
Fanoos: Multi-resolution, Multi-strength,
Interactive Explanations for Learned

Systems

David Bayani(B) and Stefan Mitsch(B)

Computer Science Department, Carnegie Mellon University,
Pittsburgh, PA 15213, USA

dcbayani@alumni.cmu.edu, smitsch@cs.cmu.edu

Abstract. Machine learning is becoming increasingly important to con-
trol the behavior of safety and financially critical components in sophis-
ticated environments, where the inability to understand learned compo-
nents in general, and neural nets in particular, poses serious obstacles to
their adoption. Explainability and interpretability methods for learned
systems have gained considerable academic attention, but the focus of
current approaches on only one aspect of explanation, at a fixed level of
abstraction, and limited if any formal guarantees, prevents those expla-
nations from being digestible by the relevant stakeholders (e.g., end users,
certification authorities, engineers) with their diverse backgrounds and
situation-specific needs. We introduce Fanoos, a framework for combin-
ing formal verification techniques, heuristic search, and user interaction
to explore explanations at the desired level of granularity and fidelity. We
demonstrate the ability of Fanoos to produce and adjust the abstractness
of explanations in response to user requests on a learned controller for
an inverted double pendulum and on a learned CPU usage model.

1 Introduction

Explainability and safety in machine learning (ML) are a subject of increasing
academic and public concern. As ML continues to grow in success and adoption
by wide-ranging industries, the impact of these algorithms’ behavior on people’s
lives is becoming highly non-trivial. Unfortunately, many of the most performant
contemporary ML algorithms—neural networks (NNs) in particular—are widely
considered black-boxes, with the method by which they perform their duties
not being amenable to direct human comprehension. The inability to under-
stand learned components as thoroughly as more traditional software poses seri-
ous obstacles to their adoption [1,5,13,28,30,52,88,89] due to safety concerns,

This material is based upon work supported by the United States Air Force and DARPA
under Contract No. FA8750-18-C-0092. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the author(s) and do not neces-
sarily reflect the views of the United States Air Force and DARPA.

c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 43–68, 2022.
https://doi.org/10.1007/978-3-030-94583-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_3&domain=pdf
http://orcid.org/0000-0001-5811-6792
http://orcid.org/0000-0002-3194-9759
https://doi.org/10.1007/978-3-030-94583-1_3

44 D. Bayani and S. Mitsch

difficult debugging and maintenance, and explicit legal requirements (e.g., the
“right to an explanation” legislation [24] adopted by the European Union). Sym-
biotic human-machine interactions can lead to safer and more robust agents, but
this task requires effective and versatile communication [66,79].

Interpretability of learned systems has been studied in the context of
computer science intermittently since at least the late 1980s, particularly in
the area of formal analysis (e.g., [15,42,55,81,85,86]), rule extraction (e.g.,
[4]), adaptive/non-linear control analysis (e.g., [18]), and various rule-learning
paradigms (e.g., inductive logic programming [56], association rule learning [3]).
Notwithstanding this long history, main-stream attention has risen only recently
due to increased impact on daily life of opaque AI [1] with novel initiatives
focused on the problem domain, e.g. [31,58] and workshops in IJCAI and ICAPS.

Despite this attention, however, most explanatory systems developed for ML
lack any formal guarantees with respect to how their descriptions reflect sys-
tem behavior and are hard-coded to provide a single type of explanation with
descriptions at a certain fixed level of abstraction. This not only prevents the
explanations generated from being digestible by multiple audiences (the end-
user, the intermediate engineers who are non-experts in the ML component, and
the ML-engineer for instance) as highlighted by the taxonomy presented in [6],
but in fact limits the use by any single audience since the levels of abstraction
and formal guarantees needed are situation and goal specific, not just a function
of the recipient’s background. When using a microscope, one varies between low
and high magnification in order to find what they are looking for and explore
samples; these same capabilities are desirable for XAI for much the same reasons.

For example, most consumers of autonomous vehicles may prefer to ask gen-
eral questions—for instance, “What do you do when you detect a person in front
of you?”—and receive a break-down of qualitatively different behaviors for differ-
ent situations, such as braking when traveling slowly enough, and doing a sharp
swerve when traveling too fast to brake. An engineer checking actuator compli-
ance, however, might require greater details, opting to specify precise parameters
of the scene and preferring that the car report exact motor commands; the con-
text of use and the audience determine which level of abstraction is best, and
supporting multiple types of abstractions in turn supports more use-cases and
audiences. Further, the explanations for such a component need to range from
formal guarantees to rough tendencies—it may be critical to formally guaran-
tee that the car will always avoid collisions, while it might be sufficient that it
usually (but perhaps not always) drives slowly when its battery is low.

The divide between formal and probabilistic explanations also relates to
events that are imaginable versus events that may actually occur; formal meth-
ods may check every point in a space for conformance to a condition, but if bad
behavior only occurs on measure-zero sets, the system would be safe while not
being provably so in formalizations lacking knowledge of statistics (e.g., if some
criteria demands that a car keep distance >10 cm from obstacles, formally we
can get arbitrarily close but not equal; in practice, the difference with ≥10 cm

Fanoos: Explanations for Learned Systems 45

might be irrelevant). Explainable ML systems should enable these sorts of search
and smooth variation in need, but at the moment they do not in general.

To address these needs, we introduce Fanoos,1 an algorithm blending a
diverse array of technologies to interactively provide explanations at varying
levels of abstraction and fidelity to meet user’s needs. Our algorithm is applica-
ble to currently ubiquitous ML methods, such as feed-forward neural networks
(FFNNs) and high-dimensional polynomial kernels. Fanoos offers the following
combination of capabilities, which are our contributions:

• Interactivity that allows users to query the learned system they want to under-
stand, and receive explanations characterizing the input requirements, output
behavior, or the combination of the two.

• Explanations that can either be formally sound or probabilistic based on the
user’s choice. Formal soundness is a capability missing from the vast majority
of XAI systems focused on ML, and leveraging verification techniques for ML-
related XAI has been underexplored.

• Explanations that can vary in abstraction level.

2 The Methodology of Fanoos

Fanoos is an interactive system that allows users to pose a variety of questions
grounded in a domain specification (e.g., asking what environmental conditions
cause a robot to swerve left), receive replies from the system, and request that
explanations be made more or less abstract. Crucially, Fanoos provides expla-
nations of high fidelity while considering whether the explanation should be for-
mally sound or probabilistically reasonable (which removes the “noise” incurred
by measure-zero sets that can plague formal descriptions). To this end, we com-
bine techniques from formal verification, interactive systems, and heuristic search
over knowledge domains when responding to user questions and requests.

2.1 Knowledge Domains and User Questions

In the following discussion, let L be the learned system under analysis (which
we will assume is piece-wise continuous), q be the question posed by the user,
SI be the (bounded) input space to L, and SO be the output space for L,
SIO = SI ∪ SO be the joint of the input and output space, and r be the
response given by the system. Subscripts I for input, O for output, etc., are
simply symbols, not any richer objects. In order to formulate question q and
response r, a library listing basic domain information (D) is provided to Fanoos;
D lists what SI and SO are and provides a set of predicates, P , expressed over
the domain symbols in SIO, i.e., for all p ∈ P , the free variables FV (p) are
chosen from the variable names V (SIO), that is FV(p) ⊆ V(SIO). Notably, P is
user-extensible and may be generated by automated or semi-automated means.
1 “Fanoos” () means lantern in Farsi. Our approach shines a light on black-box

AI. Source code can be found at [7], and an extended exposition is in [8].

46 D. Bayani and S. Mitsch

Table 1. Description of questions that can be posed to Fanoos

Type qt Question content qc Description

Accepts Illum. Restrictions

When do youa Subset s of SO s.t.

∃x ∈ s. qc(x). Found

with SAT-solver

SI No variables

from SI

Tell the user all sets (formal

consideration of all cases) in

the input space SI that have

the potential to cause qc

What do you

do whenb
Subset s of SI s.t.

∃x ∈ s. qc(x). Found

with SAT-solver

SO No variables

from SO

Tell user all possible learner

responses in the collection of

input states that qc accepts

What are the

circumstances

in whichc

Subset s of SIO s.t.

∃x ∈ s. qc(x). Found

with SAT-solver

SIO None Tell the user information

about what input-output pairs

occur in the subset of

input-outputs accepted by qc

. . . Usuallyd Subsets over which qc is

true at least once via

statistical sampling

Statistical tendency. Avoids

measure-zero sets that are

unlikely seen in practice
a when do you move at high speed?

︸ ︷︷ ︸

Predicate pinD

b what do you do when and (close to target orientation, close to target position)?

c what are the circumstances in which

and (close to target position, steer to right) or move at low speed?
d when do you usually move at low speed or steer to left?

For queries that formally guarantee behavior (see the first three rows in
Table 1), the relevant predicates in P need to expose their internals as first-
order formulas; this enables us to guarantee they are satisfied over all members
of sets we provide via typical SAT-solvers (such as Z3 [19]). Probabilistic queries
require only being able to evaluate question q on a variable assignment provided.

The members of P can be generated in a variety of ways, e.g., by form-
ing most predicates through procedural generation and then using a few hand-
tailored predicates to capture particular cases. Notably, since the semantics of the
predicates are grounded, they have the potential to be generated from demon-
stration. For example, operational definitions of “high”, “low”, etc., might be
derived from sample data by setting thresholds on quantile values—e.g., 90% or
higher might be considered “high” (see, for instance, Sect. 5); further resources
and considerations on predicate generation can be found in [8].

2.2 Reachability Analysis of the Learned System

Having established what knowledge Fanoos is given, we proceed to explain our
process. First, users select a question type qt and the content of the question qc to
query the system. That is, q = (qt, qc), where qt is a member of the first column
of Table 1 and qc is a sentence in disjunctive normal form (DNF) over a subset of
P that obeys the restrictions listed in Table 1. To ease discussion, we will refer
to variables and sets of variable assignments that q accepts (ACq) and those
that q illuminates (ILq), with the intuition being that the user wants to know
what configuration of illuminated variables result in (or result from) the variable

Fanoos: Explanations for Learned Systems 47

configurations accepted by qc; see Table 1 for example queries. When a user asks a
question, Fanoos answers by describing a collection of situations that necessarily
include those related to the user’s question; this answer is conservative in that
it may include additional situations, but never excludes cases.

With question q provided, we analyze the learned system L to find sub-
sets in the inputs SI and outputs SO that agree with configuration qc and the
(overapproximated) behavior of L. Specifically, we use CEGAR [16] with boxes
(hyper-cubes) as abstractions and a random choice between a bisection or tri-
section along the longest normalized axis as the refinement process to find the
collect of box tuples, B, specified below:

B = {(B(i)
I , B

(i)
O) ∈ B(SI)×B(SO) | B

(i)
O ⊇ L(B(i)

I)

∧∃(c, d)∈T.
(
ACq(B(i)

c) ∧ ILq(B
(i)
d)

)}

where B(X) is the set of boxes over space X and T = {(O, I), (I,O), (IO, IO)}.
For feed-forward neural nets with non-decreasing activation functions, B can
be found by (i) covering the input space, (ii) propagating boxes through the
network, (iii) testing membership to B of the resulting input- and output-boxes,
and (iv) refining abstract states as needed over input-boxes that produce output-
boxes overlapping with B; we detail this process further below.

Covering the Input Space. We cover the input space via iterative dissec-
tion informed by properties of the problem, avoiding a näıve gridding of the
entire space unless repeated refinement has revealed that to be necessary. The
exact sizes of the boxes found by CEGAR are determined by a series of hyper-
parameters, which Fanoos maintains in states. Hyper-parameters include, e.g.,
the maximum number of refinement iterations or the minimal size abstractions;
an overview of typical hyper-parameters to CEGAR can be found in [10,15,16].

Prior to proceeding, B may undergo some limited merging, particularly when
an increase of abstraction level is sought. Our merging process is closed over the
family of abstract states we have selected; up to a numerical precision threshold,
boxes may only merge together to form larger boxes, and only if the smaller
boxes formed a partition of the larger box. Value differences within the merging
threshold are considered a match (i.e., a soft-match), and allow the pertinent
sets of boxes to merge into larger boxes with slightly larger net volumes. Note
that enlarging boxes only makes our estimates conservative, and thus continues
to ensure the soundness of Fanoos. On exact matches, merging increases the
size of abstract states without anywhere increasing the volume of their union—
this is not necessarily what would occur if one attempted the CEGAR analysis
again with parameters promoting higher granularity. Essentially, merging here is
one strategy of increasing abstraction level while retaining some finer-resolution
details that might otherwise be lost in a larger volume superset. As before,
the state maintains parameters to control the extent of this stage’s merging.
Optimal box-merging itself is an NP-hard task, so we adopted a roughly greedy
approximation scheme interlaced with hand-written heuristics for accelerating

48 D. Bayani and S. Mitsch

match-finding (e.g., feasibility checks via shared-vertex lookups) and parameters
bounding the extent of computation.

Propagating Boxes Through Networks. In this subsection, we discuss how
we conduct our abstract interpretation domains (AIDs) analysis on an FFNN.

Here, we leverage the fact that we are using a pre-trained, fixed-weight feed-
forward neural net, that has a typical MLP-like (multi-layer perceptron-like)
structure: the network consists of layers of units, each unit being comprised of
a scalar-valued affine transformation of the previous layer’s output that is then
passed through a non-decreasing (and typically non-linear) activation function,
such as a tanh, sigmoidal, or piecewise linear function. For analyzing recurrent
neural nets or other systems with loops, more sophisticated mechanisms, such as
reachable-set fixed-point calculations, would be necessary in general (see [17]).

As introduced above, we use boxes as the abstract domain, which facilitate
a basic implementation since they are easier to manipulate and check for mem-
bership than more complex convex polytopes, at the price of typically being less
precise per unit volume;2 more complex AIDs can be added to Fanoos.

We first examine how boxes are transformed when passing through a single
unit, before extending the process to the entire network. Let u : R

Iu → R
Ou

be a unit of the network with input dimension Iu and output dimension Ou

(Iu, Ou ∈ N\{0}), and Iu be an input box×i∈[Iu]
[ai, bi] to unit u (Cartesian

product of closed, real intervals [ai, bi], and where [n] = {k ∈ N\{0} | k ≤ n}).
We want to calculate u(Iu). Further, let w ∈ R

Iu be the weights of the unit
u, β ∈ R be the bias, x ∈ R

Iu be the input value and ρ be a non-decreasing
activation function. We have that:

ulinear(x) = 〈w, x〉 + β , uρ(x) = ρ(〈w, x〉 + β) = ρ(ulinear(x))

where, 〈·, ·〉 is the L2 inner product. Since ρ is a non-decreasing function, the
extrema of uρ(x) and ulinear(x) occur at the same arguments. Thus, to find all
relevant extreme values over the input space, it suffices to find the values in Iu

that maximize or minimize 〈w, x〉 as follows:

argminx∈Iu
〈w, x〉 =

〈
bi1({w}i ≤ 0) + ai1({w}i > 0) | i ∈ [Iu]

〉

where 〈· | i〉 is sequence construction, {·}i accesses the i-th component of a
vector, and 1(·) is an indicator function (1(
) = 1, 1(⊥) = 0). The argmax can
be found in a similar fashion by swapping the roles of ai and bi. With this, we
compute the images of the input space under the activation functions as follows:

u(Iu) = [u(argmin
x∈Iu

〈x,w〉), u(argmax
x∈Iu

〈x,w〉)] where u ∈ {ulinear, uρ}.

Having established how a box should be propagated through a unit in the net-
work, propagation through the entire network follows immediately. Let ui,j be
2 In the case of interval arithmetic, this over-approximation and inclusion of additional

elements is often called the “wrapping effect” [42].

Fanoos: Explanations for Learned Systems 49

the ith unit on the jth layer, Mj be the jth layer’s size, Ii,j be the input box to
unit ui,j , and mi,j ⊆ [Mj] s.t. |mi,j | = Iui,j

: we simply feed the output box from
one layer into the next similar to the usual feed-forward operation:

ui,j+1(Ii,j+1) = ui,j+1

(×h∈mi,j+1
uh,j(Ih,j)

)
(1)

Finally, induction shows that these arguments together establish that this pro-
cess produces a set which contains the image of the network over the box. Notice
that approximations creep in during this recursive process; consider, for instance,
the bounding rectangle formed for a NN with a 2-d inner-layer whose output
exists on a diagonal line whenever the network processes instances in SI .

Various extensions exist, such as to handle common featurization pre- and
post-processings that preserve vector partial-orderings, as well as to aid effi-
ciency; see [8] for more details.

Refining Abstract States. CEGAR [16] is a well-regarded model checking
technique for soundly ensuring a system meets desirable properties. In short,
the approach uses abstract states carefully discovered through trial and error to
attempt verification or refutation; if the desirable property cannot be proven,
the algorithm iteratively refines the abstraction based on where the property is
in doubt, stopping when the property is either provable or has been disproven
by a discovered counterexample. When applied to certain families of discrete
programs, results returned by CEGAR are both sound and complete, at the cost
of unknown termination of CEGAR in the general case, when no approximations
are used. In practice, approximations used with CEGAR tend to err on the safe
side: if CEGAR indicates a property holds, then it is true, but the converse
might not hold. This flexibility has allowed for extensions of the technique to
many domains, including in hybrid system analysis [15], where the state space
is necessarily uncountably infinite and system dynamics do not typically have
exact numerical representations.

We now overview our CEGAR-like3 abstract state refinement, using boxes
as the abstraction domain. As before, we let L be a learned system L : SI → SO

with SI ⊂ R
IL and SO ⊆ R

OL ; further, suppose SI is a box×i∈[IL]
[aL,i, bL,i].4

Let φ : R
IL × R

OL → {
,⊥} be a formula which we would like to characterize
L’s conformance to over SI (i.e., find {(w, y) ∈ SI ×SO | φ(w, y)∧ (y = L(w))}).
Notice that φ need not use all of its arguments—so, for instance, the value of φ
might only vary with changes to input-space variables, thus specifying conditions

3 Elements of our abstract state refinement algorithm may be analogous to CEGAR
and its standard extensions—for instance, we perform sampling-based feasibility
checks prior to SAT-checks, which may be comparable to spuriousness checks in
CEGAR. However, to avoid implying a stringent adherence to canon (i.e., [16] ver-
batim), we use a different name.

4 Strictly speaking, we could discuss a box containing SI (i.e., a superset), but intro-
ducing an auxiliary, potentially larger definition domain might add confusion while
giving little benefit.

50 D. Bayani and S. Mitsch

over the input space but none over the output space. Since CEGAR is not gen-
erally guaranteed to terminate, we introduce a function STOP : SI → {
,⊥}
which will be used to prevent unbounded depth exploration of volumes whose
members have mixed truth values under φ.

We first form initial abstraction states over the input space; for this, our
implementation uses states that do not leverage any expert impressions as to
what starting sets would be informative for the circumstances. Instead, we opted
for the simple, broadly-applicable strategy of forming high-dimensional “quad-
rants”: 2IL hyper-cubes formed by bisecting the input space along each of its
axes; we could have just as easily used the universal bounding box undivided
to start. The algorithm takes an input-abstraction, w, that has yet to be tried
and generates an abstract state, õ, that contains L(w) (notice that w and L(w)
are both sets). If no member of w × õ is of interest (i.e., meets the condition
specified by φ), the algorithm returns the empty set. On the other hand, if w× õ
has the potential to contain elements of interest then the algorithm continues,
attempting to find the smallest allowed abstract states that potentially include
interesting elements. In general, further examination is performed by refining
the input abstraction, then recursing on the refinements; for efficiency, we also
check whether the entire abstract state satisfies φ, in which case we are then free
to partition it into smaller abstractions without further checks.

Given a box, we refine by splitting along its longest “scaled” axis, h:

h = argmax
i∈[IL]

b′
i − a′

i

bL,i − aL,i

We then either bisect (k = 2) or trisect (k = 3) the chosen axis with probability
0.8 or 0.2 respectively, a design choice balancing between faster analysis, further
exploration of diverse abstract states, and keeping boxes of reasonable size:

refinek(×
i∈[IL]

[a′
i, b

′
i]) =

k−1⋃

j=0

{×
i∈[IL]

[a′
i + 1(i = h)jCk, b′

i + 1(i = h)(j + 1 − k)Ck]
}

,

where Ck = b′
h−a′

h

k . The use of bL,i −aL,i in the denominator for h is an attempt
to control for differences in scaling and meaning among the variables comprising
the input space. For instance, 20 mm is not commiserate with 20 radians, and our
sensitivity to 3 cm of difference may be different given a quality that is typically
on par of kilometers versus one never exceeding a decimeter. Our refinement
strategy allows for efficient caching and reloading of refinement results by stor-
ing the refinement paths, as opposed to encoding entire boxes. Parameters in
the state determine if cached results are reused; reuse improves efficiency and
may help reduce uncalled-for volatility in descriptions reported to users, while
regenerating results may produce different AIDs which could lead to a better
outcome. Our analysis used the following STOP function:

STOP
(×i∈[IL]

[a′
i, b

′
i]
)

=
(
b′
h − a′

h ≤ ε(bL,i − aL,i)
)
. (2)

Fanoos: Explanations for Learned Systems 51

Algorithm 1: Pseudocode for CEGAR-like abstract state refinement, b is
an AID element over the input space (i.e., b ⊆ SI)
1 Function RefineAbstractState(b , STOP, φ, L):
2 õ ← approxImageL(b); // AIDs-based image approx., see Eq. (1)

3 verdict1 ← sat
(∀x ∈ b×õ. ¬φ(x)

)
;

4 if verdict1 then
5 return {};

6 if STOP(b) then
7 return {b};

8 verdict2 ← sat
(∀x ∈ b×õ. φ(x)

)
;

9 if verdict2 then
10 boxesToRefine ← {b}; result ← {};
11 while boxesToRefine is not empty do
12 c ← boxesToRefine.pop();
13 if STOP(c) then
14 result ← result ∪ {c};

15 else
16 boxesToRefine ← boxesToRefine ∪ refine(c);

17 return result;

18 return
⋃

r∈refine(b)RefineAbstractState(r, STOP, φ, L);

Here, ε is the refinement parameter initially specified by the user, but which
is then automatically adjusted by operators acting on the state as the user
interactions proceed. Similar to the choice of AID, our approach is amenable to
more sophisticated refinement and stopping strategies than presented here.

Algorithm 1 addresses formally sound question types; for probabilistic ques-
tion types (i.e., those denoted with “...usually”), verdict1 is determined by
repeated random sampling, and verdict2 is fixed as ⊥. In our implementation,
feasibility checks are done prior to calling the SAT-solver when handling a for-
mally sound question type.

2.3 Generating Descriptions

Having generated B, we produce an initial response, r0, to the user’s query
in three steps as follows: (i) for each member of B, we extract the box tuple
members that were illuminated by q (in the case where SIO is illuminated, we
produce a joint box over both tuple members), forming a set of joint boxes, B′;
(ii) next, we heuristically search over predicates P for members that describe box
B′ and compute a set of predicates covering all boxes; (iii) finally, we format the
box covering for user presentation. A sample result answer is shown in Fig. 1 (a),
and details on steps (ii) and (iii) follow below.

52 D. Bayani and S. Mitsch

Producing a Covering of B′. Our search over P for members covering B′

is largely based around the greedy construction of a set covering that uses a
carefully designed candidate evaluation score.

For each member b ∈ B′, we want to find a set of candidate predicates capa-
ble of describing the box to form a larger covering. We find a subset Pb ⊆ P
that is consistent with b in that each member of Pb passes the checks called for
by qt when evaluated on b (see the Description column of Table 1). This process
is expedited by a feasibility check of each member of P on a vector randomly
sampled from b, prior to the expensive check for inclusion in Pb. Having Pb, we
filter the candidate set further to P ′

b: members of Pb that appear most specific
to b; notice that in our setting, where predicates of varying abstraction level
co-mingle in P , Pb may contain many members that only loosely fit b. The sub-
set P ′

b is formed by sampling outside of b at increasing radii (in the �∞ sense)
and collecting those members of Pb that fail to hold true at the earliest radius.
Importantly, looking ahead to forming a full covering of B, if none of the pred-
icates fail prior to exhausting this sampling, we report P ′

b as empty, allowing
us to handle b downstream as we will detail in a moment; this avoids having
“difficult” boxes force the use of weak predicates that would “wash out” more
granular details. The operational meaning of “exhausting”, as well as the radii
sampled, are all parameters stored in the state. Generally speaking, we try to be
specific at this phase under the assumption that the desired description granu-
larity was determined earlier, primarily during the abstract state refinement. For
instance, if we want a subset of Pb that was less specific to b than P ′

b, we might
reperform the abstract state refinement so to produce larger abstract states. In
extensions of our approach, granularity can also be determined earlier by altering
P ; our current implementation has first steps in this direction, allowing users to
enable an optional operator that filters P based on estimates of a model trained
on previous interaction data. We comment further on this extension in Sect. 2.4
and indicate why this operator is left as optional in Sect. 5.

To handle boxes for which P ′
b was empty, in general we insert into P ′

b a box-
range predicate: a new atomic predicate that simply lists the variable ranges
in the box (e.g., “Box(x : [-1, 0], y: [0.5, 0.3])”). As a result of providing cover
for only one box, such predicates will only be retained by the (second) covering
we perform in a moment if no other predicates selected are capable of covering
the box’s axes. When a request to increase the abstraction level initially finds
P ′

b empty, we may (as determined by state parameters) set P ′
b equal to Pb as

opposed to introducing a box-range predicate. If Pb is empty as well, we are
forced to add the novel predicate.

We next leverage the P ′
b sets to construct a covering of B′, proceeding in an

iterative greedy fashion. Specifically, we form an initial covering

Kf = Cf

(⋃

b∈B′

⋃

p∈P ′
b

{(p, b)}, P

)

where Ci(R,H) is the covering established at iteration i, incrementing to

Ci+1(R,H) = Ci(R,H) ∪
{

argmaxp∈H\C i(R,H)μ(p,Ci(R,H), R)
}

Fanoos: Explanations for Learned Systems 53

where C0(R,H) = ∅, f is the iteration of convergence, and the cover score μ is

μ(p,Ci(R,H), R) =
∑

b∈B′ 1(|UV(b,Ci(R,H)) ∩ FV(p)| > 0)1((p, b) ∈ R)

and UV(b,Ci(R,H)) is the set of variables in b that are not constrained by
Ci(R,H)∩Pb; since the boxes are multivariate and our predicates typically con-
strain only a subset of the variables, we select predicates based on how many
boxes would have open variables covered by them. Notice that Kf is not nec-
essarily an approximately minimal covering of B with respect to members of
P . By forcing p ∈ P ′

b when calculating the cover score μ, we enforce additional
specificity criteria that the covering should adhere to. At this stage, due to the
nature of P ′

b being more specific than Pb, it is possible that some members of
Kf cover one another: there may exist p ∈ Kf such that Kf\{p} still covers as
much of B′ as Kf did. By forming Kf , we have found a collection of predicates
that can cover B′ to the largest extent possible, selected based on how much of
B′ they were specific over (given by the first argument to Cf when forming Kf).
We now remove predicates that are dominated by other (potentially less-specific)
predicates that we had to include by performing a second covering:

CF = CF

(⋃

b∈B′

⋃

p∈Pb

{(p, b)},Kf

)
.

Cleaning and Formatting Output for User. Having produced CF , we col-
lect the covering’s content into a formula in DNF. If b ∈ B′ and s is a max-
imal, non-singleton subset of CF ∩ Pb, then we form a conjunction over the
members of s, excluding conjuncts that are implied by others. Concretely, for
A =

⋃
b∈B′{Pb ∩ CF }, we construct:

d0 = {
∧

p∈s
p | s ∈ A ∧ ¬(∃s′∈A. s � s′)}.

The filtering done in d0 is only to aid efficiency; in a moment, we do a final
redundancy check that would achieve similar results even without the filtering
in d0. Ultimately, the members of d0 are conjunctions of predicates, with their
membership to the set being a disjunction. Prior to actually converting d0 to
DNF, we form d′

0 by: (i) removing any c ∈ d0 that are redundant given the rest of
d0 (in practice, d0 is small enough to simply do full one-vs-rest comparison and
determine results with a SAT-solver); (ii) attempting to merge any remaining
box-range predicates into the minimal number necessary to cover the sets they
are responsible for. Note that this redundancy check is distinct from forming CF

out of Kf , which worked at the abstract-state level (and so is unable to tell if a
disjunction of predicates covered a box when no individual predicate covered it
fully) and attempted to select predicates by maximizing a score.

Finally, r0 is constructed by listing each c that exists in d′
0 sorted by two

relevance scores: first, the approximate proportion of the volume in B′ uniquely
covered by c, and second by the approximate proportion of total volume c cov-
ers in B′. These sorting-scores can be thought of similarly to recall measures.

54 D. Bayani and S. Mitsch

Specificity is more difficult to tackle, since it would require determining the vol-
ume covered by each predicate (which may be an arbitrary first-order formula)
across the box bounding the universe, not just the hyper-cubes at hand; this can
be approximated for each predicate using set-inversion, but requires non-trivial
additional computation for each condition.

2.4 User Feedback and Revaluation

Based on the initial response r0, users can request a more abstract or less abstract
explanation. We view this alternate explanation generation as another heuristic
search, where the system searches over a series of states to find those that are
deemed acceptable by the user (consecutive user requests can be viewed in anal-
ogy to paths in a tree of Fanoos’s states). The states primarily include algorithm
hyper-parameters, the history of interaction, the question to be answered, and
the set B. Abstraction and refinement operators take a current state and produce
a new one, often by adjusting the system hyper-parameters and recomputing B.
This state-operator model of user response allows for rich styles of interaction
with the user, beyond and alongside of the three-valued responses of acceptance,
increase, or decrease of the abstraction level shown in Fig. 1(b).

For instance, a history-travel operator allows the state (and thus r) to return
to an earlier point in the interaction process, if the user feels that response
was more informative; from there, the user may investigate an alternate path
of abstractions. Other implemented operators allow for refinements of specified
parts of explanations as opposed to the entire reply; the simplest form of this is by
regenerating the explanation without using a predicate that the user specified be
ignored, while a more sophisticated operator determines the predicates to filter
out automatically by learning from past interaction. Underlying the discussion
of these mechanisms is the utilization of a concept of abstractness, a notion we
further comment on in the next subsection.

As future work, we are exploring the use of active learning leveraging user
interactions to select operators, with particular interest in bootstrapping the
learning process using operationally defined oracles to approximate users.

2.5 Capturing the Concept of Abstractness

The criteria to judge degree-of-abstractness in the lay sense are often difficult
to capture. We consider abstractness a diverse set of relations that subsume
the part-of-whole relation, and thus also generally includes the subset relation.
For our purposes, defining this notion is not necessary, since we simply wish to
utilize the fact of its existence. We understand abstractness to be a semantic con-
cept that shows itself by producing a partial ordering over semantic states (their
“abstractness” level) which is in turn reflected in the lower-order semantics of the
input-output boxes, and ultimately is reflected in our syntax via explanations of
different granularity. Discussions of representative formalisms most relevant to
computer science can be found in [17,38,48,49,72,74]: [17] features abstraction
in verification, [74] features abstraction at play in interpreting programs, [72]

Fanoos: Explanations for Learned Systems 55

is an excellent example of interfaces providing a notion of abstractness in net-
work communications, [48,49] discuss notions of abstractness relevant for type
systems in object-oriented programming languages, and [38] shows an adaptive
application in reinforcement learning. An excellent discussion of the philosophi-
cal underpinnings and extensions can be found in [26].

In this work, the primary method of producing explanations at desired levels
of abstraction is entirely implicit, without explicitly tracking what boxes or pred-
icates are considered more or less abstract (note that an operator that attempts
to learn such relations is invoked optionally by human users, and is not used
in the evaluations we present here). Instead, we leverage the groundedness of
our predicates to naturally form partial orderings over semantic states (their
“abstractness” level) which in turn are appropriately reflected in syntax.

On the opposite end of the spectrum is explicit expert tuning of abstrac-
tion orderings. Fanoos can easily be adapted to leverage expert labels (e.g.,
taxonomies as in [71], or even simply type/grouping-labels without explicit hier-
archical information) to preference subsets of predicates conditionally on user
responses, but for the sake of this paper, we reserve agreement with expert labels
as an independent metric of performance in our evaluation, prohibiting the free
use of such knowledge by the algorithm during testing. As a side benefit, by
forgoing direct supervision, we demonstrate that the concept of abstractness is
recoverable from the semantics and structure of the problem itself.

3 Fanoos Interaction Example

We present a user interaction example with our system in Fig. 1. Predicate defi-
nitions of the example can be found with the code at [7]. In practice, if users want
to know more about the operational meaning of predicates (e.g., the exact con-
ditions each tests), open-on-click hyperlinks and hover text showing the relevant
content from the domain definition can be added to the user interface.

Limited text is shown on screen until a user requests more, similar in spirit
to the Unix more command. Auto-complete is triggered by hitting tab, finish-
ing tokens when unambiguous and listing options available in the context. For
instance, suggestions and completions for predicates obey restrictions imposed
by Table 1 based on the question type specified by the user.

In Fig. 1, we show the user posing two questions on the IDP domain (see
Sect. 5). The initial question in Fig. 1(a) asks for which the situations typically
result in the NN outputting a low torque and high state value estimate (Line 1).
In order to produce an answer, Fanoos (Lines 2–3) asks for a preference of initial
refinement granularity (given relative to SI ’s side lengths; ε in Eq. (2)), and after
the user requests 0.125 (Line 4), lists several potential situations (Lines 5–13).
The user wants more details, and so requests a less abstract description (Line
16); Fanoos now responds with 18 more detailed situation descriptions (5 listed
in Fig. 1(b), Lines 17–23). In the second question in Fig. 1(c), the user (Line
25) wants to know the circumstances in which the learned component outputs a
high torque while its inputs (e.g., sensors) indicate that the first pole has a low

56 D. Bayani and S. Mitsch

Fig. 1. Fanoos user session on the inverted double pendulum example

rotational speed; Fanoos finds 32 descriptions (5 listed, Lines 26–34). The user
requests a more abstract summary (Line 35), which condenses the explanation
down to 3 situations (Lines 36–40). We see that in both cases—the first request
for less abstractness, and the second for greater—that the explanations adjusted

Fanoos: Explanations for Learned Systems 57

as one would expect, both with respect to the verbosity of the descriptions
returned and the verbiage used.

Our focus while developing Fanoos has been to ensure that the desired infor-
mation can be generated. In application, a user-facing front-end can provide a
more aesthetically pleasing presentation, and we elaborate options in [8].

4 Related Work and Discussion

Many methods are closely related to XAI, stemming from a diverse body of litera-
ture and various application domains, e.g., [3,4,9,18,35,41,63,70,83]. Numerous
taxonomies of explanation families have been proposed [1,4,5,11,13,14,27,30,
32,44,47,51,59,64,65,80], with popular divisions being (i) between explanations
that leverage internal mechanics of systems to generate descriptions (decompo-
sitional, a.k.a. “introspective”, approaches) versus those that exclusively lever-
age input-output relations (pedagogical, a.k.a. “rationalization”) [4,44] (ii) the
medium that comprises the explanation (such as with most-predictive-features
[63], summaries of internal states via finite-state-machines [45], natural language
descriptions [35,44] or even visual representations [39,44]), (iii) theoretical cri-
teria for a good explanation (see, for instance, [52]), and (iv) specificity and
fidelity of explanation. Of note, the vast majority of XAI methods for ML lack
any formal guarantees regarding the correspondence between the explanations
and the learned component’s true behavior (e.g., [25]).

Related to our work are approaches to formally analyze neural networks to
certify or verify them as well as to decompositionally extract rules from them.
Techniques related to our inner-loop reachability analysis have been used for sta-
bility and reachability analysis in systems that are otherwise hard to analyze ana-
lytically, often in the interest of ensuring safety. Reachability analysis for FFNNs
based on abstract interpretation domains, interval arithmetic, or set inversion
has been used in rule extraction and neural net stability analysis [4,20,75,84] and
continues to be relevant, e.g., for verification of MLPs [29,53,61], estimating the
reachable states of closed-loop systems with MLPs in the loop [88], estimating
the domain of validity of NNs [2], and analyzing security of NNs [82]. A similar
variety of motivations and applications exist for approaches to NN verification
and rule extraction that are based on symbolic decomposition of a network’s
units followed by constraint solving or optimization over the formulas extracted
[12,21–23,40,41,57,68,69,73,76,77,87]. While these works provide methods to
extract descriptions that faithfully reflect behavior of the network, they do not
generally consider end-user comprehension of descriptions, do not consider vary-
ing description abstraction, and do not explore the practice of strengthening
descriptions by ignoring the effects of measure-zero sets. Also, many such tech-
niques are only designed to characterize output behavior given particular input
sets, whereas we capture relations in multiple directions (i.e., input to output,
output to input, and both simultaneously).

Rule-based systems such as expert systems, and work in the (high-level)
planning community have a long history of producing explanations in various

58 D. Bayani and S. Mitsch

forms. Notably, hierarchical planning [35,54] naturally lends itself to explana-
tions of multiple abstraction levels. All these methods, however, canonically work
on the symbolic level, making them inapplicable to most modern ML methods.
High fidelity, comprehensible rules describing data points can also be discov-
ered with weakly-consistent inductive logic programming [56] or association rule
learning [3,37] typical in data-mining. However, these approaches are typically
pedagogical—not designed to leverage access to the internals of the system—do
not offer a variety of descriptions abstractions or strengths, and are typically not
interactive. While extensions of association rule learning (e.g., [33,34,71]) do con-
sider multiple abstraction levels, they are still pedagogical and non-interactive.
Further, they describe only subsets of the analyzed data5 and only understand
abstractness syntactically, requiring complete taxonomies be provided explic-
itly and up-front. Our approach, by contrast, leverages semantic information,
attempts to efficiently describe all relevant data instances, and produces descrip-
tions that necessarily reflect the mechanism under study.

The high-level components of our approach can be compared to [36], where
hand-tunable rule-based methods with natural language interfaces encapsulate a
module responsible for extracting information about the ML system, with expla-
nation generation in part relying on minimal set-covering methods to find pred-
icates capturing the model’s states. Extending this approach to generate more
varying-resolution descriptions, however, does not seem like a trivial endeavor,
since (i) it is not clear that the system can appropriately handle predicates
that are not logically independent, and expecting experts to explicitly know and
encode all possible dependencies can be unrealistic, (ii) the system described does
not have a method to vary the type of explanation provided for a given query
when its initial response is unsatisfactory, and (iii) the method produces expla-
nations by first learning simpler models via Markov decision processes (MDPs).
Learning simpler models by sampling behavior of more sophisticated models
is an often-utilized, widely applicable method to bootstrap human understand-
ing (e.g. [11,31,45]), but it comes at the cost of failing to leverage substantial
information from the internals of the targeted learned system. Crucially, such a
technique cannot guarantee the fidelity of their explanations with respect to the
learned system being explained, in contrast to our approach.

In [60], the authors develop vocabularies and circumstance-specific human
models to determine the parameters of the desired levels of abstraction, speci-
ficity and location in robot-provided explanations about the robot’s specific, pre-
vious experiences in terms of trajectories in a specific environment, as opposed to
the more generally applicable conditional explanations about the internals of the
learned component generated by Fanoos. The particular notions of abstraction
and granularity from multiple, distinct, unmixable vocabularies of [60] evaluate
explanations in the context of their specific application and are not immediately
applicable nor easily transferable to other domains. Fanoos, by contrast, does

5 Setting thresholds low enough to ensure each transaction is described would result
in a deluge of highly redundant, low-precision rules lacking most practical value, a
phenomena know as the “rare itemset problem” [50].

Fanoos: Explanations for Learned Systems 59

not require separate vocabularies and enables descriptions to include multiple
abstraction levels (for example, mixing them as in the sentence “House X and a
6m large patch on house Y both need to be painted”).

Closest in spirit to our work are the planning-related explanations of [70], pro-
viding multiple levels of abstraction with a user-in-the-loop refinement process,
but with a focus on markedly different search spaces, models of human inter-
action, algorithms for description generation and extraction, and experiments.
Further, we attempt to tackle the difficult problem of extracting high-level sym-
bolic knowledge from systems where such concepts are not natively embedded,
in contrast to [70], who consider purely symbolic systems.

In summary, current approaches focus on single aspects of explanations, fixed
levels of abstraction, or provide inflexible guarantees (if any) about the expla-
nations given.

5 Experiments and Results

We analyze learned systems from robotics control and more traditional ML pre-
dictors to demonstrate the applicability of Fanoos to diverse domains. Code and
other supporting information (e.g., predicate definitions) can be found in [7] and
at https://github.com/DBay-ani/Fanoos.

Inverted Double Pendulum (IDP). The control policy for an inverted
double-pendulum is tasked to keep a pole steady and upright. The pole con-
sists of two under-actuated segments attached end-to-end, rotationally free in
the same plane; the only actuated component is a cart with the pivot point of
the lower segment attached. Even though similar to the basic inverted single
pendulum example in control, this setting is substantially more complicated,
since multi-pendulum systems are known to exhibit chaotic behavior [43,46].
The trained policy was taken from reinforcement learning literature [62,67]. The
seven-dimensional observation space includes the segment’s angles, the cart x-
position, their time derivatives, and the y-coordinate of the second pole. The
output is a torque in [−1, 1]Nm and a state-value estimate, which is not a priori
bounded. The values chosen for the input space bounding box were inspired by
the 5% and 95% quantile values over simulated runs. We expanded the input
box beyond this range to consider rare inputs and observations the model was
not necessarily trained on; whether the analysis stays in the region trained-for
depends on the user’s question. For instance, the train and test environments
exited whenever the end of the second segment was below a certain height. In
real applications, users may want to ensure recovery is attempted.

CPU Usage (CPU). We also analyze a more traditional ML algorithm, a
polynomial kernel regression for modeling CPU usage. Specifically, we use a
three-degree fully polynomial basis over a 5-dimensional input space (which
includes cross-terms and the zero-degree element—e.g., x2y and 1 are mem-
bers) to linearly regress out a three-dimensional vector. We trained our model

https://github.com/DBay-ani/Fanoos

60 D. Bayani and S. Mitsch

using the publicly available data from [78].6 The observations are [lread, scall,
sread, freemem, freeswap], which are normalized with respect to the training
set min and max prior to featurization, and the response variables we predict
are [lwrite, swrite, usr]. We opted to analyze an algorithm with this featurization
since it achieved the highest performance—over 90% accuracy—on a 90%-10%
train-test split of the data compared to similar models with 1, 2, or 4 degree
kernels. While the kernel weights may be interpreted in some sense (e.g., indi-
cating which individual feature is, by itself, most influential), the joint correlation
between the features and non-linear transformations of the input values makes it
far from clear how the model behaves over the original input space. For Fanoos,
the input space bounding box was determined from the 5% and 95% quantiles
for each input variable over the full, normalized dataset.

5.1 Experiment Design

Tests were conducted using synthetically generated interactions, with the goal of
determining whether our approach properly changes the description abstractness
in response to the user request. The domain and question type were randomly
chosen, the latter selected among the options listed in Table 1. The questions
themselves were randomly generated to have up to four disjuncts, each with
conjuncts of length no more than four; conjuncts were ensured to be distinct,
and only predicates respecting the constraints of the question type were used.
After posing an initial question, interaction with Fanoos was randomly selected
from four alternatives (here, MA means “more abstract” and LA means “less
abstract”): (i or ii) initial refinement of 0.25 or 0.20 → make LA → make MA
→ exit; (iii or iv) initial refinement of 0.125 or 0.10 → make MA → make LA
→ exit. For the results presented here, over 130 interactions were held, resulting
in several hundred question-answer-descriptions.

5.2 Metrics

We evaluated the abstractness of Fanoos’s responses using metrics in the cate-
gories of reachability analysis, description structure, and human word labeling.

Reachability Analysis. We compare the reachability analysis results produced
during the interactions: we record statistics about the distribution of volumes of
input-boxes generated during the abstract state refinement, normalized to the
input space bounding box so that each axis is in [0, 1], yielding results comparable
across domains. The values provide a rough sense of the abstractness notion
implicit in the size of boxes and how they relate to descriptions. For brevity,
we only report volume, but we note that the distribution of sum-of-side-lengths
showed similar trends.

6 Dataset at https://www.openml.org/api/v1/json/data/562.

https://www.openml.org/api/v1/json/data/562

Fanoos: Explanations for Learned Systems 61

Description Structure. Fanoos responds to users with a multi-weighted DNF
description. This structure is summarized as follows to give a rough sense of
how specific each description is by itself: number of disjuncts, including atomic
predicates; number of non-singleton conjuncts, providing a rough measure of
the number of “complex” terms; number of distinct named predicates (atomic,
user-defined predicates that occur anywhere in the description, i.e., excludes box-
range predicates); number of box-range predicates that occur anywhere (i.e., in
conjuncts as well as stand-alone). The Jaccard score and overlap coefficients—
classic text analysis measures—are calculated over the set of atomic predicates
in the descriptions to measure verbiage similarity.

Human Word Labeling. We apply our intuitive, human understanding of
the relative abstractness of the atomic predicates to evaluate Fanoos’s responces
based on usage of more vs. less abstract verbiage. For simplicity we choose two
classes, more abstract (MA) vs. less abstract (LA), and count the number of
predicates both (a) accounting for multiplicity and, (b) accounting for unique-
ness; if an atomic predicate q has label MA (resp., LA) and occurs twice in a
sentence, it contributes twice to the (a) score, and only once to (b).

5.3 Results

Summary statistics of our results are listed in Table 2. We are chiefly interested
in how a description changes in response to a user-requested abstraction change.
Specifically, for pre-interaction state St and post-interaction state St+1, we col-
lect metrics m(St+1) − m(St) that describe relative change for each domain-
response combination (for the Jaccard and overlap coefficients, the computation
is simply m(St+1, St)). The medians of these distributions are in Table 2.

In summary, the reachability and structural metrics follow the desired trends:
when the user requests greater abstraction (MA), the boxes become larger, and
the sentences become structurally less complex—namely, they become shorter
(fewer disjuncts), have disjuncts that are less complicated (fewer explicit con-
juncts, hence more atomic predicates), use fewer unique terms overall (reduction
in named predicates) and refer less often to the exact values of a box (reduction
in box-range predicates). Symmetric statements can be made for less abstraction
(LA) requests. From the overlap and Jaccard scores, we can see that the changes
in response complexity are not simply due to increased verbosity—simply adding
or removing phrases to the descriptions from the prior steps—but also the result
of changes in the verbiage used.

Trends for the human word-labels are similar, though more subtle. We see
that use of LA-related terms follows the trend of user requests with respect to
multiplicity and uniqueness counts (increases for LA-requests, decreases for MA-
requests). We see that the MA counts, when taken relative to the same measures
for LA terms, are correlated with user requests in the expected fashion. Specif-
ically, when a user requests greater abstraction (MA), the counts for LA terms
decrease far more than those of MA terms, and the symmetric situation occurs

62 D. Bayani and S. Mitsch

Table 2. Median relative change in description before and after Fanoos adjusts the
abstraction in the requested direction

CPU CPU IDP IDP

Request LA MA LA MA

Reachability Boxes Number 8417.5 −8678.0 2.0 −16.0

Volume Max −0.015 0.015 −0.004 0.004

Median −0.003 0.003 −0.004 0.004

Min −0.001 0.001 −0.003 0.003

Sum −0.03 0.03 −0.168 0.166

Structural Jaccard 0.106 0.211 0.056 0.056

Overlap coefficient 0.5 0.714 0.25 0.25

Non-singleton conjuncts 1.0 −2.0 0.5 −2.5

Disjuncts 7.0 −7.5 2.0 −2.5

Named predicates 1.0 −1.0 1.0 −4.5

Box-range predicates 2.0 −2.0 1.5 −1.5

Words MA terms Multiplicity 3.0 −3.0 24.0 −20.0

Uniqueness 0.0 0.0 1.0 −1.5

LA terms Multiplicity 20.0 −21.5 68.5 −86.0

Uniqueness 2.0 −2.0 12.0 −14.0

for requests of lower abstraction (LA), as expected. These results—labelings
coupled with the structural trends—lend solid support that Fanoos can recover
elements of a human’s notion about abstractness by leveraging the grounded
semantics of the predicates.

6 Conclusions and Future Work

Fanoos is an explanatory framework for ML systems that mixes technologies
ranging from classical verification to heuristic search. Our experiments support
that Fanoos can produce and navigate explanations at multiple granularities
and strengths. We are investigating operator-selection learning and accelerating
knowledge base construction via further data-driven predicate generation.

We will continue to explore Fanoos’s potential, and hope that the commu-
nity finds inspiration in both the methodology and philosophical underpinnings
presented here. Additional content, such as pseudo-code, summary statistics,
extended descriptions and further pointers, can be found in [8].

Acknowledgments. We thank: Nicholay Topin for supporting our spirits at some
key junctures of this work; David Held for pointing us to the rl-baselines-zoo repos-
itory; David Eckhardt for his proof-reading of earlier versions of this document; the
anonymous reviewers for their thoughtful feedback.

Fanoos: Explanations for Learned Systems 63

References

1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable
artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

2. Adam, S.P., Karras, D.A., Magoulas, G.D., Vrahatis, M.N.: Reliable estimation of
a neural network’s domain of validity through interval analysis based inversion. In:
2015 International Joint Conference on Neural Networks, IJCNN 2015, Killarney,
Ireland, 12–17 July 2015, pp. 1–8 (2015). https://doi.org/10.1109/IJCNN.2015.
7280794

3. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, Washington, DC, USA, 26–28 May 1993, vol.
22, pp. 207–216. ACM (1993)

4. Andrews, R., Diederich, J., Tickle, A.: Survey and critique of techniques for extract-
ing rules from trained artificial neural networks. Knowl.-Based Syst. 6, 373–389
(1995). https://doi.org/10.1016/0950-7051(96)81920-4

5. Anjomshoae, S., Najjar, A., Calvaresi, D., Främling, K.: Explainable agents and
robots: results from a systematic literature review. In: Proceedings of the 18th
International Conference on Autonomous Agents and MultiAgent Systems, pp.
1078–1088. International Foundation for Autonomous Agents and Multiagent Sys-
tems (2019)

6. Arya, V., et al.: One explanation does not fit all: a toolkit and taxonomy of AI
explainability techniques. CoRR abs/1909.03012 (2019)

7. Bayani, D.: Code for Fanoos: multi-resolution, multi-strength, interactive explana-
tions for learned systems (2021). https://doi.org/10.5281/zenodo.5513079. Method
of distribution is Zenodo, distributed in October, 2021

8. Bayani, D., Mitsch, S.: Fanoos: multi-resolution, multi-strength, interactive expla-
nations for learned systems. CoRR abs/2006.12453 (2020)

9. Benz, A., Jäger, G., Van Rooij, R.: Game Theory and Pragmatics. Springer, Hei-
delberg (2005). https://doi.org/10.1057/9780230285897

10. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y., et al.: Bounded model
checking. Adv. Comput. 58(11), 117–148 (2003)

11. Biran, O., Cotton, C.: Explanation and justification in machine learning: a survey.
In: IJCAI-17 Workshop on Explainable AI (XAI), vol. 8, p. 1 (2017)

12. Bunel, R., Turkaslan, I., Torr, P.H.S., Kohli, P., Mudigonda, P.K.: A unified view
of piecewise linear neural network verification. In: Bengio, S., Wallach, H.M.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in
Neural Information Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, 3–8 December 2018, Montréal,
Canada, pp. 4795–4804 (2018)

13. Chakraborti, T., Kulkarni, A., Sreedharan, S., Smith, D.E., Kambhampati, S.:
Explicability? Legibility? Predictability? Transparency? Privacy? Security? The
emerging landscape of interpretable agent behavior. In: Proceedings of the Inter-
national Conference on Automated Planning and Scheduling, vol. 29, pp. 86–96
(2019)

14. Chuang, J., Ramage, D., Manning, C., Heer, J.: Interpretation and trust: design-
ing model-driven visualizations for text analysis. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 443–452. ACM (2012)

https://doi.org/10.1109/IJCNN.2015.7280794
https://doi.org/10.1109/IJCNN.2015.7280794
https://doi.org/10.1016/0950-7051(96)81920-4
https://doi.org/10.5281/zenodo.5513079
https://doi.org/10.1057/9780230285897

64 D. Bayani and S. Mitsch

15. Clarke, E., Fehnker, A., Han, Z., Krogh, B., Stursberg, O., Theobald, M.: Verifi-
cation of hybrid systems based on counterexample-guided abstraction refinement.
In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 192–207.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36577-X 14

16. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

17. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pp. 238–252 (1977)

18. David, Q.: Design issues in adaptive control. IEEE Trans. Autom. Control 33(1),
50–58 (1988)

19. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

20. Driescher, A., Korn, U.: Checking stability of neural NARX models: an interval
approach. IFAC Proc. Vol. 30(6), 1005–1010 (1997)

21. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T.A., Kohli, P.: A dual approach
to scalable verification of deep networks. In: Globerson, A., Silva, R. (eds.) Pro-
ceedings of the Thirty-Fourth Conference on Uncertainty in Artificial Intelligence,
UAI 2018, Monterey, California, USA, 6–10 August 2018, pp. 550–559. AUAI Press
(2018)

22. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

23. Etchells, T.A., Lisboa, P.J.: Orthogonal search-based rule extraction (OSRE) for
trained neural networks: a practical and efficient approach. IEEE Trans. Neural
Netw. 17(2), 374–384 (2006)

24. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 on the protection of natural persons with regard to the processing of
personal data and on the free movement of such data, and repealing directive
95/46/EC (General Data Protection Regulation) (2016)

25. Fern, A.: Don’t get fooled by explanations. Invited Talk, IJCAI-XAI (2020).
Recording at: https://ijcai20.org/w41/. Schedule at: https://sites.google.com/
view/xai2020/home

26. Floridi, L.: The method of levels of abstraction. Mind. Mach. 18(3), 303–329 (2008)
27. Friedrich, G., Zanker, M.: A taxonomy for generating explanations in recommender

systems. AI Mag. 32(3), 90–98 (2011)
28. Garcıa, J., Fernández, F.: A comprehensive survey on safe reinforcement learning.

J. Mach. Learn. Res. 16(1), 1437–1480 (2015)
29. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,

M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: 2018 IEEE Symposium on Security and Privacy, SP 2018, Pro-
ceedings, 21–23 May 2018, San Francisco, California, USA, pp. 3–18. IEEE Com-
puter Society (2018). https://doi.org/10.1109/SP.2018.00058

30. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A
survey of methods for explaining black box models. ACM Comput. Surv. (CSUR)
51(5), 93 (2019)

https://doi.org/10.1007/3-540-36577-X_14
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-68167-2_19
https://ijcai20.org/w41/
https://sites.google.com/view/xai2020/home
https://sites.google.com/view/xai2020/home
https://doi.org/10.1109/SP.2018.00058

Fanoos: Explanations for Learned Systems 65

31. Gunning, D., Aha, D.: DARPA’s explainable artificial intelligence (XAI) program.
AI Mag. 40(2), 44–58 (2019). https://doi.org/10.1609/aimag.v40i2.2850

32. Hailesilassie, T.: Rule extraction algorithm for deep neural networks: a review.
arXiv preprint arXiv:1610.05267 (2016)

33. Han, J., Fu, Y.: Discovery of multiple-level association rules from large databases.
In: VLDB, vol. 95, pp. 420–431. Citeseer (1995)

34. Han, J., Fu, Y.: Mining multiple-level association rules in large databases. IEEE
Trans. Knowl. Data Eng. 11(5), 798–805 (1999)

35. Hayes, B., Scassellati, B.: Autonomously constructing hierarchical task networks
for planning and human-robot collaboration. In: 2016 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 5469–5476. IEEE (2016)

36. Hayes, B., Shah, J.A.: Improving robot controller transparency through
autonomous policy explanation. In: 2017 12th ACM/IEEE International Confer-
ence on Human-Robot Interaction (HRI), pp. 303–312. IEEE (2017)

37. Hipp, J., Güntzer, U., Nakhaeizadeh, G.: Algorithms for association rule mining-
a general survey and comparison. SIGKDD Explor. 2(1), 58–64 (2000)

38. Hostetler, J., Fern, A., Dietterich, T.G.: Progressive abstraction refinement for
sparse sampling. In: Meila, M., Heskes, T. (eds.) Proceedings of the Thirty-First
Conference on Uncertainty in Artificial Intelligence, UAI 2015, 12–16 July 2015,
Amsterdam, The Netherlands, pp. 365–374. AUAI Press (2015)

39. Huang, S.H., Held, D., Abbeel, P., Dragan, A.D.: Enabling robots to communicate
their objectives. Auton. Robot. 43(2), 309–326 (2019). https://doi.org/10.1007/
s10514-018-9771-0

40. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

41. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017, Part I. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63387-9 5

42. Kearfott, R.B.: Interval computations: introduction, uses, and resources. Euromath
Bull. 2(1), 95–112 (1996)

43. Kellert, S.H.: In the Wake of Chaos: Unpredictable Order in Dynamical Systems.
University of Chicago Press (1993)

44. Kim, J., Rohrbach, A., Darrell, T., Canny, J.F., Akata, Z.: Textual explanations
for self-driving vehicles (2018). https://doi.org/10.1007/978-3-030-01216-8 35

45. Koul, A., Fern, A., Greydanus, S.: Learning finite state representations of recurrent
policy networks. In: 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019)

46. Levien, R., Tan, S.: Double pendulum: an experiment in chaos. Am. J. Phys.
61(11), 1038–1044 (1993)

47. Lipton, Z.C.: The mythos of model interpretability. arXiv preprint
arXiv:1606.03490 (2016)

48. Liskov, B.: Keynote address-data abstraction and hierarchy. In: Addendum to the
Proceedings on Object-Oriented Programming Systems, Languages and Applica-
tions (Addendum), pp. 17–34 (1987)

49. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. (TOPLAS) 16(6), 1811–1841 (1994)

50. Liu, B., Hsu, W., Ma, Y.: Mining association rules with multiple minimum sup-
ports. In: Proceedings of the Fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 337–341 (1999)

https://doi.org/10.1609/aimag.v40i2.2850
http://arxiv.org/abs/1610.05267
https://doi.org/10.1007/s10514-018-9771-0
https://doi.org/10.1007/s10514-018-9771-0
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-01216-8_35
http://arxiv.org/abs/1606.03490

66 D. Bayani and S. Mitsch

51. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.
Artif. Intell. 267, 1–38 (2018)

52. Miller, T., Howe, P., Sonenberg, L.: Explainable AI: beware of inmates running
the asylum or: how I learnt to stop worrying and love the social and behavioural
sciences. arXiv preprint arXiv:1712.00547 (2017)

53. Mirman, M., Gehr, T., Vechev, M.: Differentiable abstract interpretation for prov-
ably robust neural networks. In: International Conference on Machine Learning,
pp. 3575–3583 (2018)

54. Mohseni-Kabir, A., Rich, C., Chernova, S., Sidner, C.L., Miller, D.: Interactive
hierarchical task learning from a single demonstration. In: Proceedings of the Tenth
Annual ACM/IEEE International Conference on Human-Robot Interaction, pp.
205–212. ACM (2015)

55. Moore, R.E.: Interval Analysis, vol. 4. Prentice-Hall, Englewood Cliffs (1966)
56. Muggleton, S.: Inductive logic programming: issues, results and the challenge of

learning language in logic. Artif. Intell. 114(1–2), 283–296 (1999)
57. Murdoch, W.J., Szlam, A.: Automatic rule extraction from long short term memory

networks. arXiv preprint arXiv:1702.02540 (2017)
58. Neema, S.: Assured autonomy (2017). https://www.darpa.mil/attachments/

AssuredAutonomyProposersDay Program%20Brief.pdf
59. Papadimitriou, A., Symeonidis, P., Manolopoulos, Y.: A generalized taxonomy of

explanations styles for traditional and social recommender systems. Data Min.
Knowl. Disc. 24(3), 555–583 (2012)

60. Perera, V., Selvaraj, S.P., Rosenthal, S., Veloso, M.M.: Dynamic generation and
refinement of robot verbalization. In: 25th IEEE International Symposium on
Robot and Human Interactive Communication, RO-MAN 2016, New York, NY,
USA, 26–31 August 2016, pp. 212–218. IEEE (2016). https://doi.org/10.1109/
ROMAN.2016.7745133

61. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of
artificial neural networks. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 243–257. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6 24

62. Raffin, A.: RL baselines zoo (2018). https://web.archive.org/web/
20190524144858/https://github.com/araffin/rl-baselines-zoo

63. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the
predictions of any classifier. In: Krishnapuram, B., Shah, M., Smola, A.J., Aggar-
wal, C.C., Shen, D., Rastogi, R. (eds.) Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Fran-
cisco, CA, USA, 13–17 August 2016, pp. 1135–1144. ACM (2016). https://doi.
org/10.1145/2939672.2939778

64. Richardson, A., Rosenfeld, A.: A survey of interpretability and explainability in
human-agent systems. In: XAI Workshop on Explainable Artificial Intelligence, pp.
137–143 (2018)

65. Roberts, M., et al.: What was I planning to do. In: ICAPS Workshop on Explain-
able Planning, pp. 58–66 (2018)

66. Rosenthal, S., Biswas, J., Veloso, M.: An effective personal mobile robot agent
through symbiotic human-robot interaction. In: Proceedings of the 9th Interna-
tional Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp.
915–922. International Foundation for Autonomous Agents and Multiagent Sys-
tems (2010)

67. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

http://arxiv.org/abs/1712.00547
http://arxiv.org/abs/1702.02540
https://www.darpa.mil/attachments/AssuredAutonomyProposersDay_Program%20Brief.pdf
https://www.darpa.mil/attachments/AssuredAutonomyProposersDay_Program%20Brief.pdf
https://doi.org/10.1109/ROMAN.2016.7745133
https://doi.org/10.1109/ROMAN.2016.7745133
https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.1007/978-3-642-14295-6_24
https://web.archive.org/web/20190524144858/https://github.com/araffin/rl-baselines-zoo
https://web.archive.org/web/20190524144858/https://github.com/araffin/rl-baselines-zoo
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
http://arxiv.org/abs/1707.06347

Fanoos: Explanations for Learned Systems 67

68. Setiono, R., Liu, H.: Understanding neural networks via rule extraction. In: IJCAI,
vol. 1, pp. 480–485 (1995)

69. Singh, G., Ganvir, R., Püschel, M., Vechev, M.T.: Beyond the single neuron con-
vex barrier for neural network certification. In: Wallach, H.M., Larochelle, H.,
Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neu-
ral Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, 8–14 December 2019, Vancouver, BC,
Canada, pp. 15072–15083 (2019)

70. Sreedharan, S., Madhusoodanan, M.P., Srivastava, S., Kambhampati, S.: Plan
explanation through search in an abstract model space. In: International Confer-
ence on Automated Planning and Scheduling (ICAPS) Workshop on Explainable
Planning, pp. 67–75 (2018)

71. Srikant, R., Agrawal, R.: Mining generalized association rules. In: Dayal, U., Gray,
P.M.D., Nishio, S. (eds.) VLDB 1995, Proceedings of 21st International Conference
on Very Large Data Bases, 11–15 September 1995, Zurich, Switzerland, pp. 407–
419. Morgan Kaufmann (1995)

72. International Standardization: ISO/IEC 7498–1: 1994 information technology-open
systems interconnection-basic reference model: the basic model. International Stan-
dard ISOIEC 74981, 59 (1996)

73. Taylor, B.J., Darrah, M.A.: Rule extraction as a formal method for the verification
and validation of neural networks. In: 2005 Proceedings of 2005 IEEE International
Joint Conference on Neural Networks, vol. 5, pp. 2915–2920. IEEE (2005)

74. Tennent, R.D.: The denotational semantics of programming languages. Commun.
ACM 19(8), 437–453 (1976). https://doi.org/10.1145/360303.360308

75. Thrun, S.: Extracting rules from artificial neural networks with distributed rep-
resentations. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) 1994 Advances
in Neural Information Processing Systems 7, NIPS Conference, Denver, Colorado,
USA, pp. 505–512. MIT Press (1994)

76. Tjeng, V., Xiao, K., Tedrake, R.: Verifying neural networks with mixed integer
programming. CoRR abs/1711.07356 (2017). http://arxiv.org/abs/1711.07356

77. Towell, G.G., Shavlik, J.W.: Extracting refined rules from knowledge-based neural
networks. Mach. Learn. 13(1), 71–101 (1993)

78. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science in
machine learning. SIGKDD Explor. 15(2), 49–60 (2013). https://doi.org/10.1145/
2641190.2641198

79. Veloso, M.M., Biswas, J., Coltin, B., Rosenthal, S.: CoBots: robust symbiotic
autonomous mobile service robots. In: IJCAI, p. 4423 (2015)

80. Ventocilla, E., et al.: Towards a taxonomy for interpretable and interactive machine
learning. In: XAI Workshop on Explainable Artificial Intelligence, pp. 151–157
(2018)

81. Walter, E., Jaulin, L.: Guaranteed characterization of stability domains via set
inversion. IEEE Trans. Autom. Control 39(4), 886–889 (1994). https://doi.org/
10.1109/9.286277

82. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. In: 27th USENIX Security Symposium,
USENIX Security 2018, Baltimore, MD, USA, 15–17 August 2018, pp. 1599–1614
(2018)

83. Wellman, H.M., Lagattuta, K.H.: Theory of mind for learning and teaching: the
nature and role of explanation. Cogn. Dev. 19(4), 479–497 (2004)

https://doi.org/10.1145/360303.360308
http://arxiv.org/abs/1711.07356
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1109/9.286277
https://doi.org/10.1109/9.286277

68 D. Bayani and S. Mitsch

84. Wen, W., Callahan, J.: Neuralware engineering: develop verifiable ANN-based sys-
tems. In: Proceedings IEEE International Joint Symposia on Intelligence and Sys-
tems, pp. 60–66. IEEE (1996)

85. Wen, W., Callahan, J., Napolitano, M.: Towards developing verifiable neural net-
work controller. Technical report (1996)

86. Wen, W., Callahan, J., Napolitano, M.: Verifying stability of dynamic soft-
computing systems. Technical report NASA-IVV-97-002, WVU-CS-TR-97-005,
NASA/CR-97-207032, WVU-IVV-97-002 (1997)

87. Weng, L., et al.: Towards fast computation of certified robustness for ReLU net-
works. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Confer-
ence on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp.
5276–5285. PMLR, 10–15 July 2018

88. Xiang, W., Johnson, T.T.: Reachability analysis and safety verification for neural
network control systems. CoRR abs/1805.09944 (2018)

89. Yasmin, M., Sharif, M., Mohsin, S.: Neural networks in medical imaging applica-
tions: a survey. World Appl. Sci. J. 22(1), 85–96 (2013)

	Fanoos: Multi-resolution, Multi-strength, Interactive Explanations for Learned Systems
	1 Introduction
	2 The Methodology of Fanoos
	2.1 Knowledge Domains and User Questions
	2.2 Reachability Analysis of the Learned System
	2.3 Generating Descriptions
	2.4 User Feedback and Revaluation
	2.5 Capturing the Concept of Abstractness

	3 Fanoos Interaction Example
	4 Related Work and Discussion
	5 Experiments and Results
	5.1 Experiment Design
	5.2 Metrics
	5.3 Results

	6 Conclusions and Future Work
	References

