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Abstract. As an efficient interconnection network, Network-on-Chip
(NoC) provides significant flexibility for increasingly prevalent many-core
systems. It is desirable to deploy fault-tolerance in a dependable safety-
critical NoC design. However, this process can easily introduce deeply
buried flaws that traditional simulation-based NoC design approaches
may miss. This paper presents a case study on applying scalable for-
mal verification that detects, corrects, and proves livelock in a depend-
able fault-tolerant NoC using the IVy verification tool. We formally ver-
ify correctness at the routing algorithm level. We first present livelock
verification using refutation-based simulation scaled to a 15-by-15 two-
dimensional NoC. We then present a novel zone-based approach to live-
lock verification in which finite coordinate-based routing conditions are
abstracted as positional zones relative to a packet’s destination. This
abstraction allows us to detect and remove livelock patterns on an arbi-
trarily large network. The resultant improved routing algorithm is free
of livelock and maintains a high level of fault tolerance.

Keywords: Network-on-Chip · Fault-tolerant routing · Model
checking · Property-directed reachability

1 Introduction

Network-on-Chip (NoC) is an interconnection network that governs on-chip com-
munication among homogeneous routers for many-core systems. NoC provides
flexibility in balancing processing load among interconnected cores to optimize
power and tolerate faulty connections. As computing systems advance, many-
core systems increase design complexity, and NoC provides an efficient solution
to this challenge [17,21]. When NoC is used in safety-critical applications such
as electronic control units in a vehicle [26], it must provide provable correct-
ness guarantees. A dependable NoC routing algorithm must tolerate faulty links
to minimize the impact on processing cores. Fault tolerance improves network
dependability by allowing a network to route otherwise blocked packets to their
destinations. However, the complexity of fault-tolerant routing design is liable
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to include flaws that traditional simulation and testing methods may miss. A
flaw in a routing algorithm may produce livelock, which results in packets travel-
ing cyclically forever while wasting power and worsening network traffic. Formal
verification of livelock freedom on NoC designs remains challenging today.

This paper presents a case study on scaling formal verification of a complex
fault-tolerant routing algorithm designed to operate on either a synchronous or
an asynchronous NoC routing architecture. We rebut the livelock-freedom claim
made in [29] by finding livelock traces in the same routing algorithm. We then
demonstrate significantly improved scalability of livelock freedom verification on
arbitrarily large two-dimensional mesh networks. The paper then presents the
proven livelock-free routing algorithm.

Our approach evaluates the high-level routing algorithm using the IVy
tool [19]. We describe our verification approach as follows:

– We first simulate the routing behavioral model to prove packet delivery and
prove that any discovered potential livelock traces indicate true livelock sce-
narios. We use this approach to verify livelock freedom in NoCs of size 3×3
to 15×15.

– Next, we describe a highly automated method to fix the routing algorithm by
incrementally removing livelock traces. Eventually, this produces a livelock-
free and fault-tolerant routing algorithm.

– To further scale up livelock verification, we present an incremental abstraction
approach to derive routing zones on an arbitrary m×n network, followed by
the derivation of abstract moves to allow efficient representation of very large
livelock patterns.

This paper is organized as follows. Sections 2 and 3 describe background and
related work, respectively. Section 4 introduces the link-fault routing algorithm
analyzed in this paper. Sections 5, 6, and 7 present our refutation-based simu-
lation approach for livelock checking and livelock removal. Sections 8, 9, and 10
present our zone-based routing model and livelock verification scaled to arbitrar-
ily large network. Section 11 concludes the work. Data, supplemental material,
and models from this work can be found on GitHub1.

2 Preliminaries

Inductive Invariant Verification. The IVy tool supports interactive induc-
tive invariant strengthening and verification [18]. Using the Z3 SMT solver [20],
IVy can interactively aid a user to strengthen invariants. It starts by check-
ing the user-provided invariant for inductiveness and returns a counterexample
to induction if the invariant fails to be inductive. It then guides the user with
recommendations to strengthen the invariant. Once the user strengthens the
invariant, it checks for inductiveness again. These counterexamples to induc-
tion and invariant-strengthening recommendations prove invaluable to our work
by providing traces of livelock scenarios. A recent addition to IVy that has

1 https://github.com/formal-verification-research/IVy-Models.

https://github.com/formal-verification-research/IVy-Models
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proved pivotal to this research is integration with Property-Directed Reachabil-
ity (PDR) in the ABC model checking tool [2,6]. PDR Automatically strengthens
invariants to use inductiveness checking as reachability verification.

Network-On-Chip and Livelock. In this paper, we use the terms “NoC”
and “network” interchangeably. We consider a two-dimensional NoC in a square
mesh and model it as a coordinate system composed of n×n nodes (n � 2 and
n ∈ N). A node (xi, yi) is represented as a coordinate pair identified by an index
i. The subscript i has no relation to the location of the packet in the network;
rather, it represents the number of times the packet has been forwarded to reach
a node. For instance (x4, y4) is the fourth node a packet visits, and its coordi-
nates may be (3, 3), and (x5, y5) may have coordinates (3, 2). Nodes exchange
information by sending each other packets. In this work, a packet is assumed to
only carry its destination coordinate (xd, yd). Packets travel through a network
following a pre-defined routing algorithm. We present the formal analysis and
correction of an adaptive routing algorithm that tolerates faults dynamically, i.e.,
the routing algorithm does not know fault locations in the network and it selects
an alternative route for each packet whenever it encounters a fault on its way
to the destination. Therefore, a packet’s route from its source to destination is
not statically determined beforehand. Each node in the network is composed of
routers that determine a packet’s next forwarding direction based on its intended
destination and arbiters that resolve simultaneous packet forwarding requests to
compete for the output channel in the same direction.

As a packet travels through the network, it produces a trace, which records
the history of visited nodes. A trace begins at (x0, y0) where the packet is gener-
ated and is represented by (x0, y0), (x1, y1), . . . , (xi, yi). Define a livelock pattern
as (xi, yi), (xi+1, yi+1), . . . , (xi+k, yi+k), (xi, yi), (xi+1, yi+1), . . . , (xi+k, yi+k),
. . . , where 1 ≤ k ≤ K and K ∈ N. Nodes (xi, yi) and (xi+K , yi+K) are the
first and the final nodes in the sequence of repeated nodes constituting the
livelock pattern, respectively. A vital part of a livelock pattern is cyclical behav-
ior. That is, a livelock pattern includes a series of repeated changes in trav-
eling direction. For instance, a livelock pattern starting at (x2, y2) consisting
of a packet traveling back and forth between two nodes can be represented by
(x2, y2), (x3, y3), (x2, y2), (x3, y3), . . . , which may be shown using coordinates as
(2, 1), (2, 2), (2, 1), (2, 2), . . . . A livelock prefix is a finite trace represented by
(x0, y0), (x1, y1), . . . , (xi−1, yi−1) and (xi, yi) is the first node in a livelock pat-
tern. A prefix may be empty in the case where i = 0. For instance, a prefix for
the pattern above with (xi, yi) = (2, 1) may be (x0, y0), (x1, y1), or (1, 0), (1, 1).
A livelock trace consists of a livelock prefix followed immediately by a livelock
pattern. For example, combining the prefix and pattern listed above produces the
trace (x0, y0), (x1, y1), (x2, y2), (x3, y3), (x2, y2), (x3, y3), . . . , which may be rep-
resented using coordinates as (1, 0), (1, 1), (2, 1), (2, 2), (2, 1), . . . . A livelock-free
trace does not include a livelock pattern. If the set of all traces produced in a
network contains only livelock-free traces, the network is a livelock-free network.
In other words, a livelock-free network is one in which no packet can generate a
livelock trace.
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3 Related Work

Formal verification techniques have been applied to safe and reliable NoC designs
at different levels of abstraction. An overview of recent work can be found in [4].
Dridi et al. [10] modeled a double arbiter and a switching router in the IF lan-
guage [5] and verified circuit-level safety properties. Zaman et al. [27] verified
functional correctness on networks up to 8×8 using the SPIN model checker [14].
They randomly simulated the NoC model to eliminate property violation sce-
narios before applying model checking. Similarly, we find that simulation enables
rapid discovery of potential livelock cases that can be further proved by formal
techniques. Van Gastel et al. [12] used the xMAS language [8] to formally define
executable specifications of micro-architectures. Using the ABS language [16],
Din et al. [9] verified livelock freedom using invariants to monitor their local
history. In comparison, our proposed livelock freedom verification work checks
stronger properties, including termination of each packet’s travel. Particularly
important to NoC dependability is a fault-tolerant routing algorithm. Imai et
al. [15] proposed a link-fault location forwarding mechanism to achieve single
link-fault tolerance. Zhang et al. [28,29] modeled an improved link-fault-tolerant
routing algorithm [25] in the process-algebraic language LNT [7] and proved
deadlock- and livelock-freedom, as well as, tolerance to a single-link fault using
the CADP toolbox [11] for 2×2 NoCs. These approaches, however, encountered
significant challenges in scaling the verification to larger NoCs.

In addition to model checking, theorem proving has been applied to NoC
verification. The Generic Network-on-Chip [3] framework was created with the
help of the ACL2 theorem prover and was used to verify non-minimal adaptive
routing algorithms in [13]. Verbeek et al. [24] proved livelock- and deadlock-
freedom for an adaptive west-first routing algorithm on a Hermes NoC, with
approximately 86% of the proof automatically derived. The prototype tool DCI2
(Deadlock Checker In Designs of Communication Interconnects) [23] implements
necessary and sufficient conditions for deadlock-free routing and was used for
deadlock detection in a range of NoCs [22]. This tool requires a user to define
a network topology, size, and routing algorithm [1]. Using this tool, Zhang et
al. [29] verified livelock freedom for up to 5×5 NoCs for the link-fault-tolerant
routing algorithm in [25]. However, this tool is impacted by combinatorial blow-
up when the size of a NoC is increased.

Work presented in this paper drastically scales formal verification of the link-
fault-tolerant algorithm in [29] to arbitrarily large NoCs. While [29] illustrates
limitations of tools like DCI2 [23] and LNT [7], this work describes a novel and
effective way to scale-up livelock verification. We show that property-directed
reachability using the IVy verification tool is an efficient way to verify compli-
cated NoC routing algorithms, especially compared to enumerative model check-
ing approaches. Compared to similar recent work, this work places an emphasis
on guiding a user through abstracting and improving the routing algorithm for a
fault-tolerant network. Moreover, we rebut the livelock freedom proof in [29] by
showing the existence of livelock traces on a 3×3 NoC which DCI2 did not detect
according to [29]. We derive and prove a correct livelock-free routing algorithm.
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4 Link-Fault-Tolerant Routing Algorithm

Originally presented in Fig. 9 of [29], this algorithm is adapted as Algorithm 1
with variables defined in Table 1. It operates on an m×n mesh network with
no virtual channels. Figure 1 provides an example of routing decisions according
to Algorithm 1. Unless the packet is at the destination or can make one hop
to reach the destination, it is first routed west and south towards the desti-
nation. A packet is routed west even if the destination is directly south of it,
as shown by the source-destination pair (S1,D1), unless its west-going link is
faulty (e.g., (S3,D3)). Overshooting adds tolerance for faulty link(s) directly
south of a packet (e.g., (S5,D5) with a faulty output link of S5). The same
rule applies to the south forwarding direction as indicated by (S4,D4). After
negative directions, the routing algorithm tries positive directions (i.e., east or
north direction). No overshoot is needed for positive directions (e.g., (S8,D8)).
The general rule is that a packet already traveling in the positive direction does
not change to a negative direction unless there is no danger of forming a cyclic
deadlock. For example, the last east-to-south turn of (S2,D2) is only allowed
if it has no potential of forming a deadlock. If there were a packet in D2, the
packet would instead be dropped in order to prevent potentially creating a cycle
of dependencies, which leads to a deadlock. This routing algorithm always routes
the packet around a single fault, such as (S2,D2) and (S6,D6). The algorithm
can often deliver a packet even in the presence of two link faults (e.g., (S7,D7)).

Table 1. Variables used in Algorithm 1 and Invariants 1–4.

Variable Type Definition

x, y int Current x and y coordinates of the packet

x′, y′ int Immediate next x and y coordinates of the packet

xd, yd int x and y coordinates of the packet’s destination node

xm, ym int The maximal (corner) coordinates for a given NoC

dir enum Direction dir ∈ {n, e, s, w, i}, where i represents

a newly injected packet with no traveling direction

fdir bool Node (x, y) has a faulty link in the direction dir

τ enum The packet’s current traveling direction, τ ∈ dir

τ ′ enum The packet’s next traveling direction, τ ′ ∈ dir

ν(x, y) bool Node (x, y) has a packet

μ(x, y) bool Node (x, y) sent a packet one step previously

σ list Infinite repeated livelock pattern

Lσ set(list) Set of all nodes constituting a livelock pattern σ
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Algorithm 1: Link-Fault-Tolerant Routing Algorithm [29].
Input: x, y, τ
Output: x′, y′, τ ′

1 while ¬delivered do
2 if x = xd ∧ y = yd then
3 delivered := true;
4 else if (xd, yd) is 1 hop away and link is free then
5 x′ := xd; y′ := yd; � Send to destination
6 else if x �= 0 ∧ ¬fw ∧ (τ ∈ {w, s, i}) ∧ ((xd ≤ x) ∨ (yd ≥ y ∧ fs)) then
7 x′ := x − 1; y′ := y, τ ′ := w; � Send west
8 else if y �= 0 ∧ ¬fs ∧ (τ ∈ {s, w, i}) ∧ ((yd ≤ y) ∨ (xd ≥ x ∧ fw)) then
9 x′ := x; y′ := y − 1, τ ′ := s; � Send south

10 else if x �= xm ∧ ¬fe ∧ τ �= w ∧ (xd > x + 1 ∨ (xd > x ∧ yd = y + 1)) then
11 x′ := x + 1; y′ := y, τ ′ := e; � Send east
12 else if y �= ym ∧ ¬fn ∧ τ �= s ∧ yd > y then
13 x′ := x; y′ := y + 1, τ ′ := n; � Send north
14 else if x �= 0 ∧ ¬fw ∧ xd ≤ x ∧ (τ �= e ∨ (yd = y + 1 ∧ xd = x)) then
15 x′ := x − 1; y′ := y, τ ′ := w; � Send west
16 else if y �= 0 ∧ ¬fs ∧ yd ≤ y ∧ τ �= n then
17 x′ := x; y′ := y − 1, τ ′ := s; � Send south
18 else if

x �= xm ∧ ¬fe ∧ xd ≥ x ∧ (τ �= w ∨ xd = x ∨ (xd = x + 1 ∧ yd �= y + 1)) then
19 x′ := x + 1; y′ := y, τ ′ := e; � Send east
20 else if y �= ym ∧ ¬fn ∧ yd ≥ y ∧ (τ �= s ∨ xd ≥ x) then
21 x′ := x; y′ := y + 1, τ ′ := n; � Send north
22 else
23 break; � Unroutable packet. Drop.

5 Refutation-Based Verification

We attempt to scale up verification of the correctness of Algorithm 1 by imple-
menting it at the routing node level and stripping away architecture and commu-
nication details. Our aim is to check that Algorithm 1 is free of livelock. A major
cause of livelock is excessive fault tolerance in the routing algorithm. Because
every node attempts to provide an alternate route to a packet, it is possible that
a packet could circle around several nodes without ever reaching its destination.
As we later prove, livelock does not occur when a network contains less than
two faults. While this algorithm was proven in [29] to be livelock-free on a 2×2
network, we discover additional livelock patterns which emerge upon scaling to
a 3×3 NoC.

Part of the condition for livelock is a packet’s inability to reach its destina-
tion. Livelock freedom in this network implies that a packet is either delivered
or dropped (i.e. deemed unroutable) due to link-fault configurations. In both
cases, a packet’s trace is finite. This enables us to identify known non-livelock
traces by simulating the routing algorithm for a finite number of moves. We
use this observation to adapt a refutation-based simulation in which simulation
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Fig. 1. Fault-tolerant routing examples. The black arrows show the path a packet will
take; the red arrows point in the direction of a link fault. (Color figure online)

eliminates traces representing a packet being delivered or dropped. If a finite
trace does not belong to either case, it is extracted to construct an invariant in
IVy. This invariant is used to verify that the trace is truly livelock.

5.1 Disproving Livelock Through Refutation-Based Simulation

To quickly view the routes of each individual packet, we construct a C++ NoC
model implementing Algorithm 1. Starting with a 3×3 NoC, we simulate every
possible packet’s route within K steps. K is an overestimate of the maximal
number of steps that a packet requires to be delivered or dropped.

Our experiments are successful: a finite trace with K = 1000 can be efficiently
generated when scaling up to a 15×15 NoC. A Windows 10 machine (version
1903) with a 2 GHz 4-Core CPU and 8 GB of memory simulates every possible
packet’s route and verifies livelock traces in under 9 h. This is a significant scale-
up of livelock verification as compared to the 2×2 NoC verified in [29].
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While K = 1000 is sufficient to identify potential livelock patterns on a mas-
sive network, this approach slows down greatly as the network’s size increases. It
is also based on finite dimensions provided at the time of simulation. Verification
time increases exponentially upon scaling beyond a 10×10 network.

5.2 Proving Livelock Using IVy

For each trace that is not delivered or dropped within K steps, we developed a
script to analyze the trace and identify looping behavior. Based on the packet’s
starting and destination coordinates, the configuration of faulty links, and the
looping behavior, the script constructs an IVy model.

To effectively describe livelock, invariant checking in IVy begins within the
livelock pattern. Since the simulation shows that the packet can enter the pat-
tern, the only portion remaining to be checked is whether the livelock pattern
is truly infinite. Using IVy’s interactive proof assistant and the trace analysis
script, the invariants described next are automatically constructed to check the
infinite cycles of each trace.

Invariant 1 restricts the destination coordinates of the model to the desti-
nation coordinates of the trace produced by simulation. This eliminates every
case where the destination node is not involved in producing livelock. Invariant
2 ensures that the only nodes which ever obtain the packet are nodes in Lσ,
the set of nodes in the livelock trace. We define the immediate precedence order
(x, y) ≺ (x′, y′) ∈ σ as a predicate to formulate the following two invariants.
These invariants together restrict invariant checking to each livelock trace. They
define the order in which nodes receive the packet. Invariant 3 checks that every
time a packet leaves a certain node, it will be traveling in the direction that
leads to the next node in trace σ. Invariant 4 checks that every packet that
leaves node (x, y) in σ is forwarded to its immediate next node (x′, y′) in σ.
Enumerations of current and immediate next node coordinates for Invariants 3
and 4 are automatically added to the IVy model. Table 1 defines variables used
in these invariants.

xd = Dx ∧ yd = Dy (1)

∧

0<x�xm; 0<y�ym

((x, y) /∈ Lσ ∧ ¬ν(x, y)) (2)

∧

0<x,x′�xm; 0<y,y′�ym

((x, y), (x′, y′) ∈ Lσ ∧ ((x, y) ≺ (x′, y′) ∈ σ) ∧ (ν(x′, y′)

=⇒ τ(x′, y′) = τ ′(x, y))) (3)

∧

0<x,x′�xm; 0<y,y′�ym

((x, y), (x′, y′) ∈ Lσ ∧ ((x, y) ≺ (x′, y′) ∈ σ) ∧ (μ(x, y)

=⇒ ν(x′, y′) ∧ τ(x′, y′) = τ ′(x, y))) (4)
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These invariants reproduce in IVy the potential livelock pattern obtained
from simulating the C++ model. If IVy confirms that they are inductive invari-
ants for the corresponding model, it proves not only that the trace σ is possible
but that once it begins, no single move can remove the packet from σ. Therefore,
σ is infinite, indicating a true livelock pattern.

This refutation-based verification method combines the efficiency of C++
routing simulation with the power of IVy invariant checking. It streamlines trace
extraction and pruning from simulation and invariant formulation for proving the
existence of livelock. We have automated this process, and it has demonstrated
substantial improvement in scaling livelock checking to significantly larger net-
works than the 2×2 NoC proven in [29], in our case, up to 15×15.

6 User-Aided Livelock Removal

After confirming livelock traces using IVy’s invariant verification, we correct the
routing logic in Algorithm 1 to prevent each livelock pattern as early in a packet’s
journey as possible. A script automatically identifies each livelock pattern to aid
the user in adjusting the algorithm. Our incremental livelock removal process
starts with a 3×3 NoC and scales up once livelock freedom is achieved. We first
analyze the decision that initiates livelock as illustrated by the blue arrows in
Figs. 2 and 3.

D D

Fig. 2. Livelock patterns on a 3×3 NoC.

DD
D

D
D D

Fig. 3. Patterns from the 4×4 NoC.
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Our observation is that the majority of livelock patterns that emerge in a 3×3
NoC are almost identical to those in Fig. 2. To remove these patterns, we modify
the algorithm iteratively at each condition. The modification that removes the
largest quantity of livelock traces while maintaining a low number of unroutable
packets is then tested as the current working model. This process repeats until
the NoC is livelock-free.

By analyzing the identified livelock patterns in Fig. 2, we find that the livelock
scenario on the left can be removed by adding the condition (xd �= x + 1 ∨ yd �=
y + 1) to line 8 of Algorithm 1, effectively preventing the packet from being
routed south if the destination is one node northeast. We continue removing
other livelock patterns using the steps below.

1. Prune the prefix of a livelock trace and then identify each turn a packet makes
in a livelock cycle.

2. Manually adjust the conditions for one turn at a time by excluding the current
state of the packet at a specific node from making the livelock-producing turn.
These conditions include the packet’s current location and traveling direction,
the arrangement of link faults, and the destination coordinates.

3. Simulate the model with each modification to the routing algorithm.
4. Identify and count the potential livelock scenarios that were removed. Since

modifications decrease a packet’s ability to move, no new livelock scenarios
are created and the process can terminate.

5. Implement the modification that yields the fewest livelock scenarios and
unroutable cases to the routing algorithm, effectively removing the livelock
pattern under analysis as well as other similar patterns.

6. Simulate the modified model and repeat all steps above to eliminate any
remaining livelock scenarios.

A user can intuitively find similarities between livelock patterns. This interac-
tive procedure vastly simplifies routing algorithm modification, especially when
scaling up the network. For example, when we discover that the livelock patterns
on a 4×4 network very closely resemble those of the 3×3 network, it is clear that
the modification to the algorithm has to account for scenarios in different areas
of the NoC. Figure 3 shows two groups of livelock patterns that emerge when
scaling up to a 4×4 NoC. The nodes marked D represent possible locations for
a destination that caused livelock. After analyzing each move of the new live-
lock patterns, the previously mentioned modification to the routing protocol is
designed to be scalable, and packets are excluded from travelling south if the
destination is one node east and any number of nodes north of the packet. This
incremental process repeats to produce a livelock-free routing algorithm.

Specifically, conditions 1, 2, and 3 shown below have been added as conjunc-
tive clauses to lines 6, 8, and 16 of Algorithm 1, respectively. The addition of
these conditions produces a livelock-free routing algorithm for up to a 15×15
NoC. Because a packet cannot be in livelock if it is delivered or dropped within
K steps, and because all traces produced by the C++ model show that a packet
is delivered or dropped within K steps, no livelock exists in the 15×15 NoC.
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1. yd �= y + 1 ∨ τ �= s
2. xd �= x + 1 ∨ yd < y + 1
3. τ �= e ∨ xd �= xm ∨ yd �= ym

7 Unroutable Packets

Modifying the original routing algorithm to remove livelock can turn an infi-
nite livelock pattern into a finite trace representing either packet delivery or
unroutability. The “unroutable” status of a packet is determined when a routing
node has exhausted all alternative routes for a packet but still cannot deliver
it. Labeling a packet as unroutable allows it to be removed from the network,
which reduces unnecessary network traffic that consumes power as is the case
for livelock. On the other hand, minimizing traces for unroutable packets while
removing livelock scenarios is ideal as it allows improved packet delivery rate
for a NoC while reducing unprofitable network traffic. The C++ model tracks
unroutable packets in addition to potential livelock patterns.

We find that some unroutable cases are introduced when livelock is removed.
However, this modification also allows for many packets otherwise in live-
lock to be converted into deliverable packets. An interesting cause of packet
unroutability is livelock prevention. This can cause seemingly random patterns
of unroutable packets, but they form an insignificant amount of packets, espe-
cially as the network is scaled. In these cases, the faulty links are in relatively
unique arrangements in the network.

8 Zone-Based Routing Model

The aforementioned refutation-based livelock verification and removal method
can be used to identify and eliminate livelock and produce an improved routing
algorithm. It, however, becomes unrealistic to simulate when livelock checking
scales to a large NoC. A key observation during the livelock removal process
is that traces representing deliverable, unroutable, and livelock scenarios share
common features and can be abstracted for more efficient analysis. A critical
observation of the routing algorithm is formed after grouping and classifying
these traces: the relative positions between a packet’s source and destination
nodes can represent their corresponding absolute coordinate-based positions.
Therefore, the coordinate-based NoC that has been discussed so far can be
lifted to a NoC of arbitrary size as the relative source-destination positions no
longer require the coordinates. This leads to further simplification of the model:
a packet used to store current and destination coordinates now only stores its
zone information.

Predicates and Invariants for Routing Zones. It is imperative that the
abstraction of a model accurately represent the model. We utilize IVy to aid in
incrementally creating the zone-based routing abstraction. Each location-based
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condition from the routing algorithm is extracted and mapped to a predicate
variable. If two physically adjacent zones satisfy an identical set of predicates,
the zones are merged. The detailed process is as follows.

First, we extract location-based conditions from the routing algorithm to
form predicates, e.g., the condition yd � y in line 6 of Algorithm 1 is represented
by a predicate variable p1. A zone represents a set of routing nodes satisfying
the same predicates. Denote zone �Zi = 〈p1, . . . , pn〉 as a vector of n predicate
variables, i.e., location-based predicates extracted from the routing algorithm.
In the case of Algorithm 1, n = 18. Even if one predicate can cover the other,
predicates are stored as separate variables. For example, if p1 is xd = x and p2
is xd � x, we denote p1 and p2 as separate predicates. Given a NoC routing
algorithm and a set of predicates, we formulate the three invariants listed below
and check them against our NoC model in IVy:

1. ∀i �= j : �Zi �= �Zj (Every zone is unique.)
2. ∀i,∃k, s.t. �Zi[k] = true (Every zone has at least one true predicate.)
3. ∀k,∃i, s.t. �Zi[k] = true (Every predicate is true in at least one zone.)

When Invariant 1 fails, there must exist one pair of zones, namely, �Zi and �Zj ,
that are identical (i.e., �Zi = �Zj). When Invariant 1 holds, every zone is unique
and no two zones can be merged. Invariants 2 and 3 describe the necessity of
each zone and each predicate, respectively. That is, if a predicate evaluates to
false everywhere in the NoC, it can be removed from the routing algorithm.

Abstracting Routing Nodes into Zones. We begin with a 1×1 NoC with
one zone, i.e., the destination zone shown in Fig. 4(a). Note that we represent
the destination node with white text on a black background in all subfigures
of Fig. 4. Because every zone in a 1×1 NoC is trivially unique, we scale up by
adding one node in each direction to create a 3×3 NoC. When encountering
a new node after expanding the NoC for the first time, we assign each node a
unique zone identifier, as shown in Fig. 4(b). Then we check the three invariants
above against the IVy model. When Invariant 1 fails, IVy returns two identical
zones as a counterexample. When Invariant 2 or 3 fail, IVy returns the unused
zone or predicate to be evaluated by the user. If equivalent zones are physically
adjacent on the NoC, we merge them into one zone then repeat checking these
invariants. When Invariant 1 holds, it indicates that no further abstraction can
be made as every zone is unique, and combining two unique zones would cause
neighboring nodes within the same zone to forward a packet differently. For the
3×3 NoC, IVy proves that every zone is unique. Therefore, we continue scale it
up to a 5×5 network as shown in Fig. 4(c). Invariant checking in IVy shows that
some, but not all of the new zones are unique. For instance, after IVy finds that
ZH = ZX , they are merged into one zone ZL. This process is repeated until all
zones are unique. The resulting zones are shown in Fig. 4(d).

Before further scaling the zone-based model, we first analyze the routing deci-
sion conditions of Algorithm 1. We observe that the routing decision conditions
are reliant only on the following distance specifications (where m represents
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Fig. 4. Development of abstract zones

either an x-coordinate or a y-coordinate): m < md − 1, m < md, m � md,
m = md, m � md, m > md, and m > md + 1. Because none of these specifi-
cations differentiates between a node that is two or more nodes away from the
destination, the nodes or zones on an edge in a 5×5 network can be extended to
represent all nodes more than one node away from the destination. As an exam-
ple, the node labeled C in Fig. 4(d) is representative not only for the node two
nodes north of the destination, but also for all nodes more than one node north.
To validate our conjecture, we use IVy to check the aforementioned invariants
in arbitrarily large networks where all new zones are present. IVy confirms all
zones are unique. Figure 4(e) and Table 2 show the final zones for Algorithm 1.

Table 2. Formulas corresponding to each zone in Fig. 4(e)

Zone x y Size Zone x y Size

A x > xd + 1 y = yd k × 1 J x = xd y < yd − 1 1 × k

B x > xd y > yd k × k K x > xd y < yd − 1 k × k

C x = xd y > yd + 1 1 × k L x > xd y = yd − 1 k × 1

D x = xd − 1 y > yd 1 × k M x = xd − 1 y = yd − 1 1 × 1

E x < xd − 1 y > yd k × k N x = xd + 1 y = yd 1 × 1

F x < xd − 1 y = yd k × 1 O x = xd y = yd + 1 1 × 1

G x < xd − 1 y = yd − 1 k × 1 P x = xd − 1 y = yd 1 × 1

H x < xd − 1 y < yd − 1 k × k Q x = xd y = yd − 1 1 × 1

I x = xd − 1 y < yd − 1 1 × k R x = xd y = yd 1 × 1

9 Zone-Based IVy Implementation

In the zone-based model, it is no longer necessary to maintain the coordinates
for routing nodes. In order for the routing algorithm to determine a packet’s
next forwarding direction, one needs to know the following information about a
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packet: current traveling zone �, current traveling direction τ , and the status
of the current routing node’s four output links Λdir, where dir ∈ {w, s, n, e},
which can be free (�), faulty (�), or edge (⊥). The “edge” status of an output
link indicates that the current traveling node is on an edge of a NoC. Table 3
lists these variables and their types. Note that τ is the most recent direction of
travel or the direction of travel that led into the current node. Since coordinates
are not used in the zone-based model, τ is no longer associated to its node’s
coordinates, but rather an enumerative typed variable.

Table 3. Variables for zone-based model.

Variable Type Definition

� enum Packet’s most recent traveling zone (A to R) in Fig. 4(e)

τ enum Packet’s most recent traveling direction, τ ∈ dir

Λdir enum Output link in the direction specified by dir, where dir = {n, e, s, w};
and output link can be free (�), faulty (�), or edge (⊥)

On-the-fly NoC Construction. The zone-based model inherits the assump-
tion that the number of faults in a network does not exceed two. This number
could be modified to improve the protocol and guarantee a higher fault tolerance,
but increasing fault tolerance creates additional complexity without necessarily
increasing packet’s ability to route [29]. Thus, the zone-based model aims to
guarantee livelock freedom for two-fault tolerant routing. We specify the zone-
based routing algorithm in IVy. In an arbitrarily large NoC, the user is no longer
required to specify dimensions for the network. Instead, a network is constructed
on-the-fly while the packet travels. Forwarding decisions in the abstract network
use the following procedure:

1. The current zone of a packet (�) is nondeterministically chosen.
2. The current node’s link statuses (Λn,e,s,w) are nondeterministically chosen.
3. The routing algorithm determines the direction to forward the packet.
4. The packet is forwarded and the process repeats.

To guarantee realistic scenarios throughout the IVy NoC model, we specified
constraints and heuristics to aid the nondeterministic choices in the procedure
above. For example, if a packet is sent west from an unknown location in zone
K (see Fig. 4), a westbound move can keep it in zone K or forward it to zone
J , decided nondeterministically. However, if a packet travels from zone N to
zone B in one move and then travels west one node, it must be in zone O.
The routing model also excludes impossible edge cases. For instance, the rules 5
and 6 below are assumptions for the east links, and symmetric rules apply to
the other links. As shown in Fig. 6, this requires that the edges of the network
remain intact. It removes unrealistic scenarios including one in which a packet
reaches the east edge, travels south, and then is allowed to be forwarded east
again. It disallows the scenario on the left of Fig. 6 but enforces the scenario on
the right. While they do not define perfect conditions for east links, they allow
every possible scenario to be tested, along with some impossible scenarios. Since
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realistic scenarios are a subset of all verified scenarios, and the set of all verified
scenarios is livelock-free, we prove livelock freedom in all realistic scenarios.

(τ ∈ {n, s} ∧ Λe =⊥) =⇒ (Λ′
e =⊥) (5)

((τ ∈ {n, s} ∧ Λe �=⊥) ∨ τ = w) =⇒ (Λ′
e �=⊥) (6)

Abstract Moves. In order to effectively check for a livelock pattern con-
sisting of a large number of single-step moves of a packet, we specify an
abstract move, which aggregates a sequence of consecutive stuttering single-
step moves into a single move. It is the abstract moves of a packet that are
stored as it travels. For example, if a packet takes 300 moves east in zone
E before turning south, but remaining in E, they are all represented by one
abstract east move followed by another abstract move to the south. Define the
state of the zone-based model as (�, τ, Λw, Λs, Λn, Λe). A single-step move α

causes possibly trivial update to the current state, i.e., (�, τ, Λw, Λs, Λn, Λe)
α−→

(�′, τ ′, Λ′
w, Λ′

s, Λ
′
n, Λ′

e). A single-step move is stuttering, denoted as ε, if τ ′ = τ ,
i.e., the move does not change the packet traveling direction. An abstract
move is used to represent a (finite) sequence of stuttering single-step moves
and a sequence of abstract moves only consists of non-stuttering moves. As
a packet travels, an abstract move is formed by storing only the end state
of a sequence of stuttering moves. Specifically, given a sequence of moves,
si

α−→ si+1
ε−→ si+2

ε−→ . . . ,
ε−→ si+k

α−→ si+(k+1), it is abstracted as si
α−→

si+k
α−→ si+(k+1). For instance, for a packet with the following sequence of

exact moves, (B,w,�,�,�,�) ε−→ (B,w,�,�,�,�) α−→ (B, s,�,�,�,�), its
abstract sequence becomes (B,w,�,�,�,�) α−→ (B, s,�,�,�,�). Storing only
abstract moves while checking for livelock enables us to detect very large cyclic
patterns. As shown in Fig. 5, we can detect cycles using only the turns in those
cycles. Using abstract moves significantly reduces verification effort while pre-
serving livelock in the system. Since livelock is based on a series of moves that
change traveling directions, the number of stuttering moves a packet makes in
sequence does not impact livelock.

...

...

......

Fig. 5. Abstract moves Fig. 6. Edge heuristics
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Fig. 7. Livelock pattern
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10 Verification of Livelock Freedom

The invariants used for livelock checking are presented in Fig. 8. Let τn represent
the traveling direction of the nth stored abstract move along a packet trace to
destination, with n = 0 indicating the most recent decision and n = 6 indi-
cating the earliest recorded abstract move. The upper bound of stored abstract
moves Tmax is set to 7 because our experimentation indicates that it is the
lowest number that does not cause “false positives” – packets traveling in a
near-complete loop without entering livelock. Since a livelock pattern is infinite
but must contain at least 2 nodes (in a back-and-forth livelock pattern) or 4
nodes (in a cyclical pattern), Tmax has to be at least 4. When 4 � Tmax � 6,
scenarios emerge that cause a packet to complete a loop without entering live-
lock. For example, a packet may travel to the destination by passing through
zones J → Q → M → I → J → K → N → R when the node at zone M is
on the west edge and has a faulty north link. Note that zone L is not stored
between K → N because the packet traveling direction remains the same from K
through L until it turns west in zone N . While not a livelock pattern, it includes
four nodes that checking with Tmax = 4 would cause to be flagged as a livelock
pattern. Clockwise, counter-clockwise, and back-and-forth livelock patterns are
given as invariants 7 to 10, 11 to 14, and 15 to 18 in Fig. 8, respectively. These
twelve invariants cover all possible livelock patterns in the zone-based model and
therefore, are used for livelock detection and removal in our work.

For livelock freedom verification in the zone-based model, our approach offers
a stronger guarantee than livelock freedom. That is, in addition to proving the
routing algorithm is free of livelock, we prove that it is free of any traces making
more than seven abstract turns in a cyclic pattern. If a packet does not reach its
destination without making seven cyclic abstract turns, then its abstract trace
is considered as a “livelock” trace, even though it may have a chance of reaching
its destination after seven abstract turns. Such a trace is automatically detected
and then used for improving the routing algorithm as discussed later in this
section. Thus, we argue that the network is efficient since packets mostly take a
direct path to the destination and avoid traveling needlessly in cyclical patterns.

Verification of the zone-based routing algorithm is performed in IVy with the
ABC implementation of Property-Directed Reachability [2]. After detecting the
first invariant violation, the model checker terminates and returns a counterex-
ample representing a livelock trace. For the purpose of correcting Algorithm 1 to
achieve livelock-free routing, it is required to collect all livelock traces. To enu-
merate every possible livelock scenario, we automate incremental livelock trace
generation by iteratively adding a previously generated livelock trace as a new
IVy invariant and then invoking IVy to find the next livelock pattern. A report
of each livelock pattern is generated to aid a user in adapting the routing algo-
rithm to remove it. The report makes clear which routing decision is taken. The
traces provided by this model are sufficiently informative for a user to correct
the routing algorithm.

We begin livelock verification by first encoding in IVy all invariants shown in
Fig. 8. Each invariant in this figure represents a zone-independent packet trav-
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τ6 = s ∧ τ5 = w ∧ τ4 = n ∧ τ3 = e ∧ τ2 = s ∧ τ1 = w ∧ τ0 = n (7)

τ6 = w ∧ τ5 = n ∧ τ4 = e ∧ τ3 = s ∧ τ2 = w ∧ τ1 = n ∧ τ0 = e (8)

τ6 = n ∧ τ5 = e ∧ τ4 = s ∧ τ3 = w ∧ τ2 = n ∧ τ1 = e ∧ τ0 = s (9)

τ6 = e ∧ τ5 = s ∧ τ4 = w ∧ τ3 = n ∧ τ2 = e ∧ τ1 = s ∧ τ0 = w (10)

τ6 = e ∧ τ5 = n ∧ τ4 = w ∧ τ3 = s ∧ τ2 = e ∧ τ1 = n ∧ τ0 = w (11)

τ6 = n ∧ τ5 = w ∧ τ4 = s ∧ τ3 = e ∧ τ2 = n ∧ τ1 = w ∧ τ0 = s (12)

τ6 = w ∧ τ5 = s ∧ τ4 = e ∧ τ3 = n ∧ τ2 = w ∧ τ1 = s ∧ τ0 = e (13)

τ6 = s ∧ τ5 = e ∧ τ4 = n ∧ τ3 = w ∧ τ2 = s ∧ τ1 = e ∧ τ0 = n (14)

τ6 = w ∧ τ5 = e ∧ τ4 = w ∧ τ3 = e ∧ τ2 = w ∧ τ1 = e ∧ τ0 = w (15)

τ6 = e ∧ τ5 = w ∧ τ4 = e ∧ τ3 = w ∧ τ2 = e ∧ τ1 = w ∧ τ0 = e (16)

τ6 = n ∧ τ5 = s ∧ τ4 = n ∧ τ3 = s ∧ τ2 = n ∧ τ1 = s ∧ τ0 = n (17)

τ6 = s ∧ τ5 = n ∧ τ4 = s ∧ τ3 = n ∧ τ2 = s ∧ τ1 = n ∧ τ0 = s (18)

Fig. 8. Livelock patterns encoded as invariants for routing zones.

eling pattern. Therefore, such a pattern can exist in a number of livelock traces
when mapped to actual regions. Our technique relies on IVy to incrementally
enumerate actual livelock traces. For example, Invariant 14 in Fig. 8 is encoded
as ¬σ0 below. Then IVy can detect a violation of ¬σ0 by returning an actual live-
lock trace as a counterexample shown as σ1 below. This trace describes packet
travel between zones I and J , where sentN represents τN and ΛdirN is repre-
sented by northLinkN, eastLinkN, and so forth. A packet’s Xth zone �X is
given by packet.znX and packet.zn3 = i means that the packet’s third zone
was I. More concrete examples are found on GitHub (See footnote 1).

The amended invariant is constructed as ¬σ0 ∨ σ1 (i.e., σ0 ⇒ σ1) so that
IVy can skip livelock trace σ1 and continue to search for the next trace. When
n livelock traces are produced, the amended invariant is constructed as ¬σ0 ∨
σ1 ∨ σ2 ∨ · · · ∨ σn−1 ∨ σn. This process is repeated for verifying the model and
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appending new invariants representing livelock traces as disjunctive clauses to
existing ones until every livelock pattern has been identified, when verification
terminates with a livelock-free model.

10.1 Incremental Removal of Livelock Traces in Routing Algorithm

We apply a similar method to that presented in Sect. 6 to improve the routing
algorithm until no livelock patterns can be found. For instance, consider the
livelock pattern from Fig. 7. To eliminate this pattern, we remove the condition
τ �= e∨xd �= xm ∨ yd �= ym (implemented in Sect. 6) from the routing algorithm.
We then add to the first west decision a condition that truly eliminates livelock
scenarios: � /∈ {J,Q}∨τ �= n, as shown on line 20 of Algorithm 2. In most cases,
this does not produce additional unroutable scenarios, as a packet that satisfies
the new condition (excluding it from the second west routing option) generally
satisfies the condition to be routed east and then north or south toward the
destination. This approach leads to the creation of our final zone-based livelock-
free routing algorithm shown in Algorithm 2.

10.2 Verification Results for Zone-Based Routing Algorithm

The final zone-based link-fault-tolerant routing algorithm was verified to satisfy
the invariants in Fig. 8 on a Windows 10 machine (version 1903) with an Intel
Core i7 4-Core 2 GHz Processor and 8 GB memory. With a single faulty link, the
improved routing algorithm is proven to be livelock-free with no unroutable pack-
ets. Under two-faulty-link configurations, this routing algorithm is also livelock-
free, with only a small number of unroutable patterns. Because it is unlikely to
find more than two faults on a NoC [29], only networks with one and two faults
are tested. With no livelock detected for Algorithm 2, it runs in approximately
four minutes. The original routing algorithm contains 18 livelock patterns which
are discovered in under three hours. The livelock verification script can consis-
tently detect livelock at a rate of under ten minutes per livelock scenario. Thus,
the zone-based IVy verification is both more efficient and more accurate than
the C++ simulation.

10.3 Detecting Unroutable Packets

Ideally, a fault-tolerant algorithm should be free of livelock while producing the
fewest unroutable cases. Thus, it is important to identify unroutable packets on
Algorithm 2. The same script that modifies the livelock-resistance invariants can
be used to detect unroutable packets.

While it is difficult to obtain a finite percentage of unroutable packets on
an arbitrarily large network, we can detect and count the patterns that cause a
packet to become unroutable. In a similar fashion to livelock detection, the invari-
ant ¬packet.unroutable can be checked each time we verify the algorithm.
When IVy finds a counterexample (i.e., a trace showing an unroutable packet)
the script analyzes it and adds the trace of the scenario that caused an unroutable
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Algorithm 2: Final Livelock-Free Zone-Based Routing Algorithm.
Input: �, Λdir, τ
Output: τ ′

1 while ¬delivered do
2 if � = R then
3 delivered := true;
4 else if � = N ∧ Λw = � then
5 τ ′ := w; � Send west
6 else if � = O ∧ Λs = � then
7 τ ′ := s; � Send south
8 else if � = P ∧ Λe = � then
9 τ ′ := e; � Send east

10 else if � = Q ∧ Λn = � then
11 τ ′ := n; � Send north
12 else if Λw = � ∧ τ ∈ {w, s, i} ∧ (� ∈ {A, B, C, J, K, L, N, O, Q} ∨ (� /∈

{D, E} ∧ Λs = �)) ∧ (� /∈ {G, L, M, Q} ∨ τ �= s) then
13 τ ′ := w; � Send west
14 else if Λs = � ∧ τ ∈ {w, s, i} ∧ (� ∈ {A, B, C, E, F, N, O, P} ∨ (� /∈

{D, K, L} ∧ Λw = �)) then
15 τ ′ := s; � Send south
16 else if Λe = � ∧ τ �= w ∧ � ∈ {E, F, G, H, M} then
17 τ ′ := e; � Send east
18 else if Λn = � ∧ τ �= s ∧ � ∈ {G, H, I, J, K, L, M, Q} then
19 τ ′ := n; � Send north
20 else if Λw = � ∧ � ∈ {A, B, C, J, K, L, N, O, Q} ∧ (� = Q ∨ τ �= e) ∧ (� /∈

{J, Q} ∨ τ �= n) then
21 τ ′ := w; � Send west

22 else if Λs = � ∧ τ �= n ∧ � ∈ {A, B, C, D, E, F, N, O, P} then
23 τ ′ := s; � Send south
24 else if Λe = � ∧ � ∈ {C, D, E, F, G, H, I, J, M, O, P, Q} ∧ (τ �= w ∨ � ∈

{C, J, O, Q, D, I, P}) then
25 τ ′ := e; � Send east
26 else if Λn = � ∧ � ∈ {A, F, G, H, I, J, K, L, M, N, P, Q} ∧ (τ �= s ∨ � ∈

{F, G, H, I, J, M, P, Q}) then
27 τ ′ := n; � Send north
28 else
29 break; � Unroutable packet. Drop

packet as a disjunctive clause to the original invariant. IVy can detect all of the
unroutable scenarios within several hours using the same machine described in
Sect. 10.2. The script generates a log file with traces of those unroutable patterns.

11 Conclusion

This paper describes a process for scalable verification of a fault-tolerant routing
algorithm. While refutation-based simulation enables the model to scale from
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2 × 2 to 15 × 15 NoCs, this approach allows us to discover livelock traces missed
by the previous verification approach from [29]. We then propose an abstract
zone-based routing algorithm model based on a packet’s relative position to its
destination. It uses Property-Directed Reachability to verify livelock freedom on
arbitrarily large NoCs. We propose iterative techniques to automatically discover
all livelock patterns. We use these patterns to derive an improved link-fault-
tolerant routing algorithm that is livelock-free for arbitrarily large NoCs. This
livelock freedom guarantees increase dependability of the analyzed fault-tolerant
algorithm for its application in safety-critical systems.

Techniques developed in this paper are applicable to formal specification
and verification of a variety of fault-tolerant adaptive routing algorithms, as
well as, other NoC topologies. Future work includes investigating techniques
for optimizing the zone-based, livelock-free routing algorithm to produce the
minimal number of unroutable packets. We also plan to investigate other safety
properties on the zone-based model, such as deadlock freedom.
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Conchon, S., Zäıdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 217–233. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25423-4 14

10. Dridi, M., Lallali, M., Rubini, S., Singhoff, F., Diguet, J.P.: Modeling and validation
of a mixed-criticality NoC router using the IF language. In: Proceedings of the
10th International Workshop on Network on Chip Architectures. NoCArc 2017,
Association for Computing Machinery, New York, NY, USA (2017). https://doi.
org/10.1145/3139540.3139543

11. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Int. J. Softw. Tools Technol.
Transf. 15(2), 89–107 (2013). https://doi.org/10.1007/s10009-012-0244-z

12. van Gastel, B., Schmaltz, J.: A formalisation of xMAS. In: Gamboa, R., Davis,
J. (eds.) Proceedings International Workshop on the ACL2 Theorem Prover and
its Applications, ACL2 2013, Laramie, Wyoming, USA, 30–31 May 2013, EPTCS,
vol. 114, pp. 111–126 (2013). https://doi.org/10.4204/eptcs.114.9

13. Helmy, A., Pierre, L., Jantsch, A.: Theorem proving techniques for the formal ver-
ification of NoC communications with non-minimal adaptive routing. In: DDECS,
pp. 221–224. IEEE (2010)

14. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997). https://doi.org/10.1109/32.588521

15. Imai, M., Yoneda, T.: Improving dependability and performance of fully asyn-
chronous on-chip networks. In: Proceedings of the 2011 17th IEEE International
Symposium on Asynchronous Circuits and Systems, pp. 65–76. ASYNC 2011,
IEEE Computer Society, Washington, DC, USA (2011). https://doi.org/10.1109/
ASYNC.2011.15, http://dx.doi.org/10.1109/ASYNC.2011.15
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