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Abstract. Stochastic model checking (SMC) is a formal verification technique
for the analysis of systems with probabilistic behavior. Scalability has been a
major limiting factor for SMC tools to analyze real-world systems with large or
infinite state spaces. The infinite-state Continuous-time Markov Chain (CTMC)
model checker, STAMINA, tackles this problem by selectively exploring only a
portion of a model’s state space, where a majority of the probability mass resides,
to efficiently give an accurate probability bound to properties under verifica-
tion. In this paper, we present two major improvements to STAMINA, namely,
a method of calculating and distributing estimated state reachability probabili-
ties that improves state space truncation efficiency and combination of the previ-
ous two CTMC analyses into one for generating the probability bound. Demon-
stration of the improvements on several benchmark examples, including hazard
analysis of infinite-state combinational genetic circuits, yield significant savings
in both run-time and state space size (and hence memory), compared to both
the previous version of STAMINA and the infinite-state CTMC model checker
INFAMY. The improved STAMINA demonstrates significant scalability to allow
for the verification of complex real-world infinite-state systems.

Keywords: Stochastic Model Checking · Infinite-state systems · Markov
chains · Synthetic biology

1 Introduction

Stochastic model checking (SMC) is a formal verification technique to analyze systems
that possess probabilistic characteristics. In order to perform SMC, the state space of
the system must be generated and stored. Many real-world systems can be modeled
as Continuous-Time Markov Chains (CTMCs) with large or infinite state spaces. In
particular, synthetic biological circuits have become a topic of interest recently, and
can be modeled well by CTMCs. However, traditional SMC tools cannot directly ana-
lyze them due to the possibly infinite amount of memory required to store their state
spaces. Many approaches, such as symbolic model checking [14], attempt to alleviate
c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 319–331, 2022.
https://doi.org/10.1007/978-3-030-94583-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_16&domain=pdf
http://orcid.org/0000-0002-8676-3767
http://orcid.org/0000-0002-1870-4079
http://orcid.org/0000-0002-4844-6605
http://orcid.org/0000-0002-8762-8444
http://orcid.org/0000-0002-8269-9489
https://doi.org/10.1007/978-3-030-94583-1_16


320 R. Roberts et al.

this issue by compactly representing states symbolically. However, these methods are
inefficient in representing states with many probabilistic transitions [14], and still can-
not handle infinite-state systems. Satisfiability Modulo Theories-based approaches to
model checking large Discrete-Time Markov Chains have recently emerged [15]. How-
ever, they are not yet extended to analyzing infinite-state CTMCs. The STAR tool [10]
primarily focuses on state reachability probability analysis, instead of checking a given
probabilistic property, for infinite-state bio-chemical reaction networks by combining
moment-based and state-based representations of probability distributions. Similarly,
the SeQuaiA tool [3] analyzes state reachability probabilities for chemical reaction net-
works using accelerated abstraction techniques to preserve the most probable behavior
of a CTMCmodel. The INFAMYmodel checker [6] was among the first tools to quanti-
tatively verify infinite-state CTMCs. It truncates the model’s state space on-the-fly after
exploring it up to a certain finite depth. STAMINA [11] was created to model check
transient Continuous Stochastic Logic (CSL) [1,8] properties on infinite-state CTMCs.
It selectively explores a portion of the model’s state space to efficiently give an accu-
rate probability window in which the true probability of the property lies. Rather than
exploring all state-transition paths up to the same fixed depth, STAMINA estimates
state reachability probabilities during state expansion and uses them to determine paths
to either further explore or terminate, effectively exploring the part of the state space
where the probability mass lies. STAMINA was shown to outperform INFAMY in [11].

In this work, we present algorithmic improvements to STAMINA that result in sig-
nificant gains in both state space size and runtime, with improved precision of the
results. These algorithmic improvements include a new method of calculating and dis-
tributing predicted state reachability probabilities, as well as a method for analyzing the
truncated state space using only one CTMC analysis rather than two. For highly com-
plex models, the achieved reduction in both state-space size and runtime is observed to
be as large as 90%. We present results from a case study of a synthetic biological circuit
and from the benchmarks previously used for STAMINA [11].

2 Overview of the STAMINA Tool

The STAMINA tool takes in a CTMC model, specified in the PRISM modeling lan-
guage, and a CSL property, and outputs an upper and lower bound for the probability
of the property being satisfied for that model. It operates on the basis that it preserves,
within an extremely large or infinite state space, a small subset of the states where a
majority of the probability mass is located. STAMINA determines and explores this
small subset and interfaces with the PRISM probabilistic model checker [9] to obtain a
probability window that encloses the true probability of the property under verification.

As STAMINA expands a model’s state space using breath-first search, it terminates
state expansion if the estimated state reachability probability of the next state along a
state exploration path drops below a pre-defined state reachability probability threshold
κ. We denote the estimated state reachability probability (reachability probability, for
short) for a state s as π̂(s) and assume π̂(s0) = 1 for initial state s0. It is an estima-
tion because STAMINA computes the probability of choosing a particular next state,
but does not consider the time-dependent probability of remaining in each state. The
reachability probability to reach from s to s′ is defined as p(s, s′) = R(s,s′)

E(s) , where



STAMINA 2.0: Improving Scalability of Infinite-State Stochastic Model Checking 321

the exit rate E(s) =
∑

s′∈post(s) R(s, s′) is the sum of all outgoing transition rates

R(s, s′) for state s. The probability of leaving state s is 1 − eE(s)·t, a function of real
time t. STAMINA estimates reachability probability on-the-fly during state expansion.
It computes π̂(s′) by summing up reachability probabilities from all explored predeces-
sor states of s′, denoted as pre(s′), as π̂(s′) =

∑
s∈pre(s′)(π̂(s) · p(s, s′)), and π̂(s)

is computed similarly. Whenever π̂(s′) < κ, it stops generating successor states of s′.
Instead, it redirects outgoing transitions destined to these unexplored successor states to
an artificially created absorbing state, ŝ, that is not part of the original model. We refer
to states that have their transitions routed to ŝ as terminal states.

STAMINA’s algorithm computes S, the set of all explored states, andT ⊆ S, the set
of all terminal states. By utilizing PRISM’s state space construction and model checking
methods through subclassing, STAMINA performs reachability analysis and state-space
truncation before invoking PRISM to perform the state-space construction, overriding
certain methods so as to only generate the states inS and to route all outgoing transitions
from states inT to ŝ. After state space construction, STAMINA again utilizes PRISM’s
API to compute a probability window that encloses the true probability for the CSL
property under verification [12]. Figure 1 illustrates a simple overview of STAMINA’s
architecture.

Fig. 1. High-level overview of STAMINA’s architecture.

When checking a non-nested CSL property P=?(φ), which queries the probability
that the path formula φ holds, the lower bound Pmin is the probability of φ being satisfied
within S and the true probability is at least Pmin. In the extreme case, all unexplored
states abstracted by ŝ satisfy φ, and therefore, the upper bound probability Pmax is
the sum of Pmin and the probability (as determined by PRISM) of reaching ŝ within
the time bounds designated in φ. In the previous STAMINA implementation [11], it
invokes PRISM twice to check two separate modified properties, namely, P=?(φ ∧ ¬ŝ)
and P=?(φ ∨ ŝ), to obtain Pmin and Pmax, respectively. If Pmax − Pmin > w, where w
is a user-defined tightness of the probability window, STAMINA would reduce κ by a
reduction factor (default 1000) so that it can continue state space expansion; after which,
it invokes PRISM to check the two properties again. It repeats this procedure until
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the probability window is tight enough, the machine runs of out memory, or an upper
bound on iterations (default 10) is reached. During state expansion, STAMINA applies
property-guided early path termination if the CSL property under verification is, or
can be converted to, a non-nested and time-bounded “until” formula P=?(Φ U [0,t] Ψ).
A path satisfies Φ U [0,t] Ψ , if Φ holds in every state of the path from the initial state
up until a state where Ψ evaluates to true within t time units. For time-abstract state
exploration carried out by STAMINA, it terminates state expansion along a path when
encountering a state s known to satisfy or dissatisfy Φ U Ψ , i.e., s � (¬Φ∨Ψ). Instead,
it makes s absorbing to contain probabilities flowing into it from its incoming paths.
For detailed algorithms, readers are encouraged to read [11,12]. As the improvements
to STAMINA are set forth, we will refer to the original algorithm as STAMINA 1.0,
and the new algorithm presented in this paper as STAMINA 2.0, for clarity.

3 Improvements over STAMINA 1.0

Combined Analysis. When benchmarking STAMINA 1.0, we observed that a signif-
icant portion of the runtime was spent on performing CTMC analysis. One reason
for this is that two separate CTMC analyses had to be carried out to calculate Pmin

and Pmax. If the property being checked is a non-nested CSL property of the form
P=?(Φ U [0,t] Ψ), we have been able to improve this by combining the two analyses
into a single analysis. The transient analysis performed by PRISM yields Pt(s) to indi-
cate the probability of being in state s at time t. Due to the property-guided early path
termination described in Sect. 2, we obtain Pmin =

∑
Pt(si) for all states si satisfying

Ψ , excluding ŝ. The transient analysis also returns Pt(ŝ) for the absorbing state ŝ, Pmax

is simply Pmin + Pt(ŝ). This combined analysis results in significant time savings.

Re-exploration of States. We observe that re-visiting a previously explored state can
cause its reachability probability to become trapped. In STAMINA 1.0, the tool does not
re-explore an already explored state, to avoid never-ending state re-exploration within
cycles, which represent one example of state re-visitation. However, this strategy causes
the following issue. Suppose si is explored for the first time, its reachability probability
π̂(si) is below κ, but at a later step, it discovers a new incoming transition to si, which
brings π̂(si) to be equal to or above κ. Since si is not re-explored, it traps π̂(si), even if
it increases again in future state exploration steps. Figure 2 illustrates a situation where
this problem can manifest. Each state is labeled with its name and reachability proba-
bility. We consider the situation starting with the state shown in Fig. 2a: s3 and s4 are
the next to be explored, π̂(s3) = 0.1, and π̂(s4) = 0.9. Then, s5 is visited, resulting in
π̂(s5) = 0.1 in Fig. 2b. Then, s4 has a transition returning to s3, which causes π̂(s3) to
increase to 1.0. However, since s3 is not re-explored, the updated π̂(s3) is never passed
on to s5. Instead, it has become trapped in s3, as shown in Fig. 2c. If s5 had some suc-
cessor states si that were truncated due to π̂(si) < κ, they will not be explored, even
though their reachability probabilities would be sufficiently high to be explored if the
reachability could properly pass through s5.

The STAMINA 1.0 algorithm attempted to solve this problem in the following way:
after finishing an iteration of state expansion, it walks through the entire explored state
space to find all terminal states to be re-explored. Note that this step was not described
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in the original algorithm presented in [11,12]. Once it finishes exploration again, it
will repeat the process of re-exploring all terminal states until the change in state space
size between iterations becomes sufficiently small. The two main drawbacks of this
strategy are (1) the non-trivial time complexity required to repeatedly search the state
space for the terminal states; and (2) its inability to release trapped probabilities in non-
terminal states as they are not re-explored. In Fig. 2, if s5 was not a terminal state, but
its successors were, the STAMINA 1.0 algorithm would not alleviate this issue.

Calculating Reachability. In order to set the stage for how STAMINA 2.0 solves this
problem, we must first define a new method of calculating π̂(s), as the previous method
does not allow for the re-exploration of a previously visited non-terminal state, because
doing so would cause reachability probability that has already been passed on to the
successors to be passed on again. To alleviate this issue, π̂(s) is now calculated in the
following way: when a particular state s is explored, we first update the reachability
probability for every successor state s′ as follows: π̂(s′) = π̂(s′)+ π̂(s) ·p(s, s′). Then,
π̂(s) is assigned to zero, indicating it has passed all of its reachability on to the successor
states. By reducing π̂(s) to zero after exploration, if s is re-explored in the future and
π̂(s) > 0, we know that this non-zero reachability probability must have come from
a transition that has returned to s since the last time it was explored. In this way, re-
exploring s will only pass on the probability flowing into it since its most recent visit.
As an additional benefit, this method is much less computationally expensive, as it can
be performed as each state is visited, rather than needing to iterate over the predecessors.

(a) (b)

(c)

Fig. 2. Example of STAMINA 1.0 state exploration resulting in trapped reachability.

Algorithm Improvements. Using the improved method, the trapped reachability prob-
lem was solved by restructuring the STAMINA 1.0 algorithm in the following way:
after state exploration finishes with a particular κ, we begin a re-exploration of the state
space, starting from the initial state, in order to push the reachability probabilities of
all states toward the outer boundaries of the explored state space. In STAMINA 1.0,
κ starts from a small value of 1.0e-6 and is reduced infrequently, with the state space
being verified between each reduction. STAMINA 2.0 changes this strategy, alleviating
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another challenge of STAMINA 1.0, which is the determination of a proper κ for a given
PRISM model. In STAMINA 2.0, κ starts at its maximal value 1.0. When there are no
more states to explore with the current κ, it is divided by a reduction factor, rκ (default
of 1.25), and the exploration repeats from s0. Note that rκ is much smaller than that
used in STAMINA 1.0, which has a default value of 1000. Therefore, it causes κ to be
reduced more frequently but by a smaller amount each time, allowing state reachability
probabilities to properly pass through explored states, which in turn results in improved
choice of state exploration paths with a larger portion of the total probability mass.

With significantly increased frequency of reducing κ, it is no longer reasonable
to perform CTMC analysis prior to each reduction. Instead, to determine termination,
we define Π̂ =

∑
si∈T π̂(si) as an estimate of (Pmax − Pmin), where T is the ter-

minal state set. Heuristically, we find that (Pmax − Pmin) tends to be smaller than w
when Π̂ becomes less than half of w. Thus, we specify a user-defined parameter mis-
prediction factor m (default of 2 to match heuristic). Prior to each reduction of κ, we
compute Π̂ and terminate exploration when Π̂ < w

m . The state space is then passed to
PRISM to compute the probability window. If it does not meet the desired tightness,
i.e., (Pmax − Pmin) > w, m is increased in a manner proportional to the relative error
between (Pmax −Pmin) and w. Specifically m is multiplied by 4 times Pmax−Pmin

w , except
that if Pmax−Pmin

w > 100, 100 is used instead. The multiplier 4 is an additional heuristic.
It is worth noting that STAMINA 2.0’s algorithm contains several parameters that were
determined heuristically, the majority of which can be tuned by the user if necessary,
but are set by default to a value that tended to perform well across many different case
studies. The reason for including these heuristics is that each particular model has a
state space structure that will affect STAMINA’s probability reachability estimations in
different ways. To prevent the user from having to tune many different parameters for
a particular model in order to get STAMINA to perform well, the parameter defaults
were chosen heuristically to perform well across a large set of models. To the best of
our knowledge gained through testing the tool across various use cases, there does not
seem to be a strong theoretical basis for why certain values for these parameters would
perform better on one model than another, so optimizing them for the general cases
appears the best course of action. This new algorithm fully automates the choice of an
accurate κ for STAMINA, in order to optimize runtime and state-space size, relieving
the user of making such a choice. In addition, it allows a tighter probability window to
be found with reduced states (and hence memory) using less time in almost all tested
case studies. The improved accuracy of choosing portions of the state space to explore
far outweighs the added computational complexity of re-exploring the state space.

Convergence of the STAMINA Algorithm. Algorithm 1 shows the full STAMINA
2.0 algorithm. The set post(s) is defined as the set of successor states of state s and is
generated from the input PRISM CTMC model. Additionally, note that for the notation
of the algorithm, S is the set of all states explored up to the current execution point
in the algorithm, while explored is the set of states that have been explored using
the current value of κ and is emptied after κ gets updated. In order to reason about
the convergence of the algorithm, we first define emb(C) as the embedded Discrete-
Time Markov Chain (DTMC) of the PRISM CTMC model C under verification, as
our estimates of reachability are calculated based on the transition probabilities of this
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embedded DTMC. Note that the entire embedded DTMC is never generated, we simply
compute the transition probabilities during exploration of a particular state. We then
define a path, pa, as a sequence of states that start from the initial state s0, that can be
traversed in emb(C). Denote P (si, sj) as the probability of transitioning from si to sj

as encoded in the transition probability matrix of emb(C). Let pa(j) be the j-th state
in pa and len(pa) be the length of pa. We also define paths(si) as the set of all paths
whose last state is si, and prob(pa) as the probability of the path pa, which is equal to
∏len(pa)−2

i=0 P (si, si+1). Finally, we let pam < |pan indicate that pam is a subpath of
pan, i.e. ∀j = 0, 1, ..., len(pam) − 1, pam(j) = pan(j) and len(pam) < len(pan).

Next, we reason about the estimated state reachability for state si, π̂(si), in terms of
the definitions we have set forth. At any time point during the execution of Algorithm 1,
π̂(si) =

∑
pa∈σ(si)

prob(pa), where σ(si) ⊆ paths(si) and ∀pax, pay ∈ σ(si), where
x �= y, pax �< |pay . We then denote π(si) as the true probability (as opposed to the
estimate probability π̂(si) calculated by STAMINA) of eventually reaching si for the
first time in emb(C). Note that a path can have possibly many revisits to si after its first
visit, and it is the probability of the first visit to this state considered here. So define
X(si) = {pa | pa ∈ paths(si) ∧ pa(j) �= si, ∀0 � j < len(pa) − 1} as the set
of paths that end with their first visit to state si. Then π(si) =

∑
pa∈X(si)

prob(pa).
In other words, π(si) aggregates the reachability probabilities for all paths at their the
first visit to si. These definitions then allow us to derive the following statement, which
we will use as the basis for convergence reasoning: π̂(si) � π(si) is an invariant of
Algorithm 1 that holds true during all points of execution. This is due to the fact that
every path paj ∈ σ(si) meets one of two following conditions: Either paj ∈ X(si) or
paj is part of a set of paths e ⊆ σ(si), where the set e satisfies the following condition:
there must exist a path pak ∈ X(si) such that ∀pal ∈ e, pak < |pal. In this latter case,
we know that all paths for which pak is a subpath will have a combined probability
of prob(pak), and the sum of probabilities of all paths in e will be at most prob(pak),
i.e.,

∑
pal∈e prob(pal) � prob(pak). Intuitively, paths belonging to e are explored

on-the-fly during STAMINA’s state exploration, and it is possible that a path pa ∈
paths(si), for which pak < |pa, is not added to e because pa gets truncated before si

appears as its last state. In simpler terms, every probability contributing to the sum of
the estimate either contributes directly to the sum of the true reachability, or is part of a
set of probabilities contributing to the estimate that are in aggregate less than or equal
to a corresponding probability contributing to the true reachability.

Now we can reason about the convergence of this algorithm with respect to the
convergence of each of the three while loops contained within it. Note that although
the algorithm is guaranteed to eventually converge under the constraints given here, it
is not guaranteed to do so within the hardware limits, such as memory of the machine
running it. Additionally, note that the conditions given for convergence are sufficient,
but not necessary, as the algorithm may converge even when the conditions are not met,
depending on the structure of the state space and the property being checked.

In order for the loop beginning on line 6 to terminate, all states that the algorithm
encounters that have not yet been explored must have an estimated reachability of less
than κ. This can be guaranteed under the following condition: There does not exist an
infinitely long path, pai, in emb(C) such that π(sj) ≥ κ,∀sj ∈ pai and �k, l where
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k �= l and pai(k) = pai(l). The final condition regarding k, l comes from the fact
that if a path encounters a state that has already been explored, this particular loop will
terminate. Then, the loop beginning on line 4 terminates when the estimated reachability
of all terminal states sums to less than w

m . This can be guaranteed to eventually occur
under the following condition: There exists a κ > 0 such that for all states s in emb(C)
with π(s) < κ,

∑
π(s) < w

m . Note that m will get larger until the conditions for
the outermost loop of the algorithm are satisfied. The convergence of this outermost
loop, beginning on line 2, is somewhat simpler to reason about. We first recognize that
Pmax − Pmin is equal to the probability of reaching a state (in the original CTMC) that
the algorithm did not explore, within the time constraints specified by the CSL property.
Thus, as the algorithm explores more states, Pmax−Pmin must necessarily grow smaller.
The inner two loops shown before operate with an increasingly small κ, which causes
more states to be explored, and thus the termination of the outermost loop. In future
work, we plan to investigate the incorporation of the temporal information available in
the CTMC to expand the conditions for convergence to a larger number of models, as
well as to further improve STAMINA’s performance.

4 Results

We obtained all results on a machine with an AMD Ryzen Threadripper 12-Core
3.5GHz Processor and 132 GB of RAM, running Ubuntu Linux (v18.04.3). 120GB of
RAM was allocated to the Java Virtual Machine used by STAMINA. Both STAMINA
1.0 and 2.0 utilized PRISM v4.5 and OpenJDK 11.0.10. All INFAMY results use the
same parameters as in [11]. STAMINA 2.0 uses the default parameters for all exam-
ples. Both STAMINA versions attempted to obtain a user-desired probability window
w of at least 1e−3, and INFAMY used a precision of 1e−3. This w was achieved by
STAMINA 2.0 and INFAMY for all models; STAMINA 1.0 failed to achieve it in some
cases, which are noted. Because each tool, other than those noted exceptions, obtained
the specified w, the tools need only be compared in terms of the runtime and number
of states (which translates to memory usage) required to reach the specified window.
All benchmarks and case studies presented in this section, detailed tables of results
comparison, and its source code can be found at: https://github.com/fluentverification/
stamina.

Hazard Analysis in Genetic Circuits.Recent efforts in synthetic biology work towards
applying principles from electric circuit design to genetic circuit design. One example
is the genetic design automation (GDA) tool Cello [13] that was designed to acceler-
ate and simplify the genetic design process. To verify the functionality of the tool, 60
combinational genetic were generated and tested in Escherichia coli. One of the gener-
ated circuits, circuit 0×8E, showed an unwanted switching behavior in vivo. Namely, in
response to an input change, the output of the circuit was supposed to remain high, but
it glitched low for a short time. In [5], it was demonstrated that this glitch was due to a
function hazard (i.e., a property of the function being implemented). In [2] a stochas-
tic analysis of the circuit was performed using both simulation and STAMINA 1.0 to
evaluate the robustness of this design. The glitching behavior of this circuit is investi-
gated under 12 possible transition patterns, where the transitions indicate a change in

https://github.com/fluentverification/stamina
https://github.com/fluentverification/stamina
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Algorithm 1: Improved state re-exploration algorithm in STAMINA 2.0.
Input : A PRISM CTMC model file, a CSL property, and w.
Output: Pmin and Pmax.

1 Pmin := 0.0; Pmax := 1.0; π̂(s0) := 1.0; S := {s0}; T := {s0};
2 while Pmax − Pmin > w do
3 Π̂ := 1.0;

4 while Π̂ > w
m

do
5 enqueue(queue, s0); explored := ∅;
6 while queue �= ∅ do
7 s := dequeue(queue);
8 if s /∈ T ∨ π̂(s) � κ then
9 if π̂(s) = 0 then

10 forall the s′ ∈ post(s) do
11 enqueue(queue, s′);
12 else
13 if s ∈ T then
14 T.remove(s);
15 forall the s′ ∈ post(s) do
16 π̂(s′) := π̂(s′) + π̂(s) · p(s, s′);
17 if s′ /∈ explored then
18 explored := explored ∪ {s′};
19 enequeue(queue, s′);
20 if s′ /∈ S then
21 T := T ∪ {s′}; S := S ∪ {s′};
22 π̂(s) := 0;

23 Π̂ :=
∑

si∈T π̂(si);

24 κ := κ
rκ

;

25 Instruct PRISM to build the proper statespace based on the states in S and T, and the
original inputted PRISM model;

26 Compute Pmin and Pmax of the inputted CSL property, using PRISM;
27 if Pmax − Pmin > w then
28 m := m ∗ 4 ∗ min(100, (Pmax−Pmin

w
))

the amount of each of the circuit’s three inducer molecules: IPTG, aTc, and Ara. Tran-
sitions are labeled as a set of 3 digits, each a 0 (low) or 1 (high) representing the amount
of IPTG, aTc, and Ara, respectively. Since this genetic circuit is inherently noisy and
has an infinite state space, it is an excellent candidate to be checked by STAMINA.

Originally, STAMINA 1.0 performed poorly when attempting to model check the
genetic hazard circuit. Through a study of STAMINA’s behavior when checking this cir-
cuit, we discovered the inefficiencies of the original algorithms as described in Sect. 3,
and in particular, the issue showcased in Fig. 2, and optimized these algorithms in
STAMINA 2.0. Figure 3 shows a comparison of the two versions of STAMINA’s perfor-
mance on the hazard genetic circuit model. STAMINA 1.0 was initially tested with its
default value for κ, 1e−6, and then was reduced to 1e−20, but failed to compute an ade-
quately small probability window for both values. The results presented here are for an
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initial κ of 1e−35. We can see that even after manually searching for a proper κ value,
STAMINA 1.0 still cannot outperform 2.0. On those transitions that STAMINA 1.0
is able to compute bounds with the desired tightness, the improved algorithms imple-
mented in STAMINA 2.0 achieved the same with approximately 90% less states (and
by extension less memory) and 90% less time. STAMINA 1.0 was capped to a max-
imum of 10 iterations where κ is reduced before forced termination in order to avoid
spending excessive time. In addition, STAMINA 1.0 failed to achieve the desired prob-
ability window for some transitions due to running out of memory. This does not affect
the result comparison, because all runs that were either stopped after 10 iterations or ran
out of memory had far surpassed STAMINA 2.0 in state-space size and runtime, despite
not yet achieving the desired probability window size. In reality, if STAMINA 1.0 were
allowed to run to completion, assuming no bound on runtime or memory, the improve-
ments for both state space size and runtime would be greater than those reported for the
models STAMINA 1.0 could not complete. Table 1 shows a comparison of the proba-
bility windows for examples that STAMINA 1.0 did not obtain an adequate probability
window. From this table, we can observe the drastically tightened probability window
STAMINA 2.0 was able to obtain despite it’s lower runtime and state-space sizes. We
were unable to obtain results for INFAMY on this 0×8E genetic hazard circuit model,
as its PRISM parser could not parse the model’s transition rate formulas.

Table 1. Probability window comparison between STAMINA 2.0 and 1.0 on hazard circuit tran-
sitions for which the latter failed to produce a probability window that met the desired tightness.

Transition STAMINA 2.0 STAMINA 1.0 Transition STAMINA 2.0 STAMINA 1.0

010 to 111 [0.0166, 0.0168] [0.0060, 0.9218] 100 to 111 [0.0166, 0.0168] [0.0125, 0.5405]

011 to 101 [0.9895, 0.9897] [0.8608, 0.9990] 000 to 011 [0.8260, 0.8262] [0.6661, 0.9669]

010 to 101 [0.9902, 0.9905] [0.9477, 0.9998] 101 to 011 [0.9895, 0.9898] [0.8498, 0.9981]

Other Benchmarks. While the hazard circuit represents one of the more complex sys-
tems STAMINA may be used on, it can also perform well on simpler models. We tested
STAMINA 2.0 on the same set of benchmarks used to evaluate STAMINA 1.0 in [11],
in order to illustrate that STAMINA 2.0 was not simply optimized for the hazard cir-
cuit case. These benchmark examples come from both the PRISM benchmark suite [7]
and the INFAMY tool’s case studies at https://depend.cs.uni-saarland.de/tools/infamy/
casestudies/. Many of these case studies are not infinite state models, but contain param-
eters that can be scaled to increase the state space size to an arbitrarily large size. It
should be noted that STAMINA can analyze very large, but finite, state spaces as well
as infinite state spaces. These particular case studies were chosen because they have
been previously tested using either PRISM or INFAMY, and are accessible on these
tools’ respective websites for users to test other tools against STAMINA’s results. A
brief description of each of these benchmark models, the corresponding CSL prop-
erties being checked, and the meaning of the parameters can be found in [11]. It is
worth mentioning that for the Robot models, the property being checked is a nested
CSL formula, so the combined analysis improvement does not apply. All performance

https://depend.cs.uni-saarland.de/tools/infamy/casestudies/
https://depend.cs.uni-saarland.de/tools/infamy/casestudies/
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Fig. 3. STAMINA 2.0 improvement over 1.0 on the 0×8E genetic hazard circuit. Columns labeled
with a * indicate that STAMINA 1.0 did not achieve the desired probability window due to mem-
ory or iteration constraints.

Fig. 4. STAMINA 2.0 improvement on the Benchmark models.

gains on this model come from the other discussed improvements. Figure 4 shows the
performance improvements of STAMINA 2.0 on these benchmarks, relative to both
STAMINA 1.0 and INFAMY. Because these models are simpler, there is not as much
room for improvement, and the gains tend to be smaller than those for the hazard cir-
cuit. However, the average gains remain substantial. Of particular note, the Polling
benchmark needed only 1 state with STAMINA 2.0, regardless of the parameters. This
is due to the fact that the property under verification is satisfied in the initial state.
STAMINA 2.0 is able to recognize this and stop state expansion while STAMINA 1.0
and INFAMY still expand the state space to sizes in the tens of thousands, and even
millions, of states. Note that STAMINA 1.0 had the property-guided truncation imple-
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mented, but its attempted solution to the problem shown in Fig. 2 caused it to explore
additional states anyway. Also of note, the Jackson case study with parameters (4/5) is
the only example for which STAMINA 1.0 performs better than STAMINA 2.0 in terms
of states generated. In order to understand this, first note that STAMINA 1.0 relied on a
user-determined probability window to determine stoppage, rather than using heuristics
based on the calculated estimates as STAMINA 2.0 does. In most cases, the heuristic
finds a cutoff that is much closer to optimal than the user defined cutoff can; however, in
rare cases, such as this particular Jackson example, the arbitrarily chosen cutoff works
well with the model structure and stops closer to the optimum cutoff. However, the
STAMINA 2.0 algorithm still performs notably better than STAMINA 1.0 in terms of
runtime for this example.

5 Conclusion

The algorithmic improvements made to STAMINA 2.0 result in significant savings of
both runtime and memory usage. In particular, for highly complex models the new ver-
sion is able to achieve gains on the order of 90% for both runtime and state space size.
Through these improvements, the tool is able to obtain results on models it previously
failed on. The STAMINA 2.0 tool allows us to obtain guarantees about the probabilistic
behavior of infinite-state systems that would otherwise be impossible. In the future, we
plan to create a version of the tool that integrates with the STORM model checker [4].
We also plan to integrate an estimate of state resident time into the STAMINA algo-
rithm, in order to further improve the choice of states to be explored.
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