of the sender’s utility
with the receiver’s. This is captured by the fact that the sender, given any fixed
action, would prefer states closer to the action, expressed in Definition 2:

Definition 2 (Action-Matching Sender). We say that the sender’s utility
function is action-matching if it satisfies the following: for all i, j, k with i ≤ j ≤
k or i ≥ j ≥ k, we have that

US(θj , ai) ≥ US(θk, ai). (3)

When the state of the world is binary, the condition simplifies to:

US(θ1, a1) ≥ US(θ2, a1) and US(θ2, a2) ≥ US(θ1, a2). (4)

In words, an action-matching sender always prefers a state of the world closer
to the action chosen by the receiver; again, we do not enforce any comparisons
between states that are higher vs. lower than the chosen action.

Notice the difference between Inequalities (3) and (4) vs. (1) and (2): (1)
and (2) compare the receiver’s utilities when the state of the world is fixed and
the action is changed, while (3) and (4) compare the sender’s utilities when the
action is fixed and the state of the world is changed. That is, given that the
receiver takes a particular action, the sender derives higher utility when that
action more closely matches the state of the world than when it does not. Again,
a justification for this assumption is discussed in Sect. 1.1.
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2.2 Signaling Schemes

Before the receiver takes her action, the sender can send a signal σ to reveal (par-
tial) information about the state of the world. More precisely, prior to observing
the state of the world θ, the sender commits to a signaling scheme φ, which is
a mapping φ : Θ → Δ(Σ). For our purposes φ is conveniently characterized by
the probability with which each signal is sent conditional on the state. We write
φi,j = P[φ(θ) = σj | θ = θi] ∈ [0, 1] for the probability that signal σj is sent
conditional on the state of the world being θi. We write φj =

∑
i PΓ [θ = θi] ·φi,j

for the probability of sending the signal σj .
The receiver is Bayes-rational, and her objective is to maximize her expected

utility after observing the signal. The expected utility derived from action a
when observing σj can be written as

UR(σj , a) =
∑

θi∈Θ

P[θ = θi | φ(θ) = σj ] · UR(θi, a) =
∑

θi∈Θ

P[θ=θi]·φi,j

φj

· UR(θi, a).

Thus, barring other constraints (which we will introduce below), the receiver
chooses an action a in argmaxa UR(σj , a). Following most of the literature in
the field of information design, we assume that the receiver breaks ties in favor
of an action most preferred by the sender. The following very useful alternative
view has been observed in the prior literature (see, e.g., [4]): instead of sending
abstract signals, the sender can without loss of generality send the receiver a rec-
ommended action aj . The sender must ensure that φ is such that the receiver will
always voluntarily follow the recommendation. In other words, the recommended
action aj must always be in argmaxa UR(σj , a). This constraint ensures ex-post
incentive compatibility (EPIC) of the signaling scheme, and is often referred to
as an obedience constraint.

We write π : Σ → Δ(A) for the receiver’s (possibly randomized) best-
response function. In the setting described so far, there is actually no need for
the receiver to randomize, and she can always choose any arbitrary deterministic
π(σj) ∈ arg maxa UR(σj , a). However, as we will see in Sect. 2.3, the situation
changes when the receiver is constrained. For a receiver strategy π, we write
πi,j = P[π(σj) = ai] for the probability that the receiver, upon observing signal
σj , chooses action ai.

The sender’s objective is to design a signaling strategy which maximizes his
expected utility in the subgame perfect equilibrium. That is, he chooses φ so as
to maximize his expected utility (under all sources of randomness)

Eθ∼Γ,σ∼φ(θ),a∼π(φ)(σ) [US(θ, a)] ,

assuming a best response π(φ) from the receiver.

2.3 Constrained Receiver

Our main conceptual departure from prior work is that we consider constraints
on the receiver, restricting the probability with which actions can be chosen. In a
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general setting, such constraints are lower and upper bounds on the probability
of taking each action, i.e., ba and ba for each a. Formally, we require that for each
action ai, the combination of the sender’s signaling scheme φ and the receiver’s
response π satisfy

bai
≤

∑

j

φj · πi,j ≤ bai
. (5)

The constraints are common knowledge among the sender and receiver. When
the state space is binary, the constraints can be simplified: they are fully charac-
terized by the lower and upper bounds b = max(ba1

, 1−ba2), b = min(ba2 , 1−ba1
)

for the probability with which the receiver can choose action a1.
The focus of our work is on whether being (more) constrained helps the

receiver, by forcing an action-matching sender to disclose “more” information.
Without any further assumptions, this is trivially false. For example, suppose
that the state of the world is known to be θ1 with probability 1, and both the
sender and the receiver obtain utility 1 when the receiver chooses action a1, and
0 otherwise. If the constraint specified that a1 must be taken with probability
0, and a2 with probability 1, then of course, the receiver (and the sender) would
be worse off. In order to allow us to clearly articulate the question of whether
a constrained receiver obtains more information, we require that perfect state
matching would always be feasible for the receiver, if the true state were revealed:

Definition 3 (Implementable and Feasible Constraints). Consider con-
straints 〈bai

, bai
〉 for all ai ∈ A. We say that the constraints are implementable

iff
∑

i bai
≤ 1 ≤ ∑

i bai
.

The constraints are feasible iff bai
≤ PΓ [θ = θi] ≤ bai

for all i.
For the special case of a binary state space, a constraint 〈b, b〉 is feasible iff

b ≤ p ≤ b.

Notice that when constraints are not implementable, there is no strategy for
the receiver to satisfy all constraints. When constraints are feasible, then with
full information, perfect state matching can be implemented by the receiver.

We say that the constraints 〈bai
, bai

〉 are more binding (or the receiver is
more constrained by them) than 〈b′

ai
, b

′
ai

〉 if and only if b′
ai

≤ bai
and bai

≤ b
′
ai

for all i. When the state space is binary, the condition simplifies: the constraint
〈b, b〉 is more binding than 〈b′, b

′〉 if and only if b′ ≤ b and b ≤ b
′
.

We note that the presence of a constraint may force the receiver to randomize
between actions, even possibly actions that are not optimal. For a simple exam-
ple, suppose that the state of the world is binary and determined by a fair coin
flip, and the receiver obtains utility 2 from matching state θ2, 1 from matching
state θ1, and 0 for not matching the state. If the sender reveals no information,
then a receiver constrained by—say—b = b = 1

2 , would have to flip a fair coin
to decide which action to choose, even though the optimal strategy would be to
always choose a2.

While the receiver’s best response π may in general (have to) be randomized,
we show that there is always an optimal signaling strategy for the sender such
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that the receiver will play a deterministic strategy π. Notice that the following
proposition does not even require feasibility in the sense that the prior distri-
bution satisfies the constraints: it merely requires that the constraints allow for
the existence of any signaling scheme and corresponding receiver strategy.

Proposition 1. Assume that |Σ| ≥ |A|, and let 〈bai
, bai

〉 (for all i) be imple-
mentable constraints on the receiver. Then, for any signaling scheme φ̂, there
exists another signaling scheme φ under which the sender has at least the same
utility as under φ̂, and such that the receiver’s best response π(φ) is determin-
istic. In particular, there is a sender-optimal strategy under which the receiver
responds deterministically.

Proof. We will give an explicit construction of such a strategy. Let φ̂ be any
signaling scheme. Let π(φ̂) be the receiver’s (randomized) best response. Recall
that πi,j is the probability with which the receiver plays ai when receiving the
signal σj . We will first construct an intermediate signaling scheme φ′, and from
it the final signaling scheme φ.

As a first step, the signaling scheme maps to an expanded space Σ′ = Σ ×A.
When observing the state θk, the sender sends the signal (σj , ai) with probability
φk,j · πi,j . In other words, the sender performs exactly the randomization that
the receiver would perform, and makes the corresponding recommendation to the
receiver. Conditioned on the signal σj , the signal’s second component ai reveals
no information about the state of the world. Therefore, because the distribution
of ai is exactly the distribution that π(φ̂)(σj) uses, it is a best response for the
receiver (and satisfies the constraints) to deterministically2 follow the sender’s
“recommendation” ai when receiving the signal (σj , ai).

Then, following the standard approach for reducing the size of the signal
space, we “compress” all signals under which the receiver chooses the same
action into one signal. That is, under the final signaling scheme φ, whenever the
sender was going to send (σj , ai) for any j under φ′, the sender simply sends ai.
Because it is a best response for the receiver to deterministically choose ai for
all received (σj , ai), it is still a best response to follow the recommendation ai.

Thus, we have constructed a signaling scheme φ such that the receiver plays
a deterministic best response, and the number of signals employed by the sender
is at most |A|.

Finally, to prove the existence of a sender-optimal signaling scheme with
deterministic receiver response, let φ̂ be any sender-optimal signaling scheme.
The existence of a signaling scheme, and thus a sender-optimal one, follows
because the constraints are implementable by assumption. Then, applying the
previous argument to φ̂ gives the desired optimal signaling scheme with deter-
ministic receiver responses. �	

2 Note that it is optimal for the receiver to follow the recommendation due to the
overall constraints. In isolation, the receiver may be better off deviating for some
signals—however, doing so would violate a constraint, or come at the expense of
having to choose an even more suboptimal action under another signal.



176 S.-T. Su et al.

In general, most of the literature on Bayesian persuasion assumes that the
signal space is at least as large as the action space (which is enough to obtain
sender-optimal strategies, and find them via an LP [23] when EPIC holds).
Hence, we make the same assumption that |Σ| ≥ |A| in Proposition 1.

Henceforth, we will restrict attention to signaling schemes with deterministic
best response functions π without loss of optimality. However, the sender still
has to ensure that following the deterministic recommendation is incentive com-
patible for the receiver. Since the receiver is constrained, her space of deviations
is only to best-response functions satisfying the constraints. This is captured by
the following definition:

Definition 4. Let φ : Θ → Σ be a direct signaling scheme for the sender, i.e.,
making action recommendations and assuming Σ = A. Let Π be the set of all
randomized mappings π : Σ → A (characterized by πi,j) satisfying the following
inequalities for all actions aj:

baj
≤

∑

i

φi · πi,j ≤ baj
.

Then, φ is ex ante incentive compatible iff for all feasible response functions
π ∈ Π,

∑

i

φi · UR(σi, ai) ≥
∑

i

∑

j

φi · πi,j · UR(σi, aj).

Note that the presence of constraints forces us to deviate from the standard
EPIC requirement in the literature. Definition 4 bears similarity to definitions
in [2,9,12], where ex ante constraints are considered.

3 Our Main Result

In this section, we present the main result of this paper.

Theorem 2. Consider a Bayesian persuasion setting in which the state and
action spaces are binary. The receiver is state-matching, and the sender is action-
matching. Let 〈b, b〉 and 〈b′, b

′〉 be two feasible constraints such that 〈b, b〉 is more
binding than 〈b′, b

′〉, and let Φ, Φ′ be the set of all sender-optimal signaling
schemes under these constraints, respectively.

Let φ ∈ argmaxφ∈Φ Eθ∼Γ,σ∼φ(θ),a∼π(φ)(σ) [UR(θ, a)] maximize the receiver’s
utility over Φ, and φ′ ∈ argmaxφ′∈Φ′ Eθ∼Γ,σ∼φ′(θ),a∼π(φ′)(σ) [UR(θ, a)] maximize
the receiver’s utility over Φ′. Then the receiver is no worse off under φ than under
φ′, i.e., Eθ∼Γ,σ∼φ(θ),a∼π(φ)(σ) [UR(θ, a)] ≥ Eθ∼Γ,σ∼φ′(θ),a∼π(φ′)(σ) [UR(θ, a)] .

Proof. At a high level, the intuition for the proof is as follows. Based on the
discussion in Sect. 2.3, the constraints on the receiver actually translate into
constraints on the sender in the optimization problem. Because the sender’s sig-
naling schemes are more constrained, he has to reveal more information. How-
ever, this intuition is not complete—after all, the constraints may entice the
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sender to reveal less information. Furthermore, as we see in Sect. 4, when the
state space is not binary, a more constrained receiver may be worse off.

Let φ, φ′ be as defined in the statement of the theorem, and let φi,j , φ′
i,j be

their corresponding conditional probabilities of sending the signal σj in state θi.
By Proposition 1, w.l.o.g., under the sender-optimal strategies φ, φ′, the sender
recommends an action to the receiver, and the receiver deterministically follows
the recommendation. That is, the signal σi can be associated with the action ai

for i = 1, 2. Our proof is based on distinguishing four cases, depending on the
sender’s utility:

1. US(θ1, a1) ≥ US(θ1, a2) and US(θ2, a2) ≥ US(θ2, a1)
In this case, for every state, the sender prefers the same action as the receiver.
Since the sender’s and the receiver’s preferences are fully aligned, the sender’s
optimal strategy is to fully reveal the state of the world. Since the constraints
are feasible, the receiver can perfectly match the state of the world under
both constraints, and hence obtains the same utility under both constraints.

2. US(θ1, a1) ≥ US(θ1, a2) and US(θ2, a2) ≤ US(θ2, a1)
In this case, the sender always prefers action a1. Since the sender is action-
matching, US(θ1, a1) ≥ US(θ2, a1) and US(θ2, a2) ≥ US(θ1, a2). Combining
these inequalities, we obtain that the sender’s utility function satisfies the
following total order:

US(θ1, a1) ≥ US(θ2, a1) ≥ US(θ2, a2) ≥ US(θ1, a2).

This implies that

US(θ1, a1) − US(θ1, a2) ≥ US(θ2, a1) − US(θ2, a2). (6)

We now show that φ1,2 = 0. An identical proof also shows that φ′
1,2 = 0. We

distinguish two cases:
(a) If φ1,2 > 0 and φ2,1 > 0, then the sender could move some probability

mass ε > 0 from recommending a2 under θ1 to recommending a1, and
in return move the same amount from recommending a1 under θ2 to
recommending a2. Because the receiver is state-matching, she will still
follow the sender’s recommendation, and the total probability with which
each action is played stays unchanged, so the strategy is still feasible. By
Eq. (6), the sender’s utility (weakly) increases. By choosing ε as large as
possible, we arrive at the claim or at the following case.

(b) If φ1,2 > 0 and φ2,1 = 0, then φa1
= p · φ1,1 < p ≤ b. Therefore, it

is feasible for the sender to always send the signal σ1 when the state
is θ1 (i.e., decrease φ1,2 to 0 and increase φ1,1 by the same amount).
Again, because the receiver is state-matching, she will still follow the
sender’s recommendation, and the sender is weakly better off because
US(θ1, a1) ≥ US(θ1, a2).

Because US(θ2, a1) ≥ US(θ2, a2) and φ1,1 = 1 (as proved above), the sender
will also send σ1 with as much probability as possible when the state is θ2,
subject to not violating the receiver’s incentive to play a1 and not exceeding
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the upper bound b (or b
′
). In other words, the sender maximizes φ1,2 subject

to Eθ∼Γ,σ∼φ(θ) [UR(θ, a1)|σ1] ≥ Eθ∼Γ,σ∼φ(θ) [UR(θ, a2)|σ1] and b ≥ φa1
(or

b
′ ≥ φa1

). Using φ1,1 = 1, the incentive constraint is equivalently expressed
as φ2,1 ≤ p·(UR(θ1,a1)−UR(θ1,a2))

(1−p)·(UR(θ2,a2)−UR(θ2,a1))
. Since this inequality is independent of

the bound and b’ is more restricted than b, the receiver is weakly better off
under the constraint b than under b’.

3. US(θ1, a1) ≤ US(θ1, a2) and US(θ2, a2) ≥ US(θ2, a1)
This case is symmetric to the previous one. Here, the roles of a1 and a2 (and θ1
and θ2) are reversed, and the important constraint becomes the lower bound
b (and b′) rather than the upper bound b.

4. US(θ1, a1) ≤ US(θ1, a2) and US(θ2, a2) ≤ US(θ2, a1)
In this case, the fact that the sender is action-matching together with the
assumed inequalities implies that

US(θ2, a2)
AM≥ US(θ1, a2) ≥ US(θ1, a1)

AM≥ US(θ2, a1) ≥ US(θ2, a2).

Thus, the sender’s utility is the same, regardless of the state and action. As
a result, the sender is indifferent between all signaling schemes. In partic-
ular, fully revealing the state is an optimal strategy for the sender for any
constraint; clearly, this would be best for the receiver.

Thus, for all four cases, the receiver will be no worse off under the more
binding constraint. �	

3.1 Necessity of Partial Alignment

Our main Theorem 2 assumes that the sender is partially aligned with the
receiver (in addition to the state space being binary). One may ask whether
the partial alignment is necessary, or whether a more constrained receiver is
always better off with binary state and action spaces. Here, we show that the
assumption is necessary, by giving a 2 × 2 example under which the receiver is
worse off when more constrained.

The sender’s and receiver’s utility functions are given in Table 1. Here, 0 <
ε 
 1. The prior distribution over states is p = 1

4 .

Table 1. Sender’s and Receiver’s Utility in the example without partial alignment

θ1 θ2
a1 2 3

a2 1 0

(a) Sender’s Utility

θ1 θ2
a1 1 ε

a2 0 1

(b) Receiver’s Utility
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The sender prefers action a1 in both states, and the receiver is state-matching.
Notice that the sender is not action-matching: when the receiver plays a1, the
sender prefers the state θ2 over θ1. We write σi for the sender’s signal suggesting
action ai, i ∈ {1, 2}.

We will compare the receiver’s expected utilities in the following two settings:

1. There are (effectively) no constraints, i.e., ba1 = 1, ba1
= 0, ba2 = 1, ba2

= 0.
2. The constraint profile binds the sender-preferred action to at most its prior

probability, i.e., b
′
a1

= 1
4 , b′

a1
= 0, b

′
a2

= 1, b′
a2

= 0.

The first setting is the classical Bayesian persuasion problem: the sender’s
optimal signaling strategy can be obtained by the concavification approach pre-
sented in [21], and is the following: Send σ1 with φ1,1 = 1 and φ2,1 = 1

3 ; send σ2

with φ1,2 = 0 and φ2,2 = 2
3 . Given this commitment, the receiver’s expected util-

ity is 1+ε
2 when receiving σ1 (because θ1 and θ2 are equally likely to occur), and

her expected utility is 1 when receiving σ2. Thus, the receiver’s overall expected
utility is 3+ε

4 .
In the second setting, the sender cannot send the signal σ1 as frequently

as in the unconstrained case. When the sender is forced to reduce P[σ1], he
prefers to reduce the probability φ1,1 instead of φ1,2. This is because US(θ2, a1)−
US(θ2, a2) > US(θ1, a1)−US(θ1, a2). However, reducing φ1,1 solely may cause the
signal σ1 to not be persuasive any more, when the posterior belief violates the
incentive constraint. Hence, the sender’s optimal signaling strategy requires him
to maximize the total probability of σ1, under the constraint that the receiver
is still willing to take action a1 under σ1. Thus, the sender’s optimal signaling
scheme is the following: Send σ1 with φ1,1 = 1

2 and φ2,1 = 1
6 ; send σ2 with

φ1,2 = 1
2 and φ2,2 = 5

6 .
Against this signaling scheme, the receiver’s best response to σ1 is taking

action a1, with an expected utility of 1+ε
2 . Her best response to σ2 is taking

action a2, with an expected utility of 5
6 . Hence, the receiver’s expected utility is

6+ε
8 under the constraints 〈b′, b

′〉.
In summary, the receiver’s expected utility of 3+ε

4 in the first setting is higher
than her utility of 6+ε

8 in the second setting. Thus, we have exhibited an example
where a more constrained receiver is worse off than a less constrained one.

4 Failure of the Main Result with Larger State Spaces

Unfortunately, contrary to the case of binary state and action spaces, when the
state and action spaces are larger, a state-matching receiver and action-matching
sender (and feasible constraints) are not enough to ensure that the receiver is
always better off when more constrained. Consider the utilities given in Table 2.
There are three states in the world, and correspondingly three actions. The prior
over the states is uniform.
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Table 2. An example where a constrained receiver is worse off

θ1 θ2 θ3
a1 10 10 0

a2 0 2 2

a3 0 0 1

(a) Sender’s Utility

θ1 θ2 θ3
a1 4 2 0

a2 0 3 1

a3 0 1 3

(b) Receiver’s Utility

θ1 θ2 θ3
σ1 1 1

2
0

σ2 0 1
2

1
2

σ3 0 0 1
2

(c) Sender-optimal signaling
scheme when ba1 = 1

2

Notice that the receiver is state-matching, and the sender is action-matching.

Unconstrained Receiver. First, consider an unconstrained receiver. The sender’s
optimal signaling scheme φ is to recommend action a1 whenever the state of the
world is θ1 or θ2, and recommend action a3 otherwise.

To verify that the receiver follows the recommendation, one simply compares
the utility from the alternative actions: when the sender recommends a1, fol-
lowing the recommendation gives the receiver expected utility 1

2 · 4 + 1
2 · 2 = 3,

while a2 would give utility 1
2 · 0 + 1

2 · 3 = 3
2 , and a3 would give 1

2 · 0 + 1
2 · = 1

2 .
For the recommendation of a3, the receiver gets to match the state deterministi-
cally, so following the recommendation is optimal. Because the signaling scheme
is even ex post incentive compatible for the receiver, it is most definitely ex ante
incentive compatible.

To see that this signaling scheme is optimal for the sender, first observe that
for states θ1 and θ2, the sender obtains the maximum possible utility of 10 over
all actions. For state θ3, the sender would prefer the receiver to play action a2.
However, the only way to get the sender to play a2 is to mix at least one unit of
probability of θ2 per unit of probability of θ3. While this increases the sender’s
utility for the unit of probability from θ3 from 1 to 2, it decreases his utility for
the unit of probability from θ2 from 10 (since the receiver played a1) to 2. Thus,
the given signaling scheme is sender-optimal.

Under this signaling scheme, the receiver’s expected utility can be calculated
as 2

3 · ( 12 · 4 + 1
2 · 2) + 1

3 · 3 = 3.

Adding a Non-trivial Constraint. Now, consider a receiver constrained by an
upper bound ba1 = 1

2 . Table 2c shows the sender-optimal signaling scheme. Here,
the entries show the conditional probability φi,j of recommending action aj (i.e.,
sending signal σj) when the state is θi.

First, notice that action a1 is recommended with probability 1
2 , so the con-

straint is satisfied. Second, the receiver will follow the sender’s recommendation,
as can be checked by comparing her utility from each of the three actions con-
ditioned on any signal. (In the case of receiving σ2, she is indifferent between a2

and a3—recall that we assume tie breaking in favor of the sender.) Again, the
given signaling scheme is even ex post incentive compatible, so in particular, it
is also ex ante incentive compatible.

To see that the signaling scheme is optimal for the sender, first notice that
he induces action a1 (under states θ1 or θ2) with the maximum probability of 1

2 .
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Also, notice that using all of the probability from θ1 to induce a1 is optimal for
the sender, because under θ1, if any action other than a1 is played, the sender’s
utility is 0. Because 1

6 unit of probability from θ2 yields a recommendation of a1,
at most 1

6 can yield a recommendation of a2, which gives the next-highest utility
for the sender. And because the receiver will choose a2 only when the conditional
probability of θ2 is at least as large as that of θ3, action a2 is induced with the
maximum possible probability of 1

3 . Inducing any other actions for any of the
states would yield the sender utility 0. Hence, the given signaling scheme is
optimal for the sender.

Under this signaling scheme, the receiver’s expected utility is 1
2 · ( 23 · 4 + 1

3 ·
2) + 1

3 ( 12 · 3 + 1
2 · 1) + 1

6 · 3 = 17
6 .

Thus, the constrained receiver’s utility of 17
6 is lower than the unconstrained

receiver’s of 3.

5 Discussion

We showed that a state-matching receiver, facing an action-matching sender
under a binary state space, obtains weakly higher utility when more constrained.
We believe that such behavior is in fact observed in the real world: for example,
recommenders tend to be more careful in whom they nominate for particularly
selective awards or positions.

5.1 Larger State/Action Spaces

As we discussed in Sect. 4, our results do not carry over to larger state spaces.
Indeed, even for state spaces with three states, in which the receiver tries to
minimize the distance between the action and the state of the world, there are
counter-examples under which a constrained receiver is worse off.

While the result does not hold in full generality with three (or more) states,
by imposing additional conditions, a positive result can be recovered:

Proposition 2. Assume that the state space has size |Θ| = 3, and that the
receiver is state-matching and the sender is action-matching. In addition, assume
that the following two conditions are satisfied.

1. The sender has a monotone3 preference over actions across all states, i.e.,
US(θi, a1) ≥ US(θi, a2) ≥ US(θi, a3) for all i.

2. For every state i, the receiver is worse off choosing an action j < i that
is too low compared to choosing an action k > i that is too high4: that is,
UR(θi, aj) ≤ UR(θi, ak) for all j < i < k.

Then, a more constrained receiver is never worse off than a less constrained one.

3 The result holds symmetrically if the order is reversed.
4 Notice that in the case |Θ| = 3, this constraint only applies to i = 2, j = 1, k = 3.

We phrase it more generally to set the stage for a further generalization below.
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The additional assumptions on the sender side capture a stronger version of
the utility relationship of the interesting cases in the proof of Theorem 2. They
are motivated in many of our cases: for instance, a letter writer may want to
obtain the highest possible honor (or salary) for a student, or a prosecutor may
want to maximize the sentence of a defendant.

The additional assumption on the receiver side would capture a cautious
department or judge, who would prefer to err on the side of not inviting weak
candidates (or giving awards to undeserving candidates), or giving the defendant
a sentence that is too low rather than ever giving too high of a sentence.

While Proposition 2 shows that with enough assumptions, a positive result
can be recovered, we believe that the assumptions are still rather restrictive,
meaning that the proposition is likely of limited interest. The proof involves a
long and tedious case distinction, and we therefore do not include it in the paper.

For fully general state spaces (i.e., n = |Θ| ≥ 3), we can currently obtain a
positive result only by imposing even more assumptions on the utility functions.
In addition to the (generalization of) the assumptions from Proposition 2, we
can make the following assumptions: (1) Whenever j < i, the sender’s utility
difference between actions j < j′ is larger under state θi than under state θi′

for i′ > i. In other words, when the state of the world is smaller, the sender
is more sensitive to changes in the receiver’s action. (2) For any fixed state θi,
the receiver’s utility as a function of j (the action) is increasing and convex for
j ≤ i, and decreasing and convex for j ≥ i. By adding these two assumptions, we
can again obtain a result that a constrained receiver is always weakly better off
than an unconstrained one. While it is possible to construct reasonably natural
applications which satisfy these conditions, the conditions are far from covering a
broad class of Bayesian persuasion settings. For this reason, we are not including
a proof of this result, instead considering the discussion as a point of departure
towards identifying less stringent assumptions that may enable positive results.

Whether there is a broad and natural class of Bayesian persuasion instances
with more than two states of the world in which the insight “A more constrained
receiver is better off” from Theorem 2 carries over is an interesting direction for
future research.

5.2 Finding Optimal Signaling Schemes

While the main focus of our work is on the receiver’s utility when more
constrained, our model also raises an interesting computational question, as
briefly discussed in Sect. 2.3. In particular, we do not know whether there is a
polynomial-time algorithm which—given the sender’s and receiver’s utility func-
tions as well as the constraints on the receiver—finds a sender-optimal signaling
scheme. Since probability constraints on receivers (quotas) are quite natural in
many signaling settings, this constitutes an interesting direction for future work.

The main difficulty in applying standard techniques is that the constraints
may force the receiver to play an ex post suboptimal action. The standard LP for
the sender’s optimization problem [14] maximizes the sender’s expected utility
subject to the constraint that the receiver is incentivized to play the sender’s
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recommended action. To appreciate the difference, consider a setting in which
the state of the world is uniform over {θ1, θ2}, and the sender and receiver both
obtain utility 1 if the receiver plays action a1, and 0 otherwise. Without any
constraints, the sender need not send any signal, and the receiver would simply
play action a1. But if the receiver is constrained to playing action a1 with prob-
ability exactly 1

2 , then she must randomize, including the (always suboptimal)
action a2 with probability 1

2 . By Proposition 1, the randomization can be pushed
to the sender instead, but when the sender recommend action a2, it will be ex
post suboptimal for the receiver to follow the recommendation. Indeed, an LP
requiring deterministic ex post obedience from the sender would become infeasi-
ble for this setting. Whether the sender’s optimization problem can still be cast
as a different LP, or solved using other techniques, is an interesting direction.

We remark here that the preceding example does not have a state-matching
receiver. If the receiver is state-matching and the constraints are feasible, then
full revelation of the state is ex post incentive compatible for the receiver. This
implies that the linear program for optimizing the sender’s utility over ex post
incentive compatible signaling schemes has a feasible solution. However, since
the LP is more restricted, it is not at all clear that its optimum solution maxi-
mizes the sender’s utility when the recommendation does not have to be ex post
incentive compatible.

5.3 Receiver’s Strategic Behaviors on Constraint Enforcement

We assumed throughout the paper that the receiver’s constraints are common
knowledge, and that enforcing the constraints is indeed required of the receiver
(or in her best interest). Aside from the interview example provided in Sect. 1,
such constraints are encountered in real-world scenarios such as a patient’s
dietary restrictions, the salary cap for a sports team, or the capacity limit of
an event or facility.

Given that we showed constraints to be beneficial for the receiver, one may
suspect that a receiver could strategically misrepresent how harsh her constraints
are, or—along the same lines—claim to be constrained, but not enforce the
claimed constraints. This would allow the receiver to obtain more information
from a sender. In other words, when constraints are not common knowledge, they
become private information of the receiver, which could be strategically manip-
ulated; for instance, in the interview example, Alice could indicate a constraint
just to force Bob’s hand.

Naturally, allowing strategic manipulation in the model will significantly com-
plicate the problem, either making it a dynamic information design problem [15]
with multiple senders [1] or a mechanism design problem with incorporated infor-
mation design modules [32]. Analyzing a model with private receiver constraints
thus constitutes an interesting directions for future work.
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Abstract. We study the performance of the discriminatory price auc-
tion under the uniform bidding interface, which is one of the popular
formats for running multi-unit auctions in practice. We undertake an
equilibrium analysis with the goal of characterizing the inefficient mixed
equilibria that may arise in such auctions. We consider bidders with
capped-additive valuations, which is in line with the bidding format,
and we first establish a series of properties that help us understand the
sources of inefficiency. Moving on, we then use these results to derive
new lower and upper bounds on the Price of Anarchy of mixed equilib-
ria. For the case of two bidders, we arrive at a complete characterization
of inefficient equilibria and show an upper bound of 1.1095, which is also
tight. For multiple bidders, we show that the Price of Anarchy is strictly
worse, improving the best known lower bound for submodular valuations.
We further present an improved upper bound of 4/3 for the special case
where there exists a “high” demand bidder. Finally, we also study Bayes-
Nash equilibria, and exhibit a separation result that had been elusive so
far. Namely, already with two bidders, the Price of Anarchy for Bayes-
Nash equilibria is strictly worse than that for mixed equilibria. Such
separation results are not always true (e.g., the opposite is known for
simultaneous second price auctions) and reveal that the Bayesian model
here introduces further inefficiency.

1 Introduction

Multi-unit auctions form a popular transaction means for selling multiple units of
a single good. They have been in use for a long time, and there are by now several
practical implementations across many countries. Some of the most prominent
applications involve government sales of treasury securities to investors [6], as
well as electricity auctions (for distributing electrical energy) [18]. Apart from
governmental use, they are also run in other financial markets, and they are being
deployed by various online brokers [16]. In the economics literature, multi-unit
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auctions have been a subject of study ever since the seminal work of Vickrey [23],
and some formats were conceived even earlier, by Friedman [10].

The focus of our work is on the welfare performance of the discriminatory
price auction, which is also referred to as pay-your-bid auction. In particular, we
study the uniform bidding interface, which is the format most often employed
in practice. Under this format, each bidder submits two parameters, a monetary
per-unit bid, along with an upper bound on the number of units desired. Hence,
each bidder is essentially asked to declare a capped-additive curve (a special case
of submodular functions). The auctioneer then allocates the units by satisfying
first the demand of the bidder with the highest monetary bid, then moving to
the second highest bid, and so on, until there are no units left. As a price, each
winning bidder pays his bid multiplied by the number of units received.

It is easy to see that the discriminatory price auction is not a truthful mech-
anism, and the same holds for other formats used in practice. Consequently, in
the more recent years, a series of works have studied the social welfare guaran-
tees that can be obtained at equilibrium. The outcome of these works is quite
encouraging for the discriminatory price auction. Namely, pure Nash equilibria
are always efficient, whereas for mixed and Bayes-Nash equilibria, the Price of
Anarchy is bounded by 1.58 [13] for submodular valuations. These results sug-
gest that simple auction formats can attain desirable guarantees and provide
theoretical grounds for the overall success in practice.

Despite these positive findings, there has been no progress on further improv-
ing the current Price of Anarchy bounds. The known lower bound of 1.109 by [8]
is quite far from the upper bounds derived by the commonly used smoothness-
based approaches, [13,22], which however do not seem applicable for producing
further improvements. We believe the main difficulty in getting tighter results is
that one needs to delve more deeply into the properties of Nash equilibria. But
obtaining any form of characterization results for mixed or Bayesian equilibria is
a notoriously hard problem. Even with two bidders it is often difficult to describe
how the set of equilibria looks like. This is precisely the focus of our work, where
we manage to either partially or fully characterize equilibrium profiles towards
obtaining improved Price of Anarchy bounds, as we outline below.

1.1 Contribution

Motivated by the previous discussion, in Sect. 3 we initiate an equilibrium anal-
ysis for mixed equilibria. We consider bidders with capped-additive valuations,
which is a subclass of submodular valuations, and consistent with the bidding
format. Our results can be seen as a partial characterization of inefficient mixed
equilibria, and our major highlights include both structural properties on the
demand profile (see Theorem 3), as well as properties on the distributions of the
mixed strategies (see Corollary 2, Theorem 4 and Lemma 7).

In Sect. 4, we use these results to derive new lower and upper bounds on the
Price of Anarchy for mixed equilibria. For two bidders, we arrive at a complete
characterization of inefficient equilibria and show an upper bound of 1.1095,
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which is tight.1 For multiple bidders, we show that the Price of Anarchy is
strictly worse, which also improves the best known lower bound for submodular
valuations [8]. We further present an improved upper bound of 4/3 for the special
case where there exists a “high” demand bidder. We believe these latter instances
are representative of the worst-case inefficiency that may arise, and refer to the
relevant discussion in Sect. 4.2. To summarize, our results show that in several
cases, the Price of Anarchy is even lower than the previous bound of [13] and
strengthen the perception that such auctions can work well in practice.

Finally, in Sect. 5, we also study Bayes-Nash equilibria, and we exhibit a
separation result that had been elusive so far: already with two bidders, the Price
of Anarchy for Bayes-Nash equilibria is strictly worse than for mixed equilibria.
Such separation results, though intuitive, do not hold for all auction formats.
For example, in simultaneous second price auctions with submodular valuations
[7], the known tight bounds for mixed equilibria extend to the Bayesian model
via smoothness arguments [19]. This reveals that the Bayesian model in our
setting introduces a further source of inefficiency. Note that to obtain this result,
we transform the underlying optimization of social welfare at equilibrium to a
well-posed variational calculus problem. This technique may be of independent
interest and have other applications in mechanism design.

1.2 Related Work

The work of [1] was among the first ones that studied the sources of inefficiency
in multi-unit auctions. For the discriminatory price auction, the Price of Anar-
chy was later studied in [22], and for bidders with submodular valuations, the
currently best upper bound of e/(e − 1) ≈ 1.58 has been obtained by [13] (both
for mixed and for Bayes-Nash equilibria). These results exploit the smoothness-
based techniques, developed by [19,22]. One can also obtain slightly worse upper
bounds for subadditive valuations, by using a different methodology, based on
[9]. As for lower bounds, the only construction known for submodular valuations
is by [8], yielding a bound of at least 1.109. In parallel to these results, there has
been a series of works on the inefficiency of many other auction formats, ranging
from multi-unit to combinatorial auctions, see among others, [4,5,7,9].

Apart from social welfare guarantees, several other aspects or properties of
equilibrium behavior have been studied. Recently in [17], a characterization of
equilibria is given for a model where the supply of units can be drawn from
a distribution. In the past, several works have focused on revenue equivalence
results between the discriminatory price and the uniform price auction, see e.g.
[2,20]. On a different direction, comparisons from the perspective of the bidders
are carried out in [3].

1 In [8] there is a lower bound of 1.109 that applies to our setting with two bidders
and three units. The lower bound we provide here is just slightly better, but most
importantly, it is tight and can be seen as a generalization of the instance in [8] to
many units.
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For a more detailed exposition on multi-unit auctions and their earlier appli-
cations, we refer the reader to the books [14] and [15]. For more recent appli-
cations, we refer to [6,11,18], for treasury bonds, carbon licence auctions, and
electricity auctions, respectively.

2 Notation and Definitions

We consider a discriminatory price multi-unit auction, involving the allocation
of k identical units of a single item, to a set N = {1, . . . , n} of bidders. Each
bidder i ∈ N has a private value vi > 0, which reflects her value per unit and
a private demand di ∈ Z+ which reflects the maximum number of units bidder
i requires. Therefore, if the auction allocates xi ≤ k units to bidder i, her total
value will be min{xi, di} · vi. We note that this class of valuations is a subclass
of submodular valuations, and includes all additive vectors (when di = k). We
will refer to them as capped-additive valuations.

We focus on the following simple format for the discriminatory price auction,
which is known as the uniform bidding interface. The auctioneer asks each bidder
i ∈ N to submit a tuple (bi, qi), where bi ≥ 0, is her monetary bid per unit (not
necessarily equal to vi), and qi is her demand bid (not necessarily equal to di).
We denote by b = (b1, . . . , bn) the monetary bidding vector, and similarly q
will be the declared demand vector. For a bidding profile (b,q), the auctioneer
allocates the units by satisfying first the demand of the bidder with the highest
monetary bid, then moving to the second highest bid, and so on, until there are
no units left. Hence, all the winners have their reported demand satisfied, except
possibly for the one selected last, who may be partially satisfied. Moreover, we
assume that in case of ties, a deterministic tie-breaking rule is used, which does
not depend on the input bids submitted by the players to the auctioneer (e.g.,
a fixed ordering of the players suffices).

For every bidding profile (b,q), we let xi(b,q) be the number of units allo-
cated to bidder i, where obviously xi(b,q) ≤ qi. In the discriminatory auction,
the auctioneer requires each bidder i to pay bi per allocated unit, hence a total
payment of bi · xi(b,q). The utility function of bidder i ∈ N , given a bidding
profile (b,q), is: ui(b,q) = min{xi(b,q), di}vi − xi(b,q)bi.

Viewed as games, these auctions have an infinite pure strategy space, and we
also allow bidders to play mixed strategies, which are probability distributions
over their set of pure strategies. When each bidder i ∈ N uses a mixed strategy
Gi, she independently draws a bid (bi, qi) from Gi. We refer to G = ×n

i=1Gi as
the product distribution of bids. Under mixed strategies, the expected utility of
a bidder i is E(b,q)∼G[ui(b,q)].

Definition 1. We say that G is a mixed Nash equilibrium when for all i ∈ N ,
all b′

i ≥ 0 and all q′
i ∈ Z+

E
(b,q)∼G

[ui(b,q)] ≥ E
(b−i,q−i)∼G−i

[ui((b′
i,b−i), (q′

i,q−i))] .
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We note that in any equilibrium, if a bidder i declares with positive prob-
ability a bid that exceeds vi, she should not be allocated any unit, since such
strategies are strictly dominated by bidding the actual value vi.

Fact 1. Let G be a mixed Nash equilibrium. The probability that a bidder i is
allocated some units, conditioned that she bids higher than vi, is 0.

In the sequel, we focus on equilibria, where the monetary bids never exceed
the value per unit.

Given a valuation profile (v,d), we denote by OPT (v,d) the optimal social
welfare (which can be computed very easily by running the allocation algo-
rithm of the auction with the true value and demand vector). We also denote by
SW (G) the expected social welfare of a mixed Nash equilibrium G, i.e., equal to
E(b,q)∼G[

∑
i min{xi(b,q), di}vi]. The Price of Anarchy is the worst-case ratio

OPT (v,d)
SW (G) , over all valuation profiles (v,d), and all equilibria G.

We refer to an equilibrium as inefficient when its social welfare is strictly
less than the optimal.

3 Towards a Characterization of Inefficient Mixed
Equilibria

In this section, we derive a series of important properties, that help us understand
better how can inefficient equilibria arise. These properties will help us analyze
the Price of Anarchy in Sect. 4.

3.1 Mixed Nash Equilibria with Demand Revelation

Our first result is that it suffices to focus on equilibria where bidders truthfully
reveal their demand, resulting therefore in a single-parameter strategy space for
the bidders (Theorem 1). We further argue that the inefficiency in equilibria
appears only when the total demand exceeds k (Lemma 1) and therefore this is
what we assume for the rest of the paper.

Theorem 1. Let (v,d) be a valuation profile, and G be a mixed Nash equilib-
rium. Then, for every i ∈ N , and in every pure strategy profile (bi, qi) ∼ Gi,
we can replace qi by di so that the resulting distribution remains a mixed Nash
equilibrium with the same social welfare.

Lemma 1. If
∑

i di ≤ k then the social welfare of any mixed Nash equilibrium
is optimal.

3.2 Existence of Non-empty-handed Bidders

For the rest of the paper we consider only strategy profiles where the bidders’
demand bid matches their true demand. The main goal of this subsection is to
derive Theorem 3, where we show that in any inefficient mixed equilibrium, there
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always exists a bidder such that the total demand of the other winners is strictly
less than k, meaning that at least one item is allocated to him for sure (with
probability one). This is a crucial property for understanding the formation of
inefficient mixed equilibria. To proceed, we give first some further notation to
be used in this and the following sections.

Further Notation. Given Theorem 1, instead of using distributions on tuples
(bi, qi), we suppose that each bidder i ∈ N independently draws only a mone-
tary bid bi from a distribution Bi and we refer to B = ×n

i=1Bi as the product
distribution of monetary bids or just bids from now on. For a bidding pro-
file b, the utility of a bidder i will simply be denoted as ui(b), instead of
ui(b,d). Definition 1 is also simplified, and we say that B is an equilibrium
if Eb∼B[ui(b)] ≥ Eb−i∼B−i

[ui((b′
i,b−i))], for any i and any b′

i ≥ 0. Similarly,
the social welfare of a mixed Nash equilibrium B is given by just SW (B).

For a mixed strategy bidding profile B, we denote by W (B) the set of bidders
with positive expected utility, i.e., W (B) = {j : Eb∼B[uj(b)] > 0}, and let
BW = ×i∈W (B)Bi. Moreover, the support of a bidder i in B is the domain of
the distribution Bi, that i plays under B, denoted by Supp(Bi). We denote by
�(Bi), h(Bi) the leftmost and rightmost points, respectively, in the support of
bidder i. In particular, if the rightmost part of the domain of Bi is a mass point b
or an interval in the form [a, b], then h(Bi) = b, and similarly for �(Bi). In cases
of distributions over intervals, we can safely assume that the domain contains
only closed intervals, because the endpoints are chosen with zero probability. We
further denote by �(BW ), h(BW ) the leftmost and rightmost points, respectively,
of the union of the supports of W (B).

For i = 1, . . . , n we denote by Fi the CDF of Bi and by fi their PDF.
Moreover, given a profile b, it is often useful in the analysis to consider
the vector of bids (thresholds) that a bidder i competes against, denoted by
β(b)−i = (β1(b−i), . . . , βk(b−i)). Here, βj(b−i) is the j-th lowest winning bid
of the profile b−i, for j = 1, . . . , k, so that β(b)−i describes the winning bids
if i didn’t participate. This implies that, under profile b, bidder i is allocated
j = 1, . . . , k − 1 units capped by di, when βj(b−i) < bi < βj+1(b−i) and di

units, when βk(b−i) < bi. We note that because we focus on the uniform bid-
ding interface, some consecutive βj values may coincide and be equal to the bid
of the same bidder. When b−i ∼ B−i, for i = 1, . . . , n, we denote the CDF of
the random variable βj(b−i) as F̂ij , for j = 1, . . . , k. In the next fact, we express
the expected allocation of any bidder i for bidding some α > 0, in terms of the
values F̂ij(α).

Fact 2. Let B−i be a product distribution of bids. Then for all α ≥ 0, where
no bidder other than (possibly) i has a mass point, E

b−i∼B−i

[xi(α,b−i)] =

di∑

j=1

F̂ij(α) .
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Given a bidding profile B, for any bidder i we define F̂ avg
i (x) =

∑di
j=1 F̂ij(x)

di
, to

be the average CDF of the winning bids that bidder i competes against. Note
that F̂ avg

i is a CDF since it is the average of a number of CDFs.

Remark 1. The F̂ij functions are right continuous, as they are CDFs, and more-
over, if the Fi functions have no mass point, the same holds for the F̂ij functions.
Additionally, if for any j, the F̂ij functions are continuous, so is F̂ avg

i , as the
average of continuous functions.

We start by ruling out certain scenarios that cannot occur at inefficient equi-
libria. First, we can safely ignore bidders with zero expected utility, since in any
inefficient mixed Nash equilibrium they do not receive any units.

Lemma 2. Any mixed Nash equilibrium B with at least one bidder with zero
expected utility, but positive expected number of allocated units, is efficient.

Next, we show that to have inefficiency at an equilibrium, there must exist
at least two bidders with positive expected utility.

Lemma 3. Let (v,d) be a valuation profile and B be an inefficient mixed Nash
equilibrium. Then, |W (B)| ≥ 2.

The next warm-up properties involve the expected utility of a bidder under
an equilibrium B, conditioned that she bids within a certain interval or at a
single point. We start with Fact 3, which is a straightforward implication of the
equilibrium definition, and proceed by arguing that no two bidders may bid on
the same point with positive probability. Theorem 2 concludes by stating the
main property regarding the utility of bidders when bidding in their support.

Fact 3. Let B be an equilibrium. For a bidder i, consider a partition of Supp(Bi)
(or of a subset of it) into smaller disjoint sub-intervals, say I1, . . . , I�, such
that Bi has a positive probability on each sub-interval (mass points may also be
considered as sub-intervals). Then, it should hold that Eb∼B[ui(b) | bi ∈ Ir] =
Eb∼B[ui(b)], for every r = 1, . . . , �.

Based on Fact 3, we can obtain the following point-wise version. Variations
of the version below have also appeared in related works, see e.g., [8].

Theorem 2. Given a mixed Nash equilibrium B, bidder i and z ∈ Supp(Bi),
where no other bidder has a mass point on z, Eb−i∼B−i

[ui(z,b−i)] =
Eb∼B[ui(b)].

We further give the following observation regarding the existence of mass
points on �(BW ).

Observation 1. In any inefficient mixed Nash equilibrium B, there can be no
bidders i, j ∈ W (B) such that both Pr[bi = �(BW )] > 0 and Pr[bj = �(BW )] > 0.
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The main theorem of this section follows, stating the existence of a spe-
cial bidder, who always receives at least one unit, and is referred to as
non-empty-handed.

Theorem 3. Let (v,d) be a valuation profile, and let B be any inefficient mixed
Nash equilibrium. Then, there exists a bidder i ∈ W (B), such that

∑

j∈W (B)\{i}
dj ≤ k − 1 .

Proof. On the contrary, suppose that for every i ∈ W (B),
∑

j∈W (B)\{i} dj ≥ k.
Let i be some bidder with � = �(BW ) ∈ Supp(Bi). We distinguish two cases.
Case 1: There exists an interval in the form [�, �+ ε], on which Bi has a positive
probability mass and on which the bidders of W (B) \ {i} have a zero mass. We
note that we also allow ε = 0, i.e., that i has a mass point on � and the other
bidders do not. This means that when bidder i bids within [�, �+ ε], all the other
bidders from W (B) are above him. Since we assumed that the total demand of
W (B) \ {i} is at least k, bidder i does not win any units in this case. Since i
bids with positive probability in [�, � + ε], by Fact 3, we have Eb∼B[ui(b)] = 0,
which contradicts the fact that i ∈ W (b).
Case 2: Note that by Observation 1, it cannot happen that both bidder i and at
least one bidder j ∈ W \ {i}, have a mass point on �. Hence, the only remaining
case to consider is that any mass point that may exist by the bidders is at some
x > �, and there is also no interval starting from � that is used only by bidder i.
Thus, there exists an interval I in the form I = [�, � + ε] for some small enough
ε > 0, and a bidder j ∈ W (B) \ {i}, such that both Bi and Bj contain I in their
support, and have positive probability mass on I without mass points.

By Theorem 2, we obtain that Eb−i∼B−i
[ui(�,b−i)] = Eb∼B[ui(b)] > 0.

This is a contradiction, because by bidding �, bidder i ranks lower than all other
bidders of W (B) with probability one. By our assumption that

∑
j∈W (B)\{i} dj ≥

k, there are no units left for i when she ranks last among W (B), and therefore,
Eb−i∼B−i

[ui(�,b−i)] = 0. ��
The property above already implies the following interesting corollary, that

if all bidders have unit demand, any mixed Nash equilibrium is efficient.

Corollary 1. Let (v,d) be a valuation profile with only unit-demand bidders,
i.e., di = 1 for all i. Then any mixed Nash equilibrium B is efficient.

3.3 The Support and the CDFs of Mixed Nash Equilibria

The existence of a non-empty-handed bidder (Theorem 3) helps us to establish
further properties that characterize the structure of inefficient mixed Nash equi-
libria. These properties (and especially Theorem 4) will be important to establish
the inefficiency results that follow. We start with an observation regarding the
highest bid of any bidder i ∈ W (B), which should be strictly less than vi.
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Observation 2. For any bidder i ∈ W (B), h(Bi) < vi.

The next lemma shows that at any equilibrium B, bidders who are not
non-empty-handed cannot have higher bids in their support than the support of
the non-empty-handed bidders. Moreover, any bidder who is non-empty-handed
does not have a reason to use bids that are higher than the maximum bid of all
other winning bidders. The reason is that if such differences existed, then there
would be incentives to win the same number of units by lowering one’s bid.
Then, Lemma 5 shows that no bidder will bid alone at any point or interval, and
Lemma 6 specifies that no mass points may exist apart from one case.

Lemma 4. Let (v,d) be a valuation profile and B be any inefficient mixed Nash
equilibrium. Then, for any non-empty-handed bidder i, it holds that h(Bi) =
h(BW\{i}) = h(BW ).

Lemma 5. Let (v,d) be any valuation profile and B be any mixed Nash equi-
librium. For all i ∈ W (B), it holds that Supp(Bi) ⊆ ⋃

j∈W (B)\{i} Supp(Bj).

Lemma 6. Let (v,d) be a valuation profile and B be any inefficient mixed Nash
equilibrium.
1) There exists no bidder i ∈ W (B) and no point z ∈ Supp(Bi) \ {�(BW )},
with Fi(z) > limz→z− Fi(z), i.e., there are no mass points among the bidders of
W (B), except possibly the leftmost endpoint of all bidders’ distributions.
2) At most one bidder i ∈ W (B) may have a mass point on �(BW ), in which
case, i is a non-empty-handed bidder.

By combining Theorem 2 and Lemma 6 we get the following Corollary.

Corollary 2. For any inefficient mixed Nash equilibrium B, the following hold:
1) For any bidder i and z ∈ Supp(Bi) \ {�(BW )}, Eb−i∼B−i

[ui(z,b−i)] =
Eb∼B[ui(b)].
2) If there exists a bidder i with Pr[bi = �(BW )] > 0, then i is a non-empty-
handed bidder and Eb−i∼B−i

[ui(�(BW ),b−i)] = Eb∼B[ui(b)].
3) If no non-empty-handed bidder exists with mass point on �(BW ), for any
bidder i with �(BW ) ∈ Supp(Bi), Eb−i∼B−i

[ui(�(BW ),b−i)] = Eb∼B[ui(b)].

Observation 3. For any inefficient mixed Nash equilibrium B, either there
exists a non-empty-handed bidder i ∈ W (B) with a mass point on �(BW ), or
there are at least two non-empty-handed bidders with �(BW ) in their support.

Given any (inefficient) equilibrium, the next theorem specifies the average
CDF of the winning bids that bidder i competes against, i.e., F̂ avg

i , in i’s support.

Theorem 4. Let (v,d) be any valuation profile and B be any inefficient mixed
Nash equilibrium. Then, for i ∈ W (B), the CDF F̂ avg

i satisfies

F̂ avg
i (z) =

ui

di(vi − z)
, ∀z ∈ Supp(Bi) ,

where ui = Eb∼B[ui(b)] > 0.
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A corollary of Theorem 4 is that the union of the support of the winners is
an interval.

Corollary 3. Let (v,d) be any valuation profile and B be any inefficient mixed
Nash equilibrium. Then, for every bidder i ∈ W (B),

⋃
j∈W (B)\{i} Supp(Bj) =

[�(BW ), h(BW )].

The final lemma of this section shows that the rightmost point in the support
of B is a function of the parameters of certain non-empty-handed bidders.

Lemma 7. Let (v,d) be any valuation profile and B be any inefficient mixed
Nash equilibrium. Let i ∈ W (B) be the non-empty-handed bidder such that
Pr[bi = �(BW )] > 0, or if no such bidder exists, then let i be any non-empty-
handed bidder with �(BW ) in his support. We have

h(BW ) = h(Bi) = vi − (k −
∑

j∈W (B)\{i}
dj)

vi − �(BW )
di

.

4 Price of Anarchy for Mixed Equilibria

We can now exploit the properties derived so far for mixed equilibria, in order
to analyze the inefficiency of the discriminatory price auction. Since we focus on
inefficient equilibria, we assume that in any valuation profile considered in this
section, there are at least two bidders with a different value per unit.

4.1 The Case of Two Bidders

We pay particular attention to the case of n = 2. This is a setting where we
can fully characterize in closed form the distributions of the inefficient mixed
Nash equilibria, and derive valuable intuitions for the worst-case instances with
respect to the Price of Anarchy, that are helpful also for auctions with multiple
bidders. The main result of this subsection is the following theorem, showing
that the inefficiency is quite limited.

Theorem 5. For k ≥ 2, n = 2 and capped additive valuation profiles, the Price
of Anarchy of mixed equilibria is at most 1.1095, and this is tight as k goes to
infinity.

We postpone the proof of Theorem 5, as we first need to establish some
properties regarding the form of inefficient mixed Nash equilibria with two
bidders. For n = 2, a capped-additive valuation profile can be described as
(v,d) = ((v1, d1), (v2, d2)). Recall also that it is sufficient to focus our attention
only on profiles where d1 + d2 > k, since otherwise, by Lemma 1 any mixed
equilibrium is efficient. We start our analysis by characterizing the support of
inefficient mixed Nash equilibria.
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Lemma 8. Let (v,d) = ((v1, d1), (v2, d2)) be any capped-additive valuation pro-
file of two bidders, and B = (B1, B2) be any inefficient mixed Nash equilibrium.
Then:

1. Supp(B1) = Supp(B2) = [�(B1), h(B1)], and �(B1) = 0.
2. h(B1) takes one of the following values

h(B1) = v1
d1 + d2 − k

d1
or h(B1) = v2

d1 + d2 − k

d2
.

The following theorem specifies the cumulative distribution functions that
comprise any inefficient mixed Nash equilibrium, along with a necessary condi-
tion for the existence of such equilibria. For a bidder i below, we use the notation
v−i and d−i to denote the value and demand of the other bidder.

Theorem 6. Let (v,d) = ((v1, d1), (v2, d2)) be a capped-additive valuation pro-
file of two bidders, and B = (B1, B2) be any inefficient mixed Nash equilibrium.

1. The cumulative distribution function of bidder i, for i = 1, 2, is

Fi(z) =
1

d1 + d2 − k

(
d−i(v−i − h(Bi))

v−i − z
− (k − di)

)

. (1)

2. Furthermore, for i being the non-empty-handed bidder with a mass point at
0, or if no such bidder exists, being any non-empty-handed bidder, it holds
that v−i

vi
≥ d−i

di
,

Remark 2. By Lemma 8 and Theorem 6, we can see that there can be at most
two inefficient equilibria, depending on how the interval of the support was
determined.

We are now ready to prove Theorem 5.

Proof Sketch of Theorem 5. The properties established so far imply a full
characterization of instances that have inefficient equilibria. To establish Theo-
rem 5, we will group instances into three appropriate classes and we will solve
an appropriately defined optimization problem that approximates the Price of
Anarchy for each subclass to arbitrary precision.

Suppose without loss of generality that we are given a value profile (v,d) =
((v1, d1), (v2, d2)) of k units, such that d1 ≥ d2 > 0. Let d̄1 := d1

k and d̄2 = d2
k ,

be the normalized demands of the bidders. Essentially, we intend to use v1, v2, d̄1
and d̄2 as the variables of the optimization problem mentioned before.

Let B be any inefficient mixed Nash equilibrium. With a slight abuse of
notation we view the term h(Bi) as a function of the valuation profile parameters,
as established by Lemma 8, and define the functions hi(v, d̄) = vi

d̄1+d̄2−1
d̄i

for
i = 1, 2. Our goal now is to express the social welfare of B, solely in terms
of the value profile parameters, (v,d) and k, and without dependencies on the
underlying equilibrium distributions. To proceed, we define first two auxiliary
functions; namely, for i = 1, 2, we let Si(v, d̄) be equal to:

d̄−i(v−i−vi)

(

1 −
∫ hi(v,d̄)

0

1

d̄1 + d̄2 − 1

(
d̄i(vi − hi(v, d̄))

vi − z
− (1 − d̄−i)

)
v−i − hi(v, d̄)

(v−i − z)2
dz

)

+vi .
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With these expressions in mind, the following lemma allows us to obtain the
social welfare in a form that we can later exploit for producing our upper bound.
The lemma follows by Theorem 6, which tells us what the equilibrium CDFs are,
in terms of the valuation profile.

Lemma 9. Let i be a non-empty handed bidder with a mass point at 0. Then,
SW (B) = kSi(v, d̄). If no such bidder exists, then either SW (B) = kS1(v, d̄)
or SW (B) = kS2(v, d̄).

To conclude the proof of the upper bound, we solve a sequence of optimization
problems as determined by the cases arising in the statement of Lemma 9, and
by the ordering of the values v1, v2. By solving these problems numerically, we
found out that in the worst case instance v1 = 1, v2 ≈ 0.526, d̄1 = 1, d̄2 ≈ 0.357.
It is not hard to convert the variables to the underlying worst case instance,
which we present in the next paragraph.

Tight Example. Consider an instance of the discriminatory auction for k ≥ 4
units and n = 2 bidders. Bidder 1 has value v1 = 1 and d1 = k, whereas bidder 2
has a value v2 = 0.526 and d2 = �0.357k� units. Let B1, B2 be two distributions
supported in [0, d2

k ]. Note that v2 > d2
k . In accordance to Equation (1), the

cumulative distribution functions of B1 and B2 are

F1(z) =
v2 − d2

k

v2 − z
, F2(z) =

k − d2
d2

z

1 − z
.

It is easy to verify that B = (B1, B2) is indeed a mixed equilibrium. The optimal
allocation is for bidder 1 to obtain all k units and the expected social welfare
of B, by Lemma 9, is SW (B) = kS1(v, d̄), since F1(0) > 0. The worst case
inefficiency ratio occurs as k grows and is approximately 1.1095. ��

4.2 Multiple Bidders

Inspired by the construction in the previous section, we move to instances with
more than two bidders and provide first a lower bound on the Price of Anarchy.
This bound shows a separation between n = 2 and n > 2, in the sense that equi-
libria can be more inefficient with a higher number of bidders. It also improves
the best known lower bound of the discriminatory price auction for the class of
submodular valuations, which was 1.109, by [8]. The improvement however is
rather small.

Theorem 7. For n > 2, and for the class of mixed strategy Nash equilibria, the
Price of Anarchy is at least 1.1204.

The above bound is the best lower bound we have been able to establish, even
after some extensive experimentation (driven by the results in the remainder
of this section). It is natural to wonder if there is a matching upper bound,
which would establish that the Price of Anarchy remains very small even for
a large number of bidders. Recall that from [13], we know already a bound of
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e/(e − 1) ≈ 1.58. Although we have not managed to settle this question, we will
provide an improved upper bound for a special case, for which there is evidence
that it captures worst-case scenarios of inefficiency. At the same time, we will
be able to characterize the format of such worst case equilibria.

To obtain some intuition, it is instructive to look at the proofs of our two
lower bounds, in Theorem 5 and in Theorem 7. One can notice that the main
source of inefficiency is the fact that the auctioneer accepts multi-unit demand
declarations. When this does not occur, we have already shown in Corollary 1
that mixed Nash equilibria attain optimal welfare. When multi-demand bidders
are present, Theorem 5 shows that in the case of two bidders, the most inefficient
mixed Nash equilibrium occurs when a participating bidder declares a demand
for all the units, whereas the opponent requires a much smaller fraction of the
supply. In the proof of Theorem 7 above, we have extended this paradigm for
multiple bidders with an arbitrary demand structure, but under the assumption
that one of the bidders requires all the units (the additive bidder). Such a setting,
of one large-demand bidder facing competition by multiple small-demand bidders
has also been discussed in [3]. Furthermore, there exist other auction formats that
also needed such a demand profile at their worst case instances, see e.g., [5] for the
uniform price auction. To summarize, it seems unlikely that the worst instances
involve only bidders with low demand or small variation on their demands.

Given the above, we will analyze the family of instances where there exists
an additive bidder (with demand equal to k), and where she also has the high-
est value per unit. In fact, the latter assumption is needed only for the Price
of Anarchy analysis but not for the characterization of the worst-case demand
profile and the equilibrium strategies. We strongly believe that this class is rep-
resentative of the most inefficient mixed Nash equilibria (which is true already
for the case of two bidders).

The main result of this section is the following.

Theorem 8. Consider the class of valuation profiles, where there exists an addi-
tive bidder α with the highest value, and an equilibrium B, such that α ∈ W (B).
Then, the Price of Anarchy is at most 4/3.

The proof of the theorem is by following a series of steps. The existence of
the additive bidder helps in the analysis, because a direct corollary of Theorem
3 is that the additive bidder is the sole non-empty-handed bidder (everyone else
faces competition for all the units).

Corollary 4. (by Theorem 3). Consider a valuation profile (v,d) with an
additive bidder α, that admits an equilibrium B, such that α ∈ W (B). Then, bid-
der α is the unique non-empty-handed bidder under B, thus,

∑
i∈W (B)\{α} di ≤

k − 1 .

To proceed, we ensure that for the instances described by Theorem 8, it
suffices to analyze the equilibria where bidder α belongs to W (B), i.e., there
cannot exist a more inefficient equilibrium B′ of these instances with α ∈ W (B′).
This is addressed by the following lemma.
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Lemma 10. Consider a valuation profile, and suppose that it admits two dis-
tinct inefficient equilibria, B and B′. If i ∈ W (B) is a non-empty-handed bidder
in B, then i ∈ W (B′) .

Using Lemma 10 and Corollary 4, from now on, we fix a bidder α and an
inefficient equilibrium B, so that α is additive and α ∈ W (B).

Corollary 4 already gives us an insight about the competition in such an
equilibrium B. While bidder α will have to compete against the other bidders
of W (B) to win extra units, in addition to those that she is guaranteed to
obtain, each bidder in W (B) \ {α} only competes against α. Each of them is
not guaranteed any units, unless she outbids α (bidder α is the only cause of
externality for bidders in W (B) \ {α}, and anyone bidding lower than α cannot
get any units). If bidder α did not exist, the other winners could be automatically
granted the demand they are requesting since, in total, it is smaller than k and
hence, there is no competition among them.

Observation 4. F̂ avg
i (z) = Fα(z), for every i ∈ W (B) \ {α}, where Fα is the

CDF of bidder α.

We continue with further properties on the support of the mixed strategies.

Lemma 11. For the equilibrium B under consideration, it is true that:

1. Supp(Bα) = [�(BW ), h(BW )].
2. For any two bidders i, j ∈ W (B) \ {α} such that vi = vj, the set Supp(Bi) ∩

Supp(Bj) is of measure 0 (intersection points can occur only at endpoints of
intervals).

Lemma 11 suggests that we can group the bidders according to their values
(since only bidders with the same value can overlap in their support). Let r ≤
|W (B) \ {α}| represent the number of distinct values v1, . . . , vr, that bidders in
W (B) \ {α} have. We can partition the bidders of W (B) \ {α} into r groups
W1(B), . . . ,Wr(B), such that, for j = 1, . . . , r, the bidders in group Wj(B) have
value vj . Similarly, we split the support of the winning bidders [�(BW ), h(BW )]
into r intervals, i.e., [�(BW ), h(BW )] =

⋃r
j=1 Ij(B), where each interval j ∈

{1, . . . , r} is formed as Ij(B) =
⋃

i∈Wj(B) Supp(Bi) . The following is a direct
corollary of Lemma 11.

Corollary 5. For every s, t ∈ {1, . . . , r} with s = t, the set Is(B) ∩ It(B) is of
measure 0.

When all bidders in W (B) \ {α} have distinct values there are precisely
|W (B) \ {α}| intervals, whereas when they all have a common value, they must
be bidding on the entire interval [�(W (B)), h(W (B))] (the equilibrium in the
2-bidder case when d1 = k, in Sect. 4.1, is one such example). We sometimes
denote as I0(B) the interval of losing bidders [0, �(BW )], i.e., for the bidders
in N \ W (B). Note that given B, the only criterion for the membership of the
support of a bidder i in an interval Is(B) is their value.
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The next step is quite crucial in simplifying the extraction of our upper
bound. We show that the worst case demand structure for the bidders in W (B)\
{α} is when they all have unit demand.

Theorem 9. For the value profile (v,d) and the equilibrium B under consid-
eration, there exists another value profile (v′,d′) and a product distribution B′

such that

1. α ∈ W (B′) is an additive bidder and for every bidder i ∈ W (B′) \ {α}, it
holds that d′

i = 1.
2. B′ is a mixed Nash equilibrium for (v′,d′).
3. OPT (v,d)

SW (B) = OPT (v′,d′)
SW (B′) .

For the remainder of the section, it suffices to analyze valuation profiles,
that possess equilibria where the members of W (B) are either additive or unit-
demand. Recall, that due to Corollary 4, there must be a unique additive bidder.
Hence, we fix an instance given by a valuation profile (v,d), so that at the
equilibrium B, the set W (B) consists of n unit-demand bidders plus the additive
bidder α, i.e., n = |W (B) \ {α}|. Moreover, due to the following observation we
may assume, without loss of generality, that the support of each unit-demand
bidder has no overlapping intervals with other bidders from W (B) \ {α}.

Lemma 12. Let (v,d) be a value profile, and let B be any mixed Nash equilib-
rium, such that the members of W (B) are all unit-demand bidders aside from
one additive bidder. Then, there exists a mixed Nash equilibrium B′ with disjoint
support intervals such that SW (B) = SW (B′).

Therefore, by Corollary 5 and the discussion preceding it, the support of
each bidder i = 1, . . . , n is [�(Bi), h(Bi)]. Note that due to Lemma 11, the unit-
demand bidders must cover the entire interval [�(BW ), h(BW )]. Hence, for a
unit-demand bidder i = 1, . . . , n, it must be that �(Bi) = h(Bi−1), assuming for
convenience that h(B0) = �(BW ).

The next theorem provides a more complete understanding of the support
intervals and the distributions of the equilibrium B.

Theorem 10. For the value profile (v,d) under consideration, the following
properties hold:

1. For bidder α, we have h(Bα) = h(Bn) = h(BW ) = vα − (k − n)vα−�(Bα)
k .

Moreover, for every unit-demand bidder i = 1, . . . , n − 1 it holds that

�(Bi+1) = h(Bi) = vα − (k − n)(vα − �(Bα))
k − n + i

.

2. The CDF Fα of bidder α, is a branch function, so that for i = 1, . . . , n,
Fα(z) = F i

α(z) for every z ∈ [h(Bi−1), h(Bi)] with

F i
α(z) =

n∏

j=i+1

(
vj − h(Bj)

vj − h(Bj−1)

)
vi − h(Bi)

vi − z
.
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Before proving our upper bound, we present two additional lemmas. The first
is a straightforward inequality, that is a direct consequence of the definition of a
mixed equilibrium, and the second is an expression for the social welfare. Both
of these are useful for obtaining our final Price of Anarchy upper bound.

Lemma 13. Consider a value profile (v,d), and any inefficient mixed Nash
equilibrium B, with W (B) consisting only of additive or unit-demand bidders.
Then, for i = 2, . . . , n, m = 1, . . . , i − 1, and every z ∈ [h(Bm−1), h(Bm)],

i−1∏

j=m+1

vj − h(Bj)
vj − h(Bj−1)

≤ vm − z

vm − h(Bm)
vi − h(Bi−1)

vi − z
. (2)

Lemma 14. Consider a value profile (v,d), and any inefficient mixed Nash
equilibrium B, with W (B) consisting only of additive or unit-demand bidders.
The expected social welfare is

kvα − (k − n)(vα − �(Bα))

n∑

i=1

n∏

j=i+1

(
vj − h(Bj)

vj − h(Bj−1)

) ∫ h(Bi)

h(Bi−1)

vi − h(Bi)

vi − z

vα − vi

(va − z)2
dz .

Proof of Theorem 8. For brevity, we denote �(Ba) as � and for j = 1, . . . , n,
we denote h(Bj) as hj . Moreover, by assumption va ≥ vn. To simplify the
calculations, we assume that va = 1 by rescaling all values in the instance.

Given a mixed Nash equilibrium B, we lower bound the expected social
welfare SW (B) described in the equation of Lemma 14 as

SW (B) = k − (k − n)(1 − �)
n∑

i=1

n∏

j=i+1

(
vj − hj

vj − hj−1

)∫ hi

hi−1

vi − hi

vi − z

1 − vi

(1 − z)2
dz

= k − (k − n)(1 − �)
n∑

i=1

n∏

j=i+1

(
vj − hj

vj − hj−1

)

(∫ hi

hi−1

vi − hi

vi − z

1
(1 − z)

dz −
∫ hi

hi−1

vi − hi

(1 − z)2
dz

)

> k − (k − n)(1 − �)
n∑

i=1

n∏

j=i+1

(
vj − hj

vj − hj−1

)∫ hi

hi−1

vi − hi

vi − z

1
(1 − z)

dz

≥ k − (k − n)(1 − �)
∫ hn

�

vn − hn

(vn − z)(1 − z)
dz

≥ k − (k − n)(1 − �)
∫ hn

�

1 − hn

(1 − z)2
dz ≥ k − (k − n)(1 − �)

= k − (k − n)(hn − �) = k − (k − n)
(n

k
(1 − �)

)
≥ k − (k − n)n

k
≥ 3

4
k .

The first inequality is true since for all bidders i = 1, . . . , n, it holds that vi > hi

by Observation 2. The second one is an application of the mixed Nash equilibrium
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property encoded by Eq. (2) of Lemma 13. The next two inequalities occur by
observing that the respective functions are increasing in terms of vn (which, by
assumption, we upper bound with vn ≤ 1) and � (which we lower bound with
� ≥ 0). The last inequality follows by setting x = n

k and minimizing the function
s(x) = 1 − x + x2 for x ∈ (0, 1). The theorem follows by observing that the
optimal welfare is k, since the additive bidder has the highest value. ��

5 A Separation Between Mixed and Bayesian Cases

In this section we explore the more general solution concept of Bayes Nash equi-
librium. We consider the following incomplete information setting. Let (vi, di)
be the type of bidder i ∈ N . We suppose that the private value vi of a bidder
i is drawn independently from a distribution Vi. The second part of bidder i’s
type is his demand di; for the purposes of this section (we only construct a lower
bound instance), we assume di to be deterministic private information.

Each bidder i is aware of her own value per unit vi and the product distribu-
tion formed by the Vj ’s, and decides a strategy (bi, qi) ∼ Gi(vi) for each value
vi ∼ Vi. The bidding strategy is in general a mixed strategy. In the special case
that bidder i chooses a single bid (bi(vi), qi) for each drawn value vi, he submits
a pure strategy, where qi is not necessarily di.

Definition 2. Given V = ×n
i=1Vi and d, a profile G(v) is a Bayes Nash equi-

librium if for all i ∈ N , vi in Vi’s domain, b′
i ≥ 0 and q′

i ∈ Z+ it holds that

E
v−i∼V−i

[

E
(b,q)∼G(v)

[uvi
i (b,q)]

]

≥

E
v−i∼V−i

[

E
(b−i,q−i)∼G−i(v−i)

[uvi
i ((b′

i, q
′
i), (b−i,q−i))]

]

,

where uvi
i (·) stands for bidder i’s utility when his value is vi.

We can define the Bayesian Price of Anarchy in the same way as before, by
comparing against the expected optimal welfare, over the value distributions.

Although in a few other auction formats, the inefficiency does not get worse
when one moves to incomplete information games, we exhibit that this is not the
case here. We present a lower bound on the Bayesian Price of Anarchy of 1.1204,
with two bidders. For mixed equilibria and two bidders, Theorem 5 showed that
the Price of Anarchy is at most 1.1095. Although this difference is small, it shows
that the Bayesian model is more expressive and can thus create more inefficiency.
In particular, we stress that the bound obtained here for two bidders is inspired
by the same bound of 1.1204 for mixed equilibria in Theorem 7, where we had
to use a large number of bidders.

Theorem 11. For n = 2, k ≥ 2, and capped additive valuation profiles, the
Price of Anarchy of Bayes Nash equilibria is at least 1.1204.
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Remark 3. When k = 1, there is a lower bound of 1.15 in [12] for the first price
auction. However this requires a very large number of bidders. There is a simpler
construction with two bidders in [21] but it only yields a lower bound of 1.06.
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Abstract. In this paper, we consider the online vertex-weighted bipar-
tite matching problem in the random arrival model. We consider the
generalization of the RANKING algorithm for this problem introduced
by Huang, Tang, Wu, and Zhang [9], who show that their algorithm has
a competitive ratio of 0.6534. We show that assumptions in their analy-
sis can be weakened, allowing us to replace their derivation of a crucial
function g on the unit square with a linear program that computes the
values of a best possible g under these assumptions on a discretized unit
square. We show that the discretization does not incur much error, and
show computationally that we can obtain a competitive ratio of 0.6629.
To compute the bound over our discretized unit square we use paral-
lelization, and still needed two days of computing on a 64-core machine.
Furthermore, by modifying our linear program somewhat, we can show
computationally an upper bound on our approach of 0.6688; any further
progress beyond this bound will require either further weakening in the
assumptions of g or a stronger analysis than that of Huang et al.

Keywords: Bipartite matching · Online algorithms

1 Introduction

In the maximum bipartite matching problem, we are given as input a bipartite
graph G = (U, V,E) such that each edge (u, v) ∈ E has u ∈ U and v ∈ V . A set
F ⊆ E of edges is a matching if there is at most one edge of F incident to each
vertex u ∈ U and v ∈ V . The goal is to find a matching of maximum cardinality.
This problem has been well-studied and is one of the fundamental problems in
combinatorial optimization (see, for example, Schrijver [17, Chapter 16]).

In a classic paper from 1990, Karp, Vazirani, and Vazirani [12] introduce an
online version of this problem and the RANKING algorithm for it. In their online
version of the problem, the vertices V are known to the algorithm in advance,
while the vertices of U are introduced one at a time; we refer to the vertices of
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V as the offline vertices and those of U as the online vertices. The algorithm
maintains a matching F , initially empty. As each vertex u of U arrives, the
edges incident to u are also revealed to the algorithm. Once a vertex u arrives,
the algorithm must either choose an edge incident to u to add to F or decide not
to add an edge incident to u to the matching F . These choices are irrevocable:
no edge incident to u may be added at any later point in time. In the RANKING
algorithm, the algorithm initially chooses a random permutation π of the offline
vertices V ; when a new vertex u ∈ U arrives, the algorithm adds edge (u, v) to
the matching that maximizes π(v) over the vertices v ∈ V that do not have any
edge of F already incident (i.e. the unmatched vertices of V incident to u), if such
a vertex exists, otherwise it leaves u unmatched. Karp, Vazirani, and Vazirani
prove that this algorithm achieves a competitive ratio of at least 1 − 1

e ; that is,
the algorithm finds a matching whose expected cardinality is at least 1− 1

e times
the size of the maximum matching in G. They further show that this ratio is
tight; that is, there are instances of the problem such that no online algorithm
can achieve a better competitive ratio.

Since this work, there have been many simplifications of the original analysis
(e.g. Birnbaum and Mathieu [3]; Devanur, Jain, and Kleinberg [5]), proposed
changes in the online model, and extensions to more general matching prob-
lems. Of interest to us in this paper are the random arrival model, proposed by
Goel and Mehta [7], and the maximum vertex-weighted online matching problem,
introduced by Aggarwal, Goel, Karande, and Mehta [1]. In the random arrival
model, the online vertices of U arrive in an order given by a random permuta-
tion. Goel and Mehta show that the greedy algorithm attains a competitive ratio
of 1 − 1

e in the random arrival model. Later, Karande, Mehta, and Tripathi [11]
and Mahdian and Yan [13] show that the RANKING algorithm has competitive
ratio strictly better than 1 − 1

e in this model, with Mahdian and Yan giving a
competitive ratio of 0.696. In the vertex-weighted version of the problem, the
offline vertices v ∈ V have weight wv ≥ 0, and the goal is to find a matching
F that maximizes the total weight of the matched vertices in V (that is, the
vertices in V that have an incident edge in F ). Aggarwal et al. show that a
generalization of RANKING achieves a 1 − 1

e competitive ratio for the vertex-
weighted version of the problem (with adversarial arrivals). Devanur, Jain, and
Kleinberg [5] later interpreted the Aggarwal et al. algorithm as follows. Each
offline vertex v ∈ V draws a value yv from [0, 1] uniformly at random; when a
new vertex u ∈ U arrives, we add edge (u, v) to matching F for the unmatched
v (if any) that maximizes wv(1 − g(yv)), where g(y) = ey−1.

Huang, Tang, Wu, and Zhang [9] studied the combination of these two
models, the maximum vertex-weighted online matching problem in the random
arrival model. Drawing on the ideas of Devanur et al., they proposed the fol-
lowing further generalization of the RANKING algorithm. In addition to having
each offline vertex v ∈ V draw a value yv from [0, 1], since the online ver-
tices arrive in random order, they propose having each online vertex u ∈ U
draw a value yu ∈ [0, 1] uniformly at random, and have the online vertices
arrive in order of nondecreasing yu. When a new vertex u ∈ U arrives, we add
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edge (u, v) to the matching F for the unmatched v (if any) that maximizes
wv(1 − g(yv, yu)), for a function g with certain properties. Huang et al. assume
that g(x, y) = 1

2 (h(x) + 1 − h(y)) for h : [0, 1] → [0, 1], and end up choos-
ing h(x) = min(1, 1

2ex) to achieve a competitive ratio of 0.6534, beating the
1 − 1

e ≈ 0.632 competitive ratio achieved by Aggarwal et al. in the adversarial
arrival model.

1.1 Our Contributions

We build upon the work of Huang et al. to give a competitive ratio of 0.6629 for
the maximum vertex-weighted online matching problem in the random arrival
model. We begin by showing that several assumptions Huang et al. make about
the form of g(x, y) needed for the analysis of their generalization of RANKING
can be relaxed. Instead, we can make several weaker assumptions about the form
of g(x, y). These assumptions can be encoded in a linear program that allows us
to produce the best possible piecewise-affine function g : [0, 1]2 → [0, 1] under
these assumptions for any given discretization of [0, 1]2.

We then need to compute the competitive ratio by finding a point in [0, 1]2

where g reaches a certain minimum of a complicated function of g given by
Huang et al. To do this, we show that the error in the competitive ratio achieved
by restricting ourselves to finding the minimum in the set of discretized points
is linear in the size of the discretization, so we can restrict ourselves to checking
just the points in this set if we are willing to tolerate some small error. We note
that the checking is easily parallelizable, and we wrote our code to use all the
cores of the machine on which it is run. Even so, we still needed two days of a
64-core, 64 GB machine on Amazon’s EC2 platform to achieve our competitive
ratio of 0.6629.

Because we use a linear program to find the function g, we can also use a
slight modification of it to find an upper bound on the best possible competitive
ratio obtainable using the Huang et al. analysis with our weakened assumptions
on g. We modify the linear program so that any function g with our weakened
assumptions is feasible, and modify the objective function so that it gives an
upper bound on the ratio obtained via the Huang et al. analysis. Solving the lin-
ear program results in an upper bound of 0.6688. Thus any further improvement
in the competitive ratio will require either further weakening in the assumptions
of g or a stronger analysis than that of Huang et al.

Mahdian and Yan [13] also use linear programming in their paper for online
unweighted bipartite matching in the random arrival model; in particular, they
use factor-revealing LPs. Our use of LPs is quite different. In the case of [13],
the value of the LP gives a bound on the competitive ratio of the algorithm
for each size of the graph. Here we use the LP to find a function g used in the
analysis of Huang et al. by finding values of the function at points given by a
discretization of the unit square, which we then interpolate into a function over
the entire square. The competitive ratio is then obtained from this interpolated
function as described above.
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While in this paper we focus on the random order model, another well-studied
model for online bipartite matching is the known IID model (also referred to
in the literature as stochastic online matching). In the known IID model, we
assume that there is a known distribution over subsets of offline nodes, and each
online vertex has its neighbouring set drawn iid from the distribution. This is a
strictly stronger assumption than random order; any algorithm that achieves a
competitive ratio of α under the random order model will achieve a competitive
ratio of at least α under the known IID model [16]. The known IID model was
introduced by Feldman et al. [6], who gave a 0.67-competitive algorithm on
unweighted graphs under the additional assumption that the expected number
of arriving nodes of each type is an integer. The competitive ratio was gradually
improved (and the integral rates assumption relaxed in some cases) in a series
of works by Bahmani and Kapralov [2], Manshadi et al. [14], Jaillet and Lu
[10], Brubach et al. [4], and Huang and Shu [8]. In particular, Huang and Shu [8]
recently gave a 0.7009-competitive algorithm for vertex-weighted online bipartite
matching under the known iid model. It is worth noting that this does not
subsume our result, because known iid is a stronger assumption than random
order.

Paper Structure. Our paper is organized as follows. In Sect. 2, we recap the
argument of Huang et al. that we will use. In Sect. 3, we introduce the weaker
assumptions on the function g that we will use, and prove that the arguments
of Huang et al. continue to hold under these weaker assumptions so that we can
still use their bound on the competitive ratio under these weaker assumptions.
In Sect. 4, we introduce the LP that will define our function g; we show how
to define a piecewise-affine function g from the LP solution, and we show that
the assumptions we need on g hold for this LP-defined function. In Sect. 5, we
provide a bound on the error we incur in the competitive ratio by only checking
the Huang et al. bound at discrete points of the unit square. In Sect. 6, we
explain the computation that was used to obtain our competitive ratio of 0.6629.
Section 7 explains how we modify our linear program to obtain an upper bound
on the competitive ratio that is attainable via the Huang et al. analysis with our
weakened assumptions on g. We conclude in Sect. 8. For space reasons, many
proofs and figures are deferred to the full version of the paper.1

2 Background

As stated in the introduction, we assign each offline vertex v ∈ V a value yv

from [0, 1] chosen uniformly at random, and following Huang et al. we assume
that each online vertex u ∈ U also has a value yu from [0, 1] chosen uniformly
at random, and that the online vertices arrive in nondecreasing order of their yu

value. The variant of the RANKING algorithm for the problem uses a function
g : [0, 1]2 → [0, 1] that is increasing in the first argument and decreasing in the

1 The full version of the paper can be accessed at https://arxiv.org/abs/2007.12823.

https://arxiv.org/abs/2007.12823


Improved Analysis of RANKING for Online Vertex-Weighted Bipartite 211

second. When an online vertex u ∈ U arrives, it is matched to the unmatched
neighbor v ∈ V that maximizes wv(1 − g(yv, yu)).

The analysis of this algorithm by Huang et al. [9] follows that of Devanur,
Jain, and Kleinberg [5]. It considers the linear programming relaxation of the
vertex-weighted bipartite matching problem and its dual linear program, shown
below, with the primal on the left and the dual on the right.

max
∑

(u,v)∈E

wvxuv min
∑

u∈U

αu +
∑

v∈V

αv

s.t.
∑

v:(u,v)∈E

xuv ≤ 1 ∀u ∈ U s.t. αu + αv ≥ wv ∀(u, v) ∈ E

∑

u:(u,v)∈E

xuv ≤ 1 ∀v ∈ V αu, αv ≥ 0 ∀u ∈ U, v ∈ V.

xuv ≥ 0 ∀(u, v) ∈ E.

The goal of the analysis is to find a set of nonnegative variables α, whose
values may depend on the random y values, such that

∑
(u,v)∈F wv =

∑
u∈U αu+

∑
v∈V αv and Ey[αu + αv] ≥ β · wv for all (u, v) ∈ E. (Here, F is the set of

edges in the matching found by the algorithm.) Given the two conditions, it
is possible to define a dual solution that is a factor of β away from the total
weight of the matched edges, implying a competitive ratio of β. Whenever the
algorithm adds a matching edge (u, v) to F , it defines αu = wv · g(yv, yu) and
αv = wv(1 − g(yv, yu)), ensuring that the first condition is met.

The main result of Huang et al. is the following.

Lemma 1 (Lemma 4.1 [9]). Suppose that g(x, y) = 1
2 (h(x) + 1 − h(y)), for

some increasing function h : [0, 1] → [0, 1] that satisfies h′(x) ≤ h(x). Then for
any u ∈ U and v ∈ V such that (u, v) ∈ E,

1
wv

Ey[αu + αv] ≥ min
0≤γ,τ≤1

f(γ, τ)

for

f(γ, τ) =
{

(1 − τ)(1 − γ) + (1 − τ)
∫ γ

0

g(x, τ)dx

+
∫ τ

0

min
θ≤γ

{

(1 − g(θ, y)) +
∫ θ

0

g(x, y)dx +
∫ γ

θ

g(x, τ)dx

}

dy

}

.

Thus, the competitive ratio of RANKING is at least min0≤γ,τ≤1 f(γ, τ).

Huang et al. show that by taking h(x) = min(1, 1
2ex), they can prove that

f(γ, τ) > 1 − 1
2 ln 2 ≈ 0.6534 for all 0 ≤ γ, τ ≤ 1, attaining their claimed

competitive ratio by the reasoning above.
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3 Relaxing Assumptions

Huang et al. assume that g(x, y) = 1
2 (1 + h(x) − h(y)), for some increasing

function h : [0, 1] → [0, 1] that satisfies h′(x) ≤ h(x). This is a strong assumption
and gives several nice properties of g which are useful in the analysis. We relax
this assumption and do not constrain g to satisfy this condition. Instead, we
replace this condition by several weaker conditions. This allows us to search over
a wider class of functions g when trying to maximize the bound in Lemma 1.
However, to leverage their result, we must show that the conclusion of Lemma 1
still holds for all g that satisfy these weaker conditions. We prove the following.

Theorem 1. Let g be a function obeying the following conditions.

1. g(x, y) : [0, 1]2 → [0, 1] is continuous,
2. g(x, y) is increasing in x and decreasing in y,
3. ∂g(x,y)

∂x ≤ g(x, y),2

4. ∂g(x,y)
∂y ≥ g(x, y) − 1, and

5. for all x, y, y′ with y′ > y, we have g(1, y) − g(x, y) ≥ g(1, y′) − g(x, y′).

Then Lemma 4.1 in [9] still holds, and the competitive ratio of the RANKING
algorithm is at least

min
0≤γ,τ≤1

{

(1 − τ)(1 − γ) + (1 − τ)
∫ γ

0

g(x, τ)dx

+
∫ τ

0

min
θ≤γ

{

(1 − g(θ, y)) +
∫ θ

0

g(x, y)dx +
∫ γ

θ

g(x, τ)dx

}

dy

}

(1)

Proof. The result in Lemma 4.1 of [9] follows entirely from facts proved in their
Lemmas 3.3, 3.4, and 3.5. We show that these lemmas continue to hold given
the conditions on g above. These proofs can be found in the full version of the
paper.

From now on, we will refer to the five conditions in Theorem 1 as conditions
1–5.

4 LP Formulation

To find a function g that maximizes the bound in Theorem 1, we discretize [0, 1]2

into an n × n grid for a sufficiently large positive integer n, and write an LP to
search for the values of g on this discretized grid.

2 We use notation for partial derivatives, but the result also holds for non-differentiable
functions, if we use subgradients, etc. In particular,the result holds for the piecewise-
affine functions g we obtain from solving the LP in Sect. 4. To keep the exposition
simple, we will continue using partial derivative notation throughout the paper.
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In Sect. 4.1, we formulate the conditions 1–5, which are the conditions that
any feasible g must satisfy, as constraints in the LP. Next, in Sect. 4.2, we formu-
late the expression in Theorem 1, which is the bound we are trying to maximize,
as an LP objective. Finally, in Sect. 4.3, we will see how to extend the values of
g on the discretized n × n grid, which is what the LP returns, to a function g
defined on the entire unit square.

4.1 Formulating the Constraints

In this section, we show how to formulate the conditions 1–5 as constraints in
the LP.

Fix a positive integer n and let xi = yi = i
n , for i = 0, 1, . . . , n. Our LP will

have variables g(xi, yj), the values of g on the discretized unit square. Next, we
encode the conditions 1–5 as constraints of the LP. Below are the conditions,
and their corresponding LP constraints:

1. g(x, y) : [0, 1]2 → [0, 1] and g is continuous. The corresponding LP constraints
are 0 ≤ g(xi, yj) ≤ 1, for all i, j = 0, 1, . . . , n. Note that we do not include
any constraints to enforce the continuity of g, since the aim of the LP is to
determine the value of g at a discretized set of points.

2. g(x, y) is increasing in x and decreasing in y. The corresponding LP constraints
are

– g(xi, yj) ≤ g(xk, yj) for all 0 ≤ i, j, k ≤ n with i ≤ k;
– g(xi, yj) ≥ g(xi, yl) for all 0 ≤ i, j, l ≤ n with j ≤ l.

3. ∂g(x,y)
∂x ≤ g(x, y). We discretize this constraint to create the following LP con-

straints:
– g(xi+1,yj)−g(xi,yj)

xi+1−xi
≤ g(xi, yj+1) for all 0 ≤ i, j ≤ n − 1

– g(xi+1,yn)−g(xi,yn)
xi+1−xi

≤ g(xi, yn) for all 0 ≤ i ≤ n − 1

Remark 1. It is more natural to encode the constraints as g(xi+1,yj)−g(xi,yj)
xi+1−xi

≤
g(xi, yj) for all 0 ≤ i ≤ n − 1, 0 ≤ j ≤ n. Since g(xi, yj+1) ≤ g(xi, yj), our
constraints are even stronger. We do this because when we extend g from its
discretized values to a function defined on the entire unit square, this slightly
stronger version of the constraint will be needed to show that the extended
function also satisfies the condition.

4. ∂g(x,y)
∂y ≥ g(x, y) − 1. As with the previous constraint, the corresponding LP

constraints are
– g(xi,yj+1)−g(xi,yj)

yj+1−yj
≥ g(xi+1, yj) − 1, for all 0 ≤ i, j ≤ n − 1

– g(xn,yj+1)−g(xn,yj)
yj+1−yj

≥ g(xn, yj) − 1, for all 0 ≤ j ≤ n − 1.
5. For all x, y, y′ with y′ > y, g(1, y) − g(x, y) ≥ g(1, y′) − g(x, y′). The corre-

sponding LP constraints are

g(xn, yj) − g(xi, yj) ≥ g(xn, yl) − g(xi, yl) for all 0 ≤ i, j ≤ nwith l > j.
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4.2 Formulating the Objective

The expression we are trying to maximize is given in (1). To formulate this
approximately as an LP objective, we

1. Approximate the min0≤γ,τ≤1 and minθ≤γ expressions by minimizing over a
finite set of values, and

2. Approximate the integrals by finite sums.

We begin by letting f(γ, τ) be the expression inside the outermost min, so that
the bound is equal to min0≤γ,τ≤1 f(γ, τ). Since we cannot check all values of γ
and τ , we approximate it by min0≤i,j≤n f(xi, yj). We write this as a linear objec-
tive using the standard trick of introducing a dummy variable t, and maximizing
t subject to t ≤ f(xi, yj) for all 0 ≤ i, j ≤ n.

Next, we must write constraints to model f(xi, yj). We replace the inner
minθ≤xi

by a minimum over the discretized grid: minθ≤xi
becomes minxk≤xi

.
For each integral that appears in the expression for f , we replace it by a left
Riemann sum. For example, the integral

∫ xi

0
g(x, yj)dx would be replaced by

1
n

∑i−1
k=0 g(xk, yj).

With these approximations, we can approximate f(xi, yj) as a linear function
f̃(xi, yj) of the g(xi, yj) variables:

f(xi, yj) ≈ f̃(xi, yj) = (1 − xi)(1 − yj) + (1 − yj) · 1
n

i−1∑

k=0

g(xk, yj)

+
1
n

j−1∑

l=0

min
k≤i

{

(1 − g(xk, yl)) +
1
n

k−1∑

d=0

g(xd, yl) +
1
n

i−1∑

d=k

g(xd, yj)

}

Hence, to summarize this section and Sect. 4.1, the full linear program we
use the compute the values of g on the discretized n × n grid is as follows:

max t

s.t. t ≤ f̃(xi, yj) for all 0 ≤ i, j ≤ n

and such that gsatisfies the constraints from Sect. 4.1.

4.3 Extending the Discretized Function to the Unit Square

The linear program gives us values of g on any given discretization of [0, 1]2, but
to use the bound in Theorem 1 we must extend g to be defined on the entire
unit square, and show that this extended function satisfies conditions 1–5. To
extend g from its values on an n×n grid to a function defined on the entire unit
square, we triangulate the n × n grid as shown in Fig. 1.

For a point (x, y) on a gridpoint, its function value is given by the LP. For
any other point (x, y), we define g(x, y) to be a convex combination of the func-
tion values on the three vertices of the triangle containing (x, y). More pre-
cisely, suppose (x, y) is contained in the triangle with vertices (a1, b1), (a2, b2),
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and (a3, b3), where the (ai, bi) are gridpoints. (See Fig. 2.) Then we define
g(x, y) = λ1 · g(a1, b1) + λ2 · g(a2, b2) + λ3 · g(a3, b3), where λ1, λ2, λ3 are
the unique coefficients that satisfy λ1, λ2, λ3 ≥ 0, λ1 + λ2 + λ3 = 1 and
(x, y) = λ1 · (a1, b1) + λ2 · (a2, b2) + λ3 · (a3, b3). Geometrically, the extended
function is piecewise affine – it is affine on each triangle.

Fig. 1.
Triangulating the
grid. Here, n = 4.

Fig. 2. Extending the
function values to a point
inside a triangle.

Fig. 3. Illustration of the proof
of Condition 3.

We now prove that the extended function satisfies conditions 1–5. We list the
conditions below, and prove that the extended function satisfies them:

1. g(x, y) : [0, 1]2 → [0, 1] and g is continuous. The extended function takes val-
ues in [0, 1] because its values are convex combinations of its values on the
discretized grid, which are in [0, 1]. It is continuous because it is piecewise
affine.

Fig. 4. Figures used in the proof of Condition 2.
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2. g(x, y) is increasing in x and decreasing in y. We will show that g is increasing
in x; the proof that it is decreasing in y is similar.
Let (a1, b) and (a2, b) be points in the unit square, with a1 ≤ a2. We must
show that g(a1, b) ≤ g(a2, b). First, observe that it suffices to show this when
the two points are contained in the same triangle. This is because if (a1, b) and
(a2, b) were contained in different triangles, then the horizontal line segment
l from (a1, b) to (a2, b) can be divided from left to right into a sequence of
segments (say l1, . . . , lk), each of which is contained in a single triangle. Then
the fact that g is increasing on each smaller segment li would imply that g is
increasing on l. (For an illustration of this, see Fig. 4a.)
So, we can assume (a1, b) and (a2, b) are contained in the same triangle.
Without loss of generality, suppose (a1, b) and (a2, b) are both contained in
the lower-leftmost triangle; that is, the triangle with vertices (0, 0), (x1, 0),
and (0, y1); the proof for any other triangle is the same. See Fig. 4b.
Note that (a1, b) and (a2, b) are both on the line segment from (0, b) to ( 1

n −
b, b). Since g is piecewise affine in any triangle, it follows that g(a1, b) =
(1 − λ1) · g(0, b) + λ1 · g( 1

n − b, b), where 0 ≤ λ1 ≤ 1 satisfies λ1 · ( 1
n − b) = a1.

Similarly, g(a2, b) = (1−λ2)·g(0, b)+λ2 ·g( 1
n −b, b), where 0 ≤ λ2 ≤ 1 satisfies

λ2 · ( 1
n − b) = a2. Now, since a1 ≤ a2, it follows that λ1 ≤ λ2. Therefore, to

show that g(a1, b) ≤ g(a2, b) it suffices to show that g(0, b) ≤ g( 1
n − b, b).

To see this, we note that g(0, b) = (1−λ) ·g(0, 0)+λ ·g(0, 1
n ), where 0 ≤ λ ≤ 1

satisfies λ
n = b. Similarly, g( 1

n − b, b) = (1 − λ) · g( 1
n , 0) + λ · g(0, 1

n ). Since
g( 1

n , 0) ≥ g(0, 0) (this was a constraint in the LP), it follows that g(0, b) ≤
g( 1

n − b, b), as needed.
3. ∂g(x,y)

∂x ≤ g(x, y). Consider a horizontal line segment l between two adjacent
gridpoints, say between (xi, yj) and (xi+1, yj). In the triangulation, l is adja-
cent to two triangles: one triangle T1 below it and one triangle T2 above it. (If
yi = 0 or yi = 1, then l is only adjacent to one triangle, but the same argu-
ment still goes through.) See Fig. 3 for an illlustration. Because g is piecewise
affine in each triangle, it follows that ∂g(x,y)

∂x is constant on T1 ∪ T2, and is
equal to the slope of l. Recall that the LP imposes the following constraint
on the slope of l:

slope(l) =
g(xi+1, yj) − g(xi, yj)

xi+1 − xi
≤ g(xi, yj+1)

Because g is increasing in x and decreasing in y, we note that g(xi, yj+1) ≤
inf{g(x, y) : (x, y) ∈ T1 ∪ T2}. Thus ∂g(x,y)

∂x ≤ g(x, y) holds on T1 ∪ T2.
Because any triangle is adjacent to some horizonal line segment in the grid,
this argument shows that ∂g(x,y)

∂x ≤ g(x, y) holds for all (x, y) in the unit
square, and we are done.

4. ∂g(x,y)
∂y ≥ g(x, y) − 1. The proof of this is similar to the proof of the previous

condition.
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5. Forallx, y, y′withy′ > y, g(1, y) − g(x, y) ≥ g(1, y′) − g(x, y′).
Let F = {0, 1

n , 2
n , . . . , 1}. If x, y, y′ ∈ F , then the condition holds, because

these were constraints imposed by the LP.
Suppose now (x, y) lies in the interior of some triangle T . Fix x and y′, and
imagine varying y up and down such that (x, y) remains inside T . Let I be
the range of values of y such that (x, y) remains inside T . Since g is affine
on each triangle, it follows that ∂

∂y (g(1, y) − g(x, y)) is constant for all y in
I. Therefore (by moving y in the direction that decreases the LHS of the
inequality if necessary), it suffices to prove the inequality in the case (x, y) is
on the boundary of a triangle. Similarly, we may assume that (x, y′) lies on
the boundary of a triangle.
Suppose (x, y) and (x, y′) both lie on hypotenuses (see Fig. 5). The case where
one or both of the points lie on a base of a triangle is very similar (and easier),
so we will omit it here.
Let h1 and h2 be the two endpoints of the hypotenuse containing (x, y),
with h1 lower than h2. Similarly, define h′

1 and h′
2. Let b1 and b2 be the

two endpoints of the vertical grid segment containing (1, y). Similarly, define
b′
1 and b′

2. We will use the fact that the inequality holds for the gridpoints
(b1, h1, b

′
1, h

′
1) and the gridpoints (b2, h2, b

′
2, h

′
2) to deduce that it holds for

our points.
The inequality on the points (b1, h1, b

′
1, h

′
1) is

g(b1) − g(h1) ≥ g(b′
1) − g(h′

1)

The inequality on the points (b2, h2, b
′
2, h

′
2) is

g(b2) − g(h2) ≥ g(b′
2) − g(h′

2)

Now let 0 ≤ λ ≤ 1 be the scalar so that λb1 + (1 − λ)b2 = (1, y). Observe
that we also have λh1 + (1 − λ)h2 = (x, y), λb′

1 + (1 − λ)b′
2 = (1, y′), and

λh′
1 + (1 − λ)h′

2 = (x, y′).
Now, multiply the inequality for (b1, h1, b

′
1, h

′
1) by λ, and multiply the inequal-

ity for (b2, h2, b
′
2, h

′
2) by (1 − λ), then add them together. The result is the

inequality
g(1, y) − g(x, y) ≥ g(1, y′) − g(x, y′),

which is what we wanted.
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Fig. 5. Illustration of proof of condition 5.

5 Checking the Bound

The linear program gives us function values defined on a discretization of the unit
square, which we then extend to a function g defined on the entire unit square via
triangulation. It remains now to plug this g into the bound for the competitive
ratio given by Theorem 1. We cannot evaluate the bound analytically for the
function g returned by the LP; instead, we evaluate it computationally.

For 0 ≤ γ, τ ≤ 1, let

f(γ, τ) = (1 − τ)(1 − γ) + (1 − τ)
∫ γ

0

g(x, τ)dx

+
∫ τ

0

min
θ≤γ

{

(1 − g(θ, y)) +
∫ θ

0

g(x, y)dx +
∫ γ

θ

g(x, τ)dx

}

dy,

so that, by Theorem 1, the competitive ratio of g is at least min0≤γ,τ≤1 f(γ, τ).
When we evaluate this bound using a computer, we incur two sources of

error:

1. The bound takes a minimum over all (γ, τ) in the unit square. However, using
a computer, we can only check a finite number of points (γ, τ).

2. For a fixed (γ, τ), we do not calculate f(γ, τ) exactly. Instead, using a com-
puter, we calculate an approximation f̂(γ, τ), by

– Approximating the integrals with finite sums, and
– Replacing the inner minimum over all θ ≤ γ by a minimum over a finite

set of θ.

In what follows, we will bound the errors above. This proves that the output
of the computer program is a valid bound on the competitive ratio. We will
show that f is Lipschitz in γ and τ , which implies that checking all values of
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(γ, τ) in a sufficiently fine discretization of the unit square is enough to obtain
a quantifiable bound on the error.

Before we move on, we remind the reader what it means for a function to be
Lipschitz.

Definition 1. A function f : R
n → R is L-Lipschitz if |f(x) − f(y)| ≤

L ‖x − y‖ for all x, y ∈ R
n.

It will be convenient for us to work with Lipschitzness in a particular coordinate.

Definition 2. A function f : Rn → R is L-Lipschitz in its ith coordinate if

|f(x1, . . . , xi, . . . , xn) − f(x1, . . . , x
′
i, . . . , xn)| ≤ L |xi − x′

i|
for all x1, . . . , xi, x

′
i, . . . , xn ∈ R.

Lemma 2. f(γ, τ) is 1-Lipschitz in γ and 3-Lipschitz in τ .

The preceding lemma allows us to control the error incurred from checking
the bound over all (γ, τ) in a discretization of the unit square instead of the entire
unit square. The second source of error is that for a fixed (γ, τ), we evaluate an
approximation f̂(γ, τ) to f(γ, τ), because we replace the integrals with discrete
sums and the minimization over all θ ≤ γ with a minimization over finitely many
θ. The following lemma controls the second source of error.

To make notation less cluttered, let

– p(γ, τ) = (1 − γ)(1 − τ) + (1 − τ)
∫ γ

0
g(x, τ)dx,

– h(γ, τ, θ, y) = (1 − g(θ, y)) +
∫ θ

0
g(x, y)dx +

∫ γ

θ
g(x, τ)dx, and

– q(γ, τ, y) = minθ≤γ h(γ, τ, θ, y).

so that f(γ, τ) = p(γ, τ) +
∫ τ

0
q(γ, τ, y)dy.

Lemma 3. Fix γ, τ ∈ [0, 1], and let m be a positive integer. Let f̂(γ, τ) be the
approximation to f(γ, τ) obtained by:

– Replacing the integral
∫ τ

0
q(γ, τ, y)dy with a trapezoidal sum with subdivision

length 1
m ,

– Replacing the other three integrals with left Riemann sums with subdivision
length 1

m , and
– Replacing the minimum over all θ ≤ γ with a minimum over a discretization

with subdivision length 1
m .

Then f̂(γ, τ) ≤ f(γ, τ) + 5
4m .

More precisely, f̂ is defined as follows. Define xk = yk = k
m for k =

0, 1, . . . ,m. Let i and j be the integers such that xi ≤ γ < xi+1, and yj ≤
τ < yj+1. Then

f̂(γ, τ) = p̂(γ, τ) +
1
m

j−1∑

k=0

q̂(γ, τ, yk) + q̂(γ, τ, yk+1)
2
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where p̂ and q̂ are defined to be

p̂(γ, τ) = (1 − γ)(1 − τ) + (1 − τ) · 1
m

i−1∑

k=0

g(xk, τ)

and

q̂(γ, τ, y) = min
k≤i+1

{

1 − g(xk, y) +
1
m

k−1∑

d=0

g(xd, y) +
1
m

i−1∑

d=k

g(x, yj+1)

}

Combining the above two lemmas allows us to quantify the error incurred
when we evaluate the bound in Theorem 1 using a computer.

Corollary 1. Let F = {0, 1
n , 2

n , . . . , 1}2 be an n × n discretization of the unit
square. If we minimize over all (γ, τ) ∈ F , of the function f̂(γ, τ) defined in
Lemma 3, then the minimum value satisfies

min
(γ,τ)∈F

f̂(γ, τ) ≤ min
(γ,τ)∈[0,1]2

f(γ, τ) +
2
n

+
5

4m
.

Proof. By Lemma 3, we have min(γ,τ)∈F f̂(γ, τ) ≤ min(γ,τ)∈F f(γ, τ) + 5
4m .

Now let (γ∗, τ∗) = arg min(γ,τ)∈[0,1]2 f(γ, τ). Let (γ̂, τ̂) be the closest point
to (γ∗, τ∗) in the discretized grid F . Then |γ̂ − γ∗| ≤ 1

2n , and |τ̂ − τ∗| ≤ 1
2n . By

Lemma 2, we know f is 1-Lipschitz in γ and 3-Lipschitz in τ , which implies that

min
(γ,τ)∈F

f(γ, τ) ≤ f(γ̂, τ̂) ≤ f(γ∗, τ∗) +
1
2n

+
3
2n

.

Chaining this with the previous displayed inequality, we obtain

min
(γ,τ)∈F

f̂(γ, τ) ≤ f(γ∗, τ∗) +
2
n

+
5

4m
,

as claimed.

6 Computational Results

In this section, we describe the computations that we performed to obtain a com-
petitive ratio of 0.6629. Recall that Theorem 1 states that the competitive ratio of
RANKING is bounded below by an expression of the form min(γ,τ)∈[0,1]2 f(γ, τ),
where f depends on the function g that the algorithm uses. To obtain our com-
petitive ratio, we

1. Solve the LP in Sect. 4 for an appropriate discretization of the unit square.
(We chose a 50 × 50 discretization here.)

2. Plug the function g obtained from the LP into the bound in Theorem 1.
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Note that for the function g obtained from the LP, we can only evaluate
the bound in Theorem 1 approximately. This is because g is a piecewise-affine
function defined by interpolating its values on a 50×50 grid, so it has no amenable
closed form. As described in Sect. 5, we let F = {0, 1

n , . . . , 1}2 for some large
enough n, and we evaluate min(γ,τ)∈F f̂(γ, τ), where f̂ is an approximation to f
amenable to computer evaluation. (Again, refer to Sect. 5 for the details.)

Corollary 1 gives us quantifiable bound on the error incurred when we evalu-
ate min(γ,τ)∈F f̂(γ, τ) instead of the true bound min(γ,τ)∈[0,1]2 f(γ, τ). We used a
computer to evaluate min(γ,τ)∈F f̂(γ, τ) with n = 214 and m = 210, and obtained
min(γ,τ)∈F f̂(γ, τ) = 0.66433. Thus, by Corollary 1, the competitive ratio of the
algorithm is at least

min
(γ,τ)∈F

f̂(γ, τ) − 2
n

− 5
4m

= 0.66298.

Computing the bound for the above choice of parameters n and m necessi-
tated the use of clever computation techniques; the naive computation (which
simply goes through all (γ, τ) ∈ F one by one, evaluating from scratch f̂(γ, τ)
for each) is too slow for the size of the discretization we required to obtain a
good bound. (For a point (γ, τ) ∈ F , we estimate that evaluating f̂(γ, τ) is
roughly a O(m3) operation. The naive computation, which does this for each
of the n2 points in F , is then a O(n2m3) computation, which is much too slow
for the parameters n = 214 and m = 210.) To speed up the computation, we
used two techniques: (1) Precomputation of values that are used repeatedly by
the code, and (2) parallelization. Even after speeding up the computation using
precomputed tables and parallelization, we still needed two days of computing
time on a 64-core machine with 64GB of memory.3 Without either one of these
techniques, the computation would not have terminated in a reasonable amount
of time. In the remainder of this section, we describe the above techniques in
more detail.

Remark 2. The perceptive reader might notice that it would be conceptually
simpler to skip the second step given above altogether (i.e. plugging the function
g from the LP into the bound of Theorem 1), since the objective of the LP is
already an approximation of the bound in Theorem 1. The reason we do not do
this is because to be able to prove a good enough bound, we need to evaluate
min(γ,τ)∈F f̂(γ, τ) for a fine enough discretization. However, solving the LP is
prohibitively expensive for large discretizations. To put this into context, we
solved the LP on a 50 × 50 discretization, and used the output of the LP to
evaluate min(γ,τ)∈F f̂(γ, τ) on an n × n discretization, where n = 214. From the
description of the LP in Sect. 4, it can be seen that for an n × n discretization,
the LP has roughly n3 variables and n4 constraints. For n = 214, this would have
been too large an LP to solve.

3 We performed this computation on Amazon EC2. We used a compute-optimized
c6g.16xlarge instance, running the Amazon Linux 2 AMI.
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6.1 Precomputing Tables

The computation we are trying to perform is min(γ,τ)∈F f̂(γ, τ). Recall from
Sect. 5 that f̂ is defined as

f̂(γ, τ) = p̂(γ, τ) +
1
m

j−1∑

k=0

q̂(γ, τ, yk) + q̂(γ, τ, yk+1)
2

where p̂ and q̂ are defined to be

– p̂(γ, τ) = (1 − γ)(1 − τ) + (1 − τ) · 1
m

∑i−1
k=0 g(xk, τ), and

– q̂(γ, τ, y) = mink≤i+1

{
1 − g(xk, y) + 1

m

∑k−1
d=0 g(xd, y) + 1

m

∑i−1
d=k g(xd, yj+1)

}
,

where in the above expressions, xk = yk = k
m , and i and j are defined to be the

integers such that xi ≤ γ < xi+1, and yj ≤ τ < yj+1.
The key observation is that for two different points (γ, τ) and (γ′, τ ′), some

parts of the computation of f̂(γ, τ) and f̂(γ′, τ ′) are the same. Thus, we can speed
up the code by precomputing these values and storing them in memory, so that
they can be fetched instead of being recomputed each time they are needed. We
identified two types of values that could be reused, and precomputed a table for
each.

A Table to Store the Values of g. From the expression for f̂ , we see that
it involves many evaluations of g. We can precompute these values and store
them in an table for future use. Note that we only ever need to evaluate g on
points of the form (xi, yj) = (i/n, j/n), which results in a (n+1)× (n+1) table
to be stored in memory. For our choice of n = 214 = 16384, this resulted in a
table of size roughly 6 GB.

A Table to Store the Values of the Inner Minimum. We also precom-
puted a table to store the values of q̂(γ, τ, y). Note that q̂(γ, τ, y) only depends on
xi, yj , and y, where xi ≤ γ < xi+1, and yj ≤ τ < yj+1. That is, the computation
of q̂(γ, τ, y) rounds γ and τ to the nearest points on the 1

m discretized grid. Thus
there are m+1 possible values for each of xi, yj , and y, which implies that there
are (m + 1)3 possible values for q̂(γ, τ, y). We precomputed a table to store all
of these values in memory. For our choice of m = 210 = 1024, this resulted in a
table of size roughly 8 GB.

6.2 Parallelization

The other efficiency gain came from parallelizing the code. With the use of
precomputed tables, our code runs in two stages. In the first stage, we compute
the two tables described above, and in the second, we use the precomputed tables
to compute min(γ,τ)∈F f̂(γ, τ). Both stages are amenable to parallelization. For
the first stage, computing the value of a table entry is independent of computing
the value of another table entry, so filling each table can be done in parallel.
For the second stage, evaluating f̂(γ, τ) is independent of evaluating f̂(γ′, τ ′) for
different pairs (γ, τ) and (γ′, τ ′), so this can also be done in parallel. We used
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the multiprocessing module in Python to parallelize our code, which we then
ran on a 64-core machine on Amazon’s EC2. In total, this took about 2 days. We
estimate that a non-parallelized version would have taken more than 100 days
to run.

7 Limits of Our Method

Our approach cannot obtain a competitive ratio significantly better than 0.6629.
Thus, any further progress beyond this bound will require either further weaken-
ing in the assumptions of g, or a stronger analysis than that of Huang et al. We
can show the following theorem, whose proof is in the full version of the paper.

Theorem 2. For any g function that satisfies conditions 1–5, the value of the
bound in Theorem 1 is at most 0.6688.

8 Conclusion

Figure 6 compares the contour plot of the function g we used, to the function
g(x, y) = 1

2 (h(x) + 1 − h(y)) used by Huang et al. (Here, h(x) = min(1, 1
2ex).)

The plots look qualitatively quite different. One interesting question is to try to
extrapolate a simple function g from the LP contour plot, such that when g is
plugged into the bound in Theorem 1, it improves upon the competitive ratio in
Huang et al. Visually, the LP contour plot suggests trying a piecewise-linear g
with two pieces, where one piece only depends on y. However, we can prove that
no function in this class can improve upon the competitive ratio in Huang et al.

As we have noted, because of our upper bound, the value of the competitive
ratio cannot be improved by much without either weakening the assumptions on
g that we use in Theorem 1 or improving the analysis of Huang et al. [9] that
we use. Huang et al. give a potentially stronger bound on the competitive ratio
in the conclusion of their paper. However, it was unclear to us how to express
their stronger bound as a linear program on discrete values of g.

As discussed in Sect. 7 of the full version of the paper, in order to compute
the upper bound, we significantly relaxed the points at which the minimums of
the function f(γ, τ) are taken, yet this did not change the value of the LP by
much. It seems possible that the Huang et al. analysis can be simplified to reflect
this fact.

It would also be interesting to derive an improved upper bound for this prob-
lem. To our knowledge, the best upper bound is the same as for the unweighted
online bipartite matching problem with random arrivals, which is 0.823, and is
due to Manshadi, Oveis Gharan, and Saberi [15].
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Fig. 6. Side-by-side comparison of the function g we used, versus the function g used
by Huang et al.
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Abstract. In the early 20th century, Pigou observed that imposing a
marginal cost tax on the usage of a public good induces a socially effi-
cient level of use as an equilibrium. Unfortunately, such a “Pigouvian”
tax may also induce other, socially inefficient, equilibria. We observe that
this social inefficiency may be unbounded, and study whether alternative
tax structures may lead to milder losses in the worst case, i.e. to a lower
price of anarchy. We show that no tax structure leads to bounded losses in
the worst case. However, we do find a tax scheme that has a lower price of
anarchy than the Pigouvian tax, obtaining tight lower and upper bounds
in terms of a crucial parameter that we identify. We generalize our results
to various scenarios that each offers an alternative to the use of a public
road by private cars, such as ride sharing, or using a bus or a train.

Keywords: Price of anarchy · Pigouvian tax · Public good · Ride
sharing

1 Introduction

This paper studies the design of taxes intended to overcome the “tragedy of the
commons” in the use of a shared public resource. We consider a situation with
a public good and a population of users where each of them may choose to use
either the public good or to use a more costly alternative instead. Users of the
public good “congest” it, causing a negative externality to all others so the social
planner wishes to reduce the use of the public good to the socially optimal level,
by levying taxes on such use. Examples of this scenario abound, e.g.:

– Road tolls. Commuters may either use the road by driving their car to work
or take public transportation. There is an inconvenience for taking public
transportation, but driving a car increases the congestion on the road leading
to increased commute times for everyone. Tolls on the road may incentivize
taking public transportation.
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– Carbon taxes. People that use carbon-based energy sources may instead opt
to use more expensive renewable energy sources (e.g. an electric car vs. a
petrol based car). The carbon-based energy sources have an externality in
terms of pollution and global warming. Carbon taxes incentivize a switch to
renewable energy sources.

1.1 Public-Good Congestion Games

Here is a very basic model for these situations. We capture the demand for
the public good by the individual cost function α : [0, 1] → R≥0, where α(q)
is the price at which fraction q of the population chooses to use the public
good.1 We capture the negative externality imposed by the use of the public
good by a non-decreasing externality function l : [0, 1] → R≥0, where l(q) is
the negative externality when fraction q of the population uses the public good.
We assume that this externality is borne by every member of the population2.
The Social Cost when fraction q of the population uses the public good is thus
SC(q) = l(q) +

∫ 1

q
α(x)dx. In this model, if the public good is offered for free

then everyone will use the public good so the total social cost will be l(1), which
may be tragically high relative to the socially optimal usage level, the one that
minimizes this social cost. Already in 1920, Pigou [7] suggested a taxation scheme
that will result in an efficient equilibrium: tax each user of the public good the
marginal externality that she imposes on society, i.e. the taxation function is
given by t(q) = l′(q), where q is the fraction of the population using the public
good (and l′(·) is the derivative of l with respect to q). Using first order conditions
to minimize the social cost l(q)+

∫ 1

q
α(x)dx we get that for an optimal q we have

that α(q) = l′(q) which is indeed obtained as the equilibrium with this Pigouvian
tax.

The starting point of this paper notes that this analysis only guarantees
the existence of an efficient equilibrium3, but it ignores the possibility of other,
non-efficient equilibria. It turns out that existence of bad equilibria is indeed
possible. Figure 1 shows an example where there are three equilibrium points
with α(q) = l′(q), at least one of which has a tragically high social cost, while
another has very low social cost. Furthermore, it is indeed possible that natural,
best-reply, dynamics will lead to this socially-costly equilibrium.

1 The individual cost function is also the inverse function of the demand function. For
every q ∈ [0, 1], q fraction of the population have disutility at least α(q) for not using
the public good (and using the alternative instead).

2 We also study a variant where only those that use the public good incur the cost of
l(q), see Sect. 5.

3 Under appropriate continuity assumptions.
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Fig. 1. An example in which the Pigouvian tax induces both the optimal point as
an equilibrium (a), as well as a’bad’ equilibrium (b). For each population quantile
q ∈ [0, 1], the total social cost is given by the shaded area, combining the area under the
externality derivative l′ (total externality) to its left, and the area under the individual
cost function α to its right.

The example in Fig. 1 demonstrates that there may exist non-optimal equi-
librium points, but how bad can they be? In other words, what is the “price of
anarchy” in this setting? Taking the example of Fig. 1 to its limits, we observe
that the ratio between the social cost of an equilibrium and the optimal social
cost may be unbounded.

Observation 1. The price of anarchy of the Pigouvian tax is unbounded.

Given this failure of the Pigouvian tax, the question that we ask is whether
some other taxation scheme t(·) can guarantee a reasonably good social cost in
all equilibria points. In other words, yield a better price of anarchy. Like the
Pigouvian tax, the desired taxing scheme will charge a price according to the
current load in the system. Our main result is negative, showing no tax function
yields a small price of anarchy. To formulate this we need some definitions:

Definitions

– For a fixed externality function l : [0, 1] −→ R≥0, a fixed tax function t :
[0, 1] −→ R≥0 and a fixed individual cost function α : [0, 1] −→ R≥0, the
Price of Anarchy PoA(l, t, α) is the social cost of the worst equilibrium4

divided by the cost of the social optimum, in the game induced by l, t, and α.

4 If no equilibrium exists then we define the price of anarchy to be 1. An equilib-
rium always exists if t is continuous. None of our results rely on non-existence of
equilibrium.
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– For a given fixed externality function l : [0, 1] −→ R≥0, the Taxed Price
of Anarchy for l, TPoA(l), is the price of anarchy obtained for the worst
individual cost curve α under the best taxation scheme t(·): TPoA(l) =
inft supα PoA(l, t, α).

– The Taxed Price of Anarchy of a family (set) of externality functions L =
{l(·)}, is the taxed price of anarchy of the worst externality function in the
family: TPoA(L) = supl∈L TPoA(l).

Note that under the definition of TPoA(l) the tax function t(·) = tl(·) may
depend on the externality function l(·) as we assume it is public knowledge but
may not depend on the individual cost function α(·) which we assume is unknown
to the planner and possibly varies over time.5 This basic modeling choice, which
follows Pigou, makes it impossible to analyze our problem by encoding it as a
routing game, even when the number of agents is finite. This is so since this would
require explicitly encoding α within the graph, while we assume α is unknown
to the tax designer.

Before presenting a full version of our main negative result, we state a qual-
itative version, showing that no tax function has a bounded price of anarchy:

Theorem (“Lower Bound”, qualitative version): The taxed-price-of-
anarchy of the family of all monotone non-decreasing externality functions is
unbounded.

Thus, the Pigouvian tax is not the only one susceptible to the problem of
agents being trapped in a bad equilibrium given that tax, but rather, every tax
suffers from that problem when demand is adversarial. Given this negative result
we look for conditions under which the taxed price of anarchy can be bounded
using some carefully chosen tax scheme.

In the classic special case of strictly convex externality functions (i.e. increas-
ing l′(·)) the Pigouvian tax ensures that there is only a single equilibrium point
which is thus optimal and so the price of anarchy is 1. Convexity of l is, however,
a strong assumption that may not always hold, e.g. when the externality function
l has a sigmoid-like shape in cases where the marginal externality saturates at a
certain load. We extend the classic convex case to externality functions l(·) that
have derivative l′(·) that is “approximately monotone” and show that the taxed
price of anarchy degrades linearly in the monotonicity approximation level. See
Theorem 2.

Our main results concern general (far from convex) externality functions for
which we present tight upper and lower bounds for the taxed price of anarchy
as a function of a crucial parameter which we identify. This parameter is the
maximal ratio between derivative of l at any two points, which we denote by H.

Definition 1. For a fixed constant H > 1, let LH be the family of functions
with bounded derivative ratio H: the family of externality functions that each
satisfies l′(q1)/l′(q2) ≤ H for every 0 ≤ q1, q2 ≤ 1.

5 It is not difficult to see that the problem becomes trivial if the demand is fixed and
the tax function may depend on it.
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We first prove an upper bound on the taxed price of anarchy of LH :

Theorem (“Upper Bound”): For LH , the family of functions with bounded
derivative ratio H > 1, it holds that the taxed price of anarchy of LH is at most√

H, i.e. TPoA(LH) ≤ √
H.

This theorem is obtained with a simple constant tax that does not depend
on the load and is set to be the geometric mean of the maximum and minimum
values of l′. In contrast we show in the full version of the paper [2] that the price
of anarchy of the Pigouvian tax is much worse, Θ(H). This suggests that unless
the social planner can influence the equilibrium selection process, the Pigouvian
tax might not be the right choice from a worst-case perspective. The quantitative
version of our main theorem shows a tight lower bound on the taxed price of
anarchy of LH :

Theorem (“Lower Bound”, quantitative version): For LH , the family of
functions with bounded derivative ratio H > 1, it holds that the taxed price of
anarchy of LH is at least

√
H, i.e. TPoA(LH) ≥ √

H.
Combining these two results we immediately derive that the taxed price of

anarchy of LH is exactly
√

H, i.e. TPoA(LH) =
√

H.
We view the main message of our results to be that the Pigouvian tax does

not ensure an even approximately efficient use of the public resource, and even
though no other taxation scheme is good either, in certain senses, a different
taxation scheme may have an advantage over the Pigouvian tax. These results
were shown in a model that is obviously idealized. The next subsection considers
a variety of more realistic generalizations and shows that the main conclusions
hold for these generalizations as well.

1.2 Ride Sharing Games

In the second part of this paper, we look at a generalization of the basic model
that captures transportation problems with private cars and ride-sharing options
of various types. Here are some natural ride-sharing settings that the model
captures:

– Bus: The basic model studied above may be viewed as capturing the situation
where a commuter may take the bus instead of a private car. The public
good in this case is the road, and the taxes are tolls. A bus-ride causes only
negligible increased congestion on the road compared to a car ride. However,
bus-riders also incur the cost of congestion. Bus passengers do not pay tolls.

– Carpools with tolls: In this model, K passengers may share a car, where K
is some fixed constant capturing the capacity of a shared car. The load on the
road when q fraction of the population take a private car and the other 1 − q
fraction carpool is q + (1 − q)/K. In this model we assume that carpoolers
equally split the toll.

– Carpools without tolls: This model is similar to the previous one, only
that we assume that carpools are toll-free.
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One may also think of various intermediate models, e.g. where carpoolers
receive a discount on tolls. In Sect. 4 we define a parameterized common gen-
eralization of all of these models which we call Ride Sharing Games. We prove
analogs of our public-good congestion model results for this general class of
settings. The main takeaway is that no toll function provides a good price of
anarchy in any of these models and that from a worst-case perspective in all of
these models there are toll functions that do better than the Pigouvian tax.

In our models so far all users suffers from the externalities of the usage of the
public good, i.e. of the road. One can alternatively consider a model in which the
population that is not using the public good does not suffer from the externality
imposed by public-good users. A simple example for that setting is a public road
for which there is a parallel train track, and each person needs to decide whether
to ride a private car or take the train. The train creates no congestion at all on
the road, and train passengers do not suffer from the road delays at all (travel
time is independent of number of cars on the road). We show that also for this
model, no toll function provides a good price of anarchy.

The rest of the paper is structured as follows: We first present related work in
Sect. 1.3. Section 2 formally defines the public-good congestion model. We phrase
our results for this model in Sect. 3. Section 4 describes the ride sharing model
and extend our results to this general model. Finally, in Sect. 5 we consider the
case that the negative externality imposed by the use of the public good is only
suffered by the public-good users, and present similar impossibility results for
this model as well. All proofs are omitted and can be found in the full version
of the paper [2].

1.3 Related Work

Marginal cost pricing for public goods was first proposed by Pigou [7]. Samuelson
[24,25] has mathematically formulated the theory of public goods. Baumol and
Oats [3] and Laffont [17] provides a good introduction to the topic as well as
further references.

The concept of price of anarchy analysis was introduced by Koutsoupias and
Papadimitriou [16], and used by Roughgarden and Tardos [23] in the context of
selfish routing games. Since then this type of analysis has drawn much research
attention in routing games as well as a variety of other games (see e.g. [19,22]
as well as references within). The complementary notion of price of stability was
introduced in [1].

Traffic congestion problems were first formulated and analyzed in the 1950s
by Wardrop [28] and Beckman et al. [4]. A general model in this area is the
Congestion Game model defined by Rosenthal [21] in 1972. As mentioned above,
much of the early work on price of anarchy considered congestion games. Some
work has also been done regarding tolls in routing games, starting with [8],
where it was shown that when using taxes one can induce the optimal state as
an equilibrium. Since then a lot of work has been done on tolls in congestion
games [5,6,12,14,15,26].
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Our model is different from the literature on tolls in congestion games in
several respects: first, our public-good model does not fall into the category of
routing games, since in our model everyone suffers the externalities resulting
from the usage of the public good, even those who do not use it. Additionally,
the crux of our model is that we treat the demand function as unknown, which is
conceptually different from the implicit fixed demand assumption in congestion
models.

In transportation research, technologies advancements as well as the option
to combine several aspects to combat congestion has been researched extensively,
both empirically, e.g. [11,27] and theoretically, e.g. [9,10,13,18,20].

2 The Model

A Public-Good Congestion Game (PGCG) includes a population of agents where
each of them may choose to use either a public good or a more costly alternative
instead. Users of the public good “congest” it, causing a negative externality
to all others. We assume a large population of agents, with each agent by itself
having an infinitesimal effect on the system. This is formalized by modeling the
population as a continuum, who have a total mass 1. We assume that the amount
that each agent pays for the alternative might vary. We denote by x ∈ [0, 1] the
fraction of the population that use the public good while 1 − x is the fraction of
the population that use the alternative. The externality of using the public good
is a function of the total mass of population using it. The social planner can
impose a tax on the agents that use the public good, in order to affect agents
chosen strategy, aiming to minimize the social cost.

Formally, a Public-Good Congestion Game PGCG(l, α, t) is defined by three
functions – an externality function l, a tax function t and an individual cost
function α as follows:

Definition 2 (Externality Function l). We use l : [0, 1] −→ R≥0 to denote
an externality function, with l(x) being the externality, in monetary terms, expe-
rienced by every individual, when the mass of public-good users is x.

Assumption 1. We assume that a externality function l(·) satisfies the follow-
ing:

– l is non-negative
– l is non-decreasing
– l is continuous and left differentiable with a left derivative function denoted

by l′(·)
Definition 3 (Tax Function t). We use t : [0, 1] −→ R≥0 to denote a tax
function, with t(x) being the tax that every public-good user pays when the mass
of public-good users is x.

Note that we do not make any assumptions on t(·) – it can be any function (not
necessarily increasing or continuous). Also note that we define the tax as non-
negative (which means the social planner does not pay agents to use the public
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good), as a social planner that is aiming to minimize the social cost would never
choose to use subsidies.

Definition 4 (Individual Cost Function α). We use α : [0, 1] −→ R≥0 to
denote an individual cost function with α(x) being the disutility, in monetary
terms, an individual that lies on the x percentile of the population suffers by
refraining from using the public good. I.e. for every x ∈ [0, 1], x fraction of the
population have disutility at least α(x) for not using the public good (and using
the alternative instead).

Assumption 2. We assume that an individual cost function α(·) satisfies the
following:

– α is non-negative
– α is non-increasing

As α(·) is a monotone function, it is integrable and additionally, for every x ∈
[0, 1] it has a limit from the left as well as a limit from the right. For a given
x, we use α(x−) = inf{α(t) | t < x} to denote the limit from the left at x, and
α(x+) = sup{α(t) | t > x} to denote the limit from the right at x.

Note our model assumes the externality, individual cost and tax functions
are all measured in the same units of money. We assume agents have the same
value for money, and the differences in preferences between different agents
are reflected in their individual cost function. For convenience we will denote
PGCG(l, α, t) by G(l, α, t).

Definition 5 (Personal Cost cA). We use cA : [0, 1]×[0, 1] −→ R≥0 to denote
a personal cost function, with cA(i, x) being the personal cost (or disutility) of
an agent in the i ∈ [0, 1] percentile choosing action A ∈ {PG,ALT} (using the
public good or using the alternative), when x fraction of the population use the
public good.

This means that the personal cost can be written as follows:

cPG(i, x) = l(x) + t(x) when i uses public good
cALT (i, x) = α(i) + l(x) when i uses the alternative

We assume agents are rational: each infinitesimal agent will take the action (use
the public good or use the alternative) that has lower personal cost for the agents
(breaking ties arbitrarily).

It is now possible to define means of analyzing Public-Good Congestion
Games, by defining equilibrium points, as well as socially optimal points.

Definition 6 (Equilibrium Point x̂). Given G(l, α, t), x̂ is an equilibrium
point if the following hold:

∀i ≤ x̂ : cALT (i, x̂) ≥ cPG(i, x̂)
∀i > x̂ : cALT (i, x̂) ≤ cPG(i, x̂)
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I.e. the agents that choose to use the public good are the x̂-fraction of the agents
whose cost of the alternative is highest. Note that in the case where α and t are
continuous, any internal equilibrium point x̂ ∈ (0, 1) must satisfy cALT (i, x̂) =
cPG(i, x̂). That is, x̂ is such that the agents in the x̂ percentile are indifferent
between using the public good and the alternative.

We next present a simple characterization of equilibrium points. For that
characterization it is convenient to define α(0−) = +∞ and α(1+) = −∞.

Observation 2. Given G(l, α, t), x̂ is an equilibrium point if and only if

α(x̂−) ≥ t(x̂) ≥ α(x̂+) (1)

Note that if t is continuous then an equilibrium is guaranteed to exist. We
denote by EQ(l, α, t) the set of equilibrium points of the game G(l, α, t). When
l, α and t are clear from context, we use EQ to denote EQ(l, α, t).

Definition 7 (Social Cost SC). We use SC(l,α) : [0, 1] −→ R≥0 to denote the
Social Cost (or total disutility) function for the game G(l, α, t), with SC(l,α)(x)
being the total amount of disutility when the x fraction of the population with
the highest individual cost values uses the public good in the game G(l, α, t). As
agents are infinitesimal, the social cost can be given by integrating the personal
cost over all i ∈ [0, 1], while omitting the taxes part in the cost, as taxes are paid
to the social planner and do not affect the total social cost when considering the
planner as part of society:

SC(l,α)(x) = l(x) +
∫ 1

x

α(z)dz = l(0) +
∫ x

0

l′(z)dz +
∫ 1

x

α(z)dz (2)

When l and α are clear from context we omit them in the notation and denote
SC(l,α)(x) by SC(x).

As α is integrable, the function A(x) =
∫ 1

x
α(z)dz is continuous. l is continuous

as well, so the function SC is continuous on the compact set [0, 1]. This means
that the minimum of the function SC is obtained for some x ∈ [0, 1]. We will
call such a point a social optimal point:

Definition 8 (Social Optimal Point x∗). Given a game G(l, α, t), x∗ is called
a social optimal point if its social cost is minimal:

x∗ ∈ arg minx∈[0,1]SC(l,α)(x) (3)

Note that there might be multiple social optimal points, but every such point has
the same minimal social cost. With a slight abuse of notation we denote that
optimal social cost by SC(l,α)(x∗).
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Definition 9 (Price of Anarchy PoA(l, α, t)). Given a game G(l, α, t), the
Price of Anarchy PoA(l, α, t) is given by the largest ratio between the social cost
of an equilibrium, and the optimal social cost6:

PoA (l, α, t) =

sup
x̂∈EQ(l,α,t)

SC(l,α)(x̂)

SC(l,α)(x∗)
(4)

In the case that the set EQ(l, α, t) = ∅ we define PoA (l, α, t) = 1.

Given an externality function l, the social planner wishes to find a tax func-
tion t = tl (that may depend on l) that minimizes the social cost in the worst
case over the population’s individual cost function, ensuring a good outcome
even if the population’s individual cost function arbitrarily changes. Hence, we
interpret the taxed price of anarchy as a bound ensuring the tax is good in the
worst case (over preferences):

Definition 10 (Taxed Price of Anarchy TPoA(l)). The Taxed Price of
Anarchy for externality function l, TPoA(l), is the price of anarchy of l with
the best tax function t = tl for the worst individual cost function α:

TPoA(l) = inf
t

sup
α

PoA (l, α, t) (5)

Definition 11 (Taxed Price of Anarchy TPoA(L)). The Taxed Price of
Anarchy of a family (set) of externality functions L = {l(·)}, TPoA(L), is the
taxed price of anarchy of the worst externality function in the family:

TPoA(L) = sup
l∈L

TPoA(l) (6)

3 Bounds on TPoA

Pigou [7] has proven that the Pigouvian tax induces an efficient equilibrium. An
immediate conclusion is that when the externality derivative is increasing (the
externality function is convex), every equilibrium is efficient (since there is a
unique equilibrium). For completeness we first present this result. After present-
ing this result we first extend it to externality functions that are approximately-
monotone and then present our main result - a tight bound on the taxed price
of anarchy as a function of the worst latency derivative ratio.

Theorem 1 (Pigou 1920 [7] - Increasing Latency Derivative). Fix
G(l, α, t). If the externality function l has a (left) derivative l′ that is non-
decreasing, then TPoA(l) = 1. Furthermore, for such l, setting the Pigouvian
tax t(x) = l′(x) yields PoA(l, α, t) = 1 for any individual cost function α.

6 If the optimal social cost is zero then the price of anarchy is defined to be infinity,
unless every equilibrium has zero social cost, in that case the PoA is defined to be 1.
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Theorem 1 requires the (left) derivative of the externality function to be
(weakly) increasing, which is a strong assumption. We next relax this assump-
tion, allowing it to only be “close to” an increasing function, captured by the
concept of γ-approximately increasing function:

Definition 12 (γ-approximately increasing function). Let γ > 1. Given a
function h : [0, 1] −→ R>0 we say h(·) is a γ-approximately weakly-increasing
function with H(·), if H : [0, 1] −→ R>0 is a non-decreasing function such that
for every x ∈ [0, 1] it holds:

1 ≤ h(x)
H(x)

≤ γ (7)

Note that if h(·) is itself a non-decreasing function, it is 1−approximately weakly
increasing (with h(·) itself).

Theorem 2 (γ-approximately Increasing l′). Fix G(l, α, t). If the (left)
derivative of the externality function l′ is γ-approximately weakly increasing with
an integrable function L′, then TPoA(l) ≤ γ. Furthermore, for such l, setting the
tax function to be t(x) = L′(x), yields PoA(l, α, t) ≤ γ for every inconvenience
function α.

We now present our main result – two complementary theorems that tightly
bound the TPoA when the ratio between the maximal and minimal value of the
externality derivative is bounded.

Theorem 3 (Bounded Latency Derivative Upper Bound). Given H > 0,

let l be an externality function with (left) derivative l′ satisfying sup0≤x≤1 l′(x)
inf0≤x≤1 l′(x) ≤

H. Then, TPoA(l) ≤ √
H. Moreover, for any such l, the guarantee is obtained

by the constant tax t(x) =
√

H · inf0≤x≤1 l′(x) for every x ∈ [0, 1].

Theorem 4 (Bounded Latency Derivative Lower Bound). For any H >
0 there exists an externality function l with (left) derivative l′ satisfying
sup0≤x≤1 l′(x)
inf0≤x≤1 l′(x) ≤ H, for which TPoA(l) ≥ √

H.

4 Ride Sharing Games

The Public-Good Congestion Game model studied so far captures the situation
of congestion on a road, where the public good is the road usage. A passenger
that chooses to take a private car uses the public good, but may alternatively
take the bus. Taking the bus is less convenient, yet passengers that ride the bus
do not increase the latency on the road. In this section we expand the model
to support additional ride sharing (carpooling) models in which passengers can
ride in shared cars of limited capacity (unlike the bus).

Shared car models can differ not only by their carpool capacity, but also by
the tolls that carpooling passengers need to pay. One possibility is that carpools
are charged the same as a private car and the toll is shared among its passengers,
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another is that the shared ride is exempt from toll. One can also consider inter-
mediate cases in between (e.g., shared cars get 50% discount on the toll which
is still equally split). The general model we present captures all these models by
adding two additional parameters to the game. The first is the marginal load a
passenger in a shared ride adds to the road, and the other is the fraction of toll
charged to a private car that a passenger sharing a ride is required to pay. We
next formally define this family of ride sharing games.

4.1 Ride Sharing Game Definition

A Ride Sharing Game RSG(l, α, t, ν) is defined by four parameters. The first
three parameters are the same as in the definition of Public-Good Congestion
Games: l(x) is the latency experienced by every road-taking agent when the
mass of vehicles on the road is x, α(x) is the marginal inconvenience of the x’th
percentile of population from sharing their ride with others and t(x) is the toll
that every private car taking the road needs to pay when the mass of vehicles on
the road is x. The fourth parameter of a Ride Sharing Game is the Ride Sharing
Technology ν captured by a pair of parameters κ and τ :

Definition 13 (Ride Sharing Technology ν = {κ, τ}). We use ν = {κ, τ}
to denote the set of parameters defining the Ride Sharing Technology used in
the game:

– κ ∈ [0, 1) is the marginal load a passenger in a shared ride adds to the road,
when normalizing the load of a private car to 1.7 Thus, with x fraction taking
private cars (and 1 − x riding shared cars), the total load on the road is
x+κ(1−x) = (1−κ)x+κ which we denote by κ(x). For example, when ride
sharing passengers do not add any additional load to the road (as the case for
a bus) then κ = 0, while κ = 1/2 means that a shared ride passenger add to
the road half the load of a private car passenger.8

– τ ∈ [0, 1) is the fraction of toll charged to a private car that a passenger
sharing a ride is required to pay.910 For example, τ = 0 means ride sharing
passengers are exempt from paying any toll, while τ = 1/2 means a ride
sharing passenger is required to pay half the toll of a private car passenger.

For example, in the bus model, we consider the bus as a single vehicle that has
negligible impact on the congestion of the road, and bus passengers do not add
7 The assumption that κ < 1 corresponds to the externality of a passenger in a private

car being larger than that of a passenger riding a shared car.
8 This formulation is general enough to capture ride sharing vehicles that impose larger

load on the road than private cars, as long as the per-passenger load is at most 1:
for example, a minibus with 20 passengers that have total load of 2 (like two private
cars) has a per-passenger load of 1/10.

9 The assumption that τ < 1 corresponds to the natural assumption that the toll
charged to a passenger of a private car is larger than the toll imposed on a passenger
in a shared car.

10 Note that the total toll paid by all carpool passengers might not necessarily be equal
to the toll a private car is charged.
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additional load to the road (κ = 0). Buses are assumed to be exempt from tolls
(τ = 0). Thus, using the above notations we denote the Bus Technology as
BUS = {0, 0}. We present additional examples in Sect. 4.2.

Using these parameters, we redefine the personal cost of an agent.

Definition 14 (Personal Cost cA). We use cA : [0, 1] × [0, 1] −→ R≥0 to
denote a personal cost function, with cA(i, x) being the personal cost (or disu-
tility) of a passenger in the i ∈ [0, 1] percentile choosing action A ∈ {CAR,RS}
(riding a private car or a ride sharing), when x fraction of the population rides
private cars.

This means that when the ride sharing technology is ν = {κ, τ} the personal
cost can be written as follows:

cCAR(i, x) = l(κ(x)) + t(κ(x)) when i rides a private car
cRS(i, x) = α(i) + l(κ(x)) + τ · t(κ(x)) when i rides a shared car

We assume passengers are rational: each infinitesimal passenger will take the
action (ride a private car or a shared car) that has lower personal cost for the
passenger (breaking ties arbitrarily).

We will be interested in studying games induced by various RS technologies.
For any RS technology ν, we will consider the game for that fixed ν and denote
Gν(l, α, t) = RSG(l, α, t, ν). The generalization of the game affects the expres-
sions given for equilibrium points, as well as the social cost. The generalized
equilibrium means a passengers in the equilibrium percentile x̂ is not interested
in changing his choice between riding a private car and sharing his ride, so the
equilibrium condition becomes:

α(x̂−) ≥ (1 − τ) · t(κ(x̂)) ≥ α(x̂+) (8)

and the social cost, which is given by integrating the personal cost over all
i ∈ [0, 1], while omitting the tolls part in the cost, is given by

SC(l,α,ν)(x) = l(κ(x)) +
∫ 1

x

α(z)dz = l(κ) +
∫ x

0

l′(κ(z))(1 − κ)dz +
∫ 1

x

α(z)dz

(9)

The reader can find a full formal definition of the generalized game in the full
version of the paper [2].

4.2 Examples of Ride Sharing Games

We next highlight several Ride Sharing Technologies of interest: The bus model
(which is equivalent to the Public-Good Congestion Game), a carpool model
where ride sharing passengers are required to pay the same toll as a private car
(and split it equally), and a carpool model in which ride sharing passengers are
exempt from paying the toll. We show how the parameters of the ride sharing
technology capture these three models, and give explicit formulas for the personal
and social costs of these scenarios.
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Bus Model. In the bus model, an agent can choose whether to ride a private
car or to ride a bus with infinite capacity sharing it with other agents being
exempt from toll. In our model of an “ideal bus”, the bus does not increase the
congestion on the road, so every bus passenger has no impact on road congestion
(meaning κ = 0).11 An agent in the i percentile who chooses to take the bus
pays their marginal inconvenience α(i) and is exempt from paying the toll on
the road, as the bus itself is exempt from paying it (meaning τ = 0).

We denote by GBUS(l, α, t) = RSG(l, α, t, {0, 0}) a bus model game in which
the personal cost of a passenger is

cCAR(i, x) = l(x) + t(x) when i rides a private car
cBUS(i, x) = α(i) + l(x) when i rides the bus

and the social cost SCBUS(x) is

SCBUS(x) = l(x) +
∫ 1

x

α(z)dz = l(0) +
∫ x

0

l′(z)dz +
∫ 1

x

α(z)dz

Meaning that the bus technology defined by the parameters ν = {0, 0} induces
the same game as the Public-Good Congestion Game.

Finite Capacity Ride Sharing Models. In the finite-capacity ride sharing
model, an agent can choose whether to ride a private car alone or to ride a shared
car with additional K − 1 agents (meaning κ = 1

K ) and thus the load on the
road when x fraction of the population ride private cars is κ(x) = K−1

K x + 1
K .

Though all agents are affected by the road latency, riding a shared car decreases
the load.

Remark 1. As agents ‘fill up’ cars up to their capacity before using an additional
shared car, the only ‘shared’ car that has less then the maximal capacity number
of passengers is the last one, and as agents are infinitesimal, this is negligible.

We highlight two finite-capacity ride sharing models: the Non-tolled Ride Sharing
model in which agents are exempt from paying the toll (meaning τ = 0) and the
Tolled Ride Sharing model in which the carpool is charged the same as a private
car and its K passengers split the toll equally (meaning τ = 1

K ).

Non-tolled Ride Sharing. We denote by GRS(l, α, t) = RSG(l, α, t, { 1
K , 0}) a

non-tolled ride sharing game in which the personal cost of a passenger is:

cCAR(i, x) = l
(K − 1

K
· x +

1

K

)
+ t

(K − 1

K
· x +

1

K

)
when i rides a private car

cRS(i, x) = α(i) + l
(K − 1

K
· x +

1

K

)
when i share a ride

11 The assumption that no congestion is created by an infinite-size bus is ideal, and
clearly not very realistic. A more nuanced model has finite-capacity ride sharing
vehicles that do increase road congestion.
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Tolled Ride Sharing. We denote by GRS−TOLLED(l, α, t) = RSG(l, α, t, { 1
K ,

1
K }) a tolled ride sharing game in which the personal cost of a passenger is:

cCAR(i, x) = l
(K − 1

K
· x +

1
K

)
+ t

(K − 1
K

· x +
1
K

)

when i rides a private car, and

cRS−TOLLED(i, x) = α(i) + l
(K − 1

K
· x +

1
K

)
+

1
K

· t
(K − 1

K
· x +

1
K

)

when i share a tolled ride.
Note that as the social cost SCl,α,ν(x) is not affected by tolls, the social cost

of both these models is the same:

SCRS(x) = SCRS−TOLLED(x)

= l

(
K − 1

K
· x +

1
K

)

+
∫ 1

x

α(z)dz

= l(
1
K

) +
∫ x

0

K − 1
K

· l′
(

K − 1
K

· z +
1
K

)

dz +
∫ 1

x

α(z)dz

Table 1 summarize the ride sharing technologies of these highlighted models.

Table 1. The ride sharing technologies parameters of the highlighted models.

Model RS marginal
road load (κ)

Passenger’s share
of car toll(τ)

Bus (of infinite capacity)a 0 0

(Non-tolled) Shared Rides with carpool capacity K 1
K

0

Tolled Shared Rides with carpool capacity K 1
K

1
K

aNote that one can view the bus model as the limit of the shared ride models when K
goes to infinity.

4.3 Results for Ride Sharing Games

We next present our results for Ride Sharing Games, which generalize the results
we have presented for Public-Good Congestion Games. We start by generalizing
Theorem 1, showing that if the latency derivative is non-decreasing then every
equilibrium under the Pigouvian tax is efficient.

Theorem 5 (Increasing Latency Derivative). Fix Gν(l, α, t). If the latency
function l has a (left) derivative l′ that is non-decreasing, then TPoAν(l) = 1.
Furthermore, for such l, setting the tax t(x) = 1−κ

1−τ l′(x) yields PoAν(l, α, t) = 1
for any inconvenience function α.

Table 2 specify the values of t for the models highlighted in Sect. 4.2.
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Table 2. The toll function that ensures TPoAν(l) = 1 whenever l′ is non decreasing,
presented for the highlighted models.

Model t(x)

Bus (of infinite capacity) l′(x)

(Non-tolled) Shared Rides with carpool capacity K K−1
K

l′(x)

Tolled Shared Rides with carpool capacity K l′(x)

We next generalize Theorem 2, showing that if the latency derivative is γ-
approximately weakly increasing then the toll price of anarchy is at most γ.

Theorem 6 (γ-approximately increasing l′). Fix Gν(l, α, t). If the (left)
derivative of the externality function l′ is γ-approximately weakly increasing with
an integrable function L′, then TPoAν(l) ≤ γ. Furthermore, for such l, setting
the tax function to be t(x) = 1−κ

1−τ L′(x), yields PoA(l, α, t) ≤ γ for every incon-
venience function α.

Finally, we generalize Theorem 3 and Theorem 4, that tightly bound the
taxed price of anarchy when the ratio between the maximal and minimal value
of the externality derivative is bounded.

Theorem 7 (Bounded Latency Derivative Upper Bound). Fix ν. Given
H > 0, for latency l assume that the (left) latency function derivative l′ satisfies
sup0<x≤1 l′(κ(x))
inf0<x≤1 l′(κ(x)) ≤ H. Then, TPoAν(l) ≤ √

H.

Theorem 8 (Bounded Latency Derivative Lower Bound). Fix ν. For
any H > 0 there exists a latency function l with (left) derivative l′ satisfying
sup0<x≤1 l′(κ(x))
inf0<x≤1 l′(κ(x)) ≤ H, for which TPoAν(l) ≥ √

H.

5 Externality on Public Good Users only (Train)

In this section we consider settings in which the population that does not use
the public good does not suffer the externality imposed by public-good users.
It will be convenient to think of this model as the train model. In this model
passengers may take a train instead of a private car. Train riders do not cause any
congestion on the road, nor do they incur the congestion costs or pay any tolls.
Under the same definitions for the latency, toll and individual cost functions as
in our original ’bus’ model, the personal cost in this model is

cCAR(i, x) = l(x) + t(x) when i rides a private car
cTRAIN (i, x) = α(i) when i rides the train
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Which means the equilibrium condition is

α(x̂−) ≥ l(x̂) + t(x̂) ≥ α(x̂+) (10)

and the social cost, which is given by integrating the personal cost over all
i ∈ [0, 1], while omitting the tolls part in the cost, is given by

SC(l,α)(x) = x · l(x) +
∫ 1

x

α(z)dz (11)

In this model the TPoA is unbounded:

Theorem 9. In the train model, for any Z > 1 there exists a non-decreasing
latency function l, for which TPoA(l) ≥ Z.
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Abstract. We study housing markets as introduced by Shapley and
Scarf [39]. We investigate the computational complexity of various ques-
tions regarding the situation of an agent a in a housing market H: we
show that it is NP-hard to find an allocation in the core of H where (i) a
receives a certain house, (ii) a does not receive a certain house, or (iii) a
receives a house other than her own. We prove that the core of housing
markets respects improvement in the following sense: given an allocation
in the core of H where agent a receives a house h, if the value of the
house owned by a increases, then the resulting housing market admits
an allocation where a receives either h, or a house that she prefers to h;
moreover, such an allocation can be found efficiently. We further show
an analogous result in the Stable Roommates setting by proving that
stable matchings in a one-sided market also respect improvement.

1 Introduction

Housing markets is a classic model in economics where agents are initially endowed
with one unit of an indivisible good, called a house, and agents may trade their
houses according to their preferences without using monetary transfers. In such
markets, trading results in a reallocation of houses in a way that each agent ends
up with exactly one house. Motivation for studying housing markets comes from
applications such as kidney exchange [8,12,35] and housing programs [1,43].

In their seminal work Shapley and Scarf [39] examined housing markets where
agents’ preferences are weak orders. They proved that such markets always admit
a core allocation, that is, an allocation where no coalition of agents can strictly
improve their situation by trading only among themselves. They also described
the Top Trading Cycles (TTC) algorithm, proposed by David Gale, and proved
that the set of allocations that can be obtained through the TTC algorithm
coincides with the set of competitive allocations; hence the TTC always produces
an allocation in the core. When preferences are strict, the TTC produces the
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unique allocation in the strict core, that is, an allocation where no coalition of
agents can weakly improve their situation by trading among themselves [34].

Although the core of housing markets has been the subject of considerable
research, there are still many challenges which have not been addressed. Consider
the following question: given an agent a and a house h, does there exist an
allocation in the core where a obtains h? Or one where a does not obtain h?
Can we determine whether a may receive a house better than her own in some
core allocation? Similar questions have been extensively studied in the context
of the Stable Marriage and the Stable Roommates problems [20–23,31],
but have not yet been considered in relation to housing markets.

Even less is known about the core of housing markets in cases where the
market is not static. Although some researchers have addressed certain dynamic
models, most of these either focus on the possibility of repeated allocation [28,
29,34], or consider a situation where agents may enter and leave the market
at different times [13,32,42]. Recently, Biró et al. [9] have investigated how a
change in the preferences of agents affects the housing market. Namely, they
considered how an improvement of the house belonging to agent a affects the
situation of a. Following their lead, we aim to answer the following question:
if the value of the house belonging to agent a increases, how does this affect
the core of the market from the viewpoint of a? Is such a change bound to be
beneficial for a, as one would expect? This question is of crucial importance in
the context of kidney exchange: if procuring a new donor with better properties
(e.g., a younger or healthier donor) does not necessarily benefit the patient,
then this could undermine the incentive for the patient to find a donor with
good characteristics, damaging the overall welfare.

1.1 Our Contribution

We consider the computational complexity of deciding whether the core of a
housing market contains an allocation where a given agent a obtains a certain
house. In Theorem 1 we prove that this problem is NP-complete, as is the problem
of finding a core allocation where a does not receive a certain house. Even worse,
it is already NP-complete to decide whether a core allocation can assign any
house to a other than her own. Various generalizations of these questions can be
answered efficiently in both the Stable Matching and Stable Roommates
settings [20–23,31], so we find these intractability results surprising.

Instead of asking for a core allocation where a given agent can trade her house,
one can also look at the optimization problem which asks for an allocation in
the core with the maximum number of agents involved in trading. This problem
is known to be NP-complete [18]. We show in Theorem 2 that for any ε > 0,
approximating this problem with ratio |N |1−ε for a set N of agents is NP-hard.
We complement this strong inapproximability result in Proposition 3 by pointing
out that a trivial approach yields an approximation algorithm with ratio |N |.

Turning our attention to the question of how an increase in the value of a
house affects its owner, we show the following result in Theorem 4. If the core
of a housing market contains an allocation where a receives a house h, and the
market changes in a way such that some agents perceive an increased value for
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the house owned by a (and nothing else changes in the market), then the resulting
housing market admits an allocation in its core where a receives either h or a
house that she prefers to h. We prove this in a constructive way, by presenting
an algorithm that finds such an allocation. This settles an open question by Biró
et al. [9] who ask whether the core respects improvement in the sense that the
best allocation achievable for an agent a in a core allocation can only (weakly)
improve for a as a result of an increase in the value of a’s house.

It is clear that an increase in the value of a’s house may not always yield a
strict improvement for a (as a trivial example, some core allocation may assign a
her top choice even before the change), but one may wonder if we can efficiently
determine when a strict improvement for a becomes possible. This problem turns
out to be closely related to the question whether a can obtain a given house in
a core allocation; in fact, we were motivated to study the latter problem by
our interest in determining the possibilities for a strict improvement. Although
one can formulate several variants of the problem depending on what exactly
one considers to be a strict improvement, by Theorem 11 each of them leads to
computational intractability (NP-hardness or coNP-hardness).

Finally, we also answer a question raised by Biró et al. [9] regarding the
property of respecting improvements in the context of the Stable Roommates
problem. An instance of Stable Roommates contains a set of agents, each
having preferences over the other agents; the usual task is to find a matching
between the agents that is stable, i.e., no two agents prefer each other to their
partners in the matching. It is known that a stable matching need not always
exist, but if it does, then Irving’s algorithm [26] finds one efficiently. In Theo-
rem 14 we show that if some stable matching assigns agent a to agent b in a
Stable Roommates instance, and the valuation of a increases (that is, if she
moves upward in other agents’ preferences, with anything else remaining con-
stant), then the resulting instance admits a stable matching where a is matched
either to b or to an agent she prefers to b. This result is a direct analog of the
one stated in Theorem 4 for the core of housing markets; however, the algorithm
we propose in order to prove it uses different techniques.

We remark that we use a model with partially ordered preferences (a gener-
alization of weak orders), and describe a linear-time implementation of the TTC
algorithm in such a model.

1.2 Related Work

Most works relating to the core of housing markets aim for finding core alloca-
tions with some additional property that benefits global welfare, most promi-
nently Pareto optimality [4,5,27,33,37]. Another line of research comes from
kidney exchange where the length of trading cycles is of great importance and
often plays a role in agents’ preferences [7,15–17,19] or is bounded by some
constant [2,10,11,18,25]. None of these papers deal with problems where a core
allocation is required to fulfill some constraint regarding a given agent or set of
agents—that they be trading, or that they obtain (or not obtain) a certain house.
Nevertheless, some of them focus on finding a core allocation where the number
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of agents involved in trading is as large as possible. Cechlárová and Repiský [18]
proved that this problem is NP-hard in the classical housing market model, while
Biró and Cechlárová [7] considered a special model where agents care first about
the house they receive and after that about the length of their trading cycle
(shorter being better); they prove that for any ε > 0, it is NP-hard to approx-
imate the number of agents trading in a core allocation with a ratio |N |1−ε

(where N is the set of agents).
The property of respecting improvement has first been studied in a paper

by Balinski and Sönmez [6] on college admission. They proved that the student-
optimal stable matching algorithm respects the improvement of students, so a
better test score for a student always results in an outcome weakly preferred
by the student (assuming other students’ scores remain the same). Hatfield et
al. [24] contrasted their findings by showing that no stable mechanism respects
the improvement of school quality. Sönmez and Switzer [40] applied the model of
matching with contracts to the problem of cadet assignment in the United States
Military Academy, and have proved that the cadet-optimal stable mechanism
respects improvement of cadets. Recently, Klaus and Klijn [30] have obtained
results of a similar flavor in a school-choice model with minimal-access rights.

Roth et al. [36] deal with the property of respecting improvement in con-
nection with kidney exchange: they show that in a setting with dichotomous
preferences and pairwise exchanges priority mechanisms are donor monotone,
meaning that a patient can only benefit from bringing an additional donor on
board. Biró et al. [9] focus on the classical Shapley-Scarf model and investigate
how different solution concepts behave when the value of agent’s house increases.
They prove that both the strict core and the set of competitive allocations satisfy
the property of respecting improvements, however, this is no longer true when
the lengths of trading cycles are bounded by some constant.

2 Preliminaries

Preferences as Partial Orders. In the majority of the existing literature,
preferences of agents are usually considered to be either strict or, if the model
allows for indifference, weak linear orders. Weak orders can be described as lists
containing ties, a set of alternatives considered equally good for the agent. Partial
orders are a generalization of weak orders that allow for two alternatives to be
incomparable for an agent. Incomparability may not be transitive, as opposed
to indifference in weak orders. Formally, an (irreflexive)1 partial ordering ≺ on
a set of alternatives is an irreflexive, antisymmetric and transitive relation.

Partially ordered preferences arise by many natural reasons; we give two
examples motivated by kidney exchanges. For example, agents may be indifferent
between goods that differ only slightly in quality. Indeed, recipients might be
indifferent between two organs if their expected graft survival times differ by less
than one year. However, small differences may add up to a significant contrast:
1 Throughout the paper we will use the term partial ordering in the sense of an irreflex-

ive (or strict) partial ordering.
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an agent may be indifferent between a and b, and also between b and c, but
strictly prefer a to c. Partial preferences also emerge in multiple-criteria decision
making. The two most important factors for estimating the quality of a kidney
transplant are the HLA-matching between donor and recipient, and the age of
the donor.2 An organ is considered better than another if it is better with respect
to both of these factors, leading to partial orders.

Housing Markets. Let H = (N, {≺a}a∈N ) be a housing market with agent
set N and with the preferences of each agent a ∈ N represented by a partial
ordering ≺a of the agents. For agents a, b, and c, we interpret a ≺c b as agent c
preferring the house owned by agent b to the house of agent a. We will write
a �c b as equivalent to b �≺c a, and we write a ∼c b if a �≺c b and b �≺c a. We
say that agent a finds the house of b acceptable, if a �a b, and we denote by
A(a) = {b ∈ N : a �a b} the set of agents whose house is acceptable for a. We
define the acceptability graph of the housing market H as the directed graph
GH = (N,E) with E = {(a, b) | b ∈ A(a)}; we let |GH | = |N | + |E|. Note that
(a, a) ∈ E for each a ∈ N . The submarket of H on a set W ⊆ N of agents is
the housing market HW = (W, {≺|W

a }a∈W ) where ≺|W
a is the partial order ≺a

restricted to W ; the acceptability graph of HW is the subgraph of GH induced
by W , denoted by GH [W ]. For a set W of agents, let H − W be the submarket
HN\W obtained by deleting W from H; for W = {a} we may write simply H−a.

For a set X ⊆ E of arcs in GH and an agent a ∈ N we let X(a) denote the set
of agents b such that (a, b) ∈ X; whenever X(a) is a singleton {b} we will abuse
notation by writing X(a) = b. We also define δ−

X(a) and δ+X(a) as the number of
in-going and out-going arcs of a in X, respectively. For a set W ⊆ N of agents,
we let X[W ] denote the set of arcs in X that run between agents of W .

We define an allocation X in H as a subset X ⊆ E of arcs in GH such that
δ−
X(a) = δ+X(a) = 1 for each a ∈ N , that is, X forms a collection of cycles in GH

containing each agent exactly once. Then X(a) denotes the agent whose house
a obtains according to allocation X. If X(a) �= a, then a is trading in X. For
allocations X and X ′, we say that a prefers X to X ′ if X ′(a) ≺a X(a).

For an allocation X in H, an arc (a, b) ∈ E is X-augmenting, if X(a) ≺a b.
We define the envy graph GH

X≺ of X as the subgraph of GH containing all X-
augmenting arcs. A blocking cycle for X in H is a cycle in GH

X≺, that is, a cycle C
where each agent a on C prefers C(a) to X(a). An allocation X is contained
in the core of H, if there does not exist a blocking cycle for it, i.e., if GH

X≺ is
acyclic. A weakly blocking cycle for X is a cycle C in GH where X(a) �a C(a)
for each agent a on C and X(a) ≺a C(a) for at least one agent a on C. The
strict core of H contains allocations that do not admit weakly blocking cycles.

Organization. Section 3 contains an adaptation of the TTC algorithm for par-
tially ordered preferences, followed by our results on finding core allocations with
various arc restrictions and on maximizing the number of agents involved in trad-
ing. In Sect. 4 we present our results on the property of respecting improvements
2 In fact, these are the two factors for which acceptability thresholds can be set by

the patients in the UK program [8].
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in relation to the core of housing markets, including our main technical result,
Theorem 4. In Sect. 5 we study the respecting improvement property in the con-
text of the Stable Roommates problem. We conclude with some questions for
future research in Sect. 6.

3 The Core of Housing Markets: Some Computational
Problems

We investigate a few computational problems related to the core of housing
markets. In Sect. 3.1 we describe our adaptation of TTC to partially ordered
preferences. In Sect. 3.2 we turn our attention to the problem of finding an
allocation in the core of a housing market that satisfies certain arc restrictions,
requiring that a given arc be contained or, just the opposite, not be contained in
the desired allocation. In Sect. 3.3 we look at the most prominent optimization
problem in connection with the core: given a housing market, find an allocation
in its core where the number of trading agents is as large as possible.

3.1 Top Trading Cycles for Preferences with Incomparability

Strict Preferences. If agents’ preferences are represented by strict orders, then
the TTC algorithm [39] produces the unique allocation in the strict core. TTC
creates a directed graph D where each agent a points to her top choice, that is,
to the agent owning the house most preferred by a. In the graph D each agent
has out-degree exactly 1, since preferences are assumed to be strict. Hence, D
contains at least one cycle, and moreover, the cycles in D do not intersect. TTC
selects all cycles in the graph D as part of the desired allocation, deletes from
the market all agents trading along these cycles, and repeats the whole process
until there are no agents left.

Preferences as Partial Orders. When preferences are represented by partial
orders, one can modify the TTC algorithm by letting each agent a in D point to
her undominated choices: b is undominated for a, if there is no agent c such that
b ≺a c. Notice that an agent’s out-degree is then at least 1. Thus, D contains at
least one cycle, but in case it contains more than one cycle, these may overlap.

A simple approach is to select a set of mutually vertex-disjoint cycles in each
round, removing the agents trading along them from the market and proceeding
with the remainder in the same manner. It is not hard to see that this approach
yields an algorithm that produces an allocation in the core: by the definition of
undominated choices, any arc of a blocking cycle leaving an agent a necessarily
points to an agent that was already removed from the market at the time when a
cycle containing a got selected. Clearly, no cycle may consist of such “backward”
arcs only, proving that the computed allocation is indeed in the core.

Implementation in Linear Time. Abraham et al. [3] describe an implemen-
tation of the TTC algorithm for strict preferences that runs in O(|GH |) time.
We extend their ideas to the case when preferences are partial orders as follows.
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For each agent a ∈ N we assume that a’s preferences are given using a
Hasse diagram which is a directed acyclic graph Ha that can be thought of as a
compact representation of ≺a. The vertex set of Ha is A(a), and it contains an
arc (b, c) if and only if b ≺a c and there is no agent c′ with b ≺a c′ ≺a c. Then
the description of our housing market H has length

∑
a∈A |Ha| which we denote

by |H|. If preferences are weak or strict orders, then |H| = O(|GH |).
Throughout our variant of TTC, we will maintain a list U(a) containing the

undominated choices of a among those that still remain in the market, as well
as a subgraph D of GH spanned by all arcs (a, b) with b ∈ U(a). Furthermore,
for each agent a in the market, we will keep a list of all occurrences of a as
someone’s undominated choice. Using Ha we can find the undominated choices
of a in O(|Ha|) time, so initialization takes O(|H|) time in total.

Whenever an agent a is deleted from the market, we find all agents b such that
a ∈ U(b), and we update U(b) by replacing a with its in-neighbors in Hb. Notice
that the total time required for such deletions (and the necessary replacements)
to maintain U(b) is O(|Hb|). Hence, we can efficiently find the undominated
choices of each agent at any point during the algorithm, and thus traverse the
graph D consisting of arcs (a, b) with b ∈ U(a).

To find a cycle in D, we simply keep building a path using arcs of D, until we
find a cycle (perhaps a loop). After recording this cycle and deleting its agents
from the market (updating the lists U(a) as described above), we simply proceed
with the last agent on our path. Using the data structures described above the
total running time of our variant of TTC is O(|N | +

∑
a∈N |Ha|) = O(|H|).

3.2 Allocations in the Core with Arc Restrictions

We now focus on the problem of finding an allocation in the core that fulfills
certain arc constraints. The simplest such constraints arise when we require a
given arc to be included in, or conversely, be avoided by the desired allocation.

We define the Arc in Core problem as follows: given a housing market H =
(N, {≺a}a∈N ) and an arc (a, b) in GH , decide whether there exists an allocation
in the core of H that contains (a, b), or in other words, where agent a obtains
the house of agent b. Analogously, the Forbidden Arc in Core problem asks
to decide if there exists an allocation in the core of H not containing (a, b).

By giving a reduction from Acyclic Partition [14], we show in Theorem 1
that both of these problems are computationally intractable, even if each agent
has a strict ordering over the houses. In fact, we cannot even hope to decide for
a given agent a in a housing market H whether there exists an allocation in the
core of H where a is trading; we call this problem Agent Trading in Core.

Theorem 1 (�3). Each of the following problems is NP-complete, even if
agents’ preferences are strict orders:

– Arc in Core,
– Forbidden Arc in Core, and
– Agent Trading in Core.
3 Proofs marked by an asterisk can be found in the full version of our paper [38].
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3.3 Maximizing the Number of Agents Trading in a Core Allocation

Perhaps the most natural optimization problem related to the core of housing
markets is the following: given a housing market H, find an allocation in the core
of H whose size, defined as the number of trading agents, is maximal among all
allocations in the core of H; we call this the Max Core problem. Max Core
is NP-hard by a result of Cechlárová and Repiský [18]. In Theorem 2 below we
show that even approximating Max Core is NP-hard. Our result is tight in the
following sense: we prove that for any ε > 0, approximating Max Core with a
ratio of |N |1−ε is NP-hard, where |N | is the number of agents in the market. By
contrast, a very simple approach yields an approximation with ratio |N |.

We remark that Biró and Cechlárová [7] proved a similar inapproximability
result, but since they considered a special model where agents not only care
about the house they receive but also about the length of their exchange cycle,
their result cannot be translated to our model, and so does not imply Theorem 2.
Instead, our reduction relies on the ideas we use to prove Theorem 1.

Theorem 2 (�). For any constant ε > 0, the Max Core problem is NP-hard
to approximate within a ratio of αε(N) = |N |1−ε where N is the set of agents,
even if agents’ preferences are strict orders.

We contrast Theorem 2 with the observation that an algorithm that outputs
any allocation in the core yields an approximation for Max Core with ratio |N |.
Proposition 3 (�). Max Core can be approximated with a ratio of |N | in
polynomial time, where |N | is the number of agents in the input.

4 The Effect of Improvements in Housing Markets

Let H = (N, {≺a}a∈N ) be a housing market containing agents p and q. We
consider a situation where the preferences of q are modified by “increasing the
value” of p for q without altering the preferences of q over the remaining agents.
If the preferences of q are given by a strict or weak order, then this translates
to shifting the position of p in the preference list of q towards the top. Formally,
a housing market H ′ = (N, {≺′

a}a∈N ) is called a (p, q)-improvement of H, if
≺a=≺′

a for any a ∈ N \ {q}, and ≺′
q is such that (i) a ≺′

q b iff a ≺q b for any
a, b ∈ N \{p}, and (ii) if a ≺q p, then a ≺′

q p for any a ∈ N . We will also say that
a housing market is a p-improvement of H, if it can be obtained by a sequence
of (p, ai)-improvements for a series a1, . . . , ak of agents for some k ∈ N.

To examine how p-improvements affect the situation of p in the market, one
may consider several solution concepts such as the core, the strict core, and so on.
We regard a solution concept as a function Φ that assigns a set of allocations to
each housing market. Based on the preferences of p, we can compare allocations
in Φ. Let Φ+

p (H) denote the set containing the best houses p can obtain in Φ(H):

Φ+
p (H) = {X(p) | X ∈ Φ(H),∀X ′ ∈ Φ(H) : X ′(p) �p X(p)}.
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Fig. 1. The housing markets H and H ′ in the proof of Proposition 6. Here and every-
where else we depict markets through their acceptability graphs with all loops omitted;
preferences are indicated by numbers along the arcs. For both H and H ′, the allocation
represented by red (and bold) arcs yields the worst possible outcome for p in any core
allocation of the given market. (Color figure online)

Similarly, let Φ−
p (H) be the set containing the worst houses p can obtain in Φ(H).

Following the notation used by Biró et al. [9], we say that Φ respects improve-
ment for the best available house or simply satisfies the RI-best property, if for
any housing markets H and H ′ such that H ′ is a p-improvement of H for some
agent p, a �p a′ for every a ∈ Φ+

p (H) and a′ ∈ Φ+
p (H ′). Similarly, Φ respects

improvement for the worst available house or simply satisfies the RI-worst prop-
erty, if for any housing markets H and H ′ such that H ′ is a p-improvement of H
for some agent p, a �p a′ for every a ∈ Φ−

p (H) and a′ ∈ Φ−
p (H ′).

Notice that the above definition does not take into account the possibility
that a solution concept Φ may become empty as a result of a p-improvement. To
exclude such a possibility, we may require the condition that an improvement
does not destroy all solutions. We say that Φ strongly satisfies the RI-best (or
RI-worst) property, if besides satisfying the RI-best (or, respectively, RI-worst)
property, it also guarantees that whenever Φ(H) �= ∅, then Φ(H ′) �= ∅ also holds
where H ′ is a p-improvement of H for some agent p.

We prove that the core of housing markets satisfies the RI-best property.
In fact, Theorem 4 (proved in Sect. 4.2) states a slightly stronger statement.
By contrast, Proposition 6 shows that the core of housing markets violates the
RI-worst property.

Theorem 4. Given an allocation X in the core of the housing market H and
a p-improvement H ′ of H, there exists an allocation X ′ in the core of H ′ such
that either X(p) = X ′(p) or p prefers X ′ to X. Moreover, given H, H ′ and X,
it is possible to find such an allocation X ′ in polynomial time.

Corollary 5. The core of housing markets strongly satisfies the RI-best prop-
erty.

Proposition 6. The core of housing markets violates the RI-worst property.

Proof. Let N = {a, b, c, p, q} be the set of agents. The preferences indicated in
Fig. 1 define a housing market H and a (p, q)-improvement H ′ of H.
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We claim that in every allocation in the core of H, agent p obtains the house
of a. To see this, let X be an allocation where (p, a) /∈ X. If agent a is not
trading in X, then a and p form a blocking cycle; therefore, (b, a) ∈ X. Now, if
(c, b) /∈ X, then c and b form a blocking cycle for X; otherwise, q and b form a
blocking cycle for X. Hence, p obtains her top choice in all core allocations of H.

However, it is easy to verify that the core of H ′ contains an allocation where
p obtains only her second choice (q’s house), as shown in Fig. 1. 
�

We describe our algorithm for Theorem 4 in Sect. 4.1, and prove its cor-
rectness in Sect. 4.2. In Sect. 4.3 we look at the problem of deciding whether a
p-improvement leads to a situation strictly better for p.

4.1 Description of Algorithm HM-Improve

Before describing our algorithm for Theorem 4, we need some notation.

Pre-allocations and Their Envy Graphs. Given a housing market H =
(N, {≺a}a∈N ) and two distinct agents u and v in N , we say that a set Y of arcs
in GH = (N,E) is a pre-allocation from u to v in H, if

• δ−
Y (u) = δ+Y (v) = 0,

• δ+Y (a) = 1 for each a ∈ N \ {v}, and
• δ−

Y (a) = 1 for each a ∈ N \ {u}.

Note that Y is a collection of vertex-disjoint cycles and a unique path P in GH ,
with P leading from u to v. We call u the source of Y and v its sink.

Given a pre-allocation Y from u to v in H, an arc (a, b) ∈ E is Y -augmenting,
if a �= v and Y (a) ≺a b. We define the envy graph of Y as GH

Y ≺ = (N,EY ) where
EY is the set of Y -augmenting arcs in E. A blocking cycle for Y is a cycle in GH

Y ≺;
notice that such a cycle cannot contain the sink v, since no Y -augmenting arc
leaves v. We say that the pre-allocation Y is stable, if no blocking cycle exists
for Y , that is, if its envy graph is acyclic.

We are now ready to propose an algorithm called HM-Improve that given
an allocation X in the core of H outputs an allocation X ′ as required by The-
orem 4. Observe that we can assume w.l.o.g. that H ′ is a (p, q)-improvement
of H for some agent q, as we can apply such a single-agent version of Theorem 4
repeatedly to obtain the theorem for p-improvements involving multiple agents.

Algorithm HM-Improve. First, HM-Improve checks whether X belongs to
the core of H ′, and if so, outputs X ′ = X. Hence, we may assume that X
admits a blocking cycle in H ′. Observe such a cycle must contain the arc (q, p),
as otherwise it would block X in H as well. This implies that X(q) ≺′

q p.
HM-Improve proceeds by modifying the housing market: it adds a new agent q̃

to H ′, with q̃ taking the place of p in the preferences of q; the only house
that agent q̃ prefers to her own will be the house of p. Let H̃ be the housing
market obtained. Then the acceptability graph G̃ of H̃ can be obtained from
the acceptability graph of H ′ by subdividing the arc (q, p) with a new vertex
corresponding to agent q̃. Let Ñ = N ∪ {q̃}, and let Ẽ be the set of arcs in G̃.
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Initialization. Let Y = X \ {(q,X(q))} ∪ {(q, q̃)} in G̃. Observe that Y is a
pre-allocation from the source X(q) to the sink q̃ in H̃. Additionally, we define
a set R of irrelevant agents, initially empty. We may think of irrelevant agents
as temporarily deleted from the market.

Iteration. Next, algorithm HM-Improve iteratively modifies the pre-
allocation Y and the set R of irrelevant agents. It will maintain the property
that Y is a pre-allocation in H̃ − R; we denote its envy graph by G̃Y ≺, having
vertex set Ñ \ R. While the source of Y changes during the iteration, the sink q̃
remains fixed.

At each iteration, HM-Improve performs the following steps:

1. Let u be the source of Y . If u ∈ {p, q̃}, then the iteration stops.
2. Otherwise, if there exists a Y -augmenting arc (s, u) in G̃Y ≺ entering u (note

that s ∈ Ñ \ R), then let u′ = Y (s). The algorithm modifies Y by deleting
the arc (s, u′) and adding the arc (s, u) to Y . Note that Y thus becomes a
pre-allocation from u′ to q̃ in H̃ − R.

3. Otherwise, no arc in G̃Y ≺ enters u; let u′ = Y (u). The algorithm adds u
to the set R of irrelevant agents, and modifies Y by deleting the arc (u, u′).
Again, Y becomes a pre-allocation from u′ to q̃ in H̃ − R.

Output. Let Y be the pre-allocation at the end of the above iteration, u its
source, and R the set of irrelevant agents. HM-Improve applies the variant of
the TTC algorithm described in Sect. 3.1 to the submarket H ′

R of H ′ when
restricted to the set of irrelevant agents. Let XR denote the obtained allocation
in the core of H ′

R. Then HM-Improve outputs an allocation X ′ defined as

X ′ =
{

XR ∪ Y \ {(q, q̃)} ∪ {(q, p)} if u = p,
XR ∪ Y if u = q̃.

4.2 Correctness of Algorithm HM-Improve

We begin proving the correctness of algorithm HM-Improve with the following.

Lemma 7. At each iteration, pre-allocation Y is stable in H̃ − R.

Proof. The proof is by induction on the number n of iterations performed. For
n = 0, observe that initially Y (a) = X(a) for each agent a ∈ N \ {q}, and by
X(q) ≺′

q p we know that q prefers Y (q) = q̃ to X(q). Note also that neither (q, p)
nor the arcs (q, q̃) and (q̃, p) are contained in the envy graph G̃Y ≺. Thus, a cycle
in G̃Y ≺ would be present in the envy graph of X in H as well. Since X is in the
core of H, it follows that Y is stable in H̃. Note that initially R = ∅.

For n ≥ 1, assume that the algorithm has performed n − 1 iterations so far.
Let Y and R be as defined at the beginning of the n-th iteration, with u being
the source of Y , and let Y ′ and R′ be the pre-allocation and the set of irrelevant
agents obtained after the modifications in this iteration. Assume that Y is stable
in H̃ − R, so G̃Y ≺ is acyclic. In case HM-Improve does not stop in Step 1 but
modifies Y and possibly R, we distinguish between two cases:
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(a) the algorithm modifies Y in Step 2, by using a Y -augmenting arc (s, u); then
R′ = R. Note that s prefers Y ′ to Y , and for any other agent a ∈ N \ R′

we know Y (a) = Y ′(a). Hence, this modification amounts to deleting all
arcs (s, a) from the envy graph G̃Y ≺ where Y (s) ≺s a �s Y ′(s).

(b) the algorithm modifies Y in Step 3, by adding the source u to the set of
irrelevant agents, i.e., R′ = R ∪ {u}. Then Y ′(a) = Y (a) for each agent a ∈
N \ R′, so the envy graph G̃Y ′≺ is obtained from G̃Y ≺ by deleting u.

Since deleting some arcs or a vertex from an acyclic graph results in an acyclic
graph, the stability of Y ′ is clear. 
�

We proceed with the observation that an agent’s situation in Y may only
improve, unless it becomes irrelevant: this is a consequence of the fact that the
algorithm only deletes arcs and agents from the envy graph G̃Y ≺.

Proposition 8. Let Y1 and Y2 be two pre-allocations computed by algorithm
HM-Improve, with Y1 computed at an earlier step than Y2, and let a be an agent
that is not irrelevant at the end of the iteration when Y2 is computed. Then either
Y1(a) = Y2(a) or a prefers Y2 to Y1.

We need an additional lemma that will be useful for arguing why irrelevant
agents may not become the cause of instability in the housing market.

Lemma 9. At the end of algorithm HM-Improve, there does not exist an arc
(a, b) ∈ Ẽ such that a ∈ N \ R, b ∈ R and Y (a) ≺′

a b.

Proof. Suppose for contradiction that (a, b) is such an arc, and let Y and R be as
defined at the end of the last iteration. Let us suppose that HM-Improve adds b
to R during the n-th iteration, and let Yn be the pre-allocation at the beginning
of the n-th iteration. By Proposition 8, either Yn(a) = Y (a) or Yn(a) ≺′

a Y (a).
The assumption Y (a) ≺′

a b yields Yn(a) ≺′
a b by the transitivity of ≺′

a. Thus,
(a, b) is a Yn-augmenting arc entering b, contradicting our assumption that the
algorithm put b into R in Step 3 of the n-th iteration. 
�

The following lemma, the last one necessary to prove Theorem 4, shows that
HM-Improve runs in linear time; the proof relies on the fact that in each iteration
but the last either an agent or an arc is deleted from the envy graph, thus limiting
the number of iterations by |E| + |N |.
Lemma 10 (�). Algorithm HM-Improve runs in O(|H|) time.

Proof (of Theorem 4). By Lemma 10 it suffices to show that algorithm HM-
Improve is correct. Let Y and R be the pre-allocation and the set of irrelevant
agents, respectively, at the end of algorithm HM-Improve, and let u be the source
of Y . To begin, we prove it formally that X ′ is an allocation for H ′.

First assume u = q̃. This means that Y is the union of disjoint cycles covering
each agent in N \R exactly once; note that no arc of Y enters or leaves q̃. Hence,
Y is an allocation not only in H̃ − R, but also in the submarket of H ′ on agent
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set N \R, i.e., H ′
N\R. Second, assume that u = p; in this case (q, q̃) ∈ Y , because

q̃ can be entered only through (q, q̃). So the arc set Y \ {(q, q̃)} ∪ {(q, p)} is an
allocation in H ′

N\R. Consequently, X ′ is indeed an allocation in H ′ in both cases.
Now, let us prove that the allocation X ′ is in the core of H ′ by showing that

the envy graph GH′
X′≺ of X ′ is acyclic. First, the subgraph GH′

X′≺[R] is exactly
the envy graph of XR in H ′

R and hence is acyclic.

Claim. Let a ∈ N \R and let (a, b) be an X ′-augmenting arc in H ′. Then (a, b)
is Y -augmenting as well, i.e., Y (a) ≺′

a b.

Proof (of Claim). If (a, b) �= (q, p), then (a, b) is an arc in G
˜H , and thus the

claim follows immediately from X ′(a) = Y (a) except for the case a = q and
Y (q) = q̃; in this latter case X ′(q) = p ≺′

q b implies that q prefers b to Y (q) = q̃

in H̃ as well, that is, (q, b) is Y -augmenting.
We finish the proof of the claim by showing that (q, p) is not X ′-augmenting

if q /∈ R. Let u be the source of Y . If u = p, then this is clear by (q, p) ∈ X ′.
If u = q̃, then let us now consider the penultimate iteration in which the source
of Y is moved to q̃ either in Step 2 or in Step 3. Recall that the only arc entering q̃
is (q, q̃). If q̃ became the source of Y in Step 2, then we know q̃ ≺q Y (q). By the
construction of H̃, this means that q prefers Y (q) = X ′(q) to p in H ′, so (q, p)
is not X ′-augmenting, a contradiction. Finally, if q̃ became the source of Y in
Step 3, then we get q ∈ R, which contradicts our assumption q /∈ R. �

As a consequence of our claim, we obtain that GH′
X′≺[N \ R] is a subgraph

of G̃Y ≺ and therefore it is acyclic by Lemma 7. Hence, any cycle in GH′
X′≺ must

contain agents both in R and in N \ R (recall that GH′
X′≺[R] is acyclic as well).

However, GH′
X′≺ contains no arcs from N \ R to R, since such arcs cannot be

Y -augmenting by Lemma 9. Thus GH′
X′≺ is acyclic and X ′ is in the core of H ′. 
�

4.3 Strict Improvement

Looking at Theorem 4 and Corollary 5, one may wonder whether it is possible to
detect efficiently when a p-improvement leads to a situation that is strictly better
for p. For a solution concept Φ and housing markets H and H ′ such that H ′ is
a p-improvement of H for some agent p, one may ask the following questions:

1. Possible Strict Improvement for Best House or PSIB:
is it true that a ≺p a′ for some a ∈ Φ(H)+p and a′ ∈ Φ(H ′)+p ?

2. Necessary Strict Improvement for Best House or NSIB:
is it true that a ≺p a′ for every a ∈ Φ(H)+p and a′ ∈ Φ(H ′)+p ?

3. Possible Strict Improvement for Worst House or PSIW:
is it true that a ≺p a′ for some a ∈ Φ(H)−

p and a′ ∈ Φ(H ′)−
p ?

4. Necessary Strict Improvement for Worst House or NSIW:
is it true that a ≺p a′ for every a ∈ Φ(H)−

p and a′ ∈ Φ(H ′)−
p ?

Focusing on the core of housing markets, it turns out that all of the above four
problems are computationally intractable, even in the case of strict preferences.
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Theorem 11 (�). With respect to the core of housing markets, PSIB and NSIB
are NP-hard, while PSIW and NSIW are coNP-hard, even if agents’ preferences
are strict orders.

5 The Effect of Improvements in STABLE ROOMMATES

In the Stable Roommates problem we are given a set N of agents, and a
preference relation ≺a over N for each agent a ∈ N ; the task is to find a stable
matching M between the agents. A matching is stable if it admits no blocking
pair, that is, a pair of agents such that each prefers the other over her partner in
the matching. Notice that an input instance for Stable Roommates is in fact
a housing market. Viewed from this perspective, a stable matching in a housing
market can be thought of as an allocation that (i) contains only cycles of length
at most 2, and (ii) does not admit a blocking cycle of length at most 2.

For an instance of Stable Roommates, we assume mutual acceptability,
that is, for any two agents a and b, we assume that a ≺a b holds if and only if
b ≺b a holds. Consequently, it will be more convenient to define the acceptability
graph GH of an instance H of Stable Roommates as an undirected simple
graph where agents a and b are connected by an edge {a, b} if and only if they
are acceptable to each other and a �= b. A matching in H is then a set of edges
in GH such that no two of them share an endpoint.

Biró et al. [9] have shown the following statements.

Proposition 12 [9]. Stable matchings in the Stable Roommates model

– violate the RI-worst property (even if agents’ preferences are strict), and
– violate the RI-best property, if agents’ preferences may include ties.

Complementing Proposition 12, we show that a (p, q)-improvement can lead
to an instance where no stable matching exists at all. This may happen even
in the case when preferences are strict orders; hence, stable matchings do not
strongly satisfy the RI-best property. For an illustration of Propositions 12
and 13 by simple examples see the full version of our paper [38].

Proposition 13 (�). Stable matchings in the Stable Roommates model do
not strongly satisfy the RI-best property, even if agents’ preferences are strict.

Contrasting Propositions 12 and 13, it is somewhat surprising that if agents’
preferences are strict, then the RI-best property holds for the Stable Room-
mates setting. Thus, the situation of p cannot deteriorate as a consequence of
a p-improvement unless instability arises. The proof of Theorem 14 is provided
at the end of this section.

Theorem 14. Let H = (N, {≺a}a∈N ) be a housing market where agents’
preferences are strict orders. Given a stable matching M in H and a (p, q)-
improvement H ′ of H for two agents p, q ∈ N , either H ′ admits no stable match-
ings at all, or there exists a stable matching M ′ in H ′ such that M(p) �i M ′(p).
Moreover, given H, H ′ and M it is possible to find such a matching M ′ in
polynomial time.
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Corollary 15. Stable matchings in the Stable Roommates model satisfy the
RI-best property.

Structural Ingredients. To prove Theorem 14 we are going to rely on the
concept of proposal-rejection alternating sequences introduced by Tan and
Hsueh [41], originally used as a tool for finding a stable partition in an incre-
mental fashion by adding agents one-by-one to a Stable Roommates instance.
We somewhat tailor their definition to fit our current purposes.

Let α0 ∈ N be an agent in a housing market H, and let M0 be a stable
matching in H − α0. A sequence S of agents α0, β1, α1, . . . , βk, αk is a proposal-
rejection alternating sequence starting from M0, if there exists a sequence of
matchings M1, . . . ,Mk such that for each i ∈ {1, . . . , k}
(i) βi is the agent most preferred by αi−1 among those who prefer αi−1 to their

partner in Mi−1 or are unmatched in Mi−1,
(ii) αi = Mi−1(βi), and
(iii) Mi = Mi−1 \ {{αi, βi}} ∪ {{αi−1, βi}} is a matching in H − αi.

We say that the sequence S starts from M0, and that the matchings M1, . . . ,Mk

are induced by S. We say that S stops at αk, if there does not exist an agent
fulfilling condition (i) in the above definition for i = k + 1, that is, if no agent
prefers αk to her current partner in Mk and no unmatched agent in Mk finds
αk acceptable. We will also allow a proposal-rejection alternating sequence to
take the form α0, β1, α1, . . . , βk, in case conditions (i), (ii), and (iii) hold for each
i ∈ {1, . . . , k−1}, and βk is an unmatched agent in Mk−1 satisfying condition (i)
for i = k. In this case we define the last matching induced by the sequence as
Mk = Mk−1 ∪ {{αk−1, βk}}, and we say that the sequence stops at agent βk.

We summarize the most important properties of proposal-rejection alternat-
ing sequences in Lemma 16 as observed and used by Tan and Hsueh.4

Lemma 16 ([41] �). Let α0, β1, α1, . . . , βk(, αk) be a proposal-rejection alter-
nating sequence starting from a stable matching M0 and inducing the matchings
M1, . . . ,Mk in a housing market H. Then the following hold.

1. Mi is a stable matching in H − αi for each i ∈ {1, . . . , k − 1(, k)}.
2. If βj = αi for some i and j, then H does not admit a stable matching; in

such a case we say that sequence S has a return.
3. If the sequence stops at αk or βk, then Mk is a stable matching in H.
4. For any i ∈ {1, . . . , k − 1} agent αi prefers Mi−1(αi) to Mi+1(αi).
5. For any i ∈ {1, . . . , k − 1} agent βi prefers Mi(βi) to Mi−1(βi).

Description of Algorithm SR-Improve. Let M = (N, {≺a}a∈N ) be the sta-
ble matching given for the housing market H, and let H ′ = (N, {≺′

a}a∈N ) be a
(p, q)-improvement of H for two agents p and q in N (recall that ≺′

a=≺a unless
a = q). We now propose algorithm SR-Improve that computes a stable match-
ing M ′ in H ′ with M(p) �p M ′(p), whenever H ′ admits some stable matching.

4 The first claim of the lemma is only implicit in the paper by Tan and Hsueh [41],
we prove it for the sake of completeness in the full version of our paper [38].
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First, SR-Improve checks whether M is stable in H ′, and if so, returns the
matching M ′ = M . Otherwise, {p, q} must be a blocking pair for M in H ′.

Second, the algorithm checks whether H ′ admits a stable matching and if so,
computes any stable matching M� in H ′ using Irving’s algorithm [26]; if no stable
matching exists for H ′, algorithm SR-Improve stops. Now, if M(p) �′

p M�(p),
then SR-Improve returns M ′ = M�, otherwise proceeds as follows.

Let H̃ be the housing market obtained from H ′ by deleting all agents {a ∈
N : a �′

q p} from the preference list of q (and vice versa, deleting q from the
preference list of these agents). Notice that in particular this includes the deletion
of p as well as of M(q) from the preference list of q (recall that M(q) ≺′

q p).
Let us define α0 = M(q) and M0 = M \ {q, α0}. Notice that M0 is a stable

matching in H̃ − α0: clearly, any possible blocking pair must contain q, but any
blocking pair {q, a} that is blocking in H̃ would also block H by M(q) ≺q a.
Observe also that q is unmatched in M0.

Finally, SR-Improve builds a proposal-rejection alternating sequence S of
agents α0, β1, α1, . . . , βk(, αk) in H̃ starting from M0, and inducing matchings
M1, . . . ,Mk until one of the following cases occurs:

(a) αk = p: in this case SR-Improve outputs M ′ = Mk ∪ {{p, q}};
(b) S stops: in this case SR-Improve outputs M ′ = Mk.

Correctness of Algorithm SR-Improve. The proof that algorithm SR-
Improve is correct relies on the following two facts.

Lemma 17 (�). The sequence S cannot have a return. Furthermore, if S stops,
then it stops at βk with βk = q.

Lemma 18 (�). If SR-Improve outputs a matching M ′, then M ′ is stable in H ′

and M(p) �′
p M ′(p).

Proof (of Theorem 14). From the description of SR-Improve and Lemma 18 it
is immediate that any output the algorithm produces is correct. It remains to
show that it does not fail to produce an output. By Lemma 17 we know that the
sequence S built by the algorithm cannot have a return and can only stop at q,
implying that SR-Improve will eventually produce an output. Considering the
fifth statement of Lemma 16, we also know that the length of S is at most 2|E|.
Thus, the algorithm finishes in O(|E|) time. 
�

6 Further Research

Even though the property of respecting improvement is important in exchange
markets, many solution concepts have not been studied from this aspect. For
instance, in the Stable Roommates setting with weakly or partially ordered
preferences, do strongly stable matchings satisfy the RI-best property? What
about stable half-matchings (or equivalently, stable partitions) in instances of
Stable Roommates without a stable matching? Although the full version of
our paper [38] contains an example about stable half-matchings where improve-
ment of an agents’ house damages her situation, perhaps a more careful investi-
gation may shed light on some interesting monotonicity properties.
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9. Biró, P., Klijn, F., Klimentova, X., Viana, A.: Shapley-Scarf housing mar-
kets: respecting improvement, integer programming, and kidney exchange. CoRR
arXiv:2102.00167 [econ.TH] (2021)
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17. Cechlárová, K., Lacko, V.: The kidney exchange problem: how hard is it to find a
donor? Ann. Oper. Res. 193, 255–271 (2012)
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20. Cseh, Á., Manlove, D.F.: Stable marriage and roommates problems with restricted
edges: complexity and approximability. Discrete Optim. 20, 62–89 (2016)

https://doi.org/10.1007/978-3-540-30551-4_3
https://doi.org/10.1007/978-3-540-30551-4_3
http://arxiv.org/abs/2102.00167
https://doi.org/10.1007/s00355-011-0566-x


The Core of Housing Markets from an Agent’s Perspective 261

21. Dias, V., da Fonseca, G., Figueiredo, C., Szwarcfiter, J.: The stable marriage prob-
lem with restricted pairs. Theor. Comput. Sci. 306, 391–405 (2003)

22. Fleiner, T., Irving, R.W., Manlove, D.F.: Efficient algorithms for generalized stable
marriage and roommates problems. Theor. Comput. Sci. 381(1), 162–176 (2007)

23. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algo-
rithms. MIT Press, Cambridge (1989)

24. Hatfield, J.W., Kojima, F., Narita, Y.: Improving schools through school choice: a
market design approach. J. Econ. Theory 166(C), 186–211 (2016)

25. Huang, C.-C.: Circular stable matching and 3-way kidney transplant. Algorithmica
58(1), 137–150 (2010). https://doi.org/10.1007/s00453-009-9356-6

26. Irving, R.W.: An efficient algorithm for the “stable roommates” problem. J. Algo-
rithms 6(4), 577–595 (1985)

27. Jaramillo, P., Manjunath, V.: The difference indifference makes in strategy-proof
allocation of objects. J. Econ. Theory 147(5), 1913–1946 (2012)

28. Kamijo, Y., Kawasaki, R.: Dynamics, stability, and foresight in the Shapley-Scarf
housing market. J. Math. Econ. 46(2), 214–222 (2010)

29. Kawasaki, R.: Roth-Postlewaite stability and von Neumann-Morgenstern stability.
J. Math. Econ. 58, 1–6 (2015)

30. Klaus, B., Klijn, F.: Minimal-access rights in school choice and the deferred accep-
tance mechanism. Cahiers de Recherches Economiques du Département d’économie
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Mechanisms for Trading Durable Goods

Sigal Oren(B) and Oren Roth

Ben-Gurion University of the Negav, 8410501 Beer-Sheva, Israel

Abstract. We consider trading indivisible and easily transferable
durable goods, which are goods that an agent can receive, use, and trade
again for a different good. This is often the case with books that can
be read and later exchanged for unread ones. Other examples of such
easily transferable durable goods include puzzles, video games and baby
clothes.

We introduce a model for the exchange of easily transferable durable
goods. In our model, each agent owns a set of items and demands a
different set of items. An agent is interested in receiving as many items
as possible from his demand set. We consider mechanisms that exchange
items in cycles in which each participating agent receives an item that he
demands and gives an item that he owns. We aim to develop mechanisms
that have the following properties: they are efficient, in the sense that
they maximize the total number of items that agents receive from their
demand set, they are strategyproof (i.e., it is in the agents’ best interest
to report their preferences truthfully) and they run in polynomial time.

One challenge in developing mechanisms for our setting is that the
supply and demand sets of the agents are updated after a trade cycle
is executed. This makes constructing strategyproof mechanisms in our
model significantly different from previous works, both technically and
conceptually and requires developing new tools and techniques. We prove
that simultaneously satisfying all desired properties is impossible and
thus focus on studying the tradeoffs between these properties. To this
end, we provide both approximation algorithms and impossibility results.

1 Introduction

The sharing economy [7] puts on steroids the ancient idea of sharing physical
assets. Instead of only sharing among friends, technology advancements facili-
tate the sharing of physical goods among strangers [8]: rather than booking a
hotel room, we often use Airbnb to live in someone’s apartment, and instead of
throwing away items we no longer use, we can exchange them for others that
we do need. At the heart of the sharing economy is a desire to increase social
efficiency by using underutilized resources.

A perfect demonstration of the credo of the sharing economy is the efficient
reallocation of durable goods, like books, toys and sports gear. For example,
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suppose you have just finished reading the first Harry Potter book “Harry Potter
and the Philosopher’s Stone”. You will probably be happy to exchange it in
return for the second book in the series “Harry Potter and the Chamber of
Secrets”. In the offline world, for a swap to occur, we must have two individuals,
each of whom is interested in the other’s item. However, it is implausible that a
person that read the second book in the Harry Potter series will be interested
in the first book. Thus, such an exchange is more likely to occur as part of a
larger cycle of exchanges which might be difficult to coordinate without a central
mechanism.

Online platforms (such as Swappy Books, Rehash Clothes, TradeMade and
others) provide a central mechanism where each user can report the items he can
give and the items he would like to receive. The platforms essentially provide
infrastructure that reduces the search friction and allows to orchestrate complex
exchanges. In this paper we focus on designing mechanisms for allocating eas-
ily transferable durable goods with the objective of maximizing the number of
exchanges. A main challenge in designing such mechanisms is that the same item
can be traded several times. This crucial difference from classic works on barter
and trading (e.g., [2,15]) requires developing new algorithmic tools to ensure
that these platforms will live up to their potential.

A Model of Durable Goods. We consider a stylized model for exchanging
easily transferable durable goods. Our model is based on the classic work of
Shapley and Scarf [15] for the house allocation problem. We consider a set N
(|N | = n) of agents and a set M (|M | = m) of items. Each agent has a subset
Di ⊆ M of items that he demands and a subset Si ⊆ M of items he owns.
We make the simplifying assumption that each agent is willing to give any item
from Si in return for any item from Di. This means that the agent is indifferent
between all the items that he demands and also between all the items that
he owns. This is a reasonable assumption for books, for example, where books
that the agent already read serve as a commodity that can be exchanged to get
new desired books. Moreover, we assume that the agent is unwilling to receive
an item that is not in his current demand set.1 This can be, for example, due
to the physical or emotional burden of handling an unwanted item. We model
the demands and endowments of the agents as a directed bipartite graph G =
(N,M,E) in which there is a directed edge (i, j) if agent i demands item j and
a directed edge (j, i) if agent i owns item j. We refer to this graph as the trading
graph.

We focus on mechanisms that execute exchanges according to cycles in the
trading graph. In each exchange, every participating agent i receives an item
in Di and gives an item in Si. The novelty of our model is that after agent i
received item j ∈ Di and used it, he can trade it later for another item from Di.
Our model is dynamic in the sense that after each step, the sets Di and Si are
updated for each agent i. We refer to a sequence of cycles as an execution.

1 Formally, this can be modeled as part of the agent’s utility as a large penalty that
the agent exhibits for receiving an item not in the demand set or setting the utility
to 0 if the agent receives such an item.



264 S. Oren and O. Roth

Fig. 1. An example of an execution on a trading graph. Squares denote items and
circles denote agents.

It is useful to go over an example to better understand the model. Consider
the instance illustrated in Fig. 1. The set of agents is N = {a, b, c} and the set
of items is M = {x, y, z}. The set of items that agent a demands is Da = {x}
and the set of items that agent a owns is Sa = {z}. For agent b: Db = {y} and
Sb = {x} and for agent c: Dc = {x, z} and Sc = {y}. The trading graph of
this instance is illustrated in Fig. 1(a). In the optimal execution we first execute
the cycle C1 = (b, y, c, x, b). That is, agent b receives item y from agent c and
agent c receives item x from agent b. Then, after agent c receives item x the edge
(c, x) is flipped. The graph after the execution of C1 is illustrated in Fig. 1(b).
Now, we can execute the cycle C2 = (a, x, c, z, a). As we see in Fig. 1(c), after
executing cycle C2 there are no more cycles that we can execute. The social
welfare of this execution is 4 since overall it performs 4 exchanges, the utilities
of agents a and b is one since they received one item and the utility of agent
c is 2 since he received two items from Dc. This is the optimal execution (i.e.,
the execution that performs the maximal possible number of exchanges) for this
instance. This is in contrast to the best execution that can allocate each item
at most once (i.e., a “static” execution) which consists of only 3 exchanges (the
cycle (a, x, b, y, c, z, a) ).

Our Results. In this paper, we initiate the study of mechanisms that efficiently
reallocate easily transferable durable goods. Due to the dynamic nature of this
setting, designing such mechanisms is very challenging and requires developing
new tools and techniques. Our goal is to develop algorithms that maximize the
social welfare which is defined as the total number of items that all agents receive
from their demand sets. Furthermore, we take a mechanism design approach and
assume that for each agent i, the demand set Di and the supply set Si are his
private information. Thus, we would like our algorithms to be strategyproof in
the sense that each agent maximizes his utility (i.e., the number of items that he
receives from his demand sets) by truthfully reporting his private information.
Lastly, we would like our algorithms to run in polynomial time. Ideally, we would
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like to develop algorithms that have all these properties. Unfortunately, we will
prove that simultaneously obtaining all three properties is impossible. Thus we
focus on studying the tradeoffs between them.

We begin by considering simple executions that reallocate each item at most
once. We refer to such executions as static executions. We show that an opti-
mal static execution does not only provide a reasonable approximation to the
social welfare of an optimal (dynamic) execution but can also be computed in
polynomial time using a strategyproof algorithm. Formally, we show:

Theorem 1. Let l = maxi∈N |Di| be the maximum number of items that an
agent demands. There exists a polynomial-time and strategyproof algorithm that
computes an optimal static execution and provides an l-approximation to the
social welfare of an optimal (possibly dynamic) execution.

Our algorithm for computing the optimal static execution computes a maxi-
mum cycle cover of a graph by finding a maximum-weight perfect-matching in a
corresponding bipartite graph. This general approach is similar to Abraham et al.
[2]; however, defining the appropriate bipartite graph for our model is more intri-
cate as each agent may own and demand multiple items. Notably, in contrast to
[2], the algorithm that we devise is also strategyproof. This requires careful selec-
tion of the optimal execution that the algorithm outputs (there might be several
allocations that provide the maximal welfare). Loosely speaking, we divide the
proof that our algorithm is strategyproof into two parts. First, we show that
an agent cannot increase his utility by not reporting some of the items that he
demands. For this part of the proof, we take the edges of two maximum-weight
perfect matchings for two instances: the instance in which agent i reports his true
demand set and the instance in which agent i reports a subset of his demand.
Using these edges, we construct two different matchings for the two instances.
Since both pairs of matchings use the same set of edges, their sum of weights
is identical. Hence it is impossible that both original matchings are optimal for
their corresponding instances. Then, we show that an agent cannot benefit from
not reporting some items that he owns. We prove this by reversing the directions
of all the edges in the graph and applying our previous result showing that an
agent cannot benefit from not reporting some of the items in his demand set.

We then go on to study the limits of dynamic executions. First, we show
that the approximation ratio achieved by our algorithm is close to the optimal
approximation ratio achievable by any strategyproof algorithm. In particular,
we show that any strategyproof algorithm cannot attain an approximation ratio
better than ≈ l

2 (where l = maxi∈N |Di|). Interestingly, we show that if we
consider algorithms that are both strategyproof and always return a Pareto
efficient allocation, the best achievable approximation ratio is Θ(n). Finally,
we drop the requirement of strategyproofness and consider the computational
question of computing an optimal execution. By constructing a careful reduction
from the 3D-matching problem, we show that not only computing the optimal
execution is NP-hard but it also cannot be approximated within some small
constant unless P = NP. We note that the fact that the trading graph changes
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with the execution makes the reduction quite challenging. We leave open the
question of closing the gap between the l-approximation ratio of our algorithm
and the impossibility result showing that the problem cannot be approximated
within a small constant.2

This work focuses on executions that are sequences of cycles in which each
participating agent receives an item in his demand set. This restriction is a result
of two main assumptions. First, we assume that an agent is unwilling to give an
item without immediately receiving an item in return. The reasoning behind this
is that the agent views the items he has as commodities used to get items that
he is interested in. Thus, he does not want to lose such a commodity without
immediately getting something in return. This can lead to a problem known as
the “double coincidence of wants”: Bob might demand some item that Alice has
while Alice may not currently demand any item of Bob. The simple solution
to this classic problem is to introduce some form of money. Thus, our results
can be interpreted as demonstrating the necessity of money (not necessarily fiat
money3) when considering dynamic barter markets. The second assumption we
make is that an agent is not willing to give an item and receive in return an item
that is not in his demand set. The rationale is that we assume that exchanging
and perhaps storing an item that the agent is not interested in may have a
nonnegligible physical or emotional cost associated with it.

Related Literature. Abbassi et al. [1] consider a similar setting of barter net-
works with the main exception that each item may be allocated only once. This
is comparable to our static executions but is very different from the more general
dynamic executions. Abbassi et al. mainly focus on a different setting than ours
in which the length of each trading cycle is bounded. For this setting, they present
algorithms and hardness of approximation results for strategyproof mechanisms.
For the setting in which the length of the trading cycles is unconstrained, they
present a polynomial-time algorithm that computes an optimal static execu-
tion. It is important to note that, unlike our algorithm, this algorithm is not
strategyproof.

The problem of computing an optimal static execution is very much related
to the literature on matching. Our setting, in this respect, has two notable prop-
erties: 1) the agents may own and demand multiple items and 2) the agents
have a high level of indifference in the sense that an agent only cares about the
number of items from Di that he receives. In contrast, till recently, previous
work did not consider situations that exhibit both of these properties. In [16],
for example, Sönmez considered a setting in which each agent may own and
demand multiple items. He showed that when each agent has a strict preference
order over subsets of items, there is no individually rational, strategyproof, and
Pareto-efficient mechanism. Konishi et al. [11] demonstrated that this impos-
sibility result holds even in cases where there are only two different types of
items (e.g., houses and cars) and the agents have strict preference order over

2 In the full version we show that a greedy algorithm that sequentially finds an optimal
static allocation cannot get an approximation ratio better than l.

3 [3,10] suggest that “memory” could be used instead of money.
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these items. The high degree of indifference in our model allows us to escape
these impossibility results. Till recently, most works in the matching literature
featuring indifference considered only settings in which each agent owns and can
receive exactly a single item [4,6,9,14].

In a recent working paper, Manjunath and Westkamp [13] considered a static
setting they refer to as Trichotomous Preferences. Similar to our setting, each
agent labels the item that he does not own as either desirable or undesirable.
However, in contrast to our setting, the items that an agent owns are also labeled
as desirable or undesirable. The only undesirable items that an agent is willing
to accept as part of a bundle are those in his initial endowment. The agents rank
all the acceptable bundles according to the number of desirable items in them.
The authors show that there is a computationally efficient mechanism that is
individually rational, Pareto efficient and strategyproof in this setting. Similarly
to [1] the mechanism that Manjunath and Westkamp present is also based on a
fixed ordering of the agents. In [13] this often leads to executions that are Pareto
efficient but may be far from optimal. A slightly different setting was considered
in a working paper by Andersson et al. [5] in which each agent is endowed with
multiple copies of an item that is unique only to him. Agents label other agents’
items as desirable or undesirable and for desirable items, they have a cap on the
number of units they are willing to receive. Andersson et al. present a mechanism
that is individually rational, strategyproof and optimal. Notice that their result
can not be applied to our static model since their model is too restrictive.

Paper Outline. In Sect. 2 we formally define our model. In Sect. 3 we present
a strategyproof and computationally efficient algorithm that provides an l-
approximation to the optimal execution by computing an optimal static exe-
cution. In Sect. 4 we discuss the limits of dynamic executions.

2 Model

We consider a set of agents N (|N | = n) and a set of items M (|M | = m).
For each agent i we denote the subset of the items that he owns by Si and
the subset of items that he demands by Di. We assume that (S1, . . . , Sn) is a
partition of M and that no player demands an item that he also owns (i.e.,
Si ∩ Di = ∅). We denote an instance by G = (N,M,S1,D1, . . . , Sn,Dn). We
denote by l = maxi∈N |Di| the maximal number of items demanded by a single
agent. We model the agents’ preferences using a directed bipartite trading graph
G = (N,M,E). For agent i and item j ∈ Di we have a demand edge (i, j) ∈ E.
Similarly, for each item j ∈ Si we have a supply edge (j, i) ∈ E.

We only allow agents to exchange items within cycles such that each partici-
pant i gives an item that is currently in Si and receives an item that is currently
in Di.4 After a cycle is executed we update the demand and supply sets of all

4 As discussed in the introduction, we assume that the agents do not want to hold on
to items that are not in their demand set nor to give items without getting anything
in return.
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the agents accordingly and update the graph by reversing all the demand edges
of the cycle and removing all the supply edges of the cycle. Formally:

Definition 1 (Cycle Step). Let G = (N,M,E) denote the current trading
graph and let C = (i1, j1, i2, j2, ..., ik, jk, i1) denote a cycle in G. After executing
the cycle C, the edge set of the graph is updated to E′ = (E \ {e ∈ C}) ∪
{(jt, it)|(it, jt) ∈ C}. The number of exchanges in a cycle step is |C| = |{(i, j)|i ∈
N, j ∈ M, (i, j) ∈ C}|.
In this paper we study executions, these are sequences of cycles that obey the
conditions we previously defined. Formally:

Definition 2. Consider an instance G = (N,M,S1,D1, . . . , Sn,Dn). An execu-
tion r = C1, . . . , Ck for G is a sequence of cycles such that for each 1 ≤ i ≤ k,
Ci is a cycle in Gi−1, where Gi−1 is the trading graph that results from execut-
ing cycles C1, . . . , Ci−1 sequentially on the original trading graph G = (N,M,E)
and G0 = G.

We denote the set of all executions by R and the number of exchanges of
an execution r = C1, . . . , Ck by |r| =

∑k
i=1 |Ci|. We denote the set of agents

that participate in an execution r by N(r) and the set of demand edges that are
used in an execution r by E(r). We refer to a demand edge that was used in an
execution and then was flipped and used as a supply edge as a dynamic edge. For
example, the edge (c, x) in the execution described in Fig. 1 is a dynamic edge.
The utility of an agent i in an execution r is defined as the number of items
from his demand set that i received throughout the execution. Furthermore,
we assume that at each step agents are only willing to accept items that are
currently in their demand set. Accepting an item currently not in their demand
set results in setting their utility to −n ·m. Similarly, the utility of an agent that
is asked to give an item that is not currently in his demand set is also −n · m.
Formally,

Definition 3 (Agent’s utility). Consider the instance G = (N,M,S1,D1, . . . ,
Sn,Dn) and an execution r for G. Let Ai(r) denote the set of items that agent i
received in r. The utility of agent i is: ui(r) = |Ai(r)|, if for each trading cycle
that i participated in, the item that he received was in his current demand set
and the item that he gave was in his current supply set. Else, ui(r) = −n · m.

We consider the standard objective function of maximizing the social welfare:

Definition 4 (Social Welfare). Consider the instance G = (N,M,S1,D1, . . . ,
Sn,Dn) and an execution r for G. The social welfare of r is U(r) =

∑
i∈N ui(r).

In other words, as we only consider executions in which agents receive items
in their demand set the social welfare equals to the total number of items that
the agents received (i.e.,

∑n
i=1 |Ai(r)|). We denote the execution maximizing the

social welfare (i.e., the optimal execution) by ro.
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3 A Strategyproof l-Approximation Algorithm

Most of the literature on exchange economics usually focuses on models in which
each item can be reallocated at most once. In our model we allow items to be
reallocated several times. In our analysis, we will refer to executions that, as in
the traditional literature, allocate each item at most once as static executions and
executions that can allocate each item more than once as dynamic executions.

In this section we present a polynomial time algorithm for computing the
optimal static execution. Recall that l is the maximum number of items that a
single agent demands. We show that our algorithm provides an l-approximation
to the social welfare of an optimal dynamic execution. Furthermore, we show that
our algorithm is strategyproof – each agent maximizes his utility by truthfully
reporting the items that he demands and the items that he owns.

Proposition 1. In any instance G, the social welfare of an optimal static execu-
tion is at least 1

l of the social welfare of an optimal (possibly dynamic) execution.

Proof. Consider an instance G and let ro be an optimal execution. We will show
that there exists a static execution rs such that each agent that received at least
one item in ro will receive one item in rs (formally, N(ro) ⊆ N(rs)). As the
maximal number of items that an agent may receive is l, this implies that the
execution rs provides an l-approximation to the optimal (dynamic) execution.
Thus, the optimal static execution also provides an l-approximation.

We now construct a static execution rs such that N(ro) ⊆ N(rs). Denote by
S(ro) the set of supply edges that were used in ro. Let Gro

= (N,M,E(ro) ∪
S(ro)) denote the trading graph that includes all the edges that were used in ro.
Since an execution is a sequence of cycles, the in-degree of each node in Gro

is
the same as its out-degree. Recall that a static execution can only allocate each
item at most once, thus we essentially remove from Gro

the edges associated
with items that were allocated more than once. Formally, for each supply edge
(j, i) such that i ∈ N and j ∈ M that was not included in the initial trading
graph G (i.e., (j, i) ∈ S(ro) \ E) we remove both the supply edge (j, i) and the
dynamic edge (i, j) ∈ E that was flipped to create (j, i). Denote the new graph
by G′

ro
. Observe that the edges of G′

ro
are a subset of E and it is still the case

that each node in G′
ro

has the same out-degree and in-degree. Furthermore, since
for each agent that received some items in ro the first supply edge that was used
is (j, i) ∈ S(ro) ∩ E we have that if a node was not isolated in Gro

it is still not
isolated in G′

ro
. Thus, by Euler’s theorem on the connected components of G′

ro

we have that there exists a cycle cover of all the edges in G′
ro

. This cycle cover
includes all the agents that received at least one item in ro. Therefore, we have
that there exists a static execution rs for which N(ro) ⊆ N(rs) as required. 	


Recall that for any instance G we denote by rs an optimal static execution
for G and by ro an optimal execution for G. We now show that this bound is
tight:

Claim. For any l ≥ 1 and n > l, there exists an instance G with n agents such
that for each agent i |Di| ≤ l and |rs| = 1

l |ro|.
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Proof. Consider an instance G with l+1 items (M = {1, . . . , l+1}). Let Nl+1 =
{1, . . . , l + 1} denote the set of the first l + 1 agents. These are the only agents
that own and demand items in G. For each agent i ∈ Nl+1 we have that Si = {i}
and Di = M \ {i}. The optimal execution executes l cycle steps where in each
step all agents in Nl+1 give the item they own and receive a new item which they
will swap in the next step. In this execution all the (l + 1)l demand edges are
used. Note that only l + 1 of them are not dynamic edges. On the other hand,
in the optimal static execution each of the agents in Nl+1 will receive a single
item. This is optimal as in any static execution the maximal number of items
that an agent that owns a single item may receive is one. Hence, there is a gap
of l between the social welfare of the optimal execution and the social welfare of
the optimal static execution. 	


3.1 Computing an Optimal Static Execution

We present an algorithm for computing an optimal static execution. Our algo-
rithm computes a maximal cycle cover by finding a maximum weight perfect
matching. This is similar to the algorithm of Abraham et al. [2] for the kidney
exchange setting. However, since in our setting the same agent may participate
in more than one cycle, if he owns several items and demands several items,
we consider edge-disjoint cycles whereas [2] considers node-disjoint cycles. To
handle this difference we construct a new bipartite graph where we have two
copies of each edge play as the vertices of the graph. Roughly speaking, each
edge is connected to its copy with weight zero and to all the edges that are
adjacent to it with weight 1. Now, a perfect matching can define an execution
in the following way: any edge that is matched to its copy does not take part
in the execution and any edge that is matched to a different edge is included
together with the edge it was matched to in some cycle in the execution. Notice
that the maximum weight matching will maximize the number of edges that are
not matched to their copies(and hence participate in the execution) as they are
the only edges that have positive weight. We now formalize this construction:

Theorem 2. An optimal static execution r can be computed in polynomial time
(O(|E|3)).
Proof. Given an instance G and its corresponding trading graph G = (N,M,E)
we construct a new undirected weighted bipartite graph, H(G) = (E × {0}, E ×
{1}, EH) such that:

EH = {((e, 0), (e, 1))|e ∈ E}
︸ ︷︷ ︸

E1

∪ {((e, 0), (e′, 1))|e = (u, v), e′ = (v, z) ∈ E}
︸ ︷︷ ︸

E2

.

We assign each edge in E1 a weight of 0 and each edge in E2 a weight of 1.
We illustrate this construction in Fig. 2. Note that we can construct H(G) in
polynomial time. After constructing the bipartite graph H(G) we compute a
maximum-weight perfect matching M of H(G). This problem is known as the
“Assignment problem” and can be solved in polynomial time, for example using
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Fig. 2. A trading graph G and the corresponding bipartite edge graph H(G). In the
illustration of H(G) dotted edges have weight 0 and solid edges weight 1.

the Hungarian method [12]. Note that a perfect matching of the graph H(G) is
guaranteed to exist since the edges of E1 by themselves form a perfect matching.
We establish the correctness of our algorithm by the following two lemmas (The
proofs of both lemmas can be found in the full version.). First we construct from
M a static execution r such that |r| equals half the weight of M:

Lemma 1. Consider a trading graph G. Given a perfect matching M for H(G)
of weight x we can compute in polynomial time a corresponding static execution
r = C1, . . . , Ck for G such that |r| = x/2.

To show that r is an optimal static execution, in Lemma 2 we prove that given
an execution r that makes x exchanges we can construct a perfect matching of
the graph H(G) of weight 2x.

Lemma 2. If there exists a static execution r = C1, . . . , Ck for the trading graph
G such that |r| = x, then a perfect matching M for H(G) of weight 2x exists.

3.2 A Strategyproof Algorithm for Computing an Optimal Static
Execution

So far, we assumed that the agents truthfully report the items that they demand
and own to the algorithm. In this section, we consider a mechanism design type
of question and ask if indeed it is in the agents’ best interest to report their true
preferences. We denote the vector of the agents’ reports by �x′ = (x′

1, x
′
2, . . . , x

′
n),

where for each agent i: x′
i = (D′

i, S
′
i). We denote the trading graph constructed

by the reports as G(�x′). The utility of each agent depends on the execution
chosen by the mechanism. Recall that, roughly speaking, the utility of agent i is
the number of items that he received from his demand set Di in the execution.
Formally, we denote by A(�x′) the execution computed by algorithm A when
it gets as input the reports vector �x′. With this notation, an algorithm A is
strategyproof (i.e., truthful) if and only if ∀i, (D′

i, S
′
i), �x

′
−i ui(A((Di, Si), �x′

−i)) ≥
ui(A((D′

i, S
′
i), �x

′
−i)) where Di and Si are the agent’s private information.

In this section, we modify the l-approximation algorithm we presented in
Sect. 3.1 for computing an optimal static execution to make it strategyproof.
We note that the approximation ratio achieved by our algorithm is close to the
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optimal approximation ratio achievable by any strategyproof algorithm, as in
Sect. 4 we show that no strategyproof algorithm can guarantee an approximation
ratio better than l+1

2 . This implies that the approximation ratio achieved by
our algorithm is close to the optimal approximation ratio achievable by any
strategyproof algorithm. We prove the following theorem:

Theorem 3. There exists a strategyproof algorithm that computes an optimal
static execution in poly-time.

In many cases there is no unique optimal static execution. In particular, often
there exists some agent i that in one optimal execution receives more items than
in another optimal execution. In a strategyproof mechanism we need to make
sure that such an agent cannot misreport the items that he demands or owns
in order to get the mechanism to output an execution that is better for him.
To handle this issue we apply a consistent tie-breaking role to select an optimal
static execution.

In particular, recall that in the algorithm described in Theorem 2 we com-
puted an optimal static execution by constructing a bipartite graph H(G) in
which the nodes of the graph are the edges of the trading graph G. Recall that
in H(G) the weight of each edge in E1 is 0 and the weight of each edge in E2 is
1. We now slightly perturb the weights of the edges in H(G) to make sure that
the algorithm breaks ties consistently between optimal static executions that
give different utilities to the same agent. To this end, we first define a complete
order π over all edges (i, j) such that i ∈ N , j ∈ M . The order assigns each
possible edge a distinct natural number between 1 and |N | · |M |. Next, we define
a graph H ′(G) which is identical to H(G) except that the weight of an edge
(((i, j), 0), ((j, k), 1)) ∈ E2 such that i, k ∈ N and j ∈ M is perturbed as follows:

w′(((i, j), 0), ((j, k), 1)) = 1 + 2−π((i,j))
︸ ︷︷ ︸

ε(((i,j),0),((j,k),1))

.

Similarly, the weight of an edge (((j, i), 0), ((i, k), 1)) ∈ E2 such that i ∈ N and
j, k ∈ M is: w′(((j, i), 0), ((i, k), 1)) = 1 + 2−π((i,j)) = w′(((i, j), 0), ((j, k), 1)).

Observe that for any matching M we have that w′(M) = |E2 ∩ M| +∑
e∈E2∩M εe. It is not hard to see that for any matching M the sum of perturba-

tions is less than 1 (i.e.,
∑

e∈M εe < 1). Thus, we have that w′(M)� = |E2∩M|.
Together with the fact that w(M) = |E2 ∩ M| this implies the following claim:

Claim. If M′ is a maximum weight perfect matching of the graph H ′(G), then
M′ is also a maximum weight perfect matching of the graph H(G).

Next, we show that any execution that corresponds to some maximum weight
perfect matching in H ′(G) gives each agent the same utility:

Proposition 2. For any two maximum weight perfect matchings of the graph
H ′(G): M,M′ and any two executions r, r′ that correspond to M and M′ respec-
tively, for any agent i, Ai(r) = Ai(r′). In other words, the utilities of all agents
are identical in r and r′.
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Proof. Assume towards contradiction that there exist two perfect-matchings of
the graph H ′(G): M,M′ such that w′(M) = w′(M′) but for executions r
and r′ that correspond to M and M′ there exists an agent i and an item j
such that j ∈ Ai(r) but j /∈ Ai(r′). This implies that there exists an edge
(((i, j), 0), ((j, k), 1)) ∈ E2 ∩ M \ M′ where k ∈ N . In this case, w′(M) has a
2−π((i,j)) term that will be missing from w′(M′). We note that this term has
a unique exponent, as the only other option to achieve this term is by having
an edge (((j, i), 0), ((i, a), 1)) ∈ E2 ∩ M′ for a ∈ M . However this is impossi-
ble since an agent cannot both own and demand the same item. Furthermore,
since the exponent is unique this term cannot be derived by adding different
perturbations. Thus, we conclude that w′(M) �= w′(M′) in contradiction to our
assumption. 	


Strategyproofness. Denote by As the algorithm that computes an optimal
execution by choosing a maximum weight perfect matching of the graph H ′(G)
defined above. We now prove Theorem 3 and show that As is strategyproof.
To this end, we show that ∀i, �x′

−i, x
′
i, ui(As(xi, �x

′
−i)) ≥ ui(As(x′

i, �x
′
−i)), where

xi = (Di, Si) is a truthful report. We first consider reporting items that are not
in Di or Si respectively. Observe that if as a result of this misreport agent i
receives an item which is not in Di or need to give an item which is not in Si,
then by definition his utility will be 0. To show that the agent cannot benefit
from such misreport when this is not the case, we prove a type of irrelevancy
property. We show that an agent cannot improve his utility by not reporting
items that the he did not receive or did not give. In the full version we observe:

Observation 4. Fix some agent i, (not necessarily truthful) report x′
i = (D′

i, S
′
i)

and reports vector �x′
−i for the rest of the agents. Let r = As(x′

i, �x
′
−i). Denote by

Bi(r) the set of items that agent i gave in r and recall that Ai(r) is the set of
items that agent i received in r. For any D̃i ⊆ D′

i − Ai(r) and S̃i ⊆ S′
i − Bi(r)

we have that ui(As((D′
i − D̃i, S

′
i − S̃i), �x′

−i)) = ui(As(x′
i, �x

′
−i)).

We conclude that:

Corollary 1. Any agent i cannot increase his utility by reporting that he
demands an item j /∈ Di or that he owns an item j /∈ Si.

The main part of the proof is showing that an agent cannot benefit from not
reporting some of the items in his demand set. In Proposition 3 we show that for
any report of the items that the agent owns he cannot benefit from hiding items
in his demand set. Then in Proposition 5 we apply Proposition 3 on an instance
in which each agent switches between the items he demands and the items that
he owns. We show that for any demand report the agent cannot benefit from
hiding some of the items that he owns. The two propositions together with
Corollary 1 complete the proof of Theorem 3 showing that for any agent i,
demand and supply reports D′

i and S′
i and reports of the other agents �x′

−i it
hold that ui(As((D′

i, S
′
i), �x

′
−i)) ≤ ui(As((Di, Si), �x′

−i)). First by Corollary 1 we
have that an agent can never benefit from including in his demand report items
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that are not in his true demand set and including in his supply report items that
are not in his true supply. Then, for D′

i ⊆ Di, S
′
i ⊆ Si Proposition 3 guarantees

us that ui(As((D′
i, S

′
i), �x

′
−i)) ≤ ui(As((Di, S

′
i), �x

′
−i)). Finally we use Proposition

5 to get that for any S′
i ⊆ Si: ui(As((Di, S

′
i), �x

′
−i)) ≤ ui(As((Di, Si), �x′

−i)) as
required. We now state and discuss Proposition 3 and Proposition 5.

Proposition 3. For every agent i, supply report S′
i ⊆ Si, reports of

the other agents �x′
−i and X ⊆ Di we have that ui(As((X,S′

i), �x
′
−i)) ≤

ui(As((Di, S
′
i), �x

′
−i)).

Proof. We define the function fi(X) = ui(As((X,S′
i), �x

′
−i)) for every X ⊆ Di.

We claim that fi is a monotone set function for subsets of Di. That is, ∀X ⊆ Di

and ∀Y ⊆ X we have that fi(X) ≥ fi(Y ). Note that this concludes the proof
of the proposition. Also note that in order to prove that fi is monotone it is
sufficient to show that for any agent i, X ⊆ Di and j ∈ X, fi(X) ≥ fi(X −{j}).

Let rX = As((X,S′
i), �x

′
−i)) be the execution that the algorithm As outputs

when agent i reports demand X. By Observation 4, for any j /∈ Ai(rX) we have
that fi(X) = fi(X −{j}) as required. Thus, for the rest of the proof we consider
the case that j ∈ Ai(rX).

Let rX−{j} = As((X − {j}, S′
i), �x

′
−i)). Denote by Y = Ai(rX−{j}) − Ai(rX)

the set of items that agent i received when reporting X −{j} but did not receive
when reporting X. Assume towards contradiction that fi(X − {j}) > fi(X).
As fi(X − {j}) ≤ fi(X) − 1 + |Y |, this implies that |Y | ≥ 2. Let MX and
MX−{j} be the maximum weight perfect matchings that were computed as part
of As for demand reports X and X − {j} respectively (these are the matchings
that are used to derive the executions rX and rX−{j}). Roughly speaking, we
will construct from the union of their edges two different matchings: M′

X and
M′

X−{j} such that one is a valid perfect matching when agent i reports X and
the other is a valid perfect matching when agent i reports X − {j}. Since those
matchings cover the same edges as MX and MX−{j} the sum of their weights
is the same. This implies that one of the matchings MX or MX−{j} does not
have the maximum weight. The crux of the proof is the following proposition,
which we prove in the full version:

Proposition 4. If fi(X − {j}) > fi(X), then, for the maximum weight perfect
matchings MX and MX−{j} there exist matchings M′

X and M′
X−{j} such that:

1. M′
X is a valid perfect matching of the graph H ′(G((X,S′

i), �x
′
−i)) (i.e., when

agent i reports X) and M′
X−{j} is a valid perfect matching of the graph

H ′(G((X − {j}, S′
i), �x

′
−i)) (i.e., when agent i reports X − {j}).

2. w′(MX) + w′(MX−{j}) = w′(M′
X) + w′(M′

X−{j})
3. w′(M′

X) �= w′(MX).

Observe that the three statements of the proposition imply that either
w′(M′

X) > w′(MX) or w′(M′
X−{j}) > w′(MX−{j}). Since both M′

X and MX

are valid matchings of H ′(G((X,S′
i), �x

′
−i)) and both M′

X−{j} and MX−{j} are
valid matchings of H ′(G((X−{j}, S′

i), �x
′
−i)) this in contradiction to the assump-

tion that MX and MX−{j} are maximum weight perfect matchings. Thus, we
conclude that fi(X − {j}) ≤ fi(X). 	
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Next, we show that an agent maximizes his utility by truthfully reporting all
the items that he owns. In the following proofs we will compare the utility of
agents in two different instances. For this purpose we use the notation uG

i (r) for
the utility of agent i in execution r of instance G.

Proposition 5. For any agent i, demand report D′
i ⊆ Di, reports of

the other agents �x′
−i and S′

i ⊂ Si we have that ui(As((D′
i, S

′
i), �x

′
−i)) ≤

ui(As((D′
i, Si), �x′

−i)).

Proof. Denote the original instance of the problem by G. We define the reversed
instance Ḡ, in this instance the demand of each agent a ∈ N is D̄a = Sa and his
supply is S̄a = Da. For a vector of reports �x′ such that x′

a = (D′
a, S′

a) for every
agent a ∈ N we define the reversed reports vector �̄x

′ such that for each agent a,
x̄′

a = (S′
a,D′

a).
By Proposition 3 we have that for the instance Ḡ and any reports

vector of the other agents �̄x
′
−i, for any S′

i ⊂ D̄i and any D′
i ⊆ S̄i:

uḠ
i (As((S′

i,D
′
i), �̄x

′
−i)) ≤ uḠ

i (As((Si,D
′
i), �̄x

′
−i)). To prove the proposition we will

show in Claim 3.2 below that uḠ
i (As((S′

i,D
′
i), �̄x

′
−i)) = uG

i (As((D′
i, S

′
i), �x

′
−i)) and

that uḠ
i (As((Si,D

′
i), �̄x

′
−i)) = uG

i (As((D′
i, Si), �x′

−i)). 	

We now observe the strong symmetry between an instance of our game and

the reversed instance in which each agent swaps between the items he receives
and the items he demands. In the full version we prove:

Claim. For every agent i, reports vector �x′ for G and a reversed report vector �̄x
′

for Ḡ, we have that uG
i (As(�x′)) = uḠ

i (As(�̄x
′)).

4 Limitations of Dynamic Executions

In Sect. 3.2 we showed that the efficient algorithm that computes the optimal
static execution is both strategyproof and provides an l-approximation. In this
section we prove that the best approximation ratio achievable by a strategyproof
algorithm is l+1

2 . Then, we consider the problem of finding the optimal execution
from a strictly computational perspective and prove that unless P = NP the
problem cannot be approximated within some small constant.

Theorem 5. There is no strategyproof algorithm which gives better approxima-
tion than l+1

2 .

Proof sketch: Consider the following instance G: the set of agents contains
two subsets of cardinality l: N = {i1, i2, . . . , il} and N ′ = {i′1, i

′
2, . . . , i

′
l}. The

set of items contains two subsets of cardinality l: M = {j1, j2, . . . , jl} and M ′ =
{j′

1, j
′
2, . . . , j

′
l}. For 1 ≤ k ≤ l the demand of agent ik is Dik = M and his supply

is Sik = {j′
k}. For 1 ≤ k ≤ l the demand of agent i′k is Di′

k
= {j′

k} and his supply
is Si′

k
= {jk}. The instance G also includes l+1

2 (l2 + l) · l extra agents that are
partitioned into l groups. There are also extra items such that the demand and
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Fig. 3. The trading graph for an instance showing that no strategyproof algorithm can
attain an approximation ratio better than l+1

2
.

supply of each group of l+1
2 (l2 + l) agents creates a path that ends in an item in

M ′. We illustrate the corresponding trading graph in Fig. 3.
The optimal execution for the instance G first executes the l cycles in which

each pair of agents ik and i′k swap items j′
k and jk between them. There are l

such cycles and in each cycle there are 2 exchanges. Then, it executes l−1 cycles
with the items of M . The number of exchanges in each cycle is l so the total
number of exchanges is (l − 1) · l + 2l = l2 + l. Assume towards contradiction
that there exists an algorithm that achieves an approximation ratio α < l+1

2 .
Note that in G such an algorithm must allocate at least one agent two or more
items. We conclude that there exists an agent ik ∈ N that is allocated by the
algorithm in the instance G at least two items. Now consider an instance G′

which is identical to G except that agent ik also demands item j1k. This means
that the trading graph now has a giant cycle of size l+1

2 (l2 + l) and since the
algorithm guarantees an approximation ratio better than l+1

2 it has to execute
this cycle. In this case ik can only participate in the giant cycle and hence only
gets a single item. Thus, agent ik can increase his utility by not reporting j1k. 	


4.1 Pareto Efficiency and Strategyproofness

An execution r is Pareto efficient if for any other execution r′ there exists an
agent i such that ui(r′) < ui(r). We leave open the question of whether there
exists a strategyproof algorithm that always returns a Pareto efficient execution.
In any case, we show that even if such an algorithm exists, its performance is
quite poor.

Proposition 6. Any algorithm that is strategyproof and returns a Pareto effi-
cient execution cannot guarantee an approximation ratio better than Θ(n).

Proof. Consider the following n-agent instance G. In this instance we have 3
agents i1, i2, i3 such that for agent i1, Di1 = {a, b} and Si1 = {c}. For agent i2,
Di2 = {b} and Si2 = {a}. For agent i3, Di3 = {c} and Si3 = {b}. The instance
also include a sequence of n − 3 agents that in the trading graph take part in a
long path that starts from item p′

1 and end in item c: P = (p′
1, p1, p

′
2, . . . , pn−3, c).

In Fig. 4 we illustrate the trading graph for the instance G.
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Fig. 4. The trading graph for instance G in the proof of Proposition 6.

In this instance the only (dynamic) Paerto efficient execution first exe-
cutes the cycle C2 = (i1, b, i3, c, i1) and then executes the cycle C3 =
(i1, a, i2, b, i1). The utility of agent i1 in this execution is 2. Consider the
case that agent i1 also demands item p′

1. Now, the graph has a giant cycle
C1 = (p′

1, p1, p
′
2, . . . , pn−3, c, i1, p

′
1) that includes n − 2 agents and n − 2 items.

Note that it is impossible to execute both cycles C1 and C2 since in C2 agent
pn−3 receives item c and in C2 agent i3 receives item c and c is the only item
that agent pn−3 and i3 demand. This implies that the algorithm cannot execute
cycle C1 as in this case the utility of agent i1 would be 1 and he can increase his
utility by not reporting that he demands item p′

1. Thus, the algorithm has to
execute first C2 and then C3 which accumulates to a total of 4 exchanges where
the optimal execution performs n − 2 exchanges.5 	


4.2 Computational Hardness

In this section we discuss the problem of computing an optimal execution from
a purely computational perspective (the complete proof can be found in the full
version):

Theorem 6. Unless P = NP there is no polynomial time c-approximation for
computing the optimal execution unless P = NP where c > 1 is a small constant.

Proof sketch: We reduce from the NP-Complete 3D-matching problem6: Let
X,Y, and Z be finite, disjoint sets, of size n and let T be a subset of X ×Y ×Z.
Does there exist a subset S ⊆ T of size n such that for any two distinct triplets
(x1, y1, z1), (x2, y2, z2) ∈ S, we have x1 �= x2, y1 �= y2, and z1 �= z2?

Recall that computing the optimal static execution can be done in polynomial
time. This means that proving the hardness of computing an optimal dynamic
execution requires us to devise a very careful reduction in which the optimal
execution has to execute certain cycles at the first round in order to execute

5 Observe that the problem here is that because of Pareto Efficiency the algorithm
has to execute in the first instance both C2 and C3. In comparison, an optimal static
execution will only execute one cycle in this instance and hence agent ii would not
be able to benefit by misreporting in the modified instance.

6 [2] also reduce from 3D-matching, however, our reductions are inherently different.
Specifically, their hardness stems from limiting the size of the cycles whereas we have
no such limitation.
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Fig. 5. An illustration for the proof Theorem 6 featuring the components of (x, y, z)∈ T
and (x′, y, z′) ∈ T .

other cycles in the next rounds. In the reduction, given an instance X,Y,Z and
T ⊆ X × Y × Z of the 3D-matching problem, we construct an instance that
includes a component for every triplet (x, y, z) ∈ T , x ∈ X, y ∈ Y and z ∈ Z
(see illustration in Fig. 5). In this instance an algorithm for computing an optimal
execution in the trading graph G = (N,M,E) will return an execution of size
8n if and only if there exists a perfect 3D-matching in (X,Y,Z, T ). This is done
by making sure that the optimal execution executes two cycles for every triplet
(x, y, z) in the perfect 3D-matching in (X,Y,Z, T ): first the cycle the contains
edges numbered 0, 1, 6, 7 in Fig. 5 and then after edge 6 was flipped the cycle
including edges 2, 3, 4, 5. The complete proof requires a delicate analysis of the
possible cycles that may be executed in each sequence. 	


5 Conclusion and Discussion

Our paper contributes to forming the mathematical foundations of barter mar-
kets. As such, the paper does not aim to provide a full modeling of a concrete
market, but rather to mathematically capture some of the major challenges in
designing them. We identify a central aspect of many barter markets that yet
to be studied: the market may be dynamic in the sense that the same item can
move from hand to hand several times. A main contribution of our paper is
identifying this aspect and formally modeling it. The second set of contributions
is in a comprehensive analysis of dynamic executions.

Our results on the approximation ratio of strategyproof mechanisms in this
setting can be interpreted in two ways. First, in many cases, the approximation
ratio of l (the maximal number of items an agent demands) achieved by an
optimal static execution is reasonable since the number of items that an agent
demands does not grow with the size of the network. This gives a justification for
studying static executions even in a dynamic environment such as ours. Second,
the impossibility result showing that a strategyproof mechanism cannot provide
an approximation ratio better than ≈l/2 suggests that to increase efficiency,
barter networks should include some form of money. This may explain why
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many barter applications indeed often involve vouchers, for example. We hope
that the understanding of barter markets we gained in this paper will provide a
stepping stone towards understanding markets with vouchers.
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Abstract. Babaioff et al. [4] introduced the matroid secretary problem
in 2007, a natural extension of the classic single-choice secretary prob-
lem to matroids, and conjectured that a constant-competitive online algo-
rithm exists. The conjecture still remains open despite substantial partial
progress, including constant-competitive algorithms for numerous special
cases ofmatroids, and anO(log log rank)-competitive algorithm in the gen-
eral case.

Many of these algorithms follow principled frameworks. The limits of
these frameworks are previously unstudied, and priorwork establishes only
that a handful of particular algorithms cannot resolve the matroid secre-
tary conjecture. We initiate the study of impossibility results for frame-
works to resolve this conjecture. We establish impossibility results for
a natural class of greedy algorithms and for randomized partition algo-
rithms, both of which contain known algorithms that resolve special cases.

Keywords: Secretary problem · Matroids · Optimal stopping theory ·
Graph theory · Greedy algorithms

1 Introduction

The problem of finding a max-weight basis of a matroid M = (V, I)1 is central in
the field of combinatorial optimization (see books [18,21,23]). More specifically,
each element e ∈ V has a weight w(e) ≥ 0, and the goal is to find the set S ∈
I maximizing w(S) :=

∑
e∈S w(e). Seminal works of Rado, Gale, and Edmonds

establish that the following simple greedy algorithm finds a max-weight basis of a
1 Given a finite set V and a family of subsets of V called I, we say M = (V, I) is a matroid

if it satisfies (i) ∅ ∈ I, (ii) Hereditary Property (downwards closed): ∀T ⊆ S ⊆ V , set
S ∈ I implies T ∈ I, and (iii) Exchange Property: For any S, T ∈ I where |S| > |T |,
there exists some x ∈ S such that T ∪ {x} ∈ I.
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matroid (V, I): Initialize A = ∅, then process the elements of V in decreasing order
of w(e), adding to A any element such that A ∪ {e} ∈ I [8,11,22]. In fact, if for
some (V, I) this algorithm is optimal for all w(·), then (V, I) must be a matroid.

While simple, this algorithm still requires knowledge of all weights up front.
Motivated by applications to mechanism design and other online problems [3,
13], recent work considered the problem in an online setting: elements are still
processed one at a time and are immediately and irrevocably accepted or rejected
upon processing, but an element’s weight remains unknown until the element is
processed. In particular, the algorithm does not have control over the order of
elements and therefore cannot run the simple greedy algorithm.

For a fully adversarial order, it’s folklore that the best algorithm can do no
better than simply selecting a random element. Babaioff et al. [4]2 therefore
introduced the Matroid Secretary Problem (MSP), where elements arrive in a
uniformly random order (while the weight function is still adversarial). This
formulation extends the classic single-item secretary problem [7].

Consider an algorithm A for the matroid secretary problem on matroid M.
Let OPT be the max-weight basis of M under w(·), and let ALG be the set of ele-
ments chosen by A (under w(·)). The following notion of utility-competitiveness
for a matroid secretary algorithm was studied in Babaioff et al. [4].

Definition 1 (Utility-Competitive). An algorithm A is α-utility-
competitive if E[w(ALG)]/w(OPT) ≥ α, where the expectation is over the ran-
domness of the arrivals and any internal randomness of algorithm A.

In the same paper that introduced the matroid secretary problem, Babaioff
et al. [4] conjecture that there is a constant-utility-competitive algorithm. The
stronger form of the conjecture is that this constant is 1/e.

Conjecture 1 (Matroid Secretary). There is an Ω(1)-utility-competitive algo-
rithm for the matroid secretary problem.

Despite extensive follow-up work, this conjecture still remains open. Many
constant-utility-competitive algorithms have been proposed for specific classes
of matroid (see related work in Sect. 1.3). For general matroids, however, the
best known algorithms are 1/O(loglog r)-competitive [9,20] (here, r denotes the
rank of the matroid, which is the size of the largest set in I).

As the only known lower bound, even for general matroids, is the same 1/e
from the classic single-item setting, and because Dynkin’s algorithm guarantees
a stronger property that the heaviest element is selected with probability 1/e,
the following stronger notion of probability-competitive algorithms has been also
studied [14,25].

Definition 2 (Probability-Competitive). An algorithm A is α-probability-
competitive if for all i ∈ OPT it satisfies that P[i ∈ ALG] ≥ α.

Note that probability-competitiveness is a stronger notion than utility-
competitiveness, since the former implies the latter with the same competitive
2 Conference version [5] appeared in 2007.
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ratio. Soto et al. [25] showed that many (but not all) existing utility-competitive
algorithms can be extended to obtain probability-competitive algorithms. This
results in the following more ambitious conjecture. Again, the stronger version
conjectures that this constant is 1/e.

Conjecture 2. There is an Ω(1)-probability-competitive algorithm for the
matroid secretary problem.

Progress on both conjectures has been slow. Indeed, even the strong version
of Conjecture 2 remains plausible, while the best utility-competitive algorithms
have stalled at 1/O(log log r) [9,20]. One thesis motivating our work is that the
community currently lacks structure for narrowing a search among numerous
promising approaches. Existing algorithms for special cases indeed follow princi-
pled frameworks, but these frameworks are quite flexible and it remains unknown
which (if any) of them might produce a resolution to either conjecture.

One particularly enticing possibility is that a simple “greedy-like” algorithm
might even work. Note that such algorithms indeed work in the Free-Order
model [16], or for the related Matroid Prophet Inequality [17], or for special
cases of the Matroid Secretary Problem [2,7]. There are numerous variants of
“greedy” algorithms, though. While many particular variants are known to fail
on the same “hat graph” [4], there is previously no approach to quickly tell
whether a novel greedy variant is already known to fail.

In this work, we rigorously consider two general classes of algorithms, and
prove super-constant lower bounds on what they can achieve for the matroid
secretary problem. This both helps explain why these types of algorithms have
faced difficulty extending beyond the special cases for which they were originally
designed, and helps guide future work towards precisely the variants that merit
further exploration.

1.1 Greedy Algorithms

Since finding the max-weight basis of matroids without requiring irrevocable
commitments can be done exactly by the simple greedy algorithm, the class of
greedy algorithms is a very natural candidate for solving the Matroid Secre-
tary Problem. We consider a large family of “greedy-like” algorithms. We define
three natural properties that a greedy algorithm might have, and establish that
any algorithm satisfying these properties cannot be constant-utility-competitive
(Theorem 2). We postpone formal statements of the properties until Sect. 3, but
overview them here: (i) the algorithm should reject the first T fraction of ele-
ments, (ii) the algorithm at all times stores an independent set I containing all
accepted elements and no elements rejected after T , (iii) an element is accepted
if and only if it improves the max-weight basis of I after contracting the accepted
elements.3 Note that this a general framework rather than a fully-specified algo-
3 To rephrase (iii), an element e is accepted iff after contracting the accepted elements

(not including e), the max-weight basis of the restricted matroid to I∪{e} is heavier
than the max-weight basis of the restricted matroid to I (the latter being exactly
the weight of I since I is independent).
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rithm, since it allows for the algorithm to choose I (it need not be the max-weight
basis after contracting the accepted elements, just some independent set).

In Sect. 3 we overview several existing algorithms that fit this framework, and
Theorem 2 unifies a proof that none of these algorithms (or many hypothetical
ones) can be constant-utility-competitive. Our lower bound construction is a
variant of the well-known “hat graph”, which has been known since [4] to be
problematic for greedy-like algorithms. So our main contribution is not this
construction itself, but rather a formalization of precisely the class of greedy
algorithms for which this graph is problematic.

Main Result 1 (Informal, see Theorem 2). No Greedy algorithm (as per
Algorithm 1) is constant-utility-competitive.

We emphasize that while the hat graph itself is not a novel construction, our
proof is quite distinct (and more involved) from prior work as it must rule out
a broad class of algorithms rather than just a single one.

1.2 Randomized Partition Algorithms

Another class of particularly simple algorithms are randomized partition algo-
rithms:

1. Before looking at any weights, (perhaps randomly) partition all the elements4

into parts Si.
2. Within each part, run Dynkin’s algorithm.
3. Output the union of the selected elements.

Note that these algorithms are allowed to use any randomized partition. The
elegant 1/(2e)-approximation of Korula and Pal for graphic matroids5 is a ran-
domized partition algorithm [19]. Their algorithm is utility-competitive, but not
probability-competitive. Soto et al. [25] recently designed a different constant
probability-competitive algorithm for graphic matroids. While their algorithm
is still quite elegant, it is perhaps not quite as simple as randomized parti-
tion algorithms. It is also worth noting that algorithms such as [9,20] follow a
more general framework, where the algorithm in step one looks at the weights
before partitioning and step two is not necessarily Dynkin’s single-choice algo-
rithm (but perhaps some simple greedy algorithm). This raises the question
whether the novel development beyond [19] is necessary to achieve probability-
competitive algorithms? Our second main result answers this question: no ran-
domized partition algorithm can be constant-probability-competitive (or even
ω(n−1/8)-probability-competitive).

4 We consider the known matroid setting where the matroid is known but the weights
are revealed one-by-one.

5 Given a graph with edges E, a graphic matroid (E, I) is defined with I consisting
of all subsets of edges that do not contain a cycle.
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Main Result 2 (Informal, see Theorem 4). No Randomized Partition algo-
rithm is constant-probability-competitive.

Our construction witnessing Theorem 4 is also a graphic matroid, although
it is unrelated to the hat graph (and to the best of our knowledge, novel). Note
that our proof cannot be extended to utility-competitive algorithms since we
know [19] is a constant-utility-competitive randomized partition algorithm for
graphic matroids.

1.3 Related Work and Brief Summary

There is a substantial body of work on random-order problems for matroids
(the Matroid Secretary Problem [4]) and for several other discrete optimization
problems; we will not attempt to overview it (e.g., see [6,12]). Here, we will
briefly repeat the most related works.

Our work takes first steps towards characterizing classes of algorithms which
might resolve the Matroid Secretary Problem. We focus on the simplest classes
of algorithms which previously succeeded in special cases or for related prob-
lems, Greedy [16,17] or Randomized Partition [19], and study the limits of
these classes. First, we consider extremely simple greedy algorithms. A specific
instantiation of this class of algorithms was shown to fail on a now-canonical
“hat graph” in [4], but related algorithms known to succeed in the Free-Order
Model [1,16], and in the related Matroid Prophet Inequality [17]. In addition,
Dynkin’s algorithm and the Optimistic algorithm for k-uniform matroids of [2]
fit this model. Our Theorem 2 shows that no Greedy algorithm is constant-
utility-competitive for all matroids. Second, we consider probability-competitive
algorithms, formally considered in [25], and related to the ordinal model consid-
ered in [14]. Soto et al. [25], in particular, develop several probability-competitive
algorithms for core settings such as graphic, transversal, and laminar matroids.
Our work asks whether the extremely simple algorithms previously developed
in [19] can match these stronger probability-competitive guarantees, and we show
in Theorem 4 that the answer is no.

2 Preliminaries

The Matroid Secretary Problem (MSP) is defined as:

1. There is a matroid M = (V, I), and weight function w(·) : V → R≥0. Matroid
M is fully-known to the algorithm in advance.6 Function w(·) is initially
completely unknown to the algorithm.

6 We are not concerned with computational efficiency of our algorithms in this work
(our lower bounds are unconditional), so we will not stress about the precise format
in which access to the matroid is given. To be concrete, one access model is that the
algorithm has oracle access to I (query a set S and learn whether or not S ∈ I).
To the best of our knowledge, most algorithms previously considered for MSP are
polytime given oracle access to I.
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2. Initially, the set of accepted elements, A, is empty. Elements of V arrive in
a uniformly random order. When an element i ∈ V arrives, the algorithm
learns its weight w(i), and must make an immediate and irrevocable decision
whether or not to accept it (adding it to A). The algorithm must maintain
A ∈ I at all times.

3. If set A is selected, the algorithm achieves payoff
∑

i∈A w(i).

We will abuse notation and use w(S) :=
∑

i∈S w(i). Because w(·) is fixed,
the offline optimum is the max-weight basis: MWB(M) := arg maxS∈I{w(S)}.7

We will also use standard matroid notation such as restriction: the matroid M|S
is the matroid M restricted to S, and has ground set S and independent sets
I|S := {T ∩S | T ∈ I}. We also discuss matroid contractions: the matroid M\S
is the matroid M contracted by S, and has ground set V \ S and independent
sets I \ S := {T | T ∪ S ∈ I}. When M is clear from context, we will also
(slightly) abuse notation and write MWB(T ) := MWB(M|T ).

We will later reference Dynkin’s 1/e-probability-competitive algorithm for
selecting a single item, i.e., a 1-uniform matroid: (1) Reject the first T =
Binom(n, 1/e) elements and call this the sampling stage. (2) Afterwards, accept
an element i iff it is the heaviest element seen so far.

Theorem 1 [7]. Dynkin’s algorithm is 1/e-probability-competitive for 1-uniform
matroids, this is optimal.

3 Greedy Algorithms

Because matroids are exactly the constraints for which the simple greedy algo-
rithm is optimal, greedy-like algorithms are a natural family to consider as candi-
dates for resolving the Matroid Secretary Problem. Indeed greedy-like algorithms
solve the related Matroid Prophet Inequality [17], Matroid Secretary in the free-
order model [1,16], and special cases of Matroid Secretary [2,7]. In this section,
we give an impossibility result for certain greedy algorithms. This helps unify
counterexamples for related algorithms, and also helps narrow future research
towards algorithms which have hope of resolving the Matroid Secretary Problem.

3.1 A Class of Greedy Algorithms

We now define a natural framework of greedy algorithms for the Matroid Secre-
tary Problem (Algorithm 1). Without loss of generality, we consider the continu-
ous arrival setting, where each element e ∈ V arrives at a time t(e) independently
and uniformly drawn from [0, 1]. We refer by Vt to the set of elements that arrive
(strictly) before t, and by At to the set of elements accepted by the algorithm
(strictly) before time t.

7 In this work, we assume for simplicity that the max-weight basis is unique. In case
of ties, we tie-break by choosing the lexicographically-earlier basis.
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Algorithm 1. Greedy Algorithm for the matroid secretary problem
We define a greedy algorithm as one that satisfies the following properties:

(i) Reject (but store) elements that arrive before T (sampling stage). Denote S := VT

to emphasize this.
(ii) At all times t, maintain an independent set It such that:

– It contains all accepted elements and no elements which were rejected after
T , i.e. At ⊆ It ⊆ At ∪ S.

– At all times t, It spans Vt.
(iii) Accept e if and only if e ∈ MWB((M \ At(e))|It(e)∪{e}) (and t(e) > T ). That is,

accept e if and only if it is in the max-weight basis of It(e) ∪ {e} after contracting
by At(e).

Before getting into our results, it is helpful to understand why Algorithm 1
is a class of algorithms (rather than a fully-specified algorithm). The reason is
that the algorithm has flexibility in which subset of S to include in It (but it
must include At, and must span Vt). The restriction is that the algorithm does
not know which element might arrive at time t, nor its weight, when setting It.
Furthermore, the algorithm can choose the length of the sampling stage T .

It is also helpful to see how this framework captures (or doesn’t capture)
existing greedy-like algorithms:

– Dynkin’s algorithm (with T = 1/e) fits this framework. But so do suboptimal
algorithms (e.g., accept the first element after T which exceeds the 5th-highest
sample. Or even accept an element which arrives at time t > T iff it exceeds
the (�5t/T 	)th-highest sample).

– The Optimistic Algorithm for k-uniform matroids of [2] fits this framework.
The algorithm maintains a list U , initially the k heaviest elements of S. If e
exceeds the lightest element in U , it is accepted, and the lightest element of
U is removed. In our language, this has It := At ∪ U at all times.

– There is a natural extension of the Optimistic Algorithm to all matroids,
which was previously considered in [4].

– A related Pessimistic Algorithm (similar to the rehearsal algorithm for the
related k-uniform prophet inequality of [1]) for k-uniform matroids fits this
framework. The algorithm also maintains a list U , initially the k heaviest
elements of S. If e exceeds the lightest element in U , it is accepted, but the
heaviest element of U lighter than e is removed. In our language, this again
has It := At ∪ U at all times (but U is updated differently to the previous
bullet).

– The Virtual Algorithm for k-uniform matroids of [2] does not fit this frame-
work. The algorithm accepts an element e if and only if e is one of the heaviest
k elements so far and the kth-heaviest element of Vt(e) is in S (i.e., e is accepted
if and only if it “kicks out a sample” from the top k so far). This is because
the algorithm needs to remember rejected elements in order to properly keep
track of the kth-heaviest element so far, and whether it was a sample.



Formal Barriers to Simple Algorithms for the Matroid Secretary Problem 287

Observe finally that all of the algorithms above (which fit the framework)
further have the following. First, if an element is rejected (after T ), it is forgotten
forever, and the algorithm proceeds as if the element had never existed in the
first place.8 Similarly, once an element e is accepted, the algorithm updates M
by contracting by e, and then proceeds identically as if the true matroid had been
M \ {e} the whole time.9 These attributes are shared by the matroid prophet
inequality of [17], and initially drove our formulation.

With an understanding of Greedy algorithms in hand, we now state our main
result.

Theorem 2. Any algorithm satisfying the 3 properties of Algorithm 1 cannot
be constant-utility-competitive.

3.2 Hard Instance: The Hat

In this section, we will study a hat graph which drives our impossibility result.
The hat has a special element which is significantly heavier than the sum of
all others, and thus any algorithm with a good utility-competitive ratio must
accept it. Furthermore, this special element appears in many small circuits, so
the algorithm must not accept the remaining elements of any of these circuits
prior to the arrival of the heavy element (otherwise, the heavy element cannot be
accepted when it arrives). The hat was used in [4] as a counterexample against
a particular greedy algorithm; and variants of the graph have been informally
known to be problematic for “greedy-like” algorithms. However, prior to our
work there was no formal classification of “greedy-like”.

The hat on n + 2 vertices is a collection of n triangles, all sharing the same
edge. Formally, an undirected graph (V,E) is a hat if V = {a, b, v1, . . . , vn} for
some n > 0, and E = {{a, b}} ∪ {

ei = {a, vi} : i ∈ [n]
} ∪ {

e′
i = {b, vi} : i ∈ [n]

}
.

Several weight assignments to the edges of the hat can serve as counterexamples
to the algorithms considered in this section, but we consider a particular weight
assignment for ease of exposition (as we only need one counterexample). We
define this weight function w : E → R≥0 to maintain the following ordering of
the edge weights: w(e1) > . . . > w(en) > w(e′

1) > . . . > w(e′
n). Furthermore,

w({a, b}) is much larger than the sum of the weights of all other edges. We will
refer to {a, b} as the infinity edge, and we refer to its arrival time as t∞ :=
t({a, b}) to emphasize this. Additionally, we consider the drawing of the hat in
the plane as shown in Fig. 1, where ei is to the left of ej for i < j, and ei is above
e′
i for all i. Accordingly, we will sometimes refer to the relative position of edges

to imply a relation between their relative weights.

8 But, the framework is rich enough to also allow for algorithms which update It as
they reject an element. This makes impossibility results stronger.

9 The framework is rich enough to allow for algorithms which update It based on At,
rather than just M \ {At}, which again just makes impossibility results stronger.
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Fig. 1. A hat on seven vertices. All purple edges (e1, . . . , e5) are heavier than all blue
edges (e′

1, . . . , e
′
5), and e∞ is significantly heavier than all other edges. Within each

color, darker edges are heavier. (Color figure online)

We call the pair of edges (ei, e
′
i) the i-th claw. Recall that any algorithm

satisfying the 3 properties listed in Sect. 3.1 has memory limited to an inde-
pendent set It. At any time t, given the history of arrivals and the algorithm’s
past decisions, we can classify the claws into one of 9 kinds in {−, A, S}2. The
first character in the pair describes the state of the top edge ei, and the second
character describes the state of the bottom edge e′

i. S refers to an edge that is in
It and arrived in the sampling stage. A refers to an edge that has been accepted
by the algorithm (and is therefore in It). − refers to any edge that is not in
It. For example, if the i-th claw is of type (S −) at some time t, it means that
t(ei) < T , ei ∈ It, and e′

i 
∈ It. Figure 2 illustrates these claws.

Fig. 2. All possible kinds of claws at any time t. S refers to sample edges in It (drawn
in orange), A refers to an accepted edge in It (drawn in green), and − refers to any
other edge (drawn in gray). (Color figure online)

We next state a few lemmas about different classes of claws and their impli-
cations about the performance of the algorithm. Since the infinity edge weighs
significantly more than other edges combined, we say the algorithm “loses” (i.e.,
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fails to have a constant utility-competitive ratio) if it fails to accept the infinity
edge. Conversely, the algorithm “wins” if it accepts the infinity edge. Our first
observation characterizes the exact scenarios in which the algorithm loses. All
missing proofs can be found in the full version.

Observation 3 (Loss condition). The algorithm loses iff there is an (AA)
claw before t∞.10

The next lemma specifies the unique blocking structure that would prevent
the loss-inducing (AA) claws from forming. Our analysis focuses on the case of
a (−A) claw becoming a (AA) claw, as these events are significantly more likely
than a (A−) claw turning into an (AA) claw, and suffice for our analysis.

Lemma 1 (Blockers and Protection). Suppose there is no (AA) claw yet.
Consider a (−A) claw whose upper edge is about to arrive. The upper edge is
accepted iff there is no (SA) claw to its left. For this reason, we will refer to
(SA) as the blocker. We say that the algorithm is protected at time t if there is
a blocker in It.

Importantly, note that there can be at most one blocker in It, as two block-
ers form a cycle. So we can unambiguously refer to the blocker at any time t.
A blocker’s effectiveness is a function of its location: Blockers far to the left
“protect” more claws and are therefore more effective.

With this language in mind, we can reframe the algorithm’s objective, while
working within the Greedy framework. The algorithm loses whenever the upper
edge of a (−A) claw arrives without a blocker to its left. So the algorithm would
like to maintain a blocker in It as far to the left as possible.11 So the remainder of
this section studies decisions the algorithm can make (again, within the Greedy
framework) to include blockers far to the left. Lemma 2, however, establishes
that we cannot create a new blocker without destroying our old one first (thereby
going “unprotected” for some period).

Lemma 2. If the lower edge of an (S −) arrives at time t and It has a blocker,
this edge will not be accepted.

Lemma 2 means that the algorithm faces a tradeoff. If It has a blocker, it is
safe from accepting the upper edge of a (−A) claw to its right at time t. But, the
algorithm cannot move its blocker to the left, even if the lower edge of an (S −)
arrives during this interval. Alternatively, the algorithm may not have a blocker
during It. In that case, the algorithm can possibly accept a good blocker, if one
happens to arrive at time t. But, the algorithm is at risk of accepting the upper
edge of a (−A) claw that arrives at time t no matter its location, because It has
no blockers at all.
10 Babaioff et al. [4] used the same graph as a counterexample to a special case of our

greedy algorithm, also relying on this observation. Our lemmas are otherwise new,
and necessary since we rule out a much larger class of greedy-like algorithms.

11 Note that an arbitrary algorithm can simply decide to violate the properties defining
Greedy. Our goal is to analyze Greedy algorithms, which must fit this framework.
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3.3 Main Result: Ruling out all Greedy Algorithms

Armed with a better understanding of some properties of the hat structure, we
are ready to prove Theorem 2, which states that greedy algorithms fail to be
α-utility-competitive for any constant α.

We give a detailed proof sketch below, and defer calculations to the full ver-
sion. We first repeat the main intuition: The algorithm’s goal is to not accept any
(AA) claw before t∞ (Observation 3). To do so, the algorithm must make sure
It includes a blocker to the left of every (−A) whose upper edge arrives at time
t < t∞ (Lemma 1). We can order potential blockers (S −) by the arrival times
of their lower edges, each of which is uniformly distributed in [T, 1]. Therefore,
it is unlikely that a blocker far to the left arrives very early.

The algorithm can try to start with a mediocre blocker and improve it over
time by accepting blockers further to the left as they arrive. The caveat is that
due to Lemma 2, blocker improvements are only possible in unprotected periods,
during which any arriving upper edge of (−A) claws is accepted. Therefore,
the algorithm faces a trade-off: Forming a more effective blocker costs more
unprotected time. Importantly, the algorithm does not know whether the next
arriving edge will be part of a potential blocker, or part of an (−A).

In order to show that the algorithm fails, we show that with high probability
there will be a (AA) claw before the arrival of the infinity edge. Specifically, we
show that with high probability, an (−A) claw becomes (AA) in an interval of
length � = n−0.1 after T , which is with high probability before the arrival of the
infinity edge.

We now get into details of our proof approach. We first choose a parameter
x ∈ [n] (thinking of the claws as labeled 1 through n from left to right). We
will undercount the algorithm’s failure, noting that it fails whenever any of the
following happens:

– The upper edge of some (−A) to the left of x arrives during [T, T + �], and
It does not include any blocker to the left of x for any t ∈ [T, T + �].

– The upper edge of some (−A) arrives at an unprotected t ∈ [T, T + �].

In other words, we are zeroing in on two potential sources of failure: the
upper edge of any (−A) claw could arrive during an unprotected time, or the
upper edge of an (−A) claw to the left of x could arrive before the algorithm
accepts a blocker to the left of x. Note that these are very narrow possibilities
for failure, but they suffice for our analysis.

So there are three probabilities to analyze. The first part of the first bullet
is independent of the algorithm,12 and simply considers the probability that the
upper edge of a (−A) to the left of x arrives during [T, T + �].

Lemma 3. With probability at least 1− 2−�2x/2, the upper edge of a (−A) claw
to the left of x arrives between T and T + �.

12 Recall that the first edge of a (− −) claw to arrive must always be accepted since It
must span Vt.
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The next two probabilities are significantly more involved, as they consider
decisions made by the algorithm. Note that the algorithm can decide adaptively
when to go unprotected, based on the current ratio of (−A)s (potential (AA)s)
versus (S −)s (potential blockers) to the left of x. To this end, we will let the algo-
rithm adaptively choose any (measurable) subset of [T, T + �] to go unprotected,
and let y denote the total measure of this interval.13 y captures the aforemen-
tioned tradeoff: small y means that the algorithm is likely to fail bullet one, while
large y means the algorithm is likely to fail bullet two. Lemma 4 quantifies the
cost of keeping y small, lowerbounding the probability of the second part of the
first bullet.

Lemma 4. Conditioned on the upper edge of a (−A) claw to the left of x arriv-
ing between T and T + � (i.e. Lemma 3 happening), any greedy algorithm which
goes unprotected for a total measure of y during [T, T +�] fails to accept a blocker
to the left of x with probability at least:

(1 − −2x�e− 2x
3 )(1 − y)4x.

Finally, we analyze the second bullet, lower bounding the probability that
the upper edge of a (−A) claw (anywhere) arrives during a period when the
algorithm is unprotected (while the precise form is complicated, recall the intu-
ition that as y gets larger, the probability of this particular bad event goes up,
and y is at most �):

Lemma 5. Any greedy algorithm which goes unprotected for a total measure of
y ≥ n−0.4/2 during [T, T + �] has the upper edge of a (−A) claw arrive during
an unprotected t with probability at least:

1 −
(

1 − 2y − n−0.4

2�

)n0.6(4�−n−0.4)
32�2

.

Finally, we just need to combine the three bounds in Lemmas 3, 4, 5. We
will choose a value of � and x for the analysis, and then the algorithm (knowing
x) can adaptively allocate the unprotected intervals within [T, T + �] for a total
measure of y. More formally, we let f(y) = (1−2x�e− 2x

3 )(1−y)4x
(
1 − ( 12 )�2x/2

)

denote the lowerbound on failure probability derived in Lemma 4. Furthermore,
we let

g(y) =

⎧
⎨

⎩
1 −

(
1 − 2y−n−0.4

2�

)n0.6(4�−n−0.4)
32�2

, y ≥ n0.4

2 ;

0, y < n0.4

2 .

The first case follows from Lemma 5, and setting g to 0 elsewhere only strength-
ens our lower bound. Overall, the algorithm fails with probability at least miny

{max{f(y), g(y)}}. The next lemma sets parameters to lower bound this expres-
sion.
13 The algorithm does not need to commit to the value of y in advance or choose it

deterministically.
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Lemma 6. When x = n0.3 and � = n−0.1, we have

lim
n→∞ min

y∈[0,�]
{f(y), g(y)} = 1.

The proof of Theorem 2 now follows from the four lemmas of this section.

4 Randomized Partition Algorithms

This section is devoted to a class of algorithms based on partition matroids.
These are generalizations of an algorithm by Korula and Pal [19] for the sec-
retary problem on graphic matroids. We show that this algorithm and natural
generalizations of it fail to provide good probability-competitive performance.

4.1 Defining Randomized Partition Algorithms

The algorithm by Korula and Pal [19] was phrased in the language of graphs.
Let us try to generalize it in a language applicable to all matroids. Before seeing
any weights, their algorithm restricts itself (potentially randomly) to accepting
only a subset of independent sets. More specifically, the algorithm will restrict its
attention to the disjoint union14 of solutions to simpler subproblems. The algo-
rithm must ensure that for all feasible solutions to the subproblems, their union is
a feasible solution to the main problem. In the case of the Korula-Pal algorithm,
the smaller subproblems are instances of 1-uniform matroid secretary problems.
(Several other algorithms for the Matroid Secretary Problem use similar high-
level techniques, where the “simpler” matroids are not 1-uniform [9,15,20,24],
and this idea is also used for the related prophet inequality [10].)

More concretely, we say that a partition is valid if the union of what is
accepted by the instances of Dynkin’s algorithm is an independent set (regardless
of the weights and order of arrivals). Now we consider the following class of
algorithms based on partition matroids:

Algorithm 2. Randomized Partition
1. Before looking at any weights, (perhaps randomly) validly partition the elements

into parts Si.
2. Within each part, run Dynkin’s algorithm, and output the union of the selected

elements.

One can ask whether any algorithm in this framework can be constant-
probability-competitive. Theorem 4 shows that the answer is ‘no’.

14 This disjointness is why we refer to these generalizations as algorithms based on
“partition matroids.”
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4.2 Randomized Partitions

In this section, we will rule out all algorithms based on partition matroids as
candidates for achieving a constant probability-competitive ratio for the matroid
secretary problem.

For the algorithm to always output a feasible solution, any partition it uses
must be valid. Recall that a valid partition is one for which the union of what is
accepted by the instances of Dynkin’s algorithm is always independent. We say
a distribution over partitions is valid if every partition in its support is valid.

Without loss of generality, we can assume the input graph is always complete.
Otherwise, one can consider a modified weight-function that assigns a weight of
zero to every edge that is not present. Since the algorithm cannot see the weights
of the edges in advance, it will have to choose a partition of the complete graph
at the start.

Theorem 4. Any algorithm that draws a partition from a valid distribution D
in Algorithm 2 is not α-probability-competitive for any α = ω(n−1/8).

The high-level plan in the proof of Theorem 4 is to plant a random broom,
illustrated in Fig. 3, and show that with high probability, its handle is not
accepted. We will refer to the lone neutral edge {u,w} connecting the two stars
as the handle of the broom. Note that the edges of non-zero weight in the broom
form an acyclic subgraph and are therefore the unique max-weight basis of this
graphic matroid.

handle

broom

leg
s

Fig. 3. Two stars connected by an edge form a broom. We call the bridge between the
two stars the handle of the broom, and we the other edges of the broom as its legs.

Before proving this theorem, we characterize valid partitions.

Characterizing Valid Partitions. In this section we give a few characteriza-
tions of what valid partitions look like, which serve to provide intuition into why
validity is a strong enough condition that prevents partition-based algorithms
from probability-competitiveness.

We define a valid partition to be one where the union of what is accepted
by the instances of Dynkin’s algorithm is always an independent set, even
for adversarial weights and arrival orders. We first give several equivalent



294 M. Bahrani et al.

descriptions of what valid partitions should look like in the case of graphic
matroids, which provides certain structural properties enforced by validity. It
will be later used to prove our Theorem 4.

Lemma 7. Let {S1, . . . , Sk} partition the edges of a complete graph Kn, and let
part(e) denote the Si containing edge e. The following are equivalent:

(a) Matroid condition: {S1, . . . , Sk} is valid.
(b) Graph condition (i): Every cycle has at least two edges in the same part.
(c) Graph condition (ii): Every triangle has at least two edges in the same

part.

Proof of Theorem 4. We provide a counterexample in the case of graphic
matroids using the broom. Consider a partition S = {S1, . . . , Sk} of the edges
of the complete graph. We say an edge e ∈ Si is “high-degree” if the sum of the
degrees of its endpoints within the same part Si is large. More concretely, we
define the part-i degree of a vertex v as degi(v) = |{e = {a, b} ∈ Si : v ∈ {a, b}}|.
Given an edge e = {a, b} in part Si, its degree is given by deg(e) = degi(a) +
degi(b) − 1, which intuitively means that we are counting all the incident edges
in that part and the edge itself. An edge e is said to be high-degree if deg(e) ≥ C
for some C that we will choose later.

We will show that a 1 − o(1) fraction of the edges are high-degree for super-
constant C. Therefore, an adversary can plant a random broom by assigning
weights according to the following distribution: Pick a random edge {u, v} in
the graph, and randomly partition the vertices V \{u, v} into two parts X and
Y of equal size (we assume |V | is even). Assign a weight of 1 to every edge
{u, x} and {v, y} for all x ∈ X, y ∈ Y , and a weight of zero to everything else.
We will show that no matter what partition an algorithm chooses, the random
edge {u, v} will have a high-degree with high probability. The algorithm must
therefore choose at most one edge from at least C elements of OPT. Hence, it
cannot be better than 1/C-probability-competitive.

It remains to show that a 1 − o(1) fraction of the edges are high-degree for
some super-constant C in any valid partition S of the edges of the complete
graph. A partition of the edges of Kn can be thought of as a coloring of its
adjacency matrix A ∈ Mn×n (ignoring diagonal entries) in the obvious way
(i.e., assign a different color to each Si, and the color part(e) to the entry of
A corresponding to e). In this notation, an entry of A is low-degree if there
are fewer than C entries of the same color in its row or column. Note that by
Lemma 7, a partition is valid iff every triangle has at least two edges in the
same part. In the matrix language, a partition is valid iff for every three row
indices u, v, w, at least two of A(u, v), A(u,w) and A(v, w) are the same color.
We will show using this interpretation of feasibility that each row and column
must mostly consist of high-degree entries. More specifically, we will fix a vertex
v, and consider any other two vertices u and w.

Proposition 1. Let C ≤ (n−1)/2 and let T (n) be the maximum possible number
of low-degree edges in any valid coloring of the complete graph on n vertices. For
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any vertex v, let xi denote the number of edges adjacent to v in partition i.
T (n) ≤

max
x∈N

n−1
≥0 ,

∑
i xi=n,

min
{∑

i

T (xi) + 2C(n − 1), T (n − 1) + 2(n − 1 − max
i

{xi})
}

.

Proof. There are two steps: for any x, we show that both the left term and the
right term are always upper bounds (and therefore their minimum is a valid
upper bound too).

Intuitively, the left term is better when maxi{xi} is not too large. To see
that the left term is always an upper bound, consider the following cases. Below,
let Xi denote the set of nodes z such that (z, v) is in partition i (and therefore
xi := |Xi|).
– First, consider each Xi, and consider the induced subgraph on just these xi

nodes. The number of low-degree edges just counting those between two nodes
in Xi is at most T (xi), by definition of T (·). Clearly, a node must be low-
degree in the induced subgraph to possibly be low-degree in the full graph.
This means there are at most

∑
i T (xi) low-degree edges between two nodes

in the same Xi.
– Next, consider an edge between two nodes x, y both 
= v which are not in the

same Xi. This means that the edges (v, x) and (v, y) are not colored the same,
and therefore the edge (x, y) must share a color with one of them for A to be
valid. Whichever edge shares its color, we will charge its non-v endpoint (e.g.
if (x, y) shares a color with (v, x), we charge x). Observe that once a vertex
is charged C times, this means there are C + 1 edges adjacent to it which
share the color of (v, x). This means that none of these edges are low-degree.
Therefore, an edge can be low-degree only if its non-v endpoint is charged at
most C times, and therefore there can be at most C(n − 1) such low-degree
edges.

– Finally, consider an edge adjacent to v. We will lazily upper bound the number
of low-degree edges by just the total number of edges, n−1, and further upper
bound it by C(n − 1) for cleanliness of the expression.

This establishes the left term, which holds for any x. Now we establish the right
term. Intuitively, the right term is a better bound whenever maxi{xi} is large.
Let j := arg maxi{xi}. If xi > C, then there can be no low-degree edges adjacent
to v in X1. Therefore, there are at most (n−1−xj) low-degree edges adjacent to
v. On the subgraph induced by the n−1 nodes other than v, there are clearly at
most T (n−1) low-degree edges by definition of T (·), and again any edge which is
low-degree in the full graph must be low-degree in every induced subgraph. On
the other hand, if xj ≤ C, then perhaps all edges adjacent to v are low-degree,
and we can only use this technique to give an upper bound of T (n − 1) + n − 1.
In both cases, our bound is at most T (n − 1) + 2(n − 1 − maxi{xi}) as long as
C ≤ (n − 1)/2.
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We will show inductively in Lemma 8 that T (n) ≤ b · C · n1+a, where a is
a constant, and b and C are super-constant in n, as long as a few conditions
hold. Corollary 1 lists values that satisfy these conditions, concluding that for
all 0 < ε < 1/2, there are valid assignments to the variables that achieve T (n) ≤
n3/2+ε.15 Furthermore, Corollary 1 ensures that C is super-constant (and in

particular polynomial in n), implying that with probability at least (n
2)−n3/2+ε

(n
2)

,

the handle of the randomly planted broom will be high-degree for super-constant
C. It can therefore only be selected with a sub-constant probability.

Lemma 8. Consider the following recurrence when C ≤ (n − 1)/2. T (n) ≤

max
x∈N

n−1
≥0 ,

∑
i xi=n,

min
{ ∑

i

T (xi) + 2C(n − 1), T (n − 1) + 2(n − 1 − max
i

{xi})
}

.

with a base case of T (n) = n(n − 1)/2 when (n − 1)/2 < C. For all N , T (N) ≤
b · C · N1+a, as long as

1. a ∈ (0, 1) is a constant;
2. C is a super-constant function of N ;
3. b is a super-constant function of N such that b(N) ≥ 1 for all N ;
4. for all n < N , the following is satisfied: 2(n−1)

abn1+a < (1+a)bC
2n1−a .

As an immediate corollary, we get the following.

Corollary 1. Let T (n) be defined as in Lemma 8. Then for all 0 < ε < 1/2,
T (n) ≤ n3/2+ε.

Now we can complete the proof of Theorem 4. Corollary 1 together with
Proposition 1 establishes that for any ε > 0, there are at most n3/2+ε edges
with degree at most C := nε/3. This means that with probability 1 − n−1/2+ε,
a randomly selected edge (u, v) of the complete graph has degree at least nε/3.
Conditioned on (u, v) having high-degree, we know that nε/3 edges of the max-
weight spanning tree are in the same partition as (u, v). Therefore, at least
one of them is selected with probability at most n−ε/3. Setting ε = 3/8, we
conclude that except with probability n−1/8, there is some edge selected with
probability at most n−1/8, and therefore no randomized partition algorithm can
be ω(n−1/8)-probability-competitive.
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Abstract. We study a signaling game between two firms competing to
have their product chosen by a principal. The products have (real-valued)
qualities, which are drawn i.i.d. from a common prior. The principal aims
to choose the better of the two products, but the quality of a product can
only be estimated via a coarse-grained threshold test : given a threshold
θ, the principal learns whether a product’s quality exceeds θ or fails to
do so.

We study this selection problem under two types of interactions. In
the first, the principal does the testing herself, and can choose tests opti-
mally from a class of allowable tests. We show that the optimum strategy
for the principal is to administer different tests to the two products: one
which is passed with probability 1

3
and the other with probability 2

3
.

If, however, the principal is required to choose the tests in a symmetric
manner (i.e., via an i.i.d. distribution), then the optimal strategy is to
choose tests whose probability of passing is drawn uniformly from [ 1

4
, 3
4
].

In our second interaction model, test difficulties are selected endoge-
nously by the two firms. This corresponds to a setting in which the firms
must commit to their testing (quality control) procedures before knowing
the quality of their products. This interaction model naturally gives rise
to a signaling game with two senders and one receiver. We characterize
the unique Bayes-Nash Equilibrium of this game, which happens to be
symmetric. We then calculate its Price of Anarchy in terms of the prin-
cipal’s probability of choosing the worse product. Finally, we show that
by restricting both firms’ set of available thresholds to choose from, the
principal can lower the Price of Anarchy of the resulting equilibrium;
however, there is a limit, in that for every (common) restricted set of
tests, the equilibrium failure probability is strictly larger than under the
optimal i.i.d. distribution.
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1 Introduction

A principal wants to choose between two firms producing interchangeable prod-
ucts, whose qualities are drawn i.i.d. from a known prior. The principal wants
to pick the product of higher quality — however, she cannot directly observe
the products’ qualities. In order to learn more about the products’ qualities, the
principal can simultaneously subject the products to tests. Specifically, we con-
sider the simplest and most coarse-grained tests: binary (i.e., pass/fail) threshold
tests that reveal whether the product’s quality lies above or below a chosen θ.
How should the principal choose the tests to administer to the two products, so
as to help her maximize the probability of picking the better of the two? We
refer to this as the optimal selection problem.

Now consider an alternative setting in which firms conduct their own quality
control in-house, according to a fully disclosed and verifiable procedure. This
may be necessary if the principal does not possess the expertise to conduct
quality control herself. In this setting, while the principal may not be able to
conduct a test, we assume that she can verify that a firm correctly followed its
disclosed testing protocol; in other words, we assume that firms inherently have
the power to commit to a test. At the time a firm commits to a testing protocol,
it will not know the exact quality of each individual product — for example,
due to variations across batches and over time, or because the firm acts as an
intermediary (e.g. head hunters who vet candidates for a hiring firm). Indeed,
such variation is the reason testing is needed in the first place. As before, we
assume that firms have independent common priors for their product qualities.
How will firms choose tests in such an endogenous selection setting, if each
firm wants to maximize the probability of its own product being selected? Will
competition push the firms to subject themselves to very difficult tests, or will
they coordinate on easy tests at equilibrium? How much worse off is the principal
due to having to outsource quality control tests, rather than conducting them
herself? Can she improve her probability of choosing the better product by
restricting the set of tests from which the firms can choose, e.g., by prescribing
standards that such tests must adhere to?

Endogenous test selection by two firms can be naturally viewed as a form of
signaling; committing to a testing procedure takes the role of committing to a
signaling scheme.1 Thus, our work can be construed as a natural game played
between two agents whose strategies are signaling schemes from a restricted class
of available schemes. This parallels several recent works on Bayesian persuasion
games between multiple firms vying for customers [1,2,4,5,12]; we discuss these
in detail in the full version [3]. Our high-level question is what the equilibria of
such signaling games look like, and how much efficiency is lost (if any) by letting
1 This is the more common view of signaling in the economics community: a signaling

scheme is interpreted as a device (physical or otherwise) that maps relevant states of
the world to observable signals. Fixing a device constitutes committing to a signaling
scheme. In contrast, recent works in computer science apply signaling/persuasion to
scenarios such as communications where it is less clear whether the sender has the
ability to commit to a mapping.
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the agents/firms choose their own signaling scheme rather than the principal
being able to control how she receives information about the state of the world.

We investigate such questions using the following simple model (see Sect. 2).
The two firms have products with real-valued qualities X,Y drawn randomly
from a common prior with continuous cdf Ψ . The principal has at her disposal a
collection of tests parametrized by a threshold θ ∈ R which encodes the difficulty
level of each test. When a firm’s product with quality X is subjected to a test
with threshold θ, the outcome reliably reveals whether X ≥ θ (the product passes
the test) or X < θ (the product fails the test). In the language of signaling, this
means that we restrict to signaling schemes with binary outcomes, in which the
sets mapped to each outcome are intervals.

Based on the chosen test difficulties (which are observable in both optimal
and endogenous selection regimes) and their outcomes, the principal selects one
of the products. Her objective is to minimize the probability of choosing the
worse product, while each firm’s objective is to maximize the probability of
having its product chosen. We consider the following models, which endow the
principal with varying degrees of control:

1. The principal must give both firms the same test.
2. The principal has full control over the difficulties θX , θY of the tests given to

the two firms.
3. The principal specifies a distribution from which both firms draw tests in an

i.i.d. manner. The restriction to identical distributions may be required to
achieve ex-post fairness, compared to, for instance, randomizing which of the
two firms gets which of two non-identical tests.

4. The firms endogenously choose their own tests via equilibrium strategies.
5. The principal can restrict available tests to a set S (common to both firms),

and firms endogenously choose their tests from S. Such a restriction could
arise if the principal is a government agency or sufficiently powerful firm
providing binding quality control guidelines.

It is clear — simply from suitable subset relationships on sets of available
actions — that in terms of the principal’s error probability, {1, 4} ≥ 5 ≥ 3 ≥ 2.
Our goal is to explicitly characterize the optimal or equilibrium outcomes under
these five models, thereby inferring which of the preceding comparisons are strict,
as well as to quantify the increase in error probability for the principal resulting
from a move to a weaker model. When comparing a model in which the principal
has control with one in which the agents are allowed to choose tests according to
an equilibrium strategy, this ratio exactly corresponds to the Price of Anarchy.

1.1 Other Applications and Model Discussion

While we phrase our work in terms of two firms offering products, our model
applies more broadly. In particular, it can be viewed as a generalization of the
classic “forum shopping” model of Lerner and Tirole [13] to multiple firms (prop-
erty owners, in their language).2 In this model, firms can choose an external
2 Lerner and Tirole [13] do briefly discuss a multi-firm setting, but only consider one

extremely limited example.
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certification agency to issue a recommendation on whether or not their product
is “acceptable.” There is a continuum of agencies, ranging from fully aligned
with the firm’s interests to fully independent. Under suitable parameters, this
model precisely corresponds to being able to choose any quantile threshold for
a test. While the model does not place the tests “in house,” in terms of the
firms’ choices, it is equivalent to our model. The focus of [13] is on the interplay
of the independence/difficulty of the agency and the owner’s “concessions” —
direct transfers to any user of the property, such as price reductions or addi-
tional features. As they argue, such a setup not only captures agencies certifying
products, but also journals/conferences reviewing papers and similar endeavors.
In addition to these applications, some of the literature on multi-sender cheap
talk/Bayesian persuasion is motivated in terms of competing proposals, either
to a funding agency or internal within an organization; see, e.g., [4,5].

Another application, aligned with the classic work of Spence [18] and Ostro-
vsky and Schwarz [16], is in the assessment of students. Here, the test is a
pass/fail exam (or class) via which a student is assessed. The optimization prob-
lem may guide a teacher aiming to correctly rank the students in a class, while
the endogenous test selection model roughly corresponds to students choosing
the difficulty of projects to undertake or of classes to enroll in.

In the context of applications, three key assumptions in our model are worth
discussing. The first is that firms are unaware of their quality when choosing
tests. This power of commitment before the state of the world is revealed is the
defining distinction between Bayesian Persuasion and Cheap Talk models, and
is covered in depth in the full version [3]. As we discuss, most works on inter-
firm signaling make this assumption. For example, Lerner and Tirole [13] assume
that property owners do not know users’ utilities for their product.3 Similarly,
Ostrovsky and Schwarz [16] consider early contracting between students and
employers, in which students at the time of negotiation only have priors on
their future performance. Naturally, as with all models, this assumption is a
simplification, with reality lying between full and no commitment power.

The second assumption is that tests have binary and monotone (i.e., pass/fail)
outcomes; in particular, we assume that no test can be passed with quality x, but
failed with quality x′ > x. Restricting to monotone information structures is quite
common in the literature: for recent examples, see [9,15], and [6] and discussions
therein. Other kinds of restricted signal spaces also have significant precedent in
the literature. Dughmi et al. [8] analyze Bayesian Persuasion in which the sender
is restricted in terms of the number of signals. Boleslavsky et al. [4] assume that
the state of the world is binary (the product is good or bad) and allow each sender
to only send one of two signals; nevertheless, competition between senders results
in complex signal distributions at equilibrium. Similarly, the certification models
of [11,13] mostly consider binary outcomes (recommend/don’t recommend). As
argued in [11] (see, e.g., Footnote 3 in [11] and the literature cited there), the main

3 However, we note that in addressing the same real-world scenario, Gill and Sgroi [11]
instead consider a model where the owner knows the state before choosing the cer-
tifier; see the full version [3] for details.
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purpose of a test or evaluation is to provide a concise summary of the product.
When the outcome of the evaluation must be concise, the number of possible sig-
nals that can be sent is necessarily bounded, and a binary signal is a clean and
idealized way to capture such a desideratum. Monotonicity is natural to assume
when signals should be interpretable by a decision maker. This justification is also
borne out by the coarse-grained grading systems (pass/fail, grades A–F) typically
used in education contexts. It also closely aligns with the argument made in [17]
that there is a tradeoff between accuracy and complexity of advice (i.e., signals).

The third assumption is that there are exactly two firms (for most of our
results), and that their qualities are drawn i.i.d. This assumption is very standard
in the study of related questions in competitive signaling; see, e.g., the in-depth
discussion of [4,5,12,14] and additional related work in the full version [3]. We
discuss the difficulties with extending the result to n > 2 firms or non-identical
priors in Sect. 7.

1.2 Our Results

As we elaborate in Sect. 2, it is equivalent — and much more convenient — to
characterize tests not in terms of their thresholds, but in terms of the probability
that a product will fail the test. Thus, we can view each possible test as a real
number in [0, 1]; in this case, the products’ qualities can be assumed w.l.o.g. to
be drawn uniformly from [0, 1].

When both firms’ products have to be subjected to the same test, it is easy
to see that the optimum test is the median test, passed with probability exactly
1
2 , which chooses the wrong product with probability 1

4 (see Sect. 2). When the
principal can give the firms different tests, our main result is summarized by the
following theorem. (See Sects. 4 and 3 for formal statements.)

Theorem 1 (Optimal Selection of Tests by Principal: Informal).

1. If the principal can assign arbitrary tests to the two firms, then it is optimal to
give one firm a test of 1

3 and the other a test of 2
3 . This results in a probability

of 1
6 of incorrect selection.

2. If the principal must draw i.i.d. tests for the firms, then the optimal rule draws
test thresholds uniformly from the interval [14 , 3

4 ]. This results in a probability
of 5

24 of incorrect selection.

The preceding theorem is rather surprising! Even though the firms’ products
have i.i.d. qualities, the principal can decrease her failure probability significantly
(by 33%) by giving the firms very different tests. Analogously, a teacher trying
to optimally rank students by ability should give the students different tests,
even if their abilities share a common prior distribution.

For the case of endogenous test selection, the equilibrium and its probabil-
ity of a mistake are characterized by the following result, stated formally and
discussed in Sect. 5:
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Theorem 2 (Equilibrium Distribution). When firms’ qualities are drawn
i.i.d. uniformly from [0, 1], and firms choose their test difficulties endogenously,
there is a unique Bayes-Nash Equilibrium, which is symmetric, and consists of
each firm choosing difficulty θ ∈ [0, 1] from the probability density function (pdf)
f(θ) = 1

2(θ2+(1−θ)2)3/2
.

The principal’s resulting probability of incorrect selection is approximately
0.23056, causing a Price of Anarchy of approximately 1.38336 compared to the
optimum correlated tests and approximately 1.10653 compared to the optimum
i.i.d. test distribution.

Finally, in Sect. 6, we allow the principal to set “guidelines” for the firms’
quality control tests, by prescribing a set S ⊆ [0, 1] from which the thresholds
must be drawn.

Theorem 3 (Restricted Equilibrium Distribution). When the firms’ qual-
ities are drawn i.i.d. uniformly from [0, 1], and the firms choose their test dif-
ficulties endogenously from an interval S = [a, b] ⊆ [0, 1], there is a unique
Bayes-Nash Equilibrium. This unique Bayes-Nash equilibrium is symmetric and
can be explicitly characterized in closed form.

Moreover, there exist values a, b for which the resulting probability of a mis-
take by the principal is strictly smaller than for the interval [0, 1]; for example,
for the interval [0, 0.79], the probability of a mistake is approximately 0.22975.

However, even compared to a principal restricted to i.i.d. test choices, under
symmetric Bayes-Nash Equilibria, the Price of Anarchy is lower-bounded by a
constant strictly larger than one: for every set S ⊆ [0, 1] (not just intervals), the
probability of a mistake is at least 5

24 + 1
82944 .

One interesting interpretation of the preceding theorem is that a somewhat
bigger part of the problem with endogenous test selection is that firms skew
too much towards harder tests. Making extremely difficult tests (the top 20%)
unavailable results in a (slightly) better equilibrium probability for the principal.
However, as we will see in the analysis, when restricting the interval of available
tests, the equilibrium distribution has non-trivial point mass at the upper end of
the interval; in other words, at equilbrium, firms will still compete by choosing
difficult tests.

A visual representation of our results is given in Fig. 1. Taken together, our
theorems imply a strict separation of all five models of test selection, and notably
show that the principal has a higher probability of incorrect selection when choos-
ing the same test for both firms compared to when they choose tests endoge-
nously.

Our work raises a wealth of directions for future inquiry, discussed in detail
in Sect. 7. Most immediate would be extensions to more than two firms and to
richer signaling schemes. For an extension to multiple firms, an important point
is to decide what the principal’s and the firms’ objectives are. One natural gener-
alization is to have the principal still choose one (or k) of the firms’ products; this
appears difficult. A “friendlier” generalization involves a principal who wants to
fully rank the firms by quality (e.g., a teacher in a classroom setting), and aims
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Fig. 1. The principal’s failure probabilities under different models of threshold choices.

to minimize the number of inversions compared to the true order. In this setting,
a firm/student may try to minimize the expected number of other firms ranked
ahead of it. Because the objective functions naturally decompose into pairwise
objectives by linearity of expectation, our results carry over to this setting com-
pletely. The only necessary generalization is for the case of correlated tests. In
fact, in Sect. 4, we characterize the optimal choice of tests for the principal in
the presence of any number of firms.

Due to space constraints, essentially all proofs, as well as a much more in-
depth discussion of related work, are deferred to the full version [3].

2 Model and Preliminaries

2.1 Qualities, Tests and Selection

We consider a setting in which a principal wants to pick the better of the products
provided by two firms X and Y . We will equivalently refer to this process as
selecting or choosing a firm or ranking the firms. The two firms’ products have
i.i.d. qualities X,Y drawn from a common prior distribution with continuous cdf4

Ψ on R. Abusing notation, we use X,Y to refer both to the firms themselves
and their products’ (random) qualities.

Information about the products’ qualities is revealed by means of binary
threshold tests (henceforth simply tests) administered to the products. More
specifically, a test is completely characterized by a threshold θ ∈ R. A product
of quality X subjected to a test with threshold θ passes if and only if X ≥ θ;
otherwise, we say that the product fails the test θ. To avoid unnecessary clutter
in writing, we also refer to the firm X or Y as passing or failing the test (instead
of its product). The larger θ, the less likely a product is to pass the test, so we
can naturally think of θ as the difficulty of the test. When a product is subjected
to a test, the outcome (pass or fail) is revealed to everyone, but no additional
information can be inferred about the product. This model is mathematically
equivalent to the certification model of [13].

The principal’s goal is to minimize the probability of selecting the product
of lower quality. We refer to this as an incorrect selection, or as an error by the
principal, or — by analogy with ranking — as an inversion. Formally, consider

4 We adopt the convention that the cumulative distribution function (cdf) of a proba-
bility measure on R is defined by setting F (x) to be the measure of the set (−∞, x]
under the distribution.
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a rule T for assigning tests to firms and selecting a firm based on the tests’
outcome. We define I(T ) := 1[T chooses the wrong firm] as the indicator of T
inverting the ranking. Note that I(T ) is a random variable, with randomness
arising from: (1) T ’s selection of test thresholds, (2) the firms’ products’ ran-
dom qualities, and (3) possibly randomized aggregation of test outcomes. The
principal’s goal is to choose T so as to minimize E [I(T )].

Given a firm’s test result, the principal can form a posterior belief of its
product’s quality. The posterior expected quality of a product passing threshold
test θ is EX∼Ψ [X | X ≥ θ], while the posterior expected quality of a product
failing it is EX∼Ψ [X | X < θ]. Observe that for any product quality cdf Ψ , we
have that EX∼Ψ [X | X < θ] and EX∼Ψ [X | X ≥ θ] are monotone non-decreasing
in θ, and strictly increasing for θ in the support of Ψ . Furthermore

EX∼Ψ [X | X < θ] ≤ EX∼Ψ [X] ≤ EX∼Ψ [X | X ≥ θ] ,

and both inequalities are strict if θ is in the support of Ψ . Because both products’
qualities are drawn from the same distribution, these observations imply the
following proposition.

Proposition 1. Let θX > θY be the thresholds of the tests to be applied to the
products of firms X,Y . Assume that both θX , θY lie in the support of Ψ .

1. If both firms’ products pass their tests, or both fail their tests, then the prin-
cipal minimizes the probability of an inversion by selecting X.

2. If exactly one of the products of X,Y passes its test, then the principal min-
imizes the probability of an inversion by selecting the firm that passed.

Proposition 1 characterizes a rational principal’s choice (once test outcomes
have been revealed) almost completely. To complete the description, we assume
that when there is a tie, the principal picks one of the firms uniformly at random.
We will refer to this case as a coin flip, and say that X (or Y ) wins/loses the
coin flip. As an illustration, consider the following example:

Example 1 (The Median Test). Suppose that both firms’ products have i.i.d. qual-
ity levels X,Y ∼ Uniform[0, 1] (i.e., drawn uniformly over [0, 1]). A natural test
is the median test Tmedian, under which both products are subjected to a test with
θ = 1

2 . A product’s posterior expected quality upon passing is E [X | X ≥ 1/2] =
3/4, and upon failing E [X | X ≤ 1/2] = 1/4. Now w.l.o.g. suppose that the two
firms’ products have qualities X < Y . If X < 1

2 ≤ Y , then Y passes and X fails,
and the principal ranks them correctly. However, if Y < 1

2 , then both fail, and
if X ≥ 1

2 , then both pass. In either case, a coin flip is required, and the prin-
cipal chooses correctly only with probability 1

2 . Thus, the median test achieves
E [I(Tmedian)] = 1

4 .
More generally, if the principal gives the same test θ to both agents, then an

inversion happens if: (1) either both X,Y ≥ θ or both X,Y < θ, and (2) the
coin flip determines the wrong winner. Thus, the probability of an inversion is
1
2 (θ2 + (1 − θ)2). This is minimized at θ = 1

2 , showing that the median test is
optimal for the principal if she must give the same test to both agents.
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Given complete control over the choice of testing rule T , the principal’s goal
is to choose the rule that minimizes E [I(T )]. This could be a single threshold
for both firms (as with the median test); a distribution G over R such that, for
each firm, the principal draws an i.i.d. threshold θ ∼ G; or, most generally, a
joint distribution G over thresholds for both firms. The optimal i.i.d. threshold
distribution and the optimal joint distribution are studied in Sects. 3 and 4.

2.2 Endogenous Test Selection and Quantile Thresholds

In many settings, firms may be better equipped than the principal to perform
quality control tests in house.5 In these cases, the firms will typically commit to
a verifiable quality control procedure for their products. The principal gets to
observe (only) the threshold θ and the outcome of the test. In other words, both
firms commit to a signaling scheme about their products’ qualities, where the
space of signaling schemes is restricted to a binary signal space and threshold
functions.

Each firm’s goal is to maximize its probability of being selected, or — equiva-
lently — of being ranked ahead of the other firm. Due to the competitive nature
of the game, the appropriate solution concept (which we will study) is a Bayes-
Nash Equilibrium. We refer to this setting as endogenous test selection. Because
the firms are a priori symmetric, in any equilibrium, each firm’s product must
be selected with probability 1

2 .
In a further generalization, note that the principal may be able to rule out

some types of tests. In other words, in a more general model, the principal may
specify a closed set S and restrict the firms to selecting test thresholds θ ∈ S
only. We will be primarily interested in the case when S is an interval, but also
consider more general closed sets S.

Before continuing, we note that since the utilities of both the principal and
the firms depend only on rankings and not actual qualities, it is convenient to
work in the quantile space [0, 1] rather than the quality space R. To do this,
note that for any quality X ∼ Ψ , its corresponding (random) quantile Ψ(X) is
distributed uniformly in [0, 1]. Now, suppose that firm X chooses (or is assigned)
a threshold σ ∈ R for its test; we can equivalently view this as the firm picking
a threshold quantile θ = Ψ(σ) ∈ [0, 1]. Note that a product with quality X ∼
Ψ passes a test with threshold quantile θ with probability 1 − θ; moreover, a
threshold quantile θ ∈ [0, 1] corresponds to a threshold σ = Ψ−1(θ) in the
quality space, where Ψ−1(x) � inf{y ∈ R | Ψ(y) ≥ x} is the generalized inverse
function associated with the cdf Ψ . Thus, w.l.o.g., we henceforth focus on product
qualities drawn from Ψ ∼ Uniform[0, 1], and understand “threshold” to refer to
the threshold quantile θ ∈ [0, 1].
5 Alternatively, the setting may be such that the agents naturally have the choice of

test difficulty, such as in external certification of product quality [10,11,13] or stu-
dents’ selection of which classes to attempt [18]. In these settings, it is still frequently
assumed that agents are not aware of their private quality value when they make
their choice of difficulty; see for example [13] for a model of certification and [16] for
a model of contracting between students and employers.
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2.3 Extension to More Firms

While we have focused thus far on the paradigmatic case of two firms, the model
can be naturally extended to n ≥ 2 firms. Several natural generalizations suggest
themselves, both in terms of the principal’s objective and the firms’ objective.
With n firms, the principal may try to maximize the probability of choosing
the best product, or try to produce a complete ranking of all firms’ products,
minimizing the total number of inversions.6 For a firm, the goal might be to
maximize the probability of being selected, or to be ranked as highly as possible
in expectation. Our results extend naturally to the latter objectives, namely,

– The utility of a firm is proportional to the number of firms which have a lower
rank.

– The disutility of the principal is proportional to the (normalized) Kendall tau
distance7 between the true and inferred rankings, i.e., the fraction of pairwise
inversions between the two lists.

Extending our notation from the case of two firms, for a given rule T for
choosing tests for firms, we denote the (random) Kendall tau distance between
the resulting ranking and the correct ranking by I(T ). Again, the principal’s goal
is to minimize E [I(T )]. Using linearity of expectations for both the firms and
the principal, all of our results for two firms carry over immediately to the case
of n firms, with exactly the same guarantees regarding the fraction of misranked
pairs. The only exception is that for correlated tests (in Sect. 4), the optimal
choice for the principal will depend on the number n of firms. These results do
not extend to other objectives, and both optimal and equilibrium strategies will
typically look different for n ≥ 3 firms. See Sect. 7 for a discussion.

3 Optimal I.I.D. Tests

In this section, we explicitly characterize the optimal distribution from which the
principal should draw thresholds if it is required that both firms’ thresholds be
drawn independently from the same distribution; in contrast, in the next section
we consider the case of correlated thresholds.

3.1 Characterizing the Expected-Inversions Functional

Let TG denote the test selection rule under which each firm is given a test with
threshold drawn i.i.d. from G. We begin by characterizing the expected number
of inversions as a functional of the cdf G from which the thresholds are drawn.
In the next section, we will show how to choose G to minimize this functional.
For notational convenience, we henceforth denote I(G) = E [I(TG)].

6 There are naturally other objectives in between these two extremes.
7 Recall that the Kendall τ distance between two rankings is the number of inversions

between the rankings, i.e., the number of pairs of elements that are in different order.
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Lemma 1. Assume that the quality distribution Ψ is uniform on [0, 1]8. Suppose
that thresholds for both firms are drawn i.i.d. from the distribution G on [0, 1]
(not necessarily continuous). The probability of selecting the worse product is
given by the functional

I(G) =
∫ 1

0

∫ x

0

(1 − G(x) + G(y))2 dy dx. (1)

3.2 Optimizing the Objective Function

We now characterize the i.i.d. distribution H∗ that minimizes I(G).

Theorem 4. Assume that the quality distribution Ψ is uniform (see Footnote
8) on [0, 1]. Let H∗ be the cdf corresponding to the uniform distribution over the
interval [14 , 3

4 ].
The inversion probability of H∗ is 5

24 , and this is optimal for i.i.d. distribu-
tions: for every distribution G over [0, 1], we have I(G) ≥ I(H∗).

In other words, the optimal way to pick i.i.d. tests is to sample them uniformly
from [14 , 3

4 ]. This may seem somewhat surprising. Some intuition for this can be
derived from looking at correlated test selection rules in the limit of infinitely
many firms. (See the discussion after Theorem 5 in Sect. 4.)

4 Optimal Correlated Tests

In Sect. 3, we derived the optimal distribution to sample tests from if each firm
must be assigned a test independently from the same distribution. Here, we
consider the problem when the firms’ tests can be chosen in a correlated way.

As we mention in Sect. 2.3, although most of our analysis looks at two firms,
it extends naturally to multiple firms when the goal is to minimize the expected
number of inversions. When the test assignments can be correlated, the actual
number of firms affects the optimal solution. Hence, in this section, we explicitly
characterize the optimal choices when there are n firms. Surprisingly, this takes
the following simple form:

Theorem 5. Assume that the quality distribution Ψ is uniform (see Footnote
8) on [0, 1]. Recall that I(T ) denotes the (random) Kendall tau distance between
the true and inferred rankings. For n firms, the expected fraction of inversions
E [I(T )] is minimized over all correlated test selection rules T by one which
assigns the test with threshold θi = n+2(i−1)

4n−2 to firm i. The resulting expected
fraction of inverted pairs of firms is 5n−4

12(2n−1) .

To get intuition for this result, it is instructive to consider it for n = 2. In
this case, the optimal T allocates two tests at thresholds 1

3 and 2
3 , respectively,

8 Recall from Sect. 2.2 that this assumption is without loss of generality.
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and this improves the fraction of misclassified pairs from 5
24 to 1

6 . The main
reason behind this improvement is that the ability to give different tests to the
two firms allows the principal to choose tests to maximally split up the space
[0, 1], such that the only way the principal makes a mistake is if the products’
qualities X,Y are in the same interval.

Theorem 5 is also instructive in the limit as n → ∞. Here, one sees that the
optimal test distribution converges to uniformly spaced tests over the interval
[14 , 3

4 ] (and leads to a 5
24 fraction of pairs being inverted). This suggests that a

uniform distribution of tests over [14 , 3
4 ] should be the optimal distribution for

i.i.d. tests for any number of firms, since drawing n tests from a continuous distri-
bution results in all n tests being unique almost surely, and close to the optimal
correlated tests. This intuition is indeed confirmed by the earlier Theorem 4.

5 Endogenous Test Selection and Price of Anarchy

In this and the next section, we turn to the question of endogenous test selection.
Here, we consider the setting where the principal makes all threshold tests in
[0, 1] available to the firms for selection; in the next section, we consider the
benefits of being able to restrict the set of offered tests.

The equilibrium concept we study for endogenous test selection is Bayes-Nash
Equilibria. A pair of distributions (FX , FY ) supported on (a subset of) [0, 1]
constitutes a Bayes-Nash Equilibrium of the endogenous test selection game if,
given that X chooses a random test from [0, 1] according to FX , choosing a test
from FY is a best response for firm Y (i.e., in the set of strategies that maximize
Y ’s selection probability), and similarly with the roles of X and Y reversed.
The case when FX and FY are identical is referred to as a symmetric Bayes-
Nash Equilibrium. As discussed in Sect. 2.2, even though we focus on quality
distributions being Uniform[0, 1], the results extend naturally to any distribution
Ψ which is absolutely continuous.

Theorem 6. There is a unique Bayes-Nash Equilibrium of the endogenous test
selection game when firms have access to all tests in [0, 1]. The unique Bayes-
Nash Equilibrium is symmetric, and its equilibrium distribution FX = FY = Feq

has the following cdf Feq and pdf feq.

Feq(θ) =
1
2

·
(

1 − 1 − 2θ√
θ2 + (1 − θ)2

)
feq(θ) =

1
2

· 1
(θ2 + (1 − θ)2)3/2

.

The proof of this theorem is fairly technical. It utilizes heavily that at equi-
librium, each agent can ensure to be ranked first with probability 1

2 , simply by
copying the other agent’s strategy. As is the case with many equilibrium proofs,
the bulk of the technical work goes into proving that each player’s distribution
has full support and is continuous. Once this fact is established, the equilibrium
indifference condition (i.e., the fact that each point in [0, 1] yields probability 1

2
of being ranked first) can be used to derive a differential equation for the cdf.
This differential equation is then solved explicitly to yield the theorem.
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Figure 2a shows the cdf and pdf of the equilibrium distribution of Theorem 6.
Observe that the cdf is continuous and has support [0, 1]. Moreover, note that the
pdf feq is also symmetric about 1

2 . (This is not a priori obvious, and indeed, will
not be the case when we consider restricted test sets in the next section). Finally,
as discussed before, observe that if quality levels X,Y are drawn from any abso-
lutely continuous distribution Ψ , then the unique equilibrium distribution for

thresholds σ ∈ R is given by Feq,Ψ (σ) = Feq(Ψ(σ)) = 1
2

(
1 − 1−2Ψ(σ)√

Ψ(σ)2+(1−Ψ(σ))2

)
.

Fig. 2. Examples of equilibrium cdfs for unrestricted and restricted sets of tests.

We are now in a position to combine Theorem 4 and Theorem 6 to deter-
mine the Price of Anarchy (in terms of the principal’s probability of selecting the
wrong firm) of allowing firms to choose their own tests. Substituting the charac-
terizations into the functional (Eq. (1)), the resulting expression unfortunately
does not lend itself to closed-form evaluation. However, a numerical calculation
establishes the following.

Corollary 1. The equilibrium cdf Feq satisfies that I(Feq) ≈ 0.23056. Conse-
quently, compared to the optimal i.i.d. test selection rule, endogenous test selec-
tion over unrestricted tests has a Price of Anarchy of roughly 1.10653 for any
number of firms. Compared to the optimal correlated test selection rule, it has a
Price of Anarchy of approximately 1.38336 for two firms, decreasing to 1.10653
as the number of firms n → ∞.

6 Endogenous Test Selection with Restricted Tests

We now consider a more general treatment: the principal restricts the firms to
choose tests from a non-empty closed set S ⊆ [0, 1], and the firms will play
according to equilibrium distributions FX , FY supported on subsets of S. Note
that although the firms’ tests are restricted to the set S, their products’ qualities
are still drawn uniformly from the entire interval [0, 1]; this is reflected in the
probabilities of passing/failing tests.
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The existence of a (mixed, symmetric) Bayes-Nash Equilibrium follows from
Lemma 7 of [7]. However, we note that in general, the Nash equilibrium may
not be unique; for example, when S = {1 −

√
2
2 ,

√
2
2 }, every pair of probability

distributions on S constitutes an equilibrium. To see that this is the case, observe
that conditional on the firms choosing any ordered pair of tests in the product
set S × S, each firm’s probability of being selected is 1

2 .
The following pair of theorems shows that by restricting the set S available

to the firms, even to an interval, the principal can achieve a strictly smaller
inversion probability than under the equilibrium for S = [0, 1]; however, for
every non-empty set S, the inversion probability under every symmetric Bayes-
Nash Equilibrium is larger by some absolute constant than the one under the
optimum i.i.d. distribution.

Theorem 7. Let F[0,0.79] be the unique9 symmetric Bayes-Nash equilibrium dis-
tribution when firms choose from the interval [0, 0.79], and F[0,1] the unique and
symmetric Bayes Nash equilibrium distribution for unrestricted firms. Then,10

I(F[0,0.79]) < 0.22975 < 0.23052 < I(F[0,1]).

Theorem 8. Let S ⊆ [0, 1] be an arbitrary non-empty set, and F any symmetric
Bayes-Nash equilibrium distribution of firms restricted to choosing tests from S.
The expected probability of choosing the wrong firm under F is I(F ) ≥ 5

24+ 1
82944 .

We emphasize that Theorem 8 establishes a lower bound only for symmetric
equilibria. For general S, there may be asymmetric equilibria, and they may
achieve error probabilities strictly smaller than 5

24 . For example, as observed
above, when tests are restricted to the set S = {1 −

√
2
2 ,

√
2
2 }, there is an asym-

metric equilibrium in which firm X always chooses θX = 1−
√
2
2 , Y always chooses

θY =
√
2
2 , and the inversion probability is 1

2 (θ2X + (θY − θX)2 + (1 − θY )2) =
3 − 2

√
2 ≈ 0.17157, whereas 5

24 ≈ 0.2083.
The key to proving Theorem 7 is the following complete characterization of

the unique Bayes-Nash equilibrium when S is restricted to intervals.

Theorem 9. Let S = [a, b] be a non-empty interval, and consider the game when
both firms are restricted to choosing tests from S. There is a unique Bayes-Nash
equilibrium, which is symmetric. Its cdf Feq is given by the following:

1. If (1 − a) · b ≤ 1
2 , then Feq is a step function at b, i.e., both firms determinis-

tically choose b.
2. Otherwise, let

δb =
1 − a(1 − b) − b(1 − a)
(1 − a)((1 − b)2 + b2)

γ =
1 − a − 2b + 4ab − 2ab2

1 − 4(1 − a)b + 2(1 − 2a)b2
.

9 As will be established in Theorem 9.
10 Recall that we write I(F ) = E [I(TF )].
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The equilibrium cdf Feq is given by:

Feq(θ) =

⎧⎪⎪⎨
⎪⎪⎩

1
2(1−a)

·
(

(1 − 2a) +
√

a2 + (1 − a)2 · 2θ−1√
θ2+(1−θ)2

)
for a ≤ θ < γ

1 − δb for γ ≤ θ < b

1 for θ = b.

(2)

Figure 2b illustrates the equilibrium cdf for firms restricted to the interval
[0, 0.79].

6.1 Suboptimality of All Symmetric Equilibria

We next outline the proof of Theorem 8. Recall that we use H∗ to denote the cdf
of the optimal distribution, i.e., the uniform distribution on [14 , 3

4 ]. We begin with
an easy proposition, capturing that a sufficient condition for H∗ and an arbitrary
cdf G to differ by at least ε at z is for G to be “sufficiently discontinuous” at
some point θ.

Proposition 2. If G(θ) ≥ ε + limt↑θ G(t), then |H∗(z) − G(z)| ≥ ε
2 for some z.

Proposition 2 is the key ingredient to proving Lemma 2, which shows that
symmetric equilibrium distributions deviate far from the optimal distribution,

Lemma 2. Let F be the cdf of an equilibrium distribution for some non-empty
closed set S. There exists a z ∈ (0, 1) with |F (z) − H∗(z)| ≥ 1

24 .

The second key lemma shows that a large deviation at even one point implies
a significantly larger error probability.

Lemma 3. Let G be any distribution such that |G(z) − H∗(z)| ≥ ε for some
z ∈ (0, 1) and ε > 0. Then, I(G) ≥ I(H∗) + 1

6ε3.

Combining Lemmas 2 and 3, with ε = 1
24 , immediately implies Theorem 8.

7 Conclusions

We introduced and studied a problem of optimal and endogenous test selection in
a setting where a principal wants to select the product of higher quality from one
of two firms, but the products’ qualities can only be measured through threshold
tests which reveal whether a product’s quality lies above or below a threshold
θ. We explicitly characterized the optimal correlated and i.i.d. distributions for
the principal, as well as the equilibrium distribution when the firms can choose
their own thresholds from an interval [a, b] (in particular including the case of
the interval [0, 1]). Using these characterizations, we showed that the principal
can do strictly better by giving the firms different tests than drawing their tests
i.i.d. The best i.i.d. distribution is better than any symmetric equilibrium for
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any set S offered to the firms (including sets S that are not intervals), and the
equilibrium under the best interval gives the principal strictly higher probability
of selecting the best product than the equilibrium for the interval [0, 1].

Our work raises a wealth of questions for future work. An immediate ques-
tion implicitly raised in Sect. 6 is which set of tests a principal should offer to
achieve the smallest probability of selecting the wrong product at equilibrium.11

There are two variants to this question: when the principal is interested only in
symmetric equilibria, or also in asymmetric (non-unique) ones. For the former
version, a natural conjecture would be that the optimal set for the principal is
an interval, in which case our numerical calculations from Sect. 6 would imply
that the optimum set would be the interval [0, 0.79 . . .]. While we cannot prove
or disprove this conjecture at this point, a similar-looking stronger conjecture
is false: there are discrete sets S the principal can offer under which the unique
equilibrium is strictly better than if the principal instead offered the smallest
interval containing all of S. For the latter case, we conjecture optimality of the
set {1 −

√
2/2,

√
2/2}, discussed in Sect. 6.

The endogenous test selection game between the firms can be viewed as a
natural instance of a signaling game, in which each firm’s strategy is a signaling
scheme. Our problem setup severely restricted the signaling schemes the firms
could choose from, to binary threshold tests. Naturally, it would be desirable to
extend the results to broader classes of signaling schemes. At the full extreme,
when firms may choose any signaling scheme, the unique equilibrium of our game
is full disclosure. This follows from Corollary 1 of [12]. However, an analysis of
the intermediate regime, in which the number of signals is still constrained (as
in [8]), would still be of interest.

Perhaps the most immediate next step along these lines would be signal-
ing schemes in which firms can choose an arbitrary mapping from qualities to
{pass, fail}. It is not hard to show that w.l.o.g., it suffices to consider signaling
schemes specified by an interval [θ1, θ2] such that the firm passes the test iff its
quality lies in the interval. A natural conjecture would be that at equilibrium,
firms given access to such tests would always choose threshold tests only, i.e.,
set θ1 = 0. This conjecture is false! If such a symmetric equilibrium existed, it
must be the equilibrium we derived in Sect. 5 — however, against this strategy,
there are responses yielding firm X a selection probability strictly larger than
1
2 . Explicitly characterizing the equilibrium distribution appears difficult.

Another natural version is to require threshold tests, but allow multiple
thresholds θ1 ≤ θ2 ≤ · · · ≤ θk. This naturally corresponds to the type of tests
encountered in classes, where cutoffs are defined between multiple grades. Even
for two thresholds, characterizing the equilibrium outcomes appears difficult – a
firm with a difficult-to-attain ‘B’ grade may have to be ranked ahead of a firm
with an easy-to-attain ‘A’ grade (similarly between easy ‘B’ and difficult ‘C’. . . ).

11 Of course, if the principal can choose different sets for different firms, then she can
choose SX = { 1

3
} and SY = { 2

3
}, which would implement the optimal strategy for

her. The more interesting question is to find one set S to restrict all firms to, which
naturally corresponds to prescribing standards for quality control.
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This is different from the pass-fail model, where every firm that passes a test is
ranked ahead of every firm that fails a test, regardless of the tests’ difficulties.

A very interesting direction for future work is considering firms whose prod-
uct qualities are drawn independently from different distributions. If one distri-
bution stochastically dominates the other, it would be interesting to see if the
weaker firm may at equilibrium follow “moon shot” strategies of taking very
hard tests and hoping that this will allow it to win some of the time. Char-
acterizing the equilibrium again appears to be quite challenging, because when
both firms pass tests of the same difficulty, their posterior quality distributions
will be different — as a result, the principal will not simply rank passing firms
by their thresholds, and this results in a possibly infinite-dimensional system of
differential equations characterizing the equilibrium distribution.

There are several open directions in terms of alternate objectives when
extending the model to n > 2 firms. When the principal’s goal is to obtain
a complete ranking minimizing the Kendall tau distance, and the firms’ goal is
to be ranked as highly as possible in expectation, we argued that our results
carry over immediately; and for correlated tests, we explicitly characterized the
optimum distribution. However, when the objectives are changed, this ceases
to be true. A natural objective is for the principal to maximize the probabil-
ity of selecting the best product, and for each firm to maximize the probability
of being selected. Even for n = 3 firms, it appears difficult to characterize the
equilibria of the endogenous test selection game, or the principal’s optimal test
distribution.

Instead of having the principal try to maximize the probability of selecting
the better firm, an alternative objective would be for the principal to maximize
the expected quality of the selected firm. While this is a natural objective, it
requires the model to ascribe meaning to the concrete quality values, rather than
using them only for comparison, in contrast to a viewpoint where utilities pre-
dominantly encode preferences. Nonetheless, the optimization and equilibrium
questions would likely yield a rich set of questions.

Finally, we note a possibly interesting connection to a very different setting.12

One can interpret our setting as a principal trying to allocate an item to one
of two agents X,Y via a price-discriminating posted-price mechanism. Different
from standard such setups, the natural correspondence has a welfare-maximizing
(rather than revenue-maximizing) principal. The mechanism corresponding to
our testing setting then has the principal offer the two agents possibly differ-
ent posted prices. If exactly one agent is interested in buying the item at his
posted price, that agent is given the item at the posted price. If both agents
are interested in buying at their respective prices, the agent with higher price
obtains the item at his posted price. If neither agent is interested in buying,
then again, the agent with higher price obtains the item, and pays 0. This model
raises the issue of strategic manipulation: an agent might decline the item at his
posted price, hoping that his price is higher and he will get the item for free. A
natural question is whether the principal can price-discriminate in a way that

12 We thank Nicole Immorlica for suggesting this interpretation.
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will provide higher social welfare than offering both agents the same price (and
choosing randomly which agent obtains the item if both accept/decline).

Acknowledgement. We would like to thank Odilon Camara, Peter Frazier, Moshe
Hoffman, Nicole Immorlica, Jonathan Libgober, Erez Yoeli, and Christina Lee Yu for
useful discussions and pointers.
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Abstract. On-line firms deploy suites of software platforms, where each
platform is designed to interact with users during a certain activity, such
as browsing, chatting, socializing, emailing, driving, etc. The economic
and incentive structure of this exchange, as well as its algorithmic nature,
have not been explored to our knowledge. We model this interaction as a
Stackelberg game between a Designer and one or more Agents. We model
an Agent as a Markov chain whose states are activities; we assume that
the Agent’s utility is a linear function of the steady-state distribution of
this chain. The Designer may design a platform for each of these activ-
ities/states; if a platform is adopted by the Agent, the transition prob-
abilities of the Markov chain are affected, and so is the objective of the
Agent. The Designer’s utility is a linear function of the steady state prob-
abilities of the accessible states, minus the platform development costs.
The underlying optimization problem of the Agent—how to choose the
states for which to adopt the platform—is an MDP. If this MDP has a
simple yet plausible structure (the transition probabilities from one state
to another only depend on the target state and the recurrent probability
of the current state) the Agent’s problem can be solved by a greedy algo-
rithm. The Designer’s optimization problem (designing a custom suite
for the Agent so as to optimize, through the Agent’s optimum reaction,
the Designer’s revenue), is in general NP-hard to approximate within
any finite ratio; however, in the special case, while still NP-hard, has
an FPTAS. These results generalize, under mild additional assumptions,
from a single Agent to a distribution of Agents with finite support, as well
as to the setting where other Designers have already created platforms.
We discuss directions of future research.

Keywords: Theory of the online firm · Markov decision process ·
Bi-level optimization · Approximation algorithms · Stackelberg games

1 Introduction

In economics, the creation of wealth happens through markets: environments
in which firms employ land, labor, capital, raw materials, and technology to
produce new goods for sale, at equilibrium prices, to consumers and other firms.
Since all agents in this scenario participate voluntarily, wealth must be created.
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Accordingly, markets have been the focus of a tremendous intellectual effort by
economists, mathematicians, and, more recently, computer scientists.

Over the past three decades the global information environment has spawned
novel business models seemingly beyond the reach of the extant theory of mar-
kets, and which, arguably, account for a large part of present-time wealth cre-
ation, chief among them a new kind of software company that can be called
platform designer. On-line platforms are created with which consumers interact
during certain activities: search engines facilitate browsing, social networks host
social interactions, movie, music, and game sites provide entertainment, chat-
ting and email apps mediate communication. Shopping platforms, navigation
maps, tax preparation sites, and many more platforms bring convenience and
therefore value to consumers’ lives. Increasingly during these past two decades,
on-line firms have created comprehensive suites of platforms, covering many such
life activities. Platform designers draw much of their revenue through the data
that they collect about the users interacting with their platforms, which data
they either sell to other firms or use to further fine tune and enhance their own
business. In this paper we point out that, in the case of platform designers, the
most elementary aspects of markets, for example the theory of production and
consumption, are quite nontrivial. We focus on a restricted case of the prob-
lem corresponding to the “substitutes” case, having proved that the case with
complements (when platforms are allowed to feed into one another) is hopeless.
Note that this reflects the history of the search, in the market context, for con-
ceptually, and implicitly computationally, tractable cases. (Recall the fruitful
early work by Arrow and other economists on the identification of classes of
markets with good structural properties, such as the gross substitutes case [2],
and the extensive more recent work in computer science developing algorithms
for special cases, like the case of linear utilities [25].) We also note that while the
problem of platform design is most naturally considered in a learning setting,
where user behavior and revenues are unknown and must be learned from inter-
action and data, our focus in this paper is on computational tractability, and
our results can be interpreted as demonstrating that even for the easier setting
where the parameters of the user and the amount of revenue received for various
design decisions is known, the problem is not easy to solve. The tractable cases
we discover can then serve as an initial point to base further investigations of
the tractability of more general learning settings with interaction between the
platform designer and the agents where both the designer and the agents have
unknowns they need to learn.

Our Model and Results. We model the platform design problem as a Stackelberg
game (that is, a game where one player goes first and the others react optimally)
with two players, a Designer and an Agent (the extension to many Agents is also
studied, and the case of many competing Designers is also discussed). Here, the
Designer plays first, and the Agent responds. The Agent is modeled as an ergodic
Markov chain on a set of states A, representing the Agent’s life activities. We
assume that the Agent receives a fixed payoff per unit of time spent at each
state. The Designer has the opportunity to design a platform for each state
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in A, which the Agent may or may not choose to adopt. There is a one-time
cost for the Designer to build a platform for a given state. If the Agent adopts
the platform, the transitions of the Agent’s life change at that state, and the
Agent’s utility at that state may increase or decrease as a result of adoption1. In
return, the Designer gets to observe the Agent at that state and derives a fixed
utility payoff for the fraction of time the Agent spends in that state (modeling
the Designer’s collection of the relevant Agent data). We assume that platform
revenue is proportional to the time users spend on the platform, which strikes
us as a reasonable first approximation.

We note immediately that the Agent’s optimization problem, once the
Designer has deployed a set S of platforms, is a Markov decision process (MDP),
and it follows from MDP theory that the Agent will adopt some of the platforms
offered and reject the rest and the optimum set of adopted platforms can be com-
puted by linear programming (and other methods).

Now the platform design problem (PDP) is the following: Given the Markov
chain, all utility coefficients for both the Agent and the Designer, and the devel-
opment costs of the platforms, choose a set of states S for which to create
platforms, so as to maximize the Designer’s utility; namely, the utility to the
Designer of the Markov chain that results from the optimum response by the
Agent to the platforms in S, minus the development costs of the platforms in S.
It is immediate that, since the Designer can anticipate Agent’s optimal response,
at optimality all platforms in the optimum set S will be adopted.

We show that PDP is NP-hard to approximate within any finite ratio (The-
orem 1). The proof of this result is quite instructive, because it relies almost
exclusively on the fact that introduced platforms can modify the Markov chain
so as to funnel traffic from one platform to the other, and therefore create the
stark choices necessary for this level of complexity. The construction has the
property that offering a platform in one state can make it more attractive for
the Designer to offer a platform also at another state (if the adoption of the plat-
form in the first state increases the transition probability to the second state)
In economic terms, the platforms offered by the Designer can be complementary
goods, and making decisions for such goods tend to be difficult.

In view of this obstacle, we next turn to a special kind of Markov chain,
for which platforms are essentially substitute goods; generally, substitution is
known to lead to better behaving markets. A Markov chain of this sort, called
the flower (see Fig. 1), has a number of transition parameters that is linear in
|A|. At each state i, the transition leads back to the state with some probability
qi, while the rest of the probability (1 − qi) is split among the other states in
proportions that are fixed. Evidently, this is equivalent to a chain that has an
extra “rest state” 0 with q0 = 0, that is, a purely transitional state (see Fig. 1).
Adopting a platform now increases or decreases the transition probability of the
state to itself, decreasing or increasing, respectively, the transition probability
to the other states. We show that, in this case, the MDP optimizing the Agent’s

1 One possible reason for diminished utility is the aversion of the Agent to the
Designer’s access to personal information pertaining to that state.
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objective, given the available platforms, becomes a quasiconcave combinatorial
optimization problem with special structure (Lemma 1), which can be solved by
a greedy algorithm (Theorem 2). The algorithm can be extended to a setting
where there are multiple available platforms for each state in A, and the agent
can choose to adopt one or none of these options for each state (see Sect. 6 and
Appendix D of [20]).

The PDP in the flower specal case is still NP-hard (Theorem 4), but has
a dynamic programming FPTAS if one parameter—the expected time spent at
each state—is quantized (Theorem 3). The dynamic programming algorithm can
be extended, through some further quantization, to the case of many agents—
except that the number of agents is now in the exponent (see Sect. 5 of [20]).
Given that the number of agents is likely to be very large, the best way to
think of this algorithm is as an algorithm for the case in which one is given a
distribution of agents of finite support—that is, with a small number of agent
types—an essential step towards a model of platform design where we must learn
an optimal design given (perhaps indirect) sample access to such a distribution.
Similarly, essentially the same algorithm can be adapted to the competitive
setting, where a Designer enters a field where many Designers have already built
existing platforms, and must now decide which platforms to build (Sect. 6 and
Appendix D of [20]).

Related Work. We are not aware of past research on the production and con-
sumption of online platforms. Computational aspects of Stackelberg games
between consumers and firms designing or packaging on-line products have been
explored to a small degree, see e.g. [13,14]. There has been work on online deci-
sion making, where at each round the Designer gets to select from some set
of options (e.g., which is the best ad to display to the user of a website) and
receives a reward after deployment for that round, as well as additional infor-
mation about the performance of the other options [6]; see also [9,16–18,22].
This line of research is of obvious relevance to the present one, even though our
Agent model is far more complex. More recently, trade-offs in on-line activity
by consumers, for example between effectiveness of browsing and privacy, have
been discussed [23,24]. The ways in which on-line firms profit from data has
been somewhat explored, see e.g. [1] but not in any manner that can be used in
our model; here we consider it a given parameter.

Our Contributions. Our main contributions are: the articulation of the Plat-
form Design Problem, the observation that it is profoundly intractable in its
generality, the identification of the tractable class of flower Markov chains,
roughly corresponding to substitution in markets, the solution of the Agent’s
and the Designer’s problems through the Agent’s greedy algorithm and dynamic
programming, the generalizations of these algorithms to multiple Agents and
Designers, and the many directions for further research opened (see the discus-
sion in Sect. 5).
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2 PDP: Intractability of the General Case

The platform design problem (PDP) is a Stackelberg game between a Designer
and an Agent2. The Agent inhabits a discrete state space with transitions and
rewards. The Designer moves first by building, at some fixed cost and for cer-
tain states, one platform per state. Each platform, if adopted by the Agent,
changes the Agent’s transitions and rewards at that state, and also yields to the
Designer a reward rate (modeling the Designer’s utility from learning about the
Agent) per unit of time the Agent spends in the platform for each platform the
Agent accepts. The Agent adopts platforms to optimize its expected reward in
the resulting Markov Decision Process (MDP). The Designer’s goal is to build
platforms so that the Agent behaves in a way that optimizes the Designer’s total
reward. Formally:

Definition 1 (PDP). The Agent’s environment is an irreducible Markov chain
with state space A = [n] with n states. At each state i, the transition probabilities
out of i are a vector of probabilities T life

i and the reward coefficient is a real
number clifei .

The Designer chooses a set S ⊆ [n] of these states for which to build plat-
forms. The Designer pays a fixed costi > 0 to build a platform at state i, and
receives reward rate di per unit of time the Agent spends at state i, provided the
Agent opts in to the platform at state i.

After the Designer’s move, the Agent faces a Markov Decision Problem (see
[21] for an introduction to Markov decision theory). At each state i ∈ S, adoption
of the platform will result in the transition probabilities changing to T platform

i and
the reward coefficient changing to cplatformi . We assume that these changes in the
transition probabilities are such that the reachable part of the Markov chain is
irreducible3.

The Agent’s optimal decision in response to the Designer’s move S is a set
S′ ⊆ S of states on which to adopt the platform (recall that in MDPs, it is well
known that we can restrict the possible policies, without loss of optimality, to
deterministic, Markovian, stationary policies computed by linear programming).
Let M(S′) be the Markov chain resulting from adopting the subset S′ of the
platforms offered by the Designer.

Coming now back to the Designer’s first move, and since the Designer can
fully anticipate the Agent’s response S′ to S and every extra platform has a
positive cost, the Designer omits any platforms that would not be adopted—that
is, makes sure that S = S′. Among all such sets, the Designer chooses the one
that optimizes the Designer’s profit

profit(S) :=
∑

i∈S

di · πi(S) −
∑

i∈S

costi

2 We later consider the case with multiple Agents and multiple Designers, as well as
multiple platforms per state.

3 Irreducibility can be guaranteed by maintaining a cycle of tiny probability around
the states; it will never be a problem in our arguments and constructions.
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πi(S) denotes the steady state distribution at state i of the Markov M(S).

We prove that the PDP in its generality is as severely intractable as any
optimization problem can be: It is NP-hard to approximate within any finite
approximation ratio.

Theorem 1. It is strongly NP-hard to decide whether the optimum solution to
a PDP instance has zero or positive profit for the designer.

Proof. We reduce from the Set Cover problem. Given a family F of m subsets
of a set U of n elements and an integer k, we want to determine if there is a
subfamily of F with k sets whose union is U . We define an instance of the PDP
problem as follows. There are m + n + 1 states, one for each set of F and each
element of U , and an additional ‘bad’ state. For each set-state Si, there is one
potential platform p(Si) that the Designer may decide to offer at the state Si.
For each element state uj and every set Si of F that contains element uj there
is a platform p(uj , Si) that the Designer may offer at state uj ; the Designer will
offer at most one of these platforms at state uj .4 The Designer has no platform
for the last ‘bad’ state.

The Agent likes all the platforms: that is, the Agent’s rewards are such that he
will adopt every platform that is offered by the Designer. Initially the MDP is at
any element-state uj with uniform probability 1/n. The transition probabilities
of the Agent’s MDP are as follows. An element-state uj with platform p(uj , Si)
(if adopted) transitions with probability 1 to the set-state Si. An element state
uj with no adopted platform transitions with probability 1 to the bad state. A
set-state Si with adopted platform p(Si) self-loops with probability 1−1/k2 and
transitions with the remaining probability to a uniformly random element-state.
A set-state Si with no (adopted) platform transitions with probability 1 to the
bad state. The bad state self-loops with probability 1 − 1/nk4 and transitions
with the remaining probability to a uniformly random element-state.

The Designer’s rewards and costs are as follows. The reward rate for each
set-state platform p(Si) is set to r = k2 + k, i.e. the Designer receives revenue
equal to r times the fraction of the time that the Agent spends in platform
p(Si); the cost of building the platform is k. The reward rates and costs of the
platforms p(uj , Si) are set to 0. The objective of the Designer is to select a set
of platforms to offer that maximizes the total profit, which is the total reward
minus the total cost.

We claim that the optimal profit for the Designer is positive if and only if
the Set Cover instance has a solution with at most k sets. Intuitively, the goal
of the Designer is to keep the Agent at all times within her “ecosystem”, i.e. in
states with her platforms, while making a profit.

First, suppose that there is a set cover C with at most k sets. The Designer
offers the platform p(Si) for every Si ∈ C at the set-state Si, and for each

4 We allow here the Designer to have a choice among several platforms in a state; it
is easy to modify the construction, by using additional states, so that in each state
the Designer has only one potential platform, which she may choose to build.
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element-state uj , the Designer offers a platform p(uj , Si) for some Si ∈ C that
contains uj . The cost of building the platforms is k|C| ≤ k2. The Agent adopts all
the offered platforms, and because of the transition probabilities, spends almost
all the time at the set-states corresponding to sets in C, specifically a fraction

k2

1+k2 of the time. Therefore, the profit of the Designer is at least r k2

1+k2 −k2 > 0.
Conversely, suppose that the Designer has a solution with positive profit.

Suppose that some element-state uj does not have a platform, or uj has a plat-
form p(uj , Si) but the corresponding set-state Si does not have the corresponding
platform p(Si). Then, every time the MDP visits uj will then move subsequently
to the bad state. Therefore, the MDP will spend most of the time (specifically at
least 1 − 1/k2 fraction of the time) in the bad state, which does not provide any
revenue to the Designer. Thus, the total revenue to the Designer is at most r/k2

which is less than the cost of a set platform. We conclude that, if the profit is
positive, then every element state uj must have a platform p(uj , Si) and the cor-
responding state Si must have the corresponding platform p(Si). This implies
that the collection C of set-states Si with a platform forms a set cover. The
Designer’s profit is at most r − k|C| = k2 + k − k|C|. Since the profit is positive,
|C| ≤ k.

3 Flower Case: The Agent’s Problem

The intractability proof of the general PDP in the previous section relies on
the complementary nature of the construction: offering a platform in one state
can make it more attractive for the designer to also offer a platform in certain
other states. We will next define a special case of the PDP which is much better
behaved, and in economic terms roughly corresponds to substitution.

An agent divides her time among the different states. If the designer offers
a platform at a state s and the agent adopts it, she spends more time at s,
and hence has less time to spend in the rest of the states. In the absence of
complementarity, this means that it is now less beneficial for the designer to
offer a platform in another state. In other words, platforms at different states
compete for the attention (and the time) of the agent, and it is the agent’s time
spent on the platforms that determines their contribution to the profit of the
designer.

We define now formally the model in the special case, which will be our focus
in the rest of the paper.

Definition 2 (Flower MDP). We have the same setup as defined in Sect. 2,
with some added constraints on what the possible transitions can be. We also
add in a dummy state 0 with no reward or platforms5. In Fig. 1, we define the
transitions of the Markov chain Tlife to represent the Agent’s life, and Tplatform

to represent the Agent’s life when the platform is adopted at all states. Here,
5 Note that the rest state 0 is for convenience and is not necessary in our model.

We could equivalently have a graph where each node i transitions to node j with
probability (1−qi−yi)·pj , and self-transitions with probability qi+yi+pi(1−qi−yi).
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pi, qi, yi satisfy
∑

i pi = 1, 0 < pi, 0 < qi < 1, and 0 < yi < 1 − qi for all i ∈ [n].
In words, pi denote transition probabilities to different states from the rest state,
qi denote the self-transition probabilities, and yi denote the modification to the
self-transitions due to the Agent accepting the platform at state i. At state 0, the
action chosen by the Agent does not affect the transitions, since the Designer
never builds a platform there.

Fig. 1. Tlife (left) and Tplatform (right).

3.1 The Greedy Algorithm

Irreducible average-reward MDPs are efficiently solvable via linear programming,
value and policy iteration, etc. [5]. Here, we reformulate the Agent’s problem as a
combinatorial optimization problem with special structure, and solve it through
a greedy algorithm. The following is straightforward:

Lemma 1. The agent’s objective for an optimal policy defined in Sect. 2 can be
re-written as the following optimization in the special case of the flower MDP
(Definition 2):

argmax
S⊆[n]

A +
∑

j∈S zjφ(j)
B +

∑
j∈S zj

(1)

where

A :=
n∑

i=1

λic
life
i ; B := 1+

n∑

i=1

λi; λi =
pi

1 − qi
; zi =

pi

1 − qi − yi
− pi

1 − qi
≥ 0;

φ(i) :=

⎧
⎨

⎩
cplatformi + λi

zi

(
cplatformi − clifei

)
if zi > 0

0 if zi = 0
;
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We therefore define

utilityAgent(S) :=
A +

∑
j∈S zjφ(j)

B +
∑

j∈S zj

Proof. See Appendix A of [20].

We note that here we assume that yi > 0 at each state—that is to say, adopting
the platform increases a state’s recurrence probability. This assumption is not
necessary, and the general case can be handled in a similar way by modifying
the greedy algorithm to pay attention to signs (see Appendix A of [20]). We also
reiterate that the solution to the original average case MDP problem need not
be unique. Therefore, the argmax solution to Eq. 1 has many potential solutions.

The optimization problem formulated in Lemma 1 can be solved in poly-
nomial time. The intuitive reason is this: Looking at the fractional objective
function, we note that it is the ratio of two linear functions of the combinatorial
(integer) variables implicit in S, and such functions are known to be quasiconvex.
It is therefore no huge surprise that a greedy algorithm solves it—however, the
details are rather involved. Incidentally, one could arrive at the same algorithm
by tracing the simplex algorithm on the MDP linear program.

ALGORITHM 1: Greedy Algorithm
Input: Parameters of the Agent’s problem: transition probabilities and utility

coefficients in and out of the platform.
Output: An optimal subset S ⊆ [n] of states where the Agent accepts the platform.
Initialize S := {}
for k ∈ [n] sorted6 from largest to smallest φ(k) do

if utilityAgent(S) < φ(k) then
Update S := S ∪ {k}

else
return S

end

end
return S

Theorem 2. Algorithm 1 returns

S∗ ∈ argmax
S⊆[n]

utilityAgent(S)

That is, the policy

π(s) =

{
a1 if s ∈ S∗

a0 o.w.

is an optimal policy. Here, a1 and a0 refer to the actions available to the Agent’s
MDP: “accept platform” is a1 and “do not accept platform” is a0.
6 Note the sort order may not be unique in case of ties.
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Before we prove the theorem, we give a useful definition and a lemma.

Definition 3 (Prefix policy). We say a policy S is prefix if the states in the
policy are the first m states in order sorted by φ, for some value of m.

Lemma 2 (Mediant Inequality).

x

y
<

r

s
⇐⇒ x

y
<

x + r

y + s
<

r

s
where y, s > 0.

Proof. Since y, s > 0 and thus y + s > 0, cross-multiply and simplify to get the
desired inequalities. �	

With this lemma in hand, we prove Theorem 2.

Proof (Proof of Theorem 2). We can prove optimality in two steps.

1. First we will show that any non-prefix policy is dominated by a prefix policy.
Thus an optimal policy must be prefix.

2. Then, we show that the greedy algorithm necessarily finds a best prefix policy
(e.g., an optimal stopping point).

We begin with the first step. Suppose we have a non-prefix policy S. Let state
� ∈ [n] be a “missing piece” (e.g., if we index by sorted order and S contained
1, 2, 4, 5, 7, missing pieces would be 3 and 6). This � ∈ [n] necessarily exists since
S is non-prefix. Now there are two cases.

Case 1:
utilityAgent(S) < φ(�)

We apply Lemma 2 to show that adding state � results in improvement in the
objective.

Case 2:
utilityAgent(S) ≥ φ(�)

Here we show that removing all states k ∈ S where φ(k) < φ(�) improves the
objective. If equality holds, then it does not matter whether we add the state to
the objective, so for simplicity, we terminate at equality. From the assumption
and the definition of φ, we have

utilityAgent(S) ≥ φ(�) > φ(k)

for all such k. By Lemma 2, removing state k increases the ratio, e.g.

utilityAgent(S \ {k}) > utilityAgent(S) ≥ φ(�) > φ(k)

The same argument applies to all k′ ∈ S \ {k} such that φ(k′) ≤ φ(k) as well.
Therefore, we can remove all the k′ with score less than the score of � and
improve the objective.
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After a single round of considering a missing state � (where either case 1 or
case 2 applies), we produce a new S′, which can again be non-prefix. However,
the maximum index present in the new S′ has either decreased (if the second
case happened and we deleted everything worse than �) or we filled in the missing
state �. Either way, the number of missing pieces has strictly decreased and we
have added no new missing states. Using induction on the number of missing
pieces proves that iterating over all original missing pieces will “fill in all the
gaps” and produce a prefix policy S∗ which is strictly better than the original
non-prefix policy S.

Finally, we show the greedy algorithm selects an optimal prefix policy. Let
the output of the greedy algorithm be Ŝ. The desired result directly follows since
if the next state � satisfies

utilityAgent(Ŝ) ≥ φ(�)

and is not selected, since all smaller states (sorted by φ) are less than or equal
to φ(�), any prefix subset of the smaller states is an effective average which is
≤ φ(�), and any prefix subset of future states is worse off. Thus, the greedy
algorithm produces a maximal solution.

4 Flower Case: The Designer’s Problem

We now consider the Designer’s problem (Definition 1) in the special case where
the Agent lives in the flower MDP (Definition 2). Under this assumption on the
Agent’s MDP, it will be possible to give an FPTAS for the Designer’s problem,
due to the additional structure imposed in this setting. Let Agent(S) denote the
subset of states that the Agent adopts when the Designer offers platforms for
the subset S of states. Given the results of Sect. 3, the fraction of the time that
the Agent spends in state i ∈ Agent(S) is

pi

1−qi−yi

B +
∑

i∈Agent(S) zi

using the notation of Sect. 2 given in Definition 2 and Lemma 1 (see Appendix
A of [20] for the stationary distribution of the Markov chain). Thus, we can
simplify the expression for the Designer’s profit function:

profit(S) :=

∑
i∈Agent(S) di · pi

1−qi−yi

B +
∑

i∈Agent(S) zi
−

∑

i∈S

costi

Call a set S of states feasible if Agent(S) = S. Since the Agent’s response is
completely anticipated by the Designer (Agent’s parameters are known to the
Designer, and the Designer can therefore simulate the greedy algorithm from
Sect. 3), only feasible sets S need be considered.

A few additional properties result after we specialize to the flower MDP set-
ting. It is easy to see from the definition and the greedy algorithm of Sect. 3
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that if a set S is feasible then so are all its subsets. If for some state i,
profit({i}) ≤ 0, then it follows that for all sets S that contain i we have
profit(S) ≤ profit(S − {j}). Hence, there is no reason to build a platform at
i, and we can ignore i. Thus, we may restrict our attention to the states i such
that profit({i}) > 0. We may assume also without loss of generality that every
state i by itself is feasible: If {i} is not feasible, then neither is any set that
contains i, therefore we can ignore i.

We now add a few more assumptions to ensure tractability. Let K =
maxi profit({i}). It is easy to see that for any set S, profit(S) ≤ ∑

i∈S profit({i}).
Therefore, the optimal profit OPT is at most nK and at least K. We will also
assume that the cost costi of building a platform at any site i is not astro-
nomically larger than the anticipated optimal profit, specifically we assume
costi ≤ rK for some polynomially bounded factor r. Furthermore, and impor-
tantly, for our dynamic programming FPTAS to work in polynomial time, a
discretization assumption is necessary. For each state i, the platform available
will change (increase or decrease) the term pi

1−qi
appearing in the numerator and

the denominator of the Agent’s objective by an additive zi. We assume that all
these zi’s are multiples of the same small constant δ (think of δ as 1%), and
moreover that the zi’s are polynomially bounded in n. This assumption means
that there are O

(
1
δ

)
possible values of the denominator, and ensures the dynamic

programming is polynomial-time. One should think of this maneuver as one of
the compromises (in addition to accepting a slightly suboptimal solution) for
the approximation of the whole problem. We suspect that the problem has no
FPTAS without this assumption, although there is a pseudo-polytime algorithm.

4.1 FPTAS for the PDP

The Platform Design Problem is approximately solvable in polynomial time; in
this section we present a FPTAS which returns a (1 − ε)-approximate solution.
Our approach is inspired by the FPTAS for knapsack presented in [12]. We also
note that our algorithm relies on the structure of the greedy algorithm presented
in Algorithm 1.

The algorithm uses dynamic programming. It employs a 3-dimensional hash
table, called SET, into which the sets under consideration are being hashed. The
hash function has three components that correspond to the following components
of the profit of the set, scaled and rounded appropriately to integers: (1) the
whole profit profit(S), (2) the first term in the profit, denoted P1(S), and (3) the
denominator of the first term, denoted D(S) (which note, is also the denominator
of the Agent’s objective function). We use N(S) to denote the numerator of the
Agent’s objective function.

Lemma 3. Let S, S′ ⊆ [k] be two sets that hash in the same bin and suppose
that N(S) ≤ N(S′). Then for every set T ⊆ {k + 1, . . . , n}, if S′ ∪ T is feasible
then S ∪ T is also feasible, and profit(S ∪ T ) ≥ profit(S′ ∪ T ) − εK/n.

Proof. Proved in Appendix B of [20].
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ALGORITHM 2: Designer’s FPTAS for the PDP
Input: The parameters of the PDP: transition probabilities, utility and cost

coefficients for the Agent and the Designer, and small positive reals ε, δ
Output: A (1 − ε)-approximately optimal subset of states S∗ for which to deploy

platforms.
N(S) and D(S) denote the numerator and the denominator of the Agent’s objective
function, with the constant terms omitted
P1(S) denotes the first term in the Designer’s profit function
SET is a hash table of subsets of [n] indexed by triples of integers

The hash function is hash(S) :=
(
�profit(S)

εK/2n
�, � P1(S)

εK/2n
�,D(S)/δ

)

Initialize the hash table SET to contain only the empty set in the bin (0, 0, 0)
for k ∈ [n] do

for S ∈ SET in lexicographic order do
S′ := S ∪ {k}
if Agent will adopt all platforms in S′ and profit(S′) > 0 then

if hash(S′) ∈ SET then

Ŝ := SET[hash(S′)]
if N(Ŝ) > N(S′) then

SET[hash(S′)] := S′

end

else
SET[hash(S′)] := S′

end

end

end
return the set S in the hash table with largest first hash value

Lemma 4. For every k = 0, 1, . . . , n, after the kth iteration of the loop, there is
a set S in the hash table that can be extended with elements from {k + 1, . . . , n}
to a feasible set that has profit ≥ OPT − εk · K/n.

Proof. Proved in Appendix B of [20].

Theorem 3. Algorithm 2 is a FPTAS for the Platform Design Problem.

Proof. Lemma 4 for k = n tells us that at the end, the table contains a set S
whose profit is within εK of OPT. Since OPT ≥ K, the profit of S is at least
(1 − ε)OPT .

Regarding the complexity of the algorithm, note that the three dimensions
of the hash table have respectively size O(n2/ε) (since the maximum profit is at
most nK), O(rn2/ε), and n/δ. In every iteration the algorithm spends time pro-
portional to the number of sets stored in the table. In particular, the algorithm
only needs linear time to check the feasibility of each S′ as well as calculate
N(S′) and profit(S′). Thus, the total time is polynomial in n and 1

ε .

It turns out that an FPTAS is the best we could hope for, even if all zi = 1:
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Theorem 4. The PDP in the flower case is NP-complete.

Proof. Proved in Appendix B of [20].

5 Discussion and Future Work

We believe that we have barely scratched the surface of a very important
subject: the economic, mathematical, and algorithmic modeling of the inter-
actions between Designers of on-line platforms and the consumers of on-line
services/producers of data. Our model captures a few of the important aspects
of this complex environment: the way adoption of services affects both the user’s
activities and the user’s enjoyment of these activities, while it enhances the
Designer’s revenue in ways that depend on the time spent and activities per-
formed on the platform; the nature of the Designer’s profit (revenue from the
acquisition of data pertaining to the user minus the significant development
costs); the fact that multiple platforms, even by the same Designer, compete for
the user’s attention and use; the nature of some of the user’s dilemmas (chief
among them: surrender privacy for increased efficiency and/or enjoyment?). A
simplified model of these aspects (the flower chain, linearity of utilities) is a
tractable bi-level optimization problem. However, there are many effects that our
current model does not capture, which are quite interesting for future research:
for instance, as a sample, we may want to model time dependencies in profits,
rewards, and costs, scaling effects for the platform designers due to increasing
numbers of users, synergistic effects for the agents who may adopt suites of plat-
forms (for instance, adopting all of the Google suite of products may provide
more benefit than using different providers for each service), and potential net-
work effects involved in influencing agent behavior when there are many agents.

Several generalizations of our results are possible: in Sect. 5 of [20], we gen-
eralize the FPTAS for the flower to the case with k Agents, each with their own
flower Markov chain. Our algorithm is polynomial runtime for constant k, and
is exponential if k is allowed to vary—hence, it is perhaps more natural to think
of k as the number of types in a finite-support distribution of agents, where the
number of types may naturally be a small constant in settings of interest. In
Sect. 6 of [20] (and continuing in the Appendix D of [20] in full detail), we gener-
alize the setting to the interaction of two or more platform designers with agents.
There we confront the algorithmic problems involved with designer competition,
such as the best response problem: if a Designer is confronted with a situation in
which other designers have already deployed several platforms at various states,
which platforms should this Designer deploy? It turns out that Agent behavior
in this setting is still governed by a greedy algorithm, but the potential is differ-
ent. Furthermore, the Designer has a polynomial time algorithm for the platform
design problem with a constant number of agents – however, the runtime is still
exponential in the number of agents. The algorithm can also be extended to the
case where the Designer can choose between multiple possible platforms for each
state.
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We believe that intractability (both analytical and computational) lurks in
many of the further possible immediate generalizations of this model—for exam-
ple, to undiscretized coefficients, to Markov chains more general than the flower,
or to more complex objectives than linear (such as the addition of an entropy
regularizer to the objectives of both the Agent and the Designer—an especially
tempting variant to consider in this particular problem). We believe that more
ambitious problem formulations in these directions may need to further simplify
the other aspects of the model in this paper to become tractable.

On the other hand, we also believe that any form of intractability of the
Designer’s problem is arguably affordable. Our dynamic programming FPTAS
would likely not generalize to more general contexts—such as those involving
complex chains, nonlinear objectives, many Designers, learning of the statistics
of the Agents’ parameters etc., see below—but the alternative exhaustive algo-
rithm, with its rather benign exponential dependency on n, the number of plat-
forms, is extremely realistic in this context. We believe that the true challenges
in generalizing our results are challenges of formulation and modeling.

Superficially, platform design resembles Mechanism Design (MD) [19], but
the essence of much of MD is that the Designer knows only statistics of the
Agent’s characteristics and designs the mechanism to optimize revenue over all
possible eventualities by incentivizing the Agent to implicitly reveal their type;
and this essence is missing in the PDP. In the on-line platform environment, the
subject of incentives for type revelation and truthfulness is rather clearly related
to the personalization of the platform, and we believe that a generalization of our
model will have to address this important issue and aspect of platform design.

In the present first brush at platform design, we have abstracted the PDP in
terms of a single Agent—a maneuver and methodology familiar from Economics
—, and next ventured to the case of a few Agent types. But of course, the moti-
vating environment involves myriads of atypical Agents whose parameters are
unknown. Moreover, the rewards for the Designer may also not be completely
known, and the Designer problem can be modeled as an interactive game between
Designer and (multiple) Agent(s). Thus, the learning nature of platform design
resembles interactive learning (the learner and the Agent whose parameters are
being learned interact closely, and the learner can easily experiment with variants
of the platform), and also has certain characteristics of learning from revealed
preferences, see e.g. [26]. We believe that a wealth of novel and intriguing techni-
cal problems within Learning Theory and Machine Learning lie in this direction,
and can build on recent work in the intersection of these areas with Algorithmic
Mechanism Design, Learning in Games, and Reinforcement Learning [8,11]. In
situations where the Agent rewards are unknown to the Designer, it may also
be possible for the Agent to behave strategically – understanding these impacts
on platform design is but one interesting direction to pursue. Of course, recent
cautionary results on the limitations of optimization by samples [3,4] come to
mind as well.

Regarding the important subject of strategic interactions between design-
ers, we have not addressed the equilibrium problem—beyond the best-response
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algorithm. We can show (see Appendix F of [20]) that a pure Nash equilibrium
may not exist even in the flower setting, and we conjecture that finding a pure
equilibrium is Σ2-complete.

But perhaps the most interesting strategic questions go beyond the model
of this paper: How are Designers incentivized by the competition to design and
deploy platforms that are more beneficial to the Agents than in the monopolistic
situation?

Finally—and almost needless to say—the subject of platform design, as cir-
cumscribed in this paper, is crying out for treatment from the point of view of
the exploding literature on ethics, fairness, and privacy in algorithm design—
see for example [7,10,15] among many other important works—and exposes new
aspects of today’s algorithmic environment to these important considerations
and emerging methodologies. The PDP defines an environment where privacy
and fairness concerns are ubiquitous and paramount. Understanding what kinds
of social, economic, regulatory, and technological interventions may result in
fairer outcomes of platform design is an important direction of future work.
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Abstract. In this paper, we bring consumer theory to bear in the anal-
ysis of Fisher markets whose buyers have arbitrary continuous, concave,
homogeneous (CCH) utility functions representing locally non-satiated
preferences. The main tools we use are the dual concepts of expenditure
minimization and indirect utility maximization. First, we use expendi-
ture functions to construct a new convex program whose dual, like the
dual of the Eisenberg-Gale program, characterizes the equilibrium prices
of CCH Fisher markets. We then prove that the subdifferential of the
dual of our convex program is equal to the negative excess demand in
the associated market, which makes generalized gradient descent equiv-
alent to computing equilibrium prices via tâtonnement. Finally, we run
a series of experiments which suggest that tâtonnement may converge
at a rate of O((1+E)/t2) in CCH Fisher markets that comprise buyers
with elasticity of demand bounded by E. Our novel characterization of
equilibrium prices may provide a path to proving the convergence of
tâtonnement in Fisher markets beyond those in which buyers utilities
exhibit constant elasticity of substitution.

Keywords: Market equilibrium · Market dynamics · Fisher market

1 Introduction

One of the seminal achievements in mathematical economics is the proof of
existence of equilibrium prices in Arrow-Debreu competitive economies
[1]. This result, while celebrated, is non-constructive, and thus provides little
insight into the computation of equilibrium prices. The computational question
dates back to Léon Walras, a French economist, who in 1874 conjectured that a
decentralized price-adjustment process he called tâtonnement, which reflects
market behavior, would converge to equilibrium prices [29]. An early positive
result in this vein was provided by Arrow, Block and Hurwicz, who showed that
a continuous version of tâtonnement converges in markets with an aggregate
demand function that satisfies the weak gross substitutes (WGS) property
[2]. Unfortunately, following this initial positive result, Herbert Scarf provided
his eponymous example of an economy for which the tâtonnement process does
not converge, dashing all hopes of the tâtonnement process justifying the concept
c© Springer Nature Switzerland AG 2022
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of market equilibria in general [3]. Nonetheless, further study of tâtonnement in
simpler models than a full-blown Arrow-Debreu competitive economy remains
important, as some real-world markets are indeed simpler [17].

For market equilibria to be justified, not only should they be backed by a
natural price-adjustment process such as tâtonnement, as economists have long
argued, they should also be computationally efficient. As Kamal Jain put it,
“If your laptop cannot find it, neither can the market” [25]. A detailed inquiry
into the computational properties of market equilibria was initiated by Deva-
nur et al. [14,15], who studied a special case of the Arrow-Debreu competitive
economy known as the Fisher market [5]. This model, for which Irving Fisher
computed equilibrium prices using a hydraulic machine in the1890 s, is essen-
tially the Arrow-Debreu model of a competitive economy in which there are no
firms, and buyers are endowed with an artificial currency [25]. Devanur et al. [14]
discovered a connection between the Eisenberg-Gale convex program and
Fisher markets in which buyers have linear utility functions, thereby providing
a (centralized) polynomial time algorithm for equilibrium computation in these
markets [14,15].

Their work was built upon by Jain, Vazirani, and Ye [21], who extended the
Eisenberg-Gale program to all Fisher markets whose buyers have continuous,
concave, and homogeneous (CCH) utility functions. Further, they proved
that the equilibrium of Fisher markets for buyers with CCH utility functions can
be computed in polynomial time by interior point methods.Gao and Kroer [19]
go beyond interior point methods to develop algorithms that converge in linear,
quasilinear, and Leontief Fisher markets. However, unlike tâtonnement, these
methods provide little insight into how markets reach equilibria.

More recently, Cole and Fleischer [9,11], and Cheung, Cole, and Devanur
[8] showed the fast convergence of tâtonnement in Fisher markets where the
buyers’ utility functions satisfy weak gross substitutes with bounded elasticity
of demand, and the constant elasticity of substitution (CES) properties
respectively, the latter of which is a subset of the class of CCH utility functions
[8,9,11]. Aside from tâtonnement being a plausible model of real-world price
movements due to its decentralized nature, Cole and Fleischer argue for the
plausibility of tâtonnement by proving that it is an abstraction for in-market
processes in a real-world-like model called the ongoing market model [9,11]. The
plausibility of tâtonnement as a natural price-adjustment process has been fur-
ther supported by Gillen et al. [20], who demonstrated the predictive accuracy of
tâtonnement in off-equilibrium trade settings [20]. This theoretical and empirical
evidence for tâtonnement makes it even more important to understand its con-
vergence properties, so that we can better characterize those markets for which
we can predict price movements and, in turn, equilibria.

Our Approach and Findings. In consumer theory [23], consumers/buyers are
assumed to solve the utility maximization problem (UMP), in which each
buyer maximizes its utility constrained by its budget, thereby discovering its
optimal demand. Dual to this problem is the expenditure minimization
problem (EMP), in which each buyer minimizes its expenditure constrained by
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its desired utility level, an alternative means of discovering its optimal demand.
These two problems are intimately connected by a deep mathematical structure,
yet most existing approaches to computing market equilibria focus on UMP only.

In this paper, we exploit the relationship between EMP and equilibrium
prices to provide a new convex program, which like the seminal Eisenberg-Gale
program characterizes the equilibrium prices of Fisher markets assuming buy-
ers with arbitrary CCH utility functions. Additionally, by exploiting the duality
structure between UMP and EMP, we provide a straightforward interpretation
of the dual of our program, which also sheds light on the dual of Eisenberg-Gale
program. In particular, while it is known that an equilibrium allocation that
solves the Eisenberg-Gale program is one that maximizes the buyers’ utilities
given their budgets at equilibrium prices (UMP; the primal), we show that equi-
librium prices are those that minimize the buyers’ expenditures at the utility
levels associated with their equilibrium allocations (EMP; the dual).

Our characterization of CCH Fisher market equilibria via UMP and EMP
also allows us to prove that the subdifferential of the dual of our convex pro-
gram is equal to the negative excess demand in the corresponding market [8].1

Consequently, solving the dual of our convex program via generalized gradient
descent is equivalent to tâtonnement (just as generalized gradient descent on the
dual of the Eisenberg-Gale program is equivalent to tâtonnement [15]).

Finally, we run a series of experiments which suggest that tâtonnment may
converge at a rate of O((1+E)/t2) in CCH markets where buyers have bounded
elasticity of demand (BED) with elasticity parameter E, a class of mar-
kets that includes CES Fisher markets. Assuming bounded elasticity of demand,
bounded changes in prices result in bounded changes in demand. A summary
of all known tâtonnement convergence rate results, as well as this conjecture,
appears in Fig. 1.

Roadmap. In Sect. 2, we introduce essential notation and definitions, and sum-
marize our results. In Sect. 3, we derive the dual of the Eisenberg-Gale program
and propose a new convex program whose dual characterizes equilibrium prices in
CCH Fisher markets via expenditure functions. In Sect. 4, we show that the sub-
differential of the dual of our new convex program is equivalent to the negative
excess demand in the market, which implies an equivalence between generalized
gradient descent and tâtonnement. In Sect. 5, we include an empirical analysis
of tâtonnement in CCH Fisher markets.

1 Similarly, it is known that the subdifferential of the dual of the Eisenberg-Gale
program is equal to the negative excess demand in the corresponding market [8].
Our result also implies this known result, since the two programs’ objective functions
differ only by a constant.
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Fig. 1. The convergence rates of tâtonnement in different Fisher markets. We color
previous contributions blue, and our conjecture in red. We note that the convergence
rate for WGS markets does not apply to markets where the elasticity of demand is
unbounded, e.g., linear Fisher markets; likewise, the convergence rate for CES Fisher
markets does not apply to linear Fisher markets. (Color figure online)

2 Preliminaries and an Overview of Results

We use Roman uppercase letters to denote sets (e.g., X), bold uppercase letters
to denote matrices (e.g., X), bold lowercase letters to denote vectors (e.g., p),
and Roman lowercase letters to denote scalar quantities (e.g., c). We denote the
ith row vector of any matrix (e.g., X) by the equivalent bold lowercase letter with
subscript i (e.g., xi). Similarly, we denote the jth entry of a vector (e.g., p or xi)
by the corresponding Roman lowercase letter with subscript j (e.g., pj or xij).
We denote the set of numbers {1, . . . , n} by [n], the set of natural numbers by
N, the set of real numbers by R, the set of non-negative real numbers by R+ and
the set of strictly positive real numbers by R++. We denote by ΠX the Euclidean
projection operator onto the set X ⊂ R

n: i.e., ΠX(x) = arg minz∈X ‖x − z‖2.
We also define some set operations. Unless otherwise stated, the sum of a scalar
by a set and of two sets is defined as the Minkowski sum, and the product of a
scalar by a set and two sets is defined as the Minkowski product.

2.1 Consumer Theory

In this paper, we consider the general class of utility functions ui : Rm → R

that are continuous, concave and homogeneous. The indirect utility function
vi : Rm

+ × R+ → R+ takes as input prices p and a budget bi and outputs the
maximum utility the buyer can achieve at those prices given that budget, i.e.,
vi(p, bi) = maxx∈R

m
+ :p·x≤bi

ui(x)
The Marshallian demand is a correspondence di : Rm

+ × R+ ⇒ R
m
+ that

takes as input prices p and a budget bi and outputs the utility maximizing
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allocation of goods at budget bi, i.e., di(p, bi) = arg maxx∈R
m
+ :p·x≤bi

ui(x): i.e.,
di(p, bi) = arg maxxi∈R

m
+ :p·xi≤bi

ui(xi).
The expenditure function ei : Rm

+ × R+ → R+ takes as input prices p
and a utility level νi and outputs the minimum amount the buyer must spend to
achieve that utility level at those prices, i.e., ei(p, νi) = minx∈R

m
+ :ui(x )≥νi

p · x
The Hicksian demand is a correspondence hi : Rm

+ ×R+ ⇒ R+ that takes
as input prices p and a utility level νi and outputs the cost-minimizing allocation
of goods at utility level νi, i.e., hi(p, νi) = arg minx∈R

m
+ :ui(x )≥νi

p · x
In consumer theory, the demand of buyers can be determined by study-

ing two dual problems, the utility maximization problem (UMP) and the
expenditure minimization problem (EMP). The UMP refers to the buyer’s
problem of maximizing its utility constrained by its budgets (i.e., optimizing its
indirect utility function) in order to obtain its optimal demand (i.e., Marshallian
demand), while the EMP refers to the buyer’s problem of minimizing its expen-
diture constrained by its desired utility level (i.e., optimizing its expenditure
function) in order to obtain its optimal demand (i.e., Hicksian demand). When
the utilities are continuous, concave and represent locally non-satiated prefer-
ences the UMP and EMP are related through the following identities, which we
use throughout the paper:

∀bi ∈ R+ ei(p, vi(p, bi)) = bi (1)
∀νi ∈ R+ vi(p, ei(p, νi)) = νi (2)
∀bi ∈ R+ hi(p, vi(p, bi)) = di(p, bi) (3)
∀νi ∈ R+ di(p, ei(p, νi)) = hi(p, νi) (4)

A good j ∈ [m] is said to be a gross substitute (complement) for a good
k ∈ [m] \ {j} if

∑
i∈[n] dij(p, bi) is increasing (decreasing) in pk. If the aggregate

demand,
∑

i∈[n] dij(p, bi), for good k is instead weakly increasing (decreasing),
good j is said to be a weak gross substitute (complement) for good k.

The class of homogeneous utility functions includes the well-known linear,
Cobb-Douglas, and Leontief utility functions, each of which is a special case
of the Constant Elasticity of Substitution (CES) utility function family,
parameterized by −∞ ≤ ρ ≤ 1, and given by ui(xi) = ρ

√∑
j∈[m] wijx

ρ
ij . Linear

utility functions are obtained when ρ is 1, while Cobb-Douglas and Leontief
utility functions are obtained when ρ approaches 0 and −∞, respectively. For
0 < ρ ≤ 1, goods are gross substitutes, e.g., Sprite and Coca-Cola, for ρ = 1;
goods are perfect substitutes, e.g., Pepsi and Coca-Cola; and for ρ < 0, goods
are complementary, e.g., left and right shoes.

The (price) elasticity of demand reflect how demand varies in response
to a change in price. More specifically, buyer i’s elasticity of demand for good
j ∈ [m] with respect to the price of good k ∈ [m] is defined as ∂dij(p,bi)

∂pk

pk

dij(p,bi)
. A

buyer is said to have bounded elasticity of demand with elasticity parameter
E if minp∈R

m
+ ,j,k∈[m]

{
−∂dij(p,bi)

∂pk

pk

dij(p,bi)

}
= E < ∞.
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2.2 Fisher Markets

A Fisher market comprises n buyers and m divisible goods [5]. As is usual
in the literature, we assume that there is one unit of each good available [25].
Each buyer i ∈ [n] has a budget bi ∈ R+ and a utility function ui : Rm

+ → R.
An instance of a Fisher market is thus given by a tuple (n,m,U, b) where U =
{u1, . . . , un} is a set of utility functions, one per buyer, and b ∈ R

n
+ is the vector

of buyer budgets. We abbreviate as (U, b) when n and m are clear from context.
When the buyers’ utility functions in a Fisher market are all of the same

type, we qualify the market by the name of the utility function, e.g., a Leontief
Fisher market. Considering properties of goods, rather than buyers, a (Fisher)
market satisfies gross substitutes (resp. gross complements) if all pairs of
goods in the market are gross substitutes (resp. gross complements). A Fisher
market is mixed if all pairs of goods are either gross complements or gross
substitutes. A Fisher market exhibits bounded elasticity of demand with
parameter E, if the elasticity of demand of the buyer with highest elasticity of
demand is E < ∞.

An allocation X is a map from goods to buyers, represented as a matrix s.t.
xij ≥ 0 denotes the quantity of good j ∈ [m] allocated to buyer i ∈ [n]. Goods
are assigned prices p ∈ R

m
+ . A tuple (X∗,p∗) is said to be a competitive

(or Walrasian) equilibrium of Fisher market (U, b) if 1. buyers are utility
maximizing constrained by their budget, i.e., for all i ∈ [n],x∗

i ∈ di(p∗, bi); and
2. the market clears, i.e., for all j ∈ [m], p∗

j > 0 implies
∑

i∈[n] x
∗
ij = 1; and

p∗
j = 0 implies

∑
i∈[n] x

∗
ij ≤ 1.

If (U, b) is a CCH Fisher market, then the optimal solution X∗ to the
Eisenberg-Gale program constitutes an equilibrium allocation, and the opti-
mal solution to the Lagrangian that corresponds to the allocation constraints
(Eq. (6)) are the corresponding equilibrium prices [10,14,18]:

Primal

max
X∈R

n×m
+

∑

i∈[n]

bi log (ui(xi)) (5)

subject to
∑

i∈[n]

xij ≤ 1 ∀j ∈ [m] (6)

We define the excess demand correspondence z : Rm ⇒ R
m, of a Fisher

market (U, b), which takes as input prices and outputs a set of excess demands
at those prices, as the difference between the demand for each good and the
supply of each good: z(p) =

∑
i∈[n] di(p, bi) − 1m.

where 1m is the vector of ones of size m.
The discrete tâtonnement process for Fisher markets is a decentralized,

natural price adjustment, defined as:



340 D. Goktas et al.

p(t + 1) = p(t) + G(g(t)) for t = 0, 1, 2, . . . (7)
g(t) ∈ z(p(t)) (8)
p(0) ∈ R

m
+ , (9)

where G : Rm → R
m is a monotonic function s.t. for all j ∈ [m],x,y ∈ R

m, if
xj ≥ yj , then Gj(x) ≥ Gj(y). Intuitively, tâtonnement is an auction-like process
in which the seller of j ∈ [m] increases (resp. decreases) the price of a good if
the demand (resp. supply) is greater than the supply (resp. demand).

2.3 Subdifferential Calculus and Generalized Gradient Descent

We say that a vector g ∈ R
n is a subgradient of a continuous function f :

U → R at a ∈ U if for all x ∈ U , f(x) ≥ f(a) + gT (x − a). The set of all
subgradients g at a point a ∈ U for a function f is called the subdifferential
and is denoted by ∂xf(a) = {g | f(x) ≥ f(a) + gT (x−a)}. If f is convex, then
its subdifferential exists everywhere. If additionally, f is differentiable at a, so
that its subdifferential is a singleton at a, then the subdifferential at a is equal
to the gradient. In this case, we write ∂xf(a) = g; in other words, we take the
subdifferential to be vector-valued rather than set-valued.

Consider the optimization problem minx∈V f(x), where f : R
n → R is a

convex function that is not necessarily differentiable and V is the feasible set of
solutions. Let �f (x,y) be the linear approximation of f at y, that is �f (x,y) =
f(y)+gT (x−y), where g ∈ ∂xf(y). A standard method for solving this problem
is the mirror descent [24] update rule is as follows:

x(t + 1) = arg min
x∈V

{�f (x,x(t)) + γtδh(x,x(t))} for t = 0, 1, 2, . . . (10)

x(0) ∈ R
n (11)

Here, as above, γt > 0 is the step size at time t and, δh(x,x(t)) is the
Bregman divergence of a convex differentiable kernel function h(x) defined
as δh(x,y) = h(x) − �h(x,y) [6]. When the kernel is the scaled weighted
entropy h(x) = c

∑
i∈[n] (xi log(xi) − xi), given c > 0, then the Bregman diver-

gence reduces to the scaled generalized Kullback-Leibler divergence:
δKL(x,y) = c

∑
i∈[n]

[
xi log

(
xi

yi

)
− xi + yi

]
, which, when V = R

n
+, yields the

following simplified update rule, where as usual g(t) ∈ ∂xf(x(t)):

∀j ∈ [m] xj(t + 1) = xj(t) exp
{−gj(t)

γt

}

for t = 0, 1, 2, . . . (12)

xj(0) ∈ R++ (13)
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Equations (12) and (13) do not include a projection step, because when the
initial iterate is within R

n
+, subsequent iterates remain within this set.

2.4 A High-level Overview of Our Contributions

In this paper, we bring consumer theory to bear in the analysis of CCH Fisher
markets. In so doing, we first derive the dual of the Eisenberg-Gale program for
arbitrary CCH Fisher markets, generalizing the special cases of linear and Leon-
tief markets, which are already understood [15]. We then provide a new convex
program whose dual also characterizes equilibrium prices in CCH Fisher markets
via expenditure functions. This program is of interest because the subdifferential
of the objective function of its dual is equal to the negative excess demand in
the market, which implies that mirror descent on this objective is equivalent to
solving for equilibrium prices in the associated market via tâtonnement. Finally,
we conjecture a convergence rate of O((1+E)/t2) for CCH Fisher markets in which
the elasticity of buyer demands is bounded by E.

Although the Eisenberg-Gale convex program dates back to 1959, its dual for
arbitrary CCH Fisher markets is still not yet well understood. Our first result is
to derive the Eisenberg-Gale program’s dual, generalizing the two special cases
identified by Cole et al. [12] for linear and Leontief utilities.

Theorem 1. The dual of the Eisenberg-Gale program for any CCH Fisher mar-
ket (U, b) is given by:

min
p∈R

m
+

∑

j∈[m]

pj +
∑

i∈[n]

[bi log (vi(p, bi)) − bi] (14)

We then propose a new convex program whose dual characterizes the equi-
librium prices of CCH Fisher markets via expenditure functions. We note that
the optimal value of this convex program differs from the optimal value of the
Eisenberg-Gale program by a constant factor.

Theorem 2. The optimal solution (X∗,p∗) to the primal and dual of the fol-
lowing convex programs corresponds to equilibrium allocations and prices, respec-
tively, of the CCH Fisher market (U, b):

Primal

max
X∈R

n×m
+

∑

i∈[n]

bi log
(

ui

(
xi

bi

))

subject to ∀j ∈ [m],
∑

i∈[n]

xij ≤ 1

Dual

min
p∈R

m
+

∑

j∈[m]

pj −
∑

i∈[n]

bi log (∂νi
ei(p, νi))

This convex program formulation for CCH Fisher markets is of particular
interest because its subdifferential equals the negative excess demand in the
market. As a result, solving this program via (sub)gradient descent is equivalent
to solving the market via tâtonnement.
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Theorem 3. The subdifferential of the objective function of the dual of the pro-
gram given in Theorem 2 for a CCH Fisher market (U, b) at any price p is equal
to the negative excess demand in (U, b) at price p:

∂p

⎛

⎝
∑

j∈[m]

pj −
∑

i∈[n]

bi log ∂νi
ei(p, νi)

⎞

⎠ = −z(p) (15)

To prove Theorem 3, we make use of standard consumer theory, specifically
the duality structure between UMP and EMP, as well as a generalized version
of Shepherd’s lemma [26,27]. We also provide a new, simpler proof of this gen-
eralization of Shepherd’s lemma via Danskin’s theorem [13].

Finally, we conduct an experimental investigation of the convergence of the
tâtonnement process defined by the mirror descent rule with KL-divergence and
fixed step sizes in CCH Fisher markets. This particular process was previously
studied by Cheung, Cole, and Devanur [8] in Leontief Fisher markets. They
showed a worst-case lower bound of Ω(1/t2) to complement an O(1/t) worst-
case upper bound. These results suggest a possible convergence rate of O(1/t2)
or O(1/t) for entropic tâtonnement in a class of Fisher markets that includes
Leontief Fisher markets. Our experimental results support the conjecture that a
worst-case convergence rate of O(1/t2) might hold, not only in Leontief and CES
Fisher markets, but in CCH Fisher markets where buyers’ elasticity of demand
is bounded by E.

3 A New Convex Program for CCH Fisher Markets

In this section, we provide an alternative convex program to the Eisenberg-Gale
program, which also characterizes the equilibria of CCH Fisher markets. Of note,
our program characterizes equilibrium prices via expenditure functions. For CCH
Fisher markets, the Eisenberg-Gale program’s primal allows us to calculate the
equilibrium allocations, while its dual yields the corresponding equilibrium prices
[7]. Cole et al. [12] provide dual formulations of the Eisenberg-Gale program for
linear and Leontief utilities [12], and in unpublished work, Cole and Tao [10]
present a generalization of the Eisenberg-Gale dual for arbitrary CCH utility
functions. However, as we show in the full version, the optimal value of the
objective of the Eisenberg-Gale program’s primal differs from the optimal value
of the dual provided by Cole and Tao [10] by a constant factor, despite their dual
characterizing equilibrium prices accurately. Hence, their dual is technically not
the dual of the Eisenberg-Gale program for which strong duality holds. The
proof of the following theorem stating the Eisenberg-Gale program’s dual can
be found in the full version.

Theorem 1. The dual of the Eisenberg-Gale program for any CCH Fisher mar-
ket (U, b) is given by:

min
p∈R

m
+

∑

j∈[m]

pj +
∑

i∈[n]

[bi log (vi(p, bi)) − bi] (14)



A Consumer-Theoretic Characterization of Fisher Market Equilibria 343

Before presenting our program, we present several preliminary lemmas. All
omitted proofs can be found in the full version.

The next lemma establishes an important property of the indirect utility and
expenditure functions in CCH Fisher markets that we heavily exploit in this
work, namely that the derivative of the indirect utility function with respect
to bi—the bang-per-buck—is constant across all budget levels. Likewise, the
derivative of the expenditure function with respect to νi—the buck-per-bang—
is constant across all utility levels. In other words, both functions effectively
depend only on prices. Not only are the bang-per-buck and the buck-per-bang
constant, they equal vi(p, 1) and ei(p, 1), respectively, namely their values at
exactly one unit of budget and one unit of (indirect) utility.

An important consequence of this lemma is that, by picking prices that max-
imize a buyer’s bang-per-buck, we not only maximize their bang-per-buck at
all budget levels, but we further maximize their total indirect utility, given
their known budget. In particular, given prices p∗ that maximize a buyer’s
bang-per-buck at budget level 1, we can easily calculate the buyer’s total (indi-
rect) utility at budget bi by simply multiplying their bang-per-buck by bi: i.e.,
vi(p∗, bi) = bivi(p∗, 1). Here, we see the homogeneity assumption at work.

Analogously, by picking prices that maximize a buyer’s buck-per-bang, we
not only maximize their buck-per-bang at all utility levels, but we further max-
imize the buyer’s total expenditure, given their unknown optimal utility level.
In particular, given prices p∗ that minimize a buyer’s buck-per-bang at utility
level 1, we can easily calculate the buyer’s total expenditure at utility level νi

by simply multiplying their buck-per-bang by νi: i.e., ei(p∗, νi) = νiei(p∗, 1).
Thus, solving for optimal prices at any budget level, or analogously at any util-
ity level, requires only a single optimization, in which we solve for optimal prices
at budget level, or utility level, 1.

Lemma 1. If ui is continuous and homogeneous of degree 1, then vi(p, bi) and
ei(p, νi) are differentiable in bi and νi, resp. Further, ∂bi

vi(p, bi) = {vi(p, 1)}
and ∂νi

ei(p, νi) = {ei(p, 1)}.
The next lemma provides further insight into why CCH Fisher markets are

easier to solve than non-CCH Fisher markets. The lemma states that the bang-
per-buck, i.e., the marginal utility of an additional unit of budget, is equal to
the inverse of its buck-per-bang, i.e., the marginal cost of an additional unit of
utility. Consequently, by setting prices so as to minimize the buck-per-bang of
buyers, we can also maximize their bang-per-buck. Since the buck-per-bang is a
function of prices only, and not of prices and allocations together, this lemma
effectively decouples the calculation of equilibrium prices from the calculation
of equilibrium allocations, which greatly simplifies the problem of computing
equilibria in CCH Fisher markets.

Corollary 1. If buyer i’s utility function ui is CCH, then

1
ei(p, 1)

=
1

∂νi
ei(p, νi)

= ∂bi
vi(p, bi) = vi(p, 1) . (16)
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We can now present our characterization of the dual of the Eisenberg-Gale
program via expenditure functions. While Devanur et al. [16] provided a method
to construct a similar program to that given in Theorem 2 for specific utility
functions, their method does not apply to arbitrary CCH utility functions. The
proof of this theorem can be found in the full version.

Theorem 2. The optimal solution (X∗,p∗) to the primal and dual of the fol-
lowing convex programs corresponds to equilibrium allocations and prices, respec-
tively, of the CCH Fisher market (U, b):

Primal

max
X∈R

n×m
+

∑

i∈[n]

bi log
(

ui

(
xi

bi

))

subject to ∀j ∈ [m],
∑

i∈[n]

xij ≤ 1

Dual

min
p∈R

m
+

∑

j∈[m]

pj −
∑

i∈[n]

bi log (∂νi
ei(p, νi))

Our new convex program for CCH Fisher markets, which characterizes equi-
librium expenditure functions, makes plain the duality structure between utility
functions and expenditure functions that is used to compute “shadow” prices
for allocations. In particular, ei(p, νi) is the Fenchel conjugate of the indicator
function χ{x:ui(xi)≥νi}, meaning the utility levels and expenditures are dual (in
a colloquial sense) to one another. Therefore, equilibrium utility levels can be
determined from equilibrium expenditures, and vice-versa, which implies that
allocations and prices can likewise be derived from one another through this
duality structure.2

4 Equivalence of Mirror Descent and Tâtonnement

Cheung, Cole, and Devanur [8] have shown via the Lagrangian of the Eisenberg-
Gale program, i.e., without constructing the precise dual, that the subdifferential
of the dual of the Eisenberg-Gale program is equal to the negative excess demand
in the associated market, which implies that mirror descent equivalent to a sub-
set of tâtonnement rules. In this section, we use a generalization of Shephard’s
lemma to prove that the subdifferential of the dual of our new convex program
is equal to the negative excess demand in the associated market. Our proof also
applies to the dual of the Eisenberg-Gale program, since the two duals differ
only by a constant factor.

While Shephard’s lemma is applicable to utility functions with singleton-
valued Hicksian demand (i.e., strictly concave utility functions), we require a
generalization of Shephard’s lemma that applies to utility functions that are
not strictly concave and that could have set-valued Hicksian demand. An early
proof of this generalized lemma was given by Tanaka in a discussion paper [27];
a more modern perspective can be found in a recent survey by Blume [4]. For

2 A more in-depth analysis of this duality structure can be found in Blume [4].
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completeness, we also provide a new, simple proof of this result via Danskin’s
theorem (for subdifferentials) [13] the full version.

Lemma 2. Shephard’s lemma, generalized for set-valued Hicksian de-
mand [4,26,27] Let ei(p, νi) be the expenditure function of buyer i and hi(p, νi) be
the Hicksian demand set of buyer i. The subdifferential ∂pei(p, νi) is the Hicksian
demand at prices p and utility level νi, i.e., ∂pei(p, νi) = hi(p, νi).

The next lemma plays an essential role in the proof that the subdifferen-
tial of the dual of our convex program is equal to the negative excess demand.
Just as Shephard’s Lemma related the expenditure function to Hicksian demand
via (sub)gradients, this lemma relates the expenditure function to Marshal-
lian demand via (sub)gradients. One way to understand this relationship is
in terms of Marshallian consumer surplus, the area under the Marshal-
lian demand curve, i.e., the integral of Marshallian demand with respect to
prices.3 Specifically, by applying the fundamental theorem of calculus to the
left-hand side of Lemma 3, we see that the Marshallian consumer surplus equals
bi log (∂νi

ei(p, νi)). The key takeaway is thus that any objective function we
might seek to optimize that includes a buyer’s Marshallian consumer surplus
is thus optimizing their Marshallian demand, so that optimizing this objective
yields a utility-maximizing allocation for the buyer, constrained by their budget.

Lemma 3. If buyer i’s utility function ui is CCH, then ∂p (bi log (∂νi
ei(p, νi))) =

di(p, bi).

Remark 1. Lemma 3 makes the dual of our convex program easy to interpret,
and thus sheds light on the dual of the Eisenberg-Gale program.

Specifically, we can interpret the dual as specifying prices that minimize the
distance between the sellers’ surplus and the buyers’ Marshallian surplus.

Remark 2. The lemmas we have proven in this section and the last provide a pos-
sible explanation as to why no primal-dual type convex program is known that
solves Fisher markets when buyers have non-homogeneous utility functions, in
which the primal describes optimal allocations while the dual describes equi-
librium prices. By the homogeneity assumption, a CCH buyer can increase
their utility level (resp. decrease their spending) by c% by increasing their
budget (resp. decreasing their desired utility level) by c%. This observation
implies that the marginal expense of additional utility, i.e., “bang-per-buck”,
and the marginal utility of additional budget, i.e., “buck-per-bang”, are con-
stant (Lemma 1). Additionally, optimizing prices to maximize buyers’ “bang-
per-buck” is equivalent to optimizing prices to minimize their “buck-per-bang”
(Corollary 1). Further, optimizing prices to minimize their “buck-per-bang” is
equivalent to maximizing their utilities constrained by their budgets (Lemma 3).

3 We note that the definition of Marshallian consumer surplus for multiple goods
requires great care and falls outside the scope of this paper. More information on
consumer surplus can be found in Levin [22], and Vives [28].
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Thus, the equilibrium prices computed by the dual of our program, which opti-
mize the buyers’ buck-per-bang, simultaneously optimize their utilities con-
strained by their budgets. In particular, equilibrium prices can be computed
without reference to equilibrium allocations (Corollary 1 + Lemma 3). In other
words, assuming homogeneity, the computation of the equilibrium allocations
and prices can be isolated into separate primal and dual problems.

Next, we show that the subdifferential of the dual of our convex program is
equal to the negative excess demand in the associated market.

Theorem 3. The subdifferential of the objective function of the dual of the pro-
gram given in Theorem 2 for a CCH Fisher market (U, b) at any price p is equal
to the negative excess demand in (U, b) at price p:

∂p

⎛

⎝
∑

j∈[m]

pj −
∑

i∈[n]

bi log ∂νi
ei(p, νi)

⎞

⎠ = −z(p) (15)

Cheung, Cole, and Devanur [8] define a class of markets called convex
potential function (CPF) markets. A market is a CPF market, if there exists
a convex potential function ϕ such that ∂pϕ(p) = −z(p). They then prove that
Fisher markets are CPF markets by showing, through the Lagrangian of the
Eisenberg-Gale program, that its dual is a convex potential function [8]. Like-
wise, Theorem 3 implies the following:

Corollary 2. All CCH Fisher markets are CPF markets.

Proof. A convex potential function φ : R
m → R for any CCH Fisher market

(U, b) is given by:

ϕ(p) =
∑

j∈[m]

pj −
∑

i∈[n]

bi log (∂νi
ei(p, νi)) (17)

Fix a kernel function h for the Bregman divergence δh. If the mirror descent
procedure given in Eqs. (10) and (11) is run on Eq. (17) (i.e., choose f = ϕ),
it is then equivalent to the tâtonnement process for some monotonic function of
the excess demand [8].

Thus, by varying the kernel function h of the Bregman divergence we can
obtain different tâtonnement rules. For instance, if h = 1

2 ||x||22, the mirror descent
process reduces to the classic tâtonnement rule given by G(x) = γtx, for γt > 0
and for all t ∈ N, in Eqs. (7) to (9).

5 Convergence of Discrete Tâtonnement

In this section, we conduct an experimental investigation4 of the rate of con-
vergence of entropic tâtonnement, which corresponds to the tâtonnement
4 Our code can be found on https://github.com/denizalp/fisher-tatonnement.git.

https://github.com/denizalp/fisher-tatonnement.git
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process given by mirror descent with the scaled generalized Kullback-Leibler
(KL) divergence, specifically 6δKL(p, q), as the Bregman divergence, and a fixed
step size γ. This particular update rule, which reduces to Eqs. (12) and (13),
has been the focus of previous work [8]. Interest in this update rule stems from
the fact that prices can never reach 0, which ensures that demands, and as a
consequence, excess demands, are bounded throughout the tâtonnement process.
This is because the demand for any good j is always upper bounded by

∑
i∈[n] bi

pj
.

Before presenting experimental results for entropic tâtonnement, we note that
the process is not guaranteed to converge in all CCH Fisher markets. It does not
converge, for example, in linear Fisher markets. An example of such a market
can be found in the full version.

Cheung, Cole, and Devanur [8] proved a worst-case lower bound of Ω(1/t2)
to complement their O(1/t) worst-case upper bound for the convergence rate
of entropic tâtonnement in Leontief markets. These results suggest a possible
convergence rate of O(1/t2) or O(1/t) for entropic tâtonnement for a class of
Fisher markets that includes Leontief markets. The goal of our experiments is
to better understand the class of Fisher markets for which entropic tâtonnement
converges, and to see if a worst-case convergence rate of O(1/t2) or O(1/t) might
hold, not only for Leontief, but for a larger class of CCH Fisher, markets.

In all our experiments, we randomly generated mixed CES Fisher markets,
each with 70 buyers and 30 goods. The buyers’ values for goods, and their
budgets, were drawn uniformly between 2 and 3. We drew initial prices uniformly
in the range [2, 3]. In our first two experiments, we initialized 10,000 mixed CES
markets, and we chose the ρ parameter uniformly at random with 1/2 probability
in the range [1/4, 3/4] and with 1/2 probability in the range [−1,−101].5 Note that
this range for ρ ensures that the elasticity of demand E of the market is bounded
above by 4. Under these conditions, we ran the entropic tâtonnement process
with a step size of 2 in each market.

In our first set of experiments, we assigned each buyer, uniformly at random,
either CES, Cobb-Douglas, or Leontief utilities, with E ≤ 4. We observed con-
vergence in all experiments, at the rate depicted in Fig. 2a. These results suggest
that the sublinear convergence rate of O(1/t) could be improved to O(1/t2) for
entropic tâtonnement in Leontief markets, and could perhaps even be extended
to a larger class of Fisher markets, beyond Leontief. (The inner frame in Fig. 2a
is a closeup of iterations 0 to 10, intended to highlight that the average trajec-
tory of the objective value throughout entropic tâtonnement decreases at a rate
faster than O(1/t2).)

We then ran the same experiment with buyers with linear utilities included
(i.e., unbounded elasticity of demand), and found that out of 10,000 experi-
ments, 9889 of them did not converge. This result is unsurprising in light of the
fact that tâtonnement is not guaranteed to converge in linear markets, since, in
expectation, buyers with linear utilities make up a quarter of this market.

Finally, we ran experiments in which we varied the elasticity of demand.
To do so, we ran tâtonnement in markets with elasticities of demand E ∈
5 We ruled out values of ρ close to 0 and 1 to ensure numerical stability.
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{0.1, 0.2, . . . , 0.9}, and we varied the step size γ ∈ {1, 2, . . . , 9}. The results
are presented in Fig. 2b. In this heat map, purple signifies that all experiments
converged, while yellow signifies that no experiments converged. Interestingly,
as the elasticity of demand of the market increased, prices still converged, albeit
only with a sufficiently large step size, thus at a slower rate.

In the light of the results of our experiments, we conjecture that tâtonnement
converges at a rate of O((1+E)/t2) in CCH Fisher markets. We recall that for
Leontief utilities E = 0, for weak gross complements markets E ≤ 1, for weak
gross substitutes markets E ≥ 1, and for linear utilities E = ∞. Our conjecture
thus implies that a convergence rate of O(1/t2) applies for Leontief Fisher mar-
kets, i.e., perfect complements, and that this rate deteriorates as the market’s
elasticity of demand increases, ultimately leading to non-convergence in markets
of perfect substitutes, i.e., linear Fisher markets. That is, the convergence rate
of tâtonnement in CCH Fisher markets can be seen as a combination of the
convergence rates of two types of extreme markets: perfect complements, i.e.,
Leontief, and perfect substitutes, i.e., linear, Fisher markets.

(a) (b)

Fig. 2. (a) Average trajectory of the value of the objective function throughout
tâtonnement with KL divergence for mixed CES Fisher markets with E ≤ 4 is drawn in
red. The predicted worst case sublinear convergence rate is depicted by a dashed blue
line. A convergence rate of 1/t2 and 1/t3 are denoted in green and orange, respectively.
(b) Percentage of experiments that con- verge as a function of step size and elastic-
ity of demand. Purple signfies that all experiments converged; yellow signfies that no
experiments converged. For sufficiently low values of E, we see convergence regardless
of step size; and for sufficiently large step sizes, we see convergence regardless of E.
(Color figure online)

6 Conclusion

In this paper, we introduced a new convex program whose dual characterizes
the equilibrium prices of CCH Fisher markets via expenditure functions. We
also related this dual to the dual of the Eisenberg-Gale program. The dual of
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our program is easily interpretable, and thus allows us to likewise interpret the
Eisenberg-Gale dual. In particular, while it is known that an equilibrium alloca-
tion that solves the Eisenberg-Gale program (the primal) is one that maximizes
the Nash social welfare, we show that equilibrium prices—the solution to the
dual—minimize the distance between the sellers’ surplus and the buyers’ Mar-
shallian surplus. Building on the results of Cheung, Cole, and Devanur [8], who
showed that the subdifferential of the dual of the Eisenberg-Gale program is
equal to the negative excess demand, we show the same for the dual of our convex
program, which implies that solving our convex program via generalized gradient
descent is equivalent to solving a Fisher market by means of tâtonnement.

The main technical innovation in this work is to express equilibrium prices
via expenditure functions. This insight could allow us to prove the convergence of
tâtonnement for more general classes of CCH utility functions, beyond CES. To
this end, we ran experiments that supported the conjecture that tâtonnement
converges at a rate of O ((1+E)/t2) in CCH Fisher markets with elasticity of
demand bounded by E. If this result holds in general, it would improve upon
and generalize prior results for Leontief markets to a larger class of CCH mar-
kets, which includes nested and mixed CES utilities. In future work, we plan
to continue to investigate this conjecture, using the insights gained from our
consumer-theoretic characterization of the equilibrium prices of Fisher markets.

We believe that our analysis offers important insights about the Eisenberg-
Gale program. We observe that in CCH markets, maximizing the bang-per-buck
is equivalent to minimizing the buck-per-bang, and moreover, the buck-per-bang
and bang-per-buck are constant across utility levels and budgets. Additionally,
optimizing prices to minimize buyers’ buck-per-bang is equivalent to maximizing
their utilities constrained by their budgets. As a result, equilibrium prices can be
determined by minimizing the buck-per-bang of buyers, which depends only on
prices. In other words, the computation of equilibrium prices can be decoupled
from the computation of equilibrium allocations. Indeed, there exists a primal-
dual convex program for these markets. The challenge in solving Fisher markets
where buyers’ utility functions can be non-homogeneous seems to stem from the
fact that the buck-per-bang and bang-per-buck vary across utility levels and
budget, which in turn means that the computation of prices and allocations
cannot be decoupled. As a result, we suspect that a primal-dual convex program
formulation that solves Fisher markets for buyers with non-homogeneous utility
functions may not exist.
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Yixin Tao for feedback on an earlier version of this paper. This work was partially
supported by NSF Grant CMMI-1761546.

References

1. Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy.
Econometrica J. Econ. Soc. 22, 265–290 (1954)



350 D. Goktas et al.

2. Arrow, K.J. Hurwicz, L.: On the stability of the competitive equilibrium, i. Econo-
metrica 26(4), 522–552 (1958). ISSN 00129682, 14680262. http://www.jstor.org/
stable/1907515

3. Arrow, K.J., Kehoe,T.J.: Distinguished fellow: Herbert scarf’s contributions to
economics. J. Econ. Perspect. 8(4), 161–181 (1994). ISSN 08953309, http://www.
jstor.org/stable/2138344

4. Blume, L.E.: Duality. The New Palgrave Dictionary of Economics, pp. 1–7 (2017).
https://doi.org/10.1057/978-1-349-95121-5 285-2

5. Brainard, W.C., Scarf, H.E. et al.: How to Compute Equilibrium Prices in 1891.
Citeseer, Princeton (2000)

6. Bregman, L.M.: The relaxation method of finding the common point of convex
sets and its application to the solution of problems in convex programming. USSR
Comput. Math. Math. Phys. 7(3), 200–217 (1967)

7. Chen, L., Ye, Y., Zhang, J.: A note on equilibrium pricing as convex optimization.
In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 7–16. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-77105-0 5

8. Cheung, Y.K., Cole, R., Devanur, N.: Tatonnement beyond gross substitutes? gra-
dient descent to the rescue. In Proceedings of the Forty-Fifth Annual ACM Sympo-
sium on Theory of Computing, STOC 2013, pp. 191–200. Association for Comput-
ing Machinery, New York (2013). ISBN 9781450320290, https://doi.org/10.1145/
2488608.2488633

9. Cole, R., Fleischer, L.: Fast-converging tatonnement algorithms for one-time and
ongoing market problems. In Proceedings of the Fortieth Annual ACM Symposium
on Theory of Computing, pp. 315–324 (2008)

10. Cole, R., Tao, Y.: Balancing the robustness and convergence of tatonnement (2019)
11. Cole, R., Fleischer, L., Rastogi, A.: Discrete price updates yield fast convergence

in ongoing markets with finite warehouses (2010)
12. Cole, R., et al.: Convex program duality, fisher markets, and nash social welfare

(2016)
13. Danskin, J.M.: The theory of max-min, with applications. SIAM J. Appl. Math.

14(4), 641–664 (1966). ISSN 00361399, http://www.jstor.org/stable/2946123
14. Devanur, N.R., Papadimitriou, C.H., Saberi, A., Vazirani, V.V.: Market equilib-

rium via a primal-dual-type algorithm. In: The 43rd Annual IEEE Symposium on
Foundations of Computer Science, 2002. Proceedings, pp. 389–395 (2002). https://
doi.org/10.1109/SFCS.2002.1181963

15. Devanur, N.R., Papadimitriou, C.H., Saberi, A., Vazirani, V.V.: Market equilib-
rium via a primal-dual algorithm for a convex program. J. ACM (JACM) 55(5),
1–18 (2008)

16. Devanur, N.R., Jain, K., Mai, T., Vazirani, V.V., Yazdanbod, S.: New con-
vex programs for fisher’s market model and its generalizations. arXiv preprint
arXiv:1603.01257 (2016)

17. Duffie, D., Sonnenschein, H.: Arrow and general equilibrium theory. J. Econ. Lit.
27(2), 565–598 (1989). ISSN 00220515, http://www.jstor.org/stable/2726689

18. Eisenberg, E., Gale, D.: Consensus of subjective probabilities: the pari-mutuel
method. Annal. Math. Stat. 30(1), 165–168 (1959)

19. Gao, Y., Kroer, C.: First-order methods for large-scale market equilibrium com-
putation. In: NeurIPS (2020). https://arxiv.org/abs/2006.06747

20. Gillen, B.J., Hirota, M., Hsu, M., Plott, C.R., Rogers, B.W.: Divergence and con-
vergence in scarf cycle environments: experiments and predictability in the dynam-
ics of general equilibrium systems. Econ. Theor. 71, 1–52 (2020)

http://www.jstor.org/stable/1907515
http://www.jstor.org/stable/1907515
http://www.jstor.org/stable/2138344
http://www.jstor.org/stable/2138344
https://doi.org/10.1057/978-1-349-95121-5_285-2
https://doi.org/10.1007/978-3-540-77105-0_5
https://doi.org/10.1145/2488608.2488633
https://doi.org/10.1145/2488608.2488633
http://www.jstor.org/stable/2946123
https://doi.org/10.1109/SFCS.2002.1181963
https://doi.org/10.1109/SFCS.2002.1181963
http://arxiv.org/abs/1603.01257
http://www.jstor.org/stable/2726689
https://arxiv.org/abs/2006.06747


A Consumer-Theoretic Characterization of Fisher Market Equilibria 351

21. Jain, K., Vazirani, V.V., Ye, Y.: Market equilibria for homothetic, quasi-concave
utilities and economies of scale in production. In: SODA, vol. 5, pp. 63–71 (2005)

22. Levin, J.: Lecture notes on consumer theory, October 2004
23. Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic theory. Number

9780195102680 in OUP Catalogue. Oxford University Press (1995). https://ideas.
repec.org/b/oxp/obooks/9780195102680.html

24. Nemirovskij, A.S., Yudin, D.B.: Problem complexity and method efficiency in opti-
mization (1983)

25. Nissan, N., Roughgarden, T.: Algorithmic Game Theory. Cambridge University
Press, Cambridge (2007). https://doi.org/10.1017/CBO9780511800481

26. Shephard, R.W.: Theory of Cost and Production Functions. Princeton University
Press, Princeton (2015)

27. Tanaka, Y.: Nonsmooth optimization for production theory. Hokkaido University,
Sapporo (2008)

28. Vives, X.: Small income effects: a marshallian theory of consumer surplus and
downward sloping demand. Rev. Econ. Stud. 54(1), 87–103 (1987). ISSN 00346527,
1467937X, http://www.jstor.org/stable/2297448

29. Walras, L.: Elements of Pure Economics; or, The Theory of Social Wealth. In:
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Abstract. We consider the problem of allocating indivisible goods to
agents with additive valuation functions. Kurokawa, Procaccia and Wang
[JACM, 2018] present instances for which every allocation gives some
agent less than her maximin share. We present such examples with larger
gaps. For three agents and nine items, we design an instance in which
at least one agent does not get more than a 39

40
fraction of her maximin

share. Moreover, we show that there is no negative example in which
the difference between the number of items and the number of agents
is smaller than six, and that the gap (of 1

40
) of our example is worst

possible among all instances with nine items.
For n ≥ 4 agents, we show examples in which at least one agent does

not get more than a 1− 1
n4 fraction of her maximin share. In the instances

designed by Kurokawa, Procaccia and Wang, the gap is exponentially
small in n.

Our proof techniques extend to allocation of chores (items of negative
value), though the quantitative bounds for chores are different from those
for goods. For three agents and nine chores, we design an instance in
which the MMS gap is 1

43
.

Keywords: Fair division · Indivisible items · Maximin share · Goods ·
Chores

1 Introduction

We consider allocation problems with m items, n agents, and nonnegative addi-
tive valuation functions. The maximin share (MMS) of an agent i is the highest
value wi, such that if all agents have the same valuation function vi that i has,
there is an allocation in which every agent gets value at least wi. An allocation
is maximin fair if every agent gets a bundle that she values at least as much as
her MMS. Hence if all agents have the same valuation function, a maximin fair
allocation exists.

Perhaps surprisingly, if agents have different additive valuation functions,
then a maximin fair allocation need not exist. Kurokawa, Procaccia and
Wang [10] present negative examples showing that for every n ≥ 3, there are
c© Springer Nature Switzerland AG 2022
M. Feldman et al. (Eds.): WINE 2021, LNCS 13112, pp. 355–372, 2022.
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instances for which in every allocation, at least one agent does not receive her
MMS. The gap (namely, the fraction of MMS lost by some agent) is not stated
explicitly in [10]. However, one can derive explicit gaps from their examples by
substituting values for certain parameters that are used in the examples. Doing
so gives gaps that are exponentially small in n. Even for small n, the gaps shown
by these examples are orders of magnitude smaller than the positive results
that are known, where these positive results show that (for additive valuations)
there always is an allocation that gives every agent at least a 3

4 + Ω( 1
n ) of her

MMS [3,6,8,10].
We present negative examples with substantially larger gaps than those shown

in [10]. The motivation for designing such examples is that they are needed if one is
to ever establish tight bounds on the fraction of the MMS that can be guaranteed to
be given to agents. Though we are far from establishing tight bounds for general
instances, our bounds are tight in special cases. In particular, when there are at
most nine items and the additive valuation functions are integer valued, our results
imply the following tight threshold phenomenon. If for every agent, her valuation
function is such that the sum of all item values is at most 119, then a maximin fair
allocation always exists. If the sum of item values is 120, then there are instances
in which a maximin fair allocation does not exist, and then the gap is 1

40 . If the
sum of item values is larger than 120, the gap cannot be larger then 1

40 .

1.1 Our Results

The term negative example will refer to an allocation instance with additive
valuation functions in which there is no allocation that gives every agent her
MMS. The term Gap(n,m) refers to the largest possible value δ ≥ 0, such
that there is an allocation instance with m items and n agents with additive
valuations, such that in every allocation there is an agent that gets at most a
1 − δ fraction of her MMS.

In our work, we find negative examples with the smallest possible number of
items. The number of items turns out to be nine. Among allocation instances
with nine items, we find the allocation instance with the largest gap. Theorem 1
is based on this allocation instance.

Theorem 1. There is an allocation instance with three agents and nine items
for which in every allocation, at least one of the agents does not get more than
a 39

40 fraction of her MMS. In other words,

Gap(n = 3 , m = 9) ≥ 1
40

.

The minimality of the number items in Theorem 1 is implied by Theorem 2,
together with Proposition 1 that implies that n ≥ 3 in every negative example.

Theorem 2. For every n, every allocation instance with n agents and m ≤ n+5
items has an allocation in which every agent gets her MMS. In other words,

Gap(n ≥ 1 , m ≤ n + 5) = 0
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A weaker version of Theorem 2 (with m ≤ n+3) was previously proved in [4].
The maximilaty of the gap in Theorem 1 (when there are nine items) is

implied by Theorem 3.

Theorem 3. Every allocation instance with three agents and nine items has an
allocation in which every agent gets at least a 39

40 fraction of her MMS. In other
words,

Gap(n = 3 , m = 9) ≤ 1
40

The proof of Theorem 3 is based on analysis that reduces the infinite space
of possible negative examples into a finite number of classes. For each class, the
negative example with largest possible gap within the class can be determined by
solving a linear program. For every class we solved the respective linear program
using a standard LP solver, and verified that there is no negative example (with
9 items) for which the gap is larger than 1

40 .
Theorem 1 is concerned with three agents. We also provide negative exam-

ples for every number of agents n ≥ 4. The gaps in these negative examples
deteriorate at a rate that is polynomial in 1

n .

Theorem 4. For every n ≥ 4, there is an allocation instance with n agents and
at most 3n + 3 items for which in every allocation, at least one of the agents
does not get more than a 1 − 1

n4 fraction of her MMS. In other words,

Gap(n ≥ 4 , m ≤ 3n + 3) ≥ 1
n4

Our negative examples that prove Theorem 4 are inspired by, and contain
ingredients from, the negative examples presented in [10]. The new aspect in our
constructions is the formulation of Lemma 1, the observation that this lemma
suffices for the proofs to go through (a related but more demanding property
was used in [10]), and a design, based on modular arithmetic, that satisfies the
Lemma.

The techniques of this paper extend from allocation of goods to allocation of
chores (items of negative value, or equivalently, positive dis-utility). We find that
results for chores are qualitatively similar to those for goods, though quantitative
values of the gaps are different from those values for goods. Likewise, the proof
techniques for the case of chores are similar to those shown in this paper for
goods, though some of the details change. To simplify the presentation in this
paper, all sections of the paper refer only to allocation of goods, except for Sect. 6
that refers only to allocation of chores. Section 6 is kept short, and presents only
the adaptation of Theorem 1 to the case of chores.

Theorem 5. There is an allocation instance with three agents and nine chores
for which in every allocation, at least one of the agents does not get less than
a 44

43 fraction of her MMS (of dis-utility). In other words, the instance has an
MMS gap of 1

43 .
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We have verified that with eight chores, there always is an allocation giving
every agent no more dis-utility than her MMS, and (using a computer assisted
proof) that for nine items, 1

43 is the largest possible gap. However, we omit
details of this verification from this manuscript.

1.2 Related Work

In this section we review related work that is most relevant to the current paper.
In particular, we shall only review papers that concern the maximin share (there
are numerous papers considering other fairness notions), and only in the context
of nonnegative additive valuation functions (some of the works we cite consider
also other classes of valuation functions).

The maximin share was introduced by Budish [5]. The fact that there are
allocations instances with additive valuations in which no MMS allocation exists
was shown in [10]. That paper presents an instance with three agents and twelve
items that has no MMS allocation. The gap in that instance as presented in
that paper is around 10−6, though by optimizing parameters associated with
the instance it is possible to reduce the gap to the order of 10−3. The paper also
shows that for every n ≥ 4 there are instances with 3n + 4 items and no MMS
allocation. The gaps in these instances are exponentially small in n, and this is
inherent in the construction given in that paper.

Work on proving the existence of allocations that give a large fraction of the
MMS was initiated in [10]. The largest fraction currently known is 3

4 + 1
12n [6].

For the case of three agents, it was shown in [7] that there is an allocation
that gives every agent at least a 8

9 fraction of her MMS. Our Theorem 1 shows
that one cannot guarantee more than a 39

40 fraction in this case. For the case of
four agents, it was shown in [8] that there is an allocation that gives every agent
at least a 4

5 fraction of her MMS.
In [4] it was shown that an MMS allocation always exists if m ≤ n + 3. We

improve the bound to m ≤ n+5, and show that this is best possible when n = 3.
In [1] it was shown that if all items have values in {0, 1, 2} then an MMS

allocation exists. Our negative example in Theorem 1 uses integer values as high
as 26.

1.3 Preliminaries

An allocation instance has a set M = {e1, . . . , em} of m items and a set {1, . . . n}
of n agents. The term bundle will always denote a set of items. Every agent i
has a valuation function vi : 2M → R that assigns a value to every possible
bundle of items. We assume throughout that valuation functions v are normalized
(v(∅) = 0) and monotone (v(S) ≤ v(T ) for all S ⊂ T ⊆ M). An n-partition of
M is a partition of M into n disjoint bundles. Pn(M) denotes the set of all
n-partitions of M . An allocation A = (A1, . . . , An) is an n-partition of M , with
the interpretation that for every 1 ≤ i ≤ n, agent i receives bundle Ai. The
utility that agent i derives from this allocation is vi(Ai).
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Definition 1. Consider an allocation instance with a set M = {e1, . . . , em} of
m items and a set {1, . . . n} of n agents. Then the maximin share of agent i,
denoted by MMSi, is the maximum over all n-partitions of M , of the minimum
value under vi of a bundle in the n-partition.

MMSi = max
(B1,...,Bn)∈Pn(M)

min
j

[vi(Bj)]

An n-partition that maximizes the above expression will be referred to as an
MMSi-partition.

An allocation that gives every agent at least her MMS is referred to as an
MMS allocation.

A valuation function v is additive if v(S) =
∑

e∈S v(e). Though Definition 1
applies to arbitrary valuation functions, in this paper we shall only consider
additive valuation functions.

By convention, in all remaining parts of the paper, all valuation functions
are additive, unless explicitly stated otherwise.

We now review some known propositions concerning the MMS (with additive
valuations). For completeness, we also sketch the proofs of these propositions,
though we emphasize that all propositions in this section were known and are
not original contributions of the current paper.

Proposition 1. Every allocation instance in which either all agents or all
agents but one have the same valuation function has an MMS allocation.

Proof. Let v = v1 = . . . = vn−1 be the valuation function shared by all agents
but one, and let vn be the valuation function of agent n who may have a different
valuation function. Let B1, . . . , Bn be an MMS partition with respect to v. For
every agent i with 1 ≤ i ≤ n − 1, every one of these bundles has value at
least MMSi. Allocate to agent n the bundle j that maximizes vn(Bj), and
allocate the remaining bundles to the other agents. Additivity of vn implies that
vn(Bj) ≥ MMSn, and hence every agent gets at least her MMS.

The following three propositions concern reduction steps that allow us to
replace an allocation instance by a simpler one.

An allocation instance with additive valuations and m items {e1, . . . , ej} is
ordered if for every agent i and every two items ej and ek with j < k we have that
vi(ej) ≥ vi(ek). Given an unordered allocation instance with additive valuations
and m items, its ordered version is obtained by replacing the valuation function
vi of each agent i by a new additive valuation function v′

i in which item values are
non-increasing. That is, let σ denote a permutation over m items with respect to
which the values of items are non-increasing under vi. Then for every 1 ≤ j ≤ m
we have that v′

i(ej) = vi(eσ−1(j)). The following proposition is due to [4].

Proposition 2. For every instance I with additive valuations, every allocation
A′ for its ordered version I ′ can be transformed to an allocation A for I, while
ensuring that every agent derives at least as high utility from A in I as derived
from A′ in I ′.



360 U. Feige et al.

Proof. A choosing sequence is a sequence of names of agents (repetitions are
allowed). The choosing sequence induces an allocation by the following proce-
dure. Starting from round 1, in each round r, the agent whose name appears in
the rth location in the choosing sequence receives the item of highest value for
the agent (ties can be broken arbitrarily), among the yet unallocated items. The
allocation A′ for I ′ induces a choosing sequence, where for every r, the agent
in location r is the one to which A′ allocated the rth most valuable item in I ′.
Using this choosing sequence for the instance I, in every round r, the respective
agent gets an item that she values at least as her rth most valuable item, which
is the value of the item that she got under A′.

Proposition 2 implies that when searching for a negative example with the
maximum possible gap, it suffices to restrict attention to ordered instances.

The following two propositions are helpful for arguments that are based on
induction on n. As each such proposition concerns two instances, in the MMS
notation we shall specify which instance we refer to.

Proposition 3. Let I be an arbitrary allocation instance with a set M of items
and n agents. Let I ′ be an allocation instance derived from I by removing an
arbitrary item e from M , and removing one arbitrary agent. Then for each of
the remaining agent q, MMSq(I ′) ≥ MMSq(I).

Proof. Let (B1, . . . , Bn) be an MMSq(I) partition. By renaming bundles, we
may assume without loss of generality that e ∈ Bn. Then (B1, . . . , Bn−2, (Bn−1∪
Bn\{e})) is an (n − 1) partition for M\{e} that certifies that MMSq(I ′) ≥
MMSq(I).

Proposition 4. Let I be an arbitrary allocation instance with a set M of m ≥ 2
items, and n agents. Let I ′ be an allocation instance derived from I by removing
two items ei and ej from M , and removing one arbitrary agent. Then for every
remaining agent q, if either the MMSq(I) partition has a bundle that contains
both ei and ej, or vq(ei) + vq(ej) ≤ MMSq(I), then MMSq(I ′) ≥ MMSq(I).

Proof. Let (B1, . . . , Bn) be an MMSq(I) partition for I. If both ei and ej belong
to the same bundle, then the proof is as in that for Proposition 3. If ei and
ej are in different bundles, by renaming bundles, we may assume without loss
of generality that ei ∈ Bn−1 and ej ∈ Bn. Then (B1, . . . , Bn−2, (Bn−1\{ei}) ∪
(Bn\{ej})) is an (n−1) partition for M\{ei, ej} that certifies that MMSq(I ′) ≥
MMSq(I). This is because vq ((Bn−1\{ei}) ∪ (Bn\{ej})) = vq(Bn−1)+vq(Bn)−
(vq(ei) + vq(ej)) ≥ 2MMSq(I) − MMSq(I) = MSSq(I).

2 An MMS Gap of 1
40

In this section we prove Theorem 1, showing an allocation instance for which
in every allocation, at least one of the agents gets at most a 39

40 fraction of her
MMS.
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Proof. To present the instance that proves Theorem 1, we think of the nine items
as arranged in a three by three matrix, with rows r1, r2, r3 (starting from the
top) and columns c1, c2, c3 (starting from the left).⎛

⎝
e1 e2 e3
e4 e5 e6
e7 e8 e9

⎞

⎠

There are three agents, referred to as R (the row agent), C (the column
agent), and U (the unbalanced agent). The MMS of every agent is 40. When
depicting valuation functions, for each agent, we present the items in one of her
MMS bundles in boldface.

Every row in the valuation function of R has value 40 and gives R her MMS.
Her valuation function is:⎛

⎝
1 16 23
26 4 10
12 19 9

⎞

⎠

Every column in the valuation function of C has value 40 and gives C her
MMS. Her valuation function is:⎛

⎝
1 16 22
26 4 9
13 20 9

⎞

⎠

The bundles that give U her MMS are p = {e2, e4} (the pair, in boldface),
d = {e3, e5, e7} (the diagonal), and q = {e1, e6, e8, e9} (the quadruple). The
valuation function of U is:⎛

⎝
1 15 23
25 4 10
13 20 9

⎞

⎠

It remains to show that no allocation gives every agent her MMS. An allo-
cation is a partition into three bundles. As a sanity check, let us first consider
the three partitions that each give one of the agents her MMS. For the partition
(r1, r2, r3), both C and U want only r3, and hence one of them does not get her
MMS. For the partition (c1, c2, c3), both R and U want only c3, and hence one
of them does not get her MMS. For the partition (p, d, q), both R and C want
only p, and hence one of them does not get her MMS.

To analyse all possible partitions in a systematic way, we consider a valuation
function M that values each item as the maximum value given to the item by
the three agents. Hence M is:⎛

⎝
1 16 23
26 4 10
13 20 9

⎞

⎠

Every allocation that gives every agent her MMS partitions M into three
bundles, where the sum of values in each bundle is at least 40, but not more
than 42 (as the sum of all values of M is 40 ∗ 3 + 2). If one of the bundles has
two items, then this bundle must be {e2, e4} = p, whose value under M is 42.
Hence each of the two remaining bundles must have value 40 under M . The
unique way of partitioning the remaining items into two bundles of value 40 is
to have the bundles {e3, e5, e7} = d and {e1, e6, e8, e9} = q. (The only way of
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reaching a value 40 in a bundle that contains item e3 of value 23 is to include
the two items of values 4 and 13.) But we already saw (in the sanity check) that
the partition (p, d, q) is not a valid solution.

It follows that the partition must be into three bundles, each of size three.
The bundle containing e9 must have value between 40 and 42. There are only
two such bundles of size three, namely r3 and c3. Each of them has value 42.
If one of them is chosen, the remaining two bundles in the partition must then
each be of value 40. For e4, the only two bundles of value 40 are r2 and c1.
Hence we get only two possible partitions, (r1, r2, r3) and (c1, c2, c3), and both
were already excluded in our sanity check.

3 MMS Gaps that Are Inverse Polynomial in the Number
of Agents

We present examples that apply for every n ≥ 4. The initial design of our
examples will include 5n − 7 items, but for n ≥ 6, this number will be reduced
later. It will be convenient to think of the items as being arranged as selected
entries in an n by n matrix, along the perimeter of the matrix, and along its
main diagonal. We will construct two valuation functions, where a set R of at
least two agents have valuation function VR, and a set C of at least two agents
have valuation function VC (here R stands for row and C stands for column, and
|R| + |C| = n). We will start with a base matrix B, and then modify B so as to
obtain VR and VC .

In the base matrix B, the items have only seven different values, regardless of
the value of n. We shall partition the items into groups of items of equal value,
and give an informative name to each group.

Rows are numbered from top down, and columns from left to right. We
use the convention that the index j specifies an arbitrary value in the range
2 ≤ j ≤ n − 1.

The value of items in each group, and the locations of the groups in B, are
as follows.

– B1j = (n − 2)n. (Top row, excluding corners).
– B1n = 1. (Top-right corner.)
– Bj1 = (n − 2)(n − 1). (Left column, excluding corners.)
– Bjj = (n − 2)(n2 − 4n + 2). (Main diagonal, excluding corners.)
– Bjn = (n − 2)(n − 1) + 1. (Right column, excluding corners.)
– Bn1 ∪ Bnj = (n − 2)2 + 1. (Bottom row, excluding bottom-right corner).
– Bnn = (n − 2)(n − 3). (Bottom-right corner.)

For n = 4, this gives the following matrix.⎛

⎜
⎜
⎝

0 8 8 1
6 4 0 7
6 0 4 7
5 5 5 2

⎞

⎟
⎟
⎠
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Observe that all entries of B are nonnegative. Moreover, All row sums and
all column sums have the same value tB = n(n − 2)2 + 1

A bundle of items will be called good if the sum of its values is tB . Hence
all rows and all columns are good, but there are also other bundles that are
good. A partition of all items into n bundles is good if every bundle in the
partition is good. For example, a partitioning of the items into row bundles is
good, and likewise, a partitioning into column bundles is good. The following
lemma constrains the structure of good partitions of B.

Lemma 1. In every partitioning of the items of B into n good bundles, the
structure of the good partition is such that at least one of the following three
conditions hold:

1. The bottom row is split among the n good bundles (one item in each bundle).
2. The right column is split among the n good bundles (one item in each bundle).
3. At least one of the bundles contains at least one item from the bottom row

and at least one item from the right column, but does not contain the item
Bnn.

Proof. Observe that tB = n(n − 2)2 + 1 = 1 modulo n − 2. There are exactly
2n − 2 items that have value 1 modulo n − 2 (the bottom row and the right
column, excluding the bottom-right corner). We refer to these items as special.
The remaining items have value 0 modulo n − 2, and are not special. In every
good partition, it must be the case that one good bundle has n−1 special items,
and each other good bundle has one special item.

Consider the good bundle with n − 1 special items.
If the n−1 special items are all in the bottom row (or all in the right column),

then item Bnn must be the remaining item in the bundle (that is the only way
to reach tB), and then the right column (or bottom row) must be split.

If the n − 1 odd items include at least one from the bottom row and at least
one from the right column, then we may assume that Bnn is also in the bundle
(as otherwise condition 3 of the Lemma holds). This accounts for n items in the
bundle. The sum of values of these n items cannot possibly be equal to tB . This
can be verified by a case analysis. If B1n is among these items, then the only
way to reach tB with n−2 additional special items is to add all items of Bjn (as
special items in the bottom row have strictly smaller value than items in Bjn),
but then the bundle has no special items from the bottom row. Alternatively, if
B1n is not among these items, then the only way to reach tB with n − 1 special
items is to add all special items of the bottom row (as special items in Bjn have
strictly larger value than special items in the bottom row), but then the bundle
has no special items from the right column.

Consequently, the sum values of these n items needs to be strictly smaller
than tB . Their total value is minimized if they are B1n ∪ Bnj ∪ Bnn, giving
a value of 1 + (n − 2)((n − 2)2 + 1) + (n − 2)(n − 3) = (n − 1)(n − 2)2 + 1.
Hence a value of (n − 2)2 is missing in order to complete the sum of values to
tB = n(n − 2)2 + 1. For n ≥ 5, none of the remaining items has such small
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value, and hence such a good bundle cannot be formed at all. The only case that
remains to be considered is n = 4, because for n = 4 the value of diagonal items
Bjj happens to satisfy (n − 2)(n2 − 4n + 2) = (n − 2)2.

Recall the matrix for n = 4 depicted above. The composition of values in a
good bundle that has two special items from the bottom row, the special item
B14, the item B44, and one diagonal item, is (5, 5, 1, 2, 4). But then one of the
two items of value 8 does not have a good bundle. (An item of value 8 needs
an additional value of 9 to reach 17. However, of the items that remain, there is
only one combination of items that gives value 9, namely, as 4 + 5.)

Remark 1. Our proof for Theorem 4 follows a pattern used in [10]. In their
construction, the base matrix B was required to have the property that it has
only two good partitions: the row partition and the column partition. In contrast,
we allow B to have many more good partitions (as specified in Lemma 1), and
show that even with this extra flexibility, the proof pattern of [10] still works.
Given this extra flexibility in the properties of B, we design such matrices (one
for each value of n) with much smaller integer entries than the corresponding
matrices designed in [10].

Using the matrix B, we shall now create two matrices, one for VR and one
for VC . First, every entry of B is multiplied by n. Then, for VR, subtract 1 from
the value of each special item in the bottom row, and add n − 1 to the value of
the bottom-right corner. For n = 4, the matrix for VR is:⎛

⎜
⎜
⎝

0 32 32 4
24 16 0 28
24 0 16 28
19 19 19 11

⎞

⎟
⎟
⎠

The maximin share of every agent in R is 68 (each row is a bundle). For
general n ≥ 4, this maximin share is tV = ntB = n2(n − 2)2 + n.

For VC , subtract 1 from the value of each special item in the right column,
and add n− 1 to the value of the bottom-right corner. For n = 4, the matrix for
VC is:⎛

⎜
⎜
⎝

0 32 32 3
24 16 0 27
24 0 16 27
20 20 20 11

⎞

⎟
⎟
⎠

Similar to agents in R, the maximin share of every agent in C is 68 (each
column is a bundle). For general n ≥ 4, this maximin share is tV = ntB =
n2(n − 2)2 + n.

Proposition 5. If |R| + |C| = n and |R|, |C| ≥ 2, then in every allocation, at
least one player gets a bundle that he values as at most tV − 1.

Proof. The allocation partitions the items into n bundles. If at least one of the
bundles has value less than tB in B, then the same bundle has value at most
n(tB − 1) + (n − 1) = tV − 1 for the agent who receives it. Hence we may
assume that every bundle has value tB in B. By Lemma 1, there are only three
possibilities for this.
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1. The bottom row is split. Then every agent in R receives a bundle that contains
a single item from the bottom row. As |R| ≥ 2, for at least one row agent, this
single item lost a value of 1 in the process of constructing VR. Consequently,
the value received by this agent is ntB − 1 = tV − 1.

2. The right column is split. Then every agent in C receives a bundle that con-
tains a single item from the right column. As |C| ≥ 2, for at least one column
agent, this single item lost a value of 1 in the process of constructing VC .
Consequently, the value received by this agent is ntB − 1 = tV − 1.

3. At least one of the bundles contains at least one item from the bottom row
and at least one item from the right column, but does not contain the item
Bnn. Such a bundle has value at most tV − 1 for every agent.

We can now prove Theorem 4. In fact, we state a somewhat stronger version
of it in which the gap is improved from 1

n4 to a somewhat larger value.

Theorem 6. For given N , let n = �N+4
2 �. Then for every N ≥ 4, there is an

allocation instance with N agents and at most N + 4n − 7 items (which gives
3N +1 when N is even and 3N +3 when N is odd) for which in every allocation,
at least one of the agents does not get more than a 1− 1

f(n) fraction of her MMS.
Here, the function f(n) has value f(n) = n2(n − 2)2 + n. In other words,

Gap(N ≥ 5 , m ≤ 3N + 3) ≥ 1
f(n)

Proof. For 4 ≤ N ≤ 5 we have that the corresponding value of n = �N+4
2 � = N ,

and hence the corresponding instances was described above. (Observe that f(n)
equals the corresponding value of tV in these instances.)

For N ≥ 6, we have that n = �N+4
2 � < N . In this case we construct an

instance as above for the corresponding value of n (with value tV = n2(n−2)2 +
n). We add to this instance N−n agents so that the number of agents becomes N .
Among the agents, we set N

2 � agents to be row agents, and the remaining agents
to be column agents. We also add to the instance N − n auxiliary items, each of
value tV , and so the total number of items is (5n − 7) + (N − n) = N + 4n − 7.

For each of the N agents, the MMS is tv (by partitioning the set of items into
the N −n auxiliary items, and either the n rows or the n columns). N −n agents
get their MMS by getting an auxiliary item. However, among the n agents that
remain, at least two are row agents (because |R|−(N −n) = N

2 �−N +�N+4
2 � =

2) and at least two are column agents, and this suffices for Proposition 5 to apply.

4 An MMS Allocation Whenever m ≤ n + 5

In this section we prove Theorem 2, that if m ≤ n + 5 there always is an MMS
allocation. The proof makes use of the following two lemmas.

Lemma 2. Let I be an allocation instance with n agents and m items, and
assume that for every instance with n − 1 agents and m − 1 items there is an
MMS allocation. If there is an agent i and item e for which vi(e) ≥ MMSi(I),
then I has an MMS allocation.
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Proof. Remove item e and agent i, resulting in an instance I ′ with n − 1 agents
and m−1 items. By Proposition 3, for every agent j �= i it holds that MSSj(I ′) ≥
MSSj(I). By the assumption of the lemma, there is an MSS allocation A′ for
I ′. Extend A′ to an allocation A for I, by giving item e to agent i. Allocation A
is an MSS allocation for I.

Lemma 3. Let I be an allocation instance with n agents and m items, and
assume that for every instance with n − 1 agents and m − 2 items there is an
MMS allocation. Suppose that there is an agent q and a bundle B containing
two items such that vq(B) ≥ MMSq(I), and moreover, for every agent j �= q,
at least one of the following conditions hold:

1. B is small: vj(B) ≤ MSSj(I).
2. B is directly dominated: B is equal to or contained in one of the bundles of

the MMSj partition.
3. B is indirectly dominated: the MMSj partition contains a bundle B′ such

that vj(B′) ≥ vj(B) and |B′ ∩ B| = 1.

Then I has an MMS allocation.

Proof. Remove bundle B and agent q, resulting in an instance I ′ with n − 1
agents and m − 2 items. We claim that MSSj(I ′) ≥ MSSj(I) for every agent
j �= q. For agents for which either condition 1 or condition 2 hold, this follows
by Proposition 4.

For an agent j for which only condition 3 holds, let B′
1 denote the other bundle

intersected by B. Replace the two bundles B′ and B′
1 in the MMSj partition by

the two bundles B and B1 = (B′ ∪B′
1)\B. We have that vj(B) ≥ MMSj(I) (as

condition 1 is assumed not to hold) and vj(B1) ≥ MMSj(I). (The last inequality
can be verified as follows. Condition 3 holding implies that vj(B′) ≥ vj(B). This
together with (B ∪ B1) = (B′ ∪ B′

1) implies that vj(B1) ≥ vj(B′
1). The fact that

B′
1 is a bundle in the original MSSj partition implies that vj(B′

1) ≥ MMSj .)
Hence we get an MMSj partition in which B is one of the bundles, and now we
can apply condition 2 to conclude that MSSj(I ′) ≥ MSSj(I).

By the assumption of the lemma, there is an MSS allocation A′ for I ′. Extend
A′ to an allocation A for I, by giving bundle B to agent q. Allocation A is an
MSS allocation for I.

We now prove Theorem 2.

Proof. The proof is by induction on n. The theorem trivially holds for n = 1,
and holds for n = 2 by Proposition 1. The case n = 2 serves as the base case of
the induction, and it remains to prove the theorem for n ≥ 3. In all cases with
n ≥ 3 we assume without loss of generality:

– The theorem has already been proved for all n′ < n (the inductive hypothe-
sis).

– m = n + 5 (because if m < n + 5, we may add n + 5 − m auxiliary items that
have 0 value to all agents).
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– All bundles in the MMS partition of every agent are of size at least 2.

The third assumption can be made without loss of generality, as otherwise
there is an agent i and item e for which vi(e) ≥ MMSi, and then Lemma 2 allows
us to reduce the instance to one in which the induction hypothesis already holds.

Observe that the third assumption implies (among other things) that it suf-
fices to consider only n ≤ 5, because for n ≥ 6 we have that m = n + 5 < 2n,
and the third assumption cannot hold.

Using these assumptions, the cases n = 3, n = 4, and n = 5 are proved in
Lemma 4, Lemma 5, and Lemma 6, respectively.

4.1 Three Agents, Eight Items

Lemma 4. Every allocation instance with n = 3 agents and m = n + 5 items
has an MMS allocation.

Proof. By Proposition 2 we may assume that the instance is ordered (for every
1 ≤ i < j ≤ m and every agent q, vq(ei) ≥ vq(ej)).

Recall (see the proof of Theorem 2) that we may assume that the MMS
partition of an agent contains only bundles of size at least 2. Consequently, for
every agent j, her MMSj partition contains at least one bundle (call it Bj) that
has exactly two items.

If the three bundles B1, B2 and B3 are disjoint, give each agent her respective
bundle, and allocate the two remaining items arbitrarily.

It remains to consider the case that at least two of these bundles intersect.
W.l.o.g., let these bundles be B1 and B2.

Suppose that |B1 ∩B2| = 1. Then as the instance is ordered, all agents agree
that one of the two bundles, B1 or B2, is not more valuable than the other.
W.l.o.g., let this bundle be B1. Likewise, if B1 = B2, then also in this case B1

is not more valuable than B2.
There are two cases to consider:

– v3(B1) ≥ MMS3. In this case Lemma 3 applies with agent 3 serving as agent
q, and with B1 serving as B. Hence an MMS allocation exists.

– v3(B1) < MMS3. In this case Lemma 3 applies with agent 1 serving as agent
q, and with B1 serving as B. Hence an MMS allocation exists.

4.2 Four Agents, Nine Items

Lemma 5. Every allocation instance with n = 4 agents and m = n + 5 items
has an MMS allocation.

Proof. Consider an allocation instance I with four agents and a set M of at most
nine items. Recall (see the proof of Theorem 2) that we may assume that the
MMS partition of an agent contains only bundles of size at least 2. Consequently,
for every agent i, her MMSi partition contains three bundles of size two, and
one bundle of size three.
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Let (B1,1, B1,2, B1,3, B1,4) denote the MMS1 partition of agent 1, with
|B1,1| = |B1,2| = |B1,3| = 2 and |B1,4| = 3. Suppose that for some k ≤ 3,
there is exactly one agent i ≥ 2 for which vi(B1,k) ≥ MMSi. Then Lemma 3
applies with agent i serving as agent q, and B1,k serving as bundle B. Hence an
MMS allocation exists.

Likewise, if for some k ≤ 3 there is no agent i ≥ 2 for which vi(B1,k) ≥
MMSi, Lemma 3 applies with agent 1 serving as agent q, and B1,k serving as
bundle B. Hence also in this case an MMS allocation exists.

It follows that we can assume that for each of the bundles {B1,1, B1,2, B1,3}
there is at most one agent 2 ≤ i ≤ 4 that values it less than her MSS.

Consider now a bipartite graph G. Its left hand side contains four vertices,
corresponding to the four agents {1, 2, 3, 4}. Its right hand side has four vertices,
corresponding to the four bundles {B1,1, B1,2, B1,3, B1,4}. For every 1 ≤ i, j ≤ 4
there is an edge between agent i and bundle B1,j if vi(B1,j) ≥ MMSi. Observe
that a perfect matching in G induces an MMS allocation, giving every agent her
matched bundle. Hence it suffices to show that G has a perfect matching.

Each of the right hand side vertices B1,k for 1 ≤ k ≤ 3 has degree at least 3
(as at most one agent values it less than her MMS), and B1,4 has degree at least 1
(as agent 1 values it at least as MSS1). Hence for every k ≤ 3, every set of k
right hand side vertices has at least k left hand side neighbors. Moreover, the
set of all right hand side vertices has four left hand side neighbors, as for every
agent i, at least one of the four bundles has value at least 1

4vi(M) ≥ MMSi.
Hence by Hall’s condition, G has a perfect matching.

4.3 Five Agents, Ten Items

Lemma 6. Every allocation instance with n = 5 agents and m = n + 5 items
has an MMS allocation.

Proof. Let I be an arbitrary allocation instance with 5 agents and 10 items.
Recall (see the proof of Theorem 2) that we may assume that the MMS partition
of an agent contains only bundles of size at least 2. As m = 2n, this implies that
for every agent i, all bundles of her MMSi partition are of size two.

By Proposition 2 we may assume that the instance is ordered (for every
1 ≤ i < j ≤ m and every agent q, vq(ei) ≥ vq(ej)). For every agent i, consider
the bundle Bi in her MMS partition that contains the item e1. This gives five
bundles (not necessarily all distinct). Among these bundles, consider the bundle
B in which the second item of the bundle has highest index (lowest value). Then
for every agent i we have that vi(B) ≤ vi(Bi), because the instance is ordered.
Let q be an agent that has B as a bundle in her MMS partition (if there is more
that one such agent, pick one arbitrarily). Lemma 3 (condition 3 in the lemma)
implies I has an MMS allocation.



A Tight Negative Example for MMS Fair Allocations 369

5 Tightness of MMS Ratio for Nine Items

Theorem 3 claims that every allocation instance with three agents and nine items
has an allocation that gives each agent at least a 39

40 of her MMS. Its proof has
three steps.

1. The proof of Theorem 7 that shows that a negative example can have only
one of two possible structures.

2. Each structure induces linear constraints on the valuation functions of the
agents. For each structure, we set up a linear program that finds a solu-
tion that satisfies all linear constraints implied by the corresponding struc-
ture, while maximizing the MMS gap in that solution. These LPs are under-
constrained, and the optimal feasible solutions of these LPs turn out not to
correspond to true negative examples. Hence we need to add additional con-
straints to the LPs, preventing the LPs from producing solutions that are not
true negative examples.

3. For each of the two structures, we partition all potential negative examples
that have this structure into a finite number of classes, where each class offers
some refinement of the structure. The classes need not be disjoint. The refined
structure of a class gives rise to additional constraints to the LP. Thus we end
up with a finite number of different LPs, one for each class. We then verify
that none of these LPs generates a negative example with MMS gap larger
than 1

40 (this is done by having a computer program solve the corresponding
LPs), and this proves Theorem 3.

Before stating Theorem 7, we introduce some notation and terminology.
Recall that we may assume that instance I is ordered. We still do so, but we no
longer assume that the order is from item e1 to item e9. Instead the order is left
unspecified at this point. Our naming convention for items is based on arranging
the items in a three by three matrix, and naming the items according to their
location in the matrix, as specified below.⎛

⎝
e1 e2 e3
e4 e5 e6
e7 e8 e9

⎞

⎠

The rows of the matrix are referred to as R1, R2, R3, starting from the top
row, and the columns are referred to as C1, C2, C3, starting from the left column.
The two main diagonals of the matrix are {e1, e5, e9} and {e3, e5, e7}.

We say that a bundle is good for an agent if she values it at least as her MMS,
and bad otherwise.

Theorem 7. A negative example for three players and nine items must have
the following structure (after appropriately renaming the items). For one agent
R, the MMS partition is into the three rows (R1, R2 and R3), for one agent C,
the MMS partition is into the three columns (C1, C2 and C3), and for one agent
U , the MMS partition is to a bundle P = {e2, e4} (P stands for pair), a bundle
D that is one of the two main diagonals (D stands for diagonal), and a bundle
Q with the remaining four items (Q stands for quadruple). Bundle P is good
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for all agents, whereas D and Q are bad for agents R and C. The row and the
column that do not intersect P are good for all agents (these are R3 and C3),
whereas the remaining rows and columns are good only for the agents that have
them in their partition, and bad for the other agents.

As there are two main diagonals, Theorem 7 offers two possible structures.
We refer to them as the parallel diagonals structure (bundle d runs in parallel
to bundle p), and the crossing diagonals structure (bundle d crosses bundle p).
They are depicted in Figs. 1 and 2, respectively. Within each figure, for every
item ei, the entry ri (ci, ui, respectively) denotes its value to agent R (C, U ,
respectively).

Fig. 1. The parallel diagonals structure, with MMS partitions for players R, C and U
respectively. The good bundles, marked by a � above the item, are R3 = {e7, e8, e9},
C3 = {e3, e6, e9} and P = {e2, e4}.

Fig. 2. The crossing diagonals structure, with MMS partitions for players R, C and U
respectively. The good bundles, marked by a � above the item, are R3 = {e7, e8, e9},
C3 = {e3, e6, e9} and P = {e2, e4}.

Due to space limitations, we omit the proof of Theorem 7, as well as the rest
of the proof of Theorem 3. They can be found in the full version of our paper1.

6 Extension to Chores

Chores are items of negative value, or equivalently, positive dis-utility. In allo-
cation problems involving only chores, the convention is that all items must be
1 Uriel Feige, Ariel Sapir, Laliv Tauber: A tight negative example for MMS fair allo-

cations. CoRR abs/2104.04977 (2021).
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allocated. In analogy to Definition 1, MMSi is the minimum over all n-partitions
of M , of the maximum dis-utility under vi of a bundle in the n-partition. (Note
that as dis-utility replaces value, maximum and minimum are interchanged in
this definition, compared to Definition 1.) It is known that for agents with addi-
tive dis-utility functions over chores, there are allocation instances in which in
every allocation some agent gets a bundle of dis-utility higher than her MMS [2],
and that there always is an allocation giving every agent a bundle of dis-utility
at most 11

9 times her MMS [9].
We now prove Theorem 5, that there is an instance with three agents and

nine chores that has an MMS gap of 1
43 .

Proof. We present an example with an MMS gap of 1
43 , using notation as in

Sect. 2.
Every row in the dis-utility function of R has value 43 and gives R her MMS.

Her dis-utility function is:⎛

⎝
6 15 22
26 10 7
12 19 12

⎞

⎠

Every column in the dis-utility function of C has value 43 and gives C her
MMS. Her dis-utility function is:⎛

⎝
6 15 23
26 10 8
11 18 12

⎞

⎠

The bundles that give U her MMS are p = {e2, e4} (the pair, in boldface),
d = {e3, e5, e7} (the diagonal), and q = {e1, e6, e8, e9} (the quadruple). The
dis-utility function of U is:⎛

⎝
6 16 22
27 10 7
11 18 12

⎞

⎠

In analogy to Sect. 2, to analyse all possible allocations in a systematic way, it
is convenient to consider a dis-utility function M in which the dis-utility of each
chore as the minimum (rather than maximum, as we are dealing with chores)
dis-utility given to the chore by the three agents. Hence M is:⎛

⎝
6 15 22
26 10 7
11 18 12

⎞

⎠

Adaptation of the analysis of Sect. 2 shows that in every allocation, some
agent gets chores of dis-utility at least 44, whereas the MMS is 43. Further
details of the proof are omitted.

7 Discussion

The open questions below refer to allocations of goods. Questions of a similar
nature can be asked for chores, though the quantitative bounds in these questions
would be different from those mentioned below.
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Let δn denote the largest value such that for n agents, there is an allocation
instance with additive valuations for which no allocation gives every agent more
than a 1 − δn fraction of her MMS. We have that δ1 = δ2 = 0. As to δ3, the
combination of our Theorem 1 and the results of [7] imply that 1

40 ≤ δ3 ≤ 1
9 . It

would be interesting to determine the exact value of δ3, or at least to narrow the
gap between its lower bound and upper bound. Computer assisted techniques,
such as those used in the proof of Theorem 3, may turn out useful for this
purpose.

For general n ≥ 3, the combination of our Theorem 4 and the results of [6]
imply that 1

n4 ≤ δn ≤ 1
4 + 1

12n . We do not know whether δn tends to 0 as n grows.
Determining whether this is the case remains as an interesting open question.
The known results do not exclude the possibility that δn tends to 1

4 as n grows,
but we would be very surprised if this turns out to be true.
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Abstract. We study the problem of allocating indivisible goods among
agents in a fair and economically efficient manner. In this context, the
Nash social welfare—defined as the geometric mean of agents’ valuations
for their assigned bundles—stands as a fundamental measure that quan-
tifies the extent of fairness of an allocation. Focusing on instances in
which the agents’ valuations have binary marginals, we develop essen-
tially tight results for (approximately) maximizing Nash social welfare
under two of the most general classes of complement-free valuations, i.e.,
under binary XOS and binary subadditive valuations.

For binary XOS valuations, we develop a polynomial-time algorithm
that finds a constant-factor (specifically 288) approximation for the opti-
mal Nash social welfare, in the standard value-oracle model. The alloca-
tions computed by our algorithm also achieve constant-factor approxima-
tion for social welfare and the groupwise maximin share guarantee. These
results imply that—in the case of binary XOS valuations—there neces-
sarily exists an allocation that simultaneously satisfies multiple (approx-
imate) fairness and efficiency criteria. We complement the algorithmic
result by proving that Nash social welfare maximization is APX-hard
under binary XOS valuations.

Furthermore, this work establishes an interesting separation between
the binary XOS and binary subadditive settings. In particular, we prove
that an exponential number of value queries are necessarily required to
obtain even a sub-linear approximation for Nash social welfare under
binary subadditive valuations.

Keywords: Discrete fair division · Nash social welfare · Binary
marginals

1 Introduction

At the core of discrete fair division lies the problem of fairly allocating indivisi-
ble goods among agents with equal entitlements, but distinct preferences. In this
context, the Nash social welfare [38]—defined as the geometric mean of agents’
c© Springer Nature Switzerland AG 2022
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https://doi.org/10.1007/978-3-030-94676-0_21
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valuations for their assigned bundles—stands as a fundamental measure that
quantifies the extent of fairness of an allocation. This welfare function achieves a
balance between the extremes of social welfare and egalitarian welfare. The rel-
evance of Nash social welfare is further substantiated by the fact that it satisfies
key fairness axioms, including the Pigou-Dalton transfer principle [37]. Further-
more, Nash social welfare is indifferent to individual scales of the valuations:
multiplicatively scaling any agent’s valuation by a positive number does not
alter the relative ordering of the allocations (induced by this welfare objective)
and, in particular, keeps the Nash optimal allocation unchanged. In terms of
practical applications, Nash social welfare is used as an optimization criterion
by the widely-used platform Spliddit.org for finding fair allocations [29].

With these considerations in hand, a substantial body of research in recent
years has been directed towards maximizing the Nash social welfare in settings
with indivisible goods; see, e.g., [1,2,6,10,18,19,24]. This maximization prob-
lem is known to be APX-hard, even when the agents have additive valuations
[33].1 Hence, in general, algorithmic results for this problem aim for approxima-
tion guarantees. A key focus of this line of research has been on the hierarchy
of complement-free valuations, which includes the following valuation classes,
in order of containment: additive, submodular, XOS (fractionally subadditive),
and subadditive. Recall that submodular functions satisfy a diminishing returns
property, XOS functions are pointwise maximizers of additive functions, and
subadditive functions constitute the most general class in this hierarchy. These
valuation classes have also been extensively studied in the literature on combi-
natorial auctions, wherein the focus is primarily on maximizing social welfare
[39].

In the context of maximizing Nash social welfare, the best-known approxima-
tion algorithm for additive valuations achieves an approximation ratio of e1/e (in
polynomial time) [6]. Furthermore, for submodular valuations, a recent result of
Li and Vondrák [35] obtains a constant-factor (specifically 380) approximation
ratio; see also [25]. In contrast to these constant-factor bounds, the problem of
maximizing Nash social welfare under (general) XOS and subadditive valuations
has a linear (in the number of agents) approximation guarantee [4,16,26]. This
approximation ratio is in fact tight in the standard value-oracle model: under
general XOS (and, hence, subadditive) valuations, a sub-linear approximation
of the optimal Nash social welfare necessarily requires exponentially many value
queries [4].

The current work contributes to this thread of research with a focus on
valuations that have binary (dichotomous) marginals. Formally, a valuation v is
said to bear the binary-marginals property iff, for every subset of goods S and
each good g, the marginal value of g relative to S is either zero or one, v(S∪{g})−
v(S) ∈ {0, 1}. Such valuations capture preferences in many real-world domains
and have received significant attention in the fair division literature; see, e.g.,
[12,13,23,31,40,42]. Our results address the two most general valuation classes

1 Recall that a valuation v is said to be additive iff the value of any subset of goods,
S, is the sum of values of the goods in it, v(S) =

∑
g∈S v({g}).
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in the above-mentioned hierarchy, i.e., we study XOS and subadditive valuations
in conjunction with the binary-marginals property. This meaningfully extends
prior work on binary additive and binary submodular valuations. Throughout,
we will say that a valuation is binary additive (submodular/XOS/subadditive)
iff it is additive (submodular/XOS/subadditive) and also has binary marginals.

In particular, under binary additive valuations, Nash optimal allocations can
be computed in polynomial time [7,20]. The work of Halpern et al. [30] shows
that—in the case of binary additive valuations—maximizing Nash social welfare
(with a lexicographic tie-breaking rule) provides a truthful and fair2 mecha-
nism. For the broader class of binary submodular valuations,3 a truthful, fair,
and polynomial-time mechanism was obtained by Babaioff et al. [3]; this result
considers Lorenz domination as a notion of fairness and, hence, ensures that
the computed allocation maximizes the Nash social welfare and satisfies other
fairness criteria. These works identify multiple domains wherein binary additive
and binary submodular functions are applicable; see also [11].

The current work moves up in the hierarchy of complement-free valuations
and develops essentially tight results for both binary XOS and binary subad-
ditve valuations. Before detailing our results, we provide a stylized example that
illustrates the relevance of such a generalization: consider a spectrum-allocation
setting wherein transmission rights of distinct (frequency) bands have to be fairly
allocated among different agents. Here, each band is an indivisible good of unit
value, to every agent. However, an agent can utilize a subset of bands only if the
frequencies across the allocated bands are close enough. In particular, say the
bands, B1, B2, . . . , Bm, are indexed such that an agent can use a subset of bands
only if their indices are within a parameter Δ ∈ Z+ of each other. For instance,
if Δ = 3, then an agent will have value two for the bundle {B1, B4, B10} and
value the bundle {B1, B4, B5, B7} at three, by transmitting on B4, B5, and B7.
We note that such valuations can be expressed as binary XOS functions (and not
as submodular functions). Hence, in such a resource-allocation setting, finding
a fair, or economically efficient, allocation falls under the purview of the cur-
rent work. For a realistic treatment of spectrum allocations, and accompanying
high-stakes auctions, see [34] and references therein.

Our Results. The algorithmic results in this work only require access to standard
value queries: given any subset of goods S and an agent i, the value oracle returns
the value that i has for S.4 The following list summarizes our results.

1. We develop a polynomial-time 288-approximation algorithm for maximiz-
ing Nash social welfare under binary XOS valuations (Theorem 2). We

2 Specifically, the mechanism of Halpern et al. [30] ensures envy-freeness up to one
good.

3 Binary submodular functions admit the following characterization: every binary sub-
modular function is necessarily a rank function of a matroid [43, Chapter 39].

4 That is, the developed algorithms do not require an explicit description of the val-
uations. Note that in the current context the agents’ valuations are combinatorial
set functions, hence explicitly representing the valuations might be prohibitive, i.e.,
require one to specify exponential (in the number of goods) values.
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also complement this algorithmic result by proving that—under binary XOS
valuations—Nash social welfare maximization is APX-hard (Theorem 4).
To obtain the approximation guarantee, we consider allocations wherein, for
each agent i, the envy is multiplicatively bounded towards the entire set of
goods, Gi, allocated to agents with bundle size at least four times that of i.
Specifically, for an allocation, write Hi to denote the set of agents who have
received a bundle of size at least four times that of i, and let Gi denote the
set of goods allocated among all the agents in Hi (along with unallocated
goods, if any). We show that, under binary XOS valuations, if, in an allo-
cation A, each agent i’s value for her own bundle is at least 1/2 times her
value for Gi, then A achieves a constant-factor approximation guarantee for
Nash social welfare. Our algorithm (Algorithm 1) finds such an allocation by
iteratively updating the agents’ bundles towards the desired property. The
algorithm also maintains an analytically useful property that each agent’s
value for her bundle is equal to the cardinality of the bundle, i.e., the bundles
are non-wasteful. For binary XOS valuations, one can show that multiplica-
tively bounding envy between pairs of agents does not, by itself, provide a
constant-factor approximation guarantee (see the full version of this paper
[8]). Hence, bounding envy of every agent i against all of Gi is a crucial
extension. It is relevant to observe that while the algorithm is simple, its
analysis is based on novel counting arguments (Lemma 2 and Proposition
2). Notably, the combinatorial nature of the algorithm makes it amenable to
large-scale implementations.

2. Furthermore, our algorithm (Algorithm 1) achieves an approximation ratio
of (3 + 2

√
2) for the problem of maximizing social welfare under binary XOS

valuations (the proof is deferred to the full version of the paper [8]). That is,
the computed allocation simultaneously provides approximation guarantees
for Nash social welfare (a fairness metric) and social welfare (a measure of
economic efficiency).
In addition, the allocation (approximately) satisfies the fairness notion of
groupwise maximin shares (GMMS); see full version of this paper for def-
initions and proof [8]. GMMS is a stronger criterion than the well-studied
fairness concept of maximin shares (MMS). Specifically, an allocation A is
said to be α-GMMS iff A is α-approximately MMS for every subgroup of
agents. The allocations computed by our algorithm are 1/6-GMMS [8].

3. Complementing the above-mentioned positive results, we prove that, under
binary subadditive valuations, an exponential number of value queries are
necessarily required to obtain a sub-linear approximation for the Nash social
welfare (Theorem 5). Indeed, this query complexity bound identifies an inter-
esting dichotomy between the binary subadditive and the binary XOS set-
tings: while for binary XOS valuations a polynomial-number of value queries
suffice for approximating the optimal Nash social welfare within a constant
factor, binary subadditive valuations are essentially as hard as general sub-
additive (or general XOS) valuations.
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Additional Related Work. The current work provides a single algorithm that
achieves constant-factor approximation guarantees for both Nash social welfare
and social welfare, under binary XOS valuations. Focusing solely on social welfare
maximization, one can compute an (e/(e − 1))-approximation (of the optimal
social welfare) under general XOS valuations, using the algorithm of Feige [22].
This result, however, requires oracle access to demand queries, which is a more
stringent requirement than one used in the current work (of value queries).5

We obtain the query complexity, under binary subadditive valuations, by uti-
lizing a lower-bound framework of Dobzinski et al. [21]. In [21], a lower bound was
obtained—for social welfare maximization—under general XOS and subadditive
valuations. The notable technical contribution of the current work is to establish
the query complexity with valuations that in fact have binary marginals. Fur-
thermore, one can show that our lower bound (Theorem 5) holds more broadly
for maximizing p-mean welfare, for any p ≤ 1; this includes social welfare maxi-
mization as a special case. Hence, we also strengthen the negative result of [4],
by showing that it continues to hold even if the marginals of the subadditive
valuations are binary.

Maximin share (MMS) is a prominent fairness notion in discrete fair division
[15]. For an agent i, this fairness threshold is defined as the maximum value that
i can guarantee for herself by partitioning the set of goods into n bundles and
receiving the minimum valued one; here, n denotes the total number of agents.
While MMS allocations (i.e., allocations that provide each agent a bundle of
value at least as much as her maximin share) are not guaranteed to exist [32,41],
this fairness notion is quite amenable to approximation guarantees across the
hierarchy of complement-free valuations; see, [27], [28], and references therein. In
the binary-marginals case, we note that MMS allocations are guaranteed to exist
and can be computed efficiently for binary additive [14] and binary submodular
[9] valuations. By contrast, such an existential result does not hold for binary
XOS valuations [9]. For such valuations, however, the work of Li and Vetta [36]
provides a polynomial-time algorithm that finds allocations wherein each agent
receives a bundle of value at least 0.367 times her maximin share.6 The current
work addresses the stronger notion of groupwise maximin shares [5] under binary
XOS valuations.

2 Notation and Preliminaries

We study the problem of allocating m indivisible goods among n agents in a fair
and economically efficient manner. Throughout, we will use [m] := {1, 2, . . . ,m}
to denote the set of goods and [n] := {1, 2, . . . , n} to denote the set of agents. The
cardinal preference of the agents i ∈ [n], over subsets of goods, are expressed via

5 The question of whether sub-linear approximation bounds can be achieved for Nash
social welfare with demand-oracle access to general XOS, and subadditive, valuations
remains an interesting direction of future work.

6 The result of Li and Vetta [36] holds for a somewhat more general valuation class,
which are defined via hereditary set systems.
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valuations vi : 2[m] �→ R+. Specifically, vi(S) ∈ R+ denotes the value that agent
i ∈ [n] has for subset of goods S ⊆ [m]. We represent fair division instances by
the triple 〈[m], [n], {vi}n

i=1〉.
An allocation A = (A1, A2, . . . , An) is a collection of n pairwise disjoint

subsets of goods, Ai ∩ Aj = ∅ for all i = j. Here, the subset of goods Ai ⊆ [m]
is assigned to agent i ∈ [n] and will be referred to as a bundle. For ease of
presentation and analysis, we do not force the requirement that, in an allocation,
all the goods are assigned, i.e., the allocations can be partial with ∪n

i=1Ai = [m].
Write A0 := [m] \ (∪n

i=1Ai) to denote the subset of unassigned goods in an
allocation A = (A1, . . . , An).7

Valuation Classes. This work focuses on valuations that have the binary-
marginals property, i.e., are dichotomous. Formally, a valuation v is said to have
binary marginals iff v(S ∪ {g}) − v(S) ∈ {0, 1} for any subset of goods S ⊆ [m]
and any good g ∈ [m]. As a direct consequence, the valuations we consider are
monotonic: v(S) ≤ v(T ) for any subsets S ⊆ T ⊆ [m]. In addition, we assume
that the valuations are normalized, vi(∅) = 0 for each i ∈ [n].

A set of goods S ⊆ [m] is said to be non-wasteful, with respect to a valuation
v, iff v(S) = |S|. Note that, under valuations with binary marginals, subsets of
non-wasteful sets are also non-wasteful; a proof of the following proposition is
provided in the full version of this paper [8].

Proposition 1. Let v : 2[m] �→ Z+ be a function with binary marginals and
S ⊆ [m] be a non-wasteful set (with respect to v), then each subset of S is
non-wasteful as well.

We consider valuations that—in conjunction with satisfying the binary-
marginals property—belong to the following classes of complement-free func-
tions, presented in order of containment.

(i) Additive: A valuation v : 2[m] �→ R+ is said to be additive iff the value of
any subset of goods S ⊆ [m] is equal to the sum of values of the goods in
it, v(S) =

∑
g∈S v({g}).

(ii) Submodular : A valuation v : 2[m] �→ R+ is said to be submodular iff
v(S ∪ {g}) − v(S) ≥ v(T ∪ {g}) − v(T ) for every S ⊆ T ⊂ [m] and good
g ∈ [m] \ T .

(iii) XOS: A valuation v : 2[m] �→ R+ is said to be XOS iff it can be expressed
as a pointwise maximum over a collection of additive functions, i.e., there
exists a collection of additive functions {�t}L

t=1 such that, for every subset
S ⊆ [m], we have v(S) = maxt∈[L] �t(S). Here, the number of additive
functions, L, can be exponentially large in m.

7 Note that one can always allocate the subset of unassigned goods A0 arbitrarily
among the agents without reducing the Nash social welfare of A = (A1, A2, . . . , An).
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(iv) Subadditive: A valuation v : 2[m] �→ R+ is said to be subadditive iff it does
not admit any complementary subset of goods: v(S ∪ T ) ≤ v(S) + v(T ), for
every pair of subsets S, T ⊆ [m].

As mentioned previously, our algorithmic results hold in the standard value-
oracle model, wherein, given any subset of goods S ⊆ [m] and an agent i ∈ [n],
the value oracle returns vi(S) ∈ R+ in unit time.

We will use the prefix binary before the names of function classes to denote
that the valuation additionally has binary marginals, e.g., a function v is binary
XOS iff it is XOS and has binary marginals. The following theorem (proved in
the full version of this paper [8]) provides useful characterizations of binary XOS
valuations.

Theorem 1. A valuation v : 2[m] �→ R+ is binary XOS iff it satisfies anyone of
the following equivalent properties
(P1): Function v is XOS and it has binary marginals.
(P2): Function v has binary marginals and for every set S ⊆ [m] there exists a
subset X ⊆ S with the property that v(X) = |X| = v(S).
(P3): Function v can be expressed as a pointwise maximum of binary additive
functions

{
�t : 2[m] �→ R+

}L

t=1
, i.e., v(S) = max1≤t≤L �t(S) for every S ⊆ [m].

Here, each function �t is additive and �t(g) ∈ {0, 1} for every g ∈ [m].
(P4): There exists a family of subsets F ⊆ 2[m] such that v(S) = maxF∈F |S∩F |
for every set S ⊆ [m].

Social welfare and Nash social welfare. The social welfare SW(·) of an allocation
A = (A1, . . . , An) is defined as the sum of the values that the agents derive from
their bundles in A, i.e., SW(A) :=

∑n
i=1 vi(Ai). The Nash social welfare NSW(·)

of an allocation A = (A1, . . . , An) is defined as the geometric mean of the agents’
values in A, i.e., NSW(A) := (

∏n
i=1 vi(Ai))

1
n . An allocation N = (N1, . . . , Nn)

with the maximum possible Nash social welfare (among the set of all allocations)
is referred to as a Nash optimal allocation.

For binary XOS valuations, one can assume, without loss of generality, that
welfare-maximizing allocations solely consist of non-wasteful bundles; the proof
of this lemma is deferred to the full version of this paper [8].

Lemma 1. For any allocation P = (P1, . . . , Pn) among agents with binary XOS
valuations, there exists an allocation P ′ = (P ′

1, . . . , P
′
n) of non-wasteful bundles

that has the same valuation profile as P, i.e., vi(P ′
i ) = |P ′

i | = vi(Pi) for all
agents i ∈ [n].

3 Approximation Algorithm for Nash Social Welfare

Our algorithm (Algorithm 1) computes an allocation A = (A1, . . . , An) in which,
for each agent i, the envy is multiplicatively bounded towards the entire set of
goods, Gi, allocated to agents with bundle size at least four times that of i.
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Specifically, with respect to allocation A, write Hi to denote the set of agents
who have received a bundle of size at least four times that of i, and let Gi =( ∪j∈Hi

Aj

) ∪ A0 ∪ Ai; recall that A0 denotes the set of unassigned goods in A.
We show that, under binary XOS valuations, if vi(Ai) > 1

2vi(Gi) for all agents
i, then A achieves a constant-factor approximation guarantee for Nash social
welfare.

Algorithm 1 finds such an allocation by iteratively updating the agents’ bun-
dles. In particular, if for an agent i the envy requirement is not met (i.e., we
have vi(Ai) ≤ 1

2vi(Gi)), then the algorithm finds a non-wasteful subset X ⊂ Gi

with twice the value of Ai, i.e., finds a subset X ⊂ Gi with the property that
vi(X) = |X| = 2vi(Ai). The algorithm then assigns X to agent i, and updates
the remaining bundles accordingly. Note that, under binary XOS valuations, such
a subset X can be computed efficiently (in Line 5 of the algorithm): one can ini-
tialize X = Gi and iteratively remove goods from X until the desired property
is achieved; recall (P2) in Theorem 1. Also, with these updates, the algorithm
maintains the invariant that the bundles assigned to the agents are non-wasteful.
Indeed, the value of agent i doubles after receiving subset X, and we show that
the algorithm necessarily finds the desired allocation after at most a polynomial
number of such value increments, i.e., the algorithm runs in polynomial time
(Lemma 3).

Algorithm 1. Alg

Input: Fair division instance 〈[m], [n], {vi}n
i=1〉 with value-oracle access to the binary

XOS valuations vis
Output: Allocation A = (A1, . . . , An)

1: Compute an allocation A := (A1, . . . , An) with vi(Ai) = |Ai| = 1, for every agent
i ∈ [n]. {Such an allocation A can be computed by finding a perfect matching
between the agents i and the goods valued by i.}

2: Initialize A0 = [m] \ (∪n
j=1Aj)

3: For each agent i ∈ [n], initialize subset of agents Hi := {j ∈ [n] : |Aj | > 4|Ai|}
and subset of goods Gi :=

( ∪j∈Hi Aj

) ∪ A0 ∪ Ai

4: while there exists agent i ∈ [n] such that vi(Ai) ≤ 1
2
vi(Gi) do

5: Find subset X ⊆ Gi with the property that vi(X) = |X| = 2vi(Ai) {Such a
non-wasteful subset X can be computed efficiently for binary XOS valuations}

6: Set Ai = X, and update Aj ← Aj \ X for each j ∈ Hi

7: Set A0 = [m] \ (∪n
j=1Aj)

8: Set Hk = {j ∈ [n] : |Aj | > 4|Ak|} and Gk =
( ∪j∈Hk Aj

) ∪ A0 ∪ Ak, for each
agent k ∈ [n]

9: end while
10: return A = (A1, . . . , An)

Write N = (N1, . . . , Nn) to denote a Nash optimal allocation for the given
fair division instance. We will throughout assume that the optimal Nash welfare
is positive, NSW(N ) > 0. In the complementary case, wherein NSW(N ) = 0,
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returning an arbitrary allocation suffices.8 Note that the assumption NSW(N ) >
0 and the fact that the valuations have binary marginals ensure that, for each
agent i, the bundle Ni contains a unit valued (by i) good. Hence, in Line 1 of the
algorithm we are guaranteed to find a matching wherein each agent is assigned
a good of value one.

The following lemma establishes an interesting property of the allocation
A = (A1, . . . , An) returned by our algorithm. In particular, the lemma shows
that—for any integer α ∈ Z+—at most n/α agents i receive a bundle Ai of value
less than 1

18α times vi(Ni). That is, in allocation A, for any α ∈ Z+, the number
of (18α)-suboptimal agents is at most n/α. We will establish the approximation
ratio of Algorithm 1 (in Theorem 2 below) by invoking the lemma with dyadic
values of α.

Lemma 2. Let A = (A1, . . . , An) be the allocation returned by Algorithm 1 and
N = (N1, . . . , Nn) be a Nash optimal allocation, with NSW(N ) > 0. Also, for
any integer α ∈ Z+, let Xα :=

{
i ∈ [n] : vi(Ai) < 1

18αvi(Ni)
}
. Then,

|Xα| ≤ n

α

The proof of the above lemma uses a counting argument that is described as
the following proposition, its proof is presented in the full version of this paper
[8].

Proposition 2. Let D0,D1, . . . , D� be a collection of pairwise disjoint subsets
of goods such that |Dk| is an integer multiple of 4k+2, for each 0 ≤ k ≤ �. Also,
let B = (B1, B2, . . . , Bt) be any t-partition of the set ∪�

k=0Dk with the property
that
(P): For any index k and each good g ∈ Dk, if g ∈ Bb, then |Bb| ≤ 4k+2 (i.e.,
goods in Dk must be assigned among bundles of size at most 4k+2).
Then, in the partition, the number of bundles t ≥ ∑�

k=0
|Dk|
4k+2 .

We now give a proof of Lemma 2.

Proof of Lemma 2. Throughout its execution Alg assigns a non-wasteful bundle
to every agent (see Lines 5 and 6) and, hence, for the returned allocation A =
(A1, . . . , An) we have vi(Ai) = |Ai|, for all agents i. Also, we assume, without loss
of generality, that the bundles in the Nash optimal allocation N = (N1, . . . , Nn)
are non-wasteful; see Lemma 1.

Fix an integer α ∈ Z+ and consider any agent i ∈ Xα. Recall that Gi

contains the set of goods that (under allocation A) are assigned among agents

8 Here, in fact, one can also maximize the Nash social welfare subject to the constraint
that the maximum possible number of agents receive a good: write n′ to denote the
size of the maximum-cardinality matching between the agents i and the goods valued
by i, and introduce (n − n′) “dummy” goods, any nonempty subset of which gives
unit value to any agent. Approximating Nash social welfare in this modified instance
(with binary XOS valuations) addresses the constrained version of the problem.
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in Hi := {j ∈ [n] : |Aj | > 4|Ai|} . We begin by upper bounding the size of the
intersection between Ni and Gi; in particular, this bound shows that, in A, not
too many goods from the optimal bundle Ni can get assigned among agents in
Hi. Towards this, note that the termination condition of the while-loop (Line 4)
ensures that the returned non-wasteful bundle Ai satisfies vi(Gi) < 2vi(Ai) =
2|Ai|. Therefore, using Proposition 1 and the fact that Ni is non-wasteful we get

|Ni ∩ Gi| = vi(Ni ∩ Gi) ≤ vi(Gi) < 2|Ai| (1)

Also, since agent i ∈ Xα, the cardinality of Ni is more than 18α times that
of Ai: |Ni| = vi(Ni) > 18α vi(Ai) = 18α |Ai|. This observation and inequality
(1) imply that Ni has a sufficiently large intersection with Gc

i := [m] \ Gi

|Ni ∩ Gc
i | = |Ni| − |Ni ∩ Gi| > 18α|Ai| − 2|Ai| ≥ 16α|Ai| (2)

Indeed, Gc
i is the set of goods that, in allocation A, are assigned among the

agents j ∈ [n] \ (Hi ∪ {i}), i.e., among the agents j = i with bundles of value
vj(Aj) = |Aj | ≤ 4|Ai|.

To establish the desired upper bound on the size of Xα, we partition it into
subsets. Specifically, for each 0 ≤ k ≤ �log4 m�, define set

Xk
α := {i ∈ Xα : 4k ≤ vi(Ai) < 4k+1}.

That is, Xk
α is the set of agents for whom the ratio between assigned value and

the optimal value is less than 1
18α (i.e., i ∈ Xα) and the assigned value is in the

range [4k, 4k+1). We note that with k between 0 and �log4 m�, the subsets Xk
αs,

partition Xα. In particular, initially in Alg (see Line 1) each agent achieves a
value of one; recall the assumption that NSW(N ) > 0 and, hence, there exists
a matching wherein each agent is assigned a nonzero valued good. Furthermore,
during the execution of Alg the agents’ valuations inductively continue to be
at least one: consider any iteration of the while-loop and let î be the agent that
receives a new bundle X in the iteration (see Lines 5 and 6). The selection
criterion of X ensures that the valuation of î in fact doubles. For any agent
j ∈ H

̂i, before the update in Line 6 we have vj(Aj) = |Aj | > 4|A
̂i| = 2|X| and,

hence, even after the update (Aj ← Aj\X) agent j’s value continues to be at least

one. Finally, for each remaining agent (in the set [n] \
(
H

̂i ∪ { î }
)
) its bundle

remains unchanged. Hence, for the returned allocation A = (A1, . . . , An) we have
vi(Ai) = |Ai| ≥ 1. Also, the fact that the marginals of the valuation vi are binary
implies vi([m]) ≤ m, i.e., vi(Ai) ≤ m. Therefore, the bounds 1 ≤ vi(Ai) ≤ m
(for all agents i) imply that the subsets Xk

αs, with 0 ≤ k ≤ �log4 m�, partition
Xα; in particular,

∑
k |Xk

α| = |Xα|.
Furthermore, for each agent i ∈ Xk

α we have

|Ni ∩ Gc
i | > 16α |Ai| (via inequality (2))

≥ 16α 4k (since i ∈ Xk
α)

= α 4k+2
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Therefore, for each k, the set of goods Dk :=
⋃

i∈Xk
α
(Ni ∩ Gc

i ) satisfies |Dk| ≥
α4k+2 |Xk

α|. That is, for each k, and whenever Xk
α = ∅, the size of set Dk

is at least a positive integer multiple of 4k+2. Also, note that for each good
g ∈ Dk, we have (by definition of Dk) that g ∈ Ni ∩ Gc

i
for some i ∈ Xk

α.
These containments (and the definition of Gc

i
) ensure that g ∈ Aj ,9 for some

agent j ∈ [n] with the property that |Aj | ≤ 4|Ai| < 4k+2. That is, for each k
(with Xk

α = ∅), the cardinality of Dk is a positive integer multiple of 4k+2 and
(under A) the goods in Dk must be assigned to agents with bundles of size at
most 4k+2. These two properties ensure that (in allocation A) a sufficiently large
number of bundles are necessarily required to cover the set of goods

⋃
k Dk =⋃

k

⋃
i∈Xk

α
(Ni ∩ Gc

i ) =
⋃

i∈Xα
(Ni ∩ Gc

i ). Specifically, write t ∈ Z+ to denote the
number of agents that have been assigned (under allocation A) at least one good
from

⋃
k Dk (i.e., t := |{j ∈ [n] : Aj ∩ (∪kDk) = ∅}|), then Proposition 2 (proved

in the full version of this paper [8]) gives us

t ≥
�log4 m�∑

k=0

|Dk|
4k+2

≥
�log4 m�∑

k=0

α4k+2 · |Xk
α|

4k+2
= α

�log4 m�∑

k=0

|Xk
α| = α|Xα|.

However, the number of agents t cannot be more than n. Hence, the stated
claim follows n ≥ t ≥ α|Xα|.

The allocation A = (A1, A2, . . . , An) returned by Algorithm 1 can be made
complete by allocating the (unassigned) goods in [m] \∪n

i=1Ai arbitrarily. Doing
this would not affect the approximation guarantee.

The following lemma establishes the time complexity of Alg and its proof is
delegated to the full version of the paper [8].

Lemma 3. For any given fair division instance with n agents, m goods, and
value-oracle access to the binary XOS valuations, Algorithm 1 (Alg) returns an
allocation in time that is polynomial in n and m.

The following theorem is our main result for Nash social welfare.

Theorem 2. For binary XOS valuations and in the value-oracle model, there
exists a polynomial-time 288-approximation algorithm for the Nash social welfare
maximization problem.

Proof. Let A = (A1, A2, . . . , An) be the (non-wasteful) allocation returned by
Alg, and N = (N1, N2, . . . , Nn) be a (non-wasteful) Nash optimal allocation. As
mentioned previously, under the condition that optimal Nash welfare NSW(N ) >
0, every agent necessarily receives a value of at least one in the allocation A,
i.e., vi(Ai) ≥ 1 for all i. In addition, vi(Ni) ≤ vi([m]) ≤ m; the last inequality
follows from the fact the valuations have binary marginals. Hence, for all agents
i, we have vi(Ai) ≥ 1

mvi(Ni).

9 Recall that A0 ⊆ Gi and, hence, A0 ∩ Gc
i

= ∅.
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Next, we partition the set of agents based on the ratio of their
assigned value, vi(Ai), and their optimal value, vi(Ni). Specifically, define
set Y2d :=

{
i ∈ [n] : 1

2d+1
vi(Ni)

18 ≤ vi(Ai) < 1
2d

vi(Ni)
18

}
, for each integer d ∈

{0, 1, . . . , �log m�}. Since vi(Ai) ≥ 1
mvi(Ni) for all i, the remaining agents

i′ ∈ Y ′ := [n] \
(⋃�log m	

d=0 Y2d

)
satisfy vi′(Ai′) ≥ 1

18vi′(Ni′). Indeed, the sub-

sets Y2ds and Y ′ partition the set of agents, and |Y ′| +
∑�log m	

d=0 |Y2d | = n.
Note that, with α = 2d, we have Yα ⊆ Xα; here, set Xα is defined as in

Lemma 2. Hence, invoking this lemma we get

|Y2d | ≤ n

2d
for all 0 ≤ d ≤ �log m� (3)

Write π(S) :=
∏

i∈S
vi(Ai)
vi(Ni)

, if the subset of agents S = ∅, and 1 otherwise.
Now, towards establishing the approximation ratio, consider

NSW(A)
NSW(N )

=

(
n∏

i=1

vi(Ai)
vi(Ni)

)1/n

=

⎛

⎝π(Y ′)
�log m	∏

d=0

π (Y2d)

⎞

⎠

1/n

≥
((

1
18

)|Y ′| ∏

d

π (Y2d)

)1/n

(since vi(Ai) ≥ 1
18vi(Ni) for all i ∈ Y ′)

≥
((

1
18

)|Y ′| ∏

d

(
1

18 2d+1

)|Y2d |)1/n

(since vi(Ai) ≥ 1
18 2d+1 vi(Ni) for all i ∈ Y2d)

=
1
18

(
∏

d

(
1

2d+1

)|Y2d |)1/n

(since |Y ′| +
∑

k |Y2d | = n)

=
1
18

(
∏

d

(
1

2d+1

)|Y2d |/n
)

≥ 1
18

(
∏

d

(
1

2d+1

) 1
2d

)

(via inequality (3))

We can show that the product
∏

d

(
1

2d+1

) 1
2d ≥ 1

16 ; see, full version of the
paper [8]. Therefore, the stated approximation bound follows

NSW(A)
NSW(N )

≥ 1
18

�log m	∏

d=0

(
1

2d+1

) 1
2d

≥ 1
18

· 1
16

=
1

288
.

4 Hardness of Approximation for Binary XOS Valuations

This section establishes the APX-hardness of maximizing Nash social welfare in
fair division instances with binary XOS valuations. This inapproximability holds
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even if the agents’ (binary XOS) valuations are identical and admit a succinct
representation. We obtain the hardness result by developing an approximation
preserving reduction from the following gap version of the independent set prob-
lem in 3-regular graphs.

Theorem 3 ([17]). Given a 3-regular graph G and a threshold τ , it is NP-hard
to distinguish between

– YES Instances: The size of the maximum independent set in G is at least τ .
– NO Instances: The size of the maximum independent set in G is at most 94

95τ .

Our hardness result is presented in the following theorem; refer to the full
version of this paper for its proof [8]. Notably, the hardness result is obtained
by reducing the gap problem described above to a gap version of computing
maximum Nash social welfare for instances with binary XOS valuations.

Theorem 4. For fair division instances with (identical) binary XOS valuations,
it is NP-hard to approximate the maximum Nash social welfare within a factor
of 1.0042.

5 Lower Bound for Binary Subadditive Valuations

In this section we prove that, under binary subadditive valuations, an exponential
number of value queries are required to obtain a sub-linear approximation for
the Nash social welfare.

Theorem 5. For fair division instances 〈[m], [n], {fi}n
i=1〉 with binary subaddi-

tive valuations and a fixed constant ε ∈ (0, 1], exponentially many value queries
are necessarily required for finding any allocation with Nash social welfare at
least 1

n1−ε times the optimal.

Towards establishing this theorem, we define two (families of) fair division
instances, each with n agents, m = n2 goods, and binary subadditive valuations.
In the first instance, all the agents will have the same binary subadditive valu-
ation, f : 2[m] �→ R+, while in the second instance, the valuations of the agents
will be non-identical, f ′

i : 2[m] �→ R+ for each agent i ∈ [n]. In particular, we
will construct the valuations, f and {f ′

i}i, such that (i) distinguishing whether
the agents’ valuations are {f ′

i}i or f requires an exponential number of value
queries (Lemma 6) and (ii) the optimal Nash social welfare of the two instances
differ multiplicatively by a linear factor. Since the second property implies that
one can use any sub-linear approximation of the optimal Nash social welfare to
distinguish between the two instances (i.e., between the two valuation settings),
these properties will establish the stated query lower bound.

To specify the valuations, fix a small constant δ ∈ (
0, 1

16

)
and write integers

p :=
⌊
(1 + δ) n4δ

⌋
along with q :=

⌊
n1+2δ

⌋
. We will assume, throughout, that n

is large enough to ensure that the integers p, q ∈ Z+ satisfy p < q. With these
parameters in hand, define valuation f : 2[m] �→ Z+ as follows
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f(S) :=

⎧
⎪⎪⎨

⎪⎪⎩

|S| if |S| ≤ p,

p if p < |S| ≤ q,⌈
p |S|

q

⌉
otherwise, if |S| > q

For constructing valuations {f ′
i}i, consider a random n-partition,

T1, T2, . . . , Tn, of the set of goods [m], with |Ti| = n for each i ∈ [n]. Now,
for every i ∈ [n] and subset S ⊆ [m], define f ′

i(S) := max{f(S), |S ∩ Ti|}. The
following two lemmas show that the constructed valuations are binary subaddi-
tive; their proofs appear in the full version of this paper [8].

Lemma 4. The valuation f (as defined above) is subadditive and has binary
marginals.

Lemma 5. The valuations {f ′
i}i∈[n] (as defined above) are subadditive and have

binary marginals.

The following lemma shows that the functions f and f ′
i (for any i ∈ [n])

cannot be distinguished from each other using polynomial number of values
queries; its proof is deferred to the full version of the paper [8].

Lemma 6. An exponential number of value queries are required to distinguish
between the functions f and f ′

i , for any i ∈ [n].

5.1 Proof of Theorem 5

Here, we establish Theorem 5, our main negative result for binary subadditive
valuations.

With n agents and m = n2 goods, we consider two families of instances with
binary subadditive valuations (see Lemmas 4 and 5): the first one in which all the
agents have the same valuation f , and the other wherein the agents’ valuations
are {f ′

i}n
i=1. Lemma 6 shows that exponentially many value value queries are

required to distinguish between these two cases, i.e., to determine whether the
agents’ valuations are f or {f ′

i}i.
We will next establish that such a distinction can be made via an n1−ε

approximation to the optimal Nash social welfare and, hence, obtain the stated
query complexity of approximating the Nash social welfare. Note that, under
valuations {f ′

i}i, the optimal Nash welfare is equal to n. In particular, allocating
bundle Ti to agent i leads to f ′

i(Ti) = n, for each i ∈ [n], i.e., here the Nash
social welfare of the allocation (T1, . . . , Tn) is n.

By contrast, under valuation f , the optimal Nash social welfare is at most(
2n4δ + 1

)
. In fact, the following argument shows that, for any allocation

(A1, . . . , An), the average social welfare 1
n

∑n
i=1 f(Ai) ≤ 2n4δ + 1. Hence, via

the AM-GM inequality, this upper bound holds for the optimal Nash social wel-
fare as well.
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Let A = (A1, A2, . . . , An) be the allocation that maximizes the average social
welfare under f . We can assume, without loss of generality, that for each agent
i ∈ [n], either |Ai| > q or |Ai| ≤ p. Otherwise, if for some agent j ∈ [n], we have
p < |Aj | ≤ q, then we can iteratively remove goods from Aj until |Aj | = p. This
update will not decrease f(Aj) (this value will continue to be p) and, hence,
the social welfare remains unchanged as well. For ease of analysis, we further
modify allocation A: while there are two agents j, k ∈ [n] with |Ak| ≥ |Aj | > q,
we iteratively transfer goods from Aj to Ak until |Aj | = p. Note that after each
transfer the social welfare decreases by at most one (i.e., the drop in average
social welfare is at most 1/n):10 for any s ≤ |Aj |, we have

⌈
p
q (|Ak| + s)

⌉
+

⌈
p
q (|Aj | − s)

⌉
≥
⌈

p
q (|Ak| + s) + p

q (|Aj | − s)
⌉

=
⌈

p
q |Ak| + p

q |Aj |
⌉

≥
⌈

p
q |Ak|

⌉
+

⌈
p
q |Aj |

⌉
− 1.

Since at most n such transfers can occur (between pairs of agents), the average
social welfare of allocation A decreases by at most one after all the transfers.
Now, allocation A has exactly one agent with bundle size greater than p. This
observation gives us the following upper bound

1
n

n∑

i=1

f(Ai) ≤ 1
n

(

(n − 1)p +
⌈

p

q
m

⌉)

≤ 1
n

(

np +
p

q
m

)

≤ p +
np

q
(since m = n2)

≤ 2n4δ (since p = �(1 + δ)n4δ� and q = �n1+2δ�)

Therefore, under valuation f , the average social welfare is at most 2n4δ + 1.
As mentioned previously, this implies that the ratio of the optimal Nash wel-
fares under f ′

is and f is O(n1−4δ). This, overall, establishes that any sub-linear
approximation would differentiate between the valuations and, hence, require
exponentially many value queries. The theorem stands proved.

6 Conclusion and Future Work

We develop algorithmic and hardness result for Nash social welfare maximiza-
tion under binary XOS and binary subadditive valuations. Our algorithm pro-
vides (under binary XOS valuations) constant-factor approximations simulta-
neously for Nash social welfare, social welfare, and GMMS. It would be inter-
esting to extend the positive result for Nash social welfare to the asymmet-
ric version, wherein each agent has an associated weight (entitlement) ei ∈
10 Recall that for any a, b ∈ R+, the following inequalities hold: �a�+�b�−1 ≤ �a+b� ≤

�a� + �b�.
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R+, and the objective is to find an allocation (X1, . . . , Xn) that maximizes
(
∏

i (vi(Xi))
ei)

1
∑

i ei . Another interesting direction for future work is to develop,
under binary XOS valuations, constant-factor approximation algorithms for p-
mean welfare maximization, with p ≤ 1.
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14. Bouveret, S., Lemâıtre, M.: Characterizing conflicts in fair division of indivisible
goods using a scale of criteria. Auton. Agents Multi-Agent Syst. 30(2), 259–290
(2016)

15. Budish, E.: The combinatorial assignment problem: approximate competitive equi-
librium from equal incomes. J. Polit. Econ. 119(6), 1061–1103 (2011)

16. Chaudhury, B.R., Garg, J., Mehta, R.: Fair and efficient allocations under subaddi-
tive valuations. In: Proceedings of the AAAI Conference on Artificial Intelligence.
vol. 35. AAAI (2021)
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25. Garg, J., Husić, E., Végh, L.A.: Approximating Nash social welfare under Rado
valuations. In: Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, pp. 1412–1425 (2021)

26. Garg, J., Kulkarni, P., Kulkarni, R.: Approximating Nash social welfare under
submodular valuations through (un)matchings. In: Proceedings of the fourteenth
annual ACM-SIAM symposium on discrete algorithms, pp. 2673–2687. SIAM
(2020)

27. Garg, J., Taki, S.: An improved approximation algorithm for maximin shares. In:
Proceedings of the 21st ACM Conference on Economics and Computation, pp.
379–380 (2020)

28. Ghodsi, M., HajiAghayi, M., Seddighin, M., Seddighin, S., Yami, H.: Fair allocation
of indivisible goods: improvements and generalizations. In: Proceedings of the 2018
ACM Conference on Economics and Computation, pp. 539–556 (2018)

29. Goldman, J., Procaccia, A.D.: Spliddit: unleashing fair division algorithms. ACM
SIGecom Exchanges 13(2), 41–46 (2015)

30. Halpern, D., Procaccia, A.D., Psomas, A., Shah, N.: Fair division with binary
valuations: one rule to rule them all. In: International Conference on Web and
Internet Economics, pp. 370–383. Springer (2020)

31. Kurokawa, D., Procaccia, A.D., Shah, N.: Leximin allocations in the real world.
ACM Trans. Econ. Comput. (TEAC) 6(3–4), 1–24 (2018)

https://doi.org/10.1007/978-3-540-45077-1_4


390 S. Barman and P. Verma

32. Kurokawa, D., Procaccia, A.D., Wang, J.: When can the maximin share guarantee
be guaranteed? In: Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, pp. 523–529 (2016)

33. Lee, E.: Apx-hardness of maximizing Nash social welfare with indivisible items.
Inf. Proc. Lett. 122, 17–20 (2017)

34. Leyton-Brown, K., Milgrom, P., Segal, I.: Economics and computer science of a
radio spectrum reallocation. Proc. National Acad. Sci. 114(28), 7202–7209 (2017)
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Abstract. We study financial networks with debt contracts and credit
default swaps between specific pairs of banks. Given such a financial
system, we want to decide which of the banks are in default, and how
much of their liabilities can these defaulting banks pay. There can easily
be multiple different solutions to this problem, leading to a situation of
default ambiguity, and a range of possible solutions to implement for a
financial authority.

In this paper, we study the properties of the solution space of such
financial systems, and analyze a wide range of reasonable objective func-
tions for selecting from the set of solutions. Examples of such objective
functions include minimizing the number of defaulting banks, minimizing
the amount of unpaid debt, maximizing the number of satisfied banks,
and many others. We show that for all of these objectives, it is NP-hard
to approximate the optimal solution to an n1−ε factor for any ε > 0, with
n denoting the number of banks. Furthermore, we show that this situa-
tion is rather difficult to avoid from a financial regulator’s perspective:
the same hardness results also hold if we apply strong restrictions on the
weights of the debts, the structure of the network, or the amount of funds
that banks must possess. However, if we restrict both the network struc-
ture and the amount of funds simultaneously, then the solution becomes
unique, and it can be found efficiently.

Keywords: Financial network · Default ambiguity · Clearing
problem · Credit default swap

1 Introduction

Financial systems are often called “highly complex”, suggesting that relations
and contracts between different financial institutions such as banks form a net-
worked system that is basically impossible to understand. In order to model this
phenomenon, there is a recent line of work that aims to describe this complexity
in terms of computational complexity.

At the core of understanding financial systems is the clearing problem: given
a system of banks with (conditional or unconditional) debt contracts between
specific banks, we need to decide which of the banks are in default due to these
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debts, and how much of their liabilities can these defaulting banks pay. This is a
fundamental problem in a financial system, and an essential task for a financial
regulator after a shock, with the 2008 financial crisis as a recent example.

Earlier results show that the clearing problem is computationally easy if all
contracts between the banks are unconditional debts, or more generally, if the
contracts in the network represent “long” positions; that is, a better outcome
for one bank ensures a better (or the same) outcome for other banks. However,
this is not always the case in practice: banks often have “short” positions on
each other, when it is more favorable for a bank if another bank is in a worse
situation. Typical short positions are credit default swaps (CDSs), short-selling
options and other types of derivatives.

This suggests that a realistic analysis of financial systems requires a model
that can capture both long and short positions. However, with both long and
short positions in the network, financial systems exhibit significantly richer
behavior: we can easily have situations of default ambiguity when there are mul-
tiple solutions in the system, and none of these solutions is obviously superior
to the others in terms of clearing.

In practice, a clearing authority has to make a choice among these different
solutions of the system, yielding an outcome that is more favorable to some
banks and less favorable to others. In this paper, we focus on such cases of
default ambiguity; we study the different solutions of the system, and various
criteria to evaluate these solutions and select one of them to implement.

We begin with some fundamental observations about the solution space of
financial systems. We then introduce a wide range of problems that aim to find
the best solution according to a specific objective. These include finding e.g.
the solution with the smallest number of defaults, the solution preferred by the
largest number of banks, the best solution for a specific bank, and many others.

Our first main contribution is negative, showing that all these problems are
not only NP-hard to solve, but also NP-hard to approximate to any n1−ε factor
(for any ε > 0). This shows that even if the clearing authority has a well-defined
objective to select among the solutions, finding a reasonably good solution is
still not viable in practice.

We then study the same problem from a financial regulator’s perspective,
showing that it is rather difficult to come up with restrictions on the network
to prevent this situation. In particular, we show that the same hardness results
still hold in many restricted variants of the model: with unit-weight contracts,
with severe restrictions on the network structure, and also if we require banks
to own a positive amount of funds.

However, on the positive side, we also show that if we restrict both the net-
work structure and the funds of banks simultaneously, then the resulting financial
networks have a unique solution, and this solution can be found efficiently.

2 Related Work

The fundamental model of financial systems was introduced by Eisenberg and
Noe [9], which only assumes simple debt contracts between the banks. Following
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works have also extended this model by e.g. default costs [23], cross-ownership
relations [10,26] or so-called covered CDSs [16]. However, these model variants
can only describe long positions in a network. This means that there is always
a maximal solution in the system that is simultaneously the best for all banks,
and thus the clearing problem is not particularly interesting in this setting.

In contrast to this, the recent work of Schuldenzucker et al. [24,25] introduces
a model which also allows CDSs in the network, i.e. conditional debt contracts
where the payment obligation depends on the default of a specific third bank.
While a CDS is still a very simple contract, it can already capture short positions
in the network. Moreover, CDSs are a prominent kind of derivative in real-world
financial systems that also played a major role in the 2008 financial crisis [12].

We use this model of Schuldenzucker et al. as the base model for our find-
ings. With both debts and CDSs, the clearing problem suddenly becomes signif-
icantly more challenging. The work of [24,25] mostly focuses on the existence of
a solution in this model, and the complexity of finding an arbitrary solution; we
summarize these results in Sect. 4.

However, in the general case, these financial networks do not have a maximal
solution, and thus an authority has to select from a set of solutions that represent
a trade-off between the interests of different banks. The work of [24,25] does not
study this situation, describing it as unwanted since it is prone to the lobbying
activity of banks in the system. Our work analyzes the clearing problem in this
general case; to our knowledge, the problem has not been studied from this
perspective before.

In general, there are many previous works that study the propagation of
shocks in financial networks, and its dependence on the connectivity of the
network [1,3,6,11]. There are also several results that study the topic from a
computational complexity perspective; however, they mostly assume a simple
debt-only model, and focus on more complex questions, such as sensitivity to
shocks or bailout policies [8,15,18,20]. Other works introduce more substantial
changes into these models, e.g. time-dependent clearing mechanisms [2,22] or
game-theoretic aspects [4,19].

There is also a wide literature on different financial derivatives, and CDSs in
particular [7,12,17]. On the more practical side, the clearing problem also plays
a central role in stress tests to evaluate the sensitivity of financial systems, e.g.
in the European Central Bank’s stress test framework [5].

3 Model Definition

3.1 Banks and Contracts

A financial network consists of a set of banks B. Individual banks are mostly
denoted by u, v or w, the number of banks by n = |B|. Each bank v has a
certain amount of funds (in financial terms: external assets) available to the
bank, denoted by ev.

We assume that there are contracts for payments between given pairs of
banks in the system. Each such contract is between two specific banks u and
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v, and obliges u (the debtor) to pay a specific amount of money (known as the
notional) to the other bank v (the creditor), either unconditionally or based on
a specific condition.

These contracts result in a specific amount of payment obligation for each
bank v. If v cannot fulfill these obligations, then we say that v is in default. In
this case, the recovery rate of v, denoted by rv, is the proportion of liabilities
that v is able to pay. Note that rv ∈ [0, 1], and v is in default exactly if rv < 1.

The model allows two kinds of contracts between banks. Debt contracts (or
simply debts) oblige bank u to pay a specific amount to v unconditionally, i.e. in
any case. On the other hand, we also allow credit default swaps (CDSs) between
u and v in reference to a third bank w. A CDS represents a conditional debt that
obliges u to pay a specific amount to v only in case if bank w is in default. More
specifically, if the weight of the CDS is δ and the recovery rate of bank w is rw,
then the CDS incurs a payment obligation of δ · (1 − rw) from node u to v. In
practice, CDSs are often used as an insurance policy against the default of the
debtors of the bank, or as a speculative bet based on insights into the market.

Before a formal definition, let us consider the example in Fig. 1. In this sys-
tem, bank u has a total liability of 4 due to the 2 outgoing debts, but it only
has funds of 2; hence it is in default, and its recovery rate is ru = 2

4 = 1
2 . In

accordance with earlier works (such as [9,23]), the model assumes that in this
case, u has to make payments proportionally to the respective liabilities in the
contracts; hence it transfers 1 unit of money to w and 1 unit to v.

Since u has a recovery rate of ru = 1
2 , the CDS from w to v translates to a

liability of 2 · (1 − ru) = 1. Although w has no funds, it receives 1 unit of money
from u, so it can fulfill this payment obligation and narrowly avoids default,
rw = 1. Finally, v has no liabilities at all, so rv = 1. Since it receives 1 unit of
money from both u and w, and has ev = 1, it has 3 units of money after the
clearing of the system.

3.2 Assets and Liabilities

Formally, our systems are defined by a vector e = (ev)v∈B , the matrix D =
(δu,v)u,v∈B, where δu,v denotes the weight of debt from u to v (interpreted as
δu,v = 0 if there is no such debt), and the matrix C = (δw

u,v)u,v,w∈B , where δw
u,v

denotes the weight of the CDS from u to v in reference to w. We assume that no
bank enters into a contract with itself or in reference to itself. Given a financial
system on B by (e,D,C), we are interested in the recovery rates rv of banks,
which can also be represented as a vector r = (rv)v∈B .

Given a recovery rate vector r, the liability of u to v is formally defined as

lu,v(r) = δu,v +
∑

w∈B

δw
u,v · (1 − rw).

The total liability of bank u is lu(r) =
∑

v∈B lu,v(r), i.e. the sum of payment
obligations for u. However, the actual payment from u to v can be lower than
lu,v(r) if u is in default. The model assumes that defaulting banks always use
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all their assets to pay for liabilities, and they make payments proportionally to
the respective liabilities. With a recovery rate of ru, u can pay an ru portion of
each liability, so the payment from u to v is pu,v(r) = ru · lu,v(r).

On the other hand, the assets of v are defined as

av(r) = ev +
∑

u∈B

pu,v(r).

Given the assets and liabilities of v, the recovery rate rv has to satisfy rv = 1 if
av(r) ≥ lv(r) (i.e. if v is not in default), and rv = av(r)

lv(r)
if av(r) < lv(r) (if v is in

default). If a vector r is an equilibrium point of these equations, i.e. it satisfies
this condition on av(r) and lv(r) for every bank v, then r is a clearing vector of
the system. Our main goal is to analyze the different clearing vectors.

The equity of v in a solution is defined as

qv(r) = max (av(r) − lv(r) , 0) ,

i.e. the amount of money available to v after clearing. In the example of Fig. 1,
we have qu = 0, qw = 0 and qv = 3. We assume that the main goal of banks is
to maximize their equity. Note that we have written qu instead of qu(r) in order
to simplify notation; we often do not show the dependence on r when r is clear
from the context.

Previous works also consider an extension of this base model with default
costs [23–25]; we also refer to this setting as systems with loss. In this case, the
financial network has two more parameters α, β ∈ [0, 1], and when a bank goes
into default, it loses a specific fraction of its assets. More specifically, if v is in
default, then its assets are defined as

av(r) = α · ev + β ·
∑

u∈B

pu,v(r).

Throughout the paper, we mostly focus on the base model without loss, i.e.
we assume α = β = 1 unless specified otherwise. However, we also discuss the
extension of our proofs to systems with loss, and we briefly study some questions
that only arise in case we have default costs.

In the rest of the paper, we switch to a computer science terminology: we
refer to the banks as nodes, clearing vectors as solutions (with the set of solutions
denoted by S), and the notionals of contracts as the weight of the contracts.

4 Properties of the Solution Space

Previous Work. The work of Schuldenzucker et al. focuses on the existence and
computability of solutions [24,25]. Their results can be summarized as follows:

– Loss-free systems (α = β = 1): in this case, there always exists a solution;
however, this proof of existence is non-constructive. Finding an (approximate)
solution is PPAD-hard.
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Fig. 1. Example system on 3 banks.
External assets are shown in rectan-
gles besides the bank, simple debts are
shown as blue arrows, and CDSs are
shown as brown arrows with a dotted
line to the reference bank. (Color figure
online)

Fig. 2. Branching gadget consisting of
two nodes x and y, both having an out-
going debt to a sink t and an incoming
CDS from a source s.

– Systems with loss (α < 1 or β < 1): in this case, a solution might not exist at
all. Deciding if a system has an (approximate) solution is NP-hard.

Once we know that a solution exists, another natural question is if there is a
maximal solution, i.e. a solution r such that qv(r) ≥ qv(r′) for every node v and
every solution r′. If such a maximal solution exists, then we can assume that an
authority always prefers to implement this solution. However, in both settings,
a system can easily have multiple solutions with none of them being maximal.

Branching Gadget. A basic building block in our constructions is the branching
gadget shown in Fig. 2, which has already been used with some parametrizations
in the works of [24,25], e.g. as an example system with no maximal solution. For
the weight parameters δx and δy, we always assume δx ≥ δy ≥ 1.

Since the source and sink nodes can never go into default, we only analyze
the recovery rate subvector (rx, ry). First, observe that we cannot have both
nodes surviving, i.e. (1, 1) as a solution: both nodes only receive any funds if
the other node is in default. However, if either rx = 0 or ry = 0, then the other
node can already pay its debt, thus (0, 1) and (1, 0) are always solutions in this
system.

Besides this, there may be other solutions when both nodes are in default
with a positive recovery rate; these depend on the concrete values of δx and δy. If
x and y are in default, then their assets are equal to the amount of debt they can
pay, so the remaining solutions are obtained from the equations rx = δx · (1−ry)
and ry = δy · (1 − rx).

However, there are also choices of δx, δy for which these equations confirm
that (0, 1) and (1, 0) are indeed the only solutions. One such example is δx = 2,
δy = 1; we refer to this case as the clean branching gadget, and we assume this
parametrization unless specified otherwise. This gadget is a natural candidate
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for representing a binary choice: x is a binary node in the sense that rx is either
0 or 1 in any solution, and ry offers a convenient representation of its negation.

Number of Solutions. We now discuss the size of the solution space in our sys-
tems.

Lemma 1. There exists a financial system with infinitely many solutions.

Proof. Consider the branching gadget of Fig. 2 with δx = δy = 1. For any ρ ∈
[0, 1], the vector (ρ, 1−ρ) satisfies the equations above, thus it is a solution of
the system.

While this shows that the number of solutions is potentially unlimited, the
difference between most of these vectors is only the extent of the defaults. Thus
it is also natural to study another concept of difference between solutions: we
say that two solutions r and r′ are essentially different if there is a node v such
that either rv = 1 but r′

v < 1, or r′
v = 1 but rv < 1. Since we only consider a

boolean value for each node in this definition, the number of pairwise essentially
different solutions is at most 2n.

Lemma 2. There exists a system with 2Ω(n) solutions that are pairwise essen-
tially different.

Proof. Let us take n
4 independent copies of the clean branching gadget. In each

gadget, there are two possible subsolutions: (0,1) or (1,0). Over the distinct
gadgets, these can be combined in any way, adding up to 2n/4 solutions that are
pairwise essentially different.

Better and Worse Solutions. While our systems may not always have a maximal
solution, it is still reasonable to say that some solutions are better than others.

Definition 1. Given two solutions r and r′, we say that r′ is strictly better
than r if qv(r′) ≥ qv(r) for every node v, and there exists a node u such that
qu(r′) > qu(r). A solution r is Pareto-optimal if there is no solution r′ that is
strictly better than r (otherwise, r is Pareto-suboptimal).

A financial authority might want to avoid implementing Pareto-suboptimal
solutions, and prefer a strictly better solution instead. However, selecting among
Pareto-optimal solutions is more difficult, since they represent a trade-off
between the preferences of different nodes.

In our base financial system model without loss, every solution is Pareto-
optimal. However, if we also have default costs, then some funds are lost when a
node goes into default, and thus this is not the case anymore. While the proofs
of these claims are simple, we defer them to the full version of the paper [21].

Lemma 3. In loss-free financial systems, every solution is Pareto-optimal.

Lemma 4. In systems with loss, there can be solutions that are Pareto-suboptimal.
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Fig. 3. not gate Fig. 4. or gate

5 Finding the “Best” Solution

In this section, we discuss a wide range of realistic objective functions for select-
ing a solution in out networks. We show that for these objectives, the optimal
solution is even hard to reasonably approximate. The details of these proofs are
discussed in the full version of the paper.

5.1 Tools and Gadgets

Besides the branching gadget, our constructions also apply gadgets that simulate
boolean operations on nodes. Note that most of these gadgets have already been
used before in the work of [24,25], sometimes in a slightly different form.

More specifically, given two binary nodes u and v, we can construct the
following gadgets:

– not gate: a node w such that rw = 1 if rv = 0, and rw = 0 if rv = 1,
– or gate: a node w such that rw = 0 if ru = rv = 0, and rw = 1 otherwise,
– and gate: a node w such that rw = 1 if ru = rv = 1, and rw = 0 otherwise.

We demonstrate the not and or gates in Figs. 3 and 4, and discuss the
behavior of these gadgets in the full version. Note that Fig. 4 already uses the
not gate as black box, denoted by a ¬ symbol. In a similar fashion, we can also
create and and or gates on multiple inputs.

Finally, when adding incoming or outgoing contracts to a bank v, our main
goal is often to establish a specific behavior for v, and thus it is unimportant
where these contracts come from/go to. Hence for simplicity, we add a specific
source node s with es = ∞ and a sink node t to our constructions, which act as
the source/recipient of all such contracts.

5.2 Example: Maximizing the Equity of a Node

To demonstrate the main idea behind our constructions, we first discuss the
problem of maximizing the equity of a specific node. That is, given a node v, we
define the value of a solution r as the equity qv, and we denote the search problem
of finding the highest-value solution by MaxEquity(v). This is a very natural
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problem, and a crucial question for v if it wants to understand its situation in
the network. However, this problem is already hard to solve in our model.

Theorem 1. The problem MaxEquity(v) is NP-hard to approximate to any
n1−ε factor.

Proof. We use a reduction from the boolean satisfiability (SAT) problem, which
is known to be NP-complete [13]. Given an input boolean formula φ on N vari-
ables and M clauses, we transform this into a financial system representation by
creating N distinct branching gadgets, each corresponding to a specific variable.
Recall that if we understand rx to be the value of the variable in an assignment,
then ry represents its negation.

Given these variables, we can use our logical gates to compute the value of
φ for a specific assignment: we first combine each clause into a node with an or
gate, and then combine all these nodes with an and gate. This provides a binary
indicator node vI which describes the value of φ under a specific assignment. We
also add a further not gate on top of vI to obtain a convenient representation
of its negation in a new bank vI .

Most of our hardness results will use this base construction, extended by fur-
ther gadgets representing the specific objective function. For the MaxEquity(v)
objective, we only add a node v that has ev = 0, and an incoming CDS of weight
n in reference to vI .

If there exists a satisfying assignment to φ, then there is a solution in this
system that has rvI

= 0, and thus qv = n. As such, any n1−ε approximation
algorithm must return a solution in this case with qv ≥ nε > 0. On the other
hand, if φ is unsatisfiable, then every solution of the system has qv = 0. Hence
a polynomial-time approximation would also allow us to decide whether φ is
satisfiable, which completes the reduction.

Note that the branching gadgets already determine the recovery rate of all
other nodes, so the system has exactly the 2N solutions that correspond to the
different variable assignments. This allows us to easily characterize the entire
solution space, so the source of computational hardness is not the fact that we
cannot even find a single solution, as described in [25] before.

With a slightly different gadget appended to the base construction, we can
present a similar reduction for the problem of minimizing the equity of a bank
v.

Theorem 2. The problem MinEquity(v) is NP-hard to approximate to any
n1−ε factor.

5.3 Global Objective Functions

Given a financial system with many solutions, there are various objectives that
an authority could follow when choosing the solution to implement. Some of the
most natural objective functions are as follows:
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– MinDefault: minimize the number of defaulting nodes, i.e. |{v ∈ B | rv < 1}|
– MaxPrefer: find the solution that is the primary preference of most nodes,

i.e. define the maximal equity of bank v as qv
(max) = maxr∈S qv(r), and then

maximize |{v ∈ B | qv(r) = qv
(max)}|,

– MinUnpaid: minimize the amount of unpaid liabilities, i.e.
∑

u,v∈B lu,v−pu,v.

One can show that these are indeed different problems: they can obtain their
optimum in distinct solutions, and the optimum for one objective might give a
very low-quality solution in terms of another one.

Theorem 3. For any objectives f1, f2 from above, there is a system such that
in the optimal solution for f1, the value of f2 is a Θ(n) factor worse than the
optimum value of f2.

We provide example constructions for these claims in the full version of the
paper. In fact, one can even combine these examples into a single system with a
very different optimum for each function.

Theorem 4. There exists a financial system such that the optima for the objec-
tive functions above are all obtained in different solutions, and in terms of the
respective metrics, each of these optima are a factor of Ω(

√
n) better than any

other solution in the system.

Now let us analyze these problems from a complexity perspective. We can
apply a similar technique to Theorem 1 to show that it is hard to approximate
any of these objectives.

Theorem 5. The problem MinDefault is NP-hard to approximate to any n1−ε

factor.

Proof sketch. Given a fixed constant ε, let us select an ε′ such that 0 < ε′ < ε.
Also, given a formula φ on N variables and M clauses, let us introduce m :=
N+M . We extend the base construction of Sect. 5.2 by introducing m1/ε′

distinct
new banks ui to the system that all have eui

= 0, and an outgoing CDS of weight
1 in reference to the indicator node vI .

For every variable assignment that evaluates to false, we have rvI
= 0, so all

the new nodes are in default; as such, the number of defaulting nodes is m1/ε′
+

O(m). On the other hand, if there is a satisfying assignment, then the banks
ui have no liability in the corresponding solution, so the number of defaulting
banks is only O(m). Since n = Θ(m1/ε′

) in this system, the best solution has
either Θ(n) or O(nε′

) < nε defaults, depending on whether φ is satisfiable; this
shows an inapproximability to any n1−ε factor.

We can also rephrase the MinDefault problem as maximizing the number
of surviving (non-defaulting) nodes; the two problems clearly have the same
optimal solution. However, this MaxSurviving problem is defined by a different
metric in its objective function, so it could behave very differently in terms of
approximability (see e.g. the minimum vertex cover and maximum independent
set problems, which are also complements [13,14]). However, it turns out that
in our case, the problem is hard to approximate in both metrics.
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Theorem 6. The problem MaxSurviving is NP-hard to approximate to any
n1−ε factor.

We can use different variants of the same proof technique to show the
same hardness result for the other two objectives. Furthermore, similar to
MaxSurviving, we can also define dual problems for these objectives, which
are also hard to approximate.

Theorem 7. The problems MaxPrefer and MinUnpaid (as well as their dual
problems MinLeastPrefer and MaxPaid) are NP-hard to approximate to any
n1−ε factor.

5.4 More Complex Objectives

Most Balanced Solution. In a different setting, an authority might want to find
a solution where the distribution of equity is balanced in some sense. E.g. if we
have two larger alliances of banks (sets of nodes), then our goal might be to find
a solution that distributes the total equity evenly between these alliances.

We show our hardness result for the simplest case of only two nodes v1 and
v2, and the problem MinDiff(v1, v2) of minimizing |qv1 − qv2 | is minimal. It
follows that the more general problem of minimizing |∑v1∈V1

qv1 −∑
v2∈V2

qv2 |
for two sets of nodes V1 and V2 is also hard.

Theorem 8. The problem MinDiff(v1, v2) is NP-hard to approximate to any
n1−ε factor.

Proof. We can simply consider the MinEquity(v) construction with v1 := v,
and add an extra bank v2 such that qv2 = 0. This system has |qv1 − qv2 | = qv1 ,
so we can apply the same reduction as in the MinEquity case.

Most Representative Solution. It could also be a reasonable goal to select a
solution that is somehow representative of the whole solution space S. Assuming
a fixed distance metric between two solutions (e.g. let d(r, r′) :=

∑
v∈B |rv −r′

v|),
there are many natural ways to define a metric of centrality for a solution r ∈ S.

We only discuss one natural approach here: let us define

cent(r) =
1

|S|
∑

r′∈S

d(r, r′) ,

as the centrality of a solution r, and let MinDist denote the problem of finding
the solution r with the lowest cent(r) value.
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Fig. 5. Construction of Theorem 9 Fig. 6. Construction of Theorem 10

Note that our result essentially shows that the solution space can exhibit a
threshold behavior between two very different shapes, and it is already hard to
decide which of the two shapes is obtained. This suggests that the problem is
also hard in any other reasonable formulation, i.e. for other distance functions
or centrality metrics.

Theorem 9. The problem MinDist is NP-hard to approximate to any n1−ε

factor.

Proof sketch. The main idea is to add two large sets of nodes to our construction,
as sketched in Fig. 5. The generating group consists of N2 independent branching
gadgets, while the control group has m1/ε′

single nodes with an outgoing debt
(where m denotes the size of φ and ε′ < ε as before). We ensure that both groups
only receive funds if rvI

= 1; otherwise, all the new nodes are in default.
Since the control group contains almost all of the nodes asymptotically, the

centrality of a solution is essentially defined by the recovery rates of the nodes in
the control group. If φ is unsatisfiable, then every assignment produces rvI

= 0,
and thus the control nodes have recovery rates of 0 in every solution. On the
other hand, if φ is satisfiable, then the branching gadgets in the generating group
will introduce 2N2

new solutions (for each satisfying assignment), which reduces
the at most 2N unsatisfying solutions to an asymptotically irrelevant part of S.
In this case, the control nodes have a recovery rate of 1 in almost every solution.

Hence the two cases are very different in terms of solution space. An approxi-
mation algorithm would always need to find a satisfying assignment if one exists;
otherwise, it returns a solution with an average distance of at least m1/ε′ ≈ n,
while the optimum has a distance of only O(m) ≈ n1−ε′

.

Strictly Better Solution. Recall that in systems with loss, we can have Pareto-
suboptimal solutions, so it is natural to ask if a specific solution can be improved:
if there is a solution r′ strictly better than r, then we would probably want to
implement r′ instead of r. If such an r′ was easy to find, then we could iteratively
improve an initial solution until we eventually find a Pareto-optimal one.
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Theorem 10. It is NP-hard to decide if a given solution r is Pareto-suboptimal.

Proof sketch. The construction is built around a binary node v0 (see Fig. 6). To
each node u of our base construction, we add a so-called unhappy penalty gadget.
This essentially means that if rv0 = 0, then u pays a large penalty to a special
sink t0; however, t0 has further gadgets attached to ensure that t0 is still worse
off if rv0 = 0, even though it receives money from this penalty. As such, the
default of v0 is not favorable to any node in the system.

The base idea then is to add another node w, which, on the other hand,
receives 1 unit of money if either rv0 = 0, or rvI

= 1. Let r be the solution where
rv0 = 0, and thus all nodes in the base construction are in default, but qw = 1.
Any solution strictly better than r must also have qw ≥ 1. If v0 is not in default,
this is only possible if we find a satisfying assignment of φ, thus ensuring rvI

= 1.

6 Restricted Financial Networks

Our final goal in the paper is to understand the key reasons behind this com-
putational complexity, and whether we can introduce some restrictions to our
network model to eliminate this phenomenon. In particular, we show that the
same hardness results also hold in many severely restricted variants of our finan-
cial system model, and it takes a combination of multiple restrictions to ensure
that the solution space is sufficiently simple.

Before considering restrictions to the network, let us first briefly discuss
a familiar extension of the model: default costs. We point out that while our
hardness results were mostly shown for systems without loss, they can also be
extended to systems with loss with some minor modifications.

Theorem 11. Theorems 1–2 and 5–10 also hold for any α, β ∈ (0, 1].

6.1 Unweighted Networks

For convenience, we have sometimes used rather large edge weights in our con-
structions; one could argue that this is unrealistic in practice. As such, we first
show that our hardness results also carry over to the setting when each contract
in the network has the same weight.

Theorem 12. Theorems 1–2 and 5–10 also hold in unit-weight networks.

Proof sketch. The modifications required for this setting are rather straightfor-
ward: most edges in our constructions have unit weight to begin with. Whenever
the weight is a larger integer k, we can split this into k distinct contracts that
come from/go to k distinct source/sink nodes. The only cases that require some
extra consideration are the gadgets used in Theorems 9 and 10.
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6.2 Restricted Network Structure

In their work, Schuldenzucker et al. also discuss several restrictions to the net-
work structure [24,25]. While they study these restrictions from a different per-
spective (their goal is to ensure that the system always has a solution, even with
default costs), it is natural to ask whether our hardness results still hold in these
restricted network models.

In particular, the authors define the so-called dependency graph to express
the relations of banks in a directed graph with edges of two colors:

– Green edges: intuitively, these indicate long positions. For example, there is
a green edge from u to v if u has a contract towards v (debt or CDS), or if v
has an outgoing CDS in reference to u.

– Red edges: intuitively, these indicate short positions. There is a red edge from
w to v if v has an incoming CDS in reference to w (unless there is a debt of
even larger weight from w to v).

For details on the dependency graph, we refer the reader to the full version of
the paper or the work of [24].

The work of [24] studies different restrictions to the network based on this
dependency graph. In the most restricted case, they study systems where the
dependency graph contains exclusively (or almost exclusively) green edges, so
short positions are essentially banned.

Definition 2. We say that a financial network is a green system if its depen-
dency graph only contains green edges.

Using a fixed-point theorem, one can show that green systems are similar to
debt-only networks in the sense that they always contain a maximal solution.
As such, this simpler case is not so interesting in terms of default ambiguity.

However, [24] also studies a more general setting where short positions are
still allowed in the network, but only in a structurally restricted fashion.

Definition 3. A financial network is an RFC (red-free cycle) system if no
directed cycle of the dependency graph contains a red edge.

The authors show that in RFC systems, one can always find a solution effi-
ciently. Intuitively, one can iterate through the strongly connected components
(SCCs) of the dependency graph in topological order, since every SCC is only
dependent on the preceding ones. Since each SCC is a green system, there is
always a maximal subsolution in the current SCC (if the subsolutions in previ-
ous SCCs are already fixed), and we can find this efficiently.

In contrast to this, our goal of finding the best solution is still not straight-
forward in these RFC systems. In particular, selecting a different (non-maximal)
solution in the first SCC could allow us to find a different solution in the second
SCC; while this is unfavorable to banks in the first SCC, it might be much better
in terms of our global objective. In fact, our hardness results even hold in this
heavily restricted class of networks.
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Fig. 7. A simple debt-only network with multiple solutions

Theorem 13. Theorems 1–2 and 5–10 also hold in RFC systems.

Proof sketch. The key observation is that the dependency graphs of our con-
structions are already very close to DAGs: the only directed cycles occur within
the branching gadgets, where banks x and y have short position on each other.
As such, it is sufficient to come up with an alternative branching gadget design
that satisfies the RFC property.

The main idea of this gadget is to consider two banks v1 and v2 as in Fig. 7;
for any ρ ∈ [0, 1], rv1 = rv2 = ρ is a solution of this system. We can then
essentially use the small and large ρ values in this system (e.g. ρ < 1

3 and ρ > 2
3 )

as the new representations of the two binary states. We exclude the intermediate
ρ values by artificially making the solution significantly worse (in terms of our
objective function) whenever we have ρ ∈ [13 , 2

3 ].

We note that the situation in Fig. 7 seems rather artificial. However, recall
that default ambiguity often arises after an external shock hits the market; as
such, one should imagine this as a situation where banks in a cycle have lost all
their funds due to such an event.

6.3 Green Systems and Regularity

Our alternative construction in Theorem 13 uses the fact that a debt-only net-
work can still have multiple solutions in some special edge cases, thus allowing
us to create a large solution space. To prevent this phenomenon, we first need a
deeper understanding of these cases when green system have multiple solutions.

The work of [9] already studies this question in debt-only networks, showing
that the solution is unique if from any bank there is a directed path to another
bank with positive funds. We prove a more general version of this result, extend-
ing the theorem to any green system, and using a weaker assumption on the
topology. In particular, we show that green systems can only have multiple solu-
tions in a special edge case: when we have a network segment with no funds and
no incoming assets at all.

Theorem 14. Let G be a green system, and assume that v is a bank that has
two distinct recovery rates rv �= r′

v in two solutions. Let C be the set of nodes
reachable from v on a path of simple debts. Then the following must hold:

– for all u ∈ C we have eu = 0,
– if there is a path of contracts from a bank w ∈ G to a bank u ∈ C, then

ew = 0.



406 P. A. Papp and R. Wattenhofer

Proof sketch. The main steps of the proof are as follows:

– Recall from before that a green system always has a maximal solution r (and
also a minimal solution r′); these assigns the highest/lowest recovery rate to
all banks.

– In such a setting, all banks must have the same equity in any solution. Intu-
itively, in systems without loss, if a bank had less equity in a solution r0 than
in the maximal solution r, then some other bank would need to have more
equity in r0 than in r.

– If rv > r′
v (i.e. v can have different recovery rates), then v makes strictly more

payment on its outgoing debts in r than in r′. In a loss-free system, these
extra payments traverse the network in until they either (i) reach a node u
with no more unfulfilled liabilities, or (ii) they arrive back at v. However, the
first option is not possible, since this would mean qu > q′

u; hence all such
payments must ultimately arrive back at v.

– This means that from v, any path of contracts (with positive liability) must
eventually lead back to v, implying that these contracts form an SCC C.

– Finally, no node u ∈ C can have eu > 0, and also no node w ∈ G can have
a positive payment towards a bank u ∈ C. This is because C is closed under
outgoing payments, so if any funds arrive in C, then the loss-free property
implies that some u ∈ C must have q′

u > 0; hence we already have r′
u = 1 in

the solution r′. However, if rv > r′
v, then in r there is a strictly positive extra

payment arriving at u; this implies qu > q′
u, which is again a contradiction.

Note that the proof also makes a structural observation that the banks reach-
able from v must form a SCC in the graph of “meaningful” contracts (which
induce a positive liability in some solution). However, since it is not immedi-
ately clear whether a CDS is meaningful, we expressed Theorem 14 in a weaker
form, stating the restrictions only for the set of nodes C that are reachable from
v on simple debts.

The situation described in Theorem 14 is a very special case, so there are
various ways to ensure that we exclude such networks. One natural approach is
to restrict the amount of funds that banks must possess, since this is usually
strictly supervised in practice.

Definition 4. We say that a financial system G is regular if we have ev > 0
for all v ∈ B.

This assumption is realistic in many legal frameworks: financial regulations
usually require banks to possess enough funds to cover at least a specific portion
of their liabilities. Considering that default ambiguity often happens after a shock
hits the market, an alternative (more practical) interpretation of this property is
that all banks must keep at least some of their funds in a format that is resilient
to external shocks.

Note that there are various other options to exclude the edge case of Theorem
14 with weaker conditions; however, most of these approaches are difficult to
enforce from a regulator’s perspective.
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On the other hand, note that Theorem 14 only applies to green systems. If
our network is not a green system, then even this rather strong condition is not
sufficient to ensure that the solution is unique.

Theorem 15. Theorems 1–2 and 5–10 also hold in regular financial systems.

Proof sketch. The main idea is to consider a new representation of the binary
states in our gadgets: instead of rv = 0 and rv = 1, the two binary states will be
represented by rv = 0.5 and rv = 1. This allows us to give some funds to every
node in our construction, thus fulfilling the regularity condition.

Most of our gadgets are actually rather easy to adapt to this setting; it is
only the constructions of Theorems 9 and 10 where this is more technical.

6.4 Combined Restrictions: a Unique Solution

This shows that we need both the RFC property and regularity together to
ensure that the solution of the system is unique, and thus our hardness results
can be avoided. This provides an interesting final message from our analysis:
it suggests that financial regulators might need to use both topological and
fund-based restrictions simultaneously in order to eliminate the computational
problems arising from default ambiguity.

Theorem 16. If a system is both regular and RFC, then it has a unique solu-
tion. This solution can be efficiently approximated in polynomial time.

Proof. We can now apply the approach of [24] for RFC systems, computing a
solution by visiting the SCCs in topological order. The payments coming from
the previous SCCs can simply be considered as extra funds at the bank when
processing the current SCC of the network.

Due to the RFC property, the current SCC is always a green system. Reg-
ularity implies that every node u in the SCC has eu > 0; this is only further
increased by the payments from previous SCCs. As such, Theorem 14 shows that
there is always a unique subsolution in the current SCC. Altogether, this implies
that the solution r is unique in the whole network; as such, we can indeed simply
apply the algorithm of [24] for RFC systems, which always finds an arbitrary
solution.

Note, however, that the solution of our networks can also be irrational in
some cases, so we can only claim that it is efficiently approximated with this
method. It is already discussed in [24,25] that given an error margin ε > 0, this
algorithm finds a recovery rate vector rε such that |rv − rε

v| ≤ ε for all v ∈ B,
and its running time is polynomial in n and 1/ε.

Finally, we point out that if we have default costs, then our hardness results
still hold even in the setting of Theorem 16. This is because with default costs,
a green system can still have multiple solutions even if it is regular. If we modify
Fig. 7 to have eu = ev = 1

3 and we assume α = β = 1
2 , then both ru = rv = 1

and ru = rv = 1
3 are solutions; while the former is clearly better for u and v, the

latter might be superior in terms of our objective.
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Abstract. People often believe that their future preferences will be sim-
ilar to their current ones. For example, people who go hungry to the
supermarket, often buy less healthy food items than when they go on a
full stomach. Loewenstein et al. [10] coined the term projection bias to
capture this and similar behaviors.

Our first contribution is a generalization of the restricted model of
Loewenstein et al. by considering agents with projection bias that tra-
verse a state graph for time horizon t. Our generalization allows us to
capture more complex planning scenarios, such as a student that plans
his occupational path. We analyze the planning behavior of biased agents
and show that their loss due to their projection bias may be unbounded.
Obviously, agents who do not suffer from projection bias at all will be
able to traverse the graph optimally. We show–perhaps surprisingly–that
agents that exhibit a strong projection bias sometimes fare better than
agents that exhibit projection bias to a smaller extent. Similarly, we
show that agents that plan for a longer time horizon do not necessarily
fare better than agents that plan for a shorter time horizon. We then
provide bounds on the number of these “non-monotonicity” points in a
given state graph. Among other results, we prove a hardness result for
computing a subgraph that maximizes the utility of the biased agent.

Keywords: Projection bias · Planning · Behavioral bias

1 Introduction

It is well documented that people who go grocery shopping on an empty stomach
make much less healthy-conscious choices and might buy more food [3,12,15].
The underlying reason is that when we are in a “hungry state” it is difficult for
us to imagine which types of food we would like to eat later when we are in a
“less satiated state”. A crisp demonstration of this is an experiment by Read
and van Leeuwen [13] in which office workers had to choose whether they will get
a healthy or an unhealthy snack in a week from now. It turned out that workers
who were hungry when deciding were more likely to choose an unhealthy snack
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for next week. Loewenstein et al. [10] coined the term projection bias to describe
the behavior in such situations. Individuals exhibiting projection bias believe
that their preferences in future states will be similar to their current preferences.
In particular, they know whether the change will be positive or negative with
respect to their current state, but they misestimate the magnitude of the change.

There is ample evidence in the Psychology and Behavioral Economics lit-
erature (see [4,10,11] for surveys) of people exhibiting behaviors that could be
explained by projection bias. Many of those have to do with underappreciation of
adaptation [4] – individuals fail to realize how well they will adapt to a new sit-
uation and hence exaggerate the implications of a change. For example, patients
with renal failure expect that a kidney transplant will dramatically change their
lives, but when asked after the transplant, they report a milder change [14];
Academic faculty exaggerate the effect that getting or being denied tenure will
have on their quality of life [4].

Many of the studies considering projection bias rely on self-reporting, which
may hinder the robustness of the results. Conlin et al. [2] test projection bias in
field data. They analyze data of catalog orders and returns of weather-related
items. They show that people who order cold-weather items on a cold day are
more likely to return them. Similarly, if the temperature on the day after they
receive the item is high, they are more likely to return the item.

In their influential paper, Loewenstein et al. [10] suggest a formal model
for capturing projection bias. The rough idea is that the utility of an agent
from consuming some good depends not only on the amount it consumes but
also on the agent’s state. The state can change as a function of the consump-
tion and hence the agent has to predict his utility in different states to make
intertemporal decisions. Formally, an agent currently at state s has a utility
u(c, s) for consuming c units. The agent’s projected utility for a state s′ �= s
is ũ(c, s′|s) = α · u(c, s) + (1 − α) · u(c, s′) where 0 ≤ α < 1 is a parameter
that specifies the extent to which the agent’s prediction is biased. They demon-
strate their model by considering settings of endowment effect, impulse buying
of durable goods and addiction formation. For the latter, the conceptual claim
is that novice smokers fail to understand that quitting will be much harder after
a year of smoking. Moreover, they do not realize that in the future, they might
need to smoke more to attain a “pleasure level” similar to their initial “pleasure
level”.

The focus of Loewenstein et al. [10] was on settings in which the state essen-
tially changes as a simple function of the consumption. This modeling fails to
capture situations in which the state changes in a more elaborate manner. As an
example, consider a high school graduate planning her career path: the different
states correspond to her occupational status (e.g., completed B.A in Biology, first
year of business school) and the utility at each step can equal to some measure of
her well being for staying at this state or her yearly earning ability if she stayed
at this state. It is often the case that there are multiple career paths leading
to the same state. We suggest overcoming this limitation by introducing a state
graph to capture how the state changes as a function of the agent’s action.
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Model. We consider an agent with projection bias traversing a directed acyclic
state graph G for t > 0 discrete time steps1, starting from an initial state s.
(see Fig. 1 for an illustration). Each state v is defined a non-negative payoff,
u(v), that the agent collects for each time step it stays in v. Each edge (v1, v2)
is assigned a cost that corresponds to the cost of transitioning from state v1 to
state v2. We assume that transitioning from a state to a neighboring state takes
exactly one time step.2 The payoffs and costs can be of either monetary value
or more abstract measures such as a measure of well-being.

We model the behavior of an agent with projection bias similarly to Loewen-
stein et al. [10]. An agent is characterized by a parameter 0 ≤ α < 1 that
captures the extent of the bias. As greater α is, the agent believes that its payoff
in any future state will resemble its current payoff more. Formally, the projected
payoff of an α-biased agent currently at v for any future state w is

uα(w|v) = α · u(v) + (1 − α)u(w)

At each state v the α-biased agent can either stay at v and collect a payoff of
u(v) or continue to a neighboring state. The agent’s objective is to maximize its
total utility (i.e., the sum of payoffs the agent collected minus the cost it paid
for the edges that it traversed). However, due to its projection bias, the agent
at each state will aim to maximize its total projected utility instead. We observe
that after the agent decides to stay at some state v it will choose to stay at v for
all remaining time steps. This observation implies that at each state an α-biased
agent plans to take some path on the state graph and then stay at the last state
on the path for the remaining time steps. It is not hard to see that at each state
the α-biased agent can compute a path maximizing its total projected utility in
polynomial time by a dynamic program.

It is instructive to consider the behavior of a biased agent in an example.
Consider a 1/2-biased agent traversing the state graph G in Fig. 1. For t = 6
the agent at s will plan to follow the path (s, v1, v4) as the projected utility
of this path is (1/2 · 1 + 1/2 · 8) · (6 − 2) − 0 = 18. This is greater than the
utility of staying at s which is 1 · 6 = 6, the utility of continuing to v1 which is
(1/2 · 1 + 1/2 · 6) · (6 − 1) − 0 = 17.5 and the utility of continuing to v3 which is
(1/2 ·1+1/2 ·10) · (6−3)−0 = 16.5. At v1 the agent, learns that the payoff at v1
is higher than it expected and decides to abandon its original plan and instead
stay at v1. To see why this is the case, observe that the total utility for staying
at v1 is 30 while the projected utility for continuing to v4 is 28. The changing
payoffs may not only cause the agent to abandon a plan but may also make it to
completely change its plan. To see this, consider again the state graph in Fig. 1
where now t = 9. In this case an 1/2-biased agent at s will plan to take a path to
v3. However, once it arrives to v1 it will change its plan and decide to continue
to v4 instead.
1 To focus on the effects of the projection bias we assume that future costs and payoffs

are not discounted.
2 Essentially, this is without loss of generality since longer transition periods can be

handled by adding more edges of cost 0.
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Fig. 1. An example of a state graph G.

Overview of Results. We provide a thorough analysis of the behavior of an
α-biased agent traversing a direct acyclic state graph. We first present some
insights into the agent’s planning behavior. When discussing the instance in
Fig. 1 we observed that an agent might change its plan. Such a change can only
occur when the agent moves between states that have different payoffs. When
the agent moves from a low-payoff state to a high-payoff state, the projected
payoffs of future states increase. As a result, the agent will favor shorter paths,
as each time step can be used either to traverse an edge or collect a payoff and
a higher payoffs make the second option more appealing. In the complementary
case of moving from a high payoff state to a low payoff state, we see the opposite
phenomenon as the agent now favors longer paths. We show that the number
of changes in plan that a biased agent makes may be linear in the size of the
graph. In fact, there are instances in which the α-biased agent changes its plan
after each step it takes.

Non-Monotonicity. Next, we consider the effects of the different parameters of
the model on the (actual) total utility of the α-biased agent. First, we discuss
how the agent’s utility changes with the time horizon t. For an unbiased agent,
the total utility may only increase with t, since the unbiased agent can always
increase its utility by taking the same path it took for t−1. This is not necessarily
the case for an α-biased agent. Roughly speaking, as t increases, an α-biased
agent would plan to follow a path with a higher total utility (both actual and
projected). However, due to its projection bias, it may reach a state it would
not have reached otherwise. At this state, the agent may change its plan to one
in which the total utility is smaller. To bound the number of non-monotonicity
points (i.e., t is a non-monotonicity point if the total utility of an α-biased agent
for t+1 is lower than its total utility for t), we bound the number of possible paths
that an α-biased agent, for a fixed value of α, may take for any value of t. We
provide a lower bound of n and an upper bound of n3 on this quantity. We obtain
orthogonal results when considering the behavior of the agent as a function of α.
Perhaps counterintuitively, we show that as the agent’s bias decreases, its total
utility may also decrease. We also bound the number of non-monotonicity points
in α by the number of paths that α-biased agents with different values may take.
We show a lower bound of n and an upper bound of n4 on this number.

Performance Ratio and Hardness of Computing an Optimal Subgraph. A natural
question in this setting is to understand how much an agent can lose from its
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bias. Specifically, we ask how large can be the gap between the utility of an
unbiased agent and the utility of an α-biased agent traversing a state graph for
the same number of steps. We refer to this ratio as the performance ratio. Note
that, since the α-biased agent always knows which states have a higher payoff
than others and is only wrong about how high the payoff is, for any instance,
there exists a t such that for every t′ > t the agent takes the same path as an
unbiased agent. This implies a performance ratio of 1 for large values of t. On the
other hand, for a fixed time horizon t, we show that for any value of 0 < α < 1,
the performance ratio can be made arbitrarily high.

The possible high loss of an agent due to its bias motivates finding ways
to increase its utility. One possible way of doing this is by removing states and
edges from the graph. Consider the state graph in Fig. 1. For t = 10 and α = 1/2,
assuming ties are broken in favor of shorter paths, the agent will take the path
(s, v1, v4) for a total (actual) utility of (10 − 2) · 8 = 64. However, if we remove
v4 then the agent will now take the path (s, v1, v2, v3) that has a total utility of
(10 − 3) · 10 = 70. This leads us to the computational question of whether we
can efficiently compute a subgraph maximizing the total utility of an α-biased
agent. We show that this problem is NP-hard.

Discussion. The current paper is situated in the growing literature on the
planning of agents with behavioral biases such as present bias and sunk cost bias
(e.g., [1,5–9,16]). In contrast to other papers in this line of work, the modeling
of projection bias requires a fully-fledged model of planning that includes costs
on the edges, payoffs on the nodes and a time horizon t that the agent plans
for. Moreover, projection bias operates on a more global level than present bias
which makes planning for agents with projection bias and agents with present
bias considerably different, technically and conceptually. While all of these biases
imply some form of time-inconsistent planning, the type of inconsistency and its
implications differ. For example, the loss of an agent with projection bias due
to its bias may be unbounded, whereas the loss of an agent with present bias
is bounded by a function of the graph’s size. The non-monotonicity results we
present are also unique to agents with projection bias.3

Our work leaves several open questions, including:

• Are the upper bounds we presented on the number of non-monotonicity points
in the agent’s utility as a function of α or t tight?

• We show that computing a subgraph that maximizes the total utility of an
α-biased agent is an NP-hard problem. One can consider other methods to
increase its utility. For example, instead of removing edges from the under-
lying graph, by how much can decreasing the cost of different paths help to
increase the agent’s utility? Can this be done optimally in polynomial time?

• On a more high level, in the spirit of [8], it could be interesting to explore
the behavior of agents that exhibit projection bias simultaneously with other
planning related biases such as present bias and sunk cost bias.

3 [7] considers a different type of monotonicity results for sophisticated agents in terms
of other parameters of the graph.
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Structure of the Paper. In Sect. 2 we formally describe the model and ana-
lyze the behavior of the agent. In Sect. 3 we discuss the performance ratio and
computing a subgraph maximizing the agent’s utility. In Sect. 4 we consider the
effects of the parameters t and α on the choices of the biased agent. Finally,
in Sect. 5 we discuss an extension of our model for state graphs that may have
cycles.

2 Model and Preliminaries

We consider an agent traversing a directed acyclic state graph, that has n states.
The initial state of the agent is s and the agent traverses the graph for t ≥ 0
time steps. At every time step, an agent currently at state v can either stay and
collect a payoff of u(v) (positive) or continue to a different state. An agent who
chooses to continue to an adjacent state, by taking an edge e, will not collect
any payoff at this time step and will pay a cost of c(e) (negative). An agent
with projection bias currently at a state v, believes that its payoff in a different
state w will be similar to its payoff at v. Formally, we assume that an agent
with projection bias currently at v believes its payoff in a future state w will be
uα(w|v) = α · u(v) + (1 − α) · u(w). We refer to this as the agent’s projected
payoff. Where 0 ≤ α < 1 denotes the extent of projection bias that the agent
exhibits. For α = 0 we have an unbiased agent and as α increases, the agent
believes that its payoff in future states will be more similar to the payoff in its
current state.

The goal of the agent is to maximize its utility in the t steps it traverses the
graph. The utility equals the sum of payoffs the agent collected minus the cost
it paid for the edges that it traversed. Observe that if an agent decides to stay
at a state v, then at the next time step, it will also decide to remain at v. The
reason for this is that in both time steps the projected utilities are identical. In
this case, it is easy to observe that if an agent decides to stay at some state v
when it has t remaining time steps, it will also choose to stay at v when planning
for 0 ≤ t′ < t time steps. We proved the following observation:

Observation 1. If an α-biased agent, currently at v, decides to stay at v then
it will stay there for all remaining time steps.

The observation allows us to specify the agent’s behavior concisely: an α-
biased agent currently at state v will plan to follow a path P to a state w
which maximizes its projected utility: (t − |P |) · uα(w|v) − C(P ), where C(P ) =∑

e∈P c(e). If there are several paths with the same utility, we assume the agent
breaks ties in favor of shorter paths. It is not hard to see that the agent can
compute the path maximizing its projected utility in polynomial time using a
simple dynamic program (see the full version for a formal proof).

We note that for any state graph G and any 0 ≤ α ≤ 1, if t is large enough,
then the α-biased agent will behave as an optimal (unbiased) agent and will
take the minimal cost path that reaches the state of maximal payoff. When
planning for a shorter time horizon, it is no longer the case that the agent behaves
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Fig. 2. Illustration for proposition 2.

optimally or follows a consistent plan. The following observation formalizes under
which circumstances the α-biased agent will change its plan.

Observation 2. Consider an α-biased agent that at state s plans to follow path
P1 to v1 and then to follow P2 to v2. When reaching v1 the agent changes its
plan and plans to follow P3 to v3 instead (see Fig. 2 for an illustration). Then,
u(v1) > u(s) and |P2| > |P3| or u(v1) < u(s) and |P2| < |P3|.
Proof. Since the plan of the α-biased agent at s was to reach v2 and not v3 we
have that:

(t− |P1| − |P2|)uα(v2|s)− C(P1)− C(P2) > (t− |P1| − |P3|)uα(v3|s)− C(P1)− C(P3)

Similarly, since the plan of the α-biased agent at v1 was to reach v3 and not v2
we have that:

(t − |P1| − |P3|)uα(v3|v1) − C(P3) > (t − |P1| − |P2|)uα(v2|v1) − C(P2)

Putting this together we get that α · u(v1)(|P2| − |P3|) > α · u(s)(|P2| − |P3|).
We may assume that α > 0 since the planning of an unbiased agent is always
consistent. Hence we can divide by α and get that u(v1)(|P2|−|P3|) > u(s)(|P2|−
|P3|). This implies that u(v1) > u(s) if and only if |P2| > |P3|. We conclude that
if an α-biased agent changes its plan at a higher payoff state, it will choose a
shorter path. Conversely, when the agent changes its plan at a lower payoff state,
it will choose a longer path. ��

Notice that since we consider a directed acyclic graph, the number of times
an agent may formulate a new plan is bounded by n−1, where n is the number of
states in the graph. This is because, by Observation 1, once an agent decides to
stay at a state, it will remain there for all remaining time steps. This implies that
the number of plan changes is bounded by the number of states with outgoing
edges, which is at most n− 1. This bound is tight, as we show in the full version
that for any 0 ≤ α < 1 there exists a fan graph (illustrated in Fig. 3) in which
the α-biased agent ends up taking a path of k + 1 = n states and at each state
except for the last two states the agent formulates a new plan.
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Fig. 3. A state graph in which the biased agent changes its plan k − 1 = n − 2 times.

Fig. 4. An example with unbounded performance ratio

3 On the Utility of the α-Biased Agent

It is clear that an agent with projection bias may obtain a smaller utility than an
optimal agent due to its failure to accurately predict its payoff in different states.
A natural question in our model is to quantify how much an α-biased agent can
lose due to its bias. To this end, we attempt to bound the ratio between the
total utility of an optimal (unbiased) agent and the (actual) utility of an α-
biased traversing a state graph G for t time steps. We refer to this ratio as the
performance ratio and show that this ratio can be arbitrarily large. Perhaps
surprisingly, the instance demonstrating this has only two states.

Theorem 3. For any 0 < α < 1, t > 1 and x > t, there exists a state graph
G in which the performance ratio of an α-biased agent traversing G for time
horizon t is x

t .

Proof. Consider the instance illustrated in Fig. 4. An optimal agent in this
instance will go to v for a total utility of

x

α
+ t − 1 −

(
1 − α

α
x + (t − 1)

)

= x.

We claim that an α-biased agent stays at s and hence its total utility is t. This
implies that the performance ratio is x

t , as required. To see why the α-biased
agent will stay at s, observe that:

uα(v|s) = α + (1 − α)
(

x

α(t − 1)
+ 1

)

=
x

t − 1
· 1 − α

α
+ 1.
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Thus, we have that (t − 1) · uα(v|s) − c(s, v) = 0 and hence the α-biased chooses
to stay at s. ��

As we just seen, the loss of an α-biased agent due to its projection bias can
be very large. In some cases an outside planner can help the α-biased agent to
take a better path and increase its total utility by removing some of the states
in the graph.4 In the introduction we give an example of an instance in which
removing states may increase the utility of the agent. In this section we consider
the characteristics and computation of an optimal subgraph which is a graph
that maximizes the agent’s utility. Formally, let Uα,t(G′) denote the total utility
of an α-biased agent traversing G for t time steps. With this notation we consider
the following problem:

Definition 1 (Optimal Subgraph). Given a directed acyclic state graph G,
an initial state s, a time horizon t > 0 and a projection bias parameter 0 < α < 1,
compute a subgraph G′ of G (that includes s) that maximizes the total utility of
the α-biased agent over all subgraphs (i.e., Uα,t(G′) = max

H⊆G
Uα,t(H)).

To better understand the possible structure of optimal subgraphs, we consider
minimal subgraphs that only include states and edges that are necessary to
maximize the agent’s utility. Formally,

Definition 2 (Minimal Optimal Subgraph). Given a directed acyclic state
graph G, an initial state s, a time horizon t > 0 and a projection bias parameter
0 < α < 1, a minimal optimal subgraph G′ is an optimal subgraph such that for
any H ⊂ G′ the utility of the agent is smaller than its utility in G′.

In the next section, we make several observations on the structure of min-
imal optimal subgraphs and observe that their structure is inherently different
than the structure of optimal subgraphs for agents exhibiting other biases (e.g.,
present bias [6]).

3.1 The Structure of a Minimal Optimal Subgraph

We begin by observing that the subgraph maximizing the total utility of the
agent may require more states than just the states that the agent actually visits
(i.e., it is not necessarily a path). This is illustrated in the instance in Fig. 5. In
this instance, the path that has the maximal utility when planning for t = 10
time steps is P = (s, v1, v2, v3, v4) that has a utility of 220 · 7 − 115 = 1425.
However, its projected utility for a 1/2-biased agent at s is only (0.5 · 100 + 0.5 ·
250) · 6− 70 = 980. This is smaller than the utility of staying at s which is 1000,
which means that an 1/2-biased agent traversing P in isolation will choose to stay
at s. If we add the edge (v2, v5) to the path, then the 1/2-biased agent will follow

4 Unfortunately, even removing states and edges cannot circumvent the unbounded
loss, in the worst case. This is demonstrated by Claim 3 as the utility of the agent
in the only strict subgraph that contains only state s is the same as its utility on
the two states graph.
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Fig. 5. For t = 10, α = 0.5 the agent will not traverse P = (s, v1, v2, v3, v4) in isolation
but if we include the edge (v1, v5) the agent will traverse P .

P since at s it will plan to reach v5, since the path (s, v1, v2, v5) has projected
utility of (0.5 · 100 + 0.5 · 220) · 7 − 115 = 1005. Once the agent reaches v1 it will
plan to follow the path (v1, v2, v3, v4) since 125 ·6−20 = 730 > 110 ·7−65 = 705
and it will continue to follow this path till it reaches v5. Thus, the path P by
itself does not maximize the α-biased agent’s utility.

After observing that the optimal subgraph may not include only the path that
the agent traverses, we look for characterization of minimal optimal subgraphs.
Observe that if the α-biased agent traverses a path P in a minimal optimal
subgraph, then, except for P = (s, v1, . . . , vk) the graph includes at most k
paths that start from a state on P and end in some other state. These paths are
paths that the biased agent plans to take at some node vi and they are required
to get the agent to continue from vi to vi+1. For an agent with present bias,
Kleinberg and Oren [6] proved that each state vi might be the source of at most
one such path. In the full version, we observe that this is not the case for agents
with projection bias.

3.2 Hardness of Computing an Optimal Subgraph

As discussed, limiting the agent’s options by removing states and edges may
increase the agent’s utility. Unfortunately, we show that computing a subgraph
that maximizes the utility of the agent is NP-hard:

Theorem 4. The Optimal Subgraph Problem is NP-hard.

To prove the theorem we define the following more concrete decision problem:

Definition 3 (Bias Mitigating Subgraph Problem). Consider a directed
acyclic state graph G, a time horizon t > 0 and an α-biased agent where 0 ≤
α < 1. Let Po denote the set of paths that maximize the utility of an unbiased
agent in G. Does there exist a subgraph G′ ⊆ G in which the α-biased agent
follows a path Po ∈ Po?

Observe that the hardness of the Bias Mitigating Subgraph Problem implies
the hardness of the optimal subgraph problem. If there exists a subgraph G′
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Fig. 6. Corresponding graph for (x1∨¬x2∨x3)∧(x2∨¬x3∨x4). The bold edges represent
a bias mitigating subgraph which corresponds to the assignment x1 = TRUE, x3 =
FALSE. (Color figure online)

in which the α-biased agent follows a path P ∈ Po, then an algorithm solving
the optimal subgraph problem has to return such subgraph. Furthermore both
the path that an optimal agent takes in G and the path that an α-biased agent
takes G′ can be computed in polynomial time. Thus, to prove the hardness of
the Optimal Subgraph problem, we show that:

Theorem 5. The Bias Mitigating Subgraph Problem (a.k.a BMS) is NP-
complete.

It is easy to see that the BMS problem is in NP since in the full version we
show that computing the total utility of an unbiased agent in G and the path
taken by an α-biased agent in G′ can be done in polynomial time. We show
that BMS is NP-hard by reducing from 3-SAT. In the classic 3-SAT problem,
we are given a conjunctive normal form formula ϕ with r variables and k clauses
such that each clause has exactly three variables. We need to return yes if and
only if there exists an assignment to the variables that satisfies the ϕ. Since the
reduction is quite involved, we leave the formal construction and proof to the
full version and only provide a sketch here.

Given a 3-CNF formula ϕ with r variables x1, x2, . . . , xr and k clauses
C1, C2, . . . , Ck, we construct a directed acyclic state graph G(ϕ) for the BMS
problem. The graph is illustrated in Fig. 6. Roughly speaking, each clause Ci in
the formula corresponds to two states ai, bi. Each state ai is a medium-payoff
state and each state bi is a low-payoff state with fixed utilities. Each variable xj

in the formula corresponds to two nodes vj , v
′
j , where each clause is connected
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to the variables it contains by an edge (bi, vj). The weight and color of such
an edge differs between the case where xj is in Ci (blue) and the case where
¬xj is in Ci (red). For each state vj we have a blue edge (vj , ωa) and red edges
(vj , v

′
j) and (v′

j , ωa). The edges are colored such that there exists a satisfying
assignment to ϕ if and only if there exists a subgraph where each state bi has a
unique path to ωa and in this path all the edges have the same color. Roughly
speaking, in the subgraph, an edge (ai, vj) correspond to clause Ci being satisfied
by variable xj and the path chosen from vj to ωa correspond to assignment to
variable xj . In addition there are three states ωo, ωa, ωb that serve as”planning
targets” at different states. The utilities of these states are chosen such that
u(ωo) > u(ωa) > u(ωb). The following proposition establishes the correctness of
the reduction:

Proposition 1. For any 2k−1.5
2k−1 < α < 1 and t > 2k + 4, the state graph G(ϕ),

constructed from the formula ϕ, has a bias mitigating subgraph if and only if
there exists a subgraph in which for every 1 ≤ i ≤ k all direct paths from bi to
ωa are unicolored and for every bi there is at least one direct unicolored path.

We now sketch the proof. We first show that an optimal agent takes the path
Po = (a1, b1, . . . , ak, bk, w1, ωo) and this is the unique path maximizing its utility.
Thus, in any bias mitigating subgraph the α-biased agent should follow Po. Then,
we argue that in any subgraph G′ ⊆ G(ϕ) which includes (w1, ωo), an α-biased
agent at w1 will continue to ωo. This implies that to prove the proposition we
need to show that there exists a subgraph in which the α-biased agent will reach
w1 if and only if there exists a subgraph in which for every 1 ≤ i ≤ k all direct
paths from bi to ωa are unicolored and there is at least one such path.

For the first direction, we show that an α-biased agent will reach w1 when
traversing a subgraph G′ in which for every 1 ≤ i ≤ k all direct paths from bi to ωa

are unicolored and there is at least one such path. The idea here is the agent would
have different types of plans at low-payoff states and at medium utility states. In
a medium-payoff state the α-biased agent will continue from ai to bi as part of
a plan to get to ωa. In a low-payoff state bi will continue to ai+1, whenever the
mixed-colored path (bi, vj , v

′
j , ωa) (the first edge is blue) does not exist.

As for the second direction, first we show that for every 1 ≤ i ≤ k if the agent
at ai continues to bi then it is either the case that one of the paths (ai, bi, vj , v

′
j , ωa)

or (ai, bi, vj , ωa) is in G′ or the mixed-color path (al, bl, vj , v
′
j , ωa) for some l > i

is in G′.Then we show that if the agent plans to follow a direct path from bi to ωa

then this path cannot be a mixed colored path (bi, vj , ωa) (first edge is red) since
it is too expensive. Moreover, we have that, in any case, the path cannot be mixed
colored path (bl, vj , v

′
j , ωa) (i.e., the edge (bi, vj) is blue) for any l ≥ i, since in this

case an α-biased agent at bl will continue to vj instead of al+1. This is because the
cost of this path is too low.

Putting this together, we get that, for any 1 ≤ i ≤ k, there exists at least
one unicolored path from bi to ωa. Moreover, if the bias mitigating subgraph
includes two paths connecting vj and ωa, then any state bi that is connected to
vj is connected by a red edge. This implies that we can remove all blue (vj , ωa)
edges without revoking the property that there exists at least one unicolored
path from every state bi to ωa.



422 S. Oren and N. Sklar

We note that the structure of the reduction is similar to the reduction in [16]
proving that finding a minimal subgraph in which a present biased agent will
reach the target is NP-hard. We note that while the structure is similar and both
proofs reason about the behavior of time-inconsistent agents, the planning of
agents with these two biases is significantly different. In particular, the current
reduction attains an extra level of complexity as the planning of an α-biased
agent is not constrained to choosing a path to a specific state. Moreover, the
choice of the path for an agent with projection bias is more nuanced as it depends
not only on the cost of the path but also on the utility of the current node and
the number of remaining time steps.

4 Non-monotonicity and the Number of Different Paths

In this section, we consider how the total utility of an α-biased agent changes as
a function of the time horizon t and the value of α. We show that the total utility
of the α-biased agent is non-monotonic in both of these parameters. For each
one of the parameters, we present a polynomial upper bound on the number of
non-monotonicity points. Instead of bounding the number of non-monotonicity
points directly, we show a polynomial bound on the number of transition points.
These are points in which the path that the agent takes changes. The polynomial
upper bound on the number of transition points also implies an upper bound
on the number of different paths that the agent can take as a function of t or
α. This is a question of independent interest and for both parameters, we also
observe a lower bound of n on the number of different paths. This is done by
constructing and analyzing an out-directed star instance with carefully selected
costs and payoffs.

The following piece of notation will be useful for proving our claims. Let
Pα,t(v) denote the path followed by an α-biased agent traversing the graph for t

time steps, starting from state v and let P̃α,t(v) denote the path that the agent
plans to follow. We are now ready to specify and prove our claims.

4.1 Planning for Different Time Horizons

Recall that for any state graph G and a bias parameter 0 ≤ α < 1, an α-biased
agent planning for a large enough time horizon t∗ will take the same path as an
optimal agent. This implies that for any t > t∗, the total utility of the agent is
monotonically increasing in t. This is not necessarily the case for intermediate
values of t. The reason for this is that while the initial plan that an agent planning
for a larger time horizon makes is better, the agent may change its plan later
and as a result, its actual utility may decrease. As an illustration, consider a
3/4-biased agent traversing the state graph illustrated in Fig. 7. For t = 2 the
agent arrives at v1 and will end up with a total utility of 210. However, for t = 3,
the 3/4-biased agent plans to take the path (s, v2, v3) since the projected utility
for taking it is (1/4 · 440+3/4 · 0) · 1 = 110 and the projected utility for going to
v1 is (1/4 · 210 + 3/4 · 0) · 2 = 105. When the agent reaches v2 it will choose to



Planning on an Empty Stomach: On Agents with Projection Bias 423

Fig. 7. An example for non-monotonicity point

stay as the projected utility from reaching v3 is now (3/4 · 100+1/4 · 440) = 185
where the utility from staying at the same state is 200. The value t = 3 is a
non-monotonicity point in the utility function of the 3/4-biased agent. These
are points in which the total utility of an α-biased planning for time horizon
t is lower than its utility for planning for time horizon t − 1. We show that
the maximal number of non-monotonicity points is polynomial in the number of
nodes in G:

Theorem 6. For any acyclic state graph G with n states, an initial state s and
projection bias 0 ≤ α < 1, the number of non-monotonicity points in the utility
function of an α-biased agent traversing the graph from s is at most n3.

As discussed in the introduction, instead of tackling this problem directly, we
compute a bound on the number of time horizons for which the path that the
α-biased agent takes changes. Notice that this quantity is necessarily bounded
since the α-biased agent will always take the optimal path for a large enough
time horizon.

Proposition 2. For every directed acyclic state graph G with n states, an initial
state s and 0 ≤ α < 1, the number of transition points t such that the path the
agent takes from s when planning for t − 1 time steps is different than the path
it takes when planning for t (i.e., Pα,t−1(s) �= Pα,t(s)) is at most n3.

Proof. Since the α-biased agent takes a different path when planning for t − 1
and for t, there has to be a state v on the path Pα,t−1(s) at which the α-biased
agent that plans for t steps makes a different plan (this state can also be s).
Let v denote the first such state. We label the transition point t by (v, k, P̃ ),
where 0 ≤ k ≤ n − 1 is the length of the path that the agent followed from s
to v and P̃ = P̃α,t−1−k(v) is the path that the agent that initially planned for
t − 1 steps plans to take. We observe that each label can appear at most once.
This is because the planning of the agent is consistent in the time horizon in
the sense that if a path is optimal for t1 and suboptimal for t2 > t1 it will be
suboptimal for any t3 > t2. This implies that if P̃α,t−1−k(v) �= P̃α,t−k(v) (i.e.,
an α-biased agent with time horizon t− k − 1 plans to follow P̃ and an α-biased
agent initially planning for time horizon t − k plans to follow a different path),
then for any t′ > t, P̃α,t−1−k(v) �= P̃α,t′−k(v).
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We conclude that the number of intervals is bounded by the number of dif-
ferent labels (v, k, P̃ ). Observe that the number of different plans that α-biased
agents planning for different time horizons makes is at most n. The reason for
this is that since the projected utilities remain the same for any time horizon,
then whenever the agent plans to reach some state w it will take the same path.
This implies that if any agent changes its plan it has to be the case that it plans
to a different state. Hence, the number of different labels is at most n3 as there
are n nodes in the graph and 0 ≤ k ≤ n − 1. Thus, the number of transition
points is bounded by n3. ��

In the full version we show that there exists instances that have n − 1 tran-
sition points. We derive this simple bound by considering an out-directed star
with s as the center and choose the costs and payoffs such that for every value
of 1 ≤ t ≤ n the agent plans to reach a different state.

4.2 Agents with Different Values of α

In this section we take a deeper look on how different values of α affect the α-
biased agent behavior. Given a state graph G and time horizon t, an agent with
α = 0 (e.g., an optimal agent) would take an optimal path and an agent with
α = 1 would stay at the initial state. What would agents with an intermediate
value of α do? For intermediate values, the following example demonstrates that
the agent’s utility function does not necessary increase as the extent of the biases
decreases: Consider the graph illustrated in Fig. 8. A 1/2-biased agent traversing
the graph for t = 3 time steps would traverse the edge (s, v1) as the projected
utility for reaching v1 is (1/2 · 0+1/2 · 50) · 2 = 50 while the projected utility for
reaching v3 is (1/2 ·0+1/2 ·105) ·1−3 = 49.5. For the same graph, a 1/3-biased
agent would traverse the edge (s, v2) as the projected utility for reaching v3 is
(1/3 · 0 + 2/3 · 105) · 1 − 3 = 67 while the projected utility for reaching v1 is
(1/3 · 0+2/3 · 50) · 2 ≈ 66.7. When the agent reaches v2 it chooses to stay as the
projected utility for reaching v3 is (1/3 · 45 + 2/3 · 105) · 1 = 85 and the total
utility from staying at v2 is 87.

We establish an upper bound of n4 on the number of non-monotonicity points
in α. We do this by bounding the number of different transition points in the
interval [0, 1). α∗ is a transition point if for any α < α∗ an α-biased agent takes
a different path than an α∗-biased agent.

Proposition 3. For any state graph G, an initial state s and time horizon t ≥ 0,
the number of transition points as a function of α is at most n4.

Proof. Similar to the proof of the bound on the number transition points for a
time horizon t, we label each transition point by the label (v, k, P̃1). Where v
is the first node that the agent changed its plan, k is the length of the path it
took to get to v and P̃1 is the path that it planned to take at v right before
the transition point. We observe that, when labeling all transition points in the
interval [0, 1), each label may appear at most once. The reason for this is that
Lemma 1 below shows that if α1-biased with time horizon t − k plans to follow
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Fig. 8. An example for non-monotonic planning in α. When t = 3, a 1/2-biased agent
would end up with total utility of 100 while a 1/3-biased agent would end up with total
utility of 87.

P̃1 and for α2 > α1 an α2-biased agent plans to follow P̃2 �= P̃1, then for any
α ≥ α2, an α-biased agent will not plan to follow P̃1. Hence it is impossible that
for α > α2, an α-biased agent that reaches v with a path of length k will plan
to take P̃1 again. To complete the proof, in Lemma 2 below we show that the
number of different plans that biased agents with different values of α, that are
currently at a state v with time horizon t make is at most n2. This implies that
the number of different labels is at most n4, as required. ��

Next, we state and prove the two lemmas we used to prove Proposition 3:

Lemma 1. Consider 0 ≤ α1 < α2. If P̃α1,t(v) �= P̃α2,t(v) then for any α3 ≥ α2,
P̃α3,t(v) �= P̃α1,t(v).

Proof. For ease of notation let P̃1 = P̃α1,t(v), P̃2 = P̃α2,t(v) and assume that v1
and v2 are the last states in these two paths respectively. By applying Lemma 3,
we get that (t−|P̃1|)(u(v1)−u(v)) > (t−|P̃2|)(u(v2)−u(v)) Assume towards con-
tradiction that α3-biased agent plans to take the path P̃1. By applying Lemma
3 for α2, α3, we get that (t − |P̃2|)(u(v2) − u(v)) > (t − |P̃1|)(u(v1) − u(v)) and
reach a contradiction to our assumption. ��

Our second lemma bounds the number of paths that agents with different
bias parameters can plan for:

Lemma 2. Consider a directed acyclic state graph G and let P̃t(v) =
{P̃α,t(v)|0 ≤ α < 1}, then |P̃t(v)| ≤ n2.

Proof. We first claim that the number of different paths that agents with dif-
ferent values of α may take to get from a state v to a state w is at most n. To
see why this is the case, consider α2 > α1 such that an α1-biased agent takes
the path P̃1 to w and an α2-biased agent takes the path P̃2 to w. By applying
Lemma 3 we have that (t − |P̃1|)(u(w) − u(v)) > (t − |P̃2|)(u(w) − u(v)).

Observe that u(w) > u(v), as otherwise the agent would have stayed at v.
This implies that t − |P̃1| > t − |P̃2| and hence |P̃2| > |P̃1|. As the number of
different paths lengths is bounded by n, we have that the number of different
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Fig. 9. Instance in which a 0.5-biased agent traverses a cycle.

paths reaching w that the agent takes is at most n. Since there are n nodes in the
graph we conclude that the number of different paths that agents with different
values of α currently at v may plan to follow is bounded by n2. ��

In the full version we prove the following auxiliary lemma:

Lemma 3. Consider a directed acyclic state graph G. If an α1-biased agent
plans to follow a path P̃1 and an α2-biased agent for α2 > α1 plans to follow a
path P̃2, such that P̃1 �= P̃2, then (t−|P̃1|)(u(v1)−u(v)) > (t−|P̃2|)(u(v2)−u(v)).

Finally, to complete the picture we show in the full version that there are
instances in which the number of paths taken by agents with different values of
α is n.

5 Extensions - State Graphs with Cycles

So far, our focus was on state graphs that do not have any cycles, as such graphs
represent realistic scenarios, and it is easier to reason about them. However,
projection bias is not limited to misestimating the payoffs of states we have not
experienced yet. For example, consider the different food choices of people with
varying levels of hunger. This motivates the analysis of graphs that do have
cycles. Intuitively one might suspect that since the agent can tell which of two
states has the higher payoff, it will be impossible for it to traverse a cycle. In
this section we show that this is not the case.

Consider the graph illustrated in Fig. 9 where t = 39. A 1/2-biased agent
will traverse the edge (s, v1) since the projected utility for reaching v2 is (1/2 ·
0 + 1/2 · 200) · (39 − 13) = 2600 while the projected utility for reaching v3 is
(1/2 · 0 + 1/2 · 400) · (39 − 1) − 5050 = 2550. When the agent reaches v1 he
chooses to traverse the edge (v1, s) as the projected utility for reaching v3 is
(1/2 · 100 + 1/2 · 400) · (38 − 2) − 5050 = 3950 while the projected utility for
reaching v2 is (1/2 · 100 + 1/2 · 200) · (38 − 12) = 3900 and the total utility
for staying in v1 is 3800. This concludes that the agent will traverse the cycle
(s, v1, v) in its first two steps.

In the full version we generalize the instance in Fig. 9 to show that any extent
of projection bias suffices to get the agent to follow a cycle.
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Abstract. Access to capital is a major constraint for economic growth
in the developing world. Yet lenders often face high default rates due to
their inability to distinguish creditworthy borrowers from the rest. In this
paper, we propose two novel scoring mechanisms that incentivize com-
munity members to truthfully report their signal on the creditworthiness
of others in their community. We first design a truncated asymmetric
scoring rule for a setting where the lender has no liquidity constraints.
We then derive a novel, strictly-proper Vickrey-Clarke-Groves (VCG)
scoring mechanism for the liquidity-constrained setting. Whereas Chen
et al. [7] give an impossibility result for an analogous setting in which
sequential reports are made in the context of decision markets, we achieve
a positive result through appeal to interim uncertainty about the reports
of others. Additionally, linear belief aggregation methods integrate nicely
with the VCG scoring mechanism that we develop.

Keywords: Information elicitation · Scoring rules · Mechanism design

1 Introduction

Access to capital has become the primary anti-poverty tool in development.
Global microfinance grew from 13 million borrowers and $7 billion in loans in
1995 to 140 million borrowers and $129 billion in loans in 2019 [14,20]. A particu-
lar challenge with microfinance is that the unbanked have minimal credit history,
creating an information asymmetry problem between lenders and borrowers.

Muhammad Yunus launched microfinance in 1976 with the Grameen bank.
They lend to groups of people who are jointly-liable to repay the loan. This
creates self-selection based on community information [10], but it also imposes
significant cost on lenders and borrowers through bi-weekly meetings, the risk
of default by fellow group members, and administration.

Another solution is the advent of data-analytics based lenders. These lenders
typically give loans to individuals, and they leverage demographic or other infor-
mation to select borrowers. Branch, operating in Kenya, requires users to own a
c© Springer Nature Switzerland AG 2022
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smartphone with their app installed and runs analytics on the calls, text mes-
sages, emails, and other usage data from the phone. Based on the performance
of past borrowers, these companies determine how likely a new potential bor-
rower is to repay. Loans are as small as five USD, and interest rates start at 18%
monthly (199% APR) [5]. While this expands credit access, it excludes people
who do not have smartphones and the interest rates are high. Another issue is
that un-creditworthy borrowers learn which factors the algorithm considers, and
they can modify their behavior to receive loans [4].

Fortunately, research shows that community members are knowledgeable
about the creditworthiness of people in their community.Maitra et al. [16] deployed
an agent-intermediated lending scheme in West Bengal, India through which they
appointed agents to select borrowers and administer loans. These agents were com-
pensated based on repayment rates, and the repayment rates were higher than
those for group lending schemes in the same region. Hussam et al. [12] went one
step further and deployed a community-recommendation scheme employing the
Robust Bayesian Truth Serum (RBTS) to reward recommenders for giving reports
that conform closely to those of their peers [28]. RBTS was found to partially nul-
lify the incentives of recommenders to lie on behalf of family members. Of note,
RBTS does not reward recommenders based on repayment outcomes.

We propose a new information elicitation system that incentivizes community
members to report their true beliefs about the likelihood that others will repay
a loan.1 The goal is to support a lender who wants to lend to the borrowers
who are most likely to repay. We design incentives in a way that recommenders
strictly prefer to report their true beliefs about borrower creditworthiness.

The main results are the following:

1. The truncated Winkler mechanism, which is strictly proper for a lender with-
out liquidity constraints and with a monotone non-decreasing belief aggrega-
tion rule, for a technical grain-of-no-veto condition on beliefs. The mechanism
is not incentive compatible for a liquidity-constrained borrower.

2. The Vickrey-Clarke-Groves (VCG) scoring mechanism, which is strictly
proper for a lender with or without liquidity constraints and with a weighted-
linear belief aggregation rule, for beliefs with full support and a requirement
that the weight on any single recommender is not too extreme.

3. The VCG scoring mechanism also aligns incentives with recommenders want-
ing to receive larger weights in the aggregator, and thus long-run incentives
to provide higher-quality predictions.

In regard to the truncated Winkler mechanism, we use asymmetric scoring
rules so that the minimum expected score is associated with the lender’s thresh-
old on minimum probability of repayment at which making a loan is profitable.
We also develop the grain-of-no-veto condition, which provides strict incentives,
by reasoning about the interim utility and uncertainty faced by a recommender.

1 An initial deployment of the scheme, conducted under Harvard University’s IRB, is
underway in Uganda with 100 agricultural borrowers, thanks to a partnership with
Makere University.
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The application of the VCG mechanism to this context is novel and non-
standard. In particular, we use outcome-contingent payments to construct the
valuation functions of recommenders for different loan outcomes; in effect, this
gives a recommender a valuation function for making a loan to a borrower that
is proportional to their belief as to the repayment probability of the borrower.
By folding the typical VCG-style payments on top, we take a constant (trivially
proper but not strictly proper) scoring rule and generate an elicitation mech-
anism that is strictly proper. Moreover, the allocation rule of the mechanism
corresponds to a belief aggregation model, and can embed weights assigned to
recommenders in an incentive-compatible way. This use of linear-weighted aggre-
gators corresponds naturally to well-studied belief aggregation systems [6,23].

While our work is inspired by lending, the two mechanisms that we intro-
duce are broadly applicable to decision settings under information asymmetries
and where the decision maker can elicit information from different parties; e.g.,
employee screening, tenant screening, insurance underwriting, contractor selec-
tion, and service provider ratings.

1.1 Related Work

One way to formulate the problem of gathering community lending recommenda-
tions is as a peer prediction problem, i.e., as a problem of information elicitation
without verification. The approach in peer prediction is to leverage correlation
and mutual-information structure between reports to promote incentive align-
ment around true reports. A number of peer prediction mechanisms have been
proposed, each requiring varying levels of knowledge on the part of the designer,
on the kinds of reports, and on the task [1,13,15,17,21,22,24,25,27,28].

While peer prediction has been used for belief elicitation for microfinance
in [12], this is more naturally a problem of information elicitation with verifica-
tion, where a lender will observe whether or not a borrower makes a repayment
or defaults in the future, making this setting well-suited for the methods of
scoring rules, prediction markets, and decision markets. Scoring rules are meth-
ods to elicit beliefs about uncertain future events where the outcome will be
later observed [9]. Agents make reports are compensated for their level of accu-
racy after the event. A scoring rule is strictly proper if agents uniquely maximize
their expected compensation by reporting their true belief. The logarithmic scor-
ing rule and Brier or quadratic scoring rules are symmetric, in the sense that
the expected score when truthfully reporting is minimized when the true belief
p = 0.5 and symmetric about that point. The class of Winkler scoring rules
[26], allow designers to set the minimum score point at any arbitrary location
c ∈ (0, 1).

Prediction markets can be used in a way that combines scoring rules with
sequential elicitation from multiple participants, with the current market price
reflecting the aggregate belief of the population about the outcome of an uncer-
tain event [8]. In a prediction market with an automated market maker, for
example the logarithmic market-scoring rule, one agent’s report is in effect scored
relative to the preceding report [11].
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In our setting, reports also affect whether an event is observed, where reports
determine who gets a loan. This relates to the decision market framework, where
a principal makes a decision based on market prices. This creates new incentive
challenges, and Chen et al. [7] provide a characterization of strict properness
that requires randomization over decisions. This may not be credible behavior
in real-world settings where the stakes are high. As we discuss in Sect. 4, we pro-
vide a counterpoint to this requirement, by considering interim analysis, when a
recommender knows their own belief but is uncertain about the reports of others.
This interim uncertainty enables strict incentive alignment for a deterministic
decision rule that lends to the borrowers who are most likely not to default.

Zermeño [30] proposed a piecewise mechanism that can be viewed as a special
case of Theorem 1 for the setting of a single recommender, though he focused
on incentivizing effort in contrast to our focus on eliciting existing knowledge.
VCG concepts have been used together with scoring rules, but not in the way
described here [19]. Whereas we assume the set of recommenders is disjoint from
the set of potential borrowers, Alon et al. [3] focus on the incentive issues that
arise when this is not the case.

2 Preliminaries

A lender has a set of candidate borrowers M = {1, . . . , m} and recruits a set
N = {1, . . . , n} of recommenders who know the candidate borrowers personally.
Each recommender i has a subjective belief piq ∈ [0, 1] of the likelihood with
which candidate borrower q will repay a loan. We write pi = (pi1, . . . , pim),
pq = (p1q, . . . , pnq), and p = (p1, . . . , pn). We also refer to belief pi as the type
of the recommender. We let D denote a prior on beliefs, such that p ∼ D. We
write p−i = (p1, . . . , pi−1, pi+1, . . . , pn), and write p−i ∼ D−i, marginalizing out
over recommender i (beliefs pi may be correlated between recommenders). We
assume D and D−i are common knowledge.

Recommender i makes a report p̂iq ∈ [0, 1] to the lender (principal), and we
allow p̂iq �= piq. We use p̂i to denote the profile of all belief reports of recom-
mender i. In our mechanisms, recommenders make reports independently with
no knowledge of other recommenders’ reports. The repayment outcome for a bor-
rower q who receives a loan is a binary variable, oq ∈ {0, 1}, with 1 representing
repayment and 0 representing default. We sometimes write o = {o1, ..., om}.

The lender makes a decision about which borrowers will receive a loan. We
assume that the lender has a profit threshold c ∈ [0, 1], such that the lender makes
profit when making a loan where the repayment probability is c or higher. The
lender forms a belief about the repayment probability of a borrower q ∈ M
with an aggregation function Bq(pq), which represents the lender’s belief where
pq = (p1q, . . . , pnq). We assume this belief is weakly monotone increasing in piq,
for each i and q. We also sometimes work with a linear aggregator, Bq(pq) =∑

i∈N wipiq, with weight wi > 0 on recommender i and
∑

i∈N wi = 1. The lender
also has a liquidity constraint K ≤ m, and if K < m then can only make loans
to a limited number of borrowers. We assume a uniform loan size and uniform
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interest rate; using ratings to both make lending decisions and optimize loan size
and interest rates is important future work.

After observing repayment outcomes, the mechanism compensates recom-
menders using a scoring rule (potentially negative) of siq(p̂q, oq), where siq maps
the report p̂q and outcome oq to reward. A proper scoring rule is one in which
the expected score from a truthful report is at least as great as the expected
score from any non-truthful report, i.e.,

Eoq∼piq
[siq(piq, p̂−iq, oq)] ≥ Eo∼piq

[siq(p̂iq, p̂−iq, oq)] ; ∀p̂ �= p (1)

A strictly proper scoring rule replaces this inequality with a strict inequality.

Definition 1 (Elicitation mechanism). We design an elicitation mechanism
M = (x, t, s):

1. Elicit belief reports p̂ = (p̂1, . . . , p̂n) from recommenders
2. Determine the set of borrowers, x(p̂) ∈ {0, 1}m, that will receive a loan, such

that
∑

q∈M xq(p̂) ≤ K, and define two-part payments:
(a) A fixed payment ti(p̂) ∈ R made by each recommender i ∈ N
(b) An outcome-contingent payment siq(p̂q, oq) ∈ R made to each recom-

mender i for each borrower q ∈ x(p̂), i.e., for each borrower for which
xq(p̂) = 1.

Given reports p̂ and outcome profile o = (o1, . . . , om), the realized utility to
recommender i is

ui(p̂i, p̂−i, o) =
∑

q∈x(p̂)

siq(p̂q, oq) − ti(p̂). (2)

Here, p̂−i = (p̂1, . . . , p̂i−1, p̂i+1, . . . , p̂n). The utility for recommender i with
belief pi is

Ui(pi, p̂i, p̂−i) =
∑

q∈x(p̂)

(piqsiq(p̂q, 1) + (1 − piq)siq(p̂q, 0)) − ti(p̂)

=
∑

q∈x(p̂)

Eoq∼piq
[siq(p̂q, oq)] − ti(p̂) (3)

This quantity is ex post with respect to the reports of others, and takes an
expectation over borrower outcomes with respect to the beliefs of recommender
i. It is useful to interpret the outcome-contingent payment to the recommender
as inducing a term that plays a similar role as an agent’s valuation in mechanism
design, where Eoq∼piq

[siq(p̂q, oq)] is the recommender’s “value” for the lender’s
decision to lend to borrower q. There are a number of possible desiderata for an
elicitation mechanism.

– Allocative efficiency, so that the mechanism allocates to the borrowers with
the maximum probability of repayment amongst those better than the profit
threshold c. For lender belief Bq(p̂q), this requires that
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x(p̂) ∈ arg max
a∈{0,1}m

∑

q∈M :Bq(p̂q)>c

Bq(p̂q) × aq

s.t.
∑

q∈M

aq ≤ K (4)

– Weak ex post incentive compatibility (weak EPIC), so that each recom-
mender’s utility is weakly maximized by reporting truthfully, regardless of
the reports of others (ex post proper in the language of scoring rules); i.e.,

Ui(pi, pi, p̂−i) ≥ Ui(pi, p̂i, p̂−i) ;∀i, ∀pi, ∀p̂i, ∀p̂−i (5)

– Strict ex post incentive compatibility (strict EPIC), so that each recom-
mender’s utility is strictly maximized by reporting truthfully, regardless of
the reports of others (ex post strict proper in the language of scoring rules);
i.e.,

Ui(pi, pi, p̂−i) > Ui(pi, p̂i, p̂−i) ;∀i, ∀pi, ∀p̂i �= pi, ∀p̂−i (6)

– Strict interim incentive compatibility (strict IIC), so that each recommender’s
interim utility, considering the distribution on reports of others, is strictly
maximized by reporting truthfully (strict properness in the language of scor-
ing rules); i.e.,

Ep−i∼D−i
[Ui(pi, pi, p−i)] > Ep−i∼D−i

[Ui(pi, p̂i, p−i)] ;∀i, ∀pi, ∀p̂i �= pi (7)

– Ex post Individually Rational (IR), so that all recommenders that make a
truthful report have non-negative expected utility once loans are allocated,
but before repayment outcomes are observed; i.e.,

Ui(pi, pi, p̂−i) ≥ 0 ;∀i, ∀pi, ∀p̂−i. (8)

– Strong ex post IR,2 so that all recommenders that make a truthful report
have a non-negative realized utility after repayment outcomes are observed;
i.e.,

ui(pi, p̂−i, o) ≥ 0 ;∀i, ∀pi, ∀p̂−i, ∀o. (9)

3 Unconstrained-Liquidity Setting: Truncated Winkler
Mechanism

In this section, we design incentive-compatible elicitation mechanisms for the
unconstrained-liquidity setting. We truncate strictly-proper scoring rules to pro-
vide a constant score when reports are too low to make a loan; this constant
2 The first concept of IR is ex post with respect to the reports of others. For this

reason, we adopt the phrasing strong ex post IR here, since this holds once outcomes
are observed.
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score is the expected score for truthful reports just above the lending threshold.
We use the Winkler scoring rule transformation to ensure a convex expected
score (or generalized entropy) for any valid threshold. We then show that this
mechanism is weak EPIC (proper) in all cases and strict IIC (strictly proper)
when no one recommender has the ability to unilaterally deny a loan (the Grain-
of-no-veto condition). Finally, we show how the truncated Winkler mechanism
fails to be weak EPIC in the liquidity-constrained setting. Relative to the other-
wise more general VCG scoring mechanism, the truncated Winkler mechanism
accommodate non-linear belief aggregation rules.

3.1 The Truncated Winkler Mechanism

We lend to borrower q if and only if Bq(p̂q) > c. Since Bq(p̂q) is monotonic
non-decreasing, we can define a marginal threshold ciq ∈ [0, 1] for each borrower-
recommender combination above which recommender i must report for borrower
q to receive a loan. This threshold depends on the reports of others and is defined
while holding others’ reports constant. Formally, let ciq denote the minimum
report by recommender i on borrower q such that q receives a loan, i.e.,

ciq � inf
p′∈[0,1]

p′ s.t. Bq(p̂iq = p′, p̂−iq) > c, (10)

where p̂−iq = (p̂1q, . . . , p̂i−1,q, p̂i+1,q, . . . , p̂nq). We leave the dependence of ciq on
the reports of others implicit in the notation. By weak monotonicity of the belief
aggregator, for any p̂iq > ciq we have that borrower q receives a loan. With a
linear aggregator Bq(p̂q) =

∑
i∈N wip̂iq, for example, we have

ciq = min(1,max(0,
1
wi

(c −
∑

j �=i

wj p̂jq))). (11)

We truncate each recommender’s payout when p̂iq < ciq, to make them indif-
ferent about the lending decision when their belief piq equals their threshold
ciq. It is necessary that the expected utility function when reporting truthfully
Ui(pi, pi, p̂−i) is convex for weak EPIC [9]. Common strictly proper scoring rules
for binary outcomes have their minimum Ui for truthful reports when p = .5,
so we use the Winkler scoring rule to ensure convexity when even when ciq < .5
(see Fig. 1).

Let s be any symmetric proper scoring rule, and consider the marginal lending
threshold ciq ∈ (0, 1). The Winkler scoring rule sW [26] is defined as

sWiq (p̂q, oq) =
s(p̂iq , oq) − s(ciq , oq)

T (ciq, p̂iq)
, T (ciq, p̂iq) =

{
s(0, 0) − s(ciq , 0) if p̂iq ≤ ciq

s(1, 1) − s(ciq , 1) otherwise.
(12)

The Winkler scoring rule is (strictly) proper when s is (strictly) proper.

Definition 2 (Truncated Winkler elicitation mechanism). The Trun-
cated Winkler elicitation mechanism with unconstrained lender liquidity, lender
profit threshold c, and monotone belief aggregation Bq, is defined as following:
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Fig. 1. Left: Expected utility with truthful reporting when truncating the familiar
quadratic scoring rule [9] with threshold values ciq = 0.6 and ciq = 0.3; note convexity
when ciq ≥ .5 and the lack of convexity when ciq < .5. Right: Expected utility with
truthful reporting for the truncated Winkler elicitation mechanism and lender threshold
ciq = 0.3. Note that we omit subscripts iq.

– Allocation: for each borrower q, xq(p̂) = 1 if Bq(p̂q) > c and xq(p̂) = 0
otherwise

– Payment:
• Immediate payment: zero
• Outcome-contingent payment: for each borrower that receives a loan,

siq(p̂q, oq) = sW
iq (p̂q, oq) as per Eqs. (10) and (12). There is no outcome-

contingent payment when p̂iq ≤ ciq.

Theorem 1. For unconstrained liquidity and a weak monotone-increasing
aggregation function Bq, the truncated Winkler mechanism is ex post individu-
ally rational, and weak EPIC (proper) for a report of recommender i on borrower
q for marginal lending threshold ciq when recommender belief piq ≤ ciq and strict
EPIC (strictly proper) when piq > ciq.

Proof. The expected score from the Winkler rule under truthful reporting
Ui(pi, pi, p̂−i) is strictly positive when piq > ciq [26]. The fact that Bq(p̂q) is
weak monotone-increasing ensures that for p̂iq > ciq we have Bq(p̂q) > c. Since
reports of p̂iq ≤ ciq yield payment of 0, risk-neutral agents will always prefer
p̂iq > ciq when piq > ciq (since they prefer a positive expected value to zero
expected value). Given that sW

iq is strict EPIC, the full mechanism is also strict
EPIC (strictly proper) when piq > ciq. When piq ≤ ciq, the convexity of Ui and the
fact that Ui(ciq, ciq, p̂−i) = 0 guarantees that a recommender weakly maximizes its
expected payment from truthful reporting when piq ≤ ciq. This gives weak EPIC
for all beliefs. Individual rationality is immediate, since Ui(pi, pi, p̂−i) ≥ 0. �	

3.2 Strict IIC with the Grain-of-no-veto Condition

We next extend Theorem 1 to achieve strict IIC under certain conditions. For
this, define no veto for i and q at threshold c to mean Bq(0, p−i,q) > c, i.e., the
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beliefs of others such that even with piq = 0 from recommender i the borrower
q will receive a loan under truthful reports.

Definition 3 (Grain-of-no-veto). The distribution on beliefs satisfies a grain-
of-no-veto at c when P[p−i,q ∼ D−i : Bq(0, p−i,q) > c] > 0, for all recommenders
i, all borrowers q, i.e., no veto is satisfied with positive measure of the type
distribution.

Theorem 2. For unconstrained liquidity, multiple recommenders (n > 1), and a
weak monotone-increasing aggregation function Bq, the truncated Winkler mech-
anism is ex post IR, and also strictly IIC (strict proper) when the distribution
on beliefs satisfies grain-of-no-veto.

Proof. Per Theorem 1, when piq > ciq, the Winkler scoring mechanism is
strictly ex post proper with regard to i’s report on q. Otherwise, it is weakly
ex post proper. By grain-of-no-veto, for any belief of i on q, piq, there is
non-zero probability that piq > ciq. This implies Ep−i∼D−i

[Ui(pi, pi, p−i)] >
Ep−i∼D−i

[Ui(pi, p̂i, p−i)], for all p̂−i �= pi. IR follows immediately from Theo-
rem 1. �	

For a weighted linear aggregator, grain-of-no-veto requires (for all i, all q)
that P[p−i,q ∼ D−i :

∑
j �=i wjpjq > c] > 0. That is, there is non-zero probability

that the weighted sum over reports of all but one recommender is large enough.
We can also state a corollary for the case that beliefs have full support on [0, 1].

Corollary 1. For unconstrained liquidity and multiple recommenders, and a
belief distribution with full support, the truncated Winkler mechanism with the
weighted linear aggregator is ex post IR, and also strictly IIC (strict proper) for
lender profit threshold c when maxi[wi] < 1 − c, which requires c < (n − 1)/n.

Proof. Since maxi[wi] < 1 − c, then
∑

j �=i wj > c, for all j ∈ N . From this,
we have P[p−i,q ∼ D−i :

∑
j �=i wjpjq > c] > 0, by full support, and thus grain-

of-no-veto. Moreover, since maxi[wi] ≥ 1/n, we need 1/n < 1 − c and thus
c < (n − 1)/n. �	

As the threshold increases, the system needs more recommenders to provide
strict properness and the lender becomes less able to put a very large weight on
any single recommender.

3.3 Failure of Truncated Winkler with Constrained Liquidity

When there are a limited number of loans that can be made, lending decisions
are no longer independent between borrowers. This opens up new manipulations,
where recommenders can prioritize a higher-payoff borrower over a lower one to
improve their expected utility.

Theorem 3. In the constrained-liquidity setting with more than one recom-
mender, the Truncated Winkler mechanism is not weakly EPIC (ex post proper).



Eliciting Social Knowledge for Creditworthiness Assessment 437

Proof. Consider 3 recommenders, 2 borrowers, budget K = 1, profit threshold
c = 0.5, sW

iq based on the logarithmic scoring rule, an unweighted aggregator,
and recommenders with beliefs in Table 1. Under truthful reports, the lender’s
belief will be approximately 0.57 and 0.55, for borrowers 1 and 2 respectively, and
borrower 1 will be allocated. The expected utility of recommender 2 will be p2,1 ·
sW
2,1(p1, 1)+(1−p2,1)sW

2,1(p1, 0) = 0.4 ln(0.4)−ln(0.2)
− ln(0.2) +(1−0.4) ln(1−0.4)−ln(1−0.2)

− ln(0.2) =
0.4∗0.43+0.6∗ (−0.18) = 0.07. If, recommender 2 misreports p̂2,1 = 0, then the
lender’s beliefs will be 0.43 and 0.55 for borrowers 1 and 2, and borrower 2 will be
allocated. In this case, recommender 2’s expected utility will be p2,2 ·sW

2,1(p2, 1)+
(1 − p2,2)sW

2,1(p2, 0) = 0.85 ln(0.85)−ln(0.7)
− ln(0.7) + (1 − 0.85) ln(1−0.85)−ln(1−0.7)

− ln(0.7) = 0.85 ∗
0.54 + 0.15 ∗ (−1.94) = 0.17. �	

Table 1. Perverse incentives with Truncated Winkler and constrained liquidity.

Recommender 1 Recommender 2 Recommender 3

Belief on Borrower 1 0.7 0.4 0.6

Belief on Borrower 2 0.4 0.85 0.4

Borrower 1 threshold ci1 0.5 0.2 0.4

Borrower 2 threshold ci2 0.25 0.7 0.25

Expected utility, Honest 0.12 0.07 0.09

Expected utility,
Recommender 2
Misreport

0.04 0.17 0.04

4 The VCG Scoring Mechanism

In this section, we introduce a mechanism that provides strict properness for
both the unconstrained and constrained-liquidity cases, i.e., handling K < m
in addition to K = m. The mechanism combines scoring rules and the VCG
mechanism to achieve strict properness together with a linear belief aggregator.
We define the outcome-contingent payment to be the non-standard constant
scoring rule, i.e.,

sV CG
iq (p̂q, oq) =

{
wi, if oq = 1
0, otherwise.

(13)

This scoring rule is trivially proper, but not strictly proper (the payment
does not depend on the report). This will provide strictly proper incentives
when embedded within the framework of the VCG mechanism. In the context
of the VCG scoring mechanism, it is useful to define the value function of a
recommender for loan decisions a ∈ {0, 1}m as

vi(a) �
∑

q∈M

aq × Eoq∼piq
[sV CG

iq (pq, oq)] =
∑

q∈M

aqwipiq. (14)
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Similarly, we define the reported value function as

v̂i(a) �
∑

q∈M

aq × Eoq∼p̂iq
[sV CG

iq (p̂q, oq)] =
∑

q∈M

aqwip̂iq. (15)

These play the typical role of valuations and reported valuations in the anal-
ysis of the incentive properties of a VCG mechanism (we could also use other
monotonically-increasing scoring rules in the value function, but then we would
sometimes end up allocating to borrowers who do not have the highest weighted-
average report). This mechanism is not the same as weighted VCG because the
weight wi directly impacts agents’ value functions. In weighted VCG, the weights
do not affect the intrinsic value of an allocation to the agents.3

By defining value in this way, the allocation of loans that maximizes the
total, weighted reported value is also the allocation that lends to the borrowers
for which the aggregate belief of repayment is largest. The value-maximizing
allocation given reports p̂ is

max
a∈{0,1}m

∑

q∈M

aq

(
∑

i∈N

wip̂iq

)

s.t.
∑

q∈M

aq ≤ K. (16)

To introduce a profit threshold c > 0 for the lender, we can add K imaginary
reserve borrowers to the system and a reserve recommender with weight 1 who
reports c for a loan decision to each of these borrowers and 0 for other borrow-
ers (a weight of 1 makes this equivalent to all actual recommenders making a
report of c for each of the reserve borrowers). We leave the weights to other
recommenders unchanged. Adopting R to represent the reserve borrowers, the
modified allocation rule is:

xV CG(p̂) ∈ arg max
a∈{0,1}m

⎡

⎣
∑

q∈M

aq

(
∑

i∈N

wip̂iq

)

+
∑

q∈R

aq · c

⎤

⎦

s.t.
∑

q∈M∪R

aq ≤ K. (17)

Going forward we will incorporate the reserve recommender into the set of
N recommenders and the K reserve borrowers into the set M of borrowers.

Definition 4 (VCG scoring mechanism). The VCG scoring mechanism with
possibly constrained lender liquidity, lender profit threshold c, and linear weighted
belief aggregation Bq with weights w = (w1, . . . , wn), is defined as following:

– Allocation: adopt xV CG(p̂)

3 In particular, our payment function in Eq. 18 does not involve a 1/wi term as in
weighted VCG mechanisms [18]. We discuss this further in the extended version [29].
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– Payment (no payments are made by or collected from the reserve recom-
mender):

• Immediate payment:

tV CG
i (p̂i, p̂−i) =

∑

j �=i

v̂j(x−i(p̂−i)) −
∑

j �=i

v̂j(x(p̂i, p̂−i)), (18)

where x−i is the allocation decision that would be made without i present,
i.e., ignoring the reports from recommender i.

• Outcome-contingent payment: for each borrower that receives a loan,
sV CG

iq (p̂q, oq) = wi if oq = 1 and 0 otherwise.

The realized utility of recommender i after the repayment outcomes are
known by the lender is

ui(p̂i, p̂−i, o) �
∑

q∈xV CG(p̂)

wi · oq − tV CG
i (p̂i, p̂−i). (19)

4.1 Strict Properness of the VCG Scoring Mechanism

Theorem 4. The VCG Scoring Mechanism is efficient, satisfies weak EPIC (ex
post proper), and is ex post individually rational.

Once valuation functions are set-up to correspond to aggregate belief reports,
this proof follows the standard recipe for the incentive compatible and IR prop-
erties of a VCG mechanism (see the extended version [29]). However, this only
gives weak EPIC and we want strict IIC (strict properness), so that it is a unique
best response of a recommender to report their true beliefs.

For our first of two main theorems, we define an equal-shift misreport as a
misreport p̂i �= pi for which piq − piq′ = p̂iq − p̂iq′ for every q, every q′. We say a
mechanism is strictly proper up to equal-shift misreports if truthful reporting is a
unique best response, maximizing interim utility except for possible tie-breaking
amongst equal-shift misreports.

Theorem 5. For constrained liquidity (K < m), two or more borrowers, three
or more recommenders, and a belief distribution with full support, the VCG Scor-
ing mechanism without a lender profit threshold (i.e., c = 0) is strict IIC (strictly
proper) up to equal-shift misreports when maxi[wi] < 1/2.

Proof. Three or more recommenders are required for maxi′ [wi′ ] < 1/2. Two or
more borrowers allows for constrained liquidity. We consider recommender i,
belief pi, any p̂i �= pi that is not an equal-shift misreport, and establish a non-
zero measure on the beliefs p−i of others such that the allocation changes in a
way that reduces the total value (i.e., not selecting the borrowers with the top
K aggregate belief of repayment). Since VCG is weakly EPIC (Theorem 4), this
establishes strict IIC up to equal-shift misreports.
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For any q, let B(q) denote the aggregate belief on q at pi and B̂(q) at
report p̂i. If p−i satisfies pjq = 1/2−wipiq∑

j′ �=i wj′ = p∗
q , ∀j �= i, then B(q) = 1/2.

This belief p−i is feasible by full support, and since for piq = 0 we have
p∗

q = (1/2)/
∑

j′ �=i wj′ < 1 since
∑

j′ �=i > 1/2 from wi < 1/2. For piq = 1
we have p∗

q = (1/2 − wi)/
∑

j′ �=i wj′ > 0 since wi < 1/2.
For a non equal-shift misreport, there are borrowers q and q′, such that

piq − piq′ = p̂iq − p̂iq′ + ε, for ε > 0; i.e., with the relatively disadvantaged
borrower labeled q. Consider a profile p−i that satisfies the following properties:

1. K borrowers, including borrower q, are allocated:
– For q′′ �= q, set pjq′′ ∈ (p∗

q′′ , 1], for j �= i, such that B(q′′) > 1/2, where
this belief of others is feasible since p∗

q′′ < 1.
– For borrower q, set pjq ∈ (p∗

q ,min(1, p∗
q + 1∑

j′ �=i wj′
wiε
2 )), so that B(q) ∈

( 12 , 1
2 + wiε

2 ), where this belief of others is feasible since p∗
q < 1.

2. K − m borrowers, including borrower q′, are not allocated.
– For q′′ �= q′, set pjq′′ ∈ [0, p∗

q′′), for j �= i, such that B(q′′) < 1/2, where
this belief of others is feasible since p∗

q′′ > 0.
– For borrower q′, set pjq′ ∈ (max(0, p∗

q′ − 1∑
j′ �=i wj′

wiε
2 )), p∗

q′), so that

B(q′) ∈ ( 12 − wiε
2 , 1

2 ), where this belief of others is feasible since p∗
q′ > 0.

There is a non-zero measure on beliefs p−i satisfying these properties by the
full support assumption. For any such p−i, at misreport p̂i we have B̂(q′) > B̂(q),
since B̂(q′) − B(q′) = B̂(q) − B(q) + wiε and B(q) − B(q′) < wiε. By the
monotonicity of the VCG allocation rule, this implies one of the following at
this misreport:

1. Borrower q′ but not q is allocated, which is an outcome with lower total value
since B(q′) < B(q).

2. Neither q nor q′ are allocated, which is an outcome with lower total value
since B(q) > 1/2 and only K − 1 other borrowers q′′ have true aggregate
belief B(q′′) > 1/2.

3. Both q and q′ are allocated, which is an outcome with lower total value
since B(q′) < 1/2 while K borrowers q′′ (including q) have aggregate belief
B(q′′) > 1/2. �	
Moreover, an equal-shift misreport does not change the loan allocation, as it

does not advantage any one borrower over another. Thus, the allocation remains
efficient, payments are unaffected, and the outcome of the mechanism is sub-
stantially equivalent to that under truthful reporting.

Theorem 6. For possibly constrained liquidity (K ≤ m), one or more borrow-
ers, three or more recommenders, and a belief distribution with full support,
the VCG Scoring mechanism with a lender profit threshold c, with 0 < c < 1,
is strict IIC (strictly proper) when maxi[wi] < min(1 − c, c) (which requires
n > 1/min(1 − c, c) recommenders).
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Proof. We need three or more recommenders because min(1 − c, c) ≤ 1/2, and
thus n > 1/(1/2) = 2. We consider recommender i, belief pi, any p̂i �= pi, and
establish a non-zero measure on the beliefs p−i of others such that the allocation
changes in a way that reduces the total value (i.e., not selecting the top borrowers
amongst those with aggregate belief at least c). Since VCG is weakly EPIC
(Theorem 4), this establishes strict IIC up to equal-shift misreports.

For any q, let B(q) denote the aggregate belief on q at pi and B̂(q) at report
p̂i. If p−i satisfies pjq = c−wipiq∑

j′ �=i wj′ = p∗
q , ∀j �= i, then B(q) = c. This belief p−i

is feasible by full support, and since for piq = 0 we have p∗
q = c/

∑
j′ �=i wj′ < 1

since
∑

j′ �=i wj′ > c from wi < 1 − c. For piq = 1, p∗
q = (c − wi)/

∑
j′ �=i wj′ > 0

since wi < c.
For misreport p̂i, consider borrower q with p̂iq �= piq.
(Case 1: p̂iq < piq) Let p̂iq = piq − ε, some ε > 0. Consider a profile p−i that

satisfies the following properties:
1. B(q) ∈ (c, c + wiε), by setting pjq ∈ (p∗

q ,min(1, p∗
q + 1∑

j′ �=i wj′ wiε)), all j �= i,
where this belief of others is feasible since p∗

q < 1 and c < 1.
2. At least m − K (≥ 0) other borrowers q′ �= q have B(q′) < c, by setting

pjq′ ∈ [0, p∗
q′), all j �= i, where this belief of others is feasible since p∗

q′ > 0.

There is a non-zero measure on beliefs p−i satisfying these properties by the
full support assumption. Given (1) and (2), at true beliefs we have borrower q
allocated since B(q) > c and at least m − K others cannot be allocated, so q is
in the top K of those with aggregate belief above the threshold c. For any such
p−i, at misreport p̂i we have B̂(q) = B(q) − wiε < c, since B(q) ∈ (c, c + wiε)
and p̂iq = piq − ε. This implies that q is not allocated, resulting in an outcome
with lower total value since q was in the top K and with true aggregate belief
above the threshold.

(Case 2: p̂iq > piq) Let p̂iq = piq + ε, some ε > 0.
Consider a profile p−i that satisfies the following properties:

1. B(q) ∈ (c − wiε, c), by setting pjq ∈ (max(0, p∗
q − 1∑

j′ �=i wj′ wiε), p∗
q), all j �= i,

where this belief of others is feasible since p∗
q > 0 and c > 0.

2. At least m − K (≥ 0) other borrowers q′ �= q have B(q′) < c, by setting
pjq′ ∈ [0, p∗

q′), all j �= i, where this belief of others is feasible since p∗
q′ > 0.

Given (1), at true beliefs borrower q is not allocated. At misreport p̂i, we
have B̂(q) = B(q) + wiε > c, since B(q) ∈ (c − wiε, c) and p̂iq = piq + ε. This
implies one of the following at this misreport:
1. Borrower q is allocated, resulting in an outcome with lower total value since

the true aggregate belief on q is below the threshold (that is, by causing q to
be allocated, i displaces a reserve borrower q′′ with B(q′′) = c, and i must
pay this difference to the system).

2. If q is not allocated, then since B̂(q) > c there must be K others allocated, by
the definition of the VCG outcome rule. At least m−K others have B(q′) < c,
and thus at most (m − 1) − (m − K) = K − 1 others have B(q′) ≥ c. This
means that at least one other borrower with B(q′) < c is allocated, and the
outcome has lower total value. �	
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4.2 Strong Ex Post IR

We can also achieve strong ex post IR by ensuring that the immediate pay-
ment by each agent is weakly negative, and noting that the outcome-contingent
payments to each recommender are weakly-positive. Define tcompi(p̂−i) as the
worst-case immediate payment in VCG given reports of others. This quan-
tity is independent of the recommender’s own report. At the same time, we
introduce a multiplier α > 0 to the outcome-contingent payments, so that
saV CG

iq (p̂iq, oq) = αwi if oq = 1, and 0 otherwise. Neither change affects the
incentive analysis. Modifying the definition of reported valuations accordingly,
for example with v̂i(a) =

∑
q∈M aq · αwi · p̂iq, we have

tcompi(p̂−i) = maxp̂i

⎛

⎝
∑

j �=i

v̂j(x−i(p̂−i)) −
∑

j �=i

v̂j(x∗(p̂i, p̂−i))

⎞

⎠ . (20)

We refer to this as the rescaled VCG scoring mechanism. By worst-case deficit
we mean the worst-case, total payment made by the mechanism to the agents,
considering both the immediate and outcome-contingent payments.

Theorem 7. In the possibly constrained liquidity setting, and with multiple rec-
ommenders and multiple borrowers, there is some value of α0 > 0 such that
for any α < α0 the rescaled VCG scoring mechanism is strong ex-post IR and
worst-case deficit at most ε > 0.

Proof. For strong ex post IR, this follows from the definition of tcompi(p̂−i) and
outcome-contingent payments being non-negative. For the strict properness, this
follows from the invariance of incentive analysis to scaling payments by any α > 0
and that tcompi(p̂−i) is independent of recommender i’s reports. The claim of
deficit smaller than ε for any α < α0, for some α0 > 0 follows from linearity,
recognizing that α scales all payments. �	

4.3 Incentive Alignment with Better Reporting Quality

The VCG scoring mechanism also aligns incentives with recommenders preferring
to have larger weights in the aggregator, this providing long-run incentives for
a recommender to improve its reporting quality and thus attain a higher weight
over time in the aggregation rule.

Theorem 8. Whatever the reports of others, for any recommender i, increas-
ing the weight wi to w′

i > wi, fixing the weights of others, increases the utility
Ui(pi, pi, p̂−i) to the recommender from truthful participation in the VCG scoring
mechanism.

Proof. The utility to recommender i is

Ui(pi, pi, p̂−i) = vi(xV CG(p)) +
∑

j �=i

v̂j(xV CG(pi, p̂−i)) −
∑

j �=i

v̂j(x−i(p̂−i)),
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where x−i is the allocation decision that would be made in the VCG scoring
mechanism without i. Let vi and v′

i denote the recommender’s valuation for
weight wi and w′

i, respectively. The third term does not depend on its weight.
Consider the first two terms, and let a and a′ denote the allocation for wi and
w′

i > wi, respectively. We have v′
i(a

′)+
∑

j �=i v̂j(a′) ≥ v′
i(a)+

∑
j �=i v̂j(a) > vi(a)+∑

j �=i v̂j(a). The first inequality holds trivially when a′ = a, and if a′ �= a then
by the optimizing property of the VCG allocation rule. The second inequality
holds since v′

i(a) =
∑

q aqw
′
ipiq >

∑
q aqwipiq = vi(a), and since reported values

of others are unchanged. �	

4.4 Relation to Chen et al.’s Impossibility Result

Theorem 2 [7] states that a decision market, which uses belief reports as reflected
in market prices to make a decision, is strictly proper if and only if the decision is
randomized and the distribution has full support. That is, for strict properness
every decision must be taken with non-zero probability. The key difference in
the present model is that agents report their beliefs simultaneously and without
awareness of the reports of others. This creates interim uncertainty about the
allocation, given the common prior D and the technical conditions stated in
Theorems 2, 5 and 6. In contrast, the agents in Chen et al. [7] have certainty
about the way belief aggregation will proceed (since they know current prices
in the decision market). In effect, we achieve strict properness together with a
deterministic decision rule by leveraging full interim support.

4.5 Linear Belief Aggregation

From Theorems 5 and 6, the VCG scoring mechanism is IIC when maxi∈N [wi]
is sufficiently small. There are many linear aggregators in the literature that can
be adjusted to satisfy this condition. See the extended version [29], where we
describe a linear aggregator [6] that is based on reports from previous rounds
and therefore does not affect current-round incentives.

5 Conclusion

Our formulation of the creditworthiness problem as a social-knowledge elicita-
tion problem brings a novel source of information and a rich body of mechanism
design literature to the task. We have developed a class of truncated, asym-
metric scoring rules that are ex-post proper in the sufficient-liquidity case. We
have also connected scoring rules and VCG-based mechanism design in a novel
way, creating the VCG scoring mechanism through which we set agents’ val-
ues via scoring rules. This mechanism is strictly IIC (and thus strictly proper)
with sufficiently-distributed weights in both liquidity-constrained and liquidity-
unconstrained settings, and both with or without a lender profit threshold. Given
impossibility results in the adjacent setting of decision markets [7], these results
expand the range of settings in which information can be elicited and paid for
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based on outcomes, in this case by leveraging agents’ interim uncertainty. We
have also connected these mechanisms with the belief aggregation literature,
allowing us to retain incentive compatibility properties along with linear aggre-
gation techniques.

Turning back to application, one concern is that of collusion, where recom-
menders may misreport to help friends. Clever work may be brought to bear
from adjacent settings, such as Sum of Us by Alon et al. [3] and collusion detec-
tion [2]. It is also of interest to study online-learning, together with navigating
the exploration-exploitation tradeoff for lenders who are building client bases
in new communities. We may also seek to motivate recommenders to invest
appropriately in providing good information; this is an area that we have seen
as important from an ongoing field study in Uganda. Finally, we may consider
non-binary settings, where repayments may be partial, and interest rates and
loan sizes may vary according to a borrower’s creditworthiness assessment.
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Abstract. Asset custody is a core financial service in which the cus-
todian holds in-safekeeping assets on behalf of the client. Although tra-
ditional custody service is typically endorsed by centralized authorities,
decentralized custody scheme has become technically feasible since the
emergence of digital assets, and furthermore, it is greatly needed by new
applications such as blockchain and DeFi (Decentralized Finance).

In this work, we propose a framework of decentralized asset custody
scheme that is able to support a large number of custodians and safely
hold customer assets of multiple times the value of the total security
deposit. The proposed custody scheme distributes custodians and assets
into many custodian groups via combinatorial designs, where each group
fully controls the assigned assets. Since every custodian group is small,
the overhead cost is significantly reduced. The liveness is also improved
because even a single alive group would be able to process transactions.

The security of this custody scheme is guaranteed under the ratio-
nal adversary model, i.e. any adversary corrupting a bounded fraction of
custodians cannot move assets more than the security deposit paid. We
further analyze the security and performance of our constructions from
both theoretical and experimental sides, and provide explicit examples
with concrete numbers and figures for a better understanding.

Keywords: Blockchain application · Decentralized asset custody ·
Rational adversary

1 Introduction

Asset custody is a core financial service in which an institution, known as the
custodian, holds in-safekeeping assets such as stocks, bonds, precious metals,
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and currency on behalf of the client. Custody service reduces the risk of clients
losing their assets or having them stolen, and in many scenarios, a third-party
custodian is required by regulation to avoid systematic risk. In general, security
is the most important reason why people use custody services and place their
assets for safekeeping in custodian institutions.

The security of traditional asset custody service is usually endorsed by the
reputation of the custodian, together with the legal and regulatory system. Such
centralized endorsement used to be the only viable option until the emergence
of blockchain and cryptocurrencies. Cryptocurrencies enjoy two major advan-
tages over their physical counterparts: (1) they are intrinsically integrated with
information technology such as the Internet and modern cryptography, which
technically enables multiple custodians to safeguard assets collectively; (2) with
the underlying blockchain as a public ledger, the management of cryptocur-
rencies becomes transparent to everyone and hence any fraud behavior will be
discovered immediately, which makes prosecution much easier.

From a systematic point of view, asset custody service provided by a feder-
ation of multiple independent custodians has better robustness and resistance
against single-point failure, and hence achieves a higher level of security. Such
credit enhancement is especially important for the safekeeping of cryptoassets
on decentralized blockchains such as Bitcoin [16] and Ethereum [27], where the
legal and regulatory system is absent or at least way behind the development
of applications. For example, in the year 2019 alone, at least 12 cryptocurrency
exchanges claimed being hacked and loss of cryptoassets totaled to around 2.9 bil-
lion dollars [21]. However, it is difficult for customers to distinguish that whether
the claimed loss was caused by a hacker attack or internal fraud and embezzle-
ment, and therefore raises the need for decentralized asset custody.

Decentralized asset custody finds applications in many scenarios related to
blockchain and digital finance. A motivating example is the cross-chain assets
mapping service (a.k.a. cross-chain portable assets [3,28]) which maps cryptoas-
sets on one blockchain to tokens on another blockchain for inter-chain operabil-
ity. For instance, the mapping from Bitcoin to Ethereum enables usage of tokens
representing bitcoins within Ethereum ecosystem, and in the meanwhile, the
original bitcoins must be safeguarded so that the bitcoin tokens are guaranteed
redeemable for real bitcoins in full on the Bitcoin network. Nowadays the vol-
ume of cryptoassets invested into Ethereum DeFi applications is massive, and
the highest point in history almost reaches 90 billion dollars [9], among which
a significant fraction (e.g. H-Tokens [13], imBTC [24], tBTC [23], WBTC [25],
renBTC [19], etc.) is mapped from Bitcoin. Due to the reality that most of those
DeFi applications and tokens remain in a gray area of regulation, decentralized
cryptoassets custody turns out an attractive approach for better security and
credit enhancement.

In this work, we propose a framework of decentralized asset custody scheme
designed for cross-chain assets mapping (especially from blockchains with poor
programmability, e.g. Bitcoin). More specifically, custodians and assets are
distributed into multiple custodian groups, where each group consists of few
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custodians as its members and fully controls a small portion of all assets under
custody. The authentication of each custodian group requires the consent of
sufficiently many group members, which can be implemented with voting or
threshold signature. Under this framework, transactions can be processed more
efficiently within the very few group members, since the computational and com-
municational cost is significantly reduced. The liveness and robustness are also
improved since even a single alive custodian group can process transactions.

The security of our proposed asset custody scheme is guaranteed against
a rational adversary: every custodian in this scheme must offer a fund as the
security deposit, which is kept together with the asset under custody and will be
used to compensate for any loss caused by misbehaving custodians. The system
remains secure as long as an adversary cannot steal more assets than the deposit
paid, i.e. comparing to launching an attack the adversary would be better off by
just withdrawing the security deposit of custodians controlled. Furthermore, we
prove that for an adversary who corrupts a limited fraction of custodians, our
scheme can safeguard customer assets of multiple times the value of the total
security deposit under suitable construction. This approach significantly reduces
the financing cost of a collateralized custody service.

1.1 Related Works

The prototype of decentralized asset custody scheme first appears in Bitcoin as
multisignature (multisig) [2], where the authentication requires signatures from
multiple private keys rather than a single signature from one key. For example,
an M -of-N address requires signatures by M out of totally N predetermined
private keys to move the money. This näıve scheme works well for small M and
N but can hardly scale out, because the computational and communicational
cost of authenticating and validating each transaction grows linearly in M . Both
efficiency and liveness of the scheme are compromised for large M and N , espe-
cially in the sleepy model proposed by Pass and Shi [17] where key holders do not
always respond in time. In practice, a multisignature scheme is typically used at
the wallet level rather than as a public service, since the scheme becomes costly
for large N and most Bitcoin wallets only support N ≤ 7. We remark that mul-
tisignature schemes may be coupled with advanced digital signature techniques
such as threshold signature [8,10,11] or aggregate signature [1,15,20] to reduce
the cost of verifying multi-signed signatures.

As for the cross-chain asset mapping service, existing solutions mainly include
the following types:

• Centralized: custody in a trusted central authority, with the endorsement
fully from that authority, e.g. H-Tokens [13], WBTC [25] and imBTC [24];

• Consortium: custody in multisignature accounts controlled by an alliance of
members, and endorsed by the reputation of alliance members, e.g. cBTC [7]
(in its current version) and Polkadot [26];

• Decentralized (with deposit/collateral): custody provided by permissionless
custodians, with security guaranteed by over-collateralized cryptoassets, e.g.
tBTC [23] and renBTC [19] (in its future plan).
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The last type seems satisfiable in decentralization and security against
single-point failure and collusion. Meanwhile, existing solutions (e.g. tBTC and
renBTC) have security guaranteed in the sense that an adversary will not launch
a non-profitable attack. However, for these solutions, significant drawbacks exist
as well. The first drawback is the inefficiency caused by over-collateralization,
e.g. tBTC requires the custodian to provide collateral worth of 150% value of
customer’s assets, and renBTC requires 300%. The second drawback is that
these solutions cannot support homogeneous collateral as the assets under cus-
tody, and hence breaking the safety of the custody service in market volatility.
We remark that [12] considers the dynamic adjustment of the deposit of custo-
dians in the long run. However, this work implicitly assumes that the security
of the system is irrelevant with the behavior of custodians (e.g. by introducing
cryptographic methods like in Bitcoin). Such assumption is inapplicable in the
game-theoretic setting we discuss here.

1.2 Our Contributions

Our contributions lie in the following parts:

• In literature, we are the first to consider the possibility of homogeneously
keeping exterior assets and custodians’ deposit in the scenario of decentral-
ized asset custody. To model such feasibility, we formalize the concept of cus-
tody scheme and further propose the concept of efficiency factor of a custody
scheme for any adversary power (Sect. 2). The latter captures the maximal
ratio of capable exterior assets to deposit that the underlying custody scheme
can safely handle against a rational adversary.

• We propose a series of evaluation criteria to specify the performance of a cus-
tody scheme (Sect. 2). Combining with the previous point, we give a complete
framework for analyzing a custody scheme and comparing different custody
schemes. We point out that the underlying group assignment scheme is the
core of a custody scheme.

• We present four kinds of concrete construction of group assignment schemes
(three of them shown in Sect. 3). For each of them, we theoretically give an
exact value/a lower bound on the efficiency factor of the custody scheme they
induce. Some results turn out to be magnificent. For example, we show that
we can assign 24 custodians to 759 groups such that as long as the adversary
corrupts γ ≤ 1/4 fraction of all custodians, the custody scheme is capable of
safekeeping assets worthy of η > 30.62 times of total collateral.

• We prove that the random sampling trick significantly reduces the size of
group assignment scheme without losing too much in the efficiency factor
(Sect. 4). Therefore, random sampling resolves the problem of too many
groups inside a custody scheme. More specifically, suppose we have a custody
scheme consisting of n participants and its efficiency factor is η against some
adversary. By randomly sampling O (ηn) many groups, the newly induced
custody scheme would have efficiency factor η′ ≥ √

η + 1 − 2 against the
same adversary with high probability. An important corollary shows that we
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can construct Θ(n) groups with identical size Θ(1) to obtain an efficiency
factor of Θ(1) against an adversary with constant power.

In the full version of this paper [4], we further study the computational com-
plexity of finding the optimal corrupting strategy in general. Meanwhile, we con-
duct extensive experiments to validate the real-world performance of proposed
group assignment scheme designs. The full version also contains more details of
construction and analysis of multi-layer sharding design and full proofs of all
propositions and theorems.

2 Model

Our goal is to implement the decentralized custody scheme without relying on
any trusted party. More specifically, we investigate the feasibility that n custo-
dians (a.k.a. n nodes) jointly provide the custody service, such that the security
is guaranteed as long as a bounded fraction of custodians are corrupted, e.g. no
more than n/3 nodes are corrupted simultaneously. This assumption of an hon-
est majority is much milder than assuming a single party trusted by everyone,
and hence likely leads to a better security guarantee in practice.

The decentralized custody scheme is based on overlapping group assignments.
That is, custodians are assigned to overlapping groups, and each group is fully
controlled by its members and holds a fraction of the total assets under custody,
including both deposit from custodians and assets from customers. In what fol-
lows we assume that the in-safekeeping assets are evenly distributed to custodian
groups, since an uneven distribution naturally leads to degradation of security
and capital efficiency.

Furthermore, we consider the security of a custody scheme against a rational
adversary : the adversary may corrupt multiple nodes, but will not launch an
attack if the potential profit does not exceed the cost. To achieve security under
such a model, every custodian in our scheme must provide an equal amount of
deposit, which will be confiscated and used for compensation in case of mis-
behavior. Thus, if misbehavior can be detected in time, no rational adversary
would ever launch an attack as long as the deposit paid outweighs the revenue of
a successful attack. Here, we emphasize that instead of resorting to another level
of collateral custody service, the deposit from custodians is maintained as a part
of the total assets under custody, together with assets from external customers.

As a remark, we assume that attacks in the decentralized custody scheme can
be detected immediately. If the decentralized custody service is for cryptoassets
and deployed on a blockchain, then all instructions from customers and transfer
of assets are transparent to everyone, and hence any malicious transaction will
be caught immediately. Alternatively, the detection may be implemented with
the periodic examination which ensures that misbehavior is discovered before
the adversary can exit or change the set of corrupted nodes. In other scenarios,
detecting corrupted behavior may be a non-trivial problem, but for the sake of
this study we will leave it out to avoid another layer of complication.
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The incentive of agents participating in this collateralized custody scheme is
also indispensable for a full-fledged decentralized custody service. A reasonable
rate of the commission fee and/or inflation tax would be sufficient to compensate
the cost of agents providing such custody service. In the blockchain scenario, an
extra per-transaction fee is also an option. Overall we believe that the mechanism
design to incentivize custodians is essentially another topic, which is beyond the
scope of this work and should be left for future study.

A Trivial but Useless Solution. In the most trivial solution, the asset under
custody can only be moved when approved by all custodians or at least a majority
of them. However, as n grows getting such an approval becomes expensive and
even infeasible in practice, especially when honest participants may go off-line
(as in the sleepy model [17]), which renders the trivial scheme useless.

Although the above solution is not satisfactory, it does provide enlightening
ideas for designing a better custody scheme. The threshold authorization scheme
guarantees that the adversary cannot move any assets under custody if not
a sufficient number of nodes are corrupted. More generally, this is a specific
case of security against the rational adversary, where with bounded power, the
adversary’s deposit outweighs the revenue of launching an attack. Again, as long
as this property is satisfied the custody scheme is secure in our model.

In particular, the following toy example shows the feasibility of implementing
our idea with multiple overlapping subsets of S as custodian groups. In this
example, each 3-subset of S controls a certain fraction of the total assets under
custody. Here S is the set of all custodians.

Example 1 (Toy example). Consider the case when 10 units of exterior assets
are under custody. Assume there are n = 5 custodians, each paying a deposit
of 6 units of assets, amounting to 30 units. Let each of the 10 3-subsets of S
form a custodian group, and assign all 40 units of assets equally to all groups,
i.e. each custodian group controls 4 units. If the asset controlled by each group
can be moved with approval of 2 out of 3 members in that group, then an
adversary controlling 2 nodes can corrupt exactly 3 custodian groups. However,
by controlling 3 groups the adversary can only move 4×3 = 12 units, which is no
more than the deposit of corrupted nodes (also 12 units). Thus such a custody
scheme for n = 5 is secure against adversaries controlling up to two nodes.

In what follows, we will formalize the model of a decentralized custody scheme
with assets evenly distributed among custodian groups. To start with, we intro-
duce a formal definition of the custody scheme we consider in this work.

Definition 1 (Custody scheme). A custody scheme (S,A, μ) consists of the
following three parts:

• S = {1, 2, · · · , n} denotes the set of all custodians (or simply nodes);
• A denotes a family of m k-subsets of S, such that each element in A (i.e. a

k-subset of S) represents a custodian group under the given custody scheme;
• μ ∈ [1/2, 1) denotes a universal authentication threshold for all custodian

groups, i.e. the asset controlled by that group can be settled arbitrarily with
approval of strictly above μk group members.
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We emphasize that the elements in A do not have to be disjoint. In fact, it
is imperative to use overlapping subsets in any meaningful solution. In certain
cases, there might even exist repeated elements in A.

In this work, we focus on the symmetric setting where every node provides
the same amount of deposit and every custodian group has the same fraction of
total assets in custody. At the same time, our discussion of the authentication
threshold μ mainly focuses on μ = 1/2 and μ = 2/3.1 We let r = �μk + ε�
denote the smallest integer greater than μk, and hence the authentication of
every custodian group is essentially an r-of-k threshold signature scheme.

We represent the adversary power with γ ∈ (0, 1), which refers to the fraction
of corrupted nodes in S. Specifically, we let s = �γn	 denote the number of
corrupted nodes in S.2 The adversary is allowed to adaptively select corrupted
nodes and then get all information and full control of those nodes thereafter, as
long as the number of corrupted nodes does not exceed s. In case a group in A
contains at least r corrupted nodes, we say that group is corrupted. Furthermore,
we remark that the adversary has reasonably bounded computing power, so that
cryptographic primitives such as digital signatures are not broken.

Given a custody scheme (S,A, μ), together with γ for the adversary power,
we use the function f(γ;S,A, μ) to denote the maximal number of groups that
may be corrupted. Formally,

f(γ;S,A, μ) := max
B⊆S:|B|=�γn�

|{A ∈ A | |A ∩ B| > μk}| . (1)

Recall that as all assets under custody are equally distributed to all cus-
todian groups, each corrupted group values equal to the adversary. Therefore,
f(γ;S,A, μ) directly resembles the maximal gain of the adversary.

We further define the efficiency factor of a custody scheme, which captures
the ability to securely holding exterior assets.

Definition 2 (Efficiency factor of a custody scheme). Given a custody
scheme (S,A, μ) and adversary power γ defined as above, the efficiency factor
of this scheme against γ-adversary, denoted by η, is defined as:

η :=
γ · m

f(γ;S,A, μ)
− 1.

where m is the total number of custodian groups induced by A.

1 In a synchronous network, μ ≥ 1/2 is a sufficient condition for the existence of
expected-constant-round Byzantine agreement protocols in the authenticated setting
(i.e., with digital signature and public-key infrastructure) [14], whereas μ ≥ 2/3 is
necessary and sufficient for the existence of Byzantine agreement protocols in the
unauthenticated setting [18]. We further remark that larger μ implies higher security
but worse liveness, for example, when μ → 1, even a single corrupted member can
block a custodian group from confirming any transaction. However, the discussion
of liveness is beyond the scope of this work.

2 In most parts of the paper, we slightly abuse the notation and assume that γn is
always a natural number, i.e. s = γn ∈ N.
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The efficiency factor η indeed equals the maximal ratio of capable exterior
assets to deposit that the underlying custody scheme can handle. Specifically,
suppose that u units of assets are deposited in total, and v units of exterior
assets are in custody. According to (1), by launching an attack the adversary
is able to seize the funds of f(γ;S,A, μ) custodian groups, which amounts to
(u + v) · f(γ;S,A, μ)/m units of assets, at the cost of losing deposit worthy of
value γ · u units. Recall that in our model, collateral and exterior assets are
homogeneous and kept together by the custodian groups, therefore, the custody
scheme is secure as long as f(γ;S,A, μ)/m · (u + v) ≤ γ · u, or equivalently,
v/u ≤ η according to Definition 2.

As an example for the definition, η = 1 implies that the system is secure
when the total value of exterior assets is no more than the total value of deposit.

Notice that when the efficiency factor η < 0 for some γ, the custody scheme
against that γ-adversary is always insecure, regardless of the amount of deposit.
To capture such property, we further define the reliability and safety of a custody
scheme based on the Definition 2.

Definition 3 (Reliability and safety of custody scheme). For a cus-
tody scheme (S,A, μ) and adversary power γ, we say that the custody scheme
is γ-reliable if the efficiency factor η of the scheme is non-negative against γ-
adversary, i.e. f(γ;S,A, μ) ≤ γ · m. Furthermore, the scheme is secure against
γ-adversary (or simply secure) if it is γ′-reliable for every γ′ ∈ (0, γ].3

Putting into our formal definition, the trivial solution with only one custodian
group (i.e. k = n, m = 1) has efficiency factor η = ∞ for γ ≤ μ and η < 0 for
γ > μ; the custody scheme in Example 1 has its efficiency factor η changing
according to the adversary power γ as summarized in Table 1. In particular,
for γ = 1/5 and γ = 2/5, the scheme is reliable with η = ∞ and η = 1/3
respectively. For γ ≥ 3/5 the scheme is unreliable with η < 0.

From the formalization of our decentralized custody scheme, it is clear that
the custodian group assignment A is the core of the whole custody scheme. In
particular, for a fixed n, every specific group assignment A and fixed constant μ
(say, μ ∈ {1/2, 2/3}), as the parameters m and k are already specified in A, the
maximal number of corrupted groups and the efficiency factor η are functions
solely depending on the adversary power γ.4

Therefore, in the rest of this paper, we will focus on the construction and
analysis of custodian group assignment schemes. In the meantime, we point out
that it is meaningless merely to study a single group assignment scheme. Even in
real life, the group assignment scheme should be adjusted with the joining and
leaving of custodians. Instead, we focus on the systematic construction methods
which lead to group assignment scheme families.
3 Notice that although f(γ; S, A, μ) increases with γ, f(γ; S, A, μ)/γ may not be a

increasingly-monotone function in γ, and as a result, γ-reliability does not necessarily
lead to γ-security.

4 We remark that the number of custodians n is not always extractable from the
group assignment scheme A, as in some cases, especially when we consider random
sampling in Sect. 4), some custodians may belong to no group.
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Table 1. The efficiency factor of the custody scheme under different adversary power
in Example 1.

Parameters\adversary power (γ) 1/5 2/5 3/5 4/5

# corrupted nodes (s) 1 2 3 4

# corrupted custodian groups (f(γ; S, A, μ)) 0 3 7 10

Efficiency factor (η) ∞ 1/3 −1/7 −1/5

The authentication threshold is realized as r = 2 and μ = 1/2 (in this
example equivalent to have μ ∈ [1/3, 2/3)).

Definition 4 (Group assignment scheme family). We say C = {An}n∈I
is a group assignment scheme family, if

• I is an index set;
• An is a group assignment scheme with n nodes;
• all group assignment schemes in C imply an identical group size.

Evaluation Criteria. In this work, we use the following evaluation criteria
when comparing two group assignment scheme families with the same group
size:

1. Efficiency factor. Firstly, we consider the efficiency factor η of schemes in
two families with the same number of nodes under adversary power γ =
1/2 · μ, 2/3 · μ. We prefer the family with a higher efficiency factor of group
assignment schemes.

2. Number of groups. Secondly, we consider the size m of schemes in two families
with the same number of nodes. We prefer the family with less size of group
assignment schemes. In real life, a large amount of groups leads to a high
maintenance cost of the custody scheme.

3 Constructions of Group Assignment Schemes

In this section, we propose three types of group assignment schemes and analyze
the performance of resultant custody schemes. We also provide empirical analysis
of these schemes with concrete numbers for a better understanding.

3.1 Symmetric Design

Definition 5 (Symmetric design). Given n and k, let Asym be a family con-
sisting of all k-subsets of S as custodian groups, i.e. Asym is an assignment with
m =

(
n
k

)
different groups where each group has k nodes. For every authentication

threshold μ, a custody scheme is induced by Asym and μ.
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Due to the perfect symmetry of Asym, it immediately follows that the number
of corrupted groups in the above custody scheme only depends on the number
of corrupted nodes. For the adversary corrupts any set of γn nodes, the number
of corrupted groups can be calculated as follows:

f(γ;S,Asym, μ) =
∑

r≤t≤k

(
γn

t

)(
n − γn

k − t

)
. (2)

The efficiency factor turns out to be η = γ · (n
k

)/∑k
t=r

(
γn
t

)(
n−γn
k−t

) −1. When

μ ≥ γ,5 according to the tail bound of hypergeometric distribution [5], we have

η = γ ·
(

n

k

)/
k∑

t=r

(
γn

t

)(
n − γn

k − t

)
− 1 ≥ γ · e2(γ−μ)2k − 1, (3)

which establishes a good lower bound on the efficiency factor of the symmetric
design under appropriate γ.

In the following proposition, we demonstrate that for appropriately large k,
Asym is secure for γ close to μ.

Proposition 1. For any k and n, given μ and corresponding r = �μk + ε�, if√
2(r − 1) ln k−1

r−1 < min{r − 1, k − r}, then the custody scheme induced by Asym

and μ is secure against γsym-adversary, for γsym defined as follows:

γsym :=
r − 1 −

√
2(r − 1) ln k−1

r−1

k − 1
.

For the special case when n is even, k is odd, n ≥ 2k and μ = 1/2, the security
threshold of custody scheme induced by symmetric design can be enhanced to
1/2, as shown in the following proposition.

Proposition 2. For any odd k and even n with n ≥ 2k, the custody scheme
derived from Asym and μ = 1/2 is secure against 1/2-adversary.

Figure 1 depicts the relation between efficiency factor η and adversary power
γ, for n ∈ {20, 60}, k ∈ {5, 7}, and μ ∈ {1/2, 2/3}. Basically, we see that
with fixed n, k and μ, the efficiency factor η of the custody scheme induced by
symmetric design decreases as γ grows. Further, for combinations of reasonably
large n and k, the efficiency factor η can be above 10 when γ is roughly 1/2 · μ.
For instance, when n = 20, k = 5 and μ = 2/3, we have m =

(
20
5

)
= 15, 504 and

the efficiency factor η = 10.4 against adversary with power γ = 0.35.
Figure 2 illustrates the behavior of the efficiency factor η versus the custodian

group size k, for n ∈ {20, 60}, μ ∈ {1/2, 2/3} and γ ∈ {1/3 · μ, 1/2 · μ, 2/3 · μ}.
5 We mention that in this work, when considering the reliability of a custody scheme,

we tacitly approve that μ ≥ γ. For a better understanding, consider the first example
with only one group consisting of all custodians. Under such group assignment, when
γ > μ, the scheme is surely γ-unreliable.
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Fig. 1. The efficiency factor η against adversary power γ for Asym. In particular, η < 0
iff the custody scheme is not secure for the corresponding γ.

The figure shows that in general, η increases with k for custody schemes induced
by Asym. The sawteeth appearing on the curves are due to the rounding of r
and s, i.e. the authentication threshold and the number of corrupted nodes.

Finally we remark that the construction of Asym by itself is mainly a theo-
retical result. Because the size of such group assignment m =

(
n
k

)
grows too fast

and hence n and k must be severely bounded in practice, e.g. n ∼ 20 and k ∼ 5,
in order to keep m reasonable. One solution to mitigate the above issues is by
random sampling, as exhibited in Sect. 4.

3.2 Polynomial Design

The following construction of group assignments relies on polynomial-based com-
binatorial designs.

Definition 6 (Polynomial design). For given k, let q ≥ k be a prime and the
number of custodians be n = kq. Let T = {(a, b) | 0 ≤ a ≤ k−1, 0 ≤ b ≤ q−1} be
a set of size kq, therefore, there is a bijection from S to T . (For simplicity, we use
an element in T to represent the unique corresponding element S.) At last, let 0 <
d < k be a integer. The polynomial design Apoly is a family of m = qd k-subsets
of S defined as Apoly := {A(p) | p is a degree-d monic polynomial over Z/qZ},
where ∀p, A(p) := {(i, p(i)) | 0 ≤ i ≤ k − 1}. Then, for every authentication
threshold μ, a custody scheme can be induced by Apoly and μ.

It is easy to verify that Apoly consists of m distinct groups, and the inter-
section of any two distinct groups in Apoly is strictly bounded by d by the
Fundamental Theorem of Algebra, i.e.:

∀Ap, Aq ∈ Apoly, Ap �= Aq =⇒ |Ap ∩ Aq| < d. (4)

Hence, the efficiency factor η of the custody scheme induced by polynomial
design is lower bounded as below.
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Fig. 2. The efficiency factor η against group size k for Asym. Blank points on the right
side refer to η = ∞ when adversary cannot corrupt even a single custodian group.

Theorem 1. Given parameters k, q, d, n = kq, μ and corresponding r, the
efficiency factor η of the custody scheme induced by Apoly and μ against a γ-
adversary is lower bounded as follows:

η ≥ γ1−d ·
(

r

d

)/(
k

d

)
− 1.

Surprisingly, the lower bound of η given by Theorem 1 does not rely on the
selection of q.

From Theorem 1, we immediately obtain the following proposition:

Proposition 3. Given parameters k, q, d, n = kq, μ and corresponding r, the
custody scheme induced by Apoly and μ is secure against γpoly-adversary for γpoly

defined as:

γpoly :=
((

r

d

)/(
k

d

)) 1
d−1

.
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Fig. 3. The lower bound of efficiency factor η (by Theorem 1) against adversary power
γ for Apoly. Recall that n = kq in Apoly.

Figure 3 depicts the relation between the lower bound of η following Theo-
rem 1 against the adversary power γ, for μ ∈ {1/2, 2/3} and k, q, d as shown in
the figure. Note that n = kq. It is easy to see that the lower bound of η increases
as k and d become larger with fixed corrupted fraction γ. For specific choices
we get η ≥ 9.45 against adversary with γ = 3/11, when μ = 2/3 and Apoly is
parameterized by n = 121, k = q = 11 and d = 4, with totally m = 14, 641
groups. Furthermore, we remark that under the estimation of Theorem 1, the
efficiency factor η increases rapidly as γ decreases since η ∼ γ1−d. For instance,
the lower bound for η is improved to no less than 34.29 when γ is reduced from
3/11 to 2/11 in the above example.

The polynomial design only implies a group number of kd = O(nd/2), which
is far smaller than the group number of

(
n
k

)
given by symmetric design. Our sub-

sequent experiments show that considering efficiency factor, polynomial design
behaves a bit worse than symmetric design. Nevertheless, the result is pleasing
enough for a realization in practice.

3.3 Block Design

One may notice that the previous two constructions give custody schemes with
a rather large number of groups. For symmetric design, we have

(
n
k

)
groups; and

for polynomial design, we have kd = Θ(nd/2) groups. In this section, we consider
block designs, which lead to a smaller number of groups.

A block design is a particular combinatorial design consisting of a set of
elements and a family of subsets (called blocks) whose arrangements satisfy
generalized concepts of balance and symmetry.
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Definition 7 (Block design, from [22], with notation revised). Let n, k, λ
and t be positive integers such that n > k ≥ t. (S,Ablck) is called a t-(n, k, λ)-
design if S is a set with |S| = n and Ablck is a family of k-subsets of S
(called blocks), such that every t-subset of S is contained in exactly λ blocks
in Ablck. One can verify that the number of blocks of a t-(n, k, λ)-design is
m = λ · (

n
t

)/(
k
t

)
.

In fact, block design naturally extends symmetric design, in the sense that
Asym is a degenerated block design with t = k and λ = 1. In what follows, a
“block” in the block design is also called a “group” in the group assignment
scheme.

The following theorem, shows the effectiveness of block designs:

Theorem 2. For every t-(n, k, λ)-design (S,Ablck), let μ ≥ (t − 1)/k (which
implies that r ≥ t), then the efficiency factor η of the custody scheme induced by
Ablck and μ against a γ-adversary (i.e., the adversary corrupting s = γn nodes)
is lower bounded as follows:

η ≥ γ ·
(
n
t

)

(
k
t

) ·
(
r
t

)
(
s
t

) − 1.

The following proposition further shows that the custody scheme induced by
block design is secure with proper γ.

Proposition 4. When n ≥ 3k − 3, and μ ≥ 1/2, r ≥ max{t, 3}, the custody
scheme induced by an r-(n, k, λ)-design with μ is secure against γblck-adversary,
for γblck defined as follows:

γblck :=
1
k

· μ
1

t−1 +
t − 1

n
.

When t = 2, according to Theorem 2, we have η ≥ n−1
s−1 · r(r−1)

k(k−1) − 1 ≈ μ2

γ − 1,
which implies that the efficiency factor is at least Ω(1) when γ ≥ 1/2 ·μ. When k

and λ are constant, the corresponding number of groups is λ · (
n
2

)/(
k
2

)
= Θ(n2).

With larger t, the result given by Theorem 2 is even more inspiring.
Figure 4 shows the lower bound of η obtained by Theorem 2 versus the adver-

sary’s power γ for different block designs with μ ∈ {1/2, 2/3}. We clearly observe
that the lower bound of η significantly increases with the value of t under fixed
corrupted fraction γ. Further, although Theorem 2 only provides a lower bound
estimation for large γ, we still achieve satisfying numerical results. For instance,
using the custody scheme induced from the 5-(24, 8, 1)-design (see [6,22] for the
construction) with m = 759 custodian groups and μ = 1/2, the efficiency factor
η is no less than 30.62 when γ ≤ 1/4.

Meanwhile, our further experimental results demonstrate that block design
has a comparable performance with polynomial design, which indicates that
block design finds its application in constructing custodian groups under the
scenario of decentralized asset custody in our model.



DAC Scheme with Security Against Rational Adversary 463

Fig. 4. The lower bound of efficiency factor η (by Theorem 2) against adversary power
γ for Ablck. All six concrete block designs shown in this figure have explicit construc-
tions [6,22].

4 Compressing Group Assignment Schemes via Random
Sampling

We notice that under symmetric design and polynomial design, a group assign-
ment scheme A may contain too many custodian groups, which renders the
induced custody scheme almost impossible to manage in practice. To mitigate
this problem, we propose a randomized sampling technique to construct compact
custody schemes with a smaller number of custodian groups sampled from A as
representatives.

Definition 8 (Random Sampling). Given a group assignment scheme A con-
sisting of m groups, as well as a sampling rate β ∈ (0, 1), we uniformly sample
a subset of βm elements from A at random as the new assignment scheme A′,
and then construct a custody scheme based on A′. The sampling process does not
affect on the authentication threshold μ.

In what follows we analyze the efficiency of A′ comparing to A. For a
given corrupted fraction γ, let H(γ) be a function of γ defined as H(γ) :=
− (γ ln γ + (1 − γ) ln(1 − γ)). Then the efficiency factor of custody scheme
induced by A′ is lower bounded as in the following theorem:

Theorem 3. Let A and A′ be defined as above, and suppose the corrupted
fraction γ satisfies nγ(1 − γ) ≥ 1.6 Let η and η′ be the efficiency factor of
6 This is trivial if n > 4 and γn ≥ 2.
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the custody scheme induced by respectively A and A′ together with some fixed
μ against a γ-adversary. Then, for arbitrary c ≥ 0, with probability at least
1 − e

2π exp(−cnH(γ)), the following lower bound for η′ holds:

η′ ≥ γ(η + 1) · √βm

γ · √
βm + (η + 1) · √(1 + c)nH(γ)/2

− 1.

For c = 1, Theorem 3 transforms into an easy-to-digest version as in Corol-
lary 1.

Corollary 1. Let η be the efficiency factor of the custody scheme induced by A
and some μ against a γ-adversary. Let A′ be the group assignment scheme uni-
formly sampled from A at random with m′ groups. Suppose the custody scheme
induced by A′ and μ has efficiency factor η′ against the same γ-adversary. Then,
with probability at least 1 − e

2π exp(−nH(γ)),

• η′ ≥ √
η + 1 − 2, with m′ = (η + 1)nH(γ)/γ2;

• η′ ≥ (η − 1)/2, with m′ = (η + 1)2nH(γ)/γ2.

To better illustrate the effect of Corollary 1, we consider the symmetric design
in Sect. 3.1. (3) shows that the efficiency factor of the custody scheme induced
by symmetric design reaches Θ(n) with k = Θ(log n), and Θ(1) with k = Θ(1).
Combining with Corollary 1, we further obtain the following important corollary:

Corollary 2. For fixed γ < μ, we can uniformly choose m different k-subsets of
S at random, where |S| = n, such that with probability 1−O(exp(−nH(γ))), the
efficiency factor η of the custody scheme induced by these subsets and μ against
a γ-adversary satisfies:

• η = Ω(1), with k = Θ(1) and m = Θ(n);
• η = Ω(

√
n), with k = Θ(log n) and m = Θ(n2);

• η = Ω(n), with k = Θ(log n) and m = Θ(n3).

5 Summary and Discussion

In this work we propose a framework of decentralized asset custody schemes
based on overlapping group assignments. The custody scheme reaches high effi-
ciency, with security guaranteed against any rational adversary that corrupts a
bounded fraction of custodians.

Explicit constructions of compact assignments with much less custodian
groups, efficient approximation algorithms for estimating the actual efficiency
factor of a given custody scheme in our framework, and more rigorous analysis
of liveness guarantee as well as the trade-off between liveness and security are of
independent interest, which we left for future work. Meanwhile, how the scheme
handles a change in the total amount of assets in custody is also an interesting
and realistic question.
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Abstract. We consider a social choice setting with agents that are par-
titioned into disjoint groups, and have metric preferences over a set of
alternatives. Our goal is to choose a single alternative aiming to optimize
various objectives that are functions of the distances between agents and
alternatives in the metric space, under the constraint that this choice
must be made in a distributed way: The preferences of the agents within
each group are first aggregated into a representative alternative for the
group, and then these group representatives are aggregated into the final
winner. Deciding the winner in such a way naturally leads to loss of
efficiency, even when complete information about the metric space is
available. We provide a series of (mostly tight) bounds on the distor-
tion of distributed mechanisms for variations of well-known objectives,
such as the (average) total cost and the maximum cost, and also for new
objectives that are particularly appropriate for this distributed setting
and have not been studied before.

1 Introduction

The main goal of social choice theory [31] is to come up with outcomes that accu-
rately reflect the collective opinions of individuals within a society. A prominent
example is that of elections, where the preferences of voters over different can-
didates are aggregated into a single winner, or a set of winners in the case of
committee elections. Besides elections, the abstract social choice theory setting,
where a set of agents express preferences over a set of possible alternatives cap-
tures very broad decision-making applications, such as choosing public policies,
allocations of resources, or the most appropriate position to locate a facility.

In the field of computational social choice, Procaccia and Rosenschein [30]
defined the notion of distortion to measure the loss in an aggregate objective
(typically the utilitarian welfare), due to making decisions whilst having access

This work was partially supported by NSF awards CCF-1527497 and CCF-2006286.

c© Springer Nature Switzerland AG 2022
M. Feldman et al. (Eds.): WINE 2021, LNCS 13112, pp. 467–485, 2022.
https://doi.org/10.1007/978-3-030-94676-0_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94676-0_26&domain=pdf
https://doi.org/10.1007/978-3-030-94676-0_26


468 E. Anshelevich et al.

to only ordinal information about the preferences of the agents, rather than their
exact values (or costs). Following their work, a lot of effort has been put forward
to bound the distortion of social choice rules, with Anshelevich et al. [5,7] being
the first to consider settings with metric preferences. In such settings, agents
and alternatives are points in a metric space, and the distances between them
(which define the agent costs) satisfy the triangle inequality. The metric space
can be thought of as evaluating the proximity between agents and alternatives
for different political issues or ideological axes (e.g., liberal to conservative, or
libertarian to authoritarian). The distortion in metric social choice has received
significant attention, with many variants being considered over the recent years.

In contrast to the centralized decision-making settings considered in the
papers mentioned above, there are cases where it is logistically too difficult to
aggregate the preferences of the agents directly, or different groups of agents
play inherently different roles in the process. In such scenarios, the collective
decisions have to be carried out in a distributed manner, as follows. The agents
are partitioned into groups (such as electoral districts, focus groups, or sub-
committees), and the members of each group locally decide a single alternative
that is representative of their preferences, without taking into account the agents
of different groups. Then, the final outcome is decided based on properties of the
group representatives, and not on the underlying agents within the groups; for
example, the representatives act as agents themselves and choose an outcome
according to their own preferences. However, since the representatives cannot
perfectly capture all the information about the preferences of the agents (even
when it is available in the group level), it is not surprising that choosing the final
outcome this way may lead to loss of efficiency.

Motivated by this, Filos-Ratsikas et al. [20] studied the deterioration of the
social welfare in general normalized distributed settings, by extending the notion
of distortion to account for the information about the agents’ preferences that
is lost after the local decision step. They showed bounds on the distortion of
max-weight mechanisms when the number of groups is given. Very recently,
Filos-Ratsikas and Voudouris [21] considered the metric distributed distortion
problem, and showed tight bounds on the distortion of mechanisms under several
restrictions: (a) the metric is a line, (b) their objective is the (average) social
cost objective (total distance between agents and the chosen alternative), and
(c) the groups are mainly limited to be of the same size.

In this paper, we extend the results of Filos-Ratsikas and Voudouris in all
three axes: We provide bounds for (a) general metrics (including refined bounds
for the line metric), (b) four different objectives (including the average total
cost, the maximum cost, and two new objectives that clearly motivated by the
distributed nature of the setting), and (c) groups of agents that could vary in size.
We paint an almost complete picture of the distortion landscape of distributed
mechanisms when the agents have metric preferences.
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1.1 Our Contributions

We consider a distributed, metric social choice setting with a set of agents and
a set of alternatives, all of whom are located in a metric space. The prefer-
ences of the agents for the alternatives are given by their distances in the metric
space, and as such they satisfy the triangle inequality. Furthermore, the agents
are partitioned into a given set of districts of possibly different sizes. A dis-
tributed mechanism selects an alternative based on the preferences of the agents
in two steps: first, each district selects a representative alternative using some
local aggregation rule, and then the mechanism uses only information about the
representatives to select the final winning alternative.

The goal is to choose the alternative that optimizes some aggregate objective
that is a function of the distances between agents and alternatives. In the main
part of the paper we consider the following four cost minimization objectives,
which can be defined as compositions of objectives applied over and within the
districts:

– The average of the average agent distance in each district1 (AVG ◦ AVG);
– The average of the maximum agent distance in each district (AVG ◦ MAX);
– The maximum agent distance in any district (MAX ◦ MAX);
– The maximum of the average agent distance in each district (MAX ◦ AVG).

While AVG ◦ AVG and MAX ◦ MAX are adaptations of objectives that have been
considered in the centralized setting, AVG◦MAX and MAX◦AVG are only meaningful
in the context of distributed social choice. In particular, MAX◦AVG can be thought
of as a fairness-inspired objective guaranteeing that no district has a very large
cost, where the cost of a district is the average cost of its members. Similarly,
AVG ◦ MAX guarantees that the average district cost is small, where the cost of a
district is now defined as the egalitarian (maximum) cost of any of its members.
We consider the introduction and study of these objectives as one of the major
contributions of our work.

We measure the performance of a distributed mechanism by its distortion,
defined as the worst-case ratio (over all instances of the problem) between the
objective value of the alternative chosen by the mechanism and the minimum
possible objective value achieved over all alternatives. The distortion essentially
measures the deterioration of the objective due to the fact that the mechanism
must make a decision via a distributed two-step process, on top of other possible
informational limitations related to the preferences of the agents. We consider
deterministic mechanisms that are either cardinal (in which case they have access
to the exact distances between agents and alternatives), or ordinal (in which case
they have access only to the rankings that are induced by the distances). Table 1
gives an overview of our bounds on the distortion of distributed mechanisms,
1 Note that this objective is not exactly equivalent to the well-known (average) social
cost objective, defined as the (average) total agent distance over all districts. All of
our results extend for this objective as well, by adapting our mechanisms to weigh
the representatives proportionally to the district sizes. When all districts have the
same size, AVG ◦ AVG coincides with the average social cost.
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for the four objectives defined above. We provide bounds that hold for general
metric spaces, and then more refined bounds for the fundamental special case
where the metric is a line.

Table 1. An overview of the distortion bounds for the various settings studied in this
paper. Each entry consists of an interval showing a lower bound on the distortion of
all distributed mechanisms for the corresponding setting, and an upper bound that is
achieved by some mechanism; when a single number is presented, the bound is tight.
The results marked with a (*) for the line metric and the AVG ◦ AVG objective (as well
as the corresponding lower bounds for general metrics) follow from the work of Filos-
Ratsikas and Voudouris [21]; all other results in the table were not known previously.

General metric Line metric

Cardinal Ordinal Cardinal Ordinal

AVG ◦ AVG 3* [7*, 11] 3* 7*

AVG ◦ MAX 3 [2 +
√

5, 11] 3 [2 +
√

5, 5]

MAX ◦ MAX [1 +
√

2, 3] [3, 5] 1 +
√

2 3

MAX ◦ AVG [1 +
√

2, 3] [2 +
√

5, 5] 1 +
√

2 [2 +
√

5, 5]

Several of our bounds for general metric spaces are based on a novel compo-
sition technique for designing distributed mechanisms. In particular, we prove a
rather general composition theorem, which appears in many versions throughout
our paper, depending on the objective at hand. Roughly speaking, the theorem
relates the distortion of a distributed mechanism to the distortion of the cen-
tralized voting rules it uses for the local (in-district) and global (over-districts)
aggregation steps. In particular, for two such voting rules with distortion bounds
α and β, the distortion of the composed mechanism is at most α + β + αβ. This
effectively enables us to plug in voting rules with known distortion bounds, and
obtain distributed mechanisms with low distortion. The theorem is also robust in
the sense that the AVG and MAX objectives can be substituted with more general
objectives satisfying specific properties, such as monotonicity and subadditivity;
we provide more details on that in Sect. 5.2.

To demonstrate the strength of the theorem, consider the objective AVG◦AVG.
For cardinal mechanisms and general metrics, the bound of 3 follows by using
optimal centralized voting rules (with distortion 1) for both steps. Similarly, for
ordinal mechanisms, the bound of 11 follows by using the PluralityMatching
rule of Gkatzelis et al. [22] in both steps; this rule is known to have distortion
at most 3 for general instances, and at most 2 when all agents are at distance 0
from their most-preferred alternative (which is the case when the representatives
are thought of as agents in the second step of the mechanism).

Even though the composition theorem is evidently very powerful, it comes
short of providing tight bounds in some cases. To this end, we design explicit
mechanisms with improved distortion guarantees, both for general metrics as
well as the fundamental special case where the metric is a line. A compelling
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highlight of our work is a novel mechanism for objectives of the form MAX ◦G, to
which we refer as λ-Acceptable-Rightmost-Leftmost (λ-ARL). While this
mechanism has the counter-intuitive property of not being unanimous (i.e., there
are cases where all agents agree on the best alternative, but the mechanism does
not choose this alternative as the winner), it achieves the best possible distortion
of 1 +

√
2 among all distributed mechanisms on the line. In contrast, we prove

that unanimous mechanisms cannot achieve distortion better than 3. To the best
of our knowledge, this is the first time that not satisfying unanimity turns out to
be a necessary ingredient for achieving the best possible distortion in the metric
social choice literature.

1.2 Related Work

The distortion of social choice voting rules has been studied extensively for many
different settings. For a comprehensive introduction to the distortion literature,
we refer the reader to the survey of Anshelevich et al. [6].

After the work of Procaccia and Rosenschein [30], a series of papers
adopted their normalized setting, where the agents have unit-sum values, and
proved asymptotically tight bounds on the distortion of ordinal single-winner
rules [13,15], multi-winner rules [14], rules that choose rankings of alterna-
tives [10], and strategyproof rules [11]. Recent papers considered more general
questions related to how the distortion is affected by the amount of available
information about the values of the agents [3,27,28]. The normalized distor-
tion has also been investigated in other related problems, such as participatory
budgeting [9], and one-sided matching [2,19].

The metric distortion setting was first considered by Anshelevich et al. [5]
who, among many results, showed a lower bound of 3 for deterministic single-
winner ordinal rules for the social cost, and an upper bound of 5, achieved by
the Copeland rule. Following their work, many papers were devoted to bridging
this gap (e.g., see [25,29]) until, finally, Gkatzelis et al. [22] designed a rule
with distortion at most 3; in fact, this bound holds for the more general fair-
ness ratio [23] (which captures various different objectives, including the social
cost and the maximum cost). Besides the main setting, many other works have
shown bounds on the metric distortion for randomized rules [7,18], rules that
use less than ordinal information [4,17,26], committee elections [16,24], primary
elections [12], and for many other problems [1,8].

Most related to our work are the recent papers of Filos-Ratsikas et al. [20] and
Filos-Ratsikas and Voudouris [21], who initiated the study of the distortion in
distributed normalized and metric social choice settings, respectively. As already
previously discussed, we improve the results of Filos-Ratsikas and Voudouris by
extending them to hold for general metrics and asymmetric districts, and also
show bounds for many other objectives. In our terminology, Filos-Ratsikas and
Voudouris showed a tight bound of 3 for cardinal distributed mechanisms and a
tight distortion of 7 for ordinal mechanisms, when the metric is a line, the dis-
tricts have the same size, and the objective is the social cost (which is equivalent
to our AVG ◦ AVG objective when the districts are symmetric). Interestingly, not
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only do we generalize these results to hold for asymmetric districts and other
objectives, but our composition theorem also provides easier proofs, compared
to the characterizations of worst-case instances used in their paper.

2 Preliminaries

An instance of our problem is defined as a tuple I = (N,A,D, δ), where

– N is a set of n agents.
– A is a set of m alternatives.
– D is a collection of k districts, which define a partition of N (i.e., each agent

belongs to a single district). Let Nd be the set of agents that belong to district
d ∈ D, and denote by nd = |Nd| the size of d.

– δ is a metric space that contains points representing the agents and the alter-
natives. In particular, δ defines a distance δ(i, j) between any i, j ∈ N ∪ A,
such that the triangle inequality is satisfied, i.e., δ(i, j) ≤ δ(i, x) + δ(x, j) for
every i, j, x ∈ N ∪ A.

A distributed mechanism takes as input information about the metric space,
which can be of cardinal or ordinal nature (e.g., agents and alternatives could
specify their exact distances between them, or the linear orderings that are
induced by the distances), and outputs a single winner alternative w ∈ A by
implementing the following two steps:

– Step 1: For every district d ∈ D, the agents therein decide a representative
alternative yd ∈ A.

– Step 2: Given the district representatives, the output is an alternative w ∈ A.

In both steps, the decisions are made by using direct voting rules, which map the
preferences of a given subset of agents to an alternative. To be more specific, in
the first step, an in-district direct voting rule is applied for each district d ∈ D
with input the preferences of the agents in the district (set Nd) to decide its
representative yd ∈ A. Then, in the second step, the district representatives can
be thought of as pseudo-agents, and an over-districts direct voting rule is applied
with input their preferences to decide the final winner w ∈ A. In the special case
of instances consisting of a single district, the process is not distributed, and
thus the two steps collapse into one: The final winner is the alternative chosen
to be the district’s representative.

2.1 Objectives

We consider standard minimization objectives that have been studied in the
related literature, and also propose new ones that are appropriate in the con-
text distributed setting. Each objective assigns a value to every alternative as a
cost function composition F ◦ G of an objective function F that is applied over
the districts and an objective function G that is applied within the districts.
Our main four objectives are defined by considering all possible combinations
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of F,G ∈ {AVG, MAX}, where the functions AVG and MAX define an average and
a max over districts or agents within a district, respectively. In particular, we
have:

– (AVG ◦ AVG)(j|I) = 1
k

∑
d∈D

(
1

nd

∑
i∈Nd

δ(i, j)
)

.

– (MAX ◦ MAX)(j|I) = maxd∈D maxi∈Nd
δ(i, j).

– (AVG ◦ MAX)(j|I) = 1
k

∑
d∈D maxi∈Nd

δ(i, j).

– (MAX ◦ AVG)(j|I) = maxd∈D

{
1

nd

∑
i∈Nd

δ(i, j)
}

.

The AVG◦AVG objective is similar to the well-known utilitarian average social cost
objective measuring the average total distance between all agents and alternative
j; actually, AVG◦AVG coincides with the average social cost when the districts are
symmetric (i.e., have the same size), but not in general. The MAX ◦ MAX objective
coincides with the egalitarian max cost measuring the maximum distance from
j among all agents. The new objectives AVG ◦ MAX and MAX ◦ AVG make sense in
the context of distributed voting, and can be thought of as measures of fairness
between districts. For example, minimizing the MAX ◦ AVG objective corresponds
to making sure that the final choice treats each district fairly so that the average
social cost of each district is almost equal to that of any other district. Of course,
besides combinations of AVG and MAX, one can define many more objectives; we
consider such generalizations in Sect. 5.2.

2.2 Distortion of Voting Rules and Distributed Mechanisms

Direct voting rules can be suboptimal, especially when they have limited access
to the metric space (for example, when ordinal information is known about the
preferences of the agents over the alternatives). This inefficiency is typically cap-
tured in the related literature by the notion of distortion, which is the worst-case
ratio between the objective value of the optimal alternative over the objective
value of the alternative chosen by the rules. Formally, given a minimization cost
objective F ∈ {AVG, MAX}, the F -distortion of a voting rule V is

distF (V ) = sup
I=(N,A,δ)

F (V (I)|I)
minj∈A F (j|I)

,

where V (I) denotes the alternative chosen by the voting rule when given as
input the (single-district) instance I consisting of a set of agents N , a set of
alternatives A, and a metric space δ.

The notion of distortion can be naturally extended for the case of distributed
mechanisms. Given a composition objective F ◦ G, the (F ◦ G)-distortion of a
distributed mechanism M is

distF◦G(M) = sup
I=(N,A,D,δ)

(F ◦ G)(M(I)|I)
minj∈A(F ◦ G)(j|I)

,
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where M(I) is the alternative chosen by the mechanism when given as input an
instance I consisting of a set of agents N , a set of alternatives A, a set D of
districts, and a metric space δ. Our goal is to bound the distortion of distributed
mechanisms for the different objectives we consider. To this end, we will either
show how known results from the literature about the distortion of direct voting
rules can be composed to yield distortion bounds for distributed mechanisms,
or design explicit mechanisms with low distortion. Due to lack of space, some
proofs are omitted.

3 Composition Results for General Metric Spaces

In this section we consider general metric spaces, and show how known distortion
bounds for direct voting rules can be composed to yield distortion bounds for
distributed mechanisms that rely on those voting rules. Given an objective F ◦G,
we say that a distributed mechanism is α-in-β-over if it uses an in-district rule
with G-distortion at most α and an over-districts rule with F -distortion at most
β. Our first technical result is an upper bound on the (F ◦ G)-distortion of α-
in-β-over mechanisms, for any F,G ∈ {AVG, MAX}. The proof of the following
theorem also follows from the more general Theorem 12 for objectives that are
compositions of functions satisfying particular properties, such as monotonicity
and subadditivity.

Theorem 1. For any F,G ∈ {AVG, MAX}, the (F ◦ G)-distortion of any α-in-β-
over mechanism is at most α + β + αβ.

Proof. Here, we present a proof only for the AVG ◦ AVG objective; the proof for
the other objectives is similar. Consider an arbitrary α-in-β-over mechanism M
and an arbitrary instance I = (N,A,D, δ). Let w be the alternative that M
outputs as the final winner when given I as input, and denote by o an optimal
alternative. By the definition of M , we have the following two properties:

∀j ∈ A, d ∈ D :
∑

i∈Nd

δ(i, yd) ≤ α
∑

i∈Nd

δ(i, j) (1)

∀j ∈ A :
∑

d∈D

δ(yd, w) ≤ β
∑

d∈D

δ(yd, j) (2)

By the triangle inequality, we have δ(i, w) ≤ δ(yd, w) + δ(i, yd) for any agent
i ∈ N . Using this, we obtain

(AVG ◦ AVG)(w|I) =
1
k

∑

d∈D

(
1
nd

∑

i∈Nd

δ(i, w)

)

≤ 1
k

∑

d∈D

(
1
nd

∑

i∈Nd

δ(yd, w)

)

+
1
k

∑

d∈D

(
1
nd

∑

i∈Nd

δ(i, yd)

)

=
1
k

∑

d∈D

δ(yd, w) +
1
k

∑

d∈D

(
1
nd

∑

i∈Nd

δ(i, yd)

)

.
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By (1) and (2) for j = o, we obtain

(AVG ◦ AVG)(w|I) ≤ β · 1
k

∑

d∈D

δ(yd, o) + α · 1
k

∑

d∈D

(
1
nd

∑

i∈Nd

δ(i, o)

)

= β · 1
k

∑

d∈D

(
1
nd

∑

i∈Nd

δ(yd, o)

)

+ α · (AVG ◦ AVG)(o|I).

By the triangle inequality, we have δ(yd, o) ≤ δ(i, yd) + δ(i, o) for any agent
i ∈ N . Using this and (1) for j = o, we can upper bound the first term of the
last expression above as follows:

β · 1
k

∑

d∈D

(
1
nd

∑

i∈Nd

δ(yd, o)

)

≤ β · 1
k

∑

d∈D

(
1
nd

∑

i∈Nd

δ(i, yd)

)

+ β · 1
k

∑

d∈D

(
1
nd

∑

i∈Nd

δ(i, o)

)

≤ (β + αβ) · 1
k

∑

d∈D

(
1
nd

∑

i∈Nd

δ(i, o)

)

= (β + αβ) · (AVG ◦ AVG)(o|I).

Putting everything together, we obtain the desired bound. �	
By applying Theorem 1 using known distortion results, we can show bounds

on the (F ◦ G)-distortion of distributed mechanisms, for any F,G ∈ {AVG, MAX}.
Specifically, if the whole metric is known (we have access to the exact distances
between agents and alternatives), we can compute the alternative that optimizes
F and G, thus obtaining a 1-in-1-over distributed mechanism.

Corollary 1. For any F,G ∈ {AVG, MAX}, there exists a cardinal distributed
mechanism with (F ◦ G)-distortion at most 3.

If only ordinal information is available about the distances between agents
and alternatives, then we can employ the PluralityMatching rule of Gkatzelis
et al. [22] both within and over the districts. This rule is known to achieve the
best possible distortion of 3 among all ordinal rules, for any F,G ∈ {AVG, MAX}.
In fact, this rule achieves a distortion bound of 2 when all agents are at distance
0 from their top alternative; this is the case when the agents are a subset of the
alternatives as in the second step of a distributed mechanism.2 Hence, we have
a 3-in-2-over mechanism, and Theorem 1 yields the following statement.

Corollary 2. For any F,G ∈ {AVG, MAX}, there exists an ordinal distributed
mechanism with (F ◦ G)-distortion at most 11.

2 See Theorem 1 and Proposition 6 in the arxiv version of [22].
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Corollaries 1 and 2 demonstrate the power of Theorem 1. However, this
method does not always lead to the best possible distributed mechanisms. In
particular, let us consider the objectives MAX ◦ G, for G ∈ {AVG, MAX}, and the
class of ordinal mechanisms. We can improve upon the bound of 11 implied by
Corollary 2 using a much simpler class of ordinal mechanisms. A distributed
mechanism is α-in-arbitrary-over if it chooses the district representatives using
an ordinal in-district rule with G-distortion at most α, and then outputs an
arbitrary representative as the final winner.

Theorem 2. For any G ∈ {AVG, MAX}, the (MAX ◦ G)-distortion of any α-in-
arbitrary-over mechanism is at most 2 + α.

Using again the rule of Gkatzelis et al. [22] as an in-district rule, we obtain
a 3-in-arbitrary-over mechanism, and Theorem 2 implies the following result.

Corollary 3. For any G ∈ {AVG, MAX}, there exists an ordinal distributed mech-
anism with (MAX ◦ G)-distortion at most 5.

4 Improved Results on the Line Metric

We now focus on the line metric, where agents and alternatives are points on the
line of real numbers. Exploiting this structure, there are classes of mechanisms
for which we can obtain significantly improved bounds compared to those implied
by the general composition Theorem 1, as well as Theorem 2.

4.1 Ordinal Mechanisms

We start with ordinal distributed mechanisms and the two objectives AVG ◦ G
for G ∈ {AVG, MAX}. Recall that Corollary 2 implies a distortion bound of 11 for
these objectives. However, when the metric is a line, we can do much better by
observing that there is an ordinal over-districts voting rule with AVG-distortion
of 1. In particular, we can identify the median district representative and choose
it as the final winner. Using the rule of Gkatzelis et al. [22] as the in-district
voting rule, we obtain a distributed 3-in-1-over mechanism with distortion at
most 7 due to Theorem 1.

Corollary 4. When the metric is a line, there exists an ordinal distributed
mechanism with (AVG ◦ G)-distortion at most 7, for any G ∈ {AVG, MAX}.

Corollary 4 recovers the tight distortion bound of 7 by Filos-Ratsikas and
Voudouris [21] for AVG ◦ AVG when the districts are symmetric, and also extends
it to the case of asymmetric districts. For AVG ◦ MAX, this bound of 7 is a first
improvement, but we can do even better with the following Arbitrary-Median
mechanism:

1. For every district d ∈ D, choose its representative to be the favorite alterna-
tive of an arbitrary agent jd ∈ Nd.
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2. Output the median representative as the final winner.

Theorem 3. When the metric is a line, Arbitrary-Median has (AVG ◦ MAX)-
distortion at most 5.

Next, we show an almost matching lower bound of approximately 4.23. Before
going through with the proof, we argue that ordinal distributed mechanisms
with finite distortion must be unanimous. Formally, a distributed mechanism is
unanimous if it chooses the representative of a district d to be an alternative a
whenever all agents in Nd prefer a over all other alternatives.

Lemma 1. For any F,G ∈ {AVG, MAX}, every ordinal distributed mechanism
with finite (F ◦ G)-distortion must be unanimous.

We are now ready to present the ordinal lower bound for AVG ◦ MAX.

Theorem 4. The (AVG ◦ MAX)-distortion of any ordinal distributed mechanism
is at least 2 +

√
5 − ε, for any ε > 0, even when the metric is a line.

Proof. Suppose towards a contradiction that there is an ordinal distributed
mechanism M with distortion strictly smaller than 2+

√
5−ε, for any ε > 0. We

will define instances with two alternatives a and b (located at 0 and 1, respec-
tively), and districts consisting of the same size. Without loss of generality, we
assume that M chooses alternative a as the final winner when given as input any
instance with only two districts, such that both alternatives are representative
of some district. Let x and y be two integers such that φ > y/x ≥ φ−ε/2, where
φ = (1 +

√
5)/2 is the golden ratio.

First, consider an instance I1 consisting of the following two districts:

– The first district consists of two agents, such that one of them prefers alter-
native a and the other prefers alternative b.

– The second district consists of two agents, such that both of them prefer
alternative b. Due to unanimity (Lemma 1), the representative of this district
must be b.

Suppose that M chooses a as the representative of the first district, in which
case both alternatives are representative of some district, and thus M chooses a
as the final winner. Consider the following metric:

– In the first district, the agent that prefers alternative a is positioned at 1/2,
whereas the agent that prefers alternative b is positioned at 3/2.

– In the second district, both agents are positioned at 1.

Then, we have that (AVG ◦ MAX)(a|I1) = 1
2

(
3
2 + 1

)
= 5/4 and (AVG ◦ MAX)(b|I1) =

1
2

(
1
2 + 0

)
= 1/4, leading to a distortion of 5. Consequently, M must choose b as

the representative of the first district (where one agent prefers a and one prefers
b).

Next, we argue that for instances with x + y districts such that a is the
representative of x districts and b is the representative of y districts, M must
choose b as the final winner. Assume otherwise that M chooses a in such a
situation, and consider an instance I2 consisting of the following x + y districts:
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– Each of the first x districts consists of a single agent that is positioned at 1/2
and prefers alternative a; thus, a is the representative of all these districts.

– Each of the next y districts consists of a single agent that is positioned at 1
and prefers alternative b; thus, b is the representative of all these districts.

Since (AVG ◦ MAX)(a|I2) = 1
x+y

(
x
2 + y

)
= 1

x+y · x+2y
2 and (AVG ◦ MAX)(b|I2) =

1
x+y

(
x
2 + 0

)
= 1

x+y · x
2 , the distortion is x+2y

x = 1+2 y
x ≥ 1+2φ−ε = 2+

√
5−ε.

Consequently, M must choose b, whenever there are x + y districts such that a
is the representative of x districts and b is the representative of the remaining y
districts.

Finally, consider an instance I3 with the following x + y districts:

– Each of the first x districts consists of two agents that are positioned at 0
and prefer alternative a. Due to unanimity, a must be the representative of
all these districts.

– Each of the next y districts consists of two agents, such that one of them is
positioned at −1/2 and prefers alternative a, while the other is positioned at
1/2 and prefers alternative b. By the discussion above (about instance I1), b
must be the representative of these districts.

As a is the representative of x districts and b is the representative of y districts, by
the discussion above (about instance I2), M chooses b as the final winner. Since
(AVG◦MAX)(a|I3) = 1

x+y

(
0 + y

2

)
= 1

x+y · y
2 and (AVG◦MAX)(b|I3) = 1

x+y

(
x + 3y

2

)
=

1
x+y · 2x+3y

2 , the distortion is 2x+3y
y = 3 + 2x

y > 3 + 2
φ = 1 + 2φ = 2 +

√
5. This

contradicts our assumption that M has distortion smaller than 2 +
√

5 − ε. �	
Next, we consider the two objectives MAX ◦G for G ∈ {AVG, MAX}. For both of

them, Corollary 3 implies a distortion bound of at most 5. When G = MAX and
the metric is a line, we can get an improved bound of 3 using a rather simple
Arbitrary-Dictator mechanism:

1. For each district d ∈ D, choose its representative to be the favorite alternative
of an arbitrary agent in Nd.

2. Output an arbitrary district representative as the final winner.

Theorem 5. When the metric is a line, Arbitrary-Dictator has (MAX◦MAX)-
distortion at most 3.

The following theorem shows that the bound of 3 is the best possible we
can hope for the MAX ◦ MAX objective using a unanimous distributed mechanism,
even when the metric is a line. This lower bound directly extends to ordinal
mechanisms, as any such mechanism with finite distortion has to be unanimous
(Lemma 1).

Theorem 6. The (MAX ◦ MAX)-distortion of any unanimous distributed mecha-
nism is at least 3, even when the metric is a line.
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Finally, let us focus on the objective MAX ◦ AVG, for which we show a lower
bound of approximately 4.23 on the distortion of all ordinal distributed mecha-
nisms, thus almost matching the upper bound of 5 implied by Corollary 3.

Theorem 7. The (MAX ◦ AVG)-distortion of any ordinal distributed mechanism
is at least 2 +

√
5 − ε, for any ε > 0, even when the metric is a line.

4.2 Cardinal Mechanisms

We now turn out attention to distributed mechanisms that have access to the dis-
tances between agents and alternatives. Recall that for such mechanisms, Corol-
lary 1 implies a distortion bound of 3 for all the objectives we have considered so
far. As in the case of ordinal mechanisms, when the metric is a line, Filos-Ratsikas
and Voudouris [21] showed a matching lower bound of 3 for AVG ◦ AVG (when the
districts are symmetric), which extends for AVG ◦ MAX as the construction also
works for instances with single-agent districts, in which case MAX = AVG.

For objectives of the form MAX ◦ G, we design a novel distributed mechanism
that is tailor-made for the line metric and achieves distortion at most 1 +

√
2 ≤

2.42. This mechanism is particularly interesting as it is not unanimous: Even
when all agents in a district prefer an alternative a to everyone else (i.e., a is the
closest alternative to all agents), the mechanism may end up choosing a different
representative. In fact, by Theorem 6, we have that any unanimous mechanism
cannot achieve a (MAX◦G)-distortion better than 3, and so to break this barrier,
our mechanism has to be non-unanimous.

For a given λ ≥ 1, we say that an alternative is λ-acceptable for a district
d ∈ D if her G-value for the agents in Nd is at most λ times the G-value of any
other alternative for the agents in Nd. Given an objective G, we define a class
of distributed mechanisms parameterized by λ that work as follows:

– For each district d, choose its representative to be the rightmost λ-acceptable
alternative for the district.

– Output the leftmost district representative as the final winner.

We refer to this class of mechanisms as λ-Acceptable-Rightmost-Leftmost
(or λ-ARL, for short).

Theorem 8. For any G ∈ {AVG, MAX}, the (MAX◦G)-distortion of (1+
√

2)-ARL
is at most 1 +

√
2.

We conclude this section by presenting a lower bound of 1 +
√

2 on the
(MAX◦G)-distortion of distributed mechanisms, which holds even when the metric
is a line, thus showing that (1 +

√
2)-ARL is the best possible on the line.

Theorem 9. For any G ∈ {AVG, MAX}, the (MAX◦G)-distortion of any distributed
mechanism is at least 1 +

√
2, even when the metric is a line.
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5 Extensions and Generalizations

5.1 Mechanisms that Select from the Set of Representatives

In the previous sections we looked at distributed mechanisms, which can choose
any alternative as the final winner by essentially considering the district repre-
sentatives as proxies. We now focus on the case where the final winner can only
be chosen from among the district representatives (as in the work of [21]). To
make the distinction between general mechanisms and those that select from the
pool of district representatives clear, we will use the term representative-selecting
to refer to the latter.

It is not hard to see that, with the exception of the bounds implied by The-
orem 1 and its corollaries for general metric spaces, the rest of our results follow
by representative-selecting mechanisms. In particular, every α-in-arbitrary-over
mechanism, as well as Arbitrary-Dictator, choose some arbitrary represen-
tative; the 1-in-1-over cardinal mechanism and the 3-in-1-over ordinal mecha-
nism for AVG ◦ G in the line metric, as well as Arbitrary-Median, choose the
median representative; every λ-ARL mechanism chooses the leftmost represen-
tative (Theorem 8). It is also not hard to see that all our lower bounds also
extend for the class of representative-selecting mechanisms: some representative
is always chosen as the final winner in all instances used in the constructions.
Based on all of the above discussion, we have the following corollary, which
collects the best distortion bounds for the different objectives we consider.

Theorem 10. We can form ordinal representative-selecting mechanisms with
distortion at most 5 for MAX ◦ G and general metric spaces. When the metric
space is a line, the worst-case distortion of ordinal mechanisms is exactly 7 for
AVG ◦ AVG, between 2 +

√
5 and 5 for AVG ◦ MAX, exactly 3 for MAX ◦ MAX, and at

least 2 +
√

5 for MAX ◦ AVG. When the metric is a line, the distortion of cardinal
representative-selecting mechanisms is exactly 3 for AVG ◦ G, and exactly 1 +

√
2

for MAX ◦ G.

Now, let us see how choosing only from the district representatives affects
the bounds implied by Theorem 1 for general metric spaces. For clarity, we
focus on objectives of the form AVG ◦ G; our discussion can easily be adapted for
objectives of the form MAX ◦ G. Let M be a representative-selecting mechanism
that uses some in-district and over-districts direct voting rules. Given an instance
I = (N,M,D, δ), let R = RM (I) be the set of district representatives chosen by
M , and denote by w = M(I) ∈ R the final winner. Clearly, Theorem 1 would
hold without any modifications if, for any instance I, w satisfies inequality (2)
in the proof of the theorem. However, the distortion guarantees of direct voting
rules used by M in and over the districts are usually only with respect to the
set of alternatives from which they are allowed to choose. So, if M uses an over-
districts rule that has AVG-distortion at most γ, we have that, for any instance
I, w is such that

∀j ∈ R :
∑

i∈R

δ(i, w) ≤ γ ·
∑

i∈R

δ(i, j). (3)
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Inequality (3) cannot directly substitute inequality (2) in the proof of Theorem 1
as it may be the case that the optimal alternative is not included in the set of
representatives. So, we need to understand the relation between β and γ.

Lemma 2. For any mechanism M , it holds that β ≤ 2γ.

Due to Lemma 2, Theorem 1 implies the following distortion bounds for
general metric spaces and α-in-γ-over representative-selecting mechanisms.

Theorem 11. For general metric spaces and any F,G ∈ {AVG, MAX}, the (F ◦
G)-distortion of any α-in-γ-over representative-selecting mechanism is at most
α + 2γ + 2αγ.

Using appropriate rules in and over the districts, we can now again obtain
concrete upper bounds on the distortion of cardinal and ordinal representative-
selecting mechanisms.

Corollary 5. For general metric spaces and any F,G ∈ {AVG, MAX}, there is a
representative-selecting mechanism with (F ◦ G)-distortion at most 5, and an
ordinal representative-selecting mechanism with (F ◦ G)-distortion at most 19.

5.2 More General Objectives

We now consider again mechanisms that can choose the final winner from the
set of all alternatives, and discuss how some of our results can be extended for
objectives F ◦ G beyond the cases where F,G ∈ {AVG, MAX}.

Generalizing Theorem 1. We previously showed in Theorem 1 that the (F◦G)-
distortion of distributed mechanisms can be bounded in terms of the F - and
G-distortion of the voting rules used in and over the districts. Here, we show
that this theorem still holds for a much more general class of functions. To define
this properly, we should think of F and G as functions that take as input vectors
of distances. More precisely, given an instance I = (N,A,D, δ), let f and g be
functions so that the cost of any alternative j ∈ A is

(F ◦ G)(j|I) = f

(

g
(
	δ1(j)

)
, . . . , g

(
	δk(j)

))

,

where 	δd(j) is the vector consisting of the distances δ(i, j) between every agent
i ∈ Nd and alternative j. To give a few examples, g

(
	δd(j)

)
= 1

nd

∑
i∈Nd

δ(i, j)

if G = AVG, and g
(
	δd(j)

)
= maxi∈Nd

δ(i, j) if G = MAX. More generally, we
consider functions f and g which satisfy the following properties:

– Monotonicity: A function f is monotone if f(	v) ≤ f(	u), for any two vectors
	v and 	u such that v� ≤ u� for every index 
.
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– Subadditivity: A function f is subadditive if f(	v + 	u) ≤ f(	v) + f(	u), for
any two vectors 	v and 	u. Moreover, for any scalar c ≥ 1, it must be that
f(c · 	v) ≤ c · f(	v).3

– Consistency: A function f is consistent if f(	v) = c, for any vector 	v such
that v� = c for every index 
.

Note that both AVG and MAX, as well as many other functions, obey all of the
above properties.

Theorem 12. The distortion of any α-in-β-over mechanism is at most α+β +
αβ, for any objective F ◦ G defined by functions f and g which are monotone,
subadditive, and consistent.

Generalizing Theorem 8. When the metric space is a line, Theorem 8 holds
for more general objectives of the form MAX ◦ G. In particular, we are aiming to
minimize the maximum cost of any district, which for an alternative j ∈ A is
given by a function g

(
	δd(j)

)
. We again assume that g is monotone, subadditive,

and consistent. In addition, we require that g is single-peaked: for any district d,
there is a there is a unique alternative j that minimizes g

(
	δd(j)

)
, and g increases

monotonically as we move from the location of j (to the left or the right).
As in Sect. 4.2, the upper bound on the distortion is due to the λ-ARL

mechanism (for a specific value of λ), which chooses the representative of each
district to be the rightmost λ-acceptable alternative for the district, and then
outputs the leftmost representative as the final winner. Recall that the set of
λ-acceptable alternatives for a district d contains all the alternatives x such that
g
(
	δd(x)

)
≤ λ · minj∈A g

(
	δd(j)

)
.

Theorem 13. The distortion of (1+
√

2)-ARL is at most 1+
√

2 for any objec-
tive of the form MAX ◦ G, where G is defined by a monotone, subadditive, consis-
tent, and single-peaked function g.

6 Open Problems

In this paper, we showed bounds on the distortion of single-winner distributed
mechanisms for many different objectives, some of which are novel and make
sense only in this particular setting. Still, there are several challenging open
questions, as well as new directions for future research. Starting with our results,
it would be interesting to close the gaps between the lower and upper bounds
presented in Table 1 for the various scenarios we considered. For cases where our
bounds for general metrics and the line differ significantly, such as for ordinal

3 The latter condition, sometimes known as sub-homogeneity, is not usually included
in the standard definition of subadditive functions. It is easily implied by the first
subadditivity condition when c is an integer.
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mechanisms and the AVG◦MAX objective, one could focus on other well-structured
metrics, like the Euclidean space or generalizations of it.

Since we focused exclusively on deterministic mechanisms, a possible direc-
tion could be to consider randomized mechanisms and investigate whether better
distortion bounds are possible. Note that our composition theorem (Theorem 1
and its variants) already provide randomized bounds by plugging in appropri-
ate randomized in-district and over-districts direct voting rules. However, these
bounds seem extremely loose, and different techniques are required to obtain
tight bounds. Going beyond the single-winner setting, one could study the dis-
tortion of distributed mechanisms that output committees of a given number
of alternatives, or rankings of all alternatives. Finally, another interesting direc-
tion would be to study what happens when agents act strategically, and either
understand how this behavior affects given distributed mechanisms, or aim to
design strategyproof mechanisms that are resilient to manipulation and at the
same time achieve low distortion.
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Abstract. Propagating information to more people through their
friends is becoming an increasingly important technology used in
domains such as blockchain, advertising, and social media. To incentivize
people to broadcast the information, the designer may use a monetary
rewarding scheme, which specifies who gets how much, to compensate
for the propagation. Several properties are desirable for the rewarding
scheme, such as budget feasible, individually rational, incentive compat-
ible and Sybil-proof. In this work, we design a free market with lotteries,
where every participant can decide by herself how much of the reward she
wants to withhold before propagating to others. We show that in the free
market, the participants have a strong incentive to maximally propagate
the information and all the above properties are satisfied automatically.

Keywords: Information propagation · Nash equilibrium · Free market
design

1 Introduction

Propagating information to more people through their friends is becoming an
increasingly important technique used in many fields including advertising, social
media [13] and blockchain [3,15]. To incentivize people to broadcast the informa-
tion, the information holder, i.e., the mechanism designer, may use a monetary
rewarding scheme r = (r1, · · · , rn) to compensate people, where ri is the reward
assigned to player i. The rewarding scheme is expected to satisfy several prop-
erties, such as being incentive compatible, (strongly) budget feasible, individual
rational, and Sybil-proof. Informally, incentive compatibility requires that each
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player does not decrease her utility by propagating the information, budget
feasibility requires

∑
i ri ≤ B when the mechanism designer has a budget of

B, strong budget feasibility requires
∑

i ri = B, individual rationality requires
ri ≥ 0 for all i, and Sybil-proofness requires the players do not benefit by mak-
ing fake copies in the information propagation process. Accordingly, designing
a rewarding scheme to satisfy all or some of the above properties establishes
a large research agenda. For example, maximal information propagation with
budgets is studied in [27], where a rewarding scheme that is incentive compati-
ble, strongly budget feasible and individual rational is proposed. But the scheme
is not Sybil-proof. A Sybil-proof rewarding scheme is designed in [6], but it is
not strongly budget feasible, where a small portion of the claimed reward is
distributed among the players. In this work, instead of designing a centralized
rewarding scheme, we propose a free market with lotteries where everyone can
decide how much of the reward she wants to withhold before propagating to oth-
ers. We show that in such a market, the players have strong incentives to fully
propagate the information and all above properties are satisfied automatically.

To illustrate our design, let us first consider a toy game. Initially, a seller
sends her promotion information to a small number of players she is able to
reach, denoted by N and n = |N | who are called aware players. The information
is associated with a lottery such that one winner among aware players will be
uniformly and randomly selected to get a reward normalized to $1. When nobody
propagates the information, everyone’s expected reward is 1/n. For player i ∈ N ,
she has a set of friends Fi such that fi = |Fi| ≥ 1 and N ∩ Fi = ∅. If i signs
an agreement with Fi such that if anyone in Fi is selected to be the winner, the
reward is given i, then by propagating the information to Fi, player i’s reward,
which equals to the probability that the winner is selected from Fi ∪ {i}, is

1 + fi
n + fi

>
1
n

. (1)

That is i can increase her reward by propagating the information to her friends,
and thus no propagation for N is not a Nash equilibrium. Actually, since Inequal-
ity 1 holds for any n ≥ 2, everyone’s dominate strategy is to propagate the
formation to their friends. But to what extent will they propagate?

Assuming all players in N except i inform the information to their friends and
withhold the complete reward, let us see what i will do. If i does not withhold
the complete reward but shares a small amount, say 0 < c < 1, with Fi, i
can again improve her utility. For j ∈ Fi, let Fj be j’s friends who are not in
the game. Supposing all j ∈ Fj adopts the same strategy with N \ {i}, i.e.,
fully propagating the information to their friends and withholding the complete
reward c, we compare two cases for player i: (1) i does not leave any reward to
j, and (2) i leaves c to j. To ease the notation, suppose there are n′ players who
are in the game except j’s friends Fj for every j ∈ Fi. It is not hard to see that
for case (1), player i’s reward is (1 + fi)/n′ and for case (2), her reward is

1 + (1 − c) ·
∑

j∈Fi
fj

∑
j∈Fi

fj + n′ >
1 + fi

n′ ,
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as long as for all j ∈ Fi,

fj >
n + 1

n(1 − c) − 1
→ 1 if c → 0.

Thus we conclude that withholding the complete reward from propagation is not
a Nash equilibrium, and every player wants to leave partial reward to her friends
for incentivizing them to further propagate the information.

We note that the initial n aware players are in the Prisoner’s dilemma. If
they do not propagate the information, each of them has expected utility of 1/n.
However, it is dominant for each of them to refer their friends by sacrificing
partial reward, resulting the expected utility strictly smaller than 1/n. This
dilemma actually motivates the information propagation in the free market.

A more practical example for the above scenario is the mining game of Bit-
coin [24]. In Bitcoin, when a user makes a transaction (the information sender),
she wants the transaction to be broadcasted (with other necessary information
such as account information, transfer amount, crypto signature and etc.) in the
network so that the miners can authorize the validity of the transaction and
assemble newly verified transactions into blocks. The miners compete to pro-
pose their blocks to the public chain by solving a computationally hard puzzle,
and the winning probability is proportional to the share of each miner’s compu-
tation power in the system. Accordingly, the transaction maker can reward the
winning miner who authorizes her transaction a fixed amount of Bitcoins. At
first glance, it seems that the miners may not want to broadcast the transaction
since only the miners who know the transaction can be rewarded. A centralized
rewarding scheme is proposed in [3] which not only rewards the winner but also
other miners who helped broadcast the transaction. By carefully designing who
gets much, their scheme is Sybil-proof in tree networks. However, as we will show
in this work, the design of free market with lotteries automatically incentivizes
the miners to propagate the transaction and satisfies all other desired properties
as well. Thus the take-home message of this work is that

the mechanism designer does not need to specify each player’s reward, the
market itself already provides incentives for maximal propagation.

1.1 Our Contribution

We model the problem, and the Bitcoin example, as an information propagation
game in a free market, where a sender has a single piece of information to
be broadcasted. For simplicity, we first assume the players are connected by a
complete d-ary tree with d ≥ 3, and all players’ winning probabilities are the
same. If there is an edge between two players, they are friends and one can be
informed the information by the other. A strategy profile is called full propagation
if every player withholds a minimum charge and leaves the remaining reward to
all her friends, so that a maximum number of people could be aware of the
information. We show that full propagation forms a Nash equilibrium which
satisfies extra properties and thus is more stable than an arbitrary one.
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First, full propagation is robust to collective deviations of friends, i.e., con-
nected coalition-proof [4]. In the seminal work by Myerson [23], the communi-
cation game is proposed where the network on players represents the possible
communication between them. Originally, it is associated with cooperative games
and only coalitions formed by players who can communicate with each other (i.e.,
connected subgraphs in the network) are concerned. We adapt this principle to
our problem and show that any deviation of a connected coalition of players
from full propagation makes at least one of them worse off.

Second, full propagation survives in any order of iterative elimination of dom-
inated strategies, and uniquely survives in a particular one. This result coincides
with and generalizes the result of [3], where a centralized rewarding scheme is
designed. In a centralized rewarding scheme, a player can only misbehave by
withholding the information and claiming Sybil copies, while in a free market a
player can arbitrarily claim how much of the reward she wants to deduct before
propagating to others. We formally discuss the difference between our work and
[3] at the end of Sect. 3. Recall that strategy s (weakly) dominating s′, denoted
by s 	 s′, means choosing s always gives at least as good an outcome as choos-
ing s′, no matter what the other players do, and there is at least one profile of
opponents’ actions for which s gives a strictly better outcome than s′. We prove
that full propagation is the unique strategy profile that survives in an interval-
based monotone elimination of dominated strategies, coinciding with the players’
reasoning process as illustrated in the introduction.

Our main results can be summarized as follows.

Main Result 1. (Theorems 1 and 2) In the tree-structured free market with
lotteries, full propagation achieves maximal propagation and satisfies the follow-
ing:

1. Full propagation is a Nash equilibrium;
2. Any deviation of a coalition of friends hurts at least one of them;
3. Full propagation survives in any order of iterative elimination of dominated

strategies;
4. There is an order of iterative elimination of dominated strategies such that

full propagation is the unique surviving strategy.

We then extend the above results to non-tree networks. For arbitrary net-
works, we introduce stronger relationships than friends, good friends and best
friends, using shortest paths from the information sender to players. Although
properties 3 and 4 in Main Result 1 do not hold, we show that if every player has
at least three good friends, full propagation is a Nash equilibrium that is also
connected coalition-proof on the induced good-friendship subgraph. It is noted
that d-ary tree with d ≥ 3 is a special case satisfying this condition.

Main Result 2. (Theorem 3) If every player has at least 3 good friends, then
full propagation is a Nash equilibrium that is connected coalition-proof on the
good-friendship subgraph.

In conclusion, if the network is well structured, the free market with lot-
teries is incentive compatible where players are willing to fully propagate the
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information. It is not hard to check that our scheme also satisfies other proper-
ties mentioned in the introduction. It is strongly budget feasible and individual
rational, as the full reward will be given to the players and none of them needs
to pay. Our scheme is also Sybil-proof, as in our game, the players are required
to provide certificates on how many people they have referred to. For example,
in Bitcoin each miner needs to contribute their computing power on authoriz-
ing the transaction. Therefore, as everyone in our game can arbitrarily decide
how much reward she wants to withhold by informing her friends, making Sybil
identities is the same as withholding a higher fraction of the reward.

Finally, it is an interesting future direction to generalize our results to random
networks. We believe full propagation brings players high utility in a broader
class of networks. To shed more light in this direction, we conduct experiments
in Sect. 5 for our scheme under general random networks. In all experiments,
full propagation brings a player the maximum utility. Moreover, the utility gap
between full propagation and other strategies is actually large.

1.2 Related Works

Our work is partially motivated by the extensive study of incentivizing relays in
a blockchain network to propagate transactions. While this has been studied in
the literature, most of them focus on centralized algorithms where each relay’s
reward is fixed and decided by the algorithm. With these algorithms, to gain
higher utility, a strategic relay may claim fake copies, i.e., Sybil attack [12].
Accordingly, in works such as [3,16], Sybil-proof algorithms are studied. Since
in our free market each relay is able to arbitrarily decide how much reward she
is willing to withhold, it is superfluous for them to make fake copies, and thus,
our results directly imply Sybil-proofness. The free market ideas have also been
discussed independently in [1] and [7] without a systematic analysis.

Our work also aligns with the fundamental study of what the optimal way is
to reward miners for their work on authorizing transactions. Currently, the most
popular rewarding scheme, as adopted by Bitcoin, is to reward miners propor-
tionally to their share of the total contributed computational power. As shown
in [10], the proportional allocation rule is the unique rule that is simultaneously
non-negative, budget-balanced, symmetric, Sybil-proof, and collusion-proof. In
reality, however, to earn steady rewards, miners pool themselves together, and
the pools are vulnerable to security attacks, such as selfish mining attack
[11,17,19,21], block withholding attack [25,26], and denial of service attack [18].
Cooperative games are used in [22] to show that under high transaction loads,
it is hard for managers to distribute rewards in a stable way.

Outside the scope of blockchain, information propagation has also been stud-
ied in multi-level marketing [13,14] and query incentive networks [2,5,6,9,20].
There are major differences between the transaction propagation in a blockchain
network and the query retrieval in peer-to-peer network. The players in a query
incentive network do not compete with the ones who forwarded the message
to them, and cannot generate an answer that they do not have. Whereas in a
blockchain network, every aware player is a potential authorizer with probability
proportional to their stakes or computational powers.
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2 Game Theoretic Model and Preliminaries

For technical simplicity, we first assume all players are connected by a tree
G = (V,E). Let s be the root of G who is the sender of the information. Note that
s is not a player in our game. Suppose s has f children and thus excluding s from
G, there are f subtrees denoted by {T1, · · · , Tf}. When there is no confusion, we
also use each Ti to denote the set of nodes in it. Assume all these subtrees are
complete d-ary and f ≥ d ≥ 3. Call N = V \{s} the set of players and denote by
n = |N |. To make the players distinguishable from the sender, we stop calling s
the root and only call her sender. Instead, we call the roots of these subtrees roots
on depth 0, who are the initial players of the game, as shown in the following
figure. In a similar fashion, the children of these subtree roots are viewed to be
on depth 1 and so on. For each node i ∈ V , let NBi be the set of her children
in G, and thus NBs contains all initial players (Fig. 1).

Fig. 1. An illustration of the tree structure.

We next define the propagation game Γ = (N,S,u) on G. Without loss
of generality, we assume the initial reward set by the sender is 1. Denote by
Si the strategy space of each player i ∈ N . Let S = S1 × · · · × Sn be the
strategy profiles. Any strategy si ∈ Si is a mapping from R

+ to (R+∪{⊥})|NBi|,
where R

+ = [0,+∞). That is, upon receiving the information with remaining
reward xi, player i decides how much reward si(xi)j to leave to her child j
by sending the information to j or not to inform j if si(xi)j = ⊥. Denote by
si(xi) = (si(xi)1, · · · , si(xi)|NBi|). A feasible strategy is that for all j ∈ NBi,
if xi ≥ xmin, 0 ≤ si(xi)j ≤ xi − xmin or si(xi)j = ⊥; otherwise, si(xi)j ≡ ⊥.
Here xmin > 0 is a sufficiently small number prefixed by the system. Denote by
s = s1 × · · · × sn a strategy profile. For any strategy profile s ∈ S and an initial
reward, there is a fixed set of players who can be informed the information,
called aware players and denoted by N∗(s). When s is clear in the context,
we simply write N∗. To avoid cumbersome calculations, all aware players will
get the reward with equal probability of 1

|N∗| , and the winner needs to share the
reward with her ancestors from her to the sender as committed. Thus, a player i’s
(expected) utility consists of two parts: authorizing utility and referring utility,

ui(s;xi) = xi · 1
|N∗| +

∑

j∈NBi,si(xi)j �=⊥
(xi − si(xi)j) · nij

|N∗| ,
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where nij is the number of aware players following j and including j.
Next we formulate the intuition in Inequality 1 by the following lemma, which

shows it is always (strictly) better for a player to propagate the information.

Lemma 1. For any player i, let s−i be −i’s strategy profile such that the remain-
ing reward xi to i is at least xmin. Let si(xi) = (z1, · · · , zj , · · · , z|NBi|) be a
strategy with zj = ⊥ for some j and s′

i(xi) = (z1, · · · , z′
j , · · · , z|NBi|) be a new

strategy by changing j’s action from ⊥ to 0. Then ui(si, s−i) < ui(s′
i, s−i).

We prove Lemma 1 in the full version [8]. By Lemma 1, every aware player
does not get hurt by propagating the information to all her neighbours, and
thus in what follows, we assume without loss of generality si(xi)j ≥ 0 for any
xi ≥ xmin and j ∈ NBi. Moreover, in the following sections, we will see that the
aware players actually want to maximally propagate the information. A feasible
strategy si is called full propagation (FP for short) if si(xi)j = (k−1)xmin for all
j and kxmin ≤ xi < (k + 1)xmin with k ≥ 1. That is in an FP strategy, a player
wants to inform all her neighbours by leaving the maximal reward to them. A
feasible strategy profile s = (si)i∈N is called FP if every si is FP. Denote by
s∗ = (s∗

i )i∈N the FP strategy profile.

3 Main Results

To ease formulas, we define the following notations. For each subtree T , let

G(k) =
k∑

j=1

dj−1 =
dk − 1
d − 1

be the number of nodes from depth 0 to depth k − 1. Note that when d ≥ 3 and
k ≥ 1, G(k) ≥ 2k − 1. Moreover, for any k ≥ 1,

(f − 1)G(k + 1) ≥ dk+1 − 1 > d(dk − 1) ≥ d + 1
d − 1

(dk − 1)

= (d + 1)G(k) ≥ dG(k) + 2k − 1. (2)

Denote by H · xmin = 1 the sender’s initial reward, where H > 1 is an integer.
Then H is the maximal depth that the information can reach. For any player i
in depth j ≥ 0, no matter what i’s previous players do, i is not able to receive
the information with remaining reward more than (H − j) ·xmin since each of i’s
ancestors needs to withhold at least xmin. Moreover, all the users in and below
depth H are not considered as strategic players. Finally, under FP strategies,
the number of aware players is f · G(H + 1).

3.1 Technical Lemmas

We next introduce two technical lemmas which are crucial to prove the main
results. For a subtree T , let π0(T ) be the number of players outside of T who are
aware of the information. If T is clear from the context, we write π0 for short.
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Lemma 2. Consider the sub-game induced on a single subtree T , where r is the
root player and g is one of r’s descendants. Assume r receives the information
with reward xr and k · xmin ≤ xr < (k + 1) · xmin for some k ≥ 1. If d ≥ 3 and
π0 ≥ d · G(k) + 2k − 1, r’s utility is maximized when g plays FP strategy, taking
the actions of the others as given.

Proof. Note that if xr < 2xmin or the information cannot reach g, r’s utility does
not depend on g’s action, thus the statement is trivially true. In the following
we assume xr ≥ 2xmin.

Taking the actions of the players (including r) except g as given, let Δj be
the total number of r’s referred players from r’s child j and Δ =

∑
j∈NBr

Δj .
Let g′ be g’s ancestor who is r’s direct child or g′ = g when g is r’s child. Thus g’s
strategy can only change Δg′ , which is the single variable of r’s utility. Formally,
r’s utility can be written as (assuming π0 includes r to simplify notions)

ur(Δg′) = xr
1

π0 + Δ
+

∑

j∈NBr

(xr − sr(xr)j)
Δj

π0 + Δ

=
xr +

∑
j∈NBr

(xr − sr(xr)j)Δj

π0 + Δ
.

Calculating the derivative of ur(Δg′), we have

u′
r(Δg′) =

(xr − sr(xr)g′)(π0 + Δ) − (xr +
∑

j∈NBr
(xr − sr(xr)j)Δj)

(π0 + Δ)2

=
(xr − sr(xr)g′)π0 − xr −

∑
j �=g′(sr(xr)g′ − sr(xr)j)Δj

(π0 + Δ)2

≥
xminπ0 − xr −

∑
j �=g′(xr − sr(xr)j)Δj

(π0 + Δ)2
,

where the inequality is because sr(xr)j ≤ xr − xmin for any j. Let

fj(yj) = (k + 1 − yj)G(yj�) = (k + 1 − yj)
d�yj	 − 1

d − 1

≤ (k + 1 − yj)
dyj − 1
d − 1

.

Claim 1. For d ≥ 3 and 0 ≤ yj < k, f̄j(yj) = (k + 1 − yj) · dyj −1
d−1 monotone

increases with respect to yj .

To prove the above claim, it suffices to calculate the derivative of f̄j(yj), and we
omit the details. By Claim 1, fj(yj) ≤ f̄j(yj) ≤ G(k) for any 0 ≤ yj < k. Thus,

u′
r(Δg′) ≥

xminπ0 − xr −
∑

j �=g′(xr − sr(xr)j)Δj

(π0 + Δ)2

≥ xminπ0 − xr − G(k)(d − 1)xmin

(π0 + Δ)2

≥ xmin(π0 − k − 1 − G(k)(d − 1))
(π0 + Δ)2

≥ 0.
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The last inequality is because π0 ≥ dG(k) + 2k − 1 and k ≥ 2.
In conclusion, if g receives the information with remaining reward at least

xmin, u′
r(Δg′) > 0, which means r’s utility is maximized when g plays FP strat-

egy, which finishes the proof. ��
Lemma 2 implies that, if the information is known to a sufficiently large

number of players, for an arbitrary player, her utility is maximized when all her
descendants play FP strategies. Next we show that the other direction of Lemma
2 also holds: for an arbitrary player, if the information is aware to a sufficiently
large number of players and all her descendants play FP strategies, her utility
is maximized when she plays FP strategy.

Fixing a tree T , let i be some player in depth j of T . Assume the remaining
reward i has received is kxmin ≤ xi < (k + 1)xmin for some 0 ≤ k ≤ H − j − 1,
and all her descendants play FP strategies. Given any strategy si(xi), define

s′
i(xi) =

(

si(xi)1
xmin

� · xmin, · · · , si(xi)d
xmin

� · xmin

)

.

Note that given her descendants playing FP strategies, s′
i(xi) brings i utility at

least as much as si(xi) does. The set of all possible s′
i(xi) is called reasonable

strategies. Thus given all i’s descendants playing FP strategies, to study i’s best
response, it suffices to consider reasonable strategies. For convenience, we use
(d0, d1, · · · , dk) to represent a reasonable strategy, where dl ∈ [d] means i selects
dl children to propagate to next l depths by leaving (l−1)xmin to these children,
and d0 means i selects d0 children to not propagate. Thus

∑k
l=0 dl = d. Note

that it does not matter which dl children are selected since all i’s children are
symmetric. In the following, we use ui((d0, d1, · · · , dk);xi) to denote i’s utility
when she receives reward xi and her action is (d0, d1, · · · , dk), given all other
players adopting FP strategies.

Lemma 3. Consider the sub-game on a single subtree T , where r is the root
player. Assume r receives the information with reward xr and k · xmin ≤ xr <
(k + 1) · xmin for some k ≥ 1. If d ≥ 3, π0 ≥ d · G(k) + 2k − 1, and all r’s
descendants adopting FP strategies, for any reasonable strategy (d0, d1, · · · , dk),
r’s utility increases by moving a unit from 0 ≤ l < k to l + 1. Formally, if for
some 0 ≤ l < k such that dl > 0, then

ur((d0, · · · , dl, · · · , dk);xr) < ur((d0, · · · , dl − 1, dl+1 + 1, · · · , dk);xr).

Proof. To simplify our notions, we ignore the index r for the root player, and
let x be the propagation reward that the root receives. When kxmin ≤ x <
(k + 1)xmin and k ≥ 1, the root is able to leave a proper reward to the players
in depth 1 so that the information can be reached to at most depth k. When
it is convenient, we write x = (k + ε)xmin and 0 ≤ ε < 1. Given any strategy
(d0, · · · , dk) such that

∑k
j=0 dj = d and di > 0 for some 0 ≤ i < k, we compare

u((d0, · · · , dl, · · · , dk);x) and u((d0, · · · , dl − 1, dl+1 + 1, · · · , dk);x).
If l = 0, Lemma 3 degenerates to Lemma 1 restricted to trees, which is

trivially true. Thus in the following, we assume l ≥ 1.
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If xmin ≤ x < 2xmin, the remaining reward a player in depth 1 receives is
always smaller than xmin; that is there is no way the information can reach depth
2. Let 1 < d0 ≤ d and d1 = d − d0. It is not hard to check that by notifying one
more player,

u((d0, d1);x) =
(d1 + 1)x

π0 + 1 + d1
<

(d1 + 2)x
π0 + 1 + d1 + 1

= u((d0 − 1, d1 + 1);x),

where the inequality is because π0 ≥ F (1) > 2.
Next we assume k ≥ 2. Denote

Q = x +
k∑

j=1

djG(j)(x − (j − 1)xmin),

and

W = π0 + 1 +
k∑

j=1

djG(j).

Thus the utility for (d0, · · · , dl, · · · , dk) is

U = u((d1, · · · , dk);x) =
Q

W
,

and the utility for (d0, · · · , dl − 1, dl+1 + 1, · · · , dk) is

U ′ = u((d0, · · · , dl − 1, dl+1 + 1, · · · , dk);x)

=
Q + G(i + 1)(x − ixmin) − G(i)(x − (i − 1)xmin))

W + G(i + 1) − G(i)

=
Q + xdi − xmin(iG(i + 1) − (i − 1)G(i))

W + di
.

To show U ′ > U , it equivalent to show

xdi − xmin(iG(i + 1) − (i − 1)G(i))
di

>
Q

W
,

or
W

(
xdi − xmin (iG(i + 1) − (i − 1)G(i))

)
> diQ.

Note that

W
(
xdi − xmin(iG(i + 1) − (i − 1)G(i))

)

= W
(
xdi − xmin(G(i + 1) − (i − 1)di)

)

> W

(

kxmind
i − xmin(

di+1

d − 1
− (i − 1)di)

)

= Wxmind
i

(

k + ε − d

d − 1
− (i − 1)

)

≥ (
1
2

+ ε)Wxmind
i,
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where the first inequality is because x = (k + ε)xmin and

G(i + 1) =
i+1∑

j=0

dj =
di+1 − 1

d − 1
<

di+1

d − 1
;

the second inequality is because k ≥ i + 1 and d ≥ 3. Thus to show Theorem 3,
it suffices to show (1 + 2ε)Wxmin > 2Q.

Claim 2. (1 + 2ε)Wxmin > 2Q.

To prove Claim 2, we note that

(1 + 2ε)W − 2Q

xmin

= (1 + 2ε)

⎛

⎝π0 + 1 +
k∑

j=1

djG(j)

⎞

⎠ − 2

⎛

⎝k + ε +
k∑

j=1

djG(j)(k + ε − j + 1)

⎞

⎠

≥ π0 − 2k + 1 −
k∑

i=1

diG(i)(2k − 2i + 1)

> π0 + 1 − 2k − dG(k) ≥ 0.

The first equation is because x = (k+ε)xmin; the first inequality is because ε ≥ 0;
the second inequality is because the following Claim 3; and the last inequality
is because π0 ≥ dG(k) + 2k − 1.

Claim 3.
∑k

i=1 diG(i)(2k − 2i + 1) < dG(k).

We prove Claim 3 in the full version [8]. ��
Lemma 3 is essentially a generalization of Lemma 1 to tree structures, which

means if the information is already known to a sufficiently large number of
players, it is always beneficial for a player to make the information reach players
in one deeper level. By induction, we have the following corollary.

Corollary 1. Consider the sub-game on a single subtree T , where r is the root
player. Assume r receives the information with reward xr and k · xmin ≤ xr <
(k+1)·xmin for some k ≥ 1. If d ≥ 3, π0 ≥ dG(k)+2k−1, and all r’s descendants
adopt FP strategies, r’s (unique) best strategy is ((k−1) ·xmin, · · · , (k−1) ·xmin).

Note that Lemmas 2, 3 and Corollary 1 do not only hold for the root players,
but also for any player in a subtree T .

3.2 Main Results

Given Lemma 2 and Corollary 1, it is not hard to verify that FP strategy profile
s∗ is a Nash equilibrium, as for each fixed tree, the information is known to the
other f − 1 trees, and thus the number of aware players is at least

(f − 1)G(H + 1) ≥ (d − 1)G(H + 1) ≥ (d + 1)G(H).
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However, s∗ is not the unique Nash equilibrium. Consider the following strategy
profile. Denote by 0 the root player of an arbitrary subtree T and by 1, · · · , d
her children. Consider the strategy profile s′: for all x ≥ xmin, s0(x) = (0, · · · , 0)
and si(x) = (⊥, · · · ,⊥) for all i ∈ {1, · · · , d}; all the other players in T and
all players not in T play arbitrary strategies. That is by notifying the players
in depth 1, the root 0 withholds the complete reward no matter how much the
initial reward is, and the players in depth 1 do not propagate the information at
all no matter how much reward the root player leaves for them. Next, we claim
strategy profile s′ is a Nash equilibrium and for simplicity, we assume d ≥ 4.
First, for each player not in tree T , as there are at least f − 2 other trees play
FP, π0 ≥ (f − 2)G(H + 1) > dG(k) + 2k − 1 for any k ≥ 0. By Corollary 1,
the best response of them is FP, thus all these players will not deviate. Second,
the root player 0 does not deviate, as all her children do not propagate the
information and her best strategy is to withhold all the reward; Finally, no
player in {1, · · · , d} deviates, as the remaining reward for the information is 0.
We can observe that in s′, all {0, 1, · · · , d} played “bad” strategies. By deviating
to FP strategies simultaneously, all of them can improve their utilities, which
means s∗ is more stable equilibrium than s′.

We next define connected coalition-proof Nash equilibria on graphs, which are
stronger than an arbitrary Nash equilibrium. Let Γ = (N,S, u) be any game with
n players, and for any C ⊆ N , denote SC = ×i∈CSi. Let G = (N,E) be a graph
defined on players with (i, j) ∈ E meaning players i and j can communicate with
each other directly. A Nash equilibrium s ∈ S is called connected coalition-proof
on G if there is no coalition C ⊆ N with the induced subgraph of C on G being
connected such that by deviating to s′

C , ui(s′
C , sN\C) ≥ ui(s) for any i ∈ C

and there is one j ∈ C such that uj(s′
C , sN\C) > uj(s). It is easy to see that

any strong Nash equilibrium is connected coalition-proof on a complete graph
and any Nash equilibrium is connected coalition-proof on an empty graph. As
pointed out by Myerson in [23], the requirement of connected coalition-proof is
practical as the players in any deviating coalition should be able to communicate.

Theorem 1. For f ≥ d ≥ 3, full propagation strategy profile s∗ is a connected
coalition-proof Nash equilibrium on G.
Proof. For any coalition C ⊆ N , denote by G(C) the induced subgraph of C in
G. We first observe that G(C) being connected implies G(C) being a subtree in
some T . Then to prove the theorem, it suffices to show for any deviation s′

C from
s∗
C , there is at least one player whose utility is smaller than the case when all of

them play FP. Let r be the root of G(C). Without loss of generality, we reorder
the players in C \ {r} by {1, 2, · · · , c} where c = |C \ {r}|.

Given the other players not in T play FP strategies, the information will be
known to at least π0 players, and when d ≥ 3, by Eq. 2,

π0 ≥ (f − 1)G(H + 1) > dG(H) + 2H − 1.

If r is in depth H −1, all players in C \{r} are dummy, whose actions do not
affect r’s utility. Thus by Lemma 1, any deviation from s∗

C will strictly decreases
r’s utility. In the following, we assume r is above depth H − 1.
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Since π0 ≥ dG(H) + 2H − 1, by Lemma 2,

ur(s′
C , s∗

N\C) ≤ ur(s′
C\{1}, s

∗
{1}∪(N\C)).

That is by changing player 1’s strategy to FP, r’s utility can only increase. We
continue this procedure for player i = 2, · · · , c by changing her strategy from si
to s∗

i , and we have

ur(s′
{r,i,··· ,c}, s

∗
{1,··· ,i−1}∪N\C) ≤ ur(s′

{r,i+1,··· ,c}, s
∗
{1,··· ,i}∪N\C).

Eventually, we obtain

ur(s′
C , s∗

N\C) ≤ ur(s′
r, s

∗
N\{r}).

By Corollary 1, when all i’s descendants play FP strategies,

ur(s′
r, s

∗
N\{r}) < ur(s∗).

Thus, ur(s′
C , s∗

N\C) < ur(s∗), which finishes the proof. ��

By Theorem 1, we have shown that s∗ is more stable than an ordinary Nash
equilibrium. But s∗ is not a strong Nash equilibrium, because all the f root
players can form a deviating coalition such that none of them propagates the
information, which brings each root player utility 1

f . However, as we have seen
in the introduction, no propagation of these f players is not an equilibrium.

Next we show that s∗ survives in any possible order of elimination of dom-
inated strategies, and uniquely survives in an almost monotonic order of elim-
ination of dominated strategies, which surpasses the result in [3]. We call an
elimination order monotonic if for any player i and any two eliminated strate-
gies si and s′

i, minj si(x∗
i )j < minj s′

i(x
∗
i )j implies that si is not eliminated after

s′
i, where x∗

i is the minimum xi such that minj si(xi)j �= minj s′
i(xi)j . Assume

⊥ < 0. We call an elimination order almost monotonic if the condition is relaxed
to si(x∗

i )j∗ < s′
i(x

∗
i )j∗ + xmin implying si is not eliminated after s′

j .

Theorem 2. For f > d ≥ 3, s∗ survives in any possible order of elimination
of dominated strategies. Moreover, s∗ is the unique Nash equilibrium survives in
an almost monotonic order of elimination of dominated strategies.

We prove Theorem 2 in the full version [8]. Note that all our results in this
section hold as long as each player has at least d children, where d ≥ 3. Actually,
similar results also hold for the case of d = 1, 2, but the players may withhold
multiples of xmin.

Remark. Theorem 2 is similar to the result in [3]. They designed a hybrid reward-
ing scheme, which combines two nearly-uniform algorithms, that is Sybil-proof.
Each player in a nearly-uniform algorithm A nearly-uniform algorithm specifies
a maximal length H of rewarding path and rewards winning player in a chain
of length h a reward of 1 + β · (H − h + 1). All the players between the sender
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and the winner are rewarded β. Though β plays a similar role with our xmin,
there are several differences. One of the main differences is that, by the design of
the free market, the players can arbitrarily decide her own charge as long as the
charge is at least of xmin, which is not restricted to be integer multiples of xmin

(i.e., Sybil copies). A second difference is that we do not combine two different
schemes. The advantage of the free market design is that the system does not
need to (carefully) specify who gets how much, and the players themselves are
already motivated to maximally propagate the information, which is also the
main take-home message of the current paper.

4 A Class of Non-tree Networks

In this section, we investigate the extent to which our results for trees can be
extended to general networks. In a non-tree network, a player may get the infor-
mation from multiple neighbours and she will claim the one who leaves the
highest reward to her, where tie is broken arbitrarily but consistently. Again let
G = (V,E) be an arbitrary network and s ∈ V be the initial sender. We first
introduce the notions of good friends and best friends. For two players i and j, i
is j’s best friend if (1) i and j are connected, and (2) every shortest path from
sender s to j passes i. If i is j’s best friend, then j is called i’s good friend. Note
that each player can have at most one best friend but multiple good friends. For
example, in Fig. 2(a), a, b, and d are the best friends of c, e, and g, respectively.
However, d and f do not have any best friend as each of them has two disjoint
shortest paths to s. Let T = (V,E′) be the subgraph of G, where E′ ⊆ E and
(i, j) ∈ E′ if i is j’s good or best friend. Note that T is a spanning forest of G,
and the root of each tree is either s or a player who does not have best friend.
As an example, the solid lines in Fig. 2(a) form a good-friendship graph.

Fig. 2. Illustration of Good-Friendship Graph and Information Propagation Tree.

Next we prove that if every player has at least three good friends, then
full propagation is a Nash equilibrium. Moreover, this equilibrium is robust to
collective deviations of good friends. Note that the case of d-ary tree with d ≥ 3
in Sect. 3 is a special case of this situation where G = T .
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Theorem 3. If every player has at least 3 good friends, then FP strategies s∗

is a Nash equilibrium. Moreover, it is connected coalition-proof on T .

Proof. If every player has at least 3 good friends, then every node in T has at
least 3 children in its corresponding tree. Let T ∗ be the corresponding infor-
mation propagation tree under s∗, where i is connected to j if j claims i as
the ancestor. Essentially, T ∗ connects all the trees in T as shown in Fig. 2(b).
We first prove s∗ is a Nash equilibrium. Suppose, for the sake of contradiction,
some player i wants to deviate from s∗. We partition i’s neighbours into two
sets S1 and S2, where S1 contains the players whose distance to s is at most
i’s distance to s, and S2 contains the players whose distance to s is longer than
i’s distance to s. Note that player i’s action does not affect players in S1 and
their descendants in T ∗. We further partition S2 into S21 and S22, where S21

contains all i’s good friends and S22 = S2 \ S21. If i does not fully propagate
to players in S22, i loses all the referring utility from S22 because they can still
be informed via other paths, which decreases i’s utility. By the condition of the
lemma, |S21| ≥ 3, and only players in S21 are connected with i in T . Moreover,
under s∗, i will be claimed as the ancestor with higher priority by all her descen-
dants in T . Then our problem degenerates to the case of trees in the previous
section, and by Lemma 3, i’s utility is maximized by FP, which means s∗ is a
Nash equilibrium. Moreover, the reason why s∗ is connected coalition-proof on
T is in the same with Theorem 1: Any connected subgraph in T forms a subtree
with a root player i, whose utility decreases by deviating from s∗. ��

Here we note that s∗ may not be connected coalition-proof on the original
network G. To see this, if all senders’ direct neighbours are connected with each
other, they can form a connected coalition and do not propagate the information
to others, which brings each of them higher utility than full propagation.

5 Experiments

Finally, we conduct experiments to confirm the validity of the free market design
in random networks. We first introduce the parameters in our experiments. Given
a parameter d, there are n players and each player is randomly connected to d

2
other players, so that the expected degree of each player is d. We study the utility
of a fixed player and the sender is randomly selected from the other players. Fix
all other players’ strategies to be full propagation. Set the initial reward to 1
and xmin = 1

H . In each experiment, we randomly generate K networks. For
simplicity, we only consider the strategies that withhold integral multiples of
xmin, and calculate the expected utility of the studied player for each strategy.

In Fig. 3, we set n = 1000 and H = 6. For each d = 6/10/14, we randomly
construct K = 100 networks. We observe that full propagation (by withholding
xmin) brings a significantly higher utility on average than the other strategies
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Fig. 3. When all players have the same expected degree.

(by withholding kxmin for k > 1). Then we revise the experiments by making the
studied player more powerful or less powerful than the others, where a powerful
player has higher degree than the others and a powerless player has lower degree
than the others. In Fig. 4, the degree for the powerful player is set to 2d and for
the powerless player it is set to be d

2 . Similarly, we observe that in both cases,
full propagation brings significantly higher utility than the other strategies.

Fig. 4. When the player is powerful or powerless.

Note that full propagation is not always optimal. If a player i exclusively
controls some players (i.e., the sender’s information can only be reached to them
via i) and these players form a complete graph, the optimal local strategy for
i is to leave 0 to all of them instead of full propagation. Thus, if the network
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structure is known to players, the players can compute their optimal propagating
strategies, which may not be full propagation. However, such “bad” networks
barely happen in random networks and never happen in reality. To further avoid
security threats, such as in a blockchain protocol, the players can be randomly
re-connected periodically so that it is not beneficial for players to spend effort
on learning network structures any more.

6 Conclusion and Future Directions

In this work, we design a free market with lotteries to incentivize players to
maximally propagate information to their friends. For trees and a large class of
non-tree networks, we prove that full propagation is robust against connected
coalitions of players. Particularly, full propagation in tree networks uniquely sur-
vives in an interval-based monotone iterative elimination of dominated strategies.
For future directions, from a theoretical perspective, it is intriguing to analyze
players’ behaviours in the free market within arbitrary or random networks and
consider non-uniform lotteries. For example, if the property of every node hav-
ing 3 good friends holds for certain random graphs, then Theorem 3 holds for
such graphs as well. In addition, in the current market only the final winner
and the players on the propagation path reaching her get rewarded. It would be
interesting to see if there is a way to select and reward more than one winners
and corresponding propagation paths. In a blockchain, this could correspond to
multiple block proposers whose blocks are not eventually finalized, and may help
reducing the players’ risk, so as to encourage more to participate in a risk-avert
model. Moreover, it is interesting and challenging to design new reward schemes
to incentivize information propagation in more complex networks. Finally, from
a practical perspective, experiments on synthetic and real-world data for com-
plex networks may reveal important insights on the behavior of a free market in
such networks, further enabling market design for them.
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11. Cosśıo, F.J.M., Brigham, E., Sela, B., Katz, J.: Competing (semi-)selfish miners
in bitcoin. In: AFT, pp. 89–109. ACM (2019)

12. Douceur, J.R.: The Sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45748-8 24

13. Drucker, F., Fleischer, L.: Simpler Sybil-proof mechanisms for multi-level market-
ing. In: EC, pp. 441–458. ACM (2012)

14. Emek, Y., Karidi, R., Tennenholtz, M., Zohar, A.: Mechanisms for multi-level
marketing. In: EC, pp. 209–218. ACM (2011)

15. Ersoy, O., Erkin, Z., Lagendijk, R.L.: Decentralized incentive-compatible and Sybil-
proof transaction advertisement. In: Pardalos, P., Kotsireas, I., Guo, Y., Knot-
tenbelt, W. (eds.) Mathematical Research for Blockchain Economy. SPBE, pp.
151–165. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37110-4 11

16. Ersoy, O., Ren, Z., Erkin, Z., Lagendijk, R.L.: Transaction propagation on permis-
sionless blockchains: incentive and routing mechanisms. In: CVCBT, pp. 20–30.
IEEE (2018)

17. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) Financial Cryptography and Data Security,
pp. 436–454 (2014)

18. Johnson, B., Laszka, A., Grossklags, J., Vasek, M., Moore, T.: Game-theoretic
analysis of DDoS attacks against bitcoin mining pools. In: Böhme, R., Brenner,
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Abstract. We study the problem of dividing a multi-layered cake among hetero-
geneous agents under non-overlapping constraints. This problem, recently pro-
posed by Hosseini et al. (2020), captures several natural scenarios such as the
allocation of multiple facilities over time where each agent can utilize at most
one facility simultaneously, and the allocation of tasks over time where each
agent can perform at most one task simultaneously. We establish the existence of
an envy-free multi-division that is both non-overlapping and contiguous within
each layered cake when the number n of agents is a prime power and the num-
ber m of layers is at most n, thus providing a positive partial answer to a recent
open question. To achieve this, we employ a new approach based on a general
fixed point theorem, originally proven by Volovikov (1996), and recently applied
by Jojić, Panina, and Živaljević (2020) to the envy-free division problem of a
cake. We further show that for a two-layered cake division among three agents
with monotone preferences, an ε-approximate envy-free solution that is both non-
overlapping and contiguous can be computed in logarithmic time of 1/ε.

Keywords: Envy-freeness · Multi-layered cakes · Volovikov’s theorem ·
FPTAS

1 Introduction

Imagine a group of n researchers deciding how to allocate m meeting rooms over a
given period of time. They may have different opinions about the time slot and facility
to which they would like to be assigned; for instance, some may prefer to schedule a
seminar in a small room in the morning, while others may prefer to use a large room to
give a lecture in the afternoon.

The problem of fairly distributing a resource has been often studied in the classi-
cal cake-cutting model [24], where the cake, represented by the unit interval, is to be
divided among heterogenous agents. A variety of cake-cutting techniques have been
developed over the past decades; in particular, the existence and algorithmic questions
concerning an envy-free division, where each agent receives her first choice under the
given division, have turned out to involve highly non-trivial arguments [9,25,27,29].

In the above example of sharing multiple facilities, however, one cannot trivially
reduce the problem to the one-dimensional case. Indeed, if we merely divide the m
time intervals independently, this may result in a division that is not feasible, i.e., it may
c© Springer Nature Switzerland AG 2022
M. Feldman et al. (Eds.): WINE 2021, LNCS 13112, pp. 504–521, 2022.
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assign overlapping time intervals to the same agent who can utilize at most one room
at a given time. In order to capture such constraints, Hosseini, Igarashi, and Searns
[12] have recently introduced the multi-layered cake-cutting problem. There, n agents
divide m different cakes under the feasibility constraint: the pieces of different layers
assigned to the same agent should be non-overlapping, i.e., these pieces should have
disjoint interiors. Besides an application to share meeting rooms, the model can capture
a plethora of real-life situations; for instance, scheduling fitness lessons at a gymnasium,
where each person can take at most one lesson at a time.

In this paper, we study the multi-layered cake-cutting problem, initiated by Hosseini
et al. [12]. Our focus is on envy-free divisions of a multi-layered cake under feasible and
contiguous constraints. For the special case of two layers and two agents, Hosseini et al.
showed that the cut-and-choose protocol using one long knife produces envy-free diag-
onal shares that are both feasible and contiguous within each layer. For a more general
combination of positive integers m and n with m � n, it remained an open question
whether there is an envy-free multi-division that is both contiguous and feasible. In fact,
the existence question is open even for n = 3 and m = 2 though, when the contiguity
requirement is relaxed, they showed the existence of envy-free feasible multi-divisions.
Note that when the number of layers strictly exceeds the number of agents, i.e., m > n,
there is no way to allocate the entire cake while satisfying feasibility.

We settle this open question by Hosseini et al. affirmatively when n is a prime
power and m � n. We show that in such cases, an envy-free multi-division, which is
both feasible and contiguous, exists under mild conditions on preferences that are not
necessarily monotone. Further, such divisions can be obtained using n − 1 long knives
that hover over the entire cake. As an example of such constraints, one may consider a
gymnasium where all classes begin and end at the same time.

We note that the standard proof showing the existence of an envy-free division via
Sperner’s lemma [27] may not work in the multi-layered setting. In the model of stan-
dard cake-cutting, the divisions into n parallel pieces of lengths xi (i = 1, 2, . . . , n)
can be represented by the points of the standard simplex Δn−1, which is then triangu-
lated with the vertices of each triangle being labeled with distinct owner agents, and
colored in such a way that each “owner” agent colors the vertex with the index of her
favorite bundle of the “owned” division. If agents always prefer non-degenerate pieces
to the degenerate one, a colorful triangle, which corresponds to an approximate envy-
free division, is guaranteed to exist by Sperner’s lemma.

In the same spirit of Su’s approach [27], one may attempt to encode diagonal shares
using n−1 long knives, by the points of the standard simplex Δn−1 and apply the usual
method by using Sperner’s lemma to show the existence of an envy-free division. For
instance, each n-tuple (x1, x2, . . . , xn) can represent a feasible and contiguous multi-
division (A1, . . . ,An) where the �-th layered piece of the i-th bundle Ai is given by
the σ(i, �)-piece of length xσ(i,�) where σ(i, �) = i+ �− 1 (modulo m). Unfortunately,
this approach may fail to work for the multi-layered cake-cutting: even when the agents
have monotone preferences over the pieces, the agents may choose the degenerate part
as the most preferred one.

We thus employ a new approach of using a general Borsuk–Ulam-type theo-
rem, originally proven by Volovikov [28], and recently applied by Jović, Panina, and
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Živaljević [14,21] on the envy-free division of a cake. Volovikov’s theorem ensures
that for any G-equivariant coloring of the vertices of a triangulated simplicial complex,
there is a fully colored simplex under assumptions on the connectivity of the domain,
the co-domain on which a group of the form (Zp)k acts, and fixed-point freeness of
the action. We consider a configuration space whose points encode not only diagonal
shares using n − 1 long knives but also possible permutations of indices. Such points
can be represented by the so-called chessboard complex Δ2n−1,n, which is guaranteed
to be (n − 2)-connected, and for which Volovikov’s theorem applies. With this new
technique, the existence of an envy-free multi-division is shown for a general class of
preferences that are not necessarily monotone. Note that this is the best one could hope
to obtain, under the general preference model with choice functions: Avvakumov and
Karasev [2] and Panina and Živaljević [21] provided counterexamples of a cake-cutting
instance with choice functions for which no envy-free division exists, for every choice
of n that is not a prime power.

Our existence result concerning envy-freeness also answers another open question
raised by Hosseini et al.: It implies the existence of a proportional multi-division that
is feasible and contiguous when m � n, m is a prime power, and agents have non-
negative additive valuations, and thus properly generalizes the known existence result
when m is a power of 2 and m � n [12]; see Sect. 5 for details.

Having established that there always exists an envy-free multi-division using n − 1
long knives when n is a prime power, we consider a different type of division of a multi-
layered cake. For instance, one may divide a two-layered cake among three agents, by
cutting the top layer with one short knife and dividing the rest with one long knife. For
this particular problem, one can encode such divisions by the points of the unit square.
This way, a Sperner-type argument turns out to be applicable: there is an envy-free
multi-division that can be constructed from only one short knife and one long knife
when agents have monotone preferences. By exploiting the monotonicity that arises
when fixing a long knife position, we further devise a fully polynomial-time algorithm
(FPTAS) to compute an approximate envy-free multi-division. As a byproduct of our
proof technique, we show that both the existence and algorithmic results extend to a
birthday cake multi-division of a two-layered cake among three agents, i.e., a division
of the cake into three parts such that whichever piece a birthday agent selects, there is
an envy-free assignment of the remaining pieces to the remaining agents. Note that this
also establishes an FPTAS to compute an approximate birthday cake multi-division for
the standard one-layered cake-cutting problem among three agents with monotone pref-
erences. Proofs omitted due to space restrictions can be found in the full version [13].

RelatedWork. Early literature on cake-cutting has established the existence of an envy-
free contiguous division under closed (if the i-th piece is preferred in a convergent
sequence of divisions, it is preferred in the limit) and hungry preferences (pieces of
nonzero-length are preferred over pieces of zero-length). While classical works [25,29]
applied non-constructive topological proofs, Su [27] provided a more combinatorial
argument by explicitly using Sperner’s lemma. Recently, the problem of dividing a
partially unappetizing cake has attracted a great deal of attention. Here, some agents
may find that a part of the cake is unappetizing and prefer nothing, while others may find
it tasty. Even in such cases, an envy-free division only using n − 1 cuts has been shown
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to exist for a particular number n of agents under the assumption of closed preferences
[2,19,21,22]. The most general result obtained so far is the one by Avvakumov and
Karasev [2], who showed the existence of an envy-free division for the case when n
is a prime power. Panina and Živaljević [21] gave an alternative proof of the result of
Avvakumov and Karasev, by using Volovikov’s theorem [28].

In his classical work on cake-cutting (where he discusses the division of wine as
well), Woodall [29] also proved that an envy-free division can be obtained without
knowing one agent’s preference. For example, the cut-and-choose protocol does not
need the chooser’s preference to obtain an envy-free division. More generally, for any
number n of agents, there is a division of the cake into n contiguous pieces such that
whichever piece a birthday agent selects, there is an envy-free assignment of the remain-
ing pieces to the remaining agents. Asada et al. [1] gave a simple combinatorial proof
that shows the existence of such division. Meunier and Su [18] showed the dual theo-
rem, stating that there is a division of the cake into n − 1 contiguous pieces such that
whichever agent leaves the game, there is an envy-free assignment of the remaining
agents to the remaining pieces.

In general, there is no finite protocol that computes an exact envy-free division even
for three agents [26], though such protocol exists when relaxing the contiguity require-
ment [4]. Nevertheless, for three agents with monotone valuations, Deng et al. [8]
proved that an ε-approximate envy-free division can be computed in logarithmic time
of 1

ε , while obtaining PPAD-hardness of the same problem for choice functions whose
choice is given explicitly by polynomial time algorithms. Our method for establishing
FPTAS is reminiscent of that of Deng et al. A difference that is worth mentioning here
is the way the triangulation together with its agent labeling is built: while Deng et al.
used a special triangulation of a triangle due to Kuhn [15] and a quite complicated agent
labeling given by a formula encoding the length of each piece, we subdivide the unit
squares into small squares, take its barycentric subdivision, and build directly from the
barycenters the agent labeling. The latter is technically light and naturally extends to a
way to compute a birthday cake multi-division.

Several papers also studied the fair division problem in which agents divide multiple
cakes [6,16,20,23]. This model requires each agent to receive at least one non-empty
piece of each cake [6,16,20] or receive pieces on as few cakes as possible [23]. On
the other hand, our setting requires the allocated pieces to be non-overlapping. Thus,
the existence/non-existence of envy-free divisions in one setting do not imply those for
another.

2 Preliminaries

We consider the setting of Hosseini, Igarashi, and Searns [12], except that we allow
slightly more general preferences. We are givenm layers and n agents. A cake is the unit
interval [0, 1]. A piece of cake is a union of finitely many disjoint closed subintervals
of [0, 1]. We say that a subinterval of [0, 1] is a contiguous piece of cake. An m-layered
cake is a sequence of m cakes [0, 1]. A layered piece is a sequence L = (L�)�∈[m] of
pieces of each layer �; a layered piece is contiguous if each L� is a contiguous piece
of layer � ∈ [m]. A layered piece L is non-overlapping if no two pieces from different
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layers overlap, i.e., L� ∩ L′
� is formed by finitely many points or the empty set for any

pair of distinct layers �, �′. The length of a layered piece is the sum of the lengths of
its pieces in each layer. A multi-division A = (A1,A2, . . . ,An) is an n tuple forming
a partition of the m-layered cake into n layered pieces. (Here, “partition” is used in a
slightly abusive way: while the collection covers the layered cake and the layered pieces
have disjoint interiors, we allow the latter to share endpoints.) A multi-division A is

– contiguous if Ai is contiguous for each i ∈ [n];
– feasible if Ai is non-overlapping for each i ∈ [n].

We focus in this work on complete multi-divisions where the entire cake must be allo-
cated.

Each agent i has a choice function ci that, given a multi-division, returns the set of
preferred layered pieces (among which the agent is indifferent). This function returns
the same set of pieces over all permutations of the entries of the multi-division.

The choice function model is used in [18,27] and more general than the valuation
model while the latter is more standard in fair division.

An agent i weakly prefers a layered piece L to another layered piece L′ if there
is no collection of layered pieces such that ci selects L′ but does not select L. Where
necessary, we impose the following additional assumption on the choice function: An
agent has hungry preferences if she weakly prefers a layered piece of nonzero length
to any layered piece of zero-length. An agent has monotone preferences if she always
weakly prefers a layered piece L = (L�)�∈[m] to another L′ = (L′

�)�∈[m] whenever L′
�

is contained in L� for each � ∈ [m]. An agent has closed preferences if the following
holds: for every sequence (A(t))t∈Z+ of multi-divisions converging to a multi-division
A(∞), we have

A(t)
j ∈ ci(A(t)) ∀t ∈ Z+ =⇒ A(∞)

j ∈ ci(A(∞)) .

The convergence of layered pieces is considered according to the pseudo-metric
d(L,L′) = μ(L�L′); a sequence of multi-divisions is converging if each of its lay-
ered pieces converges. Here, μ is the Lebesgue measure and L�L′ = ((L� \ L′

�) ∪
(L′

� \ L�))�∈[m].
A multi-division A is envy-free if there exists a permutation π : [n] → [n] such

that Aπ(i) ∈ ci(A) for all i ∈ [n]. A birthday cake multi-division for agent i∗ is a
multi-division A where no matter which piece agent i∗ selects, there is an envy-free
assignment of the remaining pieces to the remaining agents, i.e., for every j ∈ [n], there
exists a bijection π : [n]\{i∗} → [n]\{j} such that Aπ(i) ∈ ci(A) for all i ∈ [n]\{i∗}.

We also consider a setting where each agent can specify the valuation of each lay-
ered piece. Each agent i has a valuation function vi that assigns a real value vi(L) to
any layered piece L. A valuation function naturally gives rise to a choice function that
among several layered pieces, returns the most valuable layered pieces. A valuation
function vi satisfies

– monotonicity if vi(L′) � vi(L) for any pair of layered pieces L,L′ such that L′
� ⊆

L� for any � ∈ [m].
– the Lipschitz condition if there exists a fixed constant K such that for any pair of
layered pieces L,L′, |vi(L) − vi(L′)| � K × μ(L�L′).
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It is easy to see that monotonicity along with the Lipschitz condition implies that the
hungry assumption is satisfied: the Lipschitz condition implies that all layered pieces
of zero-length have the same value and thus in particular the value of the empty set;
monotonicity then implies that every layered piece has a value at least the value of the
empty set.

For an instance with agents’ valuation functions, one can define concepts of approx-
imate envy-freeness. A multi-division A is ε-envy-free if different agents approxi-
mately prefer different layered pieces, i.e., there exists a permutation π : [n] → [n]
such that for all i ∈ [n], vi(Aπ(i)) + ε � maxi′∈[n] vi(Ai′). An ε-birthday cake
multi-division for agent i∗ is a multi-division A where for any j ∈ [n], there exists
a bijection π : [n]\{i∗} → [n]\{j} such that for all i ∈ [n]\{i∗}, vi(Aπ(i)) + ε �
maxi′∈[n] vi(Ai′). For an instance with agents’ valuation functions, we will assume
that vi(L) can be accessed in constant time for any agent i and layered piece L.

There are several types of divisions of a multi-layered cake that satisfy feasibility
and contiguity constraints: one that is obtained by a long knife that hovers over the
whole layered cake, and another that is obtained by a short knife that hovers over a
single layered cake. See Fig. 1 for examples.

Fig. 1.Multi-divisions of a two-layered cake, obtained by one long knife and one short knife and
by two long knives (pictured left-to-right).

We assume basic knowledge in algebraic topology. Definitions of abstract and geo-
metric simplicial complexes, the fact that they are somehow equivalent, and other
related notions are reminded in Appendix A of the full version [13]. The reader might
consult the book by De Longueville [7] or the one byMatoušek [17], especially Chaps. 1
and 6 of the latter book, for complementary material. In the sequel, we will identify
geometric and abstract simplicial complexes without further mention.

3 Envy-Free Division Using n − 1 Long Knives

Now, we formally present the first main result of this paper, stating that an envy-free
multi-division using n − 1 long knives exists when n is a prime power.

Theorem 1. Consider an instance of the multi-layered cake-cutting problem with m
layers and n agents, m � n, with closed preferences. If n is a prime power, then there
exists an envy-free multi-division that is feasible and contiguous. Moreover, it can be
achieved with exactly n − 1 long knives.
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Let us comment briefly on the special case when m = 1. Since the agents might
prefer zero-length pieces in our setting, our theorem boils down then to a recent result
of Avvakumov and Karasev [2]. They showed that when n is a prime power, there
always exists an envy-free division, even if we do not assume that the agents are hungry,
and that this is not true anymore if n is not a prime power. (The Avvakumov–Karasev
theorem was first proved for n = 3 by Segal-Halevi [22]—who actually initiated the
study of envy-free divisions with non-necessarily hungry agents—and for prime n by
Meunier and Zerbib [19]).

3.1 Tools from Equivariant Topology

We introduce now a specific abstract simplicial complex that will play a central role
in the proof of Theorem 1. The chessboard complex Δm,n is an abstract simplicial
complex whose ground set is [m]×[n] and whose simplices are the subsets σ ⊆ [m]×[n]
such that for every two distinct pairs (i, j) and (i′, j′) in σ we have i 
= i′ and j 
= j′.
The name comes from the following: If we interpret [m]× [n] as an m × n chessboard,
the simplices are precisely the configurations of pairwise non-attacking rooks.

Given an additive group G of order n, we get a natural action (ϕg)g∈G of G on
Δm,n by identifying [n] with G via a bijection η : [n] → G: this natural action is
defined by ϕg(i, j) = g · (i, j) := (i, η−1(g + η(j))). This action is free, namely the
orbit of each point in any geometric realization of Δm,n is of size n. Equivalently, the
relative interiors of ϕg(σ) and σ are disjoint for every simplex σ of Δm,n and every
element g of G distinct from its neutral element; see [17, Chapter 6].

The following lemma is an immediate consequence of Volovikov’s theorem [28],
which has found many applications in topological combinatorics. It uses the notions of
G-invariant triangulation and G-equivariant coloring we define now.

Let K be a simplicial complex on which a group G acts. This action induces an
action on the underlying space ‖K‖. Consider now a triangulation T of K. The action
on ‖K‖ induces in turn an action (ϕg)g∈G on ‖T‖. The triangulation T is G-invariant
if, seeing it as a geometric simplicial complex, we have ϕg(σ) ∈ T for all σ ∈ T and
all g ∈ G. A coloring λ : V (K) → G is G-equivariant if λ(g · v) = g + λ(v) for all
v ∈ V (K) and g ∈ G (considering G as an additive group).

Lemma 1. Let n = pk, where p is a prime number and k a positive integer. Denote by
G the additive group

Ä
(Zp)k,+

ä
. Consider a G-invariant triangulation T of Δ2n−1,n.

For any G-equivariant coloring of the vertices of T with elements of G, there is a
simplex in T whose vertices are colored with all elements of G.

When G does not satisfy the condition of the lemma, its conclusion does not neces-
sarily hold. Already for G = Z6, counterexamples are known; see [30].

Proof (of Lemma 1). Volovikov’s theorem states the following; see [17, Section 6.2,
Notes]. Let Gbe the additive group

Ä
(Zp)k,+

ä
and let X and Y be two topological

spaces on which G acts in a fixed-point free way. If X is d-connected and Y is a d-
dimensional sphere, then there is no G-equivariant map X → Y . An action is fixed-
point free if each orbit has at least two elements, and a map f : X → Y isG-equivariant
if it is continuous and f(g · x) = g · f(x) for all x ∈ X and all g ∈ G.
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Consider now any G-equivariant coloring of the vertices of T with elements of G.
Suppose for a contradiction that there is no simplex inTwhose vertices are colored with
all elements of G. Then the coloring induces a G-equivariant simplicial map ψ from T
to ∂ΔG, where this latter simplicial complex is the boundary of the (n−1)-dimensional
standard simplex ΔG whose vertices have been identified with G. (The action of G on
ΔG is the natural one: g · g′ = g + g′, where g is an element of G and g′ is seen as a
vertex of ΔG).

The simplicial complex Δ2n−1,n is (n−2)-connected (see [5]), and so T is (n−2)-
connected as well. The simplicial complex ∂ΔG is an (n − 2)-dimensional sphere. We
have already noted that the action of G on Δ2n−1,n, and thus on T, is free. Let us check
that the action of G on ∂ΔG is fixed-point free.

The action of G on ∂ΔG is fixed-point free if the orbit of every point in a geometric
realization of ∂ΔG has at least two elements. Consider a point x in the underlying space
‖∂ΔG‖ of an arbitrary geometric realization. Let σ ∈ ∂ΔG be the simplex of minimal
dimension containing x. By definition of ∂ΔG, there is at least one vertex that is missed
by σ. Thus, it is possible to find g ∈ G such that g · σ is distinct from σ. The point x
is not in g · σ since otherwise it would be in the intersection of σ and g · σ, which is
a simplex of ∂ΔG of smaller dimension, contradicting the assumption on σ. The point
g · x is thus distinct from x, which means that the orbit of x is of size at least two,
as desired. (The action is however in general not free: for example, when G = (Z2)2,
the orbit of the center of the edge {(0, 0), (1, 1)} in a geometric realization is of size
exactly two).

Volovikov’s theorem with X = T and Y = ∂ΔG shows then that such a map ψ
cannot exist; a contradiction. �

The proof of Theorem 1 uses also the idea of “owner labeling” from [27]. An “owner
labeling,” which we call agent labeling in the present paper, is a labeling of the vertices
of a simplicial complex with the agents as labels, such that every (n − 1)-dimensional
simplex gets pairwise distinct labels on its vertices (n being the number of agents).

Lemma 2. There exists a G-invariant triangulation T of Δ2n−1,n of arbitrary small
mesh size, refining Δ2n−1,n, and with an agent labeling a : V (T) → [n] that satisfies
a(g · v) = a(v) for all v ∈ V (T) and g ∈ G.

Proof. Take any G-invariant triangulation T′. The complex Δ2n−1,n itself is such a
triangulation. Any barycentric subdivision of T′ admits an agent labeling as desired
(this is a classical idea, already present in [27]), and is still G-invariant. So, repeated
barycentric subdivisions allow to get a triangulation T with the required property, of
arbitrary small mesh size. �

3.2 Proof of Theorem 1

The proof uses a “configuration space” encoding some possible contiguous and feasible
multi-divisions with n − 1 long knives. We will show that at least one of the multi-
divisions corresponding to the points in such configuration space is envy-free. This
configuration space is the simplicial complex Δ2n−1,n introduced in Sect. 3.1, with

n = pk and G =
Ä
(Zp)k,+

ä
acting on it. The elements in G will be used to identify the
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layered pieces. We choose an arbitrary bijection η : [n] → G to ease this identification.
(In case k = 1, it is certainly most intuitive to set η(i) = i; note that when k 
= 1, this
definition does not make sense.) Moreover, we fix an arbitrary injective map h : [m] →
G and a geometric realization of Δ2n−1,n. We denote by vi,j the realization of the
vertex (i, j). We explain now how each point of ‖Δ2n−1,n‖ encodes a multi-division
with n − 1 long knives.

Let x be a point of ‖Δ2n−1,n‖. It is contained in (at least) one (n − 1)-dimensional
simplex. Let vi1,1,vi2,2, . . . ,vin,n be the vertices of this simplex. We fix an arbitrary
procedure P to choose the simplex in case of a tie and to ease the proof of Lemma 4
below we fix it so that all points with same support provide the same simplex. A tie
can occur, e.g., for n = 3, when x belongs to the interior of the edge v3,1-v1,2; there
are three triangles containing this edge in Δ5,3; each of them contains the vertices v3,1

and v1,2; the third vertex can be any of v2,3, v4,3, and v5,3. Moreover, we fix P in an
“equivariant” way: given any g ∈ G, the simplex chosen byP for g · x is the image by
ϕg of the simplex chosen by P for x. Such a way to define P is possible because the
action of G on Δ2n−1,n is free.

We write then x as n
j=1 xij

vij ,j . We set xk = 0 for every k /∈ {i1, . . . , in}. The
values of x1, . . . , x2n−1 do not depend on the choice made byP: only the vertices vi,j

spanning the minimal simplex of Δ2n−1,n containing x get non-zero coefficients, and
these latter are then the barycentric coordinates in this face.

Choose the permutation ρ ∈ Sn such that iρ(1) < iρ(2) < · · · < iρ(n). We interpret
xiρ(j) as the length of the j-th piece: in a way similar to the traditional encoding of the
divisions (see, e.g., [27]), the j-th piece in any layer is of length xiρ(j) . We give then the
j-th piece of the �-th layer the element η(ρ(j)) + h(�) of G as its “bundle-name.” We
get a non-overlapping layered piece by considering all pieces with a same bundle-name:
two overlapping pieces have names of the form η(ρ(j))+h(�) and η(ρ(j))+h(�′), and
η(ρ(j)) + h(�) = η(ρ(j)) + h(�′) if and only if � = �′. The non-overlapping layered
pieces obtained this way form the multi-division encoded by x, which we denote by
A(x) = (A1(x),A2(x), . . . ,An(x)), where Ai(x) is the layered piece formed by the
pieces with bundle-name η(i) ∈ G. Clearly, each A(x) is a feasible and contiguous
multi-division that uses n− 1 long knives. Figure 2 depicts examples of multi-divisions
corresponding to points of ‖Δ2n−1,n‖ for n = 2 and n = 3, whereas Figs. 3 and 4
illustrate the associated chessboard complex Δ2n−1,n.

Here, we state two important lemmas concerning the multi-divisions A(x) whose
proofs can be found in [13]. First, the multi-divisions A(x) enjoy some “equivariant”
property.

Lemma 3. We have Ai(x) = Aη−1(g+η(i))(g · x) for all x ∈ ‖Δ2n−1,n‖, i ∈ [n], and
g ∈ G.

Another important point is that A(x) depends continuously on x as stated by
the following lemma. The convergence of multi-divisions is defined according to the
pseudo-metric d(·, ·).

Lemma 4. Let
Ä
x(t)

ä
t∈Z+

be a sequence of points of ‖Δ2n−1,n‖ converging to some

limit point x(∞). Then
Ä
A(x(t))

ä
t∈Z+

converges to A(x(∞)).
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Fig. 2. Multi-divisions represented by the points of the configuration space when h(�) = � for
the �-th layer. In the left figure, we have G = (Z2,+) and iρ(1) = i2 = 1 < iρ(2) = i1 = 3. In
the right figure, we have G = (Z3,+) and iρ(1) = i2 = 3 < iρ(2) = i3 = 4 < iρ(3) = i1 = 5.
The number in the j-th piece of the �-th layer corresponds to η(ρ(j)) + h(�), where η(i) = i
(because when k = 1, we can identify (Zp)

k and [p]). (Color figure online)

Fig. 3. Illustration of the chessboard complex Δ2n−1,n when n = 2. The blue edge corresponds
to a standard simplex, depicted on the right, which represents the set of multi-divisions of the
form described in the left division of Fig. 2. (Color figure online)

We are now ready to prove Theorem 1.

Proof (of Theorem 1). Take a triangulation T and an agent labeling a as in Lemma 2.
We partition the vertices of T into their G-orbits. From each orbit, we pick a vertex x.
We ask agent a(x) the index i of the non-overlapping layered piece Ai(x) she prefers
in A(x). (In case of a tie, she makes an arbitrary choice.) We define λ(x) to be η(i).
We extend λ on each orbit in an equivariant way: λ(g · x) := g + λ(x). This is done
unambiguously because the action of G on T is free. The map λ is a G-equivariant
coloring of the vertices of T with elements of G. The invariance of a along the orbits
combined with Lemma 3 implies that, for every vertex x of the triangulation T, the
integer η−1(λ(x)) is the index of a layered piece preferred by agent a(x) in the multi-
division A(x).

According to Lemma 1, there exists a simplex of T whose vertices are colored with
all elements of G. For every integer N > 0, we can choose T := TN so that it has
a mesh size upper bounded by 1/N . Denote by xi,N the vertex of this simplex in TN

that has a(xi,N ) = i, and by πN (i) the integer η−1(λ(xi,N )). For each N , the map
πN is a permutation of [n] (assigning the agents to their preferred layered pieces, in the
multi-divisions encoded by the vertices of the simplex). When N increases, there is at
least one permutation occurring infinitely many times among the πN . Denote by π such
a permutation.
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Fig. 4. Illustration of the chessboard complex Δ2n−1,n when n = 3. The blue edge corresponds
to a standard simplex, depicted on the right, which represents the set of multi-divisions of the
form described in the right division of Fig. 2. (Color figure online)

Consider arbitrary largeN for which πN = π. We haveAπ(i)(xi,N ) ∈ ci(A(xi,N ))
for all i ∈ [n] and all such N . Compactness implies that we can select among these
arbitrarily large N an infinite sequence such that every (xi,N )N converges to a same
point x∗ for every i. The sequence A(xi,N ) converges then to A∗ := A(x∗) for every
i (Lemma 4). Thus, by the closed preferences assumption, we have A∗

π(i) ∈ ci(A∗) for
all i ∈ [n]. �

4 Envy-Free Division Using One Short Knife and One Long Knife

We saw that there always exists an envy-free multi-division using n − 1 long knives
when n is a prime power. In general, there are other types of multi-divisions that can
achieve both feasibility and contiguity. For example, for a two-layered cake with three
agents, one may use a short knife over one layer to obtain the first piece, and use a long
knife to divide the rest in order to produce a multi-division.

In this section, we show that an envy-free multi-division of such form indeed exists
for a two-layered cake division among three agents with closed and monotone prefer-
ences. Interestingly, by allowing for only such divisions, the proof for the existence of
an envy-free multi-division turns out to be more elementary and constructive, in con-
trast with the proof based on Volovikov’s theorem in the previous section. We further
observe that the agents’ preferences exhibit monotonicity when fixing one long knife
and moving another short knife from left to right. By exploiting monotonicity, we show
that an approximate envy-free division using one short knife and one long knife can
be computed efficiently for three agents with valuations satisfying the Lipschitz condi-
tion and monotonicity. In fact, we prove a stronger statement where both existence and
computational results extend to those for birthday cake multi-divisions:

Theorem 2. In the case with two layers and three agents with closed, monotone, and
hungry preferences, a birthday cake multi-division that is feasible and contiguous exists.
Moreover, it requires only one long knife.

Theorem 3. In the case with two layers and three agents whose valuation functions
satisfy the Lipschitz condition and monotonicity, for any ε ∈ (0, 1), an ε-birthday cake
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multi-division that is feasible and contiguous can be found inO(log2 1
ε ) time. Moreover,

it requires only one long knife.

In order to establish the above theorems, we will encode by the points of the unit
square [0, 1]2 the divisions of a two-layered cake using one short knife and one long
knife. The position of a long knife corresponds to the x-axis and the position of a
short knife corresponds to the y-axis. The crucial observation is that the two vertical
boundaries when x = 0 and x = 1 enjoy a certain symmetry: the divisions that appear
on these boundaries are the same. By exploiting this symmetry, one can apply a Sperner-
type lemma to show the existence of an envy-free division.

To formally explain the combinatorial lemma which we will use, we introduce the
notion of degree, also mentioned in Deng et al. [8] where it was called the index. For
a triangulated rectangle M, we consider a coloring λ : V (M) → {1, 2, 3}. For such
rectangle and coloring, the degree d(M) of M is the mod 2 number of simplices of
M whose label set is exactly {1, 2, 3}. For subset S of {1, 2, 3} of cardinality 2, let
dS(∂M) denote the mod 2 number of simplices of the boundary ∂M of M whose label
set is exactly S. For a triangulated line L with coloring λ : V (L) → {1, 2, 3}, the degree
d(L) of L is the mod 2 number of simplices of L whose label set is exactly {1, 2}.

The following lemma is common knowledge in combinatorial topology; see [10,
Corollary 2].

Lemma 5. Consider a triangulated rectangle M. Suppose that we are given a coloring
λ : V (M) → {1, 2, 3}. Then d(M) = dS(∂M) for any S ⊆ {1, 2, 3} of cardinality 2.

4.1 Existence of an Envy-Free Multi-division

First, we will establish the existence of an envy-free multi-division using one short
knife and one long knife. Suppose that there are three agents, A, B, and C, with closed,
monotone, and hungry preferences. We show first the existence of a birthday cake multi-
division for C: namely, there is a multi-division of the layered cake into three layered
pieces such that no matter which piece C chooses, there is an envy-free assignment
of the remaining pieces to the remaining agents A and B. Without loss of generality,
assume that the top layer is weakly preferred to the bottom layer by at least one agent
different from C, say A. The two-layered cake is divided as in Fig. 5 where x corre-
sponds to the long knife over the two layers and y corresponds to the short knife over
the top layer; such divisions can be represented by the points (x, y) of the unit square.
We denote by A(v) = (A1(v),A2(v),A3(v)) the multi-division in Fig. 5 represented
by v = (x, y) ∈ [0, 1]2 where the agents first cut the cake via the short knife posi-
tion y, and then cut the rest via the long knife position x. Namely, A1(v) consists the
[0, y] segment of the top layer, A2(v) consists of the [max{x, y}, 1] of the top layer and
the [0, x] segment of the bottom layer, and A3(v) contains the remaining pieces. Such
multi-division A(v) is feasible and contiguous, only using one short knife and one long
knife.

1. Triangulation. To show the existence of an envy-free solution, we consider a
particular triangulation T of the unit square (see Fig. 6). Let ε ∈ [0, 1]. Without loss of
generality, assume that N = 1/2ε is an integer. Partition the unit square [0, 1]2 into N2
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smaller squares of side length 2ε; we call each of these squares a basic square. Then,
divide each square into small triangles as follows: a new vertex is added in the middle of
each of the four edges, and another new vertex is added at the barycenter of the square;
new edges are added from this barycenter to the original vertices as well as to added
vertices on the edges. We denote the vertices of the triangulation by V (T). We call each
vertical line L(x) = {(x, y) : y ∈ [0, 1]} of Fig. 6 with x = kε for k ∈ {0, 2, . . . , 2N}
a basic vertical line.

2. Labeling and coloring. We construct the following agent labeling a : V (T) →
{A,B,C}:
– every corner vertex of the basic squares receives label A;
– every middle vertex of the edges of the basic squares receives label B;
– every barycentric vertex of the basic squares receives label C.

To construct a coloring λ : V (T) → {1, 2, 3}, each owner agent a(v) of v = (x, y)
colors the point with the index of the favorite layered piece, i.e., Aλ(v) ∈ ca(v)(A(v)).
We consider the following tie-breaking rule: a zero-length piece is never chosen and
for pieces of nonzero length, in case of tie with piece 1, the owner agent a(v) colors
v = (x, y) with 1; in case of tie between pieces 2 and 3 only, a(v) colors v = (x, y)
with 2 if x � y; a(v) colors v = (x, y) with 3 if x > y.

Fig. 5. Three-agent multi-divisions A(v). Note that the short knife y is prioritized over the long
knife x.

We start by showing the following lemma: the number of 1-2 edges on the boundary
of the unit square must be nonzero.

Lemma 6. For the triangulation T of the unit square and coloring λ : V (T) →
{1, 2, 3}, the following hold:

(i) the number of edges colored with 1 and 2 on { (x, 1) : x1 � x � x2 } is even for
any pair of x1, x2 ∈ {0, 2ε, 4ε, . . . , 2Nε} with x1 � x2,

(ii) the number of edges colored with 1 and 2 on L(0) ∪ L(1) is odd, and
(iii) the number of edges colored with 1 and 2 on {(x, 0) : x ∈ [0, 1]} is 0.

Proof. Agent A always answers 1 as a preferred piece at any vertex (x, 1) with x ∈
[0, 1] by the assumptions that A weakly prefers the top layer over the bottom layer and
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Fig. 6. Triangulation of the unit square with agent labeling.

that the preference is monotone. Hence, by the tie-breaking rule, A colors any of her
owned vertex of form (x, 1) with 1, which proves the claim (i).

To approach (ii), consider the boundary where x = 1. Let a12 and a13 denote the
numbers of edges colored with 1, 2, and 1, 3 on L(1), respectively. Let b12 denote the
number of edges colored with 1, 2 on L(0). Since agent A weakly prefers the top layer
to the bottom layer and owns the vertices (1, 1) and (1, 0), the endpoint (1, 1) receives
color 1 and the other endpoint (1, 0) receives color 3 by the tie-breaking rule. Thus,
the total number a12 + a13 of edges one of whose endpoints is colored with 1 is odd.
Further, for every y such that (0, y) and (1, y) are vertices of T, since both (0, y) and
(1, y) receive the same agent label, we have the following symmetry:

– if one of (0, y) and (1, y) is colored with 1, the other is also colored with 1, and
– if one of (0, y) and (1, y) is colored with 2, the other is colored with 3.

Indeed, when 0 � y < 1, the above symmetry holds because of the tie-breaking rule;
in case of ties between 2 and 3, 2 is chosen at (0, y) since 0 � y while 3 is chosen at
(1, y) since 1 > y. When y = 1, we have already observed in the proof for 6 that, (0, 1)
receives color 1 and (1, 1) receives color 1. Thus, we have a13 = b12. We conclude that
the total number a12 + b12 of edges colored with 1 and 2 on L(0) ∪ L(1) is odd.

To see (iii), the piece 1 cannot be strictly preferred on the boundary of y = 0 since it
is of zero-length. Thus, by the tie-breaking rule, every vertex on the edge {(x, 0) : x ∈
[0, 1]} is colored with 2 or 3. �

Further, each basic square with odd degree induces an approximate birthday multi-
division.

Lemma 7. Let M be a basic square with nonzero degree. Then, for each j ∈ {1, 2, 3},
there is a bijection π : {A,B} → {1, 2, 3}\{j} such that for each i ∈ {A,B}, there
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exists a vertex v on the boundary of M which is owned by i and colored with π(i) by i,
i.e., a(v) = i and Aπ(i)(v) ∈ ci(A(v)).

Proof. On the boundary of the square, each of agents A and B colors at least two
different layered pieces; otherwise, the boundary has zero degree and by Lemma 5, so
does the square, which is a contradiction. Further, each of the indices 1, 2, 3 appears at
least once on the boundary by Lemma 5. Thus, the conclusion follows. �

Now, we are ready to prove Theorem 2.

Proof (of Theorem 2). According to Lemmas 5 and 6, we have d(T) = 1. Since the
basic squares form a partition of the triangles in T, at least one of them must have
nonzero degree. The conclusion follows then from Lemma 7 and a standard compact-
ness argument (making ε → 0). �

We remark that it is unclear whether the statement of Theorem 2 remains true if
we consider more general choice functions. The problem appears from the fact that
otherwise the side {(x, 1) : x ∈ [0, 1]} could also receive labels 2 or 3.

4.2 FPTAS

For three agents with monotone valuations, Deng et al. [8] exploited monotonicity to
design an FPTAS to compute an approximate envy-free division. We show that in the
context of two-layered cake-cutting, an approximate envy-free multi-division of three
agents can be computed in logarithmic time of 1

ε , in a similar manner to the work of
Deng et al. [8]. Note that in contrast to Deng et al. [8], the valuations do not increase
monotonically when moving one knife from left to right while fixing another one. We
will, nevertheless, show that a kind of monotonicy arises when moving the short knife
from left to right while fixing the long one, which then enables us to design an efficient
algorithm. By the previous proof of Theorem 3, there is a basic square with a nonzero
degree whose corresponding a multi-division is the desired division. In order to design
an FPTAS, a key observation is that fixing the position x of a long knife, the colors along
the divisions are monotone. The monotonicity of valuations then enables us to calculate
the degree of each interval of the vertical line, in logarithmic time of N . The above
fact enables us to compute an approximate birthday multi-division of a two-layered
cake among three agents in O(log2 1

ε ) time. The full proof of Theorem 3 can be found
in [13].

5 Concluding Remarks

We established the existence of an envy-free multi-division of a multi-layered cake as
well as an efficient procedure for computing an approximate solution to it in certain
cases. We showed that an envy-free multi-division using n − 1 long knives exists for
n agents when n is a prime power. Further, we proved the existence of an envy-free
multi-division using one short knife and one long knife for three agents with monotone
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preferences, and we showed that its ε-approximation can be computed in logarithmic
time of 1

ε . We discuss below implications of our results and some limitations of our
approach.

Envy-Free Cake Division of the Same Size. The former result has an interesting impli-
cation to the standard cake-cutting problem: by aligning a single-layered cake on n par-
allel layers, one can use the result to show that when n is a prime power, there always
exists an envy-free division of the same size, meaning that each agent receives a piece
of an equal total length. This may be relevant when agents’ bundles fulfill some restric-
tions, e.g., the employees of companies may have maximum weekly working hours.
More precisely, suppose that m = 1 and there are n agents with closed preferences
where n is a prime power. We divide the single-layered cake into n layers of equal size
to create an instance of a multi-layred cake cutting. By applying the proof of Theo-
rem 1, we obtain an envy-free division where each agent i receives a piece (L(i)

� )�∈[n]

that contains n subintervals, where it satisfies the property () that the length of each
subinterval is the same across all agents, i.e., μ(L(i)

� ) = μ(L(j)
� ) for any pair of agents

i, j ∈ [n] and � ∈ [n]. We note that Theorem 6.14 of Jojić et al. [14] also implies
the existence of an envy-free division of an equal total length with the same number
n(n−1) of cuts, although such division may not satisfy the additional property () that
the division obtained by the above procedure satisfies.

Proportional Multi-division. Another implication of our result is the existence of a
proportional multi-division that is feasible and contiguous when m is a prime power,
m � n, and each agent i has a non-negative additive valuation. Formally, a valuation
function vi is additive if for any pair of layered pieces L and L′ whose interiors are
disjoint, we have vi(L ∪ L′) = vi(L) + vi(L′). Consider an instance of the multi-
layered cake-cutting problem with m layers and n agents, m � n, with additive valu-
ations. A proportional fair share of agent i is 1

n of i’s valuation for the entire cake. A
multi-division is proportional if each agent receives a layered piece of value at least her
proportional fair share. Under additive valuations, it is easy to see that envy-freeness
implies proportionality.

Proposition 1. Consider an instance of the multi-layered cake-cutting problem with m
layers and n agents, m � n, with additive valuations. Any envy-free multi-division is
proportional.

By Proposition 1, Theorem 1 implies the existence of a proportional multi-division
that is feasible and contiguous when n is a prime power, m � n, and agents have
additive valuations. We can also show that such division exists when m is a prime
power, m � n, and agents have non-negative additive valuations in a similar manner
to the proof of Theorem 5 of Hosseini et al., who recursively apply a moving-knife
algorithm over a valuable layer that has value at least some agent’s proportional fair
share. The formal proof can be found in [13].

Proposition 2. Consider an instance of the multi-layered cake-cutting problem with m
layers and n agents, m � n, with non-negative additive valuations. If m is a prime
power, then there exists a proportional multi-division that is feasible and contiguous.
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Limitation of the Approach Based on Equivariant Topology. For a number n of agents
not equal to a prime power, it is known that Volovikov’s theorem does not hold. Further,
as already noted in the introduction, there is a counterexample of a cake cutting instance
with choice functions for which no envy-free division exists [2]. The counterexamples
show some limitations of the approach of equivariant topology, but do not prohibit the
existence of an envy-free division in the standard valuation function model. Indeed,
Avvakumov and Karasev [3] showed that an envy-free division among any number n of
agents still exists when agents have identical valuations that are not necessarily mono-
tone; this result cannot be obtained by the method of equivariant topology. See also the
last paragraph of Sect. 1 in [3]. In the context of multi-layered cake-cutting, the coun-
terexamples of [2,21] imply that an envy-free multi-division using n − 1 long knives
may not exist under the choice function model. However, it is still an open question
whether or not a counterexample exists for some natural valuation functions.

Computational Complexity.While we prove the existence of an envy-free multi-division
using n − 1 long knives, we do not settle the precise complexity class to which the
problem belongs. On a related note, the computational problem of the BSS theorem,
which is a special case of the Volovikov’s theorem, has been recently shown to be PPA-
p-complete [11]. Due to the relation that PPA-p = PPA-pk (see Proposition 2.2 of [11]),
it would be quite surprising if our problem belongs to PPA-pk, which would then imply
that our existential result can be proven via the BSS theorem, a less powerful statement
than that by Volovikov. Hence, we expect that a new complexity class, encompassing
the Volovikov theorem, should probably be introduced, though the challenge lies in the
fact that there is no constructive proof of Volovikov’s theorem.
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14. Jojić, D., Panina, G., Živaljević, R.: Splitting necklaces, with constraints. SIAM J. Discret.
Math. 35(2), 1268–1286 (2021)

15. Kuhn, H.W.: Some combinatorial lemmas in topology. IBM J. Res. Dev. 4(5), 518–524
(1960)

16. Lebert, N., Meunier, F., Carbonneaux, Q.: Envy-free two-player m-cake and three-player
two-cake divisions. Oper. Res. Lett. 41(6), 607–610 (2013)
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Abstract. Fair division has emerged as a very hot topic in EconCS
research, and envy-freeness is among the most compelling fairness con-
cepts. An allocation of indivisible items to agents is envy-free if no agent
prefers the bundle of any other agent to his own in terms of value. As
envy-freeness is rarely a feasible goal, there is a recent focus on relax-
ations of its definition. An approach in this direction is to complement
allocations with payments (or subsidies) to the agents. A feasible goal
then is to achieve envy-freeness in terms of the total value an agent gets
from the allocation and the subsidies.

We consider the natural optimization problem of computing alloca-
tions that are envy-freeable using the minimum amount of subsidies. As
the problem is NP-hard, we focus on the design of approximation algo-
rithms. On the positive side, we present an algorithm which, for a con-
stant number of agents, approximates the minimum amount of subsidies
within any required accuracy, at the expense of a graceful increase in the
running time. On the negative side, we show that, for a superconstant
number of agents, the problem of minimizing subsidies for envy-freeness
is not only hard to compute exactly (as a folklore argument shows) but
also, more importantly, hard to approximate.

Keywords: Fair division · Indivisible goods · Subsidy minimization ·
Approximation algorithms

1 Introduction

Fairly dividing goods among people is an extremely important quest since antiq-
uity. Today, fair division is a flourishing area of research in computer science,
economics, and political science and envy-freeness is considered as the ultimate
fairness concept [26]. Following a research trend that is very popular recently,
we consider allocation problems with indivisible items. An allocation of items
to agents is envy-free if no agent prefers the bundle of items allocated to some
other agent to her own. Traditionally, agents’ preferences are based on cardinal
valuations they have for the items.
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Unfortunately, with indivisible items, envy-freeness is rarely a feasible goal.
For example, no such allocation exists in the embarrassingly simple case with
a single item and two agents with some value for it. Recently proposed relax-
ations of envy-freeness aim to serve as useful alternative fairness notions. In a
line of research that emerged very recently, allocations are complemented with
payments (or subsidies) to the agents [7,18]. Now, envy-freeness dictates that no
agent prefers the allocation and payment of another agent to hers, and becomes
a feasible goal. However, important questions arise related to the sparing use of
money.

In this paper, we follow an optimization approach. We define and study
the optimization problem SMEF (standing for Subsidy Minimization for Envy-
Freeness). Given an allocation problem consisting of items and agents with val-
uations for the items, SMEF asks for an allocation that is envy-freeable using
the minimum total amount of subsidies.

SMEF is NP-hard; this follows by the NP-hardness of deciding whether a
given allocation problem has an envy-free allocation or not. Thus, we resort to
approximation algorithms for SMEF. As multiplicative approximation guaran-
tees are hopeless, our aim is to design algorithms that run in polynomial-time
and compute an allocation that is envy-freeable with an amount of subsidies
that does not exceed the minimum possible amount of subsidies (denoted χ) by
much. In particular, we use the total valuation of all agents for all goods (denoted
by sum v) as a benchmark and seek allocations that are envy-freeable with an
amount of at most χ + ρ · sum v as subsidies. The goal for the approximation
guarantee ρ of an algorithm is to be as small as possible.

We initiate the study of SMEF and present two results. On the positive side,
we design an algorithm that achieves an arbitrary low approximation guaran-
tee of ε > 0. When applied to allocation instances with a constant number of
agents, the algorithm uses dynamic programming and runs in time that is poly-
nomial in the number of items and 1/ε. On the negative side, we show that, in
general, SMEF is not only hard to solve exactly, but also hard to approximate
within a small constant. Unlike the folklore reduction1 for proving hardness of
envy-freeness, our proof uses a novel approximation-preserving reduction. Besides
separating the general case from that with constantly many agents, our nega-
tive result indicates that achieving good approximation guarantees will be a
challenging goal.

1.1 Related Work

The concept of envy-freeness was formally introduced by Foley [15] and Var-
ian [29]. As envy-freeness may not be achievable when goods are indivisible,
recent research has focused on defining approximations of envy-freeness. These
include envy-freeness up to one good [8], envy-freeness up to any good [10], epis-
temic envy-freeness [4], and more. Still, achieving even them in polynomial time

1 Notice that deciding whether an envy-free allocation exists for two agents with identi-
cal item valuations requires solving Partition, a well-known NP-hard problem [16].
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can be challenging, and recent work has focused on approximation algorithms;
see, e.g., [2,6,9,11,12,21,25].

The approach of mixing allocations with payments either from or to the
agents has been extensively considered in the economics literature. A typical
example is the rent division problem, where n items (rooms) and a fixed rent have
to be divided among n agents in an envy-free manner [27,28]. Compensations
to the agents were first considered by Maskin [22]. Subsequent papers consider
unit-demand allocation problems, where each agent can get at most one item;
see, e.g., [1]. Aragones [3] and Klijn [20] give polynomial-time algorithms that
compute allocations and payments. More general models are studied by Haake
et al. [17] and Meertens et al. [23].

In the AI literature, Chevaleyre et al. [13] consider allocation problems and
monetary transfers between the agents. In a model that is the closest to ours,
Halpern and Shah [18] aim to bound the amount of external subsidies assuming
that all agent valuations for goods are in [0, 1]. Among several results, they con-
jectured that subsidies of n−1 suffice; an even stronger version of the conjecture
was proved very recently by Brustle et al. [7].

1.2 Roadmap

The rest of the paper is structured as follows. We begin with preliminary defi-
nitions in Sect. 2. Our approximation algorithm is presented in Sect. 3 and our
result on the hardness of approximation for SMEF is presented in Sect. 4. We
conclude in Sect. 5.

2 Preliminaries

We consider allocation instances with a set M of m items and a set N of n agents.
Each agent i ∈ N has a valuation function vi : M → R≥0 over the items.2 With
some abuse of notation, we use vi(B) to denote the valuation of agent i for the
set (or bundle) of items B. Valuations are additive, i.e., vi(B) =

∑
g∈B vi(g). An

allocation is simply a partition X = (X1,X2, ...,Xn) of the items of M into n
disjoint bundles, where agent i ∈ N is supposed to get the bundle Xi. We use
the abbreviations sum v =

∑
i∈N vi(M) and max v = maxi∈N vi(M).

As usual, we define the social welfare of an allocation X = (X1, ...,Xn) to
be SW(X, v) =

∑
i∈N vi(Xi). An allocation X = (X1,X2, ...,Xn) is envy-free

if vi(Xi) ≥ vi(Xj) for every pair of agents i and j. Informally, envy-freeness
requires that no agent envies the bundle allocated to any other agent compared
to her own.

For an allocation X = (X1, ...,Xn) in an instance with agent valuations v,
the envy graph EG(X, v), introduced by Lipton et al. [21], is an edge-weighted
complete directed graph that has a node for each agent and the weight of the
2 In our exposition, we assume that valuations are non-negative, even though our

positive result can be extended to work without this assumption, in the model of [5]
where items can be goods or chores.
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directed edge (i, j) represents the “envy” of agent i for agent j. Using G =
EG(X, v) and wgtG(i, j) for the weight of the directed edge from node i to node
j in the envy graph EG(X, v), we define wgtG(i, j) = vi(Xj) − vi(Xi).

Following the modelling assumptions of [18], we also consider payments (or
subsidies) to the agents, represented by a payment vector π = 〈π1, ..., πn〉 with
non-negative entries, i.e., πi ≥ 0 for every agent i ∈ N . Below, we use the terms
“payment” and “subsidy” interchangeably. Now, we say that the pair (X,π) of
the allocation X and payment vector π is envy-free if vi(Xi)+πi ≥ vi(Xj)+πj for
every pair of agents i, j ∈ N . Informally, this extended version of envy-freeness
requires that no agent envies the bundle and the payment of any other agent
compared to the bundle and payment she gets.

We say that allocation X is envy-freeable if there is a payment vector π so that
the pair (X,π) is envy-free. Although the use of payments makes envy-freeness
a feasible goal, not all allocations are envy-freeable. The following theorem, due
to Halpern and Shah [18], gives sufficient and necessary conditions so that an
allocation is envy-freeable.

Theorem 1 (Halpern and Shah [18]). The following statements are equiva-
lent:

– The allocation X = (X1,X2, ...,Xn) is envy-freeable.
– The allocation X maximizes social welfare among all redistributions of its

bundles to the agents.
– The envy graph EG(X, v) contains no directed cycles of positive total weight.

Detecting whether a given allocation X is envy-freeable can be done using
the following linear program LP(X, v):

minimize
∑

i∈N

πi (1)

subject to: πi − πj ≥ vi(Xj) − vi(Xi),∀i, j ∈ N

π ≥ 0

LP(X, v) aims to find a payment vector π so that the envy-freeness constraints
between pairs of agents are satisfied. In addition, it minimizes the total amount
of payments. As it is observed by Halpern and Shah [18], the payment πi of
agent i obtained in this way is equal to the maximum total weight in any simple
path that originates from node i in the envy graph EG(X, v).

We study the optimization problem SMEF (standing for Subsidy Minimiza-
tion for Envy-Freeness). Given an allocation instance, SMEF aims to compute
an allocation that is envy-freeable with the minimum amount of subsidies. Since
the problem of computing an envy-free allocation is NP-hard, SMEF is NP-hard
as well.

We are interested in the design of approximation algorithms for SMEF. As
algorithms with finite multiplicative approximation ratio are hopeless (since it
is NP-hard to decide whether the minimum amount of subsidies is zero or not),



526 I. Caragiannis and S. D. Ioannidis

we seek polynomial-time algorithms that compute an allocation that is envy-
freeable with subsidies χ + ρ · sum v, with the approximation guarantee ρ being
as low as possible.

As a warmup, consider the algorithm that allocates all items to the agent i∗

who has maximum value for M and paying a subsidy of vi∗(M) to every other
agent i. Clearly, this is a polynomial-time algorithm. The allocation obtained
is envy-freeable since no redistribution of the bundles (i.e., giving all items to
another agent) results in higher social welfare. And the particular payments are
right: agent i∗ is indifferent between the bundle M and the payment to any other
agent, while the other agents are indifferent between the (equal) payments, and
prefer their payment to getting the whole bundle M . It can be easily verified
that the algorithm guarantees an amount of at most χ+(n−1)max v ≤ χ+(n−
1)sum v as subsidies; this is the best guarantee of this form for this algorithm
in the worst-case.

3 An Approximation Algorithm

We now present an algorithm that does much better. The algorithm exploits
ideas that have led to polynomial-time approximation schemes for combinato-
rial optimization problems like Knapsack; e.g., see [30]. It first discretizes all
valuations to multiples of a discretization parameter. In this way, the different
discretized valuations an agent can have for bundles of items in the new instance
is small. This allows to classify all allocations into a relatively small number of
classes, each defined by specific discretized valuation levels of each agent for all
bundles. Dynamic programming is used to decide the classes that are non-empty
and to select a representative allocation from each class. The final allocation is
selected among all representative allocations, possibly after redistributing the
bundles so that social welfare (with respect to the original valuations) is maxi-
mized (in order to get envy-freeability). This requires a call to linear program (1)
to compute the minimum amount of subsidies for each representative allocation.

The classification of allocations guarantees that the algorithm will consider
a representative allocation from the class that also contains the optimal one
(i.e., the allocation that is envy-freeable with the minimum amount of subsi-
dies overall). Our analysis shows that the amount of subsidies for making the
representative allocation envy-free is close to optimal. Polynomial running time
for the case of a constant number of agents follows by setting the discretization
parameter appropriately.

We now present our algorithm in detail. It uses an accuracy parameter ε > 0
and initially decides the value of the discretization parameter δ as follows:

δ =
εmax v

4mn2
.

First, the algorithm implicitly discretizes all agent valuations by defining new
valuations ṽ as follows: for an agent i with valuation vi(g) for item g, the dis-
cretized valuation ṽi(g) is equal to 	vi(g)/δ
 δ.
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The algorithm uses an arbitrary ordering of the items in M ; let M =
{g1, g2, ..., gm}, where the item indices are those in this ordering. The algorithm
builds a table T which classifies all possible allocations of subsets of M . Consider
an (n2+1)-dimensional tuple τ = (t, Pij , 1 ≤ i, j ≤ n), where t is an integer from
1 to m and Pij is an integer from 0 to 	max v/δ
, for every pair of agents i and j.
The entry T(τ) of the table indicates whether an allocation At = (At

1, A
t
2, ..., A

t
n)

of the first t items g1, ..., gt of M to the n agents, satisfying ṽi(At
j) = Pijδ for

every pair of agents i and j, exists (T(τ) = 1) or not (T(τ) = 0).
The entries of T are computed using the following recursive relation:

– For a tuple τ = (t, Pij , 1 ≤ i, j ≤ n) with t = 1, the algorithm sets T(τ) = 1
if there exists k ∈ [n] such that, for every i ∈ [n], ṽi(g1) = Pikδ and Pij = 0
for every j �= k. Otherwise, the algorithm sets T(τ) = 0.

– For a tuple τ = (t, Pij , 1 ≤ i, j ≤ n) with t > 1, the algorithm sets T(τ) = 1
if there exists k ∈ [n] and tuple τ ′ = (t − 1, P ′

ij , 1 ≤ i, j ≤ n) such that, for
every i ∈ [n], Pik = P ′

ik + ṽi(gt)/δ and Pij = P ′
ij for every j �= k. Otherwise,

the algorithm sets T(τ) = 0.

Essentially, each non-zero entry of T (i.e., T(τ) = 1) indicates a non-
empty class Aτ of (possibly partial, when the first argument of τ is an integer
smaller than m) allocations. To compute a representative complete allocation
Aτ ∈ Aτ among those implied by the non-zero entry corresponding to the tuple
(m,Pm

ij , 1 ≤ i, j ≤ n), the algorithm does the following for t = m downto 2. Let
k ∈ [n] be such that T(τ ′) = 1 for a tuple τ ′ = (t − 1, P t−1

ij , 1 ≤ i, j ≤ n) with
P t−1

ik = P t
ik − ṽi(gt)/δ and P t−1

ij = P t
ij for every pair of agents i and j �= k.

The algorithm assigns item gt to agent k and proceeds to considering the next
item. The first item g1 is assigned to agent k such that T(τ ′) = 1 for a tuple
τ ′ = (1, P 1

ij , 1 ≤ i, j ≤ n) with P 1
ik = ṽi(g1)/δ and P 1

ij = 0 for every pair of
agents i and j �= k.

Next, the algorithm redistributes the bundles of each allocation Aτ that
represents a non-empty class Aτ so that an allocation A′

τ of maximum social
welfare (among those that distribute the particular bundles to the agents) is
obtained (in terms of the original valuations). It solves LP(A′

τ , v) (for the original
valuations) to compute the minimum amount of subsidies that make A′

τ envy-
free. Among all allocations A′

τ , it outputs the one with the minimum amount
of subsidies. The approximation guarantee of the algorithm is given by the next
lemma.

Lemma 1. Given an instance of SMEF that has an allocation that is envy-
freeable with an amount of χ as total subsidies, the algorithm computes an allo-
cation that is envy-freeable with total subsidies of at most χ + 4mn2δ.

Proof. Let τ be a full tuple such that Aτ contains an allocation O = (O1, ..., On)
that is envy-freeable with subsidies of χ. Since Aτ is non-empty, it is T(τ) = 1.
Let A be the allocation computed by the algorithm as representative of Aτ

and A′ the allocation that is obtained after redistributing the bundles of A.
By Theorem 1, A′ is clearly envy-freeable; we will show that the corresponding
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subsidies are at most χ + 4mn2δ. Clearly, the output of the algorithm will be
envy-freeable with at most this amount of subsidies.

Let σ ∈ L(n) be the permutation over [n] such that A′
j = Aσ(j) for every

j ∈ [n]. Let G and H be the envy graphs EG(O, v) and EG(A′, v), respectively.
We now present the most crucial component of our analysis. It exploits the

fact that both O and A belong to class Aτ and uses the third statement of
Theorem 1.

Lemma 2. For every pair of agents i and j, there exists a (not necessarily
simple) path p(i, j) from node σ(i) to node σ(j) such that

wgtH(i, j) ≤
∑

e∈p(i,j)

wgtG(e) + 4mδ.

Proof. In the proof, we will use the following simple lemma.

Lemma 3. For every agent i and every two bundles B1 and B2 such that
ṽi(B1) = ṽi(B2), it holds that

−|B2|δ ≤ vi(B1) − vi(B2) ≤ |B1|δ. (2)

Proof. First observe that, by the definition of ṽ and its relation to v, for every
agent i and item g ∈ M , it holds that ṽi(g) ≤ vi(g) ≤ ṽi(g)+ δ. Hence, for every
bundle B,

ṽi(B) ≤ vi(B) ≤ ṽi(B) + |B|δ.
The lemma follows by applying this inequality for bundles B1 and B2 and using
the fact that ṽi(B1) = ṽi(B2). �

We use the notation σ−1 to refer to the inverse permutation of σ, i.e.,
σ−1(k) = j when k = σ(j). Consider the set C that contains edge (k, σ−1(k)) for
every agent k such that k �= σ−1(k). C is either empty (if k = σ−1(k) for every
agent k) or consists of disjoint directed cycles. For an agent i, if σ−1(i) �= i, we
denote by Ci the set of nodes that are spanned by the cycle of C that includes
node i. Otherwise, we define Ci to contain only node i.

Define the (not necessarily simple) path p(i, j) from node σ(i) to node σ(j)
to contain edge (k, σ(k)) for every node k in the set Ci besides node i and, if
i �= σ(j), the directed edge (i, σ(j)).

For every pair of agents i and j, we have that the weight of the directed edge
(i, j) in H is

wgtH(i, j) ≤ wgtH(i, j) −
∑

k∈Ci

wgtH(k, σ−1(k))

= vi(A′
j) − vi(A′

i) −
∑

k∈Ci

(
vk(A′

σ−1(k)) − vk(A′
k)

)

= vi(Aσ(j)) − vi(Aσ(i)) −
∑

k∈Ci

(
vk(Ak) − vk(Aσ(k))

)
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≤ vi(Oσ(j)) − vi(Oσ(i)) −
∑

k∈Ci

(
vk(Ok) − vk(Oσ(k))

)

+

(

|Aσ(j)| + |Oσ(i)| +
∑

k∈Ci

|Ok| +
∑

k∈Ci

|Aσ(k)|
)

δ

≤ vi(Oσ(j)) − vi(Oσ(i)) −
∑

k∈Ci

(
vk(Ok) − vk(Oσ(k))

)
+ 4mδ

= vi(Oσ(j)) − vi(Oi) +
∑

k∈Ci\{i}

(
vk(Oσ(k)) − vk(Ok)

)
+ 4mδ

= wgtG(i, σ(j)) +
∑

k∈Ci\{i}
wgtG(k, σ(k)) + 4mδ

=
∑

e∈p(i,j)

wgtG(e) + 4mδ.

The first inequality follows since Ci consists of node i only (when i = σ(i))
or the edges (k, σ−1(k)) for k ∈ Ci form a directed cycle of non-positive total
weight in H. The second inequality follows by applying Lemma 3 (recall that
both allocations A and O belong to the class Aτ and, hence, ṽ�(Aq) = ṽ�(Oq)
for every pair of agents 	 and q). The third inequality follows since the bundles
Aσ(k) (respectively, Ok) for k ∈ Ci are disjoint. The equalities are obvious or
follow by the definition of the weights. �

Now, let π′ and π be the solutions of LP(A′, v) and LP(O, v), respectively.
Hence, χ = Sub(O, v) =

∑n
i=1 πi. We will use Lemma 2 to argue that

π′
i ≤ πσ(i) + 4mnδ. (3)

This will yield total subsidies of

Sub(A′, v) =
n∑

i=1

π′
i ≤

n∑

i=1

(
πσ(i) + 4mnδ

)
= χ + 4mn2δ,

completing the proof.
Recall from Theorem 1 that the payment π′

� (respectively, π�) is equal to
the maximum path weight over all simple paths that originate from node 	 in
graph H (respectively, graph G). Let Q� be the corresponding simple path that is
destined for some node s (and originates from node 	), i.e., π′

� =
∑

e∈Q�
wgtH(e).

We construct the (not necessarily simple) path P� from node σ(	) to node σ(s)
of G that consists of path p(i, j) for every directed edge (i, j) in the path Q�.
Using Lemma 2, we get

π′
� =

∑

e∈Q�

wgtH(e) ≤
∑

e∈Q�

⎛

⎝
∑

e′∈p(e)

wgtG(e′) + 4mδ

⎞

⎠ (4)

≤
∑

e∈Q�

∑

e′∈p(e)

wgtG(e′) + 4mnδ =
∑

e∈P�

wgtG(e) + 4mnδ.
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The second inequality follows since path Q� is simple (and, hence, contains at
most n − 1 edges). Now, create the simple path P ′

� from node σ(	) to node σ(s)
by removing the cycles in P�. Since graph G does not have any directed cycles
of positive total weight (by Theorem 1), we have wgtG(P�) ≤ wgtG(P ′

�). Now,
(4) yields

π′
� ≤

∑

e∈P ′
�

wgtG(e) + 4mnδ,

which implies (3) since P ′
� is a simple path that originates from node σ(	). �

The running time of the algorithm depends on the number of table entries,
the number of steps required for computing each table entry using the recursive
relation, the number of steps required to compute a representative allocation for
a non-empty allocation class, the redistribution time, and the time required to
solve the linear programs.

The dimensions of the table T are m for the first one that enumerates over
all items, and at most 1+	max v/δ
 = 1+ 4mn2

ε for each of the other dimensions.

Overall, the size of the table is O
((

m
ε

)n2+1
)
. The computation of each table

entry using the recursive relation needs the values in n2 table entries that have
been previously computed. In a representative allocation, the agent to which each
of the m items is allocated requires time n2 as well, i.e., time O(m) in total. The
redistribution of the bundles can be implemented using a matching computation
in a complete edge-weighted bipartite graph that has a node for each agent and
for each bundle and the weight of an edge indicates the valuation of an agent for
a bundle. As n is constant, this takes constant time. Also, the linear programs
have constant size. In general, since n is a constant, it is ignored in the O notation
unless it appears in the exponent. The above discussion is summarized in the
next statement.

Theorem 2. Let ε > 0 be the accuracy parameter used by the algorithm. Given
an instance of SMEF consisting of a constant number n of agents with valua-
tions v over a set M of m items that has an envy-freeable allocation using an
amount χ of subsidies, the algorithm runs in time O

(
(m/ε)n2+2

)
and computes

an allocation that is envy-freeable using a total subsidy of at most χ + εmax v.

4 Hardness of Approximating SMEF

In this section, we show that approximation guarantees like the one in the state-
ment of Theorem 2 are not possible when the number of agents is part of the
input.

Theorem 3. Approximating SMEF within an additive term of 3 · 10−4sum v is
NP-hard.
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We prove Theorem 3 by presenting a reduction from Maximum 3-Dimensional
Matching (MAX-3DM). An instance of MAX-3DM consists of three disjoint sets
of elements A = {a1, a2, ..., an}, B = {b1, b2, ..., bn}, and C = {c1, c2, ..., cn}, each
of size n, and a set T of m triplets of the form (ai, bj , ck) with ai ∈ A, bj ∈ B,
and ck ∈ C. The objective is to compute a disjoint subset of T (or, simply, a 3D
matching) of maximum size. The problem is well-known to be NP-hard not only
to solve exactly [16] but also to approximate [19].

We will use the inapproximability result of Chleb́ık and Chleb́ıková [14],
which applies to bounded instances of MAX-3DM in which each element appears
in exactly two triplets (i.e., m = 2n); we will refer to this restriction of MAX-
3DM as MAX-3DM-2. In particular, Chleb́ık and Chleb́ıková [14] show that it is
NP-hard to distinguish between instances of MAX-3DM-2 with a 3D matching
of size at least K and instances of MAX-3DM-2 in which any 3D matching has
size at most K − 0.01n.3

4.1 The Reduction

We present our reduction and full proof for the case χ > 0. We omit the case
χ = 0, which requires a minor modification of the reduction. On input an instance
of MAX-3DM-2, our reduction constructs in polynomial time an instance of
SMEF, in which the minimum amount of subsidies that can make some allocation
envy-free is exactly χ(1 + max{K − L, 0}), where L is the size of the maximum
3D matching in the MAX-3DM-2 instance. Using the result of [14], we will
get that it is NP-hard to distinguish between SMEF instances in which the
minimum amount of subsidies is at most χ and instances in which it is at least
χ(1+0.01n). Hence, SMEF will be proved to be NP-hard to approximate within
0.01nχ. Our construction will be such that sum v < 30nχ. In this way, we will
obtain a hardness of approximating SMEF within an additive term of (at least)
3 · 10−4sum v, as desired.

Our reduction is as follows. Given an instance of MAX-3DM-2 consisting of
sets of elements A, B, and C, each of size n, and a set of 2n triplets T , the
instance of SMEF has

– three agents 1, 2, and 3,
– three agents J1(t), J2(t), and J3(t) for every triplet t ∈ T ,
– an item Ai for every element ai ∈ A,
– an item Bi for every element bi ∈ B,
– an item Γi for every element ci ∈ C,
– three items Δt, Zt, and Θt for every triplet t ∈ T , and
– an additional item Λ.

The agents J1(t), J2(t), and J3(t) that correspond to the triplet t = (ai, bj , ck)
have valuations 0 for all items besides the items Ai, Bj , Γk, Δt, Zt, and Θt.

3 This statement is actually weaker than the one proved in [14]. However, it suffices
for our purpose to prove hardness of approximation. Note that we have made no
particular attempt to optimize our inapproximability threshold.
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Agents 1, 2 have valuation 0 for all items besides item Λ and agent 3 has valuation
zero for all items besides item Λ and items Θt for t ∈ T . Their remaining
valuations are as follows:

Ai Bj Γk Δt Zt Θt Λ
1 0 0 0 0 0 0 χ
2 0 0 0 0 0 0 χK
3 0 0 0 0 0 χ χK

J1(t) χ χ χ 3χ 3χ 0 0
J2(t) 0 0 0 χ χ χ 0
J3(t) 0 0 0 0 χ 0 0

Recall that each element belongs to exactly two triplets. Hence, two agents have
positive value for item Ai (similarly for items Bj and Γk): agents J1(t1) and
J1(t2) such that the triplets t1 and t2 contain element ai (similarly for elements
bj and ck). It is easy to see that either two or three agents have positive value
for each item. For every triplet t, the agents J1(t), J2(t), and J3(t) have total
valuation 9χ, 3χ, and χ, respectively. Taking into account that K ≤ n, we obtain
that sum v < 30nχ.

4.2 Lower Bound on Subsidies

Consider an instance of SMEF constructed by our reduction and let X be an
envy-freeable allocation in it. We will first lower-bound the minimum amount
of subsidies that make X envy-free. First observe that X cannot give item Λ to
agent 1; in that case, exchanging the bundles of agents 1 and 2 would result to
an increase of the social welfare and, hence, X would not be envy-freeable. If X
gives item Λ to agent 3, agents 1 and 2 would need subsidies of at least χ and
χK, respectively, so that they do not envy agent 3. Hence, Sub(A, v) ≥ χ(1+K)
in this case.

In the following, we will lower-bound the minimum total subsidies that make
X envy-free assuming that item Λ is given to agent 2. Let θ be the number of
items Θt for t ∈ [2n] agent 3 gets. Then, agent 3 should be given a subsidy of
at least χ max{K − θ, 0} so that she does not envy agent 2. Agent 1 needs a
subsidy of χ max{K − θ, 1} so that she does not envy agents 1 and 2.

For a triplet t = (ai, bj , ck) in the original instance of MAX-3DM-2, we call
it full if all items Ai, Bj , and Γk (which correspond to the elements of the
triplet) have been allocated to the agents J1(t), J2(t), or J3(t). Otherwise, we
call it partial. We call t supported if item Θt has been allocated to agent J2(t);
otherwise, we call t unsupported.

In the next four lemmas, we lower-bound the total amount of subsidies the
agents J1(t), J2(t), and J3(t) of a triplet t need, depending on the type of t.

Lemma 4. The agents J1(t), J2(t), and J3(t) of a full and supported triplet t
need subsidies of at least χ max{K − θ − 2, 0}.
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Proof. Consider a full and supported triplet t. If agent J2(t) has value at most
2χ (i.e., getting Θt and at most one of the items Δt and Zt), then she needs a
subsidy of at least χ max{K − θ − 2, 0} so that she does not envy agent 3. If
agent J2(t) has value 3χ by getting both items Δt and Zt in addition to Θt, she
needs a subsidy of at least χ max{K −θ−3, 0}, while then agents J1(t) and J3(t)
need subsidies of at least 3χ+χ max{K − θ −3, 0} and χ+χ max{K − θ −3, 0},
respectively, so that they do not envy agent J2(t). In both cases, the total amount
of subsidies of the agents J1(t), J2(t), and J3(t) is at least χ max{K − θ − 2, 0}.

�
Lemma 5. The agents J1(t), J2(t), and J3(t) of a full and unsupported triplet
t need subsidies of at least χ max{K − θ − 1, 0}.
Proof. Consider a full and unsupported triplet t. If agent J2(t) has value at most
χ (i.e., getting at most one of the items Δt and Zt), then she needs a subsidy of
at least χ max{K − θ − 1, 0} so that she does not envy agent 3. If agent J2(t)
has value 2χ by getting both items Δt and Zt, she needs a subsidy of at least
χ max{K − θ − 2, 0}, while then agents J1(t) and J3(t) need subsidies of at least
3χ+χ max{K −θ −2, 0} and χ+χ max{K −θ −2, 0}, respectively, so that they
do not envy agent J2(t). In both cases, the total amount of subsidies of agents
J1(t), J2(t), and J3(t) is at least χ max{K − θ − 1, 0}. �
Lemma 6. The agents J1(t), J2(t), and J3(t) of a partial and supported triplet
t need subsidies of at least χ max{K − θ − 1, 0}.
Proof. Let t be a partial and supported triplet. If agent J2(t) does not get items
Δt and Zt, then she gets only a value of χ from item Θt and needs a subsidy of
at least χ max{K − θ − 1, 0} so that she does not envy agent 3.

If agent J2(t) gets item Δt but not item Zt, she needs a subsidy of χ max{K−
θ − 2, 0} so that she does not envy agent 3. Then, if agent J1(t) does not get
item Zt, her value is at most 2χ (from at most two of the items Ai, Bj , and
Γk) and needs a subsidy of χ + χ max{K − θ − 2, 0} so that she does not envy
agent J2(t). If agent J3(t) does not get item Zt, she needs a subsidy of at least
χ + χ max{K − θ − 2, 0} so that she does not envy agent J2(t).

If agent J2(t) gets item Zt but not Δt, she needs a subsidy of χ max{K −
θ − 2, 0} so that she does not envy agent 3 and agent J3(t) needs a subsidy of
at least χ + χ max{K − θ − 2, 0} so that she does not envy agent J2(t).

Finally, if agent J2(t) gets items Δt and Zt, her value is 3χ and needs a
subsidy of at least χ max{K − θ − 3, 0} so that she does not envy agent 3. Then,
each of agents J1(t) and J3(t) need a subsidy of at least χ+χ max{K − θ −3, 0}
so that they do not envy agent J2(t).

In all cases, the total amount of subsidies the agents J1(t), J2(t), and J3(t)
need is at least χ max{K − θ − 1, 0}. �
Lemma 7. The agents J1(t), J2(t), and J3(t) of a partial and unsupported
triplet t need subsidies of at least χ max{K − θ, 1}.
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Proof. Let t be a partial and unsupported triplet. If agent J2(t) gets both items
Δt and Zt, she needs a subsidy of χ max{K − θ − 2, 0} so that she does not
envy agent 3, while agents J1(t) and J3(t) would then need subsidies of at least
4χ+χ max{K −θ −2, 0} and χ+χ max{K −θ −2, 0}, respectively, so that they
do not envy agent J2(t).

If agent J2(t) gets only item Δt, she needs a subsidy of χ max{K − θ − 1, 0}
so that she does not envy agent 3. Then, the agent who does not get item Zt

among J1(t) and J3(t) would need a subsidy of at least χ + χ max{K − θ − 1, 0}
so that she does not envy agent J2(t).

If agent J2(t) gets only item Zt, she needs a subsidy of χ max{K − θ − 1, 0}
so that she does not envy agent 3, while agent J3(t) needs a subsidy of at least
χ + χ max{K − θ − 1, 0} so that she does not envy agent J2(t).

Finally, if agent J2(t) gets no item (among Δt and Zt), she needs a subsidy
of at least χ so that she does not envy the agents who get items Δt and Zt and
a subsidy of at least χ max{K − θ, 0} so that she does not envy agent 3.

In all cases, the total amount of subsidies the agents J1(t), J2(t), and J3(t)
need is at least χ max{K − θ, 1}. �

We now denote by L1, L2, P1, and P2, the number of full and supported, full
and unsupported, partial and supported, and partial and unsupported triplets
defined by X, respectively. Notice that the full triplets form a 3D matching.
Denoting by L the maximum size over all 3D matchings of the MAX-3DM-2
instance, we have L ≥ L1 + L2. Using Lemmas 4–7, and our observations for
agents 1 and 3, we have that the total amount of subsidies X needs to become
envy-free is

Sub(X, v) ≥ χ (L1 max{K − θ − 2, 0} + L2 max{K − θ − 1, 0} (5)
+P1 max{K − θ − 1, 0} + P2 max{K − θ, 1}
+ max{K − θ, 0} + max{K − θ, 1}) .

We will distinguish between two cases for K − θ. If K − θ ≥ 2, (5) yields

Sub(X, v) ≥ χ (L2 + P1 + 2P2 + 4) = χ (2n − L1 + P2 + 4)
≥ χ(1 + max{K − L, 0}).

Now, notice that θ, the number of items Θt agent 3 gets in X is upper-bounded
by the number of unsupported triplets, i.e., θ ≤ L2 +P2. Thus, if K − θ ≤ 1, (5)
yields

Sub(X, v) ≥ χ (P2 + K − θ + 1) ≥ χ (K − L2 + 1) ≥ χ(1 + max{K − L, 0}).

We conclude that the minimum amount of subsidies necessary to make X
envy-free is at least χ(1 + max{K − L, 0}).

4.3 Upper Bound on Minimum Subsidies

We now present our upper bound on the minimum amount of subsidies for
envy-freeness. Given a 3D matching M of maximum size L in the MAX-3DM-2
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instance, we will construct an allocation for the SMEF instance and will show
that it is envy-freeable with an amount of subsidies equal to χ(1 + max{K −
L, 0}).

For defining the allocation, we partition T \M in two disjoint sets of triplets
T1 and T2 of size 2n − max{K,L} and max{K − L, 0}, respectively.

– For every triplet t = (ai, bj , ck) ∈ M, agent J1(t) gets items Ai, Bj , and Γk,
agent J2(t) gets item Δt and agent J3(t) gets item Zt.

– For every triplet t = (ai, bj , ck) �∈ M, let F (t) be the set of items that
correspond to the elements of t that have not been included in triplets of M.
Note that, due to the maximality of M, F (t) has zero, one, or two elements
among Ai, Bj , and Γk. For every triplet t = (ai, bj , ck) ∈ T1, agent J1(t) gets
item Δt, agent J2(t) gets the items in F (t), if any, and item Θt, and agent
J3(t) gets item Zt.

– For every triplet t = (ai, bj , ck) ∈ T2, agent J1(t) gets item Δt, agent J2(t)
gets the items in F (t), if any, and agent J3(t) gets item Zt.

– Agent 3 gets item Θt for every triplet t ∈ M ∪ T2.
– Agent 2 gets item Λ.
– Agent 1 gets no items.

We claim that the allocation above is envy-freeable by assigning a subsidy of χ
to agent 1 and a subsidy of χ to agent J2(t) for every triplet t ∈ T2 (if any).

Indeed, agent 1 has positive value only for item Λ, which is given to agent 2,
who gets no subsidy. Also, no other agent gets a subsidy more than the subsidy
χ that is given to agent 1. Hence, agent 1 is not envious. Agent 2 gets item Λ,
which is the only item she values positively and much higher than the subsidy
given to any other agent. Hence, agent 2 is not envious either. Agent 3 gets
exactly max{K,L} items of total value χ max{K,L}. She does not envy agent
2 who gets item Λ (which agent 3 values for χK) since no subsidy is given to
agent 2. Clearly, the value of agent 3 is much higher than the subsidy given to
any other agent.

Consider a triplet t = (ai, bj , ck) ∈ M. Agent J1(t) has a value of 3χ for the
items Ai, Bj , and Γk she gets. The remaining items for which she has positive
valuation of 3χ have been given to agents J2(t) and J3(t), respectively. Since
these agents do not get subsidies, agent J1(t) is not envious of them. Clearly,
agent J1(t) is not envious of any other agent since she has zero value for all other
items and no agent gets a subsidy more than χ. Agent J3(t) gets item Zt, the
only item for which she has positive value and does not envy any other agent
since no one gets a subsidy higher than χ. Agent J2(t) gets a value of χ from
item Δt and does not envy agent J3(t), who gets item Zt, or agent 3, who gets
item Θt, as these agents receive no subsidy. Clearly, agent J2(t) envies no other
agent.

Now consider a triplet t = (ai, bj , ck) �∈ M. Agent J1(t) has a value of 3χ for
the item Δt she gets. The remaining items for which she has positive valuation
have been allocated as follows. Item Zt has been given to agent J3(t); clearly,
agent J1(t) is not envious of J3(t) since the latter gets no subsidies. The items
in F (t) have been given to agent J2(t). Again, agent J1(t) is not envious of J2(t)
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since F (t) contains at most two items (which agent J1(t) values for χ each) and
agent J2(t) gets a subsidy of zero (if t ∈ T1) or χ (if i ∈ T2). Clearly, J1(t) does
not envy any other agent. Agent J3(t) gets item Zt, the only item for which she
has positive value and does not envy any other agent since no one gets a subsidy
higher than χ. Agent J2(t) gets a value of χ, either from item Θt (if t ∈ T1) or
as subsidy (if t ∈ T2), and does not envy agent J1(t) who gets item Δt or agent
3 who gets item Θt only when t ∈ T2; recall that these two agents never get
subsidies. Again, agent J2(t) envies no other agent.

4.4 Adapting the Proof for the Case χ = 0

The modification required in our reduction so that it covers the case χ = 0 as
well is to remove agent 1 and replace χ with 1 in the definition of valuations.
In particular, the agents J1(t), J2(t), and J3(t) that correspond to the triplet
t = (ai, bj , ck) have valuations 0 for all items besides the items Ai, Bj , Γk, Δt,
Zt, and Θt. Agent 2 has valuation 0 for all items besides item Λ and agent 3 has
valuation zero for all items besides item Λ and items Θt for t ∈ T . The remaining
valuations are now as follows:

Ai Bj Γk Δt Zt Θt Λ
2 0 0 0 0 0 0 K
3 0 0 0 0 0 1 K

J1(t) 1 1 1 3 3 0 0
J2(t) 0 0 0 1 1 1 0
J3(t) 0 0 0 0 1 0 0

The same reasoning as in our proof for the case χ �= 0 gives a minimum
amount of subsidies for the SMEF instance of exactly max{K − L, 0}, where
L is the maximum 3D matching size in the MAX-3DM-2 instance. In this way,
we get that SMEF is NP-hard to approximate within 0.01n (i.e., it is NP-hard
to distinguish between envy-free instances and instances that need subsidies
of 0.01n) and the construction satisfies sum v < 30n. This yields the desired
inapproximability result in the statement of Theorem 3 for the case χ = 0 as
well.

5 Concluding Remarks

We have initiated the study of the optimization problem SMEF. The challenging
open problem that deserves investigation is to close the gap between the trivial
approximation guarantee of n − 1 in Sect. 2 and our negative result for super-
constant numbers of agents in Sect. 4. Unfortunately, more sophisticated existing
algorithms, such as the recent one by Brustle et al. [7], do not lead to better
approximations.

We remark that max v could be used alternatively to sum in the definition of
the approximation guarantees of SMEF. Actually, the guarantee for our dynamic
programming algorithm is stated in terms of max v. We can express the rest of
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our results using max v as well. First, the trivial algorithm presented at the
end of Sect. 2 uses an amount of χ + (n − 1)max v as subsidies. Second, an
adaptation of the current proof of the inapproximability result can easily give
that approximating SMEF within an additive term of c · max v for a constant
c is NP-hard. The important observation is that max v < nχ (or max v < n
when χ = 0) in our construction. Then, distinguishing between SMEF instances
in which the minimum amount is at most χ and at least χ(1 + 0.01n) (or at
least 0.01n when χ = 0) requires to distinguish between SMEF instances in
which the minimum amount is at most χ and at least χ + 0.01max v. So, the
inapproximability constant is a bit higher in this case. The main advantage of
adopting sum is that it makes the problem of computing the tight approximation
factor more challenging.

Interestingly, an advantage of the trivial algorithm is that the particular pay-
ments incentivize the agents to report their valuations truthfully. What is the
best possible approximation guarantee that can be obtained for SMEF by truth-
ful algorithms? Unfortunately, a simple application of Myerson’s characterization
in single-item settings [24] indicates that no approximation guarantee better than
n − 1 is possible. Indeed, consider instances with a single item. By the charac-
terization of envy-freeable allocations by Halpern and Shah [18] (i.e., the second
statement in Theorem 1), we know that the agent with the highest valuation
should get the item. Then, Myerson’s characterization for truthful mechanisms
in single parameters environments and our requirement for non-negative pay-
ments give us the specific form payments should have so that truthful reporting
is a dominant strategy for all agents when this algorithm is used: if the agent i
who gets the item receives payment of p ≥ 0, agent t should get a payment of
exactly p + vi − vt, where vi and vt are the payments of agents i and t. Now,
consider specifically the instance in which one agent has value 1 for the item,
and all other agents have value 0. Truthfulness requires (at least) a unit of sub-
sidy to each agent that does not get the item (i.e., total subsidies of n − 1 while
sum = 1), even though there is clearly an allocation that is envy-free without
any payments. This yields the claimed lower bound of n−1 in the approximation
guarantee.
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Abstract. We consider the problem of online allocation (matching, bud-
geted allocations, and assortments) of reusable resources where an adver-
sarial sequence of resource requests is revealed over time and allocated
resources are used/rented for a stochastic duration, drawn independently
from known resource usage distributions. This problem is a fundamen-
tal generalization of well studied models in online resource allocation
and assortment optimization. Previously, it was known that the greedy
algorithm that simply makes the best decision for each arriving request
is 0.5 competitive against clairvoyant benchmark that knows the entire
sequence of requests in advance. We give a new algorithm that is (1−1/e)
competitive for arbitrary usage distributions and large resource capaci-
ties. This is the best possible guarantee for the problem.

Designing the optimal online policy for allocating reusable resources
requires a reevaluation of the key trade off between conserving resources
for future requests and being greedy. Resources that are currently in use
may return “soon” but the time of return and types of future requests
are both uncertain. At the heart of our algorithms is a new quantity that
factors in the potential of reusability for each resource by (computation-
ally) creating an asymmetry between identical units of the resource. We
establish a performance guarantee for our algorithms by constructing a
feasible solution to a novel LP free system of constraints. More generally,
these ideas lead to a principled approach for integrating stochastic and
combinatorial elements (such as reusability, customer choice, and bud-
geted allocations) in online resource allocation problems.

The full version of this paper is available at https://arxiv.org/pdf/
2002.02430.pdf.

Keywords: Online resource allocation · Reusable resources · LP free
analysis · Optimal competitive ratio
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Abstract. In this paper, we study a matching market model on a bipar-
tite network where agents on each side arrive and depart stochastically
by a Poisson process. For such a dynamic model, we design a mechanism
that decides not only which agents to match, but also when to match
them, to minimize the expected number of unmatched agents. The main
contribution of this paper is to achieve theoretical bounds on the per-
formance of local mechanisms with different timing properties. We show
that an algorithm that waits to thicken the market, called the Patient
algorithm, is exponentially better than the Greedy algorithm, i.e., an
algorithm that matches agents greedily. This means that waiting has
substantial benefits on maximizing a matching over a bipartite network.
We remark that the Patient algorithm requires the planner to identify
agents who are about to leave the market, and, under the requirement,
the Patient algorithm is shown to be an optimal algorithm. We also show
that, without the requirement, the Greedy algorithm is almost optimal.
In addition, we consider the 1-sided algorithms where only an agent on
one side can attempt to match. This models a practical matching mar-
ket such as a freight exchange market and a labor market where only
agents on one side can make a decision. For this setting, we prove that
the Greedy and Patient algorithms admit the same performance, that is,
waiting to thicken the market is not valuable. This conclusion is in con-
trast to the case where agents on both sides can make a decision and the
non-bipartite case by [Akbarpour et al., Journal of Political Economy,
2020].

Keywords: Bipartite matching · Markov chain · Online algorithm

The full version is available at https://arxiv.org/abs/2110.10824.
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The prophet inequality problem constitutes one of the cornerstones of online
decision-making. A designer knows a set of n distributions from which random
variables are sequentially realized in an arbitrary order. Once a random variable
is realized, the designer decides whether to accept it or not; at most one realized
random variable can be accepted. The objective is to maximize the value of the
variable accepted, and the performance of the algorithm is evaluated against
the ex-post maximum realized. In a beautiful result, Samuel-Cahn showed that
a simple static threshold policy achieves the optimal competitive ratio for this
problem. Samuel-Cahn’s algorithm determines a threshold p such that the prob-
ability that there exists a realization exceeding the threshold is exactly 1

2 , and
then accepts the first random variable that exceeds the threshold. This algo-
rithm achieves a competitive ratio of 1

2 against the ex-post optimum; no online
algorithm, even one with adaptive thresholds, can obtain better performance.

Over the last few years, many extensions of the basic prophet inequality to
more general feasibility constraints have been studied, and tight bounds on the
competitive ratio have been established. However, one simple natural extension
has largely remained open: where the designer is allowed to accept k > 1 random
variables for some small value of k. This is called the multi-unit prophet inequal-
ity. When k is relatively large, then it is known that static threshold policies can

achieve a competitive ratio of 1 − Θ
(√

log(k)
k

)
which goes to 1 as k → ∞, and

this ratio is asymptotically tight. However, (for example,) for k = 2 or 3, prior
to our work, the best known competitive ratio of static thresholds remained 1

2 .
Our work addresses this gap by answering the following question: Can a static
threshold policy achieve a better competitive ratio than 1

2 for small k = 2, 3, . . .?
We develop an algorithm for finding a static threshold policy for the multi-

unit prophet inequality that is sensitive to the supply k. Our algorithm is simple
and practical. For any fixed price p, it estimates two statistics: (1) the fraction of
items expected to be sold at that price, μk(p), and (2) the probability that not
all units will sell out before all the customers have been served, δk(p). We then
pick the static price p at which these two quantities are equal: μk(p) = δk(p);
this generalizes Samuel-Cahn’s algorithm and proof via a min-max approach and
shows that the worst-case competitive ratio is attained for Poisson distributions.
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The competitive ratio of our policy for k = 2, · · · , 5 is 0.585, 0.630, 0.660, and
0.682 respectively, and scales as 1 − Ω(

√
log k/k) for large k.

The full version can be found here: https://arxiv.org/abs/2007.07990.
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Abstract. Matching markets involve heterogeneous agents (typically
from two parties) who are paired for mutual benefit. During the last
decade, matching markets have emerged and grown rapidly through the
medium of the Internet. They have evolved into a new format, called
Online Matching Markets (OMMs), with examples ranging from crowd-
sourcing to online recommendations to ridesharing. There are two fea-
tures distinguishing OMMs from traditional matching markets. One is
the dynamic arrival of one side of the market: we refer to these as online
agents while the rest are offline agents. Examples of online and offline
agents include keywords (online) and sponsors (offline) in Google Adver-
tising; workers (online) and tasks (offline) in Amazon Mechanical Turk
(AMT); riders (online) and drivers (offline when restricted to a short time
window) in ridesharing. The second distinguishing feature of OMMs is
the real-time decision-making element.

However, studies have shown that the algorithms making decisions in
these OMMs leave disparities in the match rates of offline agents. For
example, tasks in neighborhoods of low socioeconomic status rarely get
matched to gig workers, and drivers of certain races/genders get discrim-
inated against in matchmaking. In this paper, we propose online match-
ing algorithms which optimize for either individual or group-level fairness
among offline agents in OMMs. We present two linear-programming (LP)
based sampling algorithms, which achieve online competitive ratios at
least 0.725 for individual fairness maximization (IFM) and 0.719 for group
fairness maximization (GFM), respectively. There are two key ideas help-
ing us break the barrier of 1 − 1/e. One is boosting, which is to adaptively
re-distribute all sampling probabilities only among those offline available
neighbors for every arriving online agent. The other is attenuation, which
aims to balance thematching probabilities among offline agentswith differ-
ent mass allocated by the benchmark LP. We conduct extensive numerical
experiments and results show that our boosted version of sampling algo-
rithms are not only conceptually easy to implement but also highly effec-
tive in practical instances of fairness-maximization-related models.

Here is the arXiv link to the full version: https://arxiv.org/abs/2109.
08934.

Keywords: Fairness maximization · Online-Matching Markets
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Abstract. We study a mechanism design problem where a community
of agents wishes to fund public projects via voluntary monetary contri-
butions by the community members. This serves as a model for public
expenditure without an exogenously available budget, such as participa-
tory budgeting or voluntary tax programs, as well as donor coordination
when interpreting charities as public projects and donations as contri-
butions. Our aim is to identify a mutually beneficial distribution of the
individual contributions. In the preference aggregation problem that we
study, agents with linear utility functions over projects report the amount
of their contributions, and the mechanism determines a socially optimal
distribution of the money. We identify a specific mechanism—the Nash
product rule—which picks the distribution that maximizes the product
of the agents’ utilities weighted by their contributions. This rule arises
naturally from a simple, dynamic procedure. The Nash product rule is
Pareto efficient, and we prove that it satisfies attractive incentive proper-
ties: it spends each agent’s contribution only on projects the agent finds
acceptable, and agents are strongly incentivized to participate. We also
derive impossibility theorems that show that strengthened versions of
these two axioms are incompatible with Pareto efficiency.

Keywords: Public goods provision · Collective decision making ·
Participation incentives

This material is based on work supported by the Deutsche Forschungsgemeinschaft
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Abstract. A seller seeks a selling mechanism to maximize the worst-
case revenue obtained from a buyer whose valuation distribution lies in
a certain ambiguity set. For a generic convex ambiguity set, we show
via the minimax theorem that strong duality holds between the prob-
lem of finding the optimal robust mechanism and a minimax pricing
problem where the adversary first chooses a worst-case distribution and
then the seller decides the best posted price mechanism. This observa-
tion connects prior literature that separately studies the primal (robust
mechanism design) and problems related to the dual (e.g., robust pricing,
buyer-optimal pricing and personalized pricing). We provide a geomet-
ric approach to analytically solving the minimax pricing problem (and
the robust pricing problem) for several important ambiguity sets such
as the ones with mean and various dispersion measures, and with the
Wasserstein metric. The solutions are then used to construct the opti-
mal robust mechanism and to compare with the solutions to the robust
pricing problem.

Keywords: Robust mechanism design · Moment condition ·
Mean-preserving contraction · Wasserstein metric

The full paper can be found at http://ssrn.com/abstract=3940212.
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Abstract. We study Dominant-Strategy Incentive-Compatible (DSIC)
revenue-maximizing auctions (“optimal” auctions) for a single-item and
correlated private values. We give tight bounds on the ratio of the revenue
of the optimal Ex-Post Individually Rational (EPIR) auction and the
revenue of the optimal Ex-Interim Individually Rational (EIIR) auction.
This bound is expressed as a non-decreasing function of the expected
social welfare of the underlying distribution. In particular, we show a
class of distributions on which this ratio cannot be lower bounded by
any positive number. Thus, the restriction to EPIR auctions, which has
been the de-facto standard in the computer science literature on auctions
with correlated values, may significantly reduce the revenue that can be
possibly extracted, as the revenue extracted by an EPIR auction might
be an arbitrarily small fraction of the revenue extracted by an EIIR
auction.

Keywords: Optimal auctions · Correlated private values · Full surplus
extraction · The look-ahead auction

This research was partially supported by the ISF-NSFC joint research program (grant
No. 2560/17). We thank Ronny Lempel for stimulating discussions.

c© Springer Nature Switzerland AG 2022
M. Feldman et al. (Eds.): WINE 2021, LNCS 13112, p. 550, 2022.
https://doi.org/10.1007/978-3-030-94676-0

https://doi.org/10.1007/978-3-030-94676-0


Throttling Equilibria in Auction Markets

Xi Chen, Christian Kroer, and Rachitesh Kumar(B)

Columbia University, New York, NY 10027, USA
{xc2198,christian.kroer,rk3068}@columbia.edu

Abstract. Throttling is a popular method of budget management for
online ad auctions in which the platform modulates the participation
probability of an advertiser in order to smoothly spend her budget across
many auctions. In this work, we investigate the setting in which all of the
advertisers simultaneously employ throttling to manage their budgets,
and we do so for both first-price and second-price auctions. We analyze
the structural and computational properties of the resulting equilibria.
For first-price auctions, we show that a unique equilibrium always exists,
is well-behaved and can be computed efficiently via tâtonnement-style
decentralized dynamics. In contrast, for second-price auctions, we prove
that even though an equilibrium always exists, the problem of finding
an equilibrium is PPAD-complete, there can be multiple equilibria, and
it is NP-hard to find the revenue maximizing one. Finally, we compare
the equilibrium outcomes of throttling to those of multiplicative pacing,
which is the other most popular and well-studied method of budget man-
agement.

The full paper can be found at https://arxiv.org/abs/2107.10923.

Keywords: Auctions · Budget constraints · Computational
advertising · Computational complexity · PPAD
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Abstract. We study generalized Nash equilibrium problems (GNEPs)
with non-convex strategy spaces and non-convex cost functions. This
general class of games includes the important case of games with mixed-
integer variables for which only a few results are known in the literature.
We present a new approach to characterize equilibria via a convexifica-
tion technique using the Nikaido-Isoda function. To any given instance
I of the GNEP, we derive a convexified instance Iconv and show that
every feasible strategy profile for I is an equilibrium if and only if it
is an equilibrium for Iconv and the convexified cost functions coincide
with the initial ones. Based on this general result we identify important
classes of GNEPs which allow us to reformulate the equilibrium problem
via standard optimization problems.
1. We first define quasi-linear GNEPs in which for fixed strategies of

the opponent players, the cost function of every player is linear and
the convex hull of the respective strategy space is polyhedral. For
this game class we reformulate the equilibrium problem for Iconv as
a standard (non-linear) optimization problem.

2. We then study GNEPs with joint constraint sets. We introduce the
new class of projective-closed GNEPs for which we show that Iconv

falls into the class of jointly convex GNEPs. As an important appli-
cation, we show that general GNEPs with shared binary sets {0, 1}k
are projective-closed.

3. We demonstrate the applicability of our results by presenting a
numerical study regarding the computation of equilibria for a class
of quasi-linear and projective-closed GNEPs. It turns out that our
characterization of a projective-closed GNEP via a jointly convex
GNEP leads to an efficiently solvable reformulation of the original
non-convex GNEP.

Keywords: Generalized Nash equilibrium problem · Mixed-integer
variables · Nonconvex and discrete strategy space
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With the aim of understanding congestion in matching markets, we study a
matching market with N women and M = αN men who want to match with
each other. An agent pair must perform a costly inspection to verify compatibil-
ity prior to matching with each other, and we assume they are willing to perform
the inspection only if it is “mutually desirable”, i.e., they mutually rank each
other as their favorite potential partner who remains under consideration. The
inspection and matching process progresses iteratively in the market as matches
form (in the case of successful inspections) and incompatibilities are revealed.
We ask which large random markets suffer from an information deadlock, i.e., in
which markets will a constant fraction of agents get stuck waiting for a mutually
desirable inspection to become available. We prove, by building on the machin-
ery of message passing and density evolution from statistical physics, that the
existence of an information deadlock is governed by the men-to-women ratio α,
the average degree of women (or men) and the probability that an inspection is
successful. We find a phase transition between the information deadlock regime
and the deadlock-free regime (where a vanishingly small fraction of agents are
stuck waiting) and study the dependence of deadlock and its size on market
primitives. We find, e.g., that well connected markets suffer from deadlocks, and
holding the degree of women fixed there is a deadlock for α below a certain
threshold.

A complete version is available at https://papers.ssrn.com/sol3/papers.cfm?abstract
id=3697165.
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Abstract. We study contests where the designer’s objective is an exten-
sion of the widely studied objective of maximizing the total output: The
designer gets zero marginal utility from a player’s output if the output
of the player is very low or very high. We consider two variants of this
setting, which correspond to two objective functions: binary threshold,
where a player’s contribution to the designer’s utility is 1 if her output is
above a certain threshold, and 0 otherwise; and linear threshold, where
a player’s contribution is linear in her output if the output is between
a lower and an upper threshold, and becomes constant below the lower
and above the upper threshold. For both of these objectives, we study (1)
rank-order allocation contests, which assign prizes based on players’ rank-
ings only, and (2) general contests, which may use the numerical values
of the players’ outputs to assign prizes. We characterize the contests that
maximize the designer’s objective and indicate techniques to efficiently
compute them. We also prove that for the linear threshold objective, a
contest that distributes the prize equally among a fixed number of top-
ranked players offers a factor-2 approximation to the optimal rank-order
allocation contest.

Keywords: Contest theory · Mechanism design · All-pay auctions

Full version is available at https://arxiv.org/abs/2109.03179.
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Extended Abstract

Online marketplaces allow consumers to evaluate, compare, and purchase prod-
ucts while providing a channel for third-party sellers to reach a broad consumer
base and increase demand for their products. As platforms seek to maintain a
large consumer base, many platforms prioritize increasing consumer surplus by
offering competitively priced products. At the same time, it is common practice
in such marketplaces to let sellers determine their own price, but such flexibility
may result in higher prices that reduce consumer surplus.

In this paper, we consider a platform facilitating trade between sellers and
buyers with the objective of maximizing consumer surplus. Even though in many
such marketplaces prices are set by revenue-maximizing sellers, platforms can
influence prices through (i) price-dependent promotion policies that can increase
demand for a product by featuring it in a prominent position on the webpage
and (ii) the information revealed to sellers about the value of being promoted.
Identifying effective joint information design and promotion policies is a chal-
lenging dynamic problem as sellers can sequentially learn the promotion value
from sales observations and update prices accordingly. We introduce the notion
of confounding promotion policies, which are designed to prevent a Bayesian
seller from learning the promotion value (at the expense of the short-run loss of
diverting consumers from the best product offering). Leveraging these policies,
we characterize the maximum long-run average consumer surplus that is achiev-
able through joint information design and promotion policies when the seller
sets prices myopically. We then establish that these strategies are supported in
a Bayesian Nash equilibrium, by showing that the seller’s best response to the
platform’s optimal policy is to price myopically at every history. Moreover, the
equilibrium we identify is platform-optimal within the class of horizon-maximin
equilibria, in which strategies are not predicated on precise knowledge of the
horizon length, and are designed to maximize payoff over the worst-case horizon.
Our analysis allows one to identify practical long-run average optimal platform
policies for a broad range of demand models.
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