
EPMC Gets
Knowledge in

Multi-agent Systems

Chen Fu1,2(B) , Ernst Moritz Hahn3 ,
Yong Li1 , Sven Schewe4 , Meng Sun5 ,
Andrea Turrini1,6 , and Lijun Zhang1,2,6

1 State Key Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences, Beijing, China

fchen@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 University of Twente, Enschede, The Netherlands
4 University of Liverpool, Liverpool, UK

5 LMAM and Department of Information Science, School of Mathematical Sciences,
Peking University, Beijing, China

6 Institute of Intelligent Software, Guangzhou, China

Abstract. In this paper, we present EPMC, an extendible probabilistic
model checker. EPMC has a small kernel, and is designed modularly.
It supports discrete probabilistic models such as Markov chains and
Markov decision processes. Like PRISM, it supports properties speci-
fied in PCTL*. Two central advantages of EPMC are its modularity
and extendibility. We demonstrate these features by extending EPMC
to EPMC-petl, a model checker for probabilistic epistemic properties
on multi-agent systems. EPMC-petl takes advantage of EPMC to pro-
vide two model checking algorithms for multi-agent systems with respect
to probabilistic epistemic logic: an exact algorithm based on SMT tech-
niques and an approximated one based on UCT. Multi-agent systems and
epistemic properties are given in an extension of the modelling language
of PRISM, making it easy to model this kind of scenarios.

1 Introduction

In this paper, we present a new model checker called EPMC, an acronym for
Extendible Probabilistic Model Checker. Two main characteristics of EPMC are
its high modularity and its full extendibility. It achieves its flexibility by an
infrastructure that consists of a minimal core part and multiple plugins that

This work was supported in part by the Guangdong Science and Technology Depart-
ment (Grant No. 2018B010107004) and by the National Natural Science Foundation
of China (Grants Nos. 62102407, 62172019).

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreements 864075 (CAESAR), and 956123
(FOCETA).

c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 93–107, 2022.
https://doi.org/10.1007/978-3-030-94583-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_5&domain=pdf
http://orcid.org/0000-0002-0397-7656
http://orcid.org/0000-0002-9348-7684
http://orcid.org/0000-0002-7301-9234
http://orcid.org/0000-0002-9093-9518
http://orcid.org/0000-0001-6550-7396
http://orcid.org/0000-0003-4343-9323
http://orcid.org/0000-0002-3692-2088
https://doi.org/10.1007/978-3-030-94583-1_5


94 C. Fu et al.

provide model checking functionalities. We believe that it is very convenient to
develop a new model checker based on the core parts of EPMC. While the model
checker historically starts from probabilistic models, it will be easy to extend it
to incorporate other model types.

The baseline includes model checking functionality for probabilistic systems.
Probabilistic systems play an important role in reasoning about randomised
network protocols, and biological and concurrent systems. They also find appli-
cations in analysing security protocols. Markov decision processes are among
the most important semantic models. As a result, several model checkers that
support MDP analysis have been developed, including the state-of-the-art prob-
abilistic model checker PRISM [35], Storm [15], MRMC [30], LiQuor [12],
MoChiBa [50], and IscasMc [22]. These model checkers differ in the model
and property types they support. For instance, MRMC and Storm handle
branching time properties specified in PCTL [25], whereas LiQuor, IscasMc
and MoChiBa are specialised in analysing linear time properties (PLTL) [5].
PRISM can handle both.

The first baseline of EPMC includes support for PCTL, PLTL, and their
extension to PCTL*. In addition, it can also be used to analyse Markov games.
To demonstrate the main features of EPMC, we extend it to the model checker
EPMC-petl. EPMC-petl is designed for the verification of probabilistic multi-
agent systems against PETL (probabilistic epistemic temporal logic) proper-
ties under uniform schedulers. Multi-agent systems have found many applica-
tions and verification techniques have also been proposed over the past decades.
Although there are model checkers for multi-agent systems, as we will see in
related works (Sect. 4), they can only handle restricted classes of the model we
are interested in, such as a non-probabilistic setting or, where they can handle
probability, they do not support epistemic accessibility relations. The algorith-
mic design, implementation, and validation based on an existing model checker
for probabilistic multi-agent systems against properties specified in PETL under
uniform schedulers is not available.

Exploiting the minimal kernel and multiple plugins of EPMC, we can con-
veniently implement the algorithms specific for the epistemic fragment of PETL
while reusing the core parts of EPMC for the management of the remaining
fragment, part of PCTL. In particular, the modularity of EPMC makes the
development of new functionalities rather independent from the existing ones,
without having to change existing code. This speeds up the implementation
and simplifies the debugging of the code, by isolating the different components
responsible for the different verification steps.

Summarising, the main features of EPMC include extendibility, modularity,
and the support of games and strategy synthesis. Beyond introducing EPMC,
we also present, with its extension to EPMC-petl, the first tool that supports
PETL model checking for probabilistic nondeterministic multi-agent systems.

Organisation of the Paper. Section 2 introduces the architecture of our tool. In
particular, we demonstrate how to develop the PETL model checker EPMC-
petl. Experimental results are presented in Sect. 3. Sect. 4 discusses related
works, and Sect. 5 concludes the paper.



EPMC Gets Knowledge in Multi-agent Systems 95

2 Architecture

We show the architecture of EPMC and how to build EPMC-petl on top of
it. EPMC contains two main components: a) EPMC core; b) various plugins.
Details of these components and the interface are provided below.

The larger part of EPMC is developed in Java. It uses JNA [3] to access
libraries written in C/C++ to improve the performance of some computation
or to provide access to legacy code. Instances of such libraries are the BDD
libraries (like CUDD [51]) used to store symbolically the models or the C imple-
mentation of different versions of value iteration algorithms. The compilation of
EPMC is managed by the software project management and comprehension tool
Maven [2]. Maven takes care of caching and retrieving all building dependencies
such as Ant [1] and JavaCC [4], used for the parsers. This allows for porting
EPMC to multiple platforms and architectures.

2.1 EPMC Core

EPMC consists of a minimal kernel and multiple plugins that provide the func-
tionalities needed for model checking. This kernel is rather small. It is only
responsible for the bootstrap phase, where the plugins are loaded, and for start-
ing the model checking procedure. It first initialises the data structures needed
to load the plugins and then loads and initialises each plugin according to the
order, in which they are specified. Finally, it starts the model checking procedure
by parsing the given models and properties and calling the appropriate solvers.

In order to maximise modularity, the kernel has no information about the
existing plugins until they are loaded and initialised; it is the duty of each plugin
to register itself in EPMC. In order to be recognised as a valid EPMC plugin,
it has to

– declare its name and that it is an EPMC plugin in its MANIFEST.MF file;
– list the plugins it depends on; and
– implement all interfaces defined by the plugin manager from the kernel part.

Once the plugin meets these requirements, it can be used in EPMC to provide
the expected functionalities. The plugin can be inserted into EPMC in two ways:
either its jar file is placed in the embeddedplugins directory contained in the
EPMC jar file and its name is listed in the embeddedplugins.txt file; or it
is specified at command line by means of the option plugin as a jar file or as
a directory containing the class files. During the kernel’s bootstrap phase, the
plugins listed in embeddedplugins.txt are loaded first, following the order in
which they appear in the file. Then the plugins specified by the option plugin
are loaded according to their order.

When loading a plugin, a set of specific methods defined by the plugin inter-
face are called. In these methods, the plugin can register itself with respect to its
functionalities. A plugin can, for example, add new command line options, new
commands, or new data types; or it can declare to support specific operations,



96 C. Fu et al.

such as model checking a specific logic operator. The registration performed by
a plugin can be altered by the plugins loaded later. A plugin loaded later has
therefore a higher priority than a plugin loaded earlier. In particular, one can
last load a simple plugin that removes or modifies some of the options provided
earlier in order to create a version of EPMC specialised for specific tasks within
a specific setting.

2.2 Plugins Available in EPMC

We will now introduce some of the plugins natively supported by EPMC; the
different flavours of EPMC can be obtained by choosing and combining multiple
plugins together: for instance, by selecting the appropriate set of plugins EPMC
becomes a tool for performing PCTL model checking on Markov chains or MDPs,
and with a different set of plugins we can obtain a tool for model checking Markov
decision processes against PLTL formulas. By combining the two sets of plugins,
the resulting EPMC is able to check these models against the whole of PCTL*.
Below we give an overview of the plugins of EPMC.

Algorithm Group: This group contains all plugins that provide the classical
algorithms that are used for probabilistic model checking, such as graph decom-
position into strongly connected components and maximal end components for
both symbolic and explicit representations. It currently only includes the plu-
gin algorithm, which provides standard algorithms, such as the following ones:
FoxGlynn, which follows the algorithm proposed in [28] for computing Poisson
probabilities for CTMCs; Tarjan, which implements the well-known strongly
connected component decomposition algorithm by Robert Tarjan [53] for explicit
data structures; and Bloem and Chatterjee, which compute strongly con-
nected components using BDDs and are based on the work of Roderick Bloem
et al. [6] and Krishnendu Chatterjee et al. [10], respectively.

Automata Group: The purpose of this group is to enclose the plugins that encode
ω-regular automata. It currently includes two plugins, namely the automata
and the automaton-determinisation plugins. automata provides a uniform
interface for automata such as Büchi and Rabin automata, while automaton-
determinisation provides the algorithms proposed by Sven Schewe, Thomas
Varghese, and Nir Piterman [46,48,49] to determinise nondeterministic Büchi
automata to deterministic Rabin and parity automata.

Command Group: This group provides three plugins that set the main function-
ality of EPMC: command-check calls the model checker to actually perform
the model checking operation; command-help prints out the usage messages;
and command-lump requires as input a probabilistic model and generates as
output a new model, which is bisimilar to the original model.



EPMC Gets Knowledge in Multi-agent Systems 97

BDD Group: The BDD group is dedicated to the symbolic representation of
models and properties by means of the Binary Decision Diagrams data struc-
tures. The dd plugin provides a uniform interface to use a BDD library and
therefore does not provide any actual implementation of BDD data structures.
Such an implementation is provided by one of the following plugins; each of
them implements the dd interface and at least one of them has to be included
whenever EPMC is expected to support the symbolic representation of models.

The dd-buddy plugin wraps the C library BuDDy [14], which is a small and
efficient BDD library. The dd-cacbdd plugin gives access to the C++ library
CacBDD [44], which implements a dynamic cache management algorithm. The
dd-cudd plugin provides the C library CUDD [51], which is the most well-
known BDD library used in several tools; it is the default BDD library of the
PRISM model checker [35,47]. The dd-cudd-mtbdd plugin is the companion
of dd-cudd for the multi-terminal binary decision diagrams (MTBDDs) offered
by CUDD. The dd-jdd plugin includes the library JDD [54], which is a Java
implementation of binary decision diagrams inspired by BuDDy. The dd-sylvan
and dd-sylvan-mtbdd plugins make the library Sylvan [17] available in EPMC;
Sylvan is a parallel (multi-core) BDD library written in C.

Bisimulation Algorithm Group: This group collects the plugins that compute
bisimulation relations on the models: the lumper-explicit-signature plugin
implements a signature based lumping algorithm for probabilistic systems; and
the lumper-dd plugin implements a lumping algorithm for probabilistic systems
by using MTBDDs.

Expression Group: This group hosts the expression-basic plugin, which is
designed to provide a uniform interface as well as the corresponding data struc-
tures to handle formulas from temperoal logics like PCTL and PLTL.

Graph Group: The single graph plugin available in this group provides a uniform
interface as well as the data structures to store various models as a graph. The
model can be a Markov chain, a Markov decision process, an automaton, or any
model that can be interpreted as a labelled graph. It also provides the interfaces
to access the properties in the nodes or the properties on the edges. For instance,
it permits to collect all atomic propositions that hold in a state via evaluating
the properties of this state node.

Graph Solver Group: Similar to the BDD group, we have the graphsolver plu-
gin, which defines a uniform interface for solving the linear programming prob-
lems used to compute the reachability probabilities the model checking problems
are reduced to. The actual implementation is provided by the graphsolver-
iterative plugin, which solves the given linear programming problem by value
iteration. It supports both Jacobi and Gauss-Seidel iteration methods.

JANI Format Group: This group contains all plugins related to the recently pro-
posed JANI model and interaction format [7]. There are currently three plugins:



98 C. Fu et al.

the jani-model plugin provides a parser to transform an input JANI model to
a graph or an MTBDD. It is also able to parse the input JANI formula; the
jani-exporter takes care of exporting models and properties in JANI format.

PRISM Format Group: The single prism-format plugin available in this group
provides a parser to transform a given PRISM model description to an explicit
graph or an MTBDD. It also provides a parser for the input formula.

Property Solver Group: The plugins contained in this group are responsible
for solving the properties analysed during the model checking phase. Simi-
larly to the BDD group, the specific property solvers are all implementations
of the common interface provided by the propertysolver plugin. There are
currently eight implementation plugins representing eight different classes of
properties: propertysolver-coalition provides a solution to solve a proba-
bilistic parity game against linear temporal properties; propertysolver-filter
handles the filter operation in the given PRISM formula; propertysolver-ltl-
lazy implements an efficient method to model check the PCTL* logic over
the probabilistic systems by means of advanced LTL verification techniques;
propertysolver-operator works with the operators that occur in the given
formula; propertysolver-pctl implements the PCTL model checking algorithm
over probabilistic systems; propertysolver-propositional provides a way to
identify all states that satisfy the given propositional formula; propertysolver-
reachability exemplifies how to write a plugin that handles the reachability
formula PFa over Markov chains; and propertysolver-reward implements a
model checking algorithm to handle probabilistic systems with rewards.

Util Group: The single plugin util available in this group provides basic utilities
useful for working with bits, JSON documents, and other native data types in a
JAVA-style approach.

Value Group: Similar to the expression group, this group hosts the value-basic
plugin, which is designed to provide a uniform interface to represent all kinds of
values and types that may be used in EPMC, as well as the implementation of
the standard values and type such as Booleans, integers, and reals.

Dependencies Between Plugins. Each plugin may have build-time and run-
time dependencies on other plugins. Build-time dependencies can be considered
as hard dependencies: they must be satisfied at compilation time as well as
during the bootstrap phase; these build-time dependencies are made explicit in
the MANIFEST.MF file, and the order the plugins are loaded in the bootstrap phase
has to respect such build-time dependencies. For instance, the property-solver-
pctl plugin has a build-time dependency on property-solver, since property-
solver-pctl implements the interfaces defined by property-solver.

The graph of build-time dependencies between the groups of plugins is shown
in Fig. 1, where an arrow from one group to another means that the former



EPMC Gets Knowledge in Multi-agent Systems 99

Fig. 1. Build-time dependencies between groups of plugins in EPMC

requires the latter. To simplify the graph, we omitted all arrows that can be
inferred by transitivity, such as the one between any group and util.

Run-time dependencies can be seen as soft dependencies: their satisfaction
depends on the actual steps performed during the model checking phase. For
instance, the property-solver-pctl plugin has only a run-time dependency
on graphsolver-iterative, since graphsolver-iterative is required during the
model checking phase only in cases the property cannot be decided via a sim-
ple graph exploration. (This happens for quantitative properties.) This means
that graphsolver-iterative has to be available at run-time for some properties,
while for other properties it may be missing. If EPMC is intended to be used
to check only qualitative properties, then graphsolver-iterative can safely be
omitted, while EPMC needs the graphsolver-iterative plugin (or any other
plugin implementing graphsolver) to analyse quantitative properties.

2.3 PETL Model Checker as a Plugin

The structure of EPMC-petl, largely shared with EPMC given its modular
architecture, is illustrated in Fig. 2.

To provide the PETL model checking algorithms for multi-agent systems
offered by EPMC-petl, we have developed the PETL plugins that add the cor-
responding functionalities, namely: the parser for the multi-agent system model
specification and the PETL properties; the data structures to store them; and
the algorithms for evaluating the properties against the given model.

In multi-agent systems, the agents have the capacity to perform certain
actions, which they choose according to their individual protocols. Given the
distributed nature of multi-agent systems, it is typical that the agents have
incomplete information about the state of the global system due to the fact that
they are only able to observe a limited part of the global state when they have to
choose their actions. The incompleteness of information is normally modelled by
defining, for each agent i, an equivalence relation ∼i over all global states of the
systems, then two global states are considered indistinguishable for a given agent
i if they are related by ∼i. Note that two states that are indistinguishable for
an agent may be distinguishable for another agent, so there is no constraint on
how two states are related by the different relations. Every agent makes its own



100 C. Fu et al.

Fig. 2. Architecture of EPMC-petl

decisions based only on the limited information it has, namely, the information
restricted by its own indistinguishability relation. Decisions of agents are usually
formalised by schedulers, which are functions that take the history executions as
input and decide (output) the next move for each agent. Schedulers that only
make use of the limited information each agent is aware of are called uniform.
Intuitively, a uniform scheduler for the agent i is expected to make the same
choice when given two executions that are equivalent under ∼i.

To build the model checker EPMC-petl, we have to first implement three
things in this plugin: the model, the property, and the equivalence relations.

Model. We use the PRISM language as input format and the model type should
be “mdp”, to represent the fact that the model has both probabilistic and nonde-
terministic behaviour. Each module in the MDP defines one agent’s behaviour,
with the name of the module being the agent’s name. The state space of the
overall multi-agent system is constructed following the PRISM approach, i.e.,
by considering all state variables, whether local to a module or global, and with
the usual PRISM restrictions on how transitions can update these variables.

Differently from the standard PRISM language semantics, at each step every
agent chooses one action among the enabled transitions, independent of whether
other agents have a transition with the same action that is enabled. The actions
labelling the transitions are therefore not used for the synchronisation of the
modules: they are instead the names of local actions, and each command must
be labelled by one action.



EPMC Gets Knowledge in Multi-agent Systems 101

The overall result is that the agents do not interact with each other by
synchronising on common actions, but by the effects of the individual transitions
chosen by the individual agents.

Property. To specify the properties of probabilistic multi-agent systems, in par-
ticular the temporal dynamics of agents’ knowledge, we adopt the probabilistic
epistemic temporal logic (PETL) (cf. [16]), which can be viewed as a combina-
tion of epistemic logic [18] and probabilistic computation tree logic (PCTL) [25].
To specify PETL formulas, we extend the PRISM language by adding the epis-
temic operators Ki and EG, CG, and DG to the set of operators that can occur
in a property formula, where i is (the name of) an agent and G is a set of agents.
Intuitively, the property Kiϕ means that agent i knows that property ϕ holds in
state s if ϕ holds in all states equivalent to s with respect to ∼i; properties EGϕ,
CGϕ, and DGϕ are similar, but refer to the common/distributed knowledge of
the group of agents. These epistemic operators are thus added to the PRISM
properties as K {agent} and E/C/D {agent1, ..., agentn}, respectively.

Equivalence Relations. Equivalence relations are encoded as sets of formu-
las shown in Fig. 3. Each agent in the model has its own equiv agent name
...equiv end block and each block contains a set of formulas. The formulas
are defined on all state variables that occur in the model definition and are not
restricted to those of the corresponding single agent.

Fig. 3. The format of
equivalence relations

Each formula induces one equivalence class, i.e., two
states that satisfy the same formula of agent j are consid-
ered to be related by ∼j . This means that formulas are
required to be pairwise disjoint; if a state does not satisfy
any formula, it is not equivalent to any other state, so it
belongs to its singleton equivalence class.

PETL Solvers. In general, the model checking problem for
probabilistic multi-agent systems against PETL properties
is undecidable [20], but is decidable when restricted to
the class of uniform memoryless schedulers. The decision
algorithm for the latter follows the PCTL approach: the
PETL property is checked bottom-up, with each operator
managed by its corresponding solver. Epistemic operators
are part of the state formulas while the temporal operators
are managed as in PCTL, except for the class of schedulers
considered for computing the Until operator.

The key parts of the PETL plugins are three solvers needed to verify PETL
properties: the first one focuses on the knowledge operators, while the other two
take care of the PCTL until operator (wrapped inside a probabilistic operator P,
as in PCTL), which needs to be computed on the class of uniform memoryless
schedulers instead of the general class of memoryless schedulers as done in PCTL;
these two solvers implement two different algorithms, an exact one based on
mixed integer non-linear programming and an approximation based on upper



102 C. Fu et al.

confidence bounds applied to trees (UCT) [31]. The remaining fragments of
PETL, like propositional formulas and the next operator, can be computed as
for PCTL. They can therefore be inherited from the existing plugins of EPMC.

MINLP Solver. This solver implements the PETL model checking algorithm
developed in [20]: it reduces the problem of checking the satisfaction of an until
formula to a mixed integer non-linear programming (MINLP) problem, which
can then be solved by, e.g., an SMT solver. Here we make use of the SMT solver
Z3 [45], which can be replaced by any other SMT solver that supports SMT-lib
version 2.5 as input format. The reduction ensures that the resulting scheduler
is uniform and memoryless, with a different encoding for Pmax=? and Pmin=?.

UCT Solver. This solver implements an approximated algorithm relative to the
until operator, based on the upper confidence bounds applied to trees (UCT)
algorithm [19]. This UCT based solver performs a Monte Carlo sampling of
the model, with heuristics guiding the choice between the exploration of new
parts of the state space, the analysis of already explored state space, and the
action to choose. This solver offers several parameters to the user to tune the
heuristics: time limit – how much time the solver should use when exploring
the model; depth limit – how many steps the solver should perform in the state
space exploration; B value – the bias parameter in the UCT formula between old
and new state exploration; and random seed – the random seed used to select
unvisited successors (so to be able to reproduce the solver’s execution).

The implementation of this solver makes use of specialised data structures to
store the information collected during the UCT sampling; in particular, the data
structure organises the information so to ensure that the underlying scheduler
is uniform, as required by the PETL decision algorithm. The basic idea is to
store the selected actions of each agent, and then exclude the actions making
the scheduler non-uniform when executing the next step in the exploration.

Knowledge Solver. This solver deals with the knowledge operators, namely Ki,
EG, DG, and CG. Depending on the actual knowledge property Z(ϕ), the solver
takes the satisfaction information about the state formula ϕ already computed
(recall that PETL model checking is based on a bottom-up approach similar
to PCTL) and returns the set of states that satisfy Z(ϕ), by implementing the
semantics of Z(ϕ).

Online Availability. EPMC, including its extension EPMC-petl, is an
open source tool. EPMC is freely available at https://github.com/ISCAS-PMC/
ePMC as a git repository to be forked and modified.

3 Empirical Evaluation

We have generated five different flavours of EPMC by loading different mod-
ules. One version that supports only PCTL; one that supports PCTL*; one

https://github.com/ISCAS-PMC/ePMC
https://github.com/ISCAS-PMC/ePMC


EPMC Gets Knowledge in Multi-agent Systems 103

Table 1. Different variations of EPMC. The runtime is given in seconds, and ‘ns’
and ‘to’ abbreviate ‘not supported’ and ‘time-out’ (set to 100 s, as performance
was not our concern). The properties used were ϕ1 = Pmax=?[Fnum crit > 1]
(PCTL); ϕ2 = Pmin=?[(GFp1! = 10 ∨ GFp1 = 0 ∨ FGp1 = 1) ∧ GFp1! =
0 ∧ GFp1 = 1] (PLTL); ϕ3 = P>=1[F“premium”] (PCTL); ϕ4 = P=?[(GFleft n =
16) ∨ ∨16

i=13 FGright n = i] (PLTL); ϕ5 = 〈〈1〉〉P>=1[(!“z1” U “z2”)] (Coalition);
ϕ6 = 〈〈1〉〉P>=1[(!“z1” U “z2”) ∧ F“z3”] (Coalition); ϕ7 = 〈〈1〉〉Pmin=?[(!“z1” U
“z2”)] (Coalition); ϕ8 = 〈〈1〉〉Pmax=?[(!“z1” U “z2”) ∧ (!“z4” U “z2”) ∧ F“z3”]
(Coalition); ϕ9 = Pmax=?[G(rw x �= rc x ∨ rw y �= rc y)] (PETL); and ϕ10 =
Pmax=?[GErw,rc(rw x �= rc x ∨ rw y �= rc y)] (PETL).

Experiment EPMC PRISM Rabinizer4 PRISM-games

PCTL PCTL* SMG PETL full

Mutual ϕ1 1.7 1.8 ns ns 1.8 0.0 0.0 0.0

Exclusion 4 ϕ2 ns 4.5 ns ns 4.5 14.4 10.4 13.3

Workstation ϕ3 1.1 1.0 ns ns 1.2 0.0 0.0 0.0

Cluster 16 ϕ4 ns 1.8 ns ns 1.7 to 0.7 to

Robot ϕ5 ns ns 2.9 ns 2.9 ns ns 0.6

10 ϕ6 ns ns 3.1 ns 3.2 ns ns 1.9

Robot shoot ϕ7 ns ns 5.2 ns 5.7 ns ns 0.0

7, 1, 0.3 ϕ8 ns ns 5.9 ns 5.5 ns ns 2.0

Reconnaissance ϕ9 ns ns ns 17.1 12.6 ns ns ns

2 ϕ10 ns ns ns 16.4 15.3 ns ns ns

for solving probabilistic parity games; one that supports PETL; and a version
that supports all of these. As comparison, we considered the following tools
PRISM [35], PRISM-games [11], and Rabinizer4 [34].

We have run these tools on a few MDP benchmarks taken from the PRISM
website [47], SMG games from [23,24] and multi-agent systems from [20]; we
considered some simple properties for these models. The goal of the comparison,
reported in Table 1, is to show the adaptability of EPMC in supporting different
logics and to use different modules, not the actual performance.

4 Related Work

We have already discussed related probabilistic model checkers in the introduc-
tion, all of which do not support PETL model checking. Here we list related
tools for analysing multi-agent systems or epistemic logics.

MCMAS [41–43] is an open-source, OBDD-based symbolic model checker for
verifying multi-agent systems. MCMAS is restricted to non-probabilistic mod-
els. There are some model checkers for multi-agent systems built on top of
MCMAS: MCMAS-SDD [36] introduces an SDD-based technique for the for-
mal verification of multi-agent systems; MCMAS-SLK [8] supports the verifi-
cation of systems against specifications expressed in strategy logic (SL) with
knowledge; MCMAS-SL[1G] [9] puts forward an automata-based methodology
for verifying and synthesising multi-agent systems against specifications given in



104 C. Fu et al.

SL[1G], which is the one-goal fragment of strategy logic; MCMASLDLK [32] can
verify properties given in LDLK (Linear Dynamic Logic with Knowledge) for
multi-agent systems; MCMASLDLfK [33] implements the algorithm for the ver-
ification of multi-agent systems against LDLfK specifications, which is LDLK
interpreted on finite traces. As for MCMAS, all these model checkers do not
consider probabilistic components in their systems and logics.

Probabilistic swarm systems support systems with an unbounded and time-
changing number of agents. Based on PRISM [35], Lomuscio and Pirovano have
introduced the software package PSV (probabilistic swarm verifier), with several
sub-components that support bounded time PSV-BD [38], counter abstraction
PSV-CA [39], strategic properties PSV-S [40], and faulty systems. The logics
these tools consider are either without epistemic operators, or they allow only a
single epistemic operator to occur as the top operator of the formula. While the
EPMC extension EPMC-petl we have discussed only analyses systems with a
fixed number of agents, it supports the nesting of epistemic operators as well as
their boolean combination.

MCK [21] is an OBDD-based model checker for multi-agent systems that
supports temporal-epistemic specifications. It has been extended in [26] to sup-
port probabilistic reasoning, but nondeterministic choices are not considered;
the work in [27] implements a symbolic BDD-based model checking algorithm
for an epistemic strategy logic with observational semantics also based on MCK.
Epistemic accessibility relations are studied in this work, but only for a non-
probabilistic setting. EPMC-petl supports the analysis of systems that com-
bine nondeterminism and probabilistic choices, which is missing in these tools.

MCTK [52] is a symbolic model checker for a temporal logic of knowledge. It
is developed from NuSMV [13]. Similarly, the authors of [37] propose a methodol-
ogy for model checking a temporal-epistemic logic by building upon an extension
of NuSMV. Verics [29] is a model checker for real-time and multi-agent systems.
It implements bounded model checking algorithms for CTL, real-time CTL, and
variants of CTL that include epistemic operators. Again, these tools can only
work with non-probabilistic multi-agent systems.

5 Conclusion

In this paper we have presented EPMC, an extendible probabilistic model
checker, and EPMC-petl, a tool for model checking epistemic properties
on multi-agent systems that exhibit both probabilistic and nondeterministic
behaviours. Key advantages of EPMC are its high degree of modularity and
full extendibility. We have exemplified by the particular extension of EPMC-
petl how this extensibility can be used to easily cover attractive new properties
that no other solver has covered before. Of course, besides demonstrating this
advantage of EPMC, EPMC-petl also provides this additional functionality,
which is novel and a contribution in itself.



EPMC Gets Knowledge in Multi-agent Systems 105

References

1. Apache AntTM website. http://ant.apache.org/
2. Apache Maven website. http://maven.apache.org/
3. Java Native Access (JNA) website. https://github.com/java-native-access/jna
4. JavaCCTM: The Java Compiler CompilerTM website. http://javacc.org/
5. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic

systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60692-0 70

6. Bloem, R., Gabow, H.N., Somenzi, F.: An algorithm for strongly connected com-
ponent analysis in n log n symbolic steps. Formal Methods Syst. Des. 28(1), 37–56
(2006)

7. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5 9

8. Čermák, P., Lomuscio, A., Mogavero, F., Murano, A.: MCMAS-SLK: a model
checker for the verification of strategy logic specifications. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 525–532. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 34

9. Cermák, P., Lomuscio, A., Murano, A.: Verifying and synthesising multi-agent
systems against one-goal strategy logic specifications. In: AAAI, pp. 2038–2044
(2015)

10. Chatterjee, K., Henzinger, M., Joglekar, M., Shah, N.: Symbolic algorithms for
qualitative analysis of Markov decision processes with Büchi objectives. Formal
Methods Syst. Des. 42(3), 301–327 (2013)

11. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: PRISM-games: a
model checker for stochastic multi-player games. In: Piterman, N., Smolka, S.A.
(eds.) TACAS 2013. LNCS, vol. 7795, pp. 185–191. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36742-7 13

12. Ciesinski, F., Baier, C.: Liquor: a tool for qualitative and quantitative linear time
analysis of reactive systems. In: QEST, pp. 131–132 (2006)

13. Cimatti, A., et al.: NuSMV 2: an OpenSource tool for symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 29

14. Cohen, H., Whaley, J., Wildt, J., Gorogiannis, N.: BuDDy. http://sourceforge.net/
p/buddy/

15. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a mod-
ern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63390-9 31

16. Delgado, C., Benevides, M.: Verification of epistemic properties in probabilistic
multi-agent systems. In: Braubach, L., van der Hoek, W., Petta, P., Pokahr, A.
(eds.) MATES 2009. LNCS (LNAI), vol. 5774, pp. 16–28. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04143-3 3

17. van Dijk, T., van de Pol, J.: Sylvan: multi-core decision diagrams. In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 677–691. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46681-0 60

18. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge (2004)

http://ant.apache.org/
http://maven.apache.org/
https://github.com/java-native-access/jna
http://javacc.org/
https://doi.org/10.1007/3-540-60692-0_70
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-319-08867-9_34
https://doi.org/10.1007/978-3-319-08867-9_34
https://doi.org/10.1007/978-3-642-36742-7_13
https://doi.org/10.1007/3-540-45657-0_29
http://sourceforge.net/p/buddy/
http://sourceforge.net/p/buddy/
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-642-04143-3_3
https://doi.org/10.1007/978-3-662-46681-0_60


106 C. Fu et al.

19. Fu, C., Turrini, A., Huang, X., Song, L., Feng, Y., Zhang, L.: Model checking for
probabilistic multiagent systems under uniform schedulers, submitted for publica-
tion, shared by the authors

20. Fu, C., Turrini, A., Huang, X., Song, L., Feng, Y., Zhang, L.: Model checking
probabilistic epistemic logic for probabilistic multiagent systems. In: IJCAI, pp.
4757–4763 (2018)

21. Gammie, P., van der Meyden, R.: MCK: model checking the logic of knowledge.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479–483. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9 41

22. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: a web-based
probabilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014.
LNCS, vol. 8442, pp. 312–317. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06410-9 22

23. Hahn, E.M., Schewe, S., Turrini, A., Zhang, L.: A simple algorithm for solving
qualitative probabilistic parity games. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9780, pp. 291–311. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-41540-6 16

24. Hahn, E.M., Schewe, S., Turrini, A., Zhang, L.: Synthesising strategy improvement
and recursive algorithms for solving 2.5 player parity games. In: Bouajjani, A.,
Monniaux, D. (eds.) VMCAI 2017. LNCS, vol. 10145, pp. 266–287. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-52234-0 15

25. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. FAC
6(5), 512–535 (1994)

26. Huang, X., Luo, C., van der Meyden, R.: Symbolic model checking of probabilistic
knowledge. In: TARK, pp. 177–186 (2011)

27. Huang, X., van der Meyden, R.: Symbolic model checking epistemic strategy logic.
In: AAAI, pp. 1426–1432 (2014)

28. Jansen, D.N.: Understanding Fox and Glynn’s “Computing Poisson probabilities”.
Technical report. ICIS-R11001, Institute for Computing and Information Sciences,
Radboud Universiteit (2011)

29. Kacprzak, M., et al.: Verics 2007 - a model checker for knowledge and real-time.
Fundam. Informaticae 85(1–4), 313–328 (2008)

30. Katoen, J., Khattri, M., Zapreev, I.S.: A Markov reward model checker. In: QEST,
pp. 243–244 (2005)

31. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842 29

32. Kong, J., Lomuscio, A.: Model checking multi-agent systems against LDLK speci-
fications. In: IJCAI, pp. 1138–1144 (2017)

33. Kong, J., Lomuscio, A.: Model checking multi-agent systems against LDLK speci-
fications on finite traces. In: AAMAS, pp. 166–174 (2018)

34. Křet́ınský, J., Meggendorfer, T., Sickert, S., Ziegler, C.: Rabinizer 4: from LTL to
your favourite deterministic automaton. In: Chockler, H., Weissenbacher, G. (eds.)
CAV 2018. LNCS, vol. 10981, pp. 567–577. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96145-3 30

35. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

36. Lomuscio, A., Paquet, H.: Verification of multi-agent systems via SDD-based model
checking. In: AAMAS, pp. 1713–1714 (2015)

https://doi.org/10.1007/978-3-540-27813-9_41
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1007/978-3-319-41540-6_16
https://doi.org/10.1007/978-3-319-41540-6_16
https://doi.org/10.1007/978-3-319-52234-0_15
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/978-3-319-96145-3_30
https://doi.org/10.1007/978-3-319-96145-3_30
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47


EPMC Gets Knowledge in Multi-agent Systems 107

37. Lomuscio, A., Pecheur, C., Raimondi, F.: Automatic verification of knowledge and
time with NuSMV. In: Veloso, M.M. (ed.) IJCAI 2007, Proceedings of the 20th
International Joint Conference on Artificial Intelligence, Hyderabad, India, 6–12
January 2007, pp. 1384–1389 (2007)

38. Lomuscio, A., Pirovano, E.: Verifying emergence of bounded time properties in
probabilistic swarm systems. In: IJCAI, pp. 403–409 (2018)

39. Lomuscio, A., Pirovano, E.: A counter abstraction technique for the verification of
probabilistic swarm systems. In: AAMAS, pp. 161–169 (2019)

40. Lomuscio, A., Pirovano, E.: Parameterised verification of strategic properties in
probabilistic multi-agent systems. In: AAMAS, pp. 762–770 (2020)

41. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: a model checker for the verification
of multi-agent systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 682–688. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02658-4 55

42. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for
the verification of multi-agent systems. Int. J. Softw. Tools Technol. Transfer 19(1),
9–30 (2015). https://doi.org/10.1007/s10009-015-0378-x

43. Lomuscio, A., Raimondi, F.: mcmas: a model checker for multi-agent systems. In:
Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 450–454.
Springer, Heidelberg (2006). https://doi.org/10.1007/11691372 31

44. Lv, G., Su, K., Xu, Y.: CacBDD: a BDD package with dynamic cache manage-
ment. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 229–234.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 15

45. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

46. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
parity automata. Logical Methods Comput. Sci. 3(3) (2007)

47. PRISM web site. http://www.prismmodelchecker.org
48. Schewe, S.: Tighter bounds for the determinisation of Büchi automata. In: de

Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 167–181. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00596-1 13

49. Schewe, S., Varghese, T.: Tight bounds for the determinisation and complementa-
tion of generalised Büchi automata. In: Chakraborty, S., Mukund, M. (eds.) ATVA
2012. LNCS, pp. 42–56. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33386-6 5

50. Sickert, S., Křet́ınský, J.: MoChiBA: probabilistic LTL model checking using limit-
deterministic Büchi automata. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA
2016. LNCS, vol. 9938, pp. 130–137. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46520-3 9

51. Somenzi, F.: CUDD: CU decision diagram package release 2.5.0. http://vlsi.
colorado.edu/∼fabio/CUDD/

52. Su, K., Sattar, A., Luo, X.: Model checking temporal logics of knowledge via
OBDDs. Comput. J. 50(4), 403–420 (2007)

53. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.
1(2), 146–160 (1972)

54. Vahidi, A.: JDD, a pure Java BDD and Z-BDD library. http://javaddlib.
sourceforge.net/jdd/

https://doi.org/10.1007/978-3-642-02658-4_55
https://doi.org/10.1007/978-3-642-02658-4_55
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1007/11691372_31
https://doi.org/10.1007/978-3-642-39799-8_15
https://doi.org/10.1007/978-3-540-78800-3_24
http://www.prismmodelchecker.org
https://doi.org/10.1007/978-3-642-00596-1_13
https://doi.org/10.1007/978-3-642-33386-6_5
https://doi.org/10.1007/978-3-642-33386-6_5
https://doi.org/10.1007/978-3-319-46520-3_9
https://doi.org/10.1007/978-3-319-46520-3_9
http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/
http://javaddlib.sourceforge.net/jdd/
http://javaddlib.sourceforge.net/jdd/

	EPMC Gets Knowledge in Multi-agent Systems
	1 Introduction
	2 Architecture
	2.1 EPMC Core
	2.2 Plugins Available in EPMC
	2.3 PETL Model Checker as a Plugin

	3 Empirical Evaluation
	4 Related Work
	5 Conclusion
	References




