
Making PROGRESS
in Property Directed

Reachability

Tobias Seufert1(B),
Christoph Scholl1, Arun Chandrasekharan2,

Sven Reimer2, and Tobias Welp2

1 University of Freiburg, Freiburg im Breisgau, Germany
{seufert,scholl}@informatik.uni-freiburg.de

2 OneSpin Solutions, Munich, Germany
{arun.chandrasekharan,sven.reimer,tobias.welp}@onespin.com

Abstract. With Proof-Guided Restriction Skipping (PROGRESS) we
present a fully automatic and complete approach for Hardware Model
Checking under restrictions. We use the PROGRESS approach in the
context of PDR/IC3 [9,18]. Our implementation of PDR/IC3 restricts
input signals as well as state bits of a circuit to constants in order to
quickly explore long execution paths of the design. We are able to iden-
tify spurious proofs of safety along the way and exploit information from
these proofs to guide the relaxation of the restrictions. Hence, we greatly
improve the capability of PDR to find counterexamples, especially with
long error paths. In experiments with HWMCC benchmarks our app-
roach is able to double the amount of detected deep counterexamples
in comparison to Bounded Model Checking as well as in comparison to
PDR.

1 Introduction

Lately, there have been many advances in the field of safety verification of sequen-
tial circuits. With modern solvers for the Boolean satisfiability problem (SAT),
especially SAT-based Model Checking has become more and more popular. How-
ever, formal verification of systems with large state spaces remains a challenging
problem.

A popular approach to counteract growing state spaces is by abstraction
and abstraction refinement such as Counterexample-Guided Abstraction Refine-
ment (CEGAR) [15,28,42]. This means that the behaviour of the circuit is over-
approximated. For instance, variables representing the state of storage elements
are handled as user inputs, disconnecting them from their transition function
(called localization abstraction [42]). As a result, the underlying problem gets
less complex and the state space is reduced. However, abstraction comes with
the drawback of incompleteness. Over-approximating the behaviour of a circuit
may lead to spurious counterexamples which are not valid in the original system.
Proofs of safety though are also correct under over-approximation. CEGAR can
c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 355–377, 2022.
https://doi.org/10.1007/978-3-030-94583-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_18&domain=pdf
https://doi.org/10.1007/978-3-030-94583-1_18

356 T. Seufert et al.

original
problem

abstraction restrictionrefine coarsen

spurious? check check spurious?

counter-
example

counter-
exampleproof

proof

yes yes

no no

CEGAR PROGRESS

report unsafe report safe report unsafe report safe

Fig. 1. Comparing CEGAR and PROGRESS.

be used to recover completeness: Based on the analysis of spurious counterex-
amples, the abstraction is subsequently refined until it terminates with a correct
result.

In contrast to abstraction, it is also possible to introduce a restriction and
under-approximate the behaviour of the system under verification. For instance,
we may assume primary inputs of the sequential circuit as constants as well
as consider only transitions from/to states with some latches fixed to constants.
Intuitively, this makes sense if an engineer has prior knowledge of the system and
only wants to consider parts of the system under some special control signals. A
simple example could be the verification of the multiplier unit of an ALU - the
engineer would restrict its control signal to ‘multiply’. Another example is the
search for a counterexample to the correctness of a processor with a pipelined
multiplier. If a counterexample exists that does not make use of multiplication,
then the internal pipeline registers of the multiplier can be fixed to constants
without compromising the possibility to find such a counterexample. In practice,
restriction requires a deep understanding of the circuit and the verification tech-
nology, and is usually custom made for the given system only. A counterexample
found for an under-approximated system behavior is also valid wrt. the original
system. However, a proof of safety may be spurious and incomplete. In general,
abstraction and restriction are complementary techniques. While abstraction
techniques mainly aim to improve the capabilities of finding a proof of safety,
restrictions focus on certain parts of the system behaviour only and enable the
examination of long error paths.

In this work, we pick up the idea of restrictions. Instead of restricting spe-
cific signals based on prior knowledge, we present a fully automatic approach
that can be applied to any given circuit. We start with stringent restrictions
to the system behaviour. If we find a counterexample under these restrictions,
it is valid. In the case that we find an incomplete proof due to the restric-
tions, we apply a technique which we call Proof-Guided Restriction Skipping
(PROGRESS). PROGRESS can be considered as the dual of CEGAR. For
the relation of PROGRESS and CEGAR see also the illustration in Fig. 1. By
analyzing the proof, we deduce restrictions which we have to skip in order to

Making PROGRESS in Property Directed Reachability 357

continue. This process is repeated and we coarsen the restrictions in each itera-
tion. The loop ends either with a counterexample or with a proof for the com-
plete (unrestricted) system. In that way we provide a complete model checking
algorithm. Our concrete realization of the PROGRESS approach is based on
Property Directed Reachability (PDR) also known as IC3 [9,18]. We call our
implementation PROGRESS-PDR.

Apparently, restrictions are not only applicable in PDR. We chose PDR
though, because it is widely considered as the strongest unbounded and com-
plete method in the field of safety verification of sequential circuits. PDR con-
siders only single instances of the transition relation and produces a large num-
ber of small and easy SAT problems. In contrast, Bounded Model Checking
(BMC) [3] considers unrollings of the transition relation leading to more and
more expensive SAT problems with each added unrolling. In our experiments
on Hardware Model Checking Competition (HWMCC) benchmarks, we show
that PROGRESS-PDR greatly improves the ability of finding counterexamples
in PDR in general. Furthermore, we observe that PROGRESS-PDR is superior
to BMC in finding counterexamples with long error paths.

PROGRESS-PDR also performs better than standard PDR on some safe
problem instances and achieves a better overall performance.

In summary, our contributions are as follows.

– We present a novel paradigm called PROGRESS which is the dual of CEGAR
and skips restrictions based on the analysis of spurious proofs.

– We introduce a fully automatic and complete Model Checking algo-
rithm, applying the new paradigm in the context of PDR, leading to the
PROGRESS-PDR approach.

– Additionally, we give an insight on how restrictions (instead of abstractions)
affect the inner workings of PDR.

– Finally, we show that PROGRESS-PDR is significantly stronger than BMC
as well as original PDR in finding deep counterexamples.

Structure of the Paper. In Sect. 2 we discuss related work and in Sect. 3 we give
some preliminaries needed for this paper. We define restrictions in the context of
PDR in Sect. 4, our algorithm including a restriction skipping loop in Sect. 5, and
further implementation details in Sect. 6. An experimental evaluation is given in
Sect. 7, and Sect. 8 summarizes the results with directions for future research.

2 Related Work

Lately, there have been many efforts to improve the efficiency of PDR [2,23,26,
36]. Some of these extensions to PDR make use of abstraction [1,7,24,41] and
abstraction refinement such as Counterexample-Guided Abstraction Refinement
(CEGAR) [15,28].

Apart from counterexamples, also proofs (or both) have been used to guide
abstractions [17,30,31]. In those approaches, proofs of safety up to a particular
bound (time frame) in BMC are exploited in order to find abstractions whereas
spurious BMC counterexamples are used to refine the abstraction.

358 T. Seufert et al.

Compared to abstractions like localization abstraction [42], restrictions do
not replace state bits (for instance) by free variables, but by constants, leading to
simplifications of the transition relation by unit propagation. Exploiting restric-
tions is a typical method used in interactive bug hunting. However, to the best
of our knowledge, restrictions have not been used so far in the context of a fully
automatic and complete proof technique for verifying sequential circuits. Never-
theless, restrictions or under-approximations in general have already been used
in various contexts related to bit-level hardware model checking. E.g. [32] defines
both under- and over-approximations in the context of symbolic model checking
for sequential circuits, but does not provide any refinement loop for manually
chosen approximations. [16] considers a series of over- and under-approximations
for state set collection as well as next state computation during model checking
of real-time systems. The approximations become more and more precise until a
proof using over-approximations or a refutation using under-approximations is
found. The approximation techniques are tailored towards the computation of
symbolic state set representations for timed systems and thus are not applicable
in the context of hardware verification using SAT solving. Under-approximations
as well as over-approximations were also considered for decision procedures for
Presburger arithmetic [27] and for array and bit-vector theories [12,13]. Similar
ideas have also been used in [11] for approximating floating-point operations in
software verification.

Many of the approaches mentioned above use a refinement loop for approxi-
mations (as our approach). Whereas the CEGAR based approaches refine only
over-approximations by different methods, [12,13,27] rely on an alternating gen-
eration of under-approximations (by bit-width restrictions relaxed by counterex-
amples from over-approximations) and over-approximations (derived from unsat-
isfiable solver calls for under-approximations). The refinement loop of [11] devi-
ates from strict alternations of over- and under-approximations, but is restricted
to floating-point operations. Our approach refines only under-approximations
by restriction skipping, but it aims at (unbounded) safety verification of sequen-
tial circuits rather than solving combinational formulas as in [11–13,27]. In this
context, we analyze possibly spurious inductive invariants in refinement steps
skipping restrictions. From a technical point of view, this step is most closely
related to the refinement step for under-approximations on the CNF layer intro-
duced in [12].

3 Preliminaries

In the following, we introduce notations, the necessary background on finite state
transition systems, and a basic review of PDR.

3.1 Basics and Notations

We discuss reachability analysis in finite state transition systems for the verifi-
cation of invariant properties. In a finite state transition system we have a finite

Making PROGRESS in Property Directed Reachability 359

set of states and a transition relation which encodes transitions between states
under certain inputs. States are obtained by assigning Boolean values to the
(present) state variables #«s = (s1, . . . , sm), inputs by assigning Boolean values
to the input variables

#«
i = (i1, . . . , in). For representing transitions we intro-

duce a second copy #«s ′ of the state variables, the so-called next state variables.
The transition relation is then represented by a predicate T (#«s ,

#«
i , #«s ′), the set

of initial states by a predicate I(#«s). The set of unsafe states are represented by
a predicate ¬P (#«s). For brevity, we often omit the arguments of the predicates
and write them without parenthesis.

A literal represents a Boolean variable or its negation. Cubes are conjunctions
of literals, clauses are disjunctions of literals. The negation of a cube is a clause
and vice versa. A Boolean formula in Conjunctive Normal Form (CNF) is a
conjunction of clauses. As usual, we often represent a clause as a set of literals
and a CNF as a set of clauses. A cube c = sσ1

i1
∧ . . . ∧ sσk

ik
of literals over state

variables with ij ∈ {1, . . . , m}, σj ∈ {0, 1}, s0ij = ¬sij and s1ij = sij represents
the set of all states where sij is assigned to σj for all j = 1, . . . , k. We usually
use letters c or ĉ to denote cubes of literals over present state variables, d′ or
d̂′ to denote cubes of literals over next state variables, and i to denote cubes
of literals over input variables. By minterms (often named m) we denote cubes
containing literals for all state variables. Minterms represent single states.

We assume that the transition relation T of a finite state transition sys-
tem has been translated into CNF by standard methods like [40]. Modern SAT
solvers [39] are able to check the satisfiability of Boolean formulas in CNF. Fur-
thermore, SAT-based Model Checking heavily relies on incremental SAT solv-
ing [25]. Incremental SAT solvers allow for several queries on the same solver
instance, reusing knowledge (e.g. conflict clauses) from previous runs. To each
query so called assumptions can be added. These are literals which are conjoined
to the solvers’ internal CNF formula for exactly one query - and removed after-
wards. In the case of an unsatisfiable solver call, most modern incremental SAT
solvers are able to give a reason for the unsatisfiability, e.g. a so called UNSAT-
core which contains a subset of the assumption literals which is sufficient to
cause unsatisfiablity.

Reachability analysis (e.g. by PDR) often makes use of special properties
of the transition relation T . E.g., when T results from a circuit, then it repre-
sents a function, i.e., it is right-unique and left-total. A relation T (#«s ,

#«
i , #«s ′) is

right-unique iff for all assignments #«σ to #«s and #«ι to
#«
i there is at most one

assignment #«σ ′ to #«s ′ such that (#«σ , #«ι , #«σ ′) ∈ T . T (#«s ,
#«
i , #«s ′) is left-total iff for all

assignments #«σ to #«s and #«ι to
#«
i there is at least one assignment #«σ ′ to #«s ′ such

that (#«σ , #«ι , #«σ ′) ∈ T .

3.2 An Overview of PDR

In this paper, we consider Property Directed Reachability (PDR) [18] (also called
IC3 [9]). PDR produces stepwise reachability information in time frames without
unrolling the transition relation as in Bounded Model Checking (BMC) [3]. Each
time frame k corresponds to a predicate Fk represented as a set of clauses, leading

360 T. Seufert et al.

1 function Pdr(I, T , P)

2 if BaseCases() = ‘Unsafe’ then return ‘Unsafe’
3 while true do
4 if Strengthen() = ‘Unsafe’ then return ‘Unsafe’
5 N ← N + 1, add new FN ← P /* New time frame. */

6 if Propagate() = ‘Safe’ then return ‘Safe’

Algorithm 1: PDR: main loop.

1 function Strengthen()

2 while SAT?[FN ∧ T ∧ ¬P ′] do /* SAT: error predecessor */

3 m ← satisfying present state assignment
4 c ← SatGeneralization(m)

5 if ResolveRecursively(c, N) = ‘Unsafe’ then return ‘Unsafe’

6 return ‘strengthened’ /* successfully strengthened. */

Algorithm 2: PDR: strengthen the trace.

to a ‘trace’ of predicates F0, . . . , FN in main loop N of PDR.1 F0 is always equal
to I(#«s), for k ≥ 1 Fk over-approximates the set of states which can be reached
from I(#«s) in up to k steps, and the state sets F0, . . . , FN are monotonically
increasing by construction.

The PDR main algorithm (see Algorithm 1) first excludes error paths of
lengths 0 and 1 in procedure BaseCases() (line 2) by proving unsatisfiability of
I ∧ ¬P and I ∧ T ∧ ¬P . If there is no counterexample in BaseCases(), N is
initialized to 1, F1 is initialized to P and F1 thus overapproximates the states
reachable in up to one step. In general, PDR tries to prove the absence of error
paths of length N +1 in the main loop N of Algorithm 1 by extracting single step
predecessors of ¬P (#«s). To do so, the procedure Strengthen() (Algorithm 2) is
called in line 4. If a predecessor minterm m is detected in line 2 of Algorithm 2, it
is extracted from the satisfying assignment. Furthermore, m is ‘generalized’ (line
4) to a cube c where c represents only predecessor states of the unsafe states.
Now it has to be proven that there is no path from the initial states to c. To do so,
the proof obligation (c,N) (also called Counterexample To Induction (CTI)) has
to be recursively resolved by calling ResolveRecursively(c,N) (Algorithm 3)
in line 5.

In general, a proof obligation(d, k) leads to new SAT calls SAT? [Fk−1 ∧
T ∧ d′] (line 4 of Algorithm 3).2 If this SAT query is unsatisfiable, then d

has no predecessor in Fk−1 and (after a possible generalization into d̂ (line 8))
this cube can be blocked in Fk by Fk ← Fk ∧ ¬d̂. (Since the sets F0, . . . , Fk

1 In the following we often identify predicates Fk with the state sets represented by
them. We further identify the predicate T with the transition relation represented
by it.

2 It can be proven that strengthening the SAT query into SAT? [¬d ∧ Fk−1 ∧ T ∧ d′]
by adding ¬d does not affect the correctness of the overall method [9].

Making PROGRESS in Property Directed Reachability 361

1 function ResolveRecursively(d, k)
2 if k = 0 then /* Proof obligation in frame 0. */

3 return ‘Unsafe’

4 while SAT?[¬d ∧ Fk−1 ∧ T ∧ d′] do /* SAT: predecessor in Fk−1 */

5 m̂ ← satisfying present state assignment
6 ĉ ← SatGeneralization(m̂)

7 if ResolveRecursively(ĉ, k − 1) = ‘Unsafe’ then return ‘Unsafe’

8 d̂ ← UnsatGeneralization(d) /* d unreachable in up to k steps */

9 F1 ← F1 ∧ ¬d̂, . . . , Fk ← Fk ∧ ¬d̂
10 return ‘resolved’

Algorithm 3: PDR: recursively resolve proof obligation (d, k).

1 function Propagate()

2 for i ∈ {1, . . . , N − 1}, c blocked in Fi do
3 if ¬ SAT?[Fi ∧ T ∧ c′] then
4 Fi+1 ← Fi+1 ∧ ¬c /* UNSAT: push forward */

5 if Fi ≡ Fi+1 then
6 return ‘Safe’ /* Proof of safety. */

7 return ‘propagated’

Algorithm 4: PDR: propagate blocked cubes forward.

are monotonically increasing by construction, ¬d̂ can then be blocked from all
previous Fi with 0 < i < k as well (line 9).) If the SAT query in line 4 is
satisfiable, a new predecessor minterm m̂ has been found (line 5), it is again
generalized and a new proof obligation (ĉ, k −1) at level k −1 is formed (lines 6,
7).

If all proof obligations have been recursively resolved and the SAT query from
Strengthen() becomes unsatisfiable, then the trace is strong enough to prove
the absence of counterexamples of length N + 1. Then, Algorithm 1 increments
N by 1 and initializes FN by P . After that, Algorithm 1 tries to propagate
all recently blocked cubes (learned clauses) into higher time frames by calling
Propagate() (Algorithm 4) in line 6. PDR terminates, if a proof obligation in
frame 0 is found in line 3 of ResolveRecursively, or if some Fi and Fi+1 become
equivalent in line 6 of Propagate. In the latter case an inductive invariant Fi

has been found.
Function SatGeneralization(m) generalizes proof obligations originating

from a satisfiable solver call and UnsatGeneralization(c) generalizes blocked
cubes originating from an unsatisfiable one. Usually, SatGeneralization
applies techniques like ternary simulation [18] or lifting [14,34], whereas
UnsatGeneralization may subsequently remove literals from c and check if
it still remains unreachable [18] (‘literal dropping’). Apart from those gener-
alizations, a few other optimizations contribute to the efficiency of PDR. We
focus on one particular optimization which enables PDR to find counterexam-

362 T. Seufert et al.

ples which are longer than the trace. When inserting the proof obligation (d, k),
we know that we can reach ¬P (#«s) from all states in the cube d. Therefore PDR
can insert also proof obligations (d, l) with k < l ≤ N , since traces from I(#«s) to
d of lengths larger than k should also be excluded, if the property holds. Thus,
instead of recursive calls for proof obligations a queue of proof obligations is used
and proof obligations are dequeued in smaller time frames first.

4 Restrictions

We consider the notion of restrictions in contrast to abstractions. While abstrac-
tions over-approximate the behaviour of the transition relation T , restrictions
under-approximate it. We restrict variables to constant values.

Definition 1. Consider a set of signal variables V = {s1, . . . , sm, s′
1, . . . , s

′
m,

i1, . . . , in} (representing present resp. next state variables and input variables).
A restriction function ρ : V �→ {0, 1} maps signal variables to constants 0 or 1.
A restriction set R is a subset of V , the set of restricted variables. A restriction
for restriction function ρ and restriction set R is the function ρR : R �→ {0, 1}
with ρR(v) = ρ(v) for all v ∈ R .

Applying a restriction ρR with R = {v1, . . . , vp} to a transition relation
T means replacing T by T ρR = T ∧ CρR with CρR =

∧p
i=1(vi ≡ ρ(vi)) =

∧p
i=1 v

ρ(vi)
i . Since our method fixes the restriction function ρ in the beginning

and changes (reduces) only the set of restricted variables R, we will simply
write CR instead of CρR and TR instead of T ρR in the following. Obviously,
every transition (s, i, t) ∈ TR is also a transition in T but not vice-versa. Thus,
when considering a safety model checking problem, a counterexample under
some restriction is also a counterexample in the original system. A proof of safety
though could be spurious, since the restricted system may miss transitions which
are present in the original system.

In the following we analyze how exactly restrictions affect the main ingredi-
ents of PDR.

4.1 Finding Proof Obligations

PDR proof obligations produced under a restricted transition relation TR are
also valid proof obligations under the original transition relation T . By definition,
every single state of a proof obligation p under TR reaches the unsafe states. Since
every state which is reachable from p under TR is also reachable under T (TR

under-approximates T), the proof obligation p is also a valid proof obligation
under T . However, this does not hold vice versa. A proof obligation under T
might not have a valid successor under TR which then implies that it is not
a predecessor of the unsafe states and therefore it is not a proof obligation
under TR. Thus, due to the restriction we may miss proof obligations, we may
conclude the absence of error paths up to some length i prematurely, and we
may miss counterexamples.

Making PROGRESS in Property Directed Reachability 363

4.2 Generalizing Proof Obligations

Most commonly, generalization of proof obligations is done by applying lift-
ing [14,34]. An important precondition for the correctness of lifting is left total-
ity, which is (apart from right uniqueness) one part of the function property.
This precondition is fulfilled, if T represents a digital circuit (which we assume
in this paper) and therefore behaves like a function. When we encounter a proof
obligation state m as a predecessor of proof obligation d under input i, lifting
removes literals from m, leading to s, as long as the formula s ∧ i ∧ T ∧ ¬d′

remains unsatisfiable. If this formula is unsatisfiable, all s-states do not have
successors under i into ¬d′. It is easy to see that we may add all s-states to
the proof obligation then: It follows directly from left totality that if from some
state there is no successor under i into ¬d′, there has to be a successor under
i into d′. Therefore, since d is a proof obligation, all s-states can be considered
proof as obligation states, i.e., predecessors of the unsafe states.

However, restricted state variables may break the left totality of the transi-
tion relation. Due to restricted state variables it is possible, e.g., that we may
encounter dead-end states (with no successor at all). Consider a state m = s ∧ l
with a literal l. Assume that m is a proof obligation as a predecessor of proof obli-
gation d under input i wrt. TR. Now assume that s ∧ ¬l violates the restriction
and thus is a dead-end state under TR. If T is right unique, then s ∧ i ∧ TR ∧ ¬d′

is unsatisfiable and lifting would erroneously classify s as a proof obligation.
Thus, applying lifting to restricted transition relations TR may lead to spurious
counterexamples.

The easiest way out is to just use proof obligation generalization techniques
which do not depend on left totality, like don’t care reasoning with ternary
logic [18,20] or the Implication Graph Based Generalization (IGBG) from [34,
38]. IGBG traverses the implication graph of the SAT solver backwards and
determines which assignments to present state variables were responsible for
implying a particular next state valuation.

Another possibility is to extend lifting as follows. Assume that we have a proof
obligation cube d and a predecessor state (minterm) m where m ∧ i ∧ TR ∧ d′

is satisfiable. Standard lifting would verify SAT?[m ∧ i ∧ TR ∧ ¬d′]. We recall
that m could be enlarged by adding states m̂ for which m̂ ∧ i ∧ TR is already
unsatisfiable. To work around this, we can alter lifting and employ the original
unconstrained transition relation T . We consider the call SAT?[m ∧ i ∧ T ∧
(¬d′ ∨ ¬CR)]. Assume that this SAT instance is unsatisfiable even for a sub-
cube s instead of m (resulting from the computation of an unsatisfiable core).
Unsatisfiability implies that each satisfying assignment to s ∧ i ∧ T satisfies
d′ ∧ CR. Since T is left total, each s-state m̂ has indeed a successor under i wrt.
T . Thus, each s-state m̂ has a successor in d under i wrt. TR = T ∧ CR, i.e., s
is a proof obligation wrt. TR. We will evaluate in Sect. 7 which variant achieves
the best results.

4.3 Blocking Cubes

A cube d may be blocked in frame Fi once the formula ¬d ∧ Fi ∧ T ∧ d′ is
unsatisfiable. However, the formula ¬d ∧ Fi ∧ TR ∧ d′ with a restricted transition

364 T. Seufert et al.

relation TR, which under-approximates T , is more likely to be unsatisfiable.
Thus, if d can be blocked under T it can also be blocked under TR but not
necessarily vice versa. Hence, we may encounter spuriously blocked cubes under
restrictions.

4.4 Generalizing Blocked Cubes

Interestingly, with restrictions on next state variables there are constellations
for which the literals can be immediately removed from a blocked cube without
additional SAT checks when generalizing blocked cubes, i.e., when removing
literals from d resulting in d̂ such that ¬d̂ ∧ Fi ∧ TR ∧ d̂′ is still unsatisfiable.
This can be easily seen when considering the idea of literal dropping [18,34] which
is usually done after the extraction of an unsatisfiable core during generalization
of blocked cubes. Literal dropping sequentially tries to remove literals l from
blocked cubes. However, it is easy to see that all literals l occurring in d where the
corresponding next state literal l′ is in R and l′ is consistent with the restrictions,
i.e., l′ = s′

i
ρ(s′

i) for some next state variable s′
i, can immediately be removed from

d: Let d = d̃ ∧ s
ρ(s′

i)
i , s′

i ∈ R, and let ¬d ∧ Fi ∧ TR ∧ d′ be unsatisfiable. Since
¬s′

i
ρ(s′

i) ∧ CR = 0, ¬(d̃ ∧ ¬s
ρ(s′

i)
i) ∧ Fi ∧ TR ∧ d̃′ ∧ ¬s′

i
ρ(s′

i) is unsatisfiable
as well and so ¬d̃ ∧ Fi ∧ TR ∧ d̃′ is unsatisfiable. Thus, additional SAT checks
for removing literals with the mentioned property from d are not needed. As a
result, restrictions may lead to more general blocked cubes.

However, a blocked cube (learned clause) may be spurious iff the unsatisfi-
ability proof used to block or generalize it is based on restrictions or any other
spurious cube blocked in Fi.

4.5 Overall Algorithm

Counterexamples under restrictions are valid for the original sequential circuit if
the generalization of proof obligations is applied in a correct way (see Sect. 4.2).
Since proofs based on restricted transition relations may be spurious, we will
need a coarsening approach, which is able to detect spurious proofs and relax
the restrictions accordingly, such that PDR will not find the same spurious proof
again. The observations made above imply that we can re-use proof obligations
with relaxed restrictions, but we have to be careful when re-using blocked cubes.

5 Skipping Restrictions by Analyzing a Spurious Proof

In this section we present the main idea of Proof-Guided Restriction Skipping
(PROGRESS) in the context of PDR. Note that this idea does not really depend
on using PDR, but is applicable to any verification method providing safety
proofs in form of safe inductive invariants [9].

PDR decides that a system under verification is safe once it has found a
CNF formula Inv which represents a safe inductive invariant. To act as a safe
inductive invariant, Inv must satisfy certain requirements.

Making PROGRESS in Property Directed Reachability 365

Definition 2. A boolean formula Inv is a safe inductive invariant, iff I =⇒
Inv, Inv ∧ T =⇒ Inv ′, and Inv =⇒ P holds.

In Sect. 4 we discussed how PDR under a restriction ρR may find spurious
inductive invariants. Here we discuss how to detect whether a safe inductive
invariant is spurious or not, i.e., whether it is a safe inductive invariant for the
unrestricted system or not. Furthermore, we present an algorithm which detects
restrictions that are responsible for a spurious proof and removes them from the
set of restricted variables accordingly.

5.1 Detecting Spurious Proofs in PDR

PDR deduces safety of a system, if the CNF formulae of two adjacent time frames
i and i+1 are equivalent, i.e., if Fi ≡ Fi+1, see Sect. 3.2. Hence, we assume that
Inv = Fi. The first property I =⇒ Inv holds by definition of PDR, since Fi

over-approximates the states which are reachable from I within up to i steps.
The second property Inv ∧ T =⇒ Inv ′ is satisfied, since Fi ∧ T =⇒ F ′

i+1

holds as an invariant of the PDR algorithm and Fi ≡ Fi+1 as well as Inv = Fi.
The third property Inv =⇒ P holds by definition of PDR based on [9], which
initializes the time frame formula FN with P in main loop N (see Sect. 3.2).

Now assume a restricted transition relation TR. We assume that PDR with
transition relation TR does not find a counterexample, but a safe inductive
invariant Inv . Note that we change only T into TR by the restriction ρ, we do
not change I and P . Therefore it immediately follows that I =⇒ Inv and
Inv =⇒ P . However, the property Inv ∧ TR =⇒ Inv ′ may hold only due to
the restrictions. In order to detect whether Inv is also an invariant under the
unrestricted transition relation T we can use a SAT solver: We insert

∧
v∈R vρ(v)

as assumptions into the SAT solver [19] and call the SAT solver on the unre-
stricted transistion relation with Inv ∧ T ∧ ¬Inv ′. The call will be unsatisfiable
since assuming the restrictions is equivalent to using the restricted transition
relation TR. If the UNSAT-core over the assumptions contains at least one of
the restricted variables, we conclude that the invariant may be spurious and may
hold only due to the imposed restrictions. If not, the restrictions are not needed
to prove that Inv ∧ T =⇒ Inv ′, i.e., Inv is a safe inductive invariant wrt. T .

5.2 Restriction Skipping Loop

In Algorithm 5 we present a main ingredient of Proof-Guided Restriction Skip-
ping (PROGRESS) which we call the Restriction Skipping Loop. We check the
satisfiability of Inv ∧ T ∧ ¬Inv′ (line 4) with assumptions

∧
v∈R vρ(v) (line 3) as

already mentioned above. If the SAT solver returns UNSAT, then the UNSAT-
core of the SAT solver can then be used to guide the removal of restrictions.
For removing restrictions we have implemented two options: The ‘careful’ app-
roach removes exactly one restriction from the UNSAT core (line 13) and checks
whether it was sufficient to break the possibly spurious invariant and the ‘aggres-
sive’ approach removes all restrictions occurring in the UNSAT core at once

366 T. Seufert et al.

1 function RestrictionSkippingLoop(Inv)
2 while true do

3 Assume
∧

v∈R vρ(v) /* Assume restrictions. */

4 if SAT?[Inv ∧ T ∧ ¬Inv′] then
5 /* Invariant spurious, retracted enough to break it. */

6 return Spurious

7 else
8 if UNSAT core contains no variable v with v ∈ R then
9 /* No restriction in UNSAT core, correct proof. */

10 return Safe

11 else
12 if careful then
13 skip one restriction appearing in the UNSAT core from R

14 else
15 skip all restrictions appearing in the UNSAT core from R

Algorithm 5: The Restriction Skipping Loop.

(line 15). Removing restrictions just means adding transitions to the transition
relation TR. If we finally arrive at line 6, we have removed enough restrictions
such that the resulting TR contains at least one transition from Inv to ¬Inv.
i.e., the safe invariant has been destroyed and in the overall algorithm we can
start over with the reduced set R of restrictions.3 If we arrive at line 10, we
have been able to prove that removing more restrictions will never destroy the
invariant and the (unrestricted) system is safe. The different strategies (line 13
vs. 15) will be subject to our empirical evaluation in Sect. 7.

6 Implementation of PROGRESS-PDR

We present our implementation of PDR, called PROGRESS-PDR, which imple-
ments restrictions and the restriction skipping loop from Sect. 5. The algorithm
is shown in Algorithm 6. In the following we will discuss the different parts of
the algorithm in more detail.

6.1 Combining PROGRESS-PDRwith Standard PDR

PROGRESS-PDR is meant to supplement PDR’s capabilities of finding deep
counterexamples. Therefore, there may be instances (especially safe instances)
for which standard PDR could be of better use. In order to profit from the

3 In this case the Restriction Skipping Loop has finally computed an approximate
solution to the partial MaxSAT [29] problem

∧
v∈R vρ(v) ∧ Inv ∧ T ∧ ¬Inv′ with

{vρ(v)} as soft clauses.

Making PROGRESS in Property Directed Reachability 367

1 function ProgressPdr()

2 resPDR ← Pdr(I, T , P , ‘check stuck’) /* Safe/Unsafe/Stuck */

3 if resPDR �= ‘Stuck’ then return resPDR

4 Ninit ← N , F init
1 ← F1, . . . , F

init
N ← FN

5 PO ← ∅ /* Discard proof obligations. */

6 /* F1, . . . , FN remain for next PDR run. */

7 R ← InitRestrictionSet(), ρ ← InitRestrictionFunction()

8 HandleTrivialCases(R)

9 nspurious ← 0
10 while true do
11 resPDR ← Pdr(I, T R, P) /* returns Safe or Unsafe */

12 if resPDR = ‘Unsafe’ then return ‘Unsafe’
13 if resPDR = ‘Safe’ then /* Proof may be spurious! */

14 resRSL ← RestrictionSkippingLoop(InvR)
15 if resRSL = ‘Safe’ then return ‘Safe’
16 if resRSL = ‘Spurious’ then /* Spurious, R was reduced. */

17 nspurious ← nspurious + 1
18 if nspurious > cspurious then
19 R ← ∅ /* Remove all restrictions. */

20 /* Proof obligations PO remain for next PDR run. */

21 N ← Ninit

22 F prev
1 ← F1

23 if R �= ∅ then
24 F1 ← P, . . . , FN ← P

25 else
26 F1 ← F init

1 , . . . , FN ← F init
N

27 for c blocked in F prev
1 do

28 if ¬ SAT?[¬c ∧ F0 ∧ T R ∧ c′] then F1 ← F1 ∧ ¬c

29 Propagate()

Algorithm 6: Overall approach PROGRESS-PDR.

advantages of both worlds, we start with a run of standard PDR (line 2 of Algo-
rithm 6) and use restrictions and restriction skipping only if PDR gets ’stuck’.
This is similar to the approach in [35] which employs k-induction if PDR starts
to exhaustively enumerate states due to the lack of strong generalization. By
‘stuck’ we mean that PDR does not advance fast enough in the number of open
time frames, i.e., within main loop N PDR is busy with handling proof obligation
after proof obligation, but is not able to prove the absence of counterexamples
of length N for a long time. In our implementation we heuristically detect such
a situation as follows: Starting from a fixed initial number of time frames (we
choose 3 in our implementation) we store the number of proof obligations nPO

that have been resolved so far at the moment when standard PDR is about to
open a new time frame. If the next main iteration of PDR (that strengthens the
new time frame) produces a larger number of proof obligations than nPO , we

368 T. Seufert et al.

consider the execution as ‘stuck’ and we will switch to PDR with restrictions.
Note that in PROGRESS-PDR we can always re-use the complete trace with
its clauses and time frames from the standard PDR execution which we have
aborted, since the restriction gets stronger and not weaker, but the unresolved
proof obligations from the aborted standard PDR run have to be discarded,
since they will not be necessarily proof obligations in the following PDR run
with restrictions (see lines 5, 6).

6.2 Choosing Appropriate Restrictions

Now we introduce restrictions, i.e., we choose a restriction function ρ and a
set R of restricted variables (line 7). Choosing the most effective restrictions in
order to find deep counterexamples is a challenging task. For our study we use
the simplest possible method: We start with restrictions on all primary inputs,
present state and next state variables and we initially restrict them with 0. (In
our experiments we also consider a variant restricting primary inputs and present
state variables only.) Advanced heuristics for choosing initial restrictions remain
as future work. Apparently, too many restrictions may cause the verification
problem to become trivial. For instance, the restricted transition relation TR

may even become empty. Therefore, after initializing R and ρ, we immediately
call HandleTrivialCases(R) in line 8 which subsequently removes variables
from R until (I ∧ TR), (TR ∧ P ′), as well as (TR ∧ ¬P ′) become satisfiable,
i.e., until there is at least one transition in TR starting from I (otherwise the
restricted system is trivially safe), there is at least one transition in TR leading to
P (otherwise the restricted system is trivially unsafe, if there are any transitions
from I in TR), and there is at least one transition in TR leading to ¬P (otherwise
the restricted system is trivially safe).

6.3 PDR with Restrictions

Now PDR is applied with the chosen restrictions on T (line 11). If we encounter
a counterexample, we know (according to Sect. 4) that it is valid and terminate
concluding that the design is unsafe (line 12). If we encounter a safe induc-
tive invariant InvR, we check whether it is spurious (according to Sect. 5.1)
(line 14). If it is a valid inductive invariant, we terminate concluding that the
design is safe (line 15). If not, we retract with our Restriction Skipping Loop
a number of restricted variables from R until InvR is not an inductive invari-
ant anymore (line 13). Apparently, finding spurious safe inductive invariants,
retracting restrictions accordingly, and starting over comes with additional cost.
Therefore we count the number nspurious of coarsenings by restriction skipping
and reset R to ∅ as soon as nspurious exceeds some upper limit cspurious (in our
implementation we use cspurious = 20) (line 19).

6.4 Re-using Information from Previous Restricted PDR Run

Before we start over PDR with the reduced restriction set R (and unchanged
restriction function ρ), we prepare to re-use certain parts of the previous PDR

Making PROGRESS in Property Directed Reachability 369

run for the next one. For instance, we may re-use proof obligations (line 20 –
we assume that the proof obligations from the previous run are stored in a set
PO), since these are still valid predecessors of the unsafe states (see Sect. 4).

We are also able to re-use certain learned clauses (blocked cubes). We recall
that cubes may be blocked early due to the restrictions on variables from R.
Here, we call the set of restricted variables from the previous run (before we
encountered a spurious proof and reduced it) Rprev . Assume that with Rprev

cube c can be blocked in frame Fi+1, because the formula ¬c ∧ Fi ∧ TRprev ∧ c′ is
unsatisfiable. If c has been blocked in the previous run with TRprev

, and cannot be
blocked in the run with TR, we distinguish two cases: (1) There are transitions
from ¬c ∧ Fi to c′ in TR which had been removed from TRprev

by stronger
restrictions. (2) Such transitions are not directly removed by restrictions in the
previous run, but in the previous run Fi already contained spurious clauses which
exclude valid predecessors of c′ from the state space.

One option for re-using learned clauses would be similar to the technique
from Sect. 5. For a blocked cube c we could compute by using assumptions and
UNSAT-core analysis a subset of restrictions and clauses in Fi which are suf-
ficient for making ¬c ∧ Fi ∧ TR ∧ c′ unsatisfiable. If the same analysis had
been done for the clauses in Fi, we could compute by transitivity the subset
of restrictions which are directly or indirectly involved in the blocking of cube
c. This directly reveals which learned clauses can be safely re-used in the new
run with relaxed restrictions R. Such an analysis entails additional effort and an
intensive bookkeeping. Moreover, it could over-estimate the set of restrictions
needed for blocking a cube c. Therefore we prefer a much simpler approach for
re-using learned clauses in this paper:

For the next PDR run we set the number N of open frames apart from F0 to
Ninit which is the same number occurring in the initial standard PDR run that
was stuck (see lines 4 and 21). Moreover, we open N additional frames F1, . . . , FN

(apart from F0 = I) for the next PDR run (line 24). Since in the initial standard
PDR run is has been proven that there are no traces from I to ¬P of lengths
up to N under T , there are no traces from I to ¬P of lengths up to N under TR

(which is an underapproximation of T) either. So P overapproximates the set
of states reachable in up to N steps under TR and thus it is sound to initialize
F1, . . . , FN with P . Now we validate for all blocked cubes from the previous run
(under Rprev) whether they can be blocked in the first time frame F1 of our new
run (under relaxed restrictions R) (line 28). (Note that due to monotonicity of
the frames in PDR all cubes blocked in some arbitrary time frame Fi are blocked
in F1 as well.) We start a propagation phase (as in standard PDR) and try to
subsequently block the cubes in higher time frames (line 29). Line 26 considers
the special case R = ∅ where TR = T . Apparently, we can restore all sets Fi

from the initial standard PDR run in this case (see lines 4 and 26).

7 Experimental Results

We discuss the results of our approach on Hardware Model Checking Com-
petition (HWMCC) benchmarks. All experiments have been performed on the

370 T. Seufert et al.

HWMCC benchmark sets (626 benchmarks in total) of the latest three competi-
tions (2017, 2019 and 2020) [4,6,33]. For 2019 and 2020 we have only considered
the AIGER [5] benchmarks (bit-vector track), since our tool does not support
word-level verification. We limited the execution time to3600 s and set a memory
limit of 7 GB. We used one core of an Intel Xeon CPU E5-2650v2 with 2.6 GHz.
We provide a reproduction artifact under [37].

Our implementation of PROGRESS-PDR uses IC3ref [8] as its PDR core.
Stand-alone IC3ref (without any preprocessing) is competitive [21,36], well-
known and commonly referenced in the literature. Therefore, it is a perfect fit
for the demonstration of our algorithm. To justify our selection of IC3ref [8] as
the basis for our algorithmic extensions as well as comparisons we also compare
our results to the PDR implementation of ABC4 [10]. Moreover, we compare the
results to the BMC implementation (bmc2) of ABC. We ran both ABC tools
in their default configuration. We made only one change to IC3ref and replaced
the lifting procedure for proof obligation generalization by IGBG from [34,38]
(see Sect. 4.2). Replacing lifting in IC3ref has two advantages: IGBG is slightly
better than the standard lifting implementation in IC3ref (which we have shown
in previous work [38]). Moreover, IGBG requires for its correctness only right-
uniqueness of the transition relation and is therefore able to cope with invariant
constraints (imposed on HWMCC’19 and ’20 benchmarks) without any changes
as well as with restricted transition relations used in PROGRESS-PDR. In the
following, we address the IC3ref implementation with IGBG and without restric-
tions as ‘standard PDR’ or just ‘PDR’.

We use MiniSat v2.2.0 [19] as a SAT solver. Furthermore, we test whether
PROGRESS-PDR is dominated by PDR with preprocessing the AIGER spec-
ifications with Cone-Of-Influence (COI) reduction. As an implementation for
COI reduction we use the one from IIMC [22]. We also compare PROGRESS-
PDR to BMC which uses the same interface to the AIGER model with the same
transition relation (preprocessed with variable elimination of MiniSat).

Although the different methods have complementary strengths and weak-
nesses, we refrain from considering portfolio approaches combining different
methods and rather focus on the contribution of single approaches for clearer
comparisons. Moreover, we do not affect our comparisons by orthogonal methods
like preprocessing with sequential circuit transformations.

7.1 Design Decisions for PROGRESS-PDR

First, in this section we justify our design decisions made for PROGRESS-PDR
by analyzing the impact of different alternatives. We decided to use the fol-
lowing options: In PROGRESS-PDR we always re-use blocked cubes (learned
clauses) after restriction skipping and check whether they can be blocked also
with less restrictions. Moreover, we re-use proof obligations from the previous

4 Berkeley Logic Synthesis and Verification Group, ABC: A System for Sequential
Synthesis and Verification, ABC 1.01 (downloaded Jul 13 2021). http://www.eecs.
berkeley.edu/∼alanmi/abc/.

http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.eecs.berkeley.edu/~alanmi/abc/

Making PROGRESS in Property Directed Reachability 371

Table 1. Different variants of PROGRESS-PDR.

Variant Unsafe Unsafe (≥30) Safe MO/TO

Standard PDR 69 15 293 264

PROGRESS-PDR 84 27 293 249

Restricting all state variables + inputs 79 25 292 255

Restricting present state variables + inputs 82 26 290 255

Restricting only present state variables 77 22 290 259

No re-used blocked cubes 73 20 291 262

No re-used proof obligations 82 26 293 251

Aggressive retracting 77 23 289 260

Modified Lifting 77 22 284 265

run with more restrictions without needing additional checks. We restrict only
state variables instead of restricting inputs. When encountering a spurious proof,
we carefully retract restrictions within the restriction skipping loop from Sect. 5.2
(one-by-one until a spurious invariant is broken) instead of aggressively retract-
ing all restrictions from the UNSAT-core of the SAT solver. Finally, we use
IGBG for proof obligation generalization (instead of using the lifting approach
of [14,34] with the extension from Sect. 4.2).

In the first and second line of Table 1 we report the number of solved bench-
marks for standard PDR as well as PROGRESS-PDR. In the second column
‘unsafe’ we report the number of benchmarks for which we found counterexam-
ples, whereas in the third column ’unsafe (≥30)’ we report the number of bench-
marks for which we found deep counterexamples with a path length greater or
equal to 30. The fourth column ‘safe’ shows the number of benchmarks proved
to be safe and the last column shows the number of benchmarks where the time
or memory limit was exceeded.

We start our analysis by considering different sets of restricted variables.
Whereas all variants outperform standard PDR in finding counterexamples and
especially deep ones, we still observe some differences: In the third line, we
present the results for restricting primary inputs in addition to the state vari-
ables. This configuration performs slightly worse. The fourth line shows the
results for restricting primary inputs and present state variables, but no next
state variables. Again, the results are slightly worse than the standard configura-
tion with restrictions on present and next state variables. Interestingly though,
when we do not restrict next state variables but only present state variables,
we observed that it is beneficial to also restrict primary inputs (solving 5 more
unsafe instances than with only restricting present state variables, see line 5).

We believe that restricting not only present state but also next state variables
can be a powerful means, if we analyze rather loosely coupled circuits with inputs,
which may deactivate irrelevant (at least for disproving the safety property)
parts of the state space. These restrictions may simplify the verification problem
drastically and also support the generalization of blocked cubes in PDR, see

372 T. Seufert et al.

Sect. 4.4. Although the results in Sect. 7.2 will show that (syntactical) Cone-of-
Influence (COI) reduction does not have a significant impact on the considered
benchmarks, the given safety property may not be influenced by certain state
bits all the same (i.e., those state bits are not in the ‘semantic COI’). Fixing those
state bits to constants does not have an impact on the safety proof (apart from
simplifications by unit propagation and reduced state spaces) and, apparently,
it is often also not important to which value those state bits are fixed. However,
we conjecture that restricting primary input variables as well would improve if
we would replace our brute-force method of restricting inputs and state variables
just by a fixed constant 0 by a more informed restriction variant exploiting user
knowledge on inputs driving the design into potential error states. Nevertheless,
we expect that varying the classes of variables to be restricted could make sense
when considering different classes of benchmarks.

In the sixth line of Table 1 we show how the results change, if we do not re-
use blocked cubes from previous runs. The results clearly show that this leads to
significantly worse results - especially for deep counterexamples. Re-using cubes
seems to be vital for PDR to be able to progress faster after restarting with less
restrictions.

The seventh line shows a variant without re-using proof obligations from the
previous run with more restrictions. Re-using proof obligations helps, but not
as much as re-using blocked cubes. This could be due to the fact that proof
obligations are generated relatively quickly and are therefore less valuable (in
terms of computational effort) than blocked cubes which have been generalized
with much more effort using a loop performing literal dropping.

As line 8 of Table 1 shows, aggressively retracting all restrictions from the
UNSAT-core in case of a spurious proof (see Sect. 5.2) does not pay off. It seems
to be beneficial to carefully keep as many restrictions as possible.

Finally, it turned out (see line 9 of Table 1) that the lifting approach of [14,34]
with the extension from Sect. 4.2 is inferior to IGBG for proof obligation gen-
eralization. Solving 16 benchmarks less than PROGRESS-PDR with IGBG we
conclude that adapting and using the standard lifting procedure is not worthwile.

7.2 PROGRESS-PDRvs. PDR

We compare PROGRESS-PDR against standard PDR. We present the overall
results in Fig. 2 - including unsafe instances and also all kinds of counterexample
depths. We depict the graphs for only unsafe benchmarks in Fig. 3. Furthermore,
we also plot the graphs for unsafe benchmarks with counterexamples which are
represented by error paths with a length greater or equal to 30 in Fig. 4. All
comparisons show that our choice for ‘standard PDR’ (based on IC3ref) performs
pretty similar to the PDR implementation in ABC.

PROGRESS-PDR greatly outperforms standard PDR on benchmarks with
counterexamples present. The longer the error path, the stronger PROGRESS-
PDR gets, nearly doubling the amount of deep counterexamples solved by stan-
dard PDR. Regarding safe benchmarks, PROGRESS-PDR and PDR both prove
the absence of counterexamples in 293 problem instances. Interestingly though,
these instances are not identical. PROGRESS-PDR solves safe instances that

Making PROGRESS in Property Directed Reachability 373

Fig. 2. Results on all instances.

Fig. 3. Results on counterexamples.

PDR does not and vice versa. In summary, even though PROGRESS-PDR pri-
marily aims to increase the capability of finding counterexamples, we can also
observe an overall improvement.

We made the additional observation that for the instances solved by our
Restriction Skipping Loop on average 49.3% of the total number of state variables
were still under restriction after solving the instance and 5.65 restarts happened
due to spurious proofs.

We also investigate whether our PROGRESS-PDR approach is dominated by
simple COI reduction. It could be the case, that the remaining restrictions after
some restriction skipping loops simply restrict variables which would have been
removed by COI reduction anyway. However, our experimental results show that
this can rarely be the case. The results for PDR and PDR with COI reduction
are pretty similar in Figs. 2, 3, and 4 with really visible differences only in Fig. 2.
This shows that COI reduction does not help for the considered benchmarks
whereas PROGRESS-PDR does.

7.3 PROGRESS-PDR vs. BMC

To evaluate the effectiveness of PROGRESS-PDR we compare it to the most
common SAT-based bug hunting technique, namely BMC. We depict our results

374 T. Seufert et al.

Fig. 4. Results on deep counterexamples.

in the cactus plot of Fig. 3 and for deep counterexamples (with an error path
of length greater or equal to 30) in Fig. 4. While BMC achieves similar results
as PROGRESS-PDR in the number of solved instances on the set of all unsafe
benchmarks (benchmarks with counterexamples), it is greatly outperformed by
PROGRESS-PDR on deep counterexamples. Even standard PDR is able to meet
the results of BMC when it comes to deeper counterexamples. This can be
explained by the size of SAT problems produced by circuit unrolling in BMC
for deep counterexamples. Note that for our results COI reduction has been
performed on the BMC instances, but it did not help much. As the results also
show, exchanging our BMC implementation with the BMC implementation of
ABC does not change the experimental findings above.

8 Conclusions and Future Work

With PROGRESS-PDR, we presented a complete and fully automatic approach
for applying PDR to a system under restrictions. We introduced PROGRESS
which - as a method that is dual to CEGAR - relaxes restrictions guided by
spurious proofs. We were able to show that PROGRESS-PDR greatly improves
upon PDR’s capabilities of finding counterexamples, especially those with long
error paths. Furthermore, our study shows that PROGRESS-PDR performs sig-
nificantly better than BMC on deep counterexamples.

Our results indicate that restrictions can be a powerful tool for safety ver-
ification with PDR, even without domain knowledge on the structure of the
circuit or the property under verification. We conjecture that our results could
be further improved with such knowledge, for instance by distinguishing between
control and data signals and by considering signals activating parts of the circuit
which are relevant to a checked property.

User knowledge could also be beneficial for bug hunting by restricting internal
signals other than primary inputs and state variables or by initially restricting
signals with more sophisticated constraints instead of fixing signals to constants.

Making PROGRESS in Property Directed Reachability 375

References

1. Baumgartner, J., Ivrii, A., Matsliah, A., Mony, H.: IC3-guided abstraction. In:
FMCAD, pp. 182–185 (2012). https://ieeexplore.ieee.org/document/6462571/

2. Berryhill, R., Ivrii, A., Veira, N., Veneris, A.G.: Learning support sets in IC3 and
quip: the good, the bad, and the ugly. In: 2017 Formal Methods in Computer
Aided Design, FMCAD 2017, Vienna, Austria, 2–6 October 2017, pp. 140–147.
IEEE (2017). https://doi.org/10.23919/FMCAD.2017.8102252

3. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: TACAS, pp. 193–207 (1999). https://doi.org/10.1007/3-540-49059-0 14

4. Biere, A., van Dijk, T., Heljanko, K.: Hardware model checking competition (2017).
http://fmv.jku.at/hwmcc17/

5. Biere, A., Heljanko, K., Wieringa, S.: Aiger 1.9 and beyond (2011). http://fmv.
jku.at/hwmcc11/beyond1.pdf

6. Biere, A., Preiner, M.: Hardware model checking competition (2019). http://fmv.
jku.at/hwmcc19/

7. Birgmeier, J., Bradley, A.R., Weissenbacher, G.: Counterexample to induction
guided abstraction refinement (CTIGAR). In: CAV, pp. 831–848 (2014). https://
doi.org/10.1007/978-3-319-08867-9 55

8. Bradley, A.: Ic3 reference implementation (2013). https://github.com/arbrad/
IC3ref

9. Bradley, A.R.: Sat-based model checking without unrolling. In: VMCAI, pp. 70–87
(2011). https://doi.org/10.1007/978-3-642-18275-4 7

10. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 5

11. Brillout, A., Kroening, D., Wahl, T.: Mixed abstractions for floating-point arith-
metic. In: Proceedings of 9th International Conference on Formal Methods in
Computer-Aided Design, FMCAD 2009, 15–18 November 2009, Austin, Texas,
USA, pp. 69–76. IEEE (2009). https://doi.org/10.1109/FMCAD.2009.5351141

12. Brummayer, R., Biere, A.: Effective bit-width and under-approximation. In:
Moreno-Dı́az, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2009.
LNCS, vol. 5717, pp. 304–311. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04772-5 40

13. Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady, B.:
Deciding bit-vector arithmetic with abstraction. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 358–372. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-71209-1 28

14. Chockler, H., Ivrii, A., Matsliah, A., Moran, S., Nevo, Z.: Incremental formal veri-
fication of hardware. In: FMCAD, pp. 135–143 (2011). http://dl.acm.org/citation.
cfm?id=2157676

15. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

16. Dill, D.L., Wong-Toi, H.: Verification of real-time systems by successive over and
under approximation. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 409–422.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60045-0 66

https://ieeexplore.ieee.org/document/6462571/
https://doi.org/10.23919/FMCAD.2017.8102252
https://doi.org/10.1007/3-540-49059-0_14
http://fmv.jku.at/hwmcc17/
http://fmv.jku.at/hwmcc11/beyond1.pdf
http://fmv.jku.at/hwmcc11/beyond1.pdf
http://fmv.jku.at/hwmcc19/
http://fmv.jku.at/hwmcc19/
https://doi.org/10.1007/978-3-319-08867-9_55
https://doi.org/10.1007/978-3-319-08867-9_55
https://github.com/arbrad/IC3ref
https://github.com/arbrad/IC3ref
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1109/FMCAD.2009.5351141
https://doi.org/10.1007/978-3-642-04772-5_40
https://doi.org/10.1007/978-3-642-04772-5_40
https://doi.org/10.1007/978-3-540-71209-1_28
https://doi.org/10.1007/978-3-540-71209-1_28
http://dl.acm.org/citation.cfm?id=2157676
http://dl.acm.org/citation.cfm?id=2157676
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/3-540-60045-0_66

376 T. Seufert et al.

17. Eén, N., Mishchenko, A., Amla, N.: A single-instance incremental SAT formulation
of proof- and counterexample-based abstraction. In: Proceedings of 10th Interna-
tional Conference on Formal Methods in Computer-Aided Design, FMCAD 2010,
Lugano, Switzerland, 20–23 October 2010, pp. 181–188. IEEE (2010). https://
ieeexplore.ieee.org/document/5770948/

18. Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property
directed reachability. In: FMCAD, pp. 125–134 (2011). http://dl.acm.org/citation.
cfm?id=2157675

19. Eén, N., Sörensson, N.: An extensible SAT-solver. In: SAT, pp. 502–518 (2003).
https://doi.org/10.1007/978-3-540-24605-3 37

20. Franzén, A.: Efficient Solving of the Satisfiability Modulo Bit-Vectors Problem and
Some Extensions to SMT. Ph.D. thesis, University of Trento, Italy (2010). http://
eprints-phd.biblio.unitn.it/345/

21. Griggio, A., Roveri, M.: Comparing different variants of the ic3 algorithm for hard-
ware model checking. IEEE Trans. CAD Integr. Circuits Syst. 35(6), 1026–1039
(2016). https://doi.org/10.1109/TCAD.2015.2481869

22. Hassan, Z., Bradley, A.R., Somenzi, F.: Incremental, inductive CTL model check-
ing. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
532–547. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-
7 38

23. Hassan, Z., Bradley, A.R., Somenzi, F.: Better generalization in IC3. In: FMCAD,
pp. 157–164 (2013). https://ieeexplore.ieee.org/document/6679405/

24. Ho, Y., Mishchenko, A., Brayton, R.K.: Property directed reachability with word-
level abstraction. In: 2017 Formal Methods in Computer Aided Design, FMCAD
2017, Vienna, Austria, 2–6 October 2017, pp. 132–139. IEEE (2017). https://doi.
org/10.23919/FMCAD.2017.8102251

25. Hooker, J.N.: Solving the incremental satisfiability problem. J. Log. Program. 15(1
& 2), 177–186 (1993) 15(1&2), 177–186 (1993) 15(1&2), 177–186 (1993)

26. Ivrii, A., Gurfinkel, A.: Pushing to the top. In: FMCAD, pp. 65–72 (2015). https://
www.cs.utexas.edu/users/hunt/FMCAD/FMCAD15/papers/paper39.pdf

27. Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O.: Abstraction-based sat-
isfiability solving of presburger arithmetic. In: Alur, R., Peled, D.A. (eds.) CAV
2004. LNCS, vol. 3114, pp. 308–320. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-27813-9 24

28. Kurshan, R.P.: Computer-Aided Verification of Coordinating Processes. Princeton
University Press, Princeton (1994)

29. Li, C.M., Manya, F.: Maxsat, hard and soft constraints. Handb. Satisf. 185, 613–
631 (2009)

30. McMillan, K.L., Amla, N.: Automatic abstraction without counterexamples. In:
Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 2–17. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36577-X 2

31. Mishchenko, A., Eén, N., Brayton, R.K., Baumgartner, J., Mony, H., Nalla, P.K.:
GLA: gate-level abstraction revisited. In: Design, Automation and Test in Europe,
DATE 13, Grenoble, France, 18–22 March 2013, pp. 1399–1404. EDA Consortium
San Jose, CA, USA/ACM DL (2013). https://doi.org/10.7873/DATE.2013.286

32. Nopper, T., Scholl, C.: Symbolic model checking for incomplete designs with flex-
ible modeling of unknowns. IEEE Trans. Comput. 62(6), 1234–1254 (2013)

33. Preiner, M., Biere, A., Froleyks, N.: Hardware model checking competition 2020
(2020). http://fmv.jku.at/hwmcc20/

34. Ravi, K., Somenzi, F.: Minimal assignments for bounded model checking. In:
TACAS, pp. 31–45 (2004). https://doi.org/10.1007/978-3-540-24730-2 3

https://ieeexplore.ieee.org/document/5770948/
https://ieeexplore.ieee.org/document/5770948/
http://dl.acm.org/citation.cfm?id=2157675
http://dl.acm.org/citation.cfm?id=2157675
https://doi.org/10.1007/978-3-540-24605-3_37
http://eprints-phd.biblio.unitn.it/345/
http://eprints-phd.biblio.unitn.it/345/
https://doi.org/10.1109/TCAD.2015.2481869
https://doi.org/10.1007/978-3-642-31424-7_38
https://doi.org/10.1007/978-3-642-31424-7_38
https://ieeexplore.ieee.org/document/6679405/
https://doi.org/10.23919/FMCAD.2017.8102251
https://doi.org/10.23919/FMCAD.2017.8102251
https://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD15/papers/paper39.pdf
https://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD15/papers/paper39.pdf
https://doi.org/10.1007/978-3-540-27813-9_24
https://doi.org/10.1007/978-3-540-27813-9_24
https://doi.org/10.1007/3-540-36577-X_2
https://doi.org/10.7873/DATE.2013.286
http://fmv.jku.at/hwmcc20/
https://doi.org/10.1007/978-3-540-24730-2_3

Making PROGRESS in Property Directed Reachability 377

35. Scheibler, K., Winterer, F., Seufert, T., Teige, T., Scholl, C., Becker, B.: ICP and
IC3. In: Design, Automation & Test in Europe Conference & Exhibition, DATE
2021 (2021). https://doi.org/10.23919/DATE51398.2021.9473970

36. Seufert, T., Scholl, C.: fbpdr: In-depth combination of forward and backward anal-
ysis in property directed reachability. In: Design, Automation & Test in Europe
Conference & Exhibition, DATE 2019, Florence, Italy, 25–29 March 2019, pp. 456–
461. IEEE (2019). https://doi.org/10.23919/DATE.2019.8714819

37. Seufert, T., Scholl, C., Chandrasekharan, A., Reimer, S., Welp, T.: Reproduc-
tion artifact (2021). https://abs.informatik.uni-freiburg.de/src/projects view.php?
projectID=23

38. Seufert, T., Winterer, F., Scholl, C., Scheibler, K., Paxian, T., Becker, B.: Every-
thing You Always Wanted to Know About Generalization of Proof Obligations in
PDR. arXiv preprint arXiv:2105.09169 (2021). https://arxiv.org/abs/2105.09169

39. Silva, J.P.M., Sakallah, K.A.: GRASP-a new search algorithm for satisfiability. In:
ICCAD, pp. 220–227 (1996). https://doi.org/10.1109/ICCAD.1996.569607

40. Tseitin, G.: On the complexity of derivations in propositional calculus. In: Studies
in Constructive Mathematics and Mathematical Logics (1968)

41. Vizel, Y., Grumberg, O., Shoham, S.: Lazy abstraction and SAT-based reachability
in hardware model checking. In: FMCAD, pp. 173–181 (2012). https://ieeexplore.
ieee.org/document/6462570/

42. Wang, D., et al.: Formal property verification by abstraction refinement with for-
mal, simulation and hybrid engines. In: Proceedings of the 38th Design Automation
Conference, DAC 2001, Las Vegas, NV, USA, 18–22 June 2001, pp. 35–40. ACM
(2001). https://doi.org/10.1145/378239.378260

https://doi.org/10.23919/DATE51398.2021.9473970
https://doi.org/10.23919/DATE.2019.8714819
https://abs.informatik.uni-freiburg.de/src/projects_view.php?projectID=23
https://abs.informatik.uni-freiburg.de/src/projects_view.php?projectID=23
http://arxiv.org/abs/2105.09169
https://arxiv.org/abs/2105.09169
https://doi.org/10.1109/ICCAD.1996.569607
https://ieeexplore.ieee.org/document/6462570/
https://ieeexplore.ieee.org/document/6462570/
https://doi.org/10.1145/378239.378260

	Making PROGRESS in Property Directed Reachability
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Basics and Notations
	3.2 An Overview of PDR

	4 Restrictions
	4.1 Finding Proof Obligations
	4.2 Generalizing Proof Obligations
	4.3 Blocking Cubes
	4.4 Generalizing Blocked Cubes
	4.5 Overall Algorithm

	5 Skipping Restrictions by Analyzing a Spurious Proof
	5.1 Detecting Spurious Proofs in PDR
	5.2 Restriction Skipping Loop

	6 Implementation of PROGRESS-PDR
	6.1 Combining PROGRESS-PDRwith Standard PDR
	6.2 Choosing Appropriate Restrictions
	6.3 PDR with Restrictions
	6.4 Re-using Information from Previous Restricted PDR Run

	7 Experimental Results
	7.1 Design Decisions for PROGRESS-PDR
	7.2 PROGRESS-PDRvs. PDR
	7.3 PROGRESS-PDR vs. BMC

	8 Conclusions and Future Work
	References

