
Automata-Driven
Partial Order
Reduction and

Guided Search for LTL
Model Checking

Peter Gjøl Jensen, Jǐŕı Srba, Nikolaj Jensen Ulrik(B),
and Simon Mejlby Virenfeldt

Department of Computer Science, Aalborg University,
Aalborg, Denmark
njul@cs.aau.dk

Abstract. In LTL model checking, a system model is synchronized
using the product construction with Büchi automaton representing all
runs that invalidate a given LTL formula. An existence of a run with
infinitely many occurrences of an accepting state in the product automa-
ton then provides a counter-example to the validity of the LTL formula.
Classical partial order reduction methods for LTL model checking allow
to considerably prune the searchable state space, however, the majority
of published approaches do not use the information about the current
Büchi state in the product automaton. We demonstrate that this addi-
tional information can be used to significantly improve the performance
of existing techniques. In particular, we present a novel partial order
method based on stubborn sets and a heuristically guided search, both
driven by the information of the current state in the Büchi automaton.
We implement these techniques in the model checker TAPAAL and an
extensive benchmarking on the dataset of Petri net models and LTL for-
mulae from the 2021 Model Checking Contest documents that the com-
bination of the automata-driven stubborn set reduction and heuristic
search improves the state-of-the-art techniques by a significant margin.

1 Introduction

The state space explosion problem is one of the main barriers to model check-
ing of large systems as the number of reachable states can be exponentially
larger than the size of a high-level system description in a formalism like e.g. a
Petri net [31]. Addressing this problem has been the subject of much research,
with directions including partial order reductions [19,29,38], symbolic model
checking [3,7], guided searches using heuristics [13,14], and symmetry reduc-
tions [8,34]. Some system description languages afford specialized techniques in
addition to the above. For example, state space explosion of Petri nets can be
addressed with structural reductions [4,16,28].
c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 151–173, 2022.
https://doi.org/10.1007/978-3-030-94583-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-94583-1_8

152 P. G. Jensen et al.

We focus on partial order reductions, a family of techniques designed to
prune the state space search that arises from interleaving executions of con-
currently running system components. An important category of partial order
reduction techniques are the ample set [29], persistent set [19], and in particu-
lar the stubborn set methods [39] which are the main focus of the paper. The
goal of the techniques is, given a specific state, to determine a subset of actions
to explore such that all representative executions are preserved with respect to
the desired property. Partial order reduction techniques are supported in several
well-established tools, e.g. Tapaal [10], LoLA 2 [43], and Spin [21], and have
proven to be useful in practice [4,22,25].

The main approach to Linear Temporal Logic (LTL) model checking [32] is
based on a translation of the negation of an LTL formula into a Nondetermin-
istic Büchi Automaton (NBA) and then synchronizing it with the system being
verified. The goal is then to find a reachable accepting cycle in the synchronized
product. While much research has been done on optimizing the construction of
NBAs [1,15,42], and on the state space reductions described above, only few
state space techniques take the Büchi automaton into account. For example,
the classical next-free LTL preserving partial order method by Valmari [39] is
based only on the syntax of the formula and is completely agnostic to the choice
of verification algorithm and the Büchi state in the product automaton [40].
Some of the work done within the field of stubborn sets includes a specialized,
automata-driven approach for a subclass of LTL formulae called simple LTL
formulae [25], and more recently Liebke [26] introduced an automaton-based
stubborn set approach for the full LTL logic. While his method is theoretically
interesting, no implementation and experimental evaluation is available yet.

During the state-space exploration, the choice of which successor state to be
explored first, has a large impact on the performance of depth-first algorithms for
LTL model checking such as Nested Depth First Search (NDFS) [9] and Tarjan’s
algorithm [17]. A poor choice of successor can cause a lot of time to be wasted by
exploring executions where accepting cycles do not exist. A way of addressing this
problem is by using heuristics to guide the search in a direction that is more likely
to be relevant for the given property. Previous work in this direction includes [12,
13] in which A∗ is used as a search algorithm with heuristics based on finite state
machine representations, and [23] presents a best-first search algorithm using a
syntax-driven heuristic, both focusing on reachability properties. To the best
of our knowledge, heuristic search techniques for LTL and in particular based
on the information of the current Büchi state, have not yet been systematically
explored.

We contribute with a novel automata-driven stubborn set partial order
method and automata-driven heuristics for guided search for model checking
of LTL formulae on Petri nets. The stubborn set method is a nontrivial exten-
sion of the stubborn set technique for reachability analysis presented in [4]. This
new method looks at the local structure of the NBA and considers as stubborn
all actions that can cause the change of NBA state. The guided search is based
on the heuristics of [23] describing the distance between a state (marking) and

Automata-Driven LTL Model Checking 153

the satisfaction of a formula. We extend this method such that in nonaccepting
NBA states we estimate the distance to possible accepting states where we can
progress. Common to our techniques is the desire to leave nonaccepting NBA
states as quickly as possible in order to find an accepting state earlier than
otherwise.

We provide an implementation of these techniques as an extension of the
open-source engine verifypn [23] used in the model checker Tapaal [10]. We
evaluate its performance using the LTL dataset of the 2021 edition of the Model
Checking Contest (MCC) [24] and compare it to the baseline LTL model checker
implementing the Tarjan’s algorithm [17], as well as the classical stubborn set
method of Valmari [39,40] and the most recent automata-driven partial order
technique of Liebke [26]. We implemented all these approaches in the Tapaal
framework and conclude that while the Valmari’s as well as Liebke’s method
considerably improve the performance of the baseline Tarjan’s algorithm (and
Liebke’s approach is performing in general better than the classical reduction),
our automata-driven approach improves the performance a degree further, in
particular when combined with the heuristic search. Finally, we compare our
implementation with the ITS-Tools model checker [37] that scored second after
Tapaal at the 2021 Model Checking Contest [24]. We conclude that while ITS-
Tools solves 87.8% of all LTL queries in the benchmark, our tool with automata-
driven partial order reduction and heuristic search answers 94% of all queries.

Related Work. Stubborn set methods have been applied to a wide range of prob-
lems outside of the previously mentioned work. In [33] stubborn set methods are
presented for many Petri net properties such as home marking or transition live-
ness among others. There are also reachability-preserving stubborn sets for timed
systems [4,20] and more recently for timed games [6]. Regarding LTL model
checking, the classical approaches for partial order reduction by Valmari [39,40]
do not consider the Büchi state that is a part of the product system where we
search for an accepting cycle. The initial work by Peled, Valmari and Kokkari-
nen [30] on automata-driven reduction received only little attention but it was
recently revived by Liebke [26] for the use in LTL model checking, based on
the insight from [25]. Liebke’s idea is to design a stubborn set reduction so that
sequences of non-stubborn actions cannot change the current Büchi state, allow-
ing him to weaken and drop some requirements used in the classical partial order
approach for LTL. Even though theoretically promising, the approach has not
yet been implemented and experimentally evaluated. While our method relies on
similar ideas as [26], the approaches differ in how we handle the looping formula
of Büchi states: Liebke’s method introduces more stubborn actions related to
the looping formula whereas our method only adds stubborn actions for the for-
mulae that change Büchi state (and possibly for the implicit formula leading to
a sink state). We moreover implement both the classical and Liebke’s techniques
and compare them to our approach on a large benchmark of LTL formulae for
Petri net model.

154 P. G. Jensen et al.

In [13] guided search strategies for LTL model checking using variants of A∗

search are presented. Their guided search addresses situation where an accepting
state has been found and a cycle needs to be closed, in contrast with the heuristics
in our work that guides the search towards any form of state change in the NBA.
The work in [13] assumes that individual (fixed number of) processes are given
as finite state machines, an approach that is less general than Petri nets. Another
approach to guided search is presented in [35] where state equations are used to
guide the search, but it has not yet been extended to LTL model checking and it
is computationally more demanding. In contrast, we emphasize simple heuristics
that are faster to compute and efficient on a large number of models.

2 Preliminaries

We now define basic concepts of LTL model checking and recall the Petri net
model. Let N

0 denote the natural numbers including zero and let ∞ be such
that x < ∞ for all x ∈ N

0. By tt and ff we denote true and false, respectively.

2.1 Labelled Transition Systems

Let AP be a fixed set of atomic propositions. A Labelled Transition System
(LTS) with propositions is a tuple T = (S,Σ,→, L, s0) where

– S is a set of states,
– Σ is a finite set of actions,
– → ⊆ S × Σ × S is a transition relation,
– L : S → 2AP is a labelling function, and
– s0 ∈ S is a designated initial state.

We write s
α−→ s′ if (s, α, s′) ∈ →, and s → s′ if there exists α such that

s
α−→ s′. We write s

ε−→ s where ε is the empty string, and s
αw−−→ s′ if s

α−→ s′′ and
s′′ w−→ s′ where α ∈ Σ and w ∈ Σ∗. For s ∈ S, if no state s′ exists such that
s → s′, we call s a deadlock state, written s �→, and if s is not a deadlock state
we write s →. We use →∗ to denote the reflexive and transitive closure of →.
We say that α is enabled in s, written s

α−→, if there exists s′ such that s
α−→ s′,

and the set of all enabled actions in s is denoted en(s) = {α ∈ Σ | s
α−→}. For

any a ∈ AP we say that s satisfies a, written s |= a, if a ∈ L(s), and define
�a� = {s ∈ S | s |= a} to be the set of states satisfying a.

Let T = (S,Σ,→, L, s0) be an LTS. A run π in T is an infinite sequence
of states s1s2 . . . such that for all i ≥ 1, either si → si+1 or si is a deadlock
state and si+i = si. An infinite run π = s1s2 . . . induces an infinite word σπ =
L(s1)L(s2) . . . ∈ (2AP)ω. We define Runs(s) as the set of runs starting in s, and
Runs(T) = Runs(s0) where s0 is the initial state of T . We define the language
of s as L(s) = {σπ ∈ (2AP)ω | π ∈ Runs(s)}. For a word σ = A0A1 . . . we define
σi = AiAi+1 . . . to be the ith suffix of σ for i ≥ 0.

Automata-Driven LTL Model Checking 155

2.2 Linear Temporal Logic

The syntax of Linear Temporal Logic (LTL) [32] is given by

ϕ1, ϕ2 :: = a | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ1 | Fϕ1 | Gϕ1 | Xϕ1 | ϕ1 U ϕ2

where ϕ1 and ϕ2 range over LTL formulae and a ∈ AP ranges over atomic
propositions. An infinite word σ = A0A1 . . . ∈ (2AP)ω satisfies an LTL formula
ϕ, written σ |= ϕ, according to the following inductive definition:

σ |= a ⇐⇒ a ∈ A0

σ |= ϕ1 ∧ ϕ2 ⇐⇒ σ |= ϕ1 and σ |= ϕ2

σ |= ϕ1 ∨ ϕ2 ⇐⇒ σ |= ϕ1 or σ |= ϕ2

σ |= ¬ϕ1 ⇐⇒ not σ |= ϕ1

σ |= Fϕ1 ⇐⇒ ∃i ≥ 0 . σi |= ϕ1

σ |= Gϕ1 ⇐⇒ ∀i ≥ 0 . σi |= ϕ1

σ |= Xϕ1 ⇐⇒ σ1 |= ϕ1

σ |= ϕ1 U ϕ2 ⇐⇒ ∃j ≥ 0 . σj |= ϕ2 and ∀i ∈ {0, 1, . . . , j − 1} . σi |= ϕ1

Let T = (S,Σ,→, L, s0) be an LTS. For a state s ∈ S, we say that s |= ϕ if
and only if for all words σ ∈ L(s) we have σ |= ϕ, and we say that T |= ϕ if and
only if s0 |= ϕ.

Example 1. Figure 1a illustrates an LTS T = (S,Σ,→, L, s0) with the set of
actions Σ = {α, β} and the set of atomic propositions AP = {a, b}. The initial
state s0 satisfies the formula FG(¬a∨b) as every infinite run either loops between
s0 and s1 (and then satisfies G¬a already from the initial state) or it loops in s3
(and then it satisfies FGb).

2.3 Nondeterministic Büchi Automata

The standard approach for verifying whether s |= ϕ for some state s and LTL
formula ϕ seeks to find a counterexample to ϕ in the system synchronized with a
Nondeterministic Büchi Automaton (NBA) equivalent to ¬ϕ (see e.g. [2]). Before
we define NBA, we introduce a logics for the propositions we may find as guards
in the NBA. We let B(AP) denote the set of propositions over the set of atomic
propositions AP , given by the grammar

b1, b2 :: = tt | ff | a | b1 ∧ b2 | b1 ∨ b2 | ¬b1

156 P. G. Jensen et al.

Fig. 1. Example LTS T and NBA A¬FGa; T �|= FGa due to the accepting cycle
(〈s0, q0〉〈s1, q0〉)ω in T ⊗ A¬FGa.

where a ∈ AP and b1, b2 ∈ B(AP). We define satisfaction of a proposition b by
a set of atomic propositions A ⊆ AP , written A |= b, inductively as:

A |= tt

A �|= ff

A |= a ⇐⇒ a ∈ A

A |= b1 ∧ b2 ⇐⇒ A |= b1 and A |= b2

A |= b1 ∨ b2 ⇐⇒ A |= b1 or A |= b2

A |= ¬b1 ⇐⇒ A �|= b1.

For a proposition b ∈ B(AP) and an LTS state s ∈ S, we write s |= b if L(s) |= b.
We let the denotation of a proposition be the set of sets of atomic propositions
given by �b� = {A ∈ 2AP | A |= b}. We also write b1 = b2 iff �b1� = �b2�.

A Nondeterministic Büchi Automaton (NBA) is a tuple A = (Q, δ,Q0, F)
where

– Q is a set of states,
– δ ⊆ Q × B(AP) × Q is a transition relation such that for each q ∈ Q, there

exist only finitely many b ∈ B(AP) and q′ ∈ Q such that (q, b, q′) ∈ δ,
– Q0 ⊆ Q is a finite set of initial states, and
– F ⊆ Q is a set of accepting states.

Automata-Driven LTL Model Checking 157

Fig. 2. NBA Aϕ where ϕ = ((Ga) U (Fa)) ∨ b with complex edge propositions

We write q
b−→ q′ if (q, b, q′) ∈ δ. We consider only NBAs in a normal form so

that for any pair of states q, q′ ∈ Q, if q
b−→ q′ and q

b′
−→ q′ then b = b′. This

normal form can be ensured by merging the transitions q
b−→ q′ and q

b′
−→ q′ into

a single transition q
b∨b′
−−−→ q′. For a state q ∈ Q we define the set of progressing

propositions as Prog(q) = {b ∈ B(AP) | q
b−→ q′ for some q′ ∈ Q \ {q}}, and the

retarding proposition as Ret(q) = b ∈ B(AP) such that q
b−→ q or Ret(q) = ff if

no such b exists.
Let σ = A0A1 . . . ∈ (2AP)ω be an infinite word. We say that an NBA A

accepts σ if and only if there exists an infinite sequence of states q0q1 . . . such
that

– q0 ∈ Q0,
– qi

bi−→ qi+1 and Ai |= bi for all i ≥ 0, and
– qi ∈ F for infinitely many i ≥ 0.

The language of an NBA A is L(A) = {σ ∈ (2AP)ω | A accepts σ}.
Automata-based model checking of LTL formulae is possible due to the fol-

lowing well-known result.

Theorem 1 ([2]). Let ϕ be an LTL formula. There exists an NBA Aϕ with
finitely many states such that L(Aϕ) = L(ϕ).

Example 2. Figure 2 shows an NBA equivalent to the formula ((Ga)U (Fa)) ∨ b.
The set of progressing propositions from q0 is Prog(q0) = {a ∨ b,¬a ∧ ¬b}, and
it has the retarding proposition ff . The set of progressing propositions of q1 is
the singleton set Prog(q1) = {a}, and the retarding proposition is Ret(q1) = ¬a.

From Theorem 1 we know that any infinite word σ that satisfies ϕ must be
accepted by Aϕ and vice versa. Recall that an LTS T = (S,Σ,→, L, s0) satisfies
ϕ if and only if for all σ ∈ L(s0) we have σ |= ϕ. Conversely, if there exists a
word σ ∈ L(s0) such that σ �|= ϕ then T �|= ϕ, and σ is accepted by A¬ϕ. We
therefore synchronize T with A¬ϕ and look for counterexamples.

158 P. G. Jensen et al.

Definition 1 (Product). Let T = (S,Σ,→, L, s0) be an LTS and let
A = (Q, δ,Q0, F) be an NBA. Then the product T ⊗ A = (Q′, δ′, Q′

0, F
′) is

an NBA such that

– Q′ = S × Q,
– 〈s, q〉 tt−→ 〈s′, q′〉 if either s → s′ or s is a deadlock and s = s′, and q

b−→ q′ for
some b ∈ B(AP) s.t. s′ |= b,

– Q′
0 = {〈s0, q〉 ∈ Q′ | ∃q0 ∈ Q0 . q0

b−→ q for some b ∈ B(AP) s.t. s0 |= b}, and
– F ′ = {〈s, q〉 ∈ Q′ | q ∈ F}.

The following theorem states the key property of the product construction.

Theorem 2 ([2]). Let T be an LTS with initial state s0, ϕ be an LTL formula
and A¬ϕ be an NBA such that L(A¬ϕ) = L(¬ϕ). Then s0 |= ϕ if and only if
L(T ⊗ A¬ϕ) = ∅.

In other words, the product construction is suitable for verifying whether
T |= ϕ. The model checking procedure consists of constructing the product
T ⊗ A¬ϕ and searching for accepting runs. In practice this becomes a search for
reachable cycles containing accepting states, since such cycles generate infinite
accepting runs. We use a specialized variant of Tarjan’s connected component
algorithm described in [17] for checking the emptiness of the product automaton.

Example 3. The LTS T depicted in Fig. 1a does not satisfy the LTL formula
FGa. In order to show this, Fig. 1b depicts the NBA A¬FGa equivalent to the
LTL formula ¬FGa, and Fig. 1c shows the reachable part of the product T ⊗
A¬FGa. Since the looping run (〈s0, q0〉〈s1, q0〉)ω visits the accepting state 〈s0, q0〉
infinitely often, we can conclude that T �|= FGa, and the run (s0s1)ω can be used
as a diagnostic counterexample.

2.4 Petri Nets

A Petri net (with inhibitor arcs) is a 4-tuple N = (P, T,W, I) where

– P is a finite set of places,
– T is a finite set of transitions such that P ∩ T = ∅,
– W : (P × T) ∪ (T × P) → N

0 is the arc weight function, and
– I : (P × T) → N ∪ {∞} is the inhibitor arc weight function.

A marking is a function M : P → N
0 assigning to each place a number of

tokens. We write M(N) to denote the set of all markings of Petri net N . The
semantics of a Petri net N = (P, T,W, I) is given by the transition relation
between markings such that M

t−→ M ′ if for all p ∈ P we have M(p) ≥ W (p, t),
M(p) < I(p, t), and M ′(p) = M(p) − W (p, t) + W (t, p).

For x ∈ P ∪ T , we write •x to mean {y ∈ T ∪ P | W (y, x) > 0}, called
the preset, and x• to mean {y ∈ T ∪ P | W (x, y) > 0}, called the postset.
We straightforwardly extend this to sets X ⊆ T and X ⊆ P such that •X =

Automata-Driven LTL Model Checking 159

⋃
x∈X

•x and X• =
⋃

x∈X x•. For a place p ∈ P we define the increasing preset
of p as +p = {t ∈ •p | W (t, p) > W (p, t)}, and the decreasing postset of p as
p− = {t ∈ p• | W (t, p) < W (p, t)}. The inhibitor postset of p ∈ P is p◦ = {t ∈
T | I(p, t) < ∞} and the inhibitor preset of t ∈ T is ◦t = {p ∈ P | I(p, t) < ∞}

A net N = (P, T,W, I) gives rise to an LTS T = (M(N), T,→, L,M0) where
M0 is a designated initial marking and the set AP of atomic propositions is
formed by the grammar

a :: = t | e1
� e2

e :: = p | c | e1 ⊕ e2

where t ∈ T , p ∈ P , c ∈ N
0,
� ∈ {<,≤, �=,=, >,≥}, and ⊕ ∈ {·,+,−}. Given

a Petri net N = (P, T,W, I), the satisfaction of a marking M ∈ M(N) of an
atomic proposition a ∈ AP is given by

M |= t iff M
t−→

M |= e1
� e2 iff evalM (e1)
� evalM (e2)

and where evalM (p) = M(p), evalM (c) = c and evalM (e1 ⊕ e2) = evalM (e1) ⊕
evalM (e2).

For t ∈ T , the fireability proposition t can be rewritten into the cardinality
proposition

∧
p∈•t(p ≥ W (p, t))∧

∧
p∈◦t(p < I(p, t)) requiring that all pre-places

of t are sufficiently marked and no inhibitor arc of t is sufficiently marked. In
the following, we assume that all propositions are cardinality propositions.

3 Automata-Guided Partial Order Reduction

Partial order reductions are techniques that address the state space explosion
problem by reducing the number of interleavings of concurrent actions and
exploring only their representative permutations; this can result in exponen-
tial reductions in the size of the state space (see e.g. [39,41]). We shall now
present our approach improving the classical stubborn set partial order tech-
nique [39,40] for LTL without the next operator. We adapt and extend the
ideas of the reachability-preserving stubborn set construction from [4,6,33] to
automata-driven technique for the full LTL logic. First, we prove the formal cor-
rectness of the method on the low level formalism of labelled transition systems
and later on we specialize it to Petri nets.

3.1 Automata-Driven Stubborn Set Method for LTL

The basic idea of our approach is to apply the reachability-preserving stubborn
set method from [4,6,33], where the reachability problem is the proposition∨

b∈Prog(q) b for Büchi state q. In order to make this work for the full LTL logic,
we have to do further considerations.

In the rest of this section, let Sink(q) = ¬(
∨

b∈Prog(q) b ∨ Ret(q)) be the sink
state proposition. We note that (∨b∈Prog(q)b)∨Ret(q)∨Sink(q) = tt for any Büchi

160 P. G. Jensen et al.

state q. In order to preserve correctness of the method for LTL, we require that
our stubborn sets do not contain unsafe actions, which are actions that can cause
some progressing proposition to become satisfied.

Definition 2 (Safe action). Let T = (S,Σ,→, L, s0) be an LTS and let A =
(Q, δ,Q0, F) be an NBA. For a state s ∈ S and proposition b ∈ B(AP), a set
Safe(s, b) ⊆ Σ is safe wrt. b if for all α ∈ Safe(s, b) and all w ∈ (Σ \ {α})∗,
if s

w−→ s′, s
αw−−→ s′′, and s′ �|= b, then s′′ �|= b. For states s ∈ S and q ∈ Q,

a set Safe(s, q) ⊆ Σ is safe wrt. q if Safe(s, b) ⊆ Safe(s, q) for all propositions
b ∈ Prog(q) ∪ {Sink(q)}. Actions from the set Safe(s, q) are called safe in the
product state 〈s, q〉.

The property of a safe action α is that if in a state s of an LTS we execute
a sequence of actions w after which we do not satisfy b then executing α first
followed by w does not satisfy b either. In particular, when w is empty, if s �|= b

and s
α−→ s′, then s′ �|= b. The idea of safe actions is inspired by a stubborn set

technique for games [6] but adapted to our LTL model checking problem.
The main characteristics of our automata-driven method is that the partial

order reduction no longer only depends on the current LTS state, but we also
consider the NBA state we are in at the moment. For this reason, we formally
define a reduction on the product state space.

Definition 3 (Product reduction). Let T = (S,Σ,→, L, s0) be an LTS and
A = (Q, δ,Q0, F) be an NBA. A product reduction is a function St : S×Q → 2Σ.
Let T ⊗St A be the reduced product of the product T ⊗ A restricted by St such
that 〈s, q〉 →St 〈s′, q′〉 in T ⊗St A if and only if 〈s, q〉 → 〈s′, q′〉 in T ⊗ A and
s

α−→ s′ for some α ∈ St(s, q).

We can now present the list of axioms required by our stubborn set method
for LTL model checking.

Definition 4 (Axioms on product reduction). Let T = (S,Σ,→, L, s0) be
an LTS, A = (Q, δ,Q0, F) be an NBA and let St : S × Q → 2Σ be a product
reduction. The following four axioms are defined as follows (universally quanti-
fied for all s ∈ S and all q ∈ Q):

COM If α ∈ St(s, q) and α1, α2, . . . , αn ∈ St(s, q)
∗
and s

α1...αnα−−−−−−→ s′ then
s

αα1...αn−−−−−−→ s′.
R If α1 . . . αn ∈ St(s, q)

∗
and for all b ∈ Prog(q) we have s �|= b then s

α1...αn−−−−−→ s′

implies that s′ �|= b for all b ∈ Prog(q).
SAFE Either en(s) ∩ St(s, q) ⊆ Safe(s, q) and s �|= b for all propositions b ∈

Prog(q) ∪ {Sink(q)}, or St(s, q) = Σ.
KEY If en(s) �= ∅ and q ∈ F , then there is some key action αkey ∈ St(s, q)

such that whenever s
α1...αn−−−−−→ sn for α1, . . . , αn ∈ St(s, q)

∗
then sn

αkey−−−→.

Axioms COM and R are adapted from the standard reachability-preserving
stubborn set methods, see e.g. [4,33], and made sensitive to preserve at least one

Automata-Driven LTL Model Checking 161

execution (under the stubborn actions from the set St(s, q)) to each configuration
where some of the progressing formulae becomes enabled. The axiom SAFE
ensures that we do not prune any outgoing transition (St(s, q) = Σ) if some
unsafe stubborn action is enabled or if some progressing proposition is already
satisfied. Note that while the sink state proposition is important for the axiom
SAFE, it is not important for R. Finally, the axiom KEY asserts that there
is a key stubborn action in accepting Büchi states, ensuring that we preserve at
least one infinite accepting run.

We are now ready to prove the main correctness theorem for our stubborn
set method for LTL model checking.

Theorem 3. Let T = (S,Σ,→, L, s0) be an LTS, A = (Q, δ,Q0, F) be an NBA,
St : S ×Q → 2Σ be a product reduction satisfying COM, R, SAFE, and KEY,
and T ⊗StA be the reduced state space of T ⊗A given by St. Then T ⊗A contains
an accepting run if and only if T ⊗St A contains an accepting run.

3.2 Stubborn Sets for LTL Model Checking on Petri Nets

We now present a syntax-driven method for efficiently computing stubborn sets
for markings in a Petri net. We start by defining a COM-saturated set of Petri
net transitions, using the increasing presets and decreasing postsets of transitions
(see also [4]).

Definition 5 (COM-saturation). Let N = (P, T,W, I) be a Petri net and
M ∈ M(N) be a marking. We say that a set T ′ ⊆ T is COM-saturated in M if

1. for all t ∈ T ′, if M
t−→ then

– for all p ∈ •t where t ∈ p− we have p• ⊆ T ′, and
– for all p ∈ t• where t ∈ +p we have p◦ ⊆ T ′, and

2. for all t ∈ T ′, if M � t−→ then
– there exists a p ∈ •t such that M(p) < W (p, t) and +p ⊆ T ′, or
– there exists a p ∈ ◦t such that M(p) ≥ I(p, t) and p− ⊆ T ′.

Intuitively, Condition 1 requires that if t is enabled and decreases the number of
tokens in the place p ∈ •t, then any t′ that has p as a pre-place, i.e. p ∈ •t ∩ •t′, is
in conflict with t since t can disable t′ and must be a part of the set T ′. Likewise
if t increases the number of tokens in a place p with outgoing inhibitor arcs, the
transitions inhibited by p are also in conflict with t and must be a part of T ′.
Condition 2 states that a transition t′ that can cause a disabled transition t to
become enabled cannot be commuted with t and must be added to T ′. This is
the case if either t′ adds tokens to some insufficiently marked pre-place p ∈ •t or
if t′ removes tokens from a sufficiently marked place p ∈ ◦t that has an inhibitor
arc to t.

The following lemma states that transitions from a COM-saturated set T ′

can be commuted with any sequence of transitions that are not in T ′, or in
other words that T ′ satisfies the COM axiom. The lemma moreover shows that
an enabled stubborn transition cannot be disabled by firing any sequence of
nonstubborn transitions.

162 P. G. Jensen et al.

Lemma 1. Let N = (P, T,W, I) be a Petri net, let M ∈ M(N) be a marking
and let T ′ ⊆ T be COM-saturated in M . For all t ∈ T ′ and all t1, . . . , tn ∈ T \T ′

a) if M
t1...tnt−−−−→ M ′ then M

tt1...tn−−−−→ M ′, and
b) if M

t1...tn−−−−→ M ′ and M
t−→ then M ′ t−→.

The conditions in Definition 5 give rise to a straightforward closure algo-
rithm that starting from some set of transitions T ′ iteratively includes additional
transitions as required by Conditions 1 and 2 until the set of transitions gets
saturated, however, due to the choice of the place p in Condition 2, it is not
guaranteed that we always get the same COM-saturated set.

The next definition of increasing and decreasing transitions of an arithmetic
expression is needed for constructing safe stubborn sets and for axiom R.

Definition 6 (Increasing/decreasing transitions). Let N = (P, T,W, I) be
a Petri net and let e ∈ E be an arithmetic expression. The sets of increasing
transitions incr(e) and decreasing transitions decr(e) are recursively defined by:
incr(p) = +p, decr(p) = p−, incr(c) = decr(c) = ∅, incr(e1 + e2) = incr(e1) ∪
incr(e2), decr(e1 + e2) = decr(e1) ∪ decr(e2), incr(e1 − e2) = incr(e1) ∪ decr(e2),
decr(e1 − e2) = decr(e1) ∪ incr(e2), decr(e1 · e2) = incr(e1 · e2) = incr(e1) ∪
incr(e2) ∪ decr(e1) ∪ decr(e2).

The sets incr(e) and decr(e) contain all transitions that can possibly increase,
resp. decrease the value of the expression e ∈ E; this is formalized as follows.

Lemma 2 ([4]). Let N = (P, T,W, I) be a Petri net, let e ∈ E be an expression,
and let M,M ′ ∈ M(N) be markings such that M

t1...tn−−−−→ M ′ for t1, . . . , tn ∈ T .
If evalM (e) < evalM ′(e) then there is i such that ti ∈ incr(e), and if evalM (e) >
evalM ′(e) then there is i such that ti ∈ decr(e).

In order to preserve the axiom SAFE, we shall define the notion of strictly
interesting transitions, i.e. those transitions that have the potential to change
a value of a given Boolean combination of atomic propositions. The purpose of
the set of strictly interesting transitions A+

M given in the following definition is
to efficiently compute syntactic over-approximations of all unsafe transitions in
a marking M .

Definition 7 (Strictly interesting transitions). Let N = (P, T,W, I) be a
Petri net and let b ∈ B(AP) be a proposition. For a marking M ∈ M(N) the
set A+

M (b) ⊆ T of strictly interesting transitions of b is defined as

Automata-Driven LTL Model Checking 163

A+
M (tt) = A+

M (ff) = ∅
A+

M (e1 < e2) = A+
M (e1 ≤ e2) = decr(e1) ∪ incr(e2)

A+
M (e1 > e2) = A+

M (e1 ≥ e2) = incr(e1) ∪ decr(e2)

A+
M (e1 = e2) =

{
decr(e1) ∪ incr(e2) if evalM (e1) > evalM (e2)
incr(e1) ∪ decr(e2) if evalM (e1) < evalM (e2)

A+
M (e1 �= e2) = incr(e1) ∪ decr(e2) ∪ decr(e1) ∪ incr(e2)

A+
M (b1 ∨ b2) = A+(b1 ∧ b2) = A+

M (b1) ∪ A+
M (b2)

A+
M (¬(e1 < e2)) = A+

M (e1 ≥ e2)

A+
M (¬(e1 > e2)) = A+

M (e1 ≤ e2)

A+
M (¬(e1 = e2)) = A+

M (e1 �= e2)

A+
M (¬(b1 ∧ b2)) = A+

M (¬b1 ∨ ¬b2)

A+
M (¬(e1 ≤ e2)) = A+

M (e1 > e2)

A+
M (¬(e1 ≥ e2)) = A+

M (e1 < e2)

A+
M (¬(e1 �= e2)) = A+

M (e1 = e2)

A+
M (¬(b1 ∨ b2)) = A+

M (¬b1 ∧ ¬b2)

Lemma 3. Let N = (P, T,W, I) be a Petri net and b ∈ B(AP) be a proposition.
Then for any marking M ∈ M(N) where M �|= b, the set T \ A+

M (b) is safe wrt.
b, i.e. for any t /∈ A+

M (b) and any w ∈ (T \ {t})∗, if M
w−→ M ′, M

tw−→ M ′′, and
M ′ �|= b, then M ′′ �|= b.

In order to satisfy axiom R, we can define a weaker notion of interesting
transitions as used in [4].

Definition 8 (Interesting transitions). Let N = (P, T,W, I) be a Petri net
and let b ∈ B(AP) be a proposition. For a marking M ∈ M(N) the set AM (b) ⊆
T of interesting transitions of b is defined inductively as AM (b) = ∅ if M |= b,
and otherwise

AM (b) =

{
AM (bi) for some i where M �|= bi if b = b1 ∧ b2

A+
M (b) otherwise.

Lemma 4 ([4]). Let N = (P, T,W, I) be a Petri net, let M ∈ M(N) be a
marking, and let b ∈ B(AP) be a proposition. If M �|= b and M

w−→ M ′ for some
w ∈ AM (b)

∗
, then M ′ �|= b.

We now state our main theorem that allows for a syntax-driven implemen-
tation of automata-driven stubborn set reduction for full LTL on Petri nets.

Theorem 4. Let N = (P, T,W, I) be a Petri net, A = (Q, δ,Q0, F) be an NBA,
and St : M(N) × Q → 2T be a product reduction that for all markings M ∈
M(N) and states q ∈ Q satisfies

1. St(M, q) is a COM-saturated set in M , and
2.

⋃
b∈Prog(q) AM (b) ⊆ St(M, q), and

164 P. G. Jensen et al.

Fig. 3. Example of our stubborn set method applied to Petri nets

3. either en(M) ∩ St(M, q) ⊆ T \ A+
M (b) and M �|= b for all b ∈ Prog(q) ∪

{Sink(q)}, or St(M, q) = T , and
4. if en(M) �= ∅ and q ∈ F then en(M) ∩ St(M, q) �= ∅.

Then St satisfies the axioms COM, R, SAFE and KEY.

Proof. By Lemma 3, Condition 3 ensures axiom SAFE. By Lemma 4, Con-
dition 2 ensures R, and by Lemma 1 part a) our Condition 1 ensures
COM. Condition 4 ensures KEY by Lemma 1 part b) as St(M, q) is COM-
saturated. ��

Hence by Theorem 3, any reduction satisfying the conditions of Theorem 4 is
LTL-preserving stubborn set reduction. The theorem also provides an algorith-
mic way to generate the LTL-preserving stubborn set St(M, q). First, if some
progressing proposition b ∈ Prog(q) ∪ {Sink(q)} is satisfied by M , then the set
of all transitions is returned. Otherwise, the COM-saturation algorithm is run
on AM (b) for b ∈ Prog(q) to obtain a stubborn set satisfying COM and R. To
ensure SAFE is satisfied, the resulting stubborn set is checked for whether there
is any overlap with enabled strictly interesting transitions, in which case the set
of all transitions is returned, otherwise the computed stubborn set is returned.
If q ∈ F and en(M) ∩ St(M, q) = ∅, an arbitrary enabled transition is added to
St(M, q) to ensure KEY is not violated, and the previous checks for COM and
SAFE are repeated.

Example 4. We shall now give an example of the computation of a stubborn set
for the Petri net shown in Fig. 3a (here we use the classical graphical notation for
Petri nets where circles represent places and rectangles transitions; the default
weight of all arcs is 1) and the NBA in Fig. 3b. In the initial marking M0, the
enabled transitions are en(M0) = {t1, t2, t4}. When computing the stubborn set
St(M0, q1) we note that the progressing formula p4 ≥ 1 is not satisfied, and

Automata-Driven LTL Model Checking 165

Fig. 4. Heuristic distance function between a marking and a LTL formula

the sink formula is ff , so a reduction is possible. First, we determine the set of
interesting transitions

AM0(p4 ≥ 1) = incr(p4) ∪ decr(1) = {t3} ∪ ∅ = {t3}.

Next, we determine a COM-saturated set that contains t3 which turns out to be
St(M0, q1) = {t1, t2, t3}. We now ensure that none of the enabled transitions in
this set are strictly interesting. Indeed, the only interesting transition t3 is not
enabled, thus en(M0) ∩ St(M0, q1) ⊆ T \ A+

M0
(p4 ≥ 1) and therefore SAFE is

satisfied. We can so conclude that St(M0, q1) = {t1, t2, t3} is a valid stubborn
set. Since the enabled transition t4 is not in the stubborn set, we avoid exploring
the interleavings with the transition t4, reducing the size of the state space that
we search.

4 Automata-Driven Guided Search

When performing explicit state model checking using depth-first search algo-
rithms, such as the on-the-fly variant of Tarjan’s algorithm [17,36] used for LTL
model checking, the order in which we explore the successors may significantly
influence how fast we can find an accepting cycle and possibly avoid exploring
parts of the state space where such a cycle is not present. We shall now design an

166 P. G. Jensen et al.

Fig. 5. Example system where heuristics are advantageous when considering the LTL
formula ϕ = ¬F(p0 > 3 ∧ XFp1 > 3).

automata-driven heuristic approach that aims to guide the search to the parts
of the state space where a cycle is more likely to be present.

In a marking M , the heuristic function assigns a nonnegative number to each
M ′ where M → M ′ such that the markings with smaller numbers are explored
first as they are believed to be more likely to lead us to an accepting cycle.

We first extend the distance-based heuristic for reachability [23] to the full
LTL logic. The idea of this heuristic is to provide a distance from one marking
to another by counting how many tokens must be added/removed in order to
make the two markings equal—this idea is then extended to the atomic proposi-
tions. Our distance measure is calculated using the recursive function dist given
in Fig. 4. For a Petri net N , an LTL formula ϕ, and a marking M ∈ M(N)
our heuristic function dist(M,ϕ, tt) returns the distance of the marking M to
satisfying the LTL formula ϕ.

The following example shows that the distance-based heuristic can be already
useful by itself for guiding the state space search, even without considering the
current state in the Büchi automaton.

Example 5. Consider the Petri net N in Fig. 5a and the LTL formula ϕ =
¬F(p0 > 3∧XFp1 > 3). We want to determine whether N |= ϕ. We let Mi denote
the marking we reach after firing the transition ti. Then dist(M0, ϕ, tt) = 4,
dist(M1, ϕ, tt) = 4, and dist(M2, ϕ, tt) = 3. The heuristic prioritises to first fol-
low the transition t2, leading us one step closer to satisfying Fp1 > 3. Repeating
the procedure, after three additional firings of t2, we end up in a marking with
M(p1) = 4 where we satisfy the LTL formula.

As a next step, we use the distance metrics to design a more efficient
automata-driven heuristic technique that takes the current Büchi state into
consideration. Instead of looking at the entire LTL formula, we consider the
progressing formulae of the current state in the NBA. The main idea of this
approach is that if we are not in an accepting state then we try to leave the
current state as fast as possible in order to move closer to an accepting Büchi

Automata-Driven LTL Model Checking 167

state. As such, we prioritise transitions that are more likely to enable progressing
formulae, including the consideration how far is the resulting NBA state from
some accepting state.

Let N be a Petri net, T = (M(N), T,→, L,M0) be an LTS, A = (Q, δ,Q0, F)
be an NBA, and for q ∈ Q let BFS(q) be the shortest path distance from q to
some q′ ∈ F (if q ∈ F then BFS(q) = 0). Then given a state 〈M, q〉 in T ⊗ A
where q /∈ F , we calculate the heuristic for each successor marking M ′ of M as
the minimum of (1 + BFS(q′)) · dist(M ′, b, ff) over all q′ ∈ Q where q

b−→ q′.

Example 6. Let us again consider the Petri net in Fig. 5a, and the NBA corre-
sponding to ¬ϕ, presented in Fig. 5b. In the product construction given in Defini-
tion 1, we create the initial Büchi states of the product state space; as the initial
marking satisfies the progressing proposition p0 > 3 but not the retarding propo-
sition ¬p0 > 3, there is only one initial product state (where the Büchi automa-
ton is in the state q1). Now we calculate the heuristic value where, as before, Mi is
the marking resulting from firing the transition ti. There is only one progressing
proposition, so the heuristic value is given by (1+BFS(q1)) ·dist(Mi, p1 > 3, ff).
This gives the values 2 · dist(M0, p1 > 3, ff) = 8, 2 · dist(M1, p1 > 3, ff) = 0,
and 2 ·dist(M2, p1 > 3, ff) = 6 for the transitions t0, t1 and t2, respectively. The
transition with the highest priority is t1 which immediately leads to a marking
satisfying p1 > 3 and we move to the accepting state. This illustrates the advan-
tage of automata-driven heuristics over the distance-based one relying on the
whole LTL formula, namely that it can disregard parts of the formula that are
not relevant at the moment.

5 Experimental Evaluation

We shall now evaluate the performance of our automata-driven techniques for
partial order reduction and guided search on the benchmark of Petri net mod-
els and LTL formulae from the 2021 edition of the Model Checking Contest
(MCC) [24]. The benchmark consists of 1181 P/T nets modelling academic and
industrial use cases, each with 32 LTL formulae split evenly between cardinal-
ity formulae and fireability formulae. This gives a total of 37792 queries for our
evaluation, each executed with 15 min timeout and 16 GiB of available memory
on one core of an AMD Opteron 6376 processor.

We implemented our automata-driven techniques described in this paper
as an extension of the verification engine verifypn [23] that is a part of the
Tapaal model checker [10]. Our LTL engine uses version 2.9.6 of the Spot
library [11] for translating LTL formulae into NBAs, and a derivative of Tarjan’s
algorithm [17,36] for searching for accepting cycles. To speed up the verification,
we also employ the query simplifications from [5] and most of the structural
reductions from [4]. We moreover implemented within the verifypn engine the
classical partial order reduction of Valmari [39,40] (referred to as Classic POR)
as well as the automata-based reduction of Liebke [26] (referred to as Liebke
POR) that has been theoretically studied but so far without any implementation

168 P. G. Jensen et al.

Table 1. Number of answered positive and negative queries, total number of queries
and percentage compared to number of solved queries by at least one method (3508
in total)

(a) Partial order reductions without heuristic search

Positive Negative Total Solved

Baseline (no POR) 501 1708 2209 61.5%
Classic POR 527 1846 2373 66.1%
Liebke POR 551 1868 2419 67.3%
Automata-driven POR 564 2004 2568 71.5%

(b) Partial order reductions with heuristic search

Positive Negative Total Solved

Baseline (heuristic) 496 2463 2959 82.4%
Classic HPOR 523 2530 3053 85.0%
Liebke HPOR 555 2512 3067 85.4%
Automata-driven HPOR 565 2640 3205 89.2%

nor experimental evaluation. In our experiments, we benchmark the baseline
implementation (without any partial order reduction nor heuristic search) and
our stubborn set reduction (referred to as automata-driven POR) against Classic
POR and Liebke POR, both using the standard depth-first search as well as
our heuristic search technique (referred to as HPOR). We also provide a full
reproducibility package [18].

According to [27], the MCC benchmark contains a large number of trivial
instances that all model checkers can solve without much computation effort, as
well as instances that are too difficult for any model checker to solve. In our first
experiment, we thus selected a subset of interesting/nontrivial instances such
that our baseline implementation needed at least 30 s to solve them and at least
one of the methods provided an answer within 15 min. This selection resulted in
3508 queries on which we evaluate the techniques.

Table 1a shows the number of answers obtained for each method without
employing the heuristic search and Table 1b with heuristic search (we report
here on the automata-driven heuristics only as it provides 233 additional answers
compared to the distance-based one). The first observation is that our heuristic
search technique gives for all of the partial order methods about 20% improve-
ment in the number of answered queries. Second, while both classic and Liebke’s
partial order reduction techniques (that are essentially comparable when using
heuristic search and without it Liebke solves 1.2% more queries) provide a sig-
nificant 3–6% improvement in the number of answered queries over the baseline

Automata-Driven LTL Model Checking 169

Fig. 6. Comparison of the different methods versus the baseline; on x-axis all instances
sorted by the increasing running time (independently per method); on y-axis the run-
ning time (in seconds and logarithmic scaling)

(both with and without the heuristic), our method achieves up to 10% improve-
ment.

While in absolute numbers the additional points are primarily due to negative
answers (where an accepting cycle exists), we can see also a similar trend in the
increased number of positively answered queries. In general, positive answers are
expected to be harder to obtain than negative answers, as they require disproving
the existence of any counter example and hence full state space search. This
is also the reason why adding a heuristic search on top of the partial order
techniques can have a negative effect on the number of answered positive queries;
here the search order does not matter but the heuristic search method has an
overhead for computing the distance functions in every discovered marking.

Overall, while the baseline method solved only 61.5% of queries, our par-
tial order technique in combination with the automata-driven heuristic search
now answers 89.2% of queries, which is a considerable improvement and shows
that the two techniques can be applied in combination in order to increase the
verification performance.

In Fig. 6 we focus for each method on the most difficult 1500 queries from the
benchmark. For each method, we independently sort the running times (plotted
on the y-axis, note the logarithmic scale) in increasing order for all the query
instances (plotted on the x-axes). Hence the plot does not provide a running
time comparison per instance (in fact there are even a few queries that the
baseline answers but not our heuristic POR method), however, it shows the
overall performance trends on the whole dataset. The plot confirms with the
general observation we made on the number of answered queries and moreover

170 P. G. Jensen et al.

Table 2. Number of answers in the MCC setup.

Positive Negative Total Solved

Tapaal 9415 26219 35629 94.3%

Tapaal (no POR, no heuristic) 9345 25865 35210 93.2%

ITS-Tools 8395 24775 33170 87.8%

shows that without the heuristic search (thinner lines in the left part of the plot)
Liebke’s method is in general performing faster than the classic method. The
addition of the heuristic search to the partial order reduction makes a significant
improvement, as shown by the thick curves in the right part of the plot. Here
the classic and Liebke’s have more similar performance, whereas our automata-
driven method most significantly profits from the addition of heuristic search.

Finally, in Table 2 we provide the comparison with the model checker ITS-
Tools [37] that was second after Tapaal in the 2021 edition of the Model Check-
ing Contest [24]. In the MCC, 16 queries are verified in parallel with a 1 h time
out, 16 GiB memory limit and 4 available cores. The scripts that execute the
verification are taken from the available virtual machines (for the details of the
setup consult the MCC webpage1) and executed on the total of 37792 queries in
the batches of 16 queries. While ITS-tools can solve 87.8% of all queries, Tapaal
(the winner in 2021 contest) without partial order reduction and heuristic search
answers 93.2% of all queries. The addition of our automata-driven techniques
improves the score to 94.3% of answered queries, which is a very satisfactory
improvement given that the MCC benchmark contains a significant percentage
of models and queries that are beyond the reach of the current model checkers.

6 Conclusion

We presented two automata-driven techniques, stubborn set partial order reduc-
tion and a heuristic search method, for improving the performance of LTL model
checking. The common element in these methods is that we exploit the fact that
states in the product system (where we search for an accepting cycle) contain
also the information about the current state of Büchi automaton. Recent work
by Liebke [26] suggests a similar approach trying to weaken the classical LTL
axioms for partial order reduction; we instead extend the reachability-preserving
axioms to the full LTL logic. Our approach is presented first in a general way
and then specialized to the Petri net model.

We implemented both the baseline Tarjan’s algorithm for LTL model check-
ing, the classical and Liebke’s partial order reductions as well as our automata-
driven methods and compare them on a large benchmark of LTL models from
the 2021 Model Checking Contest. The conclusion is that while both the classical
and Liebke’s methods provide a significant performance improvement over the

1 https://mcc.lip6.fr/.

https://mcc.lip6.fr/

Automata-Driven LTL Model Checking 171

baseline algorithm, our automata-driven partial order technique improves the
state-of-the-art techniques by another degree. Moreover, our heuristic search is
clearly beneficial in combination with all partial order methods and our current
best implementation in the tool Tapaal beats the second best tool in the yearly
Model Checking Contest by the margin of 6.5%.

In the future work we plan to further improve the performance of our method
for example for the subclass of weak Büchi automata and extend the ideas to
other logics like CTL.

Acknowledgments. We thank to Yann Thierry-Mieg for creating the oracle database
of correct answers for queries from the model checking contest that we used extensively
for testing our implementation.

References

1. Babiak, T., Křet́ınský, M., Řehák, V., Strejček, J.: LTL to Büchi automata trans-
lation: fast and more deterministic. In: Flanagan, C., König, B. (eds.) TACAS
2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-28756-5 8

2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

3. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

4. Bønneland, F.M., Jensen, P.G., Larsen, K.G., Muñiz, M., Srba, J.: Start pruning
when time gets urgent: partial order reduction for timed systems. In: Chockler,
H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 527–546. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 28

5. Bønneland, F., Dyhr, J., Jensen, P.G., Johannsen, M., Srba, J.: Simplification of
CTL formulae for efficient model checking of Petri nets. In: Khomenko, V., Roux,
O.H. (eds.) PETRI NETS 2018. LNCS, vol. 10877, pp. 143–163. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91268-4 8

6. Bønneland, F., Jensen, P., Larsen, K., Muniz, M., Srba, J.: Stubborn set reduc-
tion for two-player reachability games. Logical Methods Comput. Sci. 17(1), 1–26
(2021)

7. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

8. Clarke, E.M., Emerson, E.A., Jha, S., Sistla, A.P.: Symmetry reductions in model
checking. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 147–158.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0028741

9. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory-efficient algo-
rithms for the verification of temporal properties. Formal Methods Syst. Des. 1(2–
3), 275–288 (1992). https://doi.org/10.1007/BF00121128

10. David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K.Y., Møller, M.H., Srba, J.:
TAPAAL 2.0: integrated development environment for timed-arc Petri nets. In:
Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 492–497.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5 36

https://doi.org/10.1007/978-3-642-28756-5_8
https://doi.org/10.1007/978-3-642-28756-5_8
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-319-96145-3_28
https://doi.org/10.1007/978-3-319-91268-4_8
https://doi.org/10.1007/BFb0028741
https://doi.org/10.1007/BF00121128
https://doi.org/10.1007/978-3-642-28756-5_36

172 P. G. Jensen et al.

11. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.:
Spot 2.0—a framework for LTL and ω-automata manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3 8

12. Edelkamp, S., Jabbar, S.: Large-scale directed model checking LTL. In: Valmari, A.
(ed.) SPIN 2006. LNCS, vol. 3925, pp. 1–18. Springer, Heidelberg (2006). https://
doi.org/10.1007/11691617 1

13. Edelkamp, S., Lafuente, A.L., Leue, S.: Directed explicit model checking with HSF-
SPIN. In: Dwyer, M. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 57–79. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-45139-0 5

14. Edelkamp, S., Schuppan, V., Bošnački, D., Wijs, A., Fehnker, A., Aljazzar, H.: Sur-
vey on directed model checking. In: Peled, D.A., Wooldridge, M.J. (eds.) MoChArt
2008. LNCS (LNAI), vol. 5348, pp. 65–89. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00431-5 5

15. Esparza, J., Křet́ınskỳ, J., Sickert, S.: One theorem to rule them all: a unified trans-
lation of LTL into ω-automata. In: Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, pp. 384–393. Association
for Computing Machinery, New York (2018). https://doi.org/10.1145/3209108.
3209161

16. Esparza, J., Schröter, C.: Net reductions for LTL model-checking. In: Margaria,
T., Melham, T. (eds.) CHARME 2001. LNCS, vol. 2144, pp. 310–324. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44798-9 25

17. Geldenhuys, J., Valmari, A.: More efficient on-the-fly LTL verification with Tar-
jan’s algorithm. Theor. Comput. Sci. 345(1), 60–82 (2005). https://doi.org/10.
1016/j.tcs.2005.07.004

18. Gjøl Jensen, P., Srba, J., Jensen Ulrik, N., Mejlby Virenfeldt, S.: Reproducibility
Package: Automata-Driven Partial Order Reduction and Guided Search for LTL
(2021). https://doi.org/10.5281/zenodo.5704172

19. Godefroid, P.: Using partial orders to improve automatic verification methods.
In: Clarke, E.M., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 176–185.
Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0023731

20. Hansen, H., Lin, S.-W., Liu, Y., Nguyen, T.K., Sun, J.: Diamonds are a girl’s best
friend: partial order reduction for timed automata with abstractions. In: Biere, A.,
Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 391–406. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08867-9 26

21. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Boston (2003)

22. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997). https://doi.org/10.1109/32.588521

23. Jensen, J.F., Nielsen, T., Oestergaard, L.K., Srba, J.: TAPAAL and reachability
analysis of P/T Nets. In: Koutny, M., Desel, J., Kleijn, J. (eds.) Transactions on
Petri Nets and Other Models of Concurrency XI. LNCS, vol. 9930, pp. 307–318.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53401-4 16

24. Kordon, F., et al.: Complete Results for the 2020 Edition of the Model Checking
Contest, June 2021. http://mcc.lip6.fr/2021/results.php

25. Lehmann, A., Lohmann, N., Wolf, K.: Stubborn sets for simple linear time proper-
ties. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp.
228–247. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31131-
4 13

26. Liebke, T.: Büchi-automata guided partial order reduction for LTL. In: PNSE@
Petri Nets, pp. 147–166 (2020)

https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/11691617_1
https://doi.org/10.1007/11691617_1
https://doi.org/10.1007/3-540-45139-0_5
https://doi.org/10.1007/978-3-642-00431-5_5
https://doi.org/10.1007/978-3-642-00431-5_5
https://doi.org/10.1145/3209108.3209161
https://doi.org/10.1145/3209108.3209161
https://doi.org/10.1007/3-540-44798-9_25
https://doi.org/10.1016/j.tcs.2005.07.004
https://doi.org/10.1016/j.tcs.2005.07.004
https://doi.org/10.5281/zenodo.5704172
https://doi.org/10.1007/BFb0023731
https://doi.org/10.1007/978-3-319-08867-9_26
https://doi.org/10.1109/32.588521
https://doi.org/10.1007/978-3-662-53401-4_16
http://mcc.lip6.fr/2021/results.php
https://doi.org/10.1007/978-3-642-31131-4_13
https://doi.org/10.1007/978-3-642-31131-4_13

Automata-Driven LTL Model Checking 173

27. Liebke, T., Wolf, K.: Taking some burden off an explicit CTL model checker. In:
Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 321–341.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2 18

28. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989). https://doi.org/10.1109/5.24143

29. Peled, D.: All from one, one for all: on model checking using representatives. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidel-
berg (1993). https://doi.org/10.1007/3-540-56922-7 34

30. Peled, D.A., Valmari, A., Kokkarinen, I.: Relaxed visibility enhances partial order
reduction. Formal Methods Syst. Des. 19(3), 275–289 (2001). https://doi.org/10.
1023/A:1011202615884

31. Petri, C.A.: Communication with automata. Ph.D. thesis, Universität Hamburg
(1966)

32. Pnueli, A.: The temporal semantics of concurrent programs. Theor. Comput. Sci.
13(1), 45–60 (1981). https://doi.org/10.1016/0304-3975(81)90110-9

33. Schmidt, K.: Stubborn sets for standard properties. In: Donatelli, S., Kleijn, J.
(eds.) ICATPN 1999. LNCS, vol. 1639, pp. 46–65. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48745-X 4

34. Schmidt, K.: How to calculate symmetries of Petri nets. Acta Informatica 36(7),
545–590 (2000). https://doi.org/10.1007/s002360050002

35. Schmidt, K.: Narrowing Petri net state spaces using the state equation. Fund.
Inform. 47(3–4), 325–335 (2001)

36. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2),
146–160 (1972). https://doi.org/10.1137/0201010

37. Thierry-Mieg, Y.: Symbolic model-checking using ITS-tools. In: Baier, C., Tinelli,
C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 231–237. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 20

38. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G.
(ed.) ICATPN 1989. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-53863-1 36

39. Valmari, A.: A stubborn attack on state explosion. Formal Methods Syst. Des.
1(4), 297–322 (1992)

40. Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.)
ACPN 1996. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998). https://
doi.org/10.1007/3-540-65306-6 21

41. Valmari, A., Vogler, W.: Fair testing and stubborn sets. In: Bošnački, D., Wijs, A.
(eds.) SPIN 2016. LNCS, vol. 9641, pp. 225–243. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-32582-8 16

42. Vardi, M.Y.: Automata-theoretic model checking revisited. In: Cook, B., Podelski,
A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 137–150. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-69738-1 10

43. Wolf, K.: Petri net model checking with LoLA 2. In: Khomenko, V., Roux, O.H.
(eds.) PETRI NETS 2018. LNCS, vol. 10877, pp. 351–362. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-91268-4 18

https://doi.org/10.1007/978-3-030-21571-2_18
https://doi.org/10.1109/5.24143
https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1023/A:1011202615884
https://doi.org/10.1023/A:1011202615884
https://doi.org/10.1016/0304-3975(81)90110-9
https://doi.org/10.1007/3-540-48745-X_4
https://doi.org/10.1007/s002360050002
https://doi.org/10.1137/0201010
https://doi.org/10.1007/978-3-662-46681-0_20
https://doi.org/10.1007/3-540-53863-1_36
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/978-3-319-32582-8_16
https://doi.org/10.1007/978-3-319-32582-8_16
https://doi.org/10.1007/978-3-540-69738-1_10
https://doi.org/10.1007/978-3-319-91268-4_18

	Automata-Driven Partial Order Reduction and Guided Search for LTL Model Checking
	1 Introduction
	2 Preliminaries
	2.1 Labelled Transition Systems
	2.2 Linear Temporal Logic
	2.3 Nondeterministic Büchi Automata
	2.4 Petri Nets

	3 Automata-Guided Partial Order Reduction
	3.1 Automata-Driven Stubborn Set Method for LTL
	3.2 Stubborn Sets for LTL Model Checking on Petri Nets

	4 Automata-Driven Guided Search
	5 Experimental Evaluation
	6 Conclusion
	References

