
Out of Control: Reducing Probabilistic
Models by Control-State Elimination

Tobias Winkler(B) ,
Johannes Lehmann ,

and Joost-Pieter Katoen

RWTH Aachen University,
Aachen, Germany
{tobias.winkler,

katoen}@cs.rwth-aachen.de,
johannes.lehmann@rwth-aachen.de

Abstract. State-of-the-art probabilistic model checkers perform verifi-
cation on explicit-state Markov models defined in a high-level program-
ming formalism like the PRISM modeling language. Typically, the low-
level models resulting from such program-like specifications exhibit lots
of structure such as repeating subpatterns. Established techniques like
probabilistic bisimulation minimization are able to exploit these struc-
tures; however, they operate directly on the explicit-state model. On
the other hand, methods for reducing structured state spaces by reason-
ing about the high-level program have not been investigated that much.
In this paper, we present a new, simple, and fully automatic program-
level technique to reduce the underlying Markov model. Our approach
aims at computing the summary behavior of adjacent locations in the
program’s control-flow graph, thereby obtaining a program with fewer
“control states”. This reduction is immediately reflected in the program’s
operational semantics, enabling more efficient model checking. A key
insight is that in principle, each (combination of) program variable(s)
with finite domain can play the role of the program counter that defines
the flow structure. Unlike most other reduction techniques, our approach
is property-directed and naturally supports unspecified model parame-
ters. Experiments demonstrate that our simple method yields state-space
reductions of up to 80% on practically relevant benchmarks.

1 Introduction

Modelling Markov Models. Probabilistic model checking is a fully automated
technique to rigorously prove correctness of a system model with randomness
against a formal specification. Its key algorithmic component is computing reach-
ability probabilities on stochastic processes such as (discrete- or continuous-time)
Markov chains and Markov Decision Processes. These stochastic processes are

This work is supported by the Research Training Group 2236 UnRAVeL, funded by
the German Research Foundation.

c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 450–472, 2022.
https://doi.org/10.1007/978-3-030-94583-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_22&domain=pdf
http://orcid.org/0000-0003-1084-6408
http://orcid.org/0000-0001-7047-3813
http://orcid.org/0000-0002-6143-1926
https://doi.org/10.1007/978-3-030-94583-1_22

Reducing Probabilistic Models by Control-State Elimination 451

typically described in some high-level modelling language. State-of-the-art tools
like PRISM [33], storm [26] and mcsta [24] support input models specified in e.g.,
the PRISM modeling language1, PPDDL [42], a probabilistic extension of the
planning domain definition language [22], the process algebraic language MoD-
eST [9], the jani model exchange format [11], or the probabilistic guarded com-
mand language pGCL [34]. The recent tool from [21] even supports verification
of probabilistic models written in Java.
Model Construction. Prior to computing reachability probabilities, existing
model checkers explore all the program’s reachable variable valuations and
encode them into the state space of the operational Markov model. Termi-
nation is guaranteed as variables are restricted to finite domains. This paper
proposes a simple reduction technique for this model construction phase that
avoids unfolding the full model prior to the actual analysis, thereby mitigating
the state explosion problem. The basic idea is to unfold variables one-by-one—
rather than all at once as in the standard pipeline—and apply analysis steps
after each unfolding. We detail this control-state reduction technique for proba-
bilistic control-flow graphs and illustrate its application to the PRISM modelling
language. Its principle is however quite generic and is applicable to the afore-
mentioned modelling formalisms. Our technique is thus to be seen as a model
simplification front-end for general purpose probabilistic model checkers.
Approach. Technically our approach works as follows. The principle is to unfold
a (set of) variable(s) into the control state space, a technique inspired by static
program analyses such as abstract interpretation [28]. The selection of which
variables to unfold is property-driven, i.e., depending on the reachability or
reward property to be checked. We define the unfolding on probabilistic control-
flow programs [19] (PCFPs, for short) and simplify them using a technique that
generalizes state elimination in (parametric) Markov chains [13]. Our elimina-
tion technique heavily relies on classical weakest precondition reasoning [16].
This enables the elimination of several states at once from the underlying “low-
level” Markov model while preserving exact reachability probabilities or expected
rewards. Figure 1 provides a visual intuition on the resulting model compression.

The choice of the variables and locations for unfolding and elimination, resp.,
is driven by heuristics. In a nutshell, our unfolding heuristics prefers the variables
that lead to a high number of control-flow locations without self-loops. These
loop-free locations are then removed by the elimination heuristics which gives
preference to locations whose removal does not blow up the transition matrix
of the underlying model. Unfolding and elimination steps are performed in an
alternating fashion, but only until the PCFP size reaches a certain threshold.
After this, the reduction phase is complete and the transformed PCFP can be
fed into a standard probabilistic model checker.

Contributions. In summary, the main contributions of this paper are:

– A simple, widely applicable reduction technique that considers each program
variable with finite domain as a “program counter” and selects suitable vari-
ables for unfolding into the control state space one-by-one.

1 https://www.prismmodelchecker.org/manual/ThePRISMLanguage.

https://www.prismmodelchecker.org/manual/ThePRISMLanguage

452 T. Winkler et al.

Fig. 1. Left: Visualization of the original nand model from [35] (930 states, parameters
5/1). Transitions go from top to bottom. Right: The same model after our reduction
(207 states). A single “program counter variable” taking at most 5 different values was
unfolded and a total of three locations were eliminated thereafter. Note that the overall
structure is preserved but several local substructures such as the pyramidal shape at
the top are compressed significantly. This behavior is typical for our approach.

– A sound rule to eliminate control-flow locations in PCFPs in order to shrink
the state space of the underlying Markov model while preserving exact reach-
ability probabilities or expected rewards.

– Elimination in PCFPs—in contrast to Markov chains—is shown to have an
exponential worst-case complexity.

– An implementation in the probabilistic model checker storm demonstrating
the potential to significantly compress practically relevant benchmarks.

Related Work. The state explosion problem has been given top priority in both
classical and probabilistic model checking. Techniques similar to ours have been
known for quite some time in the non-probabilistic setting [18,32]. Regarding
probabilistic model checking, reduction methods on the state-space level include
symbolic model checking using MTBDDs [1], SMT/SAT techniques [7,40], bisim-
ulation minimization [27,30,38], Kronecker representations [1,10] and partial
order reduction [4,12]. Language-based reductions include symmetry reduc-
tion [17], bisimulation reduction using SMT on PRISM modules [15], as well
as abstraction-refinement techniques [23,31,39]. Our reductions on PCFPs are
inspired by state elimination [13]. Similar kinds of reductions on probabilistic
workflow nets have been considered in [20]. Despite all these efforts, it is some-
what surprising that simple probabilistic control-flow reductions as proposed in
this paper have not been investigated that much. A notable exception is the
recent work by Dubslaff et al. that applies existing static analyses to control-
flow-rich PCFPs [19]. In contrast to our method, their technique yields bisimilar
models and exploits a different kind of structure.

Organization of the Paper. Section 2 starts off by illustrating the central aspects
of our approach by example. Section 3 defines PCFPs and their semantics in
terms of MDPs. Section 4 formalizes the reductions, proves their correctness and
analyzes the complexity. Our implementation in storm is discussed in Sect. 5.
We present our experimental evaluation in Sect. 6 and conclude in Sect. 7. A full
version of this paper including detailed proofs is available online [41].

Reducing Probabilistic Models by Control-State Elimination 453

dtmc

const int N;

module coingame

x : [0..N+1] init N/2;

f : bool init false;

[] 0<x & x<N & !f -> 1/2: (x’=x-1) + 1/2: (f’=true);

[] 0<x & x<N & f -> 1/2: (x’=x-1) & (f’=false) + 1/2: (x’=x+2) & (f’=false);

[] x=0 | x>=N -> 1: (f’=false);

endmodule

Fig. 2. The coin game as a PRISM program. Variable x stands for the current budget.

2 A Bird’s Eye View

This section introduces a running example to illustrate our approach. Consider a
game of chance where a gambler starts with an initial budget of x = N/2 tokens.
The game is played in rounds, each of which either increases or decreases the
budget. The game is lost once the budget has dropped to zero and won once
it exceeds N tokens. In each round, a fair coin is tossed: If the outcome is tails,
then the gambler loses one token and proceeds to the next round; on the other
hand, if heads occurs, then the coin is flipped again. If tails is observed in the
second coin flip, then the gambler also loses one token; however, if the outcome
is again heads then the gambler receives two tokens.

In order to answer questions such as “Is this game fair?” (for a fixed N), prob-
abilistic model checking can be applied. To this end, we model the game as the
PRISM program in Fig. 2. We briefly explain its central components: The first
two lines of the module block are variable declarations. Variable x is an integer
with bounded domain and f is a Boolean. The idea of x and f is to represent
the current budget and whether the coin has to be flipped a second time, respec-
tively. The next three lines that each begin with [] define commands which are
interpreted as follows: If the guard on the left-hand side of the arrow -> is satis-
fied, then one of the updates on the right side is executed with its corresponding
probability. For instance, in the first command, x is decremented by one (and
f is left unchanged) with probability 1/2. Otherwise f is set to true. The order
in which the commands occur in the program text is irrelevant. If there is more
than one command enabled for a specific valuation of the variables, then one of
them is chosen non-deterministically. Our example is, however, deterministic in
this regard since the three guards are mutually exclusive.

Probabilistic model checkers like PRISM and storm expand the above program
as a Markov chain with approximately 2N states. This is depicted for N = 6 at
the top of Fig. 3. Given that we are only interested in the winning probability
(i.e., to reach one of the two rightmost states), this Markov chain is equivalent
to the smaller one on the bottom of Fig. 3. Indeed, eliminating each dashed state
in the lower row individually yields that the overall probability per round to go
one step to the left is 3/4 and 1/4 to go two steps to the right. On the program
level, this simplification could have been achieved by summarizing the first two
commands to

454 T. Winkler et al.

0 1 2 3 4 5 6 7

!f

f

f
3/4 3/4 3/4 3/4 3/4

1/4 1/4 1/4 1/4 1/4

Fig. 3. Top: The Markov chain of the original coin game for N = 6. All transition
probabilities (except on the self-loops) are 1/2. Bottom: The Markov chain of the
simplified model.

[] 0<x & x<N -> 3/4: (x’=x-1) + 1/4: (x’=x+2);

so that variable f is effectively removed from the program.
Obtaining such simplifications in an automated manner is the main purpose

of this paper. In summary, our proposed solution works as follows:

1. First, we view the input program as a probabilistic control flow program
(PCFP), which can be seen as a generalization of PRISM programs from
a single to multiple control-flow locations (Fig. 4, left). A PRISM program
(with a single module) is a PCFP with a unique control location. Imperative
programs such as pGCL programs [34] can be regarded as PCFPs with roughly
one location per line of code.

2. We then unfold one or several variables into the location space, thereby inter-
preting them as “program counters”. We will discuss in Sect. 4.1 that—in
principle—every variable can be unfolded in this way. The distinction between
program counters and “data variables” is thus an informal one. This insight
renders the approach quite flexible. In the example, we unfold f (Fig. 4, mid-
dle), but we stress that it is also possible to unfold x instead (for any fixed
N), even though this is not as useful in this case.

3. The last and most important step is elimination. Once sufficiently unfolded,
we identify locations in the PCFP that can be eliminated. Our elimination
rules are inspired by state elimination in Markov chains [13]. In the example,
we eliminate the location labeled f. To this end, we try to eliminate all ingoing
transitions of location f. Applying the rules described in detail in Sect. 4, we
obtain the PCFP shown in Fig. 4 (right). This PCFP generates the reduced
Markov chain in Fig. 3 (bottom). Here, location elimination has also reduced
the size of the PCFP, but this is not always the case. In general, elimination
adds more commands to the program while reducing the size of the generated
Markov chain or MDP (cf. Sect. 6).

These unfolding and elimination steps may be performed in an alternating fash-
ion following the principle “unfold a bit, eliminate reasonably”. Here, “reason-

Reducing Probabilistic Models by Control-State Elimination 455

x=0 | x>=N

1:f=false
0
<
x
<
N
&
!
f

1/2:x--1/2:f=true

0
<
x
<
N
&
f

1/2:x--;

f=false

1/2:x+=2;

f=false

f!f

x=0 | x>=N

1

x=0 | x>=N1
0<
x<
N1/

2:
x-
- 1/2

0<
x<
N

1/2:x--

1/2:x+=2

!f

x=0 | x>=N

1

0
<
x
<
N

3/4:x--

1
/
4
:
x
+
=
2

Fig. 4. Left: The coin game as a single-location PCFP Pgame . Middle: The PCFP after
unfolding variable f. Right: The PCFP after eliminating the location labeled f.

ably” means that in particular, we must be careful to not blow up the underlying
transition matrix (cf. Sect. 5).

Despite its simplicity, we are not aware of any other automatic technique
that achieves the same or similar reductions on the coin game model. In par-
ticular, bisimulation minimization is not applicable: The bisimulation quotient
of the Markov chain in Fig. 3 (top) is already obtained by merging just the two
rightmost goal states.

Arguably, the program transformations in the above example could have
been done by hand. However, automation is crucial for our technique because
the transformation makes the program harder to understand and obfuscates
the original model’s mechanics due to the removed intermediate control states.
Indeed, simplification only takes place from the model checker’s perspective but
not from the programmer’s. Moreover, our transformations are rather tedious
and error-prone, and may not always be that obvious for more complicated
programs. To illustrate this, we mention the work [35] where a PRISM model of
the von Neumann NAND multiplexing system was presented. Optimizations with
regard to the resulting state space were applied manually already at modeling
time2. Despite these (successful) manual efforts, our fully automatic technique
can further shrink the state-space of the same model by ≈80% (cf. Sect. 6).

3 Technical Background on PCFPs

In this section, we review the necessary definitions of Markov Decision Pro-
cesses (MDPs), Probabilistic Control Flow Programs (PCFPs), and reachabil-
ity properties. The set of probability distributions on a finite set S is denoted
Dist(S) =

{
p : S → [0, 1] | ∑

s∈S p(s) = 1
}
. The set of (total) functions A → B

is denoted BA.

2 See paragraph 7 in [35, Sec. III A.].

456 T. Winkler et al.

Basic Markov Models. An MDP is tuple M = (S, Act, ι, P) where S is a
finite set of states, ι ∈ S is an initial state, Act is a finite set of action labels
and P : S × Act ��� Dist(S) is a (partial) probabilistic transition function. We
say that action a ∈ Act is available at state s ∈ S if P (s, a) is defined. We use
the notation s

a, p−−→ s′ to indicate that P (s, a)(s′) = p. In the following, we write
P (s, a, s′) rather than P (s, a)(s′).

A Markov chain is an MDP with exactly one available action at every state.
We omit action labels when considering Markov chains, i.e., the transition func-
tion of a Markov chain has type P : S → Dist(S). Given a Markov chain M
together with a goal set G ⊆ S, we define the set of paths reaching G as
Paths(G) = { s0 . . . sn ∈ Sn | n ≥ 0, s0 = ι, sn ∈ G,∀i < n : si /∈ G }. The reach-
ability probability of G is PM(♦G) =

∑
π∈Paths(G)

∏l(π)−1
i=0 P (πi, πi+1) where l(π)

denotes the length of a path π and πi is the i-th state along π. P(♦G) is always
a well-defined probability (see e.g. [5, Ch. 10] for more details).

A (memoryless deterministic) scheduler of an MDP is a mapping σ ∈ ActS

with the restriction that action σ(s) is available at s. Each scheduler σ induces a
Markov chain Mσ by retaining only the action σ(s) at every s ∈ S. Scheduler σ is
called optimal if σ = argmaxσ′ PMσ′ (♦G) (or argmin, depending on the context).
In finite MDPs as considered here, there always exists an optimal memoryless
and deterministic scheduler, even if the above argmax is taken over more general
schedulers that may additionally use memory and/or randomization [36].

PCFP Syntax and Semantics. We first define (guarded) commands. Let
Var = {x1, . . . , xn} be a set of integer-valued variables. An update is a set of
assignments

u = { x′
1 = f1(x1, . . . , xn), . . . , x′

n = fn(x1, . . . , xn) }

that are executed simultaneously. We assume that the expressions fi always yield
integers. An update u transforms a variable valuation ν ∈ Z

Var into a valuation
ν′ = u(ν). For technical reasons, we also allow chaining of updates, that is, if
u1 and u2 are updates, then u1 � u2 is the update that corresponds to executing
the updates in sequence: first u1 and then u2. A command is an expression

ϕ → p1 : u1 + . . . + pk : uk,

where ϕ is a guard, i.e., a Boolean expression over program variables, ui are
updates, and pi are non-negative real numbers such that

∑k
i=1 pi = 1, i.e., they

describe a probability distribution over the updates. We further define location-
guided commands which additionally depend on control-flow locations l and
l1, . . . , lk:

ϕ, l → p1 : u1 : l1 + . . . + pk : uk : lk.

The intuitive meaning of a location-guided command is as follows: It is enabled
if the system is at location l and the current variable valuation satisfies ϕ.
Based on the probabilities p1, . . . , pk, the system then randomly executes one

Reducing Probabilistic Models by Control-State Elimination 457

of the updates ui and transitions to the next location li. We use the notation
l

ϕ → pi : ui−−−−−−−→ li to refer to such a possible transition between locations. We call
location-guided commands simply commands in the rest of the paper.

Probabilistic Control Flow Programs (PCFPs) combine several commands
into a probabilistic program and constitute the formal basis of our approach:

Definition 1 (PCFP). A PCFP is a tuple P = (Loc, Var, dom, Cmd, ι) where
Loc is a non-empty set of (control-flow) locations, Var is a set of integer-valued
variables, dom ∈ P(Z)Var is a domain for each variable, Cmd is a set of com-
mands as defined above, and ι = (lι, νι) is the initial location/valuation pair.

This definition and our notation for commands are similar to [19]. We also allow
Boolean variables as syntactic sugar by identifying false ≡ 0 and true ≡ 1. We
generally assume that Loc and all variable domains are finite sets. For a variable
valuation ν ∈ Z

Var, we write ν ∈ dom if ν(x) ∈ dom(x) for all x ∈ Var. In
some occasions, we consider only partial valuations ν ∈ Z

Var′ , where Var′ � Var.
We use the notations ϕ[ν] and u[ν] to indicate that all variables occurring in
the guard ϕ (the update u, respectively) are replaced according to the given
(partial) valuation ν. For updates, we also remove assignments whose left-hand
side variables become a constant. Recall that the notation u(ν) has a different
meaning; it denotes the result of executing the update u on valuation ν.

The straightforward operational semantics of a PCFP is defined in terms of
a Markov Decision Process (MDP).

Definition 2 (MDP Semantics). For a PCFP P = (Loc, Var, dom, Cmd, ι),
we define the semantic MDP MP = (S, Act, ι, P) as follows:

S = Loc × {ν ∈ dom} ∪ {⊥}, Act = { aγ | γ ∈ Cmd } , ι = 〈lι, νι〉

and the probabilistic transition relation P is defined according to the rules

l1
ϕ→p:u−−−−→ l2 ∧ ν |= ϕ ∧ u(ν) ∈ dom

〈l1, ν〉 aγ ,p−−−→ 〈l2, u(ν)〉
,

l1
ϕ→p:u−−−−→ l2 ∧ ν |= ϕ ∧ u(ν) /∈ dom

〈l1, ν〉 aγ ,p−−−→ ⊥
where aγ ∈ Act is an action label that uniquely identifies the command γ con-
taining transition l1

ϕ→p:u−−−−→ l2.

An element 〈l, ν〉 ∈ Loc × {ν ∈ dom} is called a configuration. A PCFP is
deterministic if the MDP MP is a Markov chain. Moreover, we say that a PCFP
is well-formed if the out-of-bounds state ⊥ is not reachable from the initial state
and if there is at least one action available at each state of MP. From now on,
we assume that PCFPs are always well-formed.

Example 1. The semantic MDP—a Markov chain in this case—of the two
PCFPs in Fig. 4 (left and middle) is given in Fig. 3 (top), and the one of the
PCFP in Fig. 4 (right) is depicted in Fig. 3 (bottom). �

458 T. Winkler et al.

Reachability in PCFPs. It is natural to describe a set of good (or bad)
PCFP configurations by means of a predicate ϑ over the program variables which
defines a set of target states in the semantic MDP MP. We slightly extend this
to account for information available from previous unfolding steps. To this end,
we will sometimes consider a labeling function L : Loc → Z

Var′ that assigns to
each location an additional variable valuation ν′ over Var′, a set of variables
disjoint to the actual programs variables Var. The idea is that Var′ contains the
variables that have already been unfolded (see Sect. 4.1 below for the details). A
predicate ϑ over Var � Var′ describes the following goal set in the MDP MP:

Gϑ = { 〈l, ν〉 | l ∈ Loc, ν ∈ dom, (ν, L(l)) |= ϑ }
where (ν, L(l)) is the variable valuation over Var � Var′ that results from com-
bining ν and L(l).

Definition 3 (Potential Goal). Let (Loc, Var, dom, Cmd, ι) be a PCFP
labeled with valuations L : Loc → Z

Var′ and let ϑ be a predicate over Var � Var′.
A location l ∈ Loc is called a potential goal w.r.t. ϑ if ϑ[L(l)] is satisfiable in
dom.

Example 2. Consider the PCFP in Fig. 4 (middle) with N = 6. Note that here,
Var = {x} and Var′ = {f}. Let ϑ = (x ≥ 6 ∧ f = false). Assume the labeling
function L(!f) = {f �→ false} and L(f) = {f �→ true}. Then the location
labeled !f is a potential goal w.r.t. ϑ because ϑ[f �→ false] ≡ x ≥ 6 is satisfiable.
The other location f is no potential goal. �

In Sect. 4 below, we introduce PCFP transformation rules that preserve
reachability probabilities. This is formally defined as follows:

Definition 4 (Reachability Equivalence). Let P1 and P2 be PCFPs over
the same set of variables Var. For i ∈ {1, 2}, let Li : Loci → Z

Var′ be labeling
functions on Pi. Further, let ϑ be a predicate over Var � Var′. Then P1 and P2

are ϑ-reachability equivalent if

opt
σ

PMσ
P1

(♦Gϑ) = opt
σ

PMσ
P2

(♦Gϑ)

for both opt ∈ {min,max} and where σ ranges of the class of memoryless deter-
ministic schedulers for the MDPs Mσ

P1
and Mσ

P2
, respectively.

Example 3. For all N ≥ 0, the PCFPs in Fig. 4 (middle) and Fig. 4 (right) with
labeling functions as in Example 2 are reachability equivalent w.r.t. to ϑ =
(x ≥ N ∧ f = false). This follows from our intuitive explanation in Sect. 2, or
alternatively from the formal rules to be presented in the following Sect. 4. �

4 PCFP Reduction

We now describe our two main ingredients in detail: variable unfolding and loca-
tion elimination. Throughout this section, P = (Loc, Var, dom, Cmd, ι) denotes
an arbitrary well-formed PCFP.

Reducing Probabilistic Models by Control-State Elimination 459

4.1 Variable Unfolding

Let Asgn be the set of all assignments that occur anywhere in the updates of P.
For an assignment α ∈ Asgn, we write lhs(α) for the variable on the left-hand side
and rhs(α) for the expression on the right-hand side. Let x, y ∈ Var be arbitrary.
Define the relation x → y (“x depends on y”) as

x → y ⇐⇒ ∃α ∈ Asgn : x = lhs(α) ∧ rhs(α) contains y.

This syntactic dependency relation only takes updates but no guards into
account. This is, however, sufficient for our purpose. We say that x is (directly)
unfoldable if ∀y : x → y =⇒ x = y, that is, x depends at most on itself.

Example 4. Variables x and f in the PCFP in Fig. 4 (left) are unfoldable. �
The rationale of this definition is as follows: If variable x is to be unfolded into
the location space, then we must make sure that any update assigning to x
yields an explicit numerical value and hence an unambiguous location. Formally,
unfolding is defined as follows:

Definition 5 (Unfolding). Let x ∈ Var be unfoldable. The unfolding
Unf(P, x) of P with respect to x is the PCFP (Loc′, Var\{x}, dom, Cmd′, ι′)
where

Loc′ = Loc × dom(x), ι′ = (〈 lι, νι(x) 〉, ν′
ι)

where ν′
ι(x) = νι(x) for all x ∈ Var′, and Cmd′ is defined according to the rule

l
ϕ→p:u−−−−→ l′ in P ∧ ν : {x} → dom(x)

〈 l, ν(x) 〉 ϕ[ν]→ p:u[ν]−−−−−−−−→ 〈 l′, u(ν)(x) 〉
.

Recall that u[ν] substitutes all x in u for ν(x) while u(ν) applies u to valuation
ν. Note that even though ν only assigns a value to x in the above rule, we
nonetheless have that u(ν)(x) is a well-defined integer in dom(x). This is ensured
by the definition of unfoldable and because P is well-formed. Unfolding preserves
the semantics of a PCFP (up to renaming of states and action labels):

Lemma 1. For every unfoldable x ∈ Var, we have MUnf(P,x) = MP.

Example 5. The PCFP in Fig. 4 (middle) is the unfolding Unf(Pgame , f) of the
PCFP Pgame in Fig. 4 (left) with respect to variable f. �
In general, it is possible that no single variable of a PCFP is unfoldable. We
offer two alternatives for such cases:

– There always exists a set U ⊆ Var of variables that can be unfolded at once
(U = Var in the extreme case). Definition 5 can be readily adapted to this
case. Preferably small sets of unfoldable variables can be found by considering
the bottom SCCs of the directed graph (Var,→).

– In principle, each variable can be made unfoldable by introducing further
commands. Consider for instance a command γ with an update x′ = y. We
may introduce |dom(y)| new commands by strengthening γ’s guard with con-
dition “y = z” for each z ∈ dom(y) and substituting all occurrences of y for
the constant z. This transformation is mostly of theoretical interest as it may
create a large number of new commands.

460 T. Winkler et al.

s

r
p1

p2

q1

q2

s

p1

p2

q1
1−r

q2
1−r

s

p1

p2

q1

q2

p1q1

p2q
1 p1q2

p2q2

Fig. 5. State elimination in Markov chains. Left: Elimination of a self-loop. Right:
Elimination of a state without self-loops. These rules preserve reachability probabilities
provided that s is neither initial nor a goal state.

4.2 Elimination

For the sake of illustration, we first recall state elimination in Markov chains.
Let s be a state of the Markov chain. The first step is to eliminate all self-
loops of s by rescaling the probabilities accordingly (Fig. 5, left). Afterwards,
all ingoing transitions are redirected to the successor states of s by multiplying
the probabilities along each possible path (Fig. 5, right). The state s is then not
reachable anymore and can be removed. This preserves reachability probabilities
in the Markov chain provided that s was neither an initial nor goal state. Note
that state elimination may increase the total number of transitions. In essence,
state elimination in Markov chains is an automata-theoretic interpretation of
solving a linear equation system by Gaussian elimination [29].

In the rest of this section, we develop a location elimination rule for PCFPs
that generalizes state elimination in Markov chains. Updates and guards are
handled by weakest precondition reasoning which is briefly recalled below. We
then introduce a rule to remove single transitions, and show how it can be
employed to eliminate self-loop-free locations. For the (much) more difficult case
of self-loop elimination, we refer to the full version [41] for the treatment of some
special cases. Handling general loops requires finding loop invariants which is
notoriously difficult to automize. Instead, the overall idea of this paper is to
create self-loop-free locations by suitable unfolding.

Weakest Preconditions. As mentioned above, our elimination rules rely on
classical weakest preconditions which are defined as follows. Fix a set Var of
program variables with domains dom. Further, let u be an update and ϕ,ψ be
predicates over Var. We call { ψ } u { ϕ } a valid Hoare-triple if

∀ν ∈ dom : ν |= ψ =⇒ u(ν) |= ϕ.

The predicate wp(u, ϕ) is defined as the weakest ψ such that { ψ } u { ϕ } is
a valid Hoare-triple and is called the weakest precondition of u with respect to
postcondition ϕ. Here, “weakest” is to be understood as maximal in the semantic
implication order on predicates. Note that u(ν) |= ϕ iff ν |= wp(u, ϕ). It is
well known [16] that for an update u = { x′

1 = f1, . . . , x′
n = fn }, the weakest

precondition is given by

wp(u, ϕ) = ϕ[x1, . . . , xn �→ f1, . . . , fn],

Reducing Probabilistic Models by Control-State Elimination 461

Fig. 6. Transition elimination in PCFPs. Transition l
ϕ→p1:u1−−−−−−→ l1 is eliminated. The

rule is correct even if the depicted locations are not pairwise distinct.

i.e., all free occurrences of the variables x1, . . . , xn in ϕ are simultaneously
replaced by the expressions f1, . . . , fn. For example,

wp(
{

x′ = y2, y′ = 5
}

, x ≥ y) = y2 ≥ 5.

For chained updates u1 � u2, we have wp(u1 � u2, ϕ) = wp(u1,wp(u2, ϕ)) [16].

Transition Elimination. To simplify the presentation, we focus on the case
of binary PCFPs where locations have exactly two commands and commands
have exactly two transitions (the general case is treated in [41]). The following
construction is depicted in Fig. 6. Let l

ϕ→p1:u1−−−−−−→ l1 be the transition we want to
eliminate and suppose that it is part of a command

γ : l, ϕ → p1 : u1 : l1 + p2 : u2 : l2. (1)

Suppose that the PCFP is in a configuration 〈l, ν〉 where guard ϕ is enabled,
i.e., ν |= ϕ. Intuitively, to remove the desired transition, we must jump with
probability p1 directly from l to one of the possible destinations of l1, i.e.,
either l11, l12, l21 or l22. Moreover, we need to anticipate the—possibly non-
deterministic—choice at l1 already at l. Note that guard ψ1 will be enabled
at l1 iff u1(ν) |= ψ1. The latter is true iff ν |= wp(u1, ψ1). Hence, if
ν |= ϕ ∧ wp(u1, ψ1), then we can choose to jump from l directly to l11 or
l12 with probability p1. The exact probabilities p1q11 and p1q12, respectively, are
obtained by simply multiplying the probabilities along each path. To preserve
the semantics, we must also execute the updates found on these paths in the
right order, i.e., either u1 � v11 or u1 � v12. The situation is completely analogous
for the other command with guard ψ2.

In summary, we apply the following transformation: We remove the command
γ in (1) completely (and hence not only the transition l

ϕ→p1:u1−−−−−−→ l1) and replace
it by two new commands γ1 and γ2 which are defined as follows:

γi : l, ϕ ∧ wp(u1, ψi) → p2 : u2 : l2 +
2∑

j=1

p1qij : (u1 � vij) : lij , i ∈ {1, 2}.

462 T. Winkler et al.

Note that in particular, this operation preserves deterministic PCFPs: If ψ1 and
ψ2 are mutually exclusive, then so are wp(u1, ψ1) and wp(u1, ψ2). If the guards
are not exclusive, then the construction transfers the non-deterministic choice
from l1 to l.

Example 6. In the PCFP in Fig. 4 (middle), we eliminate the transition

!f
0<x<N → 1/2:nop−−−−−−−−−−−−→ f.

The above transition is contained in the command

!f, 0 < x < N → 1/2 : nop : f + 1/2 : x-- : !f.

The following two commands are available at location f:

f, x=0 | x >= N → 1 : nop : !f
f, 0 < x < N → 1/2 : x+=2 : !f + 1/2 : x-- : !f.

Note that wp(nop, ψ) = ψ for any guard ψ. According to the construction in
Fig. 6, we add the following two new commands to location !f:

!f, 0 < x < N & (x=0 | x >= N) → 1/2 : nop : !f + 1/2 : x-- : !f
!f, 0 < x < N & 0 < x < N → 1/2 : x-- : !f + 1/4 : x-- : !f

+ 1/4 : x=x+2 : !f.

The guard of the first command is unsatisfiable so that the whole command can
be discarded. The second command can be further simplified to

!f, 0 < x < N → 3/4 : x-- : !f + 1/4 : x=x+2 : !f.

Removing unreachable locations yields the PCFP in Fig. 4 (right). �

Regarding the correctness of transition elimination, the intuitive idea is that
the rule preserves reachability probabilities if location l1 is not a potential goal.
Recall that potential goals are locations for which we do not know whether they
contain goal states when fully unfolded. Formally, we have the following:

Lemma 2. Let l1 ∈ Loc\{lι} be no potential goal with respect to goal predicate
ϑ and let P′ be obtained from P by eliminating transition l

ϕ→p1:u1−−−−−−→ l1 according
to Fig. 6. Then P and P′ are ϑ-reachability equivalent.

Proof (Sketch). This follows by extending Markov chain transition elimination
to MDPs and noticing that the semantic MDP MP′ is obtained from MP by
applying transition elimination repeatedly, see [41] for the details. �

Reducing Probabilistic Models by Control-State Elimination 463

Location Elimination. We say that location l ∈ Loc has a self-loop if there
exists a transition l

ϕ→p:u−−−−→ l. In analogy to state elimination in Markov chains,
we can directly remove any location without self-loops by applying the elimina-
tion rule to its ingoing transitions. However, the case l1 = l2 in Fig. 6 needs to be
examined carefully as eliminating l

ϕ→p1:u1−−−−−−→ l1 actually creates two new ingoing
transitions to l1 = l2. Termination of the algorithm is thus not immediately
obvious. Nonetheless, even for general (non-binary) PCFPs, the following holds:

Theorem 1 (Correctness of Location Elimination). If l ∈ Loc\{lι} has
no self-loops and is not a potential goal w.r.t. goal predicate ϑ, then the algorithm

while (∃ l′
ϕ→p:u−−−−→ l in P) { eliminate l′

ϕ→p:u−−−−→ l }

terminates with a ϑ-reachability equivalent PCFP P′ where l is unreachable.

The following notion is helpful for proving termination of the above algorithm:

Definition 6 (Transition Multiplicity). Given a transition l′
ϕ→p:u−−−−→ l con-

tained in command γ, we define its multiplicity m as the total number of tran-
sitions in γ that also have destination l.

For instance, if l1 = l2 in Fig. 6, then transition l
ϕ→p1:u1−−−−−−→ l1 has multiplicity

m = 2. If l1 �= l2, then it has multiplicity m = 1.

Proof (of Theorem 1). With Lemma 2 it only remains to show termination.
We directly prove the general case where P is non-binary. Suppose that l has
k commands. Eliminating a transition entering l with multiplicity 1 does not
create any new ingoing transitions (as l has no self-loops). On the other hand,
eliminating a transition with multiplicity m > 1 creates k new commands, each
with m − 1 ingoing transitions to l1. Thus, as the multiplicity strictly decreases,
the algorithm terminates. �

We now analyze the complexity of the algorithm in Theorem 1 in detail.

Theorem 2 (Complexity of Location Elimination). Let l ∈ Loc\{lι} be
a location without self-loops. Let k be the number of commands available at l.
Further, let n be the number of distinct commands in Cmd that have a transition
with destination l, and suppose that each such transition has multiplicity at most
m. Then the location elimination algorithm in Theorem 1 applied to l has the
following properties:

– It terminates after at most n(km−1)/(k−1) iterations.
– It creates at most O(nkm) new commands.
– There exist PCFPs where it creates at least Ω(n2m) new distinct commands

with satisfiable guards.

Proof (Sketch). We only consider the case n = 1 here, the remaining details are
treated in [41]. We show the three items independently:

464 T. Winkler et al.

l′
... l

l1

l2

true

c
21

: y′
1 = 1

c
2m

: y′
m = 1

∨m
i=1

(xi ∧ yi) {x′
i = 0, y′

i = 0 | 1≤i≤m }

¬(...)

Fig. 7. The PCFP P used for the lower bound in Theorem 2. The transitions from l′

to l have multiplicity m each. Variables x, y have Boolean domain, c is a normalizing
constant.

– The number I(m) of iterations of the algorithm in Theorem 1 applied to
location l satisfies the recurrence I(1) = 1 and I(m) = 1 + kI(m − 1) for all
m > 1 since eliminating a transition with multiplicity m > 1 yields k new
commands with multiplicity m − 1 each. The solution of this recurrence is
I(m) =

∑m−1
i=0 ki = (km−1)/(k−1) as claimed.

– For the upper bound on the number of new commands, we consider the exe-
cution of the algorithm in the following stages: In stage 1, there is a single
command with multiplicity m. In stage j for j > 1, the commands from
the previous stage are transformed into k new commands with multiplicity
m−j+1 each. In the final stage m, there are thus km−1 commands with mul-
tiplicity 1 each. Eliminating all of them yields k · km−1 = km new commands
after which the algorithm terminates.

– Consider the PCFP P in Fig. 7 where k = 2. Intuitively, location elimination
must yield a PCFP P′ with 2m commands available at location l′ because
every possible combination of the updates y′

i = 1, i = 1, . . . , m, may result
in enabling either of the two guards at l. Indeed, for each such combination,
the guard which is enabled depends on the values of x1, . . . , xm at location l′.
Thus in the semantic MDP MP′ , for every variable valuation ν with ν(yi) = 0
for all i = 1, . . . ,m, the probabilities P (〈l′, ν〉, 〈l1,0〉) are pairwise distinct.
This implies that P′ must have 2m commands (with satisfiable guards)
at l′. �

5 Implementation

Overview. We have implemented our approach in the probabilistic model
checker storm [26]. Technically, instead of defining custom data structures for our
PCFPs, we operate directly on models in the jani model exchange format [11].
storm accepts jani models as input and also supports conversion from PRISM to
jani. The PCFPs described in this paper are a subset of the models expressible
in jani. Other jani models such as timed or hybrid automata are not in the scope
of our implementation. In practice, we use our algorithms as a simplification
front-end, i.e., we apply just a handful of unfolding and elimination steps and
then fall back to storm’s default engine. This is steered by heuristics that we
explain in detail further below.

Reducing Probabilistic Models by Control-State Elimination 465

Features. Apart from the basic PCFPs treated in the previous sections, our
implementation supports the following more advanced jani features:

– Parameters. It is common practice to leave key quantities in a high-level model
undefined and then analyze it for various instantiations of those parameters
(as done in most of the PRISM case studies3); or synthesize in some sense suit-
able parameters [14,29,37]. Examples include undefined probabilities or unde-
fined variable bounds like N in the PRISM program in Fig. 2. Our approach
can naturally handle such parameters and is therefore particularly useful in
situations where the model is to be analyzed for several parameter configura-
tions. Virtually, the only restriction is that we cannot unfold variables with
parametric bounds.

– Rewards. Our framework can be easily extended to accommodate expected-
reward-until-reachability properties (see e.g. [5, Def. 10.71] for a formal def-
inition). The latter are also highly common in the benchmarks used in the
quantitative verification literature [25]. Formally, in a reward PCFP, each
transition is additionally equipped with a non-negative reward that can either
be a constant or given as an expression in the program variables. Technically,
the treatment of rewards is straightforward: Each time we multiply the prob-
abilities of two transitions in our transition elimination rule (Fig. 6), we add
their corresponding rewards.

– Parallel composition. PCFPs can be extended by action labels to allow for
synchronization of various parallel PCFPs. This is standard in model check-
ing (e.g. [5, Sec. 2.2.2]). We have implemented two approaches for dealing
with this: (1) A “flat” product model is constructed first. This functional-
ity is already shipped with the storm checker. This approach is restricted
to compositions of just a few modules as the size of the resulting product
PCFP is in general exponential in the number of modules. Nonetheless, in
many practical cases, flattening leads to satisfactory results (cf. Sect. 6). (2)
Control-flow elimination is applied to each component individually. Here, we
may only eliminate internal, i.e. non-synchronizing commands, and we forbid
shared variables. Otherwise, we would alter the resulting composition.

– Probability expressions. Without changes, all of the theory presented so far
can be applied to PCFPs with probability expressions like |x|/(|x| + 1) over
the program variables instead of constant probabilities only. Expressions that
do not yield correct probabilities are considered modeling errors.

Heuristics. The choice of the next variable to be unfolded and the next location
to be eliminated is driven by heuristics. The overall goal of the heuristics is to
eliminate as many locations as possible while maintaining a reasonably sized
PCFP. This is controlled by two configurable parameters, L and T . The heuristics
alternates between unfolding and elimination (see the diagram in Fig. 8).

To find a suitable variable for unfolding, the heuristics first analyzes the
dependency graph defined in Sect. 4.1. It then selects a variable based on the

3 https://www.prismmodelchecker.org/casestudies/.

https://www.prismmodelchecker.org/casestudies/

466 T. Winkler et al.

Build
dependency

graph

start

done

|Loc| < L

Unfold x ∈ Var
with max.

score

Eliminate l ∈ Loc
with min. compl.

∃ l ∈ Loc \ {lι} s.t.
– l loop-free

– l no pot. goal
– est. compl. < T

yesno

no

yes

Unfolding Elimination

Fig. 8. Our heuristics alternates between unfolding and elimination steps. The next
unfold is determined by selecting a variable with maximal score as computed by a static
analysis (see main text). Loop-free non-potential goal locations are then eliminated
until the next elimination has a too high estimated complexity.

following static analysis: For each unfoldable variable x, the heuristics consid-
ers each command γ in the PCFP and determines the percentage p(γ, x) of γ’s
transitions that have an update with writing access to x. Each variable is then
assigned a score which is defined as the average percentage p(γ, x) over all com-
mands of the PCFP. The intuition behind this technique is that variables which
are changed in many commands are more likely to create self-loop free locations
when unfolded. We consider the percentage for each command individually in
order to not give too much weight to commands with many transitions. Unfold-
ing is only performed if the current PCFP has at most L locations. By default,
L = 10 which in practice often leads to unfolding just two or three variables
with small domains.

After unfolding a variable, the heuristics tries to eliminate self-loop-free loca-
tions that are no potential goals. The next location to be eliminated is selected
by estimating the number of new commands that would be created by the algo-
rithm. Here, we rely on the theoretical results from Theorem 2: In particular, we
take the multiplicity (cf. Definition 6) of ingoing transitions into account which
may cause an exponential blowup. We use the estimate O(nkm) from Theorem
2 as an approximation for the elimination complexity; determining the exact
complexity of each possible elimination is highly impractical. We only eliminate
locations whose estimated complexity is at most T , and we eliminate those with
lowest complexity first. By default, T = 104.

6 Experiments

In this section, we report on our experimental evaluation of the implementation
described in the previous section.

Benchmarks. We have compiled a set of 10 control-flow intensive DTMC and
MDP benchmarks from the literature. Each benchmark model is equipped with
a reachability or expected reward property.

Reducing Probabilistic Models by Control-State Elimination 467

Table 1. Reductions achieved by our control-flow elimination. Times are in ms.

Name Type Prop.
type

Red.
time

Params. States Transitions Build time Check time Total time

orig. red. orig. red. orig. red. orig. red. orig. red.

brp dtmc P 134 210/5 78.9K −44% 106K −33% 261 −33% 22 −38% 16,418 −46%

211/10 291K −45% 397K −33% 1,027 −39% 101 −46%

212/20 1.11M −46% 1.53M −33% 3,945 −48% 462 −48%

213/25 2.76M −46% 3.8M −33% 9,413 −47% 1,187 −47%

coingame dtmc P 35 104 20K −50% 40K −50% 53 −24% 18,500 −79% 18,553 −78%

dice5 mdp P 671 n/a 371K −84% 2.01M −83% 1,709 −82% 9,538 −99% 11,247 −91%

eajs mdp R 223 103 194K −28% 326K −1% 1,242 −43% 220 −32% 18,397 −42%

104 2M −28% 3.38M −1% 13,154 −46% 3,780 −31%

grid dtmc P 117 104 300K −47% 410K −34% 1,062 −57% 17 −52% 11,716 −52%

105 3M −47% 4.1M −34% 10,430 −53% 207 −54%

hospital mdp P 57 n/a 160K −66% 396K −27% 502 −50% 19 −56% 521 −39%

nand dtmc P 80 20/4 308K −79% 476K −52% 589 −45% 108 −75% 86,060 −56%

40/4 4M −80% 6.29M −51% 8,248 −50% 1,859 −77%

60/2 9.42M −80% 14.9M −50% 19,701 −49% 4,685 −76%

60/4 18.8M −80% 29.8M −50% 40,168 −53% 10,703 −77%

nd-nand mdp P 106 20/4 308K −79% 476K −52% 618 −36% 127 −74% 96,956 −52%

40/4 4M −80% 6.29M −51% 8,783 −42% 2,270 −77%

60/2 9.42M −80% 14.9M −50% 21,792 −47% 5,646 −75%

60/4 18.8M −80% 29.8M −50% 44,409 −46% 13,312 −76%

negotiation dtmc P 148 104 129K −32% 184K −26% 481 −39% 22 −49% 5,631 −39%

105 1.29M −32% 1.84M −26% 4,930 −43% 197 −30%

pole dtmc R 208 102 315K −46% 790K −4% 1,496 −46% 26 −42% 17,431 −45%

103 3.16M −46% 7.9M −4% 15,503 −47% 406 −33%

brp models a bounded retransmission protocol and is taken from the PRISM
benchmark suite. coingame is our running example from Fig. 2. dice5 is an
example shipped with storm and models rolling several dice, five in this case,
that are themselves simulated by coinflips in parallel. eajs models energy-aware
job scheduling and was first presented in [3]. grid is taken from [2] and represents
a robot moving in a partially observable grid world. hospital is adapted from [8]
and models a hospital inventory management problem. nand is the von Neu-
mann NAND multiplexing system mentioned near the end of Sect. 2. nd-nand
is a custom-made adaption of nand where some probabilistic behavior has been
replaced by non-determinism. negotiation is an adaption of the Alternating
Offers Protocol from [6] which is also included in the PRISM case studies. pole is
also from [2] and models balancing a pole in a noisy and unknown environment.
The problems brp, eajs, and nand are part of the QComp benchmark set [25].

For all examples except dice5, we have first flattened parallel compositions
(if there were any) into a single module, cf. Sect. 5.

Setup. We report on two experiments. In the first one, we compare the number
of states and transitions as well as the model build and check times of the origi-
nal and the reduced program (columns ‘States’, ‘Transitions’, ‘Build time’, and
‘Check time’ of Table 1). We work with storm’s default settings4. We also report
the time needed for the reduction itself, including the time consumed by flatten-

4 By default, storm builds the Markov model as a sparse graph data structure and
uses (inexact) floating point arithmetic.

468 T. Winkler et al.

ing (column ‘Red. time’). We always use the default configuration for our heuris-
tics, i.e., we do not manually fine-tune the heuristics for each benchmark. We
report on some additional experimental results obtained with fine-tuned heuris-
tics in [41]. For the benchmarks where this is applicable, we consider the different
parameter configurations given in column ‘Params.’. Recall that in these cases,
we need to compute the reduced program only once. We report the amortized
runtime of storm on all parameter configurations vs. the runtime on the reduced
models, including the time needed for reduction in the rightmost column ‘Total
time’. In the second, less extensive experiment, we compare our reductions to
bisimulation minimization (Table 2 below). All experiments were conducted on a
notebook with a 2.4 GHz Quad-Core Intel Core i5 processor and 16 GB of RAM.
The script for creating the table is available5.

Results. Our default heuristics was able to reduce all considered models in terms
of states (by 28–84%) and transitions (by 1–83%). The total time for building
and checking these models was decreased by 39–91%. The relative decrease in
the number of states is usually more striking than the decrease in the number of
transitions. This is because, as explained in Sect. 4, location elimination always
removes states but may add more commands to the PCFP and hence more tran-
sitions to the underlying Markov model. Similarly, the time savings for model
checking are often higher than the ones for model building; here, this is mostly
because building our reduced model introduces some overhead due to the addi-
tional commands. The reduction itself was always completed within a fraction
of a second and is independent of the size of the underlying state space.

Bisimulation and Control-Flow Reduction. In Table 2, we compare the compres-
sion achieved by storm’s probabilistic bisimulation engine, our method and both
techniques combined. We also include the total time needed for reduction, model
building and checking. For the comparison, we have selected three benchmarks
representing three different situations: (1) for brp, the two techniques achieve
similar reductions, (2) for nand, our reduced model is smaller than the bisim-
ulation quotient, and (3) for pole, the situation is the other way around, i.e.,
the bisimulation quotient is (much) smaller than our reduced model. Interest-
ingly, combining the two techniques yields an even smaller model in all three
cases. This demonstrates the fact that control-flow reduction and bisimulation
are orthogonal to each other. In the examples, control-flow reduction was also
faster than bisimulation as the latter has to process large explicit state spaces. It
is thus an interesting direction for future work to combine program-level reduc-
tion techniques that yield bisimilar models with control-flow reduction.

When Does Control-Flow Reduction Work Well? Our technique works best for
models that use one or more explicit or implicit program counters. Such program
counters often come in form of a variable that determines which commands are
currently available and that is updated after most execution steps. Unfolding

5 https://doi.org/10.5281/zenodo.5497947.

https://doi.org/10.5281/zenodo.5497947

Reducing Probabilistic Models by Control-State Elimination 469

Table 2. Comparison of bisimulation minimization and our control-flow reduction
(‘CFR’). Column ‘Total time’ includes building, reducing and checking the model.

Name Params. States Transitions Total time

Bisim. CFR Both Bisim. CFR Both Bisim. CFR Both

brp 212/20 598K 606K 344K 852K 1.02M 598K 4,767 2,883 2,965

nand 40/4 3.21M 816K 678K 5M 3.1M 2.46M 17,868 5,588 8,199

pole 103 4.06K 1.72M 1.2K 12.2K 7.54M 9.82K 19,443 10,305 10,801

such variables typically yields several loop-free locations. For example, the vari-
able f in Fig. 2 is of this kind. However, we again stress that there is no formal
difference between program counter variables and “data variables” in our frame-
work. The distinction is made automatically by our heuristics; no additional user
input is required. Control-flow reduction yields especially good results if it can
be applied compositionally such as in the dice5 benchmark.

Limitations. Finally, we remark that our approach is less applicable to exten-
sively synchronizing parallel compositions of more than just a handful of mod-
ules. The flattening approach then typically yields large PCFPs which are not
well suited for symbolic techniques such as ours. Larger PCFPs also require a sig-
nificantly higher model building time. Another limiting factor are dense variable
dependencies in the sense of Sect. 4.1, i.e., the variable dependency graph has
relatively large BSCCs. The latter, however, seems to rarely occur in practice.

7 Conclusion

This paper presented a property-directed “unfold and eliminate” technique on
probabilistic control-flow programs which is applicable to state-based high-level
modeling languages. It preserves reachability probabilities and expected rewards
exactly and can be used as a simplification front-end for any probabilistic model
checker. It can also handle parametric DTMC and MDP models where some key
quantities are left open. On existing benchmarks, our implementation achieved
model compressions of up to an order of magnitude, even on models that have
much larger bisimulation quotients. Future work is to amend this approach to
continuous-time models like CMTCs and Markov automata, and to further prop-
erties such as LTL.

References

1. de Alfaro, L., Kwiatkowska, M., Norman, G., Parker, D., Segala, R.: Symbolic
model checking of probabilistic processes using MTBDDs and the Kronecker rep-
resentation. In: Graf, S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785,
pp. 395–410. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46419-
0 27

https://doi.org/10.1007/3-540-46419-0_27
https://doi.org/10.1007/3-540-46419-0_27

470 T. Winkler et al.

2. Andriushchenko, R., Češka, M., Junges, S., Katoen, J.-P., Stupinský, Š: PAYNT: a
tool for inductive synthesis of probabilistic programs. In: Silva, A., Leino, K.R.M.
(eds.) CAV 2021. LNCS, vol. 12759, pp. 856–869. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-81685-8 40

3. Baier, C., Daum, M., Dubslaff, C., Klein, J., Klüppelholz, S.: Energy-utility quan-
tiles. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 285–
299. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06200-6 24

4. Baier, C., Größer, M., Ciesinski, F.: Partial order reduction for probabilistic sys-
tems. In: QEST 2004, pp. 230–239 (2004). https://doi.org/10.1109/QEST.2004.
1348037

5. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
6. Ballarini, P., Fisher, M., Wooldridge, M.J.: Automated game analysis via proba-

bilistic model checking: a case study. Electron. Notes Theor. Comput. Sci. 149(2),
125–137 (2006). https://doi.org/10.1016/j.entcs.2005.07.030

7. Batz, K., Junges, S., Kaminski, B.L., Katoen, J.-P., Matheja, C., Schröer, P.: PrIC3:
property directed reachability for MDPs. In: Lahiri, S.K., Wang, C. (eds.) CAV
2020. LNCS, vol. 12225, pp. 512–538. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-53291-8 27

8. Biagi, M., Carnevali, L., Santoni, F., Vicario, E.: Hospital inventory management
through Markov decision processes @runtime. In: McIver, A., Horvath, A. (eds.)
QEST 2018. LNCS, vol. 11024, pp. 87–103. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99154-2 6

9. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.: MODEST: a com-
positional modeling formalism for hard and softly timed systems. IEEE Trans.
Softw. Eng. 32(10), 812–830 (2006). https://doi.org/10.1109/TSE.2006.104

10. Buchholz, P., Katoen, J., Kemper, P., Tepper, C.: Model-checking large struc-
tured Markov chains. J. Log. Algebraic Methods Program. 56(1–2), 69–97 (2003).
https://doi.org/10.1016/S1567-8326(02)00067-X

11. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5 9

12. D’Argenio, P.R., Niebert, P.: Partial order reduction on concurrent probabilistic
programs. In: QEST 2004, pp. 240–249 (2004). https://doi.org/10.1109/QEST.
2004.1348038

13. Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains.
In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31862-0 21

14. Dehnert, C., et al.: PROPhESY: a PRObabilistic ParamEter SYnthesis tool. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 13

15. Dehnert, C., Katoen, J.-P., Parker, D.: SMT-based bisimulation minimisation of
Markov models. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013.
LNCS, vol. 7737, pp. 28–47. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-35873-9 5

16. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood (1976)
17. Donaldson, A.F., Miller, A., Parker, D.: Language-level symmetry reduction for

probabilistic model checking. In: Proceedings of the QEST 2009, pp. 289–298
(2009). https://doi.org/10.1109/QEST.2009.21

https://doi.org/10.1007/978-3-030-81685-8_40
https://doi.org/10.1007/978-3-030-81685-8_40
https://doi.org/10.1007/978-3-319-06200-6_24
https://doi.org/10.1109/QEST.2004.1348037
https://doi.org/10.1109/QEST.2004.1348037
https://doi.org/10.1016/j.entcs.2005.07.030
https://doi.org/10.1007/978-3-030-53291-8_27
https://doi.org/10.1007/978-3-030-53291-8_27
https://doi.org/10.1007/978-3-319-99154-2_6
https://doi.org/10.1007/978-3-319-99154-2_6
https://doi.org/10.1109/TSE.2006.104
https://doi.org/10.1016/S1567-8326(02)00067-X
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1109/QEST.2004.1348038
https://doi.org/10.1109/QEST.2004.1348038
https://doi.org/10.1007/978-3-540-31862-0_21
https://doi.org/10.1007/978-3-319-21690-4_13
https://doi.org/10.1007/978-3-642-35873-9_5
https://doi.org/10.1007/978-3-642-35873-9_5
https://doi.org/10.1109/QEST.2009.21

Reducing Probabilistic Models by Control-State Elimination 471

18. Dong, Y., Ramakrishnan, C.R.: An optimizing compiler for efficient model check-
ing. In: FORTE XII/PSTV XIX. IFIP Conference Proceedings, vol. 156, pp. 241–
256. Kluwer (1999)

19. Dubslaff, C., Morozov, A., Baier, C., Janschek, K.: Reduction methods on
probabilistic control-flow programs for reliability analysis. In: 30th European
Safety and Reliability Conference, ESREL (2020). https://www.rpsonline.com.sg/
proceedings/esrel2020/pdf/4489.pdf

20. Esparza, J., Hoffmann, P., Saha, R.: Polynomial analysis algorithms for free choice
probabilistic workflow nets. Perform. Eval. 117, 104–129 (2017). https://doi.org/
10.1016/j.peva.2017.09.006

21. Fatmi, S.Z., Chen, X., Dhamija, Y., Wildes, M., Tang, Q., van Breugel, F.: Prob-
abilistic model checking of randomized Java code. In: Laarman, A., Sokolova, A.
(eds.) SPIN 2021. LNCS, vol. 12864, pp. 157–174. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-84629-9 9

22. Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal plan-
ning domains. J. Artif. Intell. Res. 20, 61–124 (2003). https://doi.org/10.1613/
jair.1129

23. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PASS: abstraction refinement
for infinite probabilistic models. In: Esparza, J., Majumdar, R. (eds.) TACAS
2010. LNCS, vol. 6015, pp. 353–357. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-12002-2 30

24. Hartmanns, A., Hermanns, H.: The modest toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8 51

25. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quanti-
tative verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019.
LNCS, vol. 11427, pp. 344–350. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17462-0 20

26. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic
model checker storm. Int. J. Softw. Tools Technol. Transfer 1–22 (2021). https://
doi.org/10.1007/s10009-021-00633-z

27. Jansen, D.N., Groote, J.F., Timmers, F., Yang, P.: A near-linear-time algorithm
for weak bisimilarity on Markov chains. In: CONCUR 2020. LIPIcs, vol. 171, pp.
8:1–8:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.
org/10.4230/LIPIcs.CONCUR.2020.8

28. Jeannet, B.: Dynamic partitioning in linear relation analysis: application to the
verification of reactive systems. Formal Methods Syst. Des. 23(1), 5–37 (2003).
https://doi.org/10.1023/A:1024480913162

29. Junges, S., et al.: Parameter synthesis for Markov models. CoRR abs/1903.07993
(2019). http://arxiv.org/abs/1903.07993

30. Katoen, J.-P., Kemna, T., Zapreev, I., Jansen, D.N.: Bisimulation minimisation
mostly speeds up probabilistic model checking. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 87–101. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-71209-1 9

31. Kattenbelt, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: A game-based
abstraction-refinement framework for Markov decision processes. Formal Methods
Syst. Des. 36(3), 246–280 (2010). https://doi.org/10.1007/s10703-010-0097-6

32. Kurshan, R., Levin, V., Yenigün, H.: Compressing transitions for model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 569–582.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 48

https://www.rpsonline.com.sg/proceedings/esrel2020/pdf/4489.pdf
https://www.rpsonline.com.sg/proceedings/esrel2020/pdf/4489.pdf
https://doi.org/10.1016/j.peva.2017.09.006
https://doi.org/10.1016/j.peva.2017.09.006
https://doi.org/10.1007/978-3-030-84629-9_9
https://doi.org/10.1007/978-3-030-84629-9_9
https://doi.org/10.1613/jair.1129
https://doi.org/10.1613/jair.1129
https://doi.org/10.1007/978-3-642-12002-2_30
https://doi.org/10.1007/978-3-642-12002-2_30
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/s10009-021-00633-z
https://doi.org/10.1007/s10009-021-00633-z
https://doi.org/10.4230/LIPIcs.CONCUR.2020.8
https://doi.org/10.4230/LIPIcs.CONCUR.2020.8
https://doi.org/10.1023/A:1024480913162
http://arxiv.org/abs/1903.07993
https://doi.org/10.1007/978-3-540-71209-1_9
https://doi.org/10.1007/978-3-540-71209-1_9
https://doi.org/10.1007/s10703-010-0097-6
https://doi.org/10.1007/3-540-45657-0_48

472 T. Winkler et al.

33. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

34. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science, Springer, New York (2005). https://doi.
org/10.1007/b138392

35. Norman, G., Parker, D., Kwiatkowska, M.Z., Shukla, S.K.: Evaluating the reliabil-
ity of NAND multiplexing with PRISM. IEEE Trans. Comput. Aided Des. Integr.
Circ. Syst. 24(10), 1629–1637 (2005). https://doi.org/10.1109/TCAD.2005.852033

36. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Statistics, Wiley, Hoboken (1994).
https://doi.org/10.1002/9780470316887

37. Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.-P.: Parameter syn-
thesis for Markov models: faster than ever. In: Artho, C., Legay, A., Peled, D.
(eds.) ATVA 2016. LNCS, vol. 9938, pp. 50–67. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46520-3 4

38. Valmari, A., Franceschinis, G.: Simple O(m logn) time Markov chain lumping.
In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 38–52.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2 4

39. Wachter, B., Zhang, L.: Best probabilistic transformers. In: Barthe, G.,
Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 362–379. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11319-2 26

40. Wimmer, R., Braitling, B., Becker, B.: Counterexample generation for discrete-
time Markov chains using bounded model checking. In: Jones, N.D., Müller-Olm,
M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 366–380. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-93900-9 29

41. Winkler, T., Lehmann, J., Katoen, J.: Out of control: reducing probabilistic models
by control-state elimination. CoRR abs/2011.00983 (2020). https://arxiv.org/abs/
2011.00983

42. Younes, H.L., Littman, M.L.: PPDDL1.0: an extension to PDDL for expressing
planning domains with probabilistic effects. Technical report, CMU-CS-04-162, 2,
99 (2004)

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1109/TCAD.2005.852033
https://doi.org/10.1002/9780470316887
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-642-12002-2_4
https://doi.org/10.1007/978-3-642-11319-2_26
https://doi.org/10.1007/978-3-540-93900-9_29
https://arxiv.org/abs/2011.00983
https://arxiv.org/abs/2011.00983

	Out of Control: Reducing Probabilistic Models by Control-State Elimination
	1 Introduction
	2 A Bird's Eye View
	3 Technical Background on PCFPs
	4 PCFP Reduction
	4.1 Variable Unfolding
	4.2 Elimination

	5 Implementation
	6 Experiments
	7 Conclusion
	References

