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Abstract. Solidity smart contract allow developers to formalize finan-
cial agreements between users. Due to their monetary nature, smart con-
tracts have been the target of many high-profile attacks. Brute-force
verification of smart contracts that maintain data for up to 2160 users is
intractable. In this paper, we present SmartACE, an automated frame-
work for smart contract verification. To ameliorate the state explosion
induced by large numbers of users, SmartACE implements local bundle
abstractions that reduce verification from arbitrarily many users to a few
representative users. To uncover deep bugs spanning multiple transac-
tions, SmartACE employs a variety of techniques such as model check-
ing, fuzzing, and symbolic execution. To illustrate the effectiveness of
SmartACE, we verify several contracts from the popular OpenZep-
pelin library: an access-control policy and an escrow service. For each
contract, we provide specifications in the Scribble language and apply
fault injection to validate each specification. We report on our experience
integrating Scribble with SmartACE, and describe the performance of
SmartACE on each specification.

1 Introduction

Smart contracts are a trustless mechanism to enforce financial agreements
between many users [46]. The Ethereum blockchain [52] is a popular platform
for smart contract development, with most smart contracts written in Solid-
ity. Due to their monetary nature, smart contracts have been the target of many
high-profile attacks [14]. Formal verification is a promising technique to ensure
the correctness of deployed contracts. However, Solidity smart contracts can
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Fig. 1. A smart contract that implements a simple auction.

address and maintain data for up to 2160 users. Analyzing smart contracts with
this many users is intractable in general, and calls for specialized techniques [51].

In this paper, we present SmartACE, an automated framework for smart
contract verification. SmartACE takes as input a smart contract annotated
with assertions, then checks that all assertions hold. This is in contrast to tools
that check general patterns on unannotated smart contracts, such as absence
of integer overflows (e.g., [47]), or access control policies (e.g., [10]). To amelio-
rate the state explosion induced by large numbers of users, SmartACE imple-
ments local bundle abstractions [51] to reduce verification from arbitrarily many
users to a few representative users. SmartACE targets deep violations, that
require multiple transactions to observe, using a variety of techniques such as
model checking, fuzzing, and symbolic execution. To avoid reinventing the wheel,
SmartACE models each contract in LLVM-IR [33] to integrate off-the-shelf ana-
lyzers such as SeaHorn [21], libFuzzer [34], and Klee [11].

As an example of the local bundle abstraction, consider Auction in Fig. 1.
In Auction, each user starts with a bid of zero. Users alternate, and submit
increasingly larger bids, until a designated manager stops the auction. While the
auction is not stopped, a non-leading user may withdraw their bid. To ensure that
the auction is fair, a manager is not allowed to place their own bid. Furthermore,
the role of the manager is never assigned to the zero-account (i.e., the null user
at address 0). It follows that Auction satisfies property A0: “All bids are less
than or equal to the recorded leading bid.”

In general, Auction can interact with up to 2160 users. However, each trans-
action of Auction interacts with at most the zero-account, the auction itself, the
manager, and an arbitrary sender. Furthermore, all arbitrary senders are inter-
changeable with respect to A0. For example, if there are exactly three active
bids {2, 4, 8} then A0 can be verified without knowing which user placed which
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Fig. 2. A simplified test harness for Auction of Fig. 1

bid. This is because the leading bid is always 8, and each bid is at most 8. Due
to these symmetries between senders, it is sufficient to verify Auction relative to
a representative user from each class (i.e., the zero account, the auction itself,
the manager, and an arbitrary sender), rather than all 2160 users. The key idea
is that each representative user corresponds to one or many concrete users [40].

If a representative’s class contains a single concrete user, then there is no
difference between the concrete user and the representative user. For example,
the zero-account and the auction each correspond to single concrete users. Simi-
larly, the manager refers to a single concrete user, so long as the manager variable
does not change. Therefore, the addresses of these users, and in turn, their bids,
are known with absolute certainty. On the other hand, there are many arbitrary
senders. Since Auction only compares addresses by equality, the exact address
of the representative sender is unimportant. What matters is that the repre-
sentative sender does not share an address with the zero-account, the auction,
nor the manager. However, this means that at the start of each transaction the
location of the representative sender is not absolute, and, therefore, the sender
has a range of possible bids. To account for this, we introduce a predicate, called
an interference invariant, to summarize the bid of each sender. An example
interference invariant for Auction is A0 itself.

Given an interference invariant, A0 can be verified by SeaHorn. To do this,
the concrete users in Auction must be abstracted by representative users. The
abstract system (see Fig. 2), known as a local bundle abstraction, assigns the zero-
account to address 0, the auction to address 1, the manager to address 2, the
representative sender to address 3, and then executes an unbounded sequence
of transactions (all feasible sequences are included). Before each transaction,
the sender’s bid is set to a nondeterministic value that satisfies its interference
invariant. If the abstract system and A0 are provided to SeaHorn, then Sea-
Horn verifies that all states reachable in the abstract system satisfy A0. It then
follows from the symmetries between senders that A0 holds for any number of
users.

Prior work has demonstrated SmartACE to be competitive with state-of-
the-art smart contract verifiers [51]. This paper illustrates the effectiveness of
SmartACE by verifying several contracts from the popular OpenZeppelin
library. For each contract, we provide specifications in the Scribble language.
We report on our experience integrating Scribble with SmartACE, and
describe the performance of SmartACE on each specification. As opposed to
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other case studies (e.g., [2,10,16,17,23–26,30,32,35,37,45,47–49]), we do not
apply SmartACE to contracts scraped from the blockchain. As outlined by
the methodology of [16], such studies are not appropriate for tools that require
annotated contracts. Furthermore, it is shown in [23] that most contracts on the
blockchain are unannotated, and those with annotations are often incorrect. For
these reasons, we restrict our case studies to manually annotated contracts.

This paper makes the following contributions: (1) the design and implementa-
tion of an efficient Solidity smart contract verifier SmartACE, that is available
at https://github.com/contract-ace/smartace; (2) a methodology for automatic
verification of deep properties of smart contracts, including aggregate proper-
ties involving sum and maximum; and (3) a case-study in verification of two
OpenZeppelin contracts, and an open-bid auction contract, that are available
at https://github.com/contract-ace/verify-openzeppelin.

The rest of this paper is structured as follows. Section 2 presents the high-
level architecture of SmartACE. Section 3 describes the conversion from a smart
contract to an abstract model. Section 4 describes challenges and benefits in
integrating SmartACE with off-the-shelf analyzers. Section 5 reports on a case
study that uses SmartACE and Scribble to verify several OpenZeppelin
contracts. The performance of SmartACE, and the challenges of integrating
with Scribble, are both discussed.

2 Architecture and Design Principles of SmartACE

SmartACE is a smart contract analysis framework guided by communication
patterns. As opposed to other tools, SmartACE performs all analysis against
a local bundle abstraction for a provided smart contract. The abstraction is
obtained through source-to-source translation from Solidity to a harness mod-
elled in LLVM-IR. The design of SmartACE is guided by four principles.

1. Reusability: The framework should support state-of-the-art and off-the-shelf
analyzers to minimize the risk of incorrect analysis results.

2. Reciprocity: The framework should produce intermediate artifacts that can
be used as benchmarks for off-the-shelf analyzers.

3. Extensibility: The framework should extend to new analyzers without mod-
ifying existing features.

4. Testability: The intermediate artifacts produced by the framework should
be executable, to support both validation and interpretation of results.

These principles are achieved through the architecture in Fig. 3. SmartACE
takes as input a smart contract with Scribble annotations (e.g., contract invari-
ants and function postconditions), and optionally an interference invariant.
Scribble processes the annotated smart contract and produces a smart con-
tract with assertions. The smart contract with assertions and the interference
invariant are then passed to a source-to-source translator, to obtain a model of
the smart contract and its environment in LLVM-IR (see Sect. 3). This model is
called a harness. Harnesses use an interface called libVerify to integrate with

https://github.com/contract-ace/smartace
https://github.com/contract-ace/verify-openzeppelin
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Fig. 3. The architecture of SmartACE for integration with SeaHorn for model check-
ing and libFuzzer for greybox fuzzing.

Fig. 4. The analysis and transformations performed by SmartACE.

arbitrary analyzers, and are therefore analyzer-agnostic (see Sect. 4). When an
analyzer is chosen, CMake is used to automatically compile the harness, the
analyzer, and its dependencies, into an executable program. Analysis results for
the program are returned by SmartACE.

The SmartACE architecture achieves its guiding principles as follows. To
ensure reusability, SmartACE uses state-of-the-art tools for contract instru-
mentation (Scribble), build automation (CMake), and program analysis
(e.g., SeaHorn and libFuzzer). The source-to-source translation is based on
the Solidity compiler to utilize existing source-code analysis (e.g., AST con-
struction, type resolution). To ensure reciprocity, the SmartACE architecture
integrates third-party tools entirely through intermediate artifacts. In our expe-
rience, these artifacts have provided useful feedback for SeaHorn development.
To ensure extensibility, the libVerify interface is used together with CMake
build scripts to orchestrate smart contract analysis. A new analyzer can be added
to SmartACE by first creating a new implementation of libVerify, and then
adding a build target to the CMake build scripts. Finally, testability is achieved
by ensuring all harnesses are executable. As shown in Sect. 4, executable har-
nesses provide many benefits, such as validating counterexamples from model
checkers, and manually inspecting harness behaviour.
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3 Contract Modelling

This section describes the translation from a smart contract with annotations, to
a harness in LLVM-IR. A high-level overview is provided by Fig. 4. First, static
analysis is applied to a smart contract, such as resolving inheritance and over-
approximating user participation (see Sect. 3.1). Next, the analysis results are
used to convert each contract to LLVM structures and functions (see Sect. 3.2).
Finally, these functions are combined into a harness that schedules an unbounded
sequence of smart contract transactions (see Sect. 3.3).

3.1 Static Analysis

The static analysis in SmartACE is illustrated by the top row of Fig. 4. At
a high-level, static analysis ensures that a bundle conforms to the restrictions
of [51], and extracts facts about the bundle required during the source-to-source
translation. Bundle facts include a flat inheritance hierarchy [5], the dynamic
type of each contract-typed variable, the devirtualization of each call (e.g., [4]),
and the representative users (participants) of the bundle. Key design considera-
tions in the analysis follow.

Reducing Code Surface. SmartACE over-approximates conformance checks
through syntactic rules. Therefore, it is possible for SmartACE to reject valid
smart contracts due to inaccuracies. For this reason, SmartACE uses incre-
mental passes to restrict the code surface that reaches the conformance checker.
The first pass flattens the inheritance hierarchy by duplicating member vari-
ables and specializing methods. The second pass resolves the dynamic type of
each contract-typed variable, by identifying its allocation sites. For example, the
dynamic type for state variable auction in TimedMgr of Fig. 1 is Auction due to
the allocation on line 35. The third pass uses the dynamic type of each contract-
typed variable, to resolve all virtual calls in the smart contract. For example,
super.stop at line 52 devirtualizes to method stop of contract Mgr. The fourth
pass constructs a call graph for the public and external methods of each smart
contract. Only methods in the call graph are subject to the conformance checker.

Conformance Checking. The syntactic conformance check follows from [51] and
places the following restrictions: (1) There is no inline assembly; (2) Mapping
indices are addresses; (3) Mapping values are numeric; (4) Address comparisons
must be (dis)equality; (5) Addresses never appear in arithmetic operations; (6)
Each contract-typed variable corresponds to a single call to new.

Participation Analysis. A key step in local analysis is to identify a set of rep-
resentative users. A representative user corresponds to one or arbitrarily many
concrete users. In the case of one concrete user, the corresponding address is
either static or dynamic (changes between transactions). Classifying representa-
tive users according to this criterion is critical for local analysis. A write of v to
abstract location l is said to be strong if v replaces the value at l, and weak if v
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is added to a set of values at locations referenced by l. It follows that a write to
many concrete users is weak, whereas a write to a single concrete user is strong.
Furthermore, if the address of the single concrete user is dynamic, then aliasing
between representative users can occur. A representative user with weak updates
is an explicit participant, as weak updates result from passing arbitrary users
as inputs to transactions (e.g., msg.sender). A representative user with strong
updates and a dynamic address is a transient participant, as dynamic addresses
are maintained via roles, and may change throughout execution (e.g., manager).
A representative user with strong updates and a static address is an implicit
participant, as static addresses are determined by the source text of a contract,
independent of transaction inputs and roles (e.g., the zero account). SmartACE
implements the PTGBuilder algorithm from [51] that uses an intraprocedural taint
analysis to over-approximate the maximum number of explicit, transient, and
implicit participants. Recall that taint analysis [28] determines whether certain
variables, called tainted sources, influence certain expressions, called sinks. In
PTGBuilder, tainted sources are (a) input address variables, (b) state address
variables, and (c) literal addresses, while sinks are (a) memory writes, (b) com-
parisons, and (c) mapping accesses. An input address variable, v, that taints at
least one sink is an explicit participant1. Similarly, state address variables and
literal addresses that taint sinks represent transient and implicit participants,
respectively. For example, PTGBuilder on Fig. 1, computes 2 explicit participants
due to msg.sender and _m in the constructor of Auction, 1 transient participant
due to manager in Auction, and 3 implicit participants due to the addresses of the
zero-account, Auction, and TimedMgr. This over-approximates true participation
in several ways. For example, the constructor of Auction is never influenced by
the equality of msg.sender and _m, and TimedMgr is always the manager of Auction.

3.2 Source-to-Source Translation

Source-to-source translation relies on the call graph and participants obtained
through static analysis. The translation is illustrated by the bottom row of Fig. 4.
A translation for Fig. 1 is given in Fig. 5. Note that the C language is used in
Fig. 5, rather than LLVM-IR, as C is more human-readable.

Abstract Data Types (ADTs). An ADT is either a struct or a contract. Each
struct is translated directly to an LLVM structure. The name of the structure
is prefixed by the name of its containing contract to avoid name collisions. Each
contract is translated to an LLVM structure of the same name, with a field for
its address (model_address), a field for its balance (model_balance), and a field for
each user-defined member variable. An example is given for Auction at line 3.

Primitive Types. Primitive types include all integer types, along with bool,
address, and enum (unbounded arrays are not yet supported in SmartACE).
Integer types are mapped to singleton structures, according to their signedness

1 One exception is msg.sender which is always an explicit participant.
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Fig. 5. Partial modelling of the types and methods in Fig. 1 as C code (LLVM).

and bit-width. For example, the type of leadingBid is mapped to sol_uint256_t

(see line 5). Each bool type is mapped to the singleton structure sol_bool_t,
which contains the same underlying type as uint8 (see line 6). Each address type
is mapped to the singleton structure sol_address_t, which contains the same
underlying type as uint160 (see line 5). Each enum is treated as an unsigned
integer of the nearest containing bit-width. Benefits of singleton structures, and
their underlying types, are discussed in Sect. 4.

Functions. Methods and modifiers are translated to LLVM functions. Meth-
ods are specialized according to the flattened inheritance hierarchy, and mod-
ifiers are specialized to each method. To avoid name collisions, each function
is renamed according to the contract that defines it, the contract that is call-
ing it, and its position in the chain of modifiers. For example, the specializa-
tion of method Mgr.stop for TimedMgr is Mgr_Method_For_TimedMgr_stop. Likewise,
the specializations of method Auction.bid and its modifier canParticipate are
Auction_Method_1_bid and Auction_Method_bid, respectively. Extra arguments are
added to each method to represent the current call state (see self through to orig

on line 9). Specifically, self is this, sndr is msg.sender, value is msg.value, bnum is
block.number, time is block.timestamp, and orig is msg.origin. A special argument,
paid, indicates if msg.value has been added to a contract’s balance (see line 13,
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Fig. 6. The control-flow of a test harness. Each � denotes an optional step.

where paid is set to false). If paid is true, then the balance is updated before exe-
cuting the body of the method (see line 30). Multiple return values are handled
through the standard practice of output variables. For example, the argument
out_1 in TimedMgr_Method_check represents the second return value of check.

Statements and Expressions. Most expressions map directly from Solidity to
LLVM (as both are typed imperative languages). Special cases are outlined.
Each assert maps to sol_assert from libVerify, which causes a program failure
given argument false. Each require maps to sol_require from libVerify, which
reverts a transaction given argument false (see line 31). For each emit statement,
the arguments of the event are expanded out, and then a call is made to sol_emit

(see line 12). For each method call, the devirtualized call is obtained from the
call graph, and the call state is propagated (see line 13 for the devirtualized
called to super.stop). For external method calls, paid and msg.sender are reset.

Mappings. Each mapping is translated to an LLVM structure. This structure
represents a bounded mapping with an entry for each participant of the contract.
For example, if a contract has N participants, then a one-dimensional mapping will
have N entries, and a two-dimensional mapping will have N2 entries. Since mapping

types are unnamed, the name of each LLVM structure is generated according to
declaration order. For example, bids of Auction is the first mapping in Fig. 1, and
translates to Map_1 accordingly (see line 1). Accesses to Map_1 are encapsulated
by Read_Map_1 and Write_Map_1 (see line 26).

Strings. Each string literal is translated to a unique integer value. This model
supports string equality, but disallows string manipulation. Note that string
manipulation is hardly ever used in smart contracts due to high gas costs.

Addresses. Implicit participation is induced by literal addresses. This means
that the value of a literal address is unimportant, so long as it is unique
and constant. For reasons outlined in Sect. 3.3, it is important to set the
value of each literal address programmatically. Therefore, each literal address
is translated to a unique global variable. For example, address(0) translates to
g_literal_address_0.



434 S. Wesley et al.

Fig. 7. The harness for Fig. 1. Logging is omitted to simplify the presentation.

3.3 Harness Design

A harness provides an entry-point for LLVM analyzers. Currently, SmartACE
implements a single harness that models a blockchain from an arbitrary state,
and then schedules an unbounded sequence of transactions for contracts in a
bundle. A high-level overview of this harness is given in Fig. 6. The harness for
Auction in Fig. 1 is depicted in Fig. 7.

Modelling Nondeterminism. All nondeterministic choices are resolved by inter-
faces from libVerify. ND_INT(id,bits,msg) and ND_UINT(id,bits,msg) choose
integers of a desired signedness and bit-width. ND_RANGE(id,lo,hi,msg) chooses
values between lo (inclusively) and hi (exclusively). ND_INCREASE(id,old,msg)

chooses values larger than old. In all cases, id is an identifier for the call site,
and msg is used for logging purposes.

Address Space. An abstract address space restricts the number of addresses in
a harness. It assigns abstract address values to each contract address and literal
address symbol. Assume that there are N contracts, M literal addresses, and
K non-implicit participants. The corresponding harness has abstract addresses
0 to (N +M +K−1). Constraints are placed on address assignments to prevent
impossible address spaces, such as two literal addresses sharing the same value,
two contracts sharing the same value, or a contract having the same value as the
zero-account. The number of constraints must be minimized, to simplify symbolic
analysis. In SmartACE, the following partitioning is used. Address(0) is always
mapped to abstract address 0 (see line 6). Abstract addresses 1 to N are assigned
to contracts according to declaration order (see lines 7–8). Literal addresses are
assigned arbitrary values from 1 to (N+M). This allows contracts to have literal
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addresses. Disequality constraints ensure each assignment is unique. Senders are
then chosen from the range of non-contract addresses (see line 16).

Blockchain Model. SmartACE models block.number, block.timestamp, msg.value,
msg.sender, and msg.origin. The block number and timestamp are maintained
across transactions by bnum at line 10 and time at line 12. Before transaction gen-
eration, bnum and time may be incremented in lockstep (see lines 29–33). When-
ever a method is called, msg.sender is chosen from the non-contract addresses
(e.g., line 16). The value of msg.sender is also used for msg.origin (e.g., the sec-
ond argument on line 22). If a method is payable, then msg.value is chosen by
ND_UINT, else msg.value is set to 0 (e.g., line 17).

Transaction Loop. Transactions are scheduled by the loop on line 24. The loop
terminates if sol_continue from libVerify returns false (this does not hap-
pen for most analyzers). Upon entry to the loop, sol_on_transaction from lib-
Verify provides a hook for analyzer-specific bookkeeping. Interference is then
checked and re-applied, provided that sol_can_interfere returns true at line 27.
A transaction is picked on line 36 by assigning a consecutive number to each
valid method, and then choosing a number from this range. Arguments for the
method are chosen using ND_INT and ND_UINT for integer types, and ND_RANGE for
bounded types such as address, bool and enum (see lines 15–19 for an example).

Interference. A harness may be instrumented with interference invariants to
enable modular reasoning. Interference invariants summarize the data of all con-
crete users abstracted by a representative user, relative to the scalar variables in
a smart contract (e.g., leadingBid, stopped, and _sum in Fig. 1). An interference
invariant must be true of all data initially, and maintained across each transac-
tion, regardless of whether the representative user has participated or not. As
illustrated in Fig. 6, interference is checked and then re-applied before executing
each transaction. Note that checking interference after a transaction would be
insufficient, as this would fail to check the initial state of each user. To apply
interference, a harness chooses a new value for each mapping entry, and then
assumes that these new values satisfy their interference invariants. To check
interference, a harness chooses an arbitrary entry from a mapping, and asserts
that the entry satisfies its interference invariant. Note that asserting each entry
explicitly would challenge symbolic analyzers. For example, a two-dimensional
mapping with 16 participants would require 256 assertions.

Limitations. The harness has three key limitations. First, as gas is unlimited,
the possible transactions are over-approximated. Second, there is no guarantee
that time must increase (i.e., a fairness constraint), so time-dependent actions
may be postponed indefinitely. Third, reentrancy is not modeled [20], though
this is sufficient for effectively callback free contracts as defined in [42].
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4 Integration with Analyzers

CMake and libVerify are used to integrate SmartACE with LLVM ana-
lyzers. Functions from libVerify, as described in Table 1, provide an interface
between a harness and an analyzer (usage of each function is described in Sect. 3).
Each implementation of libVerify configures how a certain analyzer should
interact with a harness. Build details are resolved using CMake scripts. For
example, CMake arguments are used to switch the implementation of prim-
itive singleton structures between native C integers and Boost multiprecision
integers. To promote extensibility, certain interfaces in libVerify are designed
with many analyzers in mind. A key example is bounded nondeterminism.

In libVerify, the functions ND_INT and ND_UINT are used as sources of non-
determinism. For example, SeaHorn provides nondeterminism via symbolic
values, whereas libFuzzer approximates nondeterminism through randomness.
In principle, all choices could be implemented using these interfaces. However,
certain operations, such as “increase the current block number,” or “choose an
address between 3 and 5,” require specialized implementations, depending on the
analyzer. For this reason, libVerify provides multiple interfaces for nondeter-
minism, such as ND_INCREASE and ND_RANGE. To illustrate this design choice, the
implementations of ND_RANGE for SeaHorn and libFuzzer are discussed.

The interface ND_RANGE(id,lo,hi,msg) returns a value between lo (inclusively)
and hi (exclusively). Efficient implementations are given for SeaHorn and lib-
Fuzzer in Fig. 8a and Fig. 8b, respectively. The SeaHorn implementation is
correct, since failed assumptions in symbolic analysis simply restrict the domain
of each symbolic variable. Intuitively, assumptions made in the future can influ-
ence choices made in the past. This design does not work for libFuzzer, as
failed assumptions in libFuzzer simply halt execution. This is because all val-
ues in libFuzzer are concrete. Instead, a value is constructed between lo and
hi through modular arithmetic. In contrast, many symbolic analyzers struggle
with non-linear constraints such as modulo. Therefore, neither implementation
is efficient for both model checking and fuzzing.

SmartACE has been instantiated for greybox fuzzing, bounded model check-
ing (BMC), parameterized compositional model checking (PCMC), and symbolic
execution. The current version of libVerify supports libFuzzer for fuzzing,
SeaHorn for model checking, and Klee for symbolic execution. Other analyz-
ers, such as AFL [54] and SMACK [13], can also be integrated by extending
libVerify. Each implementation of libVerify offers unique analysis benefits.

Interactive Test Harness. A default implementation of libVerify provides an
interactive test harness. Nondeterminism, and the return values for sol_continue,
are resolved through standard input. Events such as sol_emit are printed to stan-
dard output. The sol_on_transaction hook is used to collect test metrics, such
as the number of transactions. As mentioned in Sect. 2, providing an interactive
harness improves the testability of SmartACE.
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Table 1. Summary of the libVerify interface.

Interface Description

sol_continue() Returns true if the transaction
execution loop should continue

sol_can_interfere() Returns true if interference should
be applied and validated

sol_require(cond, msg) If cond is false, then msg is logged
and the transaction aborts

sol_assert(cond, msg) If cond is false, then msg is logged
and the program fails

sol_emit(expr) Performs analyzer-specific
processing for a call to emit expr

ND_INT(id, n, msg) Returns an n-bit signed integer

ND_UINT(id, n, msg) Returns an n-bit unsigned integer

ND_RANGE(id, lo, hi, msg) Returns an 8-bit unsigned integer
between lo (incl.) and hi (excl.)

ND_INCREASE(id, cur, strict, msg) Returns a 256-bit unsigned integer
that is greater than or equal to cur

If strict is true, then the integer
is strictly larger than cur

Fig. 8. Possible implementations of ND_RANGE(n,lo,hi,msg).

Greybox Fuzzing. Fuzzing is an automated testing technique that explores exe-
cutions of a program via input generation [38]. In greybox fuzzing, coverage
information is extracted from a program to generate a sequence of inputs that
maximize test coverage [56]. The harness for greybox fuzzing is instantiated with
N participants, and each participant has strong updates. In general, greybox
fuzzing is a light-weight technique to test edge-cases in contracts. As opposed
to other smart contract fuzzing techniques, SmartACE performs all fuzzing
against a local bundle abstraction. This ensures that all implicit participants
are in the address space. To illustrate the benefit of local bundle abstractions
in fuzzing, consider the property for Fig. 1: “The user with address 100 never
places a bid.”. Without a local bundle abstraction, a counterexample requires
101 users (address(0) to address(100)). With a local bundle abstraction, only 4
users are required (e.g., the zero-account, the two contracts, and address(100)).
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Table 2. Analysis results for each case study. For bug finding, n is the number of users,
FUZ is greybox fuzzing, and SYM is symbolic execution. BMC results marked by (†)
were obtained using an additional bound of 5 transactions. Omitted results indicate
that a system memory limit was exceeded.

Benchmark Verification Bug Finding (n = 5) Bug Finding (n = 500)

Contract Prop. Manual (s) Auto. (s) BMC (s) FUZ (s) SYM (s) BMC (s) FUZ (s) SYM (s)

Ownable O1 1 1 1 1 90 1 1 85
O2 1 1 1 1 25 1 1 27
O3 1 1 1 1 25 1 1 27

RefundEscrow R1 2 2 2 1 454 140 22 —
R2 2 3 2 2 5 277 32 3124
R3 2 7 5 26 5 1800 74 —
R4 12 17 3 6 90 1724 296 —

R5 3 4 3 2 6 2010(†) 33 —
Auction A1 9 59 2 4 39 564 21 123

A2 69 246 4 3 533 4392 397 —

Symbolic Execution. Symbolic execution is a sophisticated technique that can
be used to find bugs in programs. At a high-level, symbolic execution converts
program paths into logical constraints, and then solves for inputs that violate
program assertions [12]. Symbolic execution is very precise, but its performance
is negatively impacted by the number of paths through a program, which is often
unbounded. As in the case of greybox fuzzing, the symbolic execution harness is
instantiated with N participants, each with strong updates. Symbolic execution
targets deeper violations than greybox fuzzing, at the cost of analysis time.

BMC. Model checking is a technique that, with little human input, proves prop-
erties of a program [15,43]. In bounded model checking (BMC), properties are
proven up to a bound on execution (e.g., on the number of loop iterations or
users) [7]. The harness for BMC is instantiated with N participants, each with
strong updates. BMC either proves a bundle is safe up to N users, or finds a coun-
terexample using at most N users (e.g., see [29]). As the harness is executable,
SmartACE is able to compile and execute counterexamples found by Sea-
Horn. With SeaHorn, integers can be bit-precise [31], or over-approximated
by linear integer arithmetic [8]. The number of transactions can be bounded, or
an inductive invariant can be discovered for the transaction loop.

PCMC. PCMC is a modular reasoning technique for network verification [40].
Given an interference invariant, PCMC either proves a bundle is safe for any
number of users, or finds a counterexample to compositionality (i.e., the inter-
ference invariant is inadequate). The harness is instantiated with representative
users, and at most the transient and implicit participants are concrete (this is
configurable). Increasing the number of concrete participants refines the abstrac-
tion, but also increases the size of the state space. As with BMC, integers may be
bit-precise or arithmetic, and all counterexamples are executable. If SeaHorn
is used as a model checker, then interference invariants are inferred from their
initial conditions (i.e., all mapping entries are zero), and their usage throughout
the harness. This technique is called predicate synthesis.
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5 Case Study: Verifying OpenZeppelin Contracts

We illustrate the effectiveness of SmartACE and Scribble by applying them to
analyze the OpenZeppelin library2. OpenZeppelin is a widely used Solidity
library (more than 12’000 stars on GitHub) that implements many Ethereum
protocols. From this library, we identify and verify key properties for the Ownable

and RefundEscrow contracts. Properties are specified in the Scribble specifica-
tion language3. To validate our results, we use fault injection to show that both
the harness and the property instrumentation behave as expected. Faults are
detected using SeaHorn (bounded in the number of users), libFuzzer, and
Klee. To highlight properties not reflected in prior smart contract research, we
conclude by verifying two novel properties for Auction from Fig. 1. All evaluations
were run on an Intel® Core i7® CPU @ 1.8 GHz 8-core machine with 16 GB of
RAM running Ubuntu 20.04. Timing results are given in Table 2.

5.1 Verification of Ownable

A simplified implementation of Ownable is presented in Fig. 9. This contract pro-
vides a simple access-control mechanism, in which a single user, called the owner,
has special privileges. Initially, the owner is the user who creates the contract.
At any point during execution, an owner may transfer ownership to another user
by calling transferOwnership. An owner may also renounce ownership by calling
renounceOwnership. When ownership is renounced, the owner is permanently set
to address(0) and all privileges are lost. These behaviours are captured infor-
mally by three properties:

O1. If transferOwnership(u) is called successfully, then the new owner is u.
O2. If ownership changes, then the sender is the previous owner.
O3. If ownership changes and renounceOwnership has been called at least once,
then the new owner is address(0).

O1 is a post-condition for transferOwnership. In Scribble, post-conditions
are specified by function annotations. However, function annotations are checked
upon function return, using the latest value of each local variable. This means
that if u was changed during the execution of transferOwnership, then the anno-
tation refers to the newest value of u. To overcome this, old(u) is used to refer
to the original value of u. The Scribble annotation is added at line 17 of Fig. 9.

O2 is an assertion for each update to _owner. In Scribble, invariants can be
placed on state variable updates using state variable annotations. State variable
annotations are checked after each update, even if the update is made dur-
ing setup in a constructor. However, O2 refers to “ownership changes” which
assumes implicitly that some user already owns the contract. Therefore, the
invariant should only be checked after construction. This is achieved by adding

2 https://github.com/OpenZeppelin/openzeppelin-contracts/
3 https://docs.scribble.codes/

https://github.com/OpenZeppelin/openzeppelin-contracts/
https://docs.scribble.codes/
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Fig. 9. A simplified implementation of Ownable from OpenZeppelin. All comments
are Scribble annotations, and all highlighted lines are instrumentation used in anno-
tations.

Fig. 10. A simplified implementation of RefundEscrow from OpenZeppelin. All com-
ments are Scribble annotations, and all highlighted lines are instrumentation used in
annotations. The field _deposits is renamed _d.

a flag variable _ctor at line 2 that is set to true after the constructor has termi-
nated (see line 11). The Scribble annotation is added at line 5 of Fig. 9.

O3 is also an assertion for each update to _owner. However, the techniques
used to formalize O2 are not sufficient for O3, as O3 also refers to func-
tions called in the past. To determine if renounceOwnership has been called,
a second flag variable _called is added at line 3 that is set to true upon
entry to renounceOwnership at line 22. The Scribble annotation is added at
line 6 of Fig. 9.

SmartACE verified each property within 1 s. Furthermore, as Ownable does
not maintain user-data, verification did not require interference invariants. To
validate these results, a fault was injected for each property. Bounded models
were then generated using 5 and 500 users to analyze the impact of parame-
terization. All faults were detected using each of BMC, greybox fuzzing, and
symbolic execution. Both BMC and greybox fuzzing were able to detect each
fault within 1 s, whereas symbolic execution required up to 90 s per fault. In this
case study, the number of users did not impact analysis time.
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5.2 Verification of RefundEscrow

A simplified implementation for RefundEscrow is presented in Fig. 10. An escrow
is used when a smart contract (the owner) must temporarily hold funds from
its users. In the case of RefundEscrow, the owner deposits funds on behalf of its
users. If some condition is reached (as determined by the owner), the escrow
is closed and a beneficiary may withdraw all funds. Otherwise, the owner may
enable refunds, and each user can withdraw their funds without the intervention
of the owner. In this case study, we consider five properties of RefundEscrow:

R1 If the state changes, then ownership has not been renounced.
R2 If close has been called, then all deposits are immutable.
R3 If close has been called, then enableRefunds has not been called.
R4 If beneficiaryWithdraw has been called, then the balance of the refund escrow

is 0, otherwise the balance is the sum of all deposits.
R5 If enableRefunds has not been called, then all deposits are increasing.

The first three properties are not parameterized and can be formalized using
the same techniques as in the previous case study (Sect. 5.1). R4 is formal-
ized using the unchecked_sum operator and a contract invariant, as illustrated
on lines 1–2 of Fig. 10. In Scribble, unchecked_sum is used to track the sum of
all elements in a mapping, without checking for integer overflow. Note that a
contract invariant was required, as R4 must be checked each time RefundEscrow

receives payment. R5 is formalized using a new technique, as illustrated on
line 10 of Fig. 10. The key observation is that R5 is equivalent to, “For every
address _u,if enableRefunds has not been called, then old(_d[_u]) is less than or
equal to _d[_u].” Then, RefundEscrow does not satisfy R5 if and only if there exists
some witnessing address _u that violates the new formulation. Therefore, R5 can
be checked by non-deterministically selecting a witness, and then validating its
deposits across each transactions. In Fig. 10, line 15 non-deterministically selects
a witness via user input, and line 10 validates each deposit made on behalf of
the witness. Therefore, the annotation on line 10 is equivalent to R5.

Since RefundEscrow maintains user-data, all verification required interference
invariants (see Sect. 3.3). SmartACE verified each property within 17 s using
predicate synthesis. For R1 to R4, all users were abstract, whereas R5 required
concrete transient participants to reason exactly about _d[_u]. For comparison,
SmartACE was then used to verify each property with user-provided interfer-
ence invariants. It was found that a “trivial” interference invariant, that includes
all deposits, was sufficient to verify each property within 12 s. As in the previous
case study, faults were then injected, and detected using 5 and 500 users. With
5 users, BMC required up to 5 s, greybox fuzzing required up to 26 s, and sym-
bolic execution required up to 454 s. However, with 500 users, BMC increased
to 33 min, fuzzing increased to 5 min, and symbolic execution exceeded system
resource limits for most properties. In this case study, reducing the number of
users significantly reduced analysis time.
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Fig. 11. An annotated version of Auction from Fig. 1. All comments are Scribble
annotations, and all highlighted lines are instrumentation used in annotations.

5.3 Verification of Auction

Recall Auction from Fig. 1. In this case study the following two properties are
formalized and verified:

A1. The maximum bid equals leadingBid and is at most the sum of all bids.
A2. Any pair of non-zero bids are unequal.

A1 involves the maximum element of bids, and is not addressed by existing
smart contract analyzers. The challenge in verifying A1 is that the exact value
of max(bids) depends on all previous writes to bids. Specifically, each time the
largest bid is overwritten by a smaller bid, the value of max(bids) must be set to
the next largest bid. However, if the maximum bid is monotonically increasing,
then max(bids) is equal to the largest value previously written into bids. This
motivates a formalization that approximates max(bids). In this formalization,
two variables are added to Auction. The first variable tracks the largest value
written to bids (see line 19 in Fig. 11). The second variable is true so long as
max(bids) is monotonically increasing (see line 20 in Fig. 11). Together, these two
variables help formalize A1, as illustrated by lines 1–2 in Fig. 11.

A2 compares two arbitrary elements in bids, and cannot be reduced to pre-
and post-conditions. However, the technique used for R5 in Sect. 5.2 generalizes
directly to A2 as shown on line 3 in Fig. 11. In the formalization, there are now
two instantiated users: u and v. On line 11, an assertion is added to ensure that
these users are unique (i.e., a “pair” of users).

SmartACE verified each property within 246 s using predicate synthesis. For
A1, all users were abstract, whereas A2 required concrete transient participants
to reason exactly about bids[_u] and bids[_v]. For comparison, SmartACE
was then used to verify each property with user-provided interference invariants.
Unlike in the previous study (Sect. 5.2), a trivial interference invariant was insuf-
ficient to prove A1. However, the discovery of a non-trivial invariant was aided by
counterexamples. Initially, the trivial invariant was used, and a counterexample
was returned in which each user’s initial bid was larger than 0. This suggested
that each element of bids must be bounded above, which motivated a second
invariant: bids[i] <= leadingBid. This new invariant was shown to be composi-
tional, and adequate to prove A1. Using the provided interference invariants,
each property was verified within 56 s.



SmartACE: Smart Contract Analysis 443

As in the previous case studies, faults were then injected, and detected using
5 and 500 users. With 5 users, BMC required up to 4 s, greybox fuzzing required
up to 4 s, and symbolic execution required up to 533 s. However, with 500 users,
BMC increased to 73 min, fuzzing increased to 6 min, and symbolic execution
exceeded system resource limits for A1. As in Sect. 5.2, reducing the number of
users significantly reduced analysis time.

5.4 Discussion

Inter-transactional Analysis. SmartACE is an inter-transactional verification
tool. That is, SmartACE verifies properties across unbounded sequences of
transactions. In contrast, intra-transactional verification tools (e.g., [2,26]) verify
pre- and post-conditions for single transactions. Inter-transactional verification
is a more challenging problem, as it requires an invariant for contract state
between transactions. In our study, inter-transactional verification was required
to support properties involving calls made in the past (e.g., O3 and R3), and
to eliminate unreachable contract states (e.g., the interference invariant used to
prove A1). While there are many techniques for inter-transactional verification
(e.g., [23,37,42,44,45,50]), we believe that the SmartACE approach is unique in
its level of automation and its ability to handle parameterization in the number
of contract users.

Automation. SmartACE is a fully-automated tool for inter-transactional verifi-
cation, with optional user-guidance (i.e., user-provided interference invariants).
Many other tools rely on semi-automated approaches, such as user-provided
contract invariants (i.e., [23,50]) or predicate abstractions (i.e., [42]). Of the
fully-automated tools (i.e., [37,44,45]), neither address the state explosion prob-
lem. Furthermore, [45] is designed for the harder problem of liveness checking,
whereas [37,44] rely on less optimized model checking techniques than in Sea-
Horn.

Parameterization. SmartACE is based on the hypothesis that existing smart
contract verifiers struggle to scale due to the impact of users on the size of the
state space. This aligns with bug finding results for Ownable, RefundEscrow, and
Auction. In the case of Ownable, user-data was not maintained, and as expected,
the number of users had no noticeable impact on analysis time. In contrast,
both RefundEscrow and Auction maintain user-data and are significantly impacted
by the number of users. For BMC, analysis time increased from seconds to
hours, whereas symbolic execution became infeasible. Greybox fuzzing was less
impacted by the number of users, which likely reflects that greybox fuzzing is
coverage-based, as opposed to symbolic.

Integration Challenges. Two major challenges were encountered while integrat-
ing SmartACE with Scribble. The first challenge came from unchecked_sum.
When Scribble instruments unchecked_sum, extra ghost state is added such as
address[] keys which is used to track all updated fields in the mapping. The
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purpose of this ghost state is to support quantification, but it is not required for
summation. However, this state is not supported by SmartACE, and also adds
overhead for dynamic analysis. To support unchecked_sum in SmartACE, this
state was manually removed. The second challenge came with formalizing the
predicate: “function fn has been called at least once.” Formally, this predicate is
expressed by once(called(fn)), and is supported by other smart contract verifi-
cation tools such as [42,45]. However, these specifications are not supported by
Scribble. As shown in Sect. 5.1, both once and called can be instrumented man-
ually with flag variables. However, manual instrumentation is more error-prone
than well-tested automated instrumentation. We conclude that SmartACE can
integrate with Scribble, but that further improvements are needed for the inte-
gration to become seamless. Furthermore, these improvements would benefit all
users of Scribble, as opposed to only SmartACE.

6 Related Work

Inter-transactional Verification. There are many tools for inter-transactional
verification. Manual approaches, such as [6,19,27] provide proof-assistants for
end-users to verify properties. These tools are versatile, but are also time con-
suming and are aimed at verification engineers rather than developers. Semi-
automated approaches, such as [23,50], require end-users to manually provide
contract invariants. In VerX [42], contract invariants are discovered automat-
ically, but an end-user must provide an adequate predicate abstraction. Auto-
mated approaches, such as [37,44,45], do not offer solutions to parameterization,
and instead rely on the underlying solvers to reduce symmetries.

Reusing Off-the-Shelf Tools. SmartACE is not the first smart contract analyzer
to leverage existing analyzers for more widely used languages. For example, prior
work has applied SeaHorn for gas estimation [36], and intra-transactional verifi-
cation [2,26]. Other smart contract analyzers have reduced to Datalog for check-
ing access control patterns [10], detecting gas exploits [17], and implementing
general pattern checks [48]. In [49], SMACK is used to detect non-deterministic
payment bugs. In [29], TLA+ is used to perform inter-transactional analysis with
a reduced number of users. SmartACE is the first application of off-the-shelf
tools to unbounded inter-transactional verification.

Bug Finding. There are multiple tools for smart contract symbolic execution
(e.g., [32,35,39,47,55]) and fuzzing (e.g., [18,24,25,53]). A major challenge for
such tools is finding deep violations across many transactions. In [55], a static
analysis technique is introduced to eliminate uninteresting transaction sequences.
In [47], a learning-based approach is used to train accurate fuzzers from symbolic
execution. We suspect that SmartACE would also benefit from such techniques.

Parameterized Verification. Parameterized systems form a rich field of research,
as outlined in [9]. In general, verifying a parameterized system is undecidable [3].
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However, local bundle abstraction is an instance of PCMC [40], and is decidable
(for finite-state systems) relative to an interference invariant. Furthermore, the
discovery of interference invariants in SmartACE is an instance of [22]. Though
this paper is restricted to safety properties, local bundle abstractions are known
to extend to CTL∗ [41]. Abdualla et al. [1] propose a somewhat similar notion
of view abstraction to abstract interfering processes in a network, though this
abstraction has not been applied to smart contracts.

7 Conclusion

We presented SmartACE, a communication-aware smart contract framework
with support for multiple off-the-shelf analyzers. The framework is based on
parameterized smart contract verification, and can verify properties for arbi-
trarily many users. We reported on verifying two widely used smart contracts
from the OpenZeppelin library. We then applied SmartACE to a simple open-
bid auction to highlight limitations of existing smart contract analyzers, and how
they are alleviated by SmartACE. We show that in practice, SmartACE is
appropriate for fully-automated smart contract analysis.

During the implementation and evaluation of SmartACE, several challenges
were encountered. At the implementation stage, we observed that many analyz-
ers handle value selection and non-determinism using incompatible techniques.
To overcome this incompatibility, we introduced libVerify to separate the
details of an analyzer from the harness design. At the evaluation stage, we iden-
tified limitations in Scribble and suggested improvements. We also proposed
manual solutions that can be used to circumvent the limitations of Scribble.
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