
Fast Three-Valued
Abstract Bit-Vector

Arithmetic

Jan Onderka1(B)

and Stefan Ratschan2

1 Faculty of Information Technology, Czech Technical University in Prague,
Prague, Czech Republic
onderjan@fit.cvut.cz

2 Institute of Computer Science, The Czech Academy of Sciences,
Prague, Czech Republic

stefan.ratschan@cs.cas.cz

Abstract. Abstraction is one of the most important approaches for
reducing the number of states in formal verification. An important
abstraction technique is the usage of three-valued logic, extensible to
bit-vectors. The best abstract bit-vector results for movement and logical
operations can be computed quickly. However, for widely-used arithmetic
operations, efficient algorithms for computation of the best possible out-
put have not been known up to now.

In this paper, we present new efficient polynomial-time algorithms
for abstract addition and multiplication with three-valued bit-vector
inputs. These algorithms produce the best possible three-valued bit-
vector output and remain fast even with 32-bit inputs.

To obtain the algorithms, we devise a novel modular extreme-finding
technique via reformulation of the problem using pseudo-Boolean mod-
ular inequalities. Using the introduced technique, we construct an algo-
rithm for abstract addition that computes its result in linear time,
as well as a worst-case quadratic-time algorithm for abstract multipli-
cation. Finally, we experimentally evaluate the performance of the algo-
rithms, confirming their practical efficiency.

Keywords: Formal verification · Three-valued abstraction · Computer
arithmetics · Addition and multiplication · Pseudo-Boolean modular
inequality

1 Introduction

In traditional microprocessors, the core operations are bitwise logical operations
and fixed-point wrap-around arithmetic. Behaviour of programs in machine code

This work was supported by the Czech Technical University (CTU) grant
No. SGS20/211/OHK3/3T/18 and institutional financing of the Institute of Computer
Science (RVO:67985807).

c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 242–262, 2022.
https://doi.org/10.1007/978-3-030-94583-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_12&domain=pdf
http://orcid.org/0000-0003-2069-8584
http://orcid.org/0000-0003-1710-1513
https://doi.org/10.1007/978-3-030-94583-1_12

Fast Three-Valued Abstract Bit-Vector Arithmetic 243

can be formally verified by model checking, enumerating all possible system
states and transitions (state space) and then verifying their properties. Unfor-
tunately, näıve exhaustive enumeration of states quickly leads to prohibitively
large state spaces (state space explosion), making verification infeasible.

State space explosion may be mitigated by a variety of techniques. One
of them is abstraction, where a more efficient state space structure preserving
certain properties of the original is constructed [3, p. 17]. Typically, the formal
verification requirement is that it should be impossible to prove anything not
provable in the original state space (soundness for true), while allowing overap-
proximation, leading to the possibility of a false counterexample.

For machine-code model checking, three-valued abstract representation
of bits was introduced in [7] where each abstract bit can have value “zero”, “one”,
or “perhaps one, perhaps zero” (unknown). Using this abstraction, bit and bit-
vector movement operations may be performed directly on abstract bits. Each
movement operation produces a single abstract result, avoiding state space explo-
sion. The caveat is that overapproximation is incurred as relationships between
unknown values are lost.

Three-valued representation was further augmented in [11] via bitwise logic
operations (AND, OR, NOT. . .) with a single abstract result, further reducing
state space explosion severity. However, other operations still required instantia-
tion of the unknown values to enumerate all concrete input possibilities, treating
each arising output possibility as distinct. This would lead not only to output
computation time increasing exponentially based on the number of unknown bits,
but also to potential creation of multiple new states and the possibility of severe
state space explosion. For example, an operation with two 32-bit inputs and
a 32-bit output could require up to 264 concrete operation computations and
could produce up to 232 new states.

The necessity of instantiation when encountering arithmetic operations had
severely reduced usefulness of a microcontroller machine-code model checker with
three-valued abstraction developed by one of the authors [8]. This prompted our
research in performing arbitrary operations without instantiation, with emphasis
on fast computation of results of arithmetic operations.

1.1 Our Contribution

In this paper, we formulate the forward operation problem, where an arbitrary
operation performed on three-valued abstract bit-vector inputs results in a sin-
gle three-valued abstract bit-vector output which preserves soundness of model
checking. While the best possible output can always be found in worst-case time
exponential in the number of three-valued input bits, this is slow for 8-bit binary
operations and infeasible for higher powers of two.

To aid with construction of polynomial-time worst-case algorithms, we devise
a novel modular extreme-search technique. Using this technique, we find a linear-
time algorithm for abstract addition and a worst-case quadratic-time algorithm
for abstract multiplication.

244 J. Onderka and S. Ratschan

Our results will allow model checkers that use the three-valued abstraction
technique to compute the state space faster and to manage its size by only per-
forming instantiation when necessary, reducing the risk of state space explosion.

2 Related Work

Many-valued logics have been extensively studied on their own, including Kleene
logic [6] used for three-valued model checking [11]. In [10], three-valued logic was
used for static program analysis of 8-bit microcontroller programs. Binary deci-
sion diagrams (BDDs) were used to compress input-output relationships for arbi-
trary abstract operations. This resulted in high generation times and storage
usage, making the technique infeasible to use with 16-bit or 32-bit operands.
These restrictions are not present in our approach where we produce the abstract
operation results purely algorithmically, but precomputation may still be useful
for abstract operations with no known worst-case polynomial-time algorithms.

In addition to machine-code analysis and verification, multivalued logics are
also widely used for register-transfer level digital logic simulation. The IEEE 1164
standard [5] introduces nine logic values, out of which ‘0’ (zero), ‘1’ (one),
and ‘X’ (unknown) directly correspond to three-valued abstraction. For easy
differentiation between concrete values and abstract values, we will use the
IEEE 1164 notation in this paper, using single quotes to represent an abstract
bit as well as double quotes to represent an abstract bit-vector (tuple of abstract
bits), e.g. “0X1” means (‘0’, ‘X’, ‘1’). While we primarily consider microprocessor
machine-code model checking as our use case, we note that the presented algo-
rithms also might be useful for simulation, automated test pattern generation,
and formal verification of digital circuits containing adders and multipliers.

In [14], it was proposed that instantiation may be performed based only
on interesting variables. For example, if a status flag “zero” is of interest, a tuple
of values “XX” from which the flag is computed should be replaced by the possi-
bilities {“00”, “1X”, “X1”}. This leads to lesser state space explosion compared
to näıve instantiation, but is not relevant for our discussion as we discuss avoid-
ing instantiation entirely during operation resolution.

In the paper, we define certain pseudo-Boolean functions and search for their
global extremes. This is also called pseudo-Boolean optimization [2]. Problems
in this field are often NP-hard. However, pseudo-Boolean functions for addition
and multiplication that we will use in this paper have special forms that will allow
us to resolve the corresponding problems in polynomial time without having
to resort to advanced pseudo-Boolean optimization techniques.

3 Basic Definitions

Let us consider a binary concrete operation which produces a single M -bit output
for each combination of two N -bit operands, i.e. r : BN × B

N → B
M . We define

the forward operation problem as the problem of producing a single abstract bit-
vector output given supplied abstract inputs, preserving soundness. The output

Fast Three-Valued Abstract Bit-Vector Arithmetic 245

is not pre-restricted (the operation computation moves only forward). To pre-
serve soundness, the abstract output must contain all possible concrete outputs
that would be generated by first performing instantiation, receiving a set of con-
crete possibilities, and then performing the operation on each possibility.

To easily formalize this requirement, we first formalize three-valued abstrac-
tion using sets. Each three-valued abstract bit value (‘0’,‘1’,‘X’) identifies all
possible values the corresponding concrete bit can take. We define the abstract
bit as a subset of B = {0, 1} and the abstract bit values as

‘0’ def= {0}, ‘1’ def= {1}, ‘X’ def= {0, 1}. (1)

This formalization corresponds exactly to the meaning of ‘X’ as “possibly 0,
possibly 1”. Even though ∅ is also a subset of B, it is never assigned to any
abstract bit as there is always at least a single output possibility.

If an abstract bit is either ‘0’ or ‘1’, we consider it known; if it is ‘X’, we
consider it unknown. For ease of representation in equations, we also introduce
an alternative math-style notation X̂

def= {0, 1}.
Next, we define abstract bit-vectors as tuples of abstract bits. For clarity, we

use hat symbols to denote abstract bit-vectors and abstract operations. We use
zero-based indexing for simplicity of representation and correspondence to typ-
ical implementations, i.e. â0 means the lowest bit of abstract bit-vector â. We
denote slices of the bit-vectors by indexing via two dots between endpoints, i.e.
â0..2 means the three lowest bits of abstract bit-vector â. In case the slice reaches
higher than the most significant bit of an abstract bit-vector, we assume it to be
padded with ‘0’, consistent with interpretation as an unsigned number.

3.1 Abstract Bit Encodings

In implementations of algorithms, a single abstract bit may be represented
by various encodings. First, we formalize a zeros-ones encoding of abstract bit âi

using concrete bits a0
i ∈ B, a1

i ∈ B via

a0
i = 1 ⇐⇒ 0 ∈ âi, a1

i = 1 ⇐⇒ 1 ∈ âi, (2)

which straightforwardly extends to bit-vectors a0, a1. Assuming â has A ∈ N0

bits, â ∈ (2B)A, while a0 ∈ B
A, a1 ∈ B

A, i.e. they are concrete bit-vectors.
We also formalize a mask-value encoding: the mask bit am

i = 1 exactly when
the abstract bit is unknown. When the abstract bit is known, the value bit av

i

corresponds to the abstract value (0 for ‘0’, 1 for ‘1’), as previously used in [11].
For simplicity, we further require av

i = 0 if am
i = 1. We formalize the encoding

of abstract bit âi using concrete bits am
i ∈ B, av

i ∈ B via

am
i = 1 ⇐⇒ 0 ∈ âi ∧ 1 ∈ âi, av

i = 1 ⇐⇒ 0 /∈ âi ∧ 1 ∈ âi, (3)

which, again, straightforwardly extends to bit-vectors am ∈ B
A and av ∈ B

A.
We note that the encodings can be quickly converted via

a0
i = 1 ⇐⇒ am

i = 1 ∨ av
i = 0, a1

i = 1 ⇐⇒ am
i = 1 ∨ av

i = 1,

am
i = 1 ⇐⇒ a0

i = 1 ∧ a1
i = 1, av

i = 1 ⇐⇒ a0
i = 0 ∧ a1

i = 1.
(4)

246 J. Onderka and S. Ratschan

We note that when interpreting each concrete possibility in abstract bit-vector
â as an unsigned binary number, av corresponds to the minimum, while a1

corresponds to the maximum. For conciseness and intuitiveness, we will not
explicitly note the conversions in the presented algorithms. Furthermore, where
usage of arbitrary encoding is possible, we will write the hat-notated abstract
bit-vector, e.g. â.

3.2 Abstract Transformers

We borrow the notions defined in this subsection from abstract interpretation
[4,12], adapting them for the purposes of this paper.

The set of concrete bit-vector possibilities given by a tuple containing A

abstract bits, â ∈ (2B)A, is given by a concretization function γ : (2B)A → 2(B
A),

γ(â) def= {a ∈ B
A | ∀i ∈ {0, . . . , A − 1} . ai ∈ âi}. (5)

Conversely, the transformation of a set of bit-vector possibilities C ∈ 2(B
A)

to a single abstract bit-vector â ∈ (2B)A is determined by an abstraction func-
tion α : 2(B

A) → (2B)A which, to prevent underapproximation and to ensure
soundness of model checking, must fulfill C ⊆ γ(α(C)).

An abstract operation r̂ : (2B)N ×(2B)N → (2B)M corresponding to concrete
operation r : B

N × B
N → B

M is an approximate abstract transformer if it
overapproximates r, that is,

∀â ∈ (2B)N , b̂ ∈ (2B)N . {r(a, b) | a ∈ γ(â), b ∈ γ(b̂)} ⊆ γ(r̂(â, b̂)). (6)

The number of concrete possibilities |γ(α(C))| should be minimized to prevent
unnecessary overapproximation. For three-valued bit-vectors, the best abstrac-
tion function αbest is uniquely given by

∀i ∈ {0, . . . , A − 1} . (αbest(C))i
def= {ci ∈ B | c ∈ C}. (7)

By using αbest to perform the abstraction on the minimal set of concrete results
from Eq. 6, we obtain the best abstract transformer for arbitrary concrete oper-
ation r, i.e. an approximate abstract transformer resulting in the least amount
of overapproximation, uniquely given as

r̂bestk (â, b̂) = αbest({rk(a, b) | a ∈ γ(â), b ∈ γ(b̂)}). (8)

We note that when no input abstract bit is ∅, there is at least one concrete result
r(a, b) and no output abstract bit can be ∅. Thus, three-valued representation is
truly sufficient.

3.3 Algorithm Complexity Considerations

We will assume that the presented algorithms are implemented on a general-
purpose processor that operates on binary machine words and can compute

Fast Three-Valued Abstract Bit-Vector Arithmetic 247

bitwise operations, bit shifts, addition and subtraction in constant time. Every
bit-vector used fits in a machine word. This is a reasonable assumption, as it is
likely that the processor used for verification will have machine word size equal to
or greater than the processor that runs the program under consideration.

We also assume that the ratio of M to N is bounded, allowing us to express
the presented algorithm time complexities using only N . Memory complexity is
not an issue as the presented algorithms use only a fixed amount of temporary
variables in addition to the inputs and outputs.

3.4 Näıve Universal Abstract Algorithm

Equation 8 immediately suggests a näıve algorithm for computing r̂best for any
given â, b̂: enumerating all a, b ∈ 2(B

N), filtering out the ones that do not satisfy
a ∈ γ(â) ∧ b ∈ γ(b̂), and marking the results of r(a, b), which is easily done
in the zeros-ones encoding. This näıve algorithm has a running time of Θ(22N).

Average-case computation time can be improved by only enumerating
unknown input bits, but worst-case time is still exponential. Even for 8-bit binary
operations, the worst-case input combination (all bits unknown) would require
216 concrete operation computations. For 32-bit binary operations, it would
require 264 computations, which is infeasible. Finding worst-case polynomial-
time algorithms for common operations is therefore of significant interest.

4 Formal Problem Statement

Theorem 1. The best abstract transformer of abstract bit-vector addition is
computable in linear time.

Theorem 2. The best abstract transformer of abstract bit-vector multiplication
is computable in worst-case quadratic time.

In Sect. 5, we will introduce a novel modular extreme-finding technique which will
use a basis for finding fast best abstract transformer algorithms. Using this tech-
nique, we will prove Theorems 1 and 2 by constructing corresponding algorithms
in Sects. 6 and 7, respectively. We will experimentally evaluate the presented
algorithms to demonstrate their practical efficiency in Sect. 8.

5 Modular Extreme-Finding Technique

The concrete operation function r may be replaced by a pseudo-Boolean function
h : BN × B

N → N0 where the output of r is the output of h written in base 2.
Surely, that fulfills

∀a ∈ B
N , b ∈ B

N ,∀k ∈ {0, . . . , M − 1} .

rk(a, b) = 1 ⇐⇒ (h(a, b) mod 2k+1) ≥ 2k.
(9)

248 J. Onderka and S. Ratschan

The best abstract transformer definition in Eq. 8 is then equivalent to

∀k ∈ {0, . . . , M − 1} .

(0 ∈ r̂bestk ⇐⇒ ∃a ∈ γ(â), b ∈ γ(b̂) . (h(a, b) mod 2k+1) < 2k) ∧
(1 ∈ r̂bestk ⇐⇒ ∃a ∈ γ(â), b ∈ γ(b̂) . (h(a, b) mod 2k+1) ≥ 2k).

(10)

The forward operation problem is therefore transformed into a problem of solving
certain modular inequalities, which is possible in polynomial time for certain
operations. We will later show that these include addition and multiplication.

If the inequalities were not modular, it would suffice to find the global min-
imum and maximum (extremes) of h. Furthermore, the modular inequalities
in Eq. 10 can be thought of as alternating intervals of length 2k. Intuitively, if it
was possible to move from the global minimum to the global maximum in steps
of at most 2k by using different values of a ∈ â, b ∈ b̂ in h(a, b), it would suffice to
find the global extremes and determine whether they are in the same 2k interval.
If they were, only one of the modular inequalities would be satisfied, resulting
in known rk (either ‘0’ or ‘1’). If they were not, each modular inequality would
be satisfied by some a, b, resulting in rk = X̂.

We will now formally prove that our reasoning for this modular extreme-
finding method is indeed correct.

Lemma 1. Consider a sequence of integers t = (t0, t1, . . . , tT−1) that fulfills

∀n ∈ [0, T − 2] . |tn+1 − tn| ≤ 2k. (11)

Then,
∃v ∈ [min t,max t] . (v mod 2k+1) < 2k ⇐⇒
∃n ∈ [0, T − 1] . (tn mod 2k+1) < 2k.

(12)

Proof. As the sequence t is a subset of range [min t,max t], the backward direc-
tion is trivial. The forward direction trivially holds if v is contained in t. If it
is not, it is definitely contained in some range (v−, v+), where v−, v+ are suc-
cessive values in the sequence t. Since |v+ − v−| ≤ 2k, (v− mod 2k+1) < 2k, and
(v+ mod 2k+1) < 2k, the value v in range (v−, v+) definitely must also fulfill
(v mod 2k+1) < 2k. ��
Theorem 3. Consider a pseudo-Boolean function f : BN × B

N → Z, two inputs
â, b̂ ∈ (2B)N , and a sequence p = (p0, p1, . . . , pP−1) where each element is a pair
(a, b) ∈ (γ(â), γ(b̂)), that fulfill

∀n ∈ [0, P − 2] . |f(pn+1) − f(pn)| ≤ 2k,

f(p0) = min
a∈γ(â)

b∈γ(b̂)

f(a, b),

f(pP−1) = max
a∈γ(â)

b∈γ(b̂)

f(a, b).

(13)

Fast Three-Valued Abstract Bit-Vector Arithmetic 249

Then,

∀C ∈ Z . (∃a ∈ γ(â), b ∈ γ(b̂) . ((f(a, b) + C) mod 2k+1) < 2k

⇐⇒ ∃n ∈ [0, P − 1] . ((f(pn) + C) mod 2k+1) < 2k).
(14)

Proof. Since each element of p is a pair (a, b) ∈ (γ(â), γ(b̂)), the backward direc-
tion is trivial. For the forward direction, use Lemma 1 to convert the sequence
(f(pn)+C)P−1

n=0 to range [f(p0)+C, f(pP−1)+C] and rewrite the forward direc-
tion as

∀C ∈ Z . (∃a ∈ γ(â), b ∈ γ(b̂) . ((f(a, b) + C) mod 2k+1) < 2k =⇒

∃v ∈
[

min
a∈γ(â)

b∈γ(b̂)

(f(a, b) + C) , max
a∈γ(â)

b∈γ(b̂)

(f(a, b) + C)
]

. (v mod 2k+1) < 2k). (15)

The implication clearly holds, completing the proof. ��
While Theorem 3 forms a basis for the modular extreme-finding method,

there are two problems. First, finding global extremes of a pseudo-Boolean func-
tion is not generally trivial. Second, the step condition, that is, the absence
of a step longer than 2k in h, must be ensured. Otherwise, one of the inequality
intervals could be “jumped over”. For non-trivial operators, steps longer than 2k

surely are present in h for some k. However, instead of h, it is possible to use a
tuple of functions (hk)M−1

k=0 where each one fulfills Eq. 10 for a given k exactly
when h does. This is definitely true if each hk is congruent with h modulo 2k+1.

Fast best abstract transformer algorithms can now be formed based on find-
ing extremes of hk, provided that hk changes by at most 2k when exactly one
bit of input changes its value, which implies that a sequence p with proper-
ties required by Theorem 3 exists. For ease of expression of the algorithms, we
define a function which discards bits of a number x below bit k (or, equivalently,
performs integer division by 2k),

ζk(x) =
⌊ x

2k

⌋
. (16)

For conciseness, given inputs â ∈ (2B)N , b̂ ∈ (2B)N , we also define

hmin
k

def= min
a∈γ(â)

b∈γ(b̂)

hk(a, b), hmax
k

def= max
a∈γ(â)

b∈γ(b̂)

hk(a, b),
(17)

Equation 10 then can be reformulated as follows: if ζk(hmin
k) �= ζk(hmax

k), both
inequalities are definitely fulfilled (as each one must be fulfilled by some element
of the sequence) and output bit k is unknown. Otherwise, only one inequality
is fulfilled, the output bit k is known and its value corresponds to ζk(hmin

k) mod 2.
This forms the basis of Algorithm 1, which provides a general blueprint for fast
abstract algorithms. Proper extreme-finding for the considered operation must
be added to the algorithm, denoted by (. . .) in the algorithm pseudocode. We will
devise extreme-finding for fast abstract addition and multiplication operations
in the rest of the paper.

250 J. Onderka and S. Ratschan

Algorithm 1. Modular extreme-finding abstract algorithm blueprint

1: function Modular Algorithm Blueprint(â, b̂)
2: for k ∈ {0, . . . , M − 1} do
3: hmin

k ← (. . .) � Compute extremes of hk

4: hmax
k ← (. . .)

5: if ζk(hmin
k) �= ζk(hmax

k) then
6: ck ← X̂ � Set result bit unknown
7: else
8: cmk ← 0, cvk ← ζk(hmin

k) mod 2 � Set value
9: end if

10: end for
11: return ĉ
12: end function

6 Fast Abstract Addition

To express fast abstract addition using the modular extreme-finding technique,
we first define a function expressing the unsigned value of a concrete bit-vector a
with an arbitrary number of bits A,

Φ(a) def=
A−1∑
i=0

2iai. (18)

Pseudo-Boolean addition is then defined simply as

h+(a, b) def= Φ(a) + Φ(b). (19)

To fulfill the step condition, we define

h+
k (a, b) = Φ(a0..k) + Φ(b0..k). (20)

This is congruent with h+ modulo 2k+1. The step condition is trivially fulfilled
for every function h+

k in (h+
k)M−1

k=0 , as changing the value of a single bit of a or
b changes the result of h+

k by at most 2k. We note that this is due to h+ having
a special form where only single-bit summands with power-of-2 coefficients are
present. Finding the global extremes is trivial as each summand only contains
a single abstract bit. Recalling Subsect. 3.1, the extremes can be obtained as

h+,min
k ← Φ(av

0..k) + Φ(bv0..k),

h+,max
k ← Φ(a1

0..k) + Φ(b10..k).
(21)

The best abstract transformer for addition is obtained by combining Eq. 21 with
Algorithm 1. Time complexity is trivially Θ(N), proving Theorem 1. Similar

Fast Three-Valued Abstract Bit-Vector Arithmetic 251

reasoning can be used to obtain fast best abstract transformers for subtraction
and general summation, only changing computation of hmin

k and hmax
k .

For further understanding, we will show how fast abstract addition behaves
for “X0” + “11”:

k = 0 : “0” + “1”, 1 = ζ0(0 + 1) = ζ0(0 + 1) = 1 → r0 = ‘1’,
k = 1 : “X0” + “11”, 1 = ζ1(0 + 3) �= ζ1(2 + 3) = 2 → r1 = ‘X’,
k = 2 : “0X0” + “011”, 0 = ζ2(0 + 3) �= ζ2(2 + 3) = 1 → r2 = ‘X’,

k > 2 : ζk(h+,min
k) = ζk(h+,max

k) = 0 → rk = ‘0’.

(22)

For M = 2, the result is “XX1”. For M > 2, the result is padded by ‘0’ to the left,
preserving the unsigned value of the output. For M < 2, the addition is modular.
This fully corresponds to behaviour of concrete binary addition.

7 Fast Abstract Multiplication

Multiplication is typically implemented on microprocessors with three different
input signedness combinations: unsigned × unsigned, signed × unsigned, and
signed × signed, with signed variables using two’s complement encoding. It is
a well-known fact that the signed-unsigned and signed multiplication can be con-
verted to unsigned multiplication by extending the signed multiplicand widths
to product width using an arithmetic shift right. This could pose problems when
the leading significant bit is ‘X’, but it can be split beforehand into two cases,
‘0’ and ‘1’. This allows us to only consider unsigned multiplication in this section,
signed multiplication only incurring a constant-time slowdown.

7.1 Obtaining a Best Abstract Transformer

Abstract multiplication could be resolved similarly to abstract addition by
rewriting multiplication as addition of a sequence of shifted summands (long
multiplication) and performing fast abstract summation. However, this does not
result in a best abstract transformer. The shortest counterexample is “11” · “X1”.
Here, the unknown bit b1 is added twice before influencing r2, once as a summand
in the computation of r2 and once as a carryover from r1:

(23) (22) (21) (20)

1 1
· b1 1
(b1) (b1) b1 1

b1 1
b1 2b1 1 + b1 1

In fast abstract summation, the summand b1 is treated as distinct for each output
bit computation, resulting in unnecessary overapproximation of multiplication.

252 J. Onderka and S. Ratschan

Instead, to obtain a fast best abstract transformer for multiplication, we
apply the modular extreme-finding technique to multiplication itself, without
intermediate conversion to summation. Fulfilling the maximum 2k step condition
is not as easy as previously. The multiplication output function h∗ is defined as

h∗(a, b) def= Φ(a) · Φ(b) =
N−1∑
i=0

N−1∑
j=0

2i+jaibj . (23)

One could try to use congruences to remove some summands from h∗
k while

keeping all remaining summands positive. This would result in

hk(a, b) =
k∑

i=0

k−i∑
j=0

2i+jaibj . (24)

Changing a single bit ai would change the result by
∑k−i

j=0 2i+jbj . This sums
to at most 2k+1 − 1 and thus does not always fulfill the maximum 2k step con-
dition. However, the sign of the summand 2kaibk−i can be flipped due to con-
gruence modulo 2k+1, after which the change of result from a single bit flip is
always in the interval [−2k, 2k − 1]. Therefore, to fulfill the maximum 2k step
condition, we define h∗

k : BN × B
N → Z as

h∗
k(a, b) def=

(
−

k∑
i=0

2kaibk−i

)
+

⎛
⎝k−1∑

i=0

k−i−1∑
j=0

2i+jaibj

⎞
⎠ . (25)

For more insight into this definition, we will return to the counterexample
to the previous approach, “11” · “X1”, which resulted in unnecessary overap-
proximation for k = 2. Writing h∗

2 computation as standard addition similarly
to the previously shown long multiplication, the carryover of b1 is counteracted
by the summand −22b1:

(23) (22) (21) (20)

(b1) b1 1
−b1 1
0 1 + b1 1

It is apparent that ζ2(hmin
2) = ζk(hmax

2) = 0 and unnecessary overapproxima-
tion is not incurred. Using that line of thinking, the definition of h∗

k in Eq. 25
can be intuitively regarded as ensuring that the carryover of an unknown bit
into the k-th column is neutralized by a corresponding k-th column summand.
Consequently, if the unknown bit can appear only in both of them simultane-
ously, no unnecessary overapproximation is incurred.

While the maximum 2k step condition is fulfilled in Eq. 25, extreme-finding
is much more complicated than for addition, becoming heavily dependent on
abstract input bit pairs of form (âi, b̂k−i) where 0 ≤ i ≤ k. Such pairs result
in a summand −2kaibk−i in h∗

k. When multiplication is rewritten using long

Fast Three-Valued Abstract Bit-Vector Arithmetic 253

multiplication as previously, this summand is present in the k-th column. We
therefore name such pairs k-th column pairs for conciseness.

In Subsect. 7.2, we show that if at most one k-th column pair where âi =
b̂k−i = X̂ (double-unknown pair) exists, extremes of h∗

k can be found easily. In
Subsect. 7.3, we prove that if at least two double-unknown pairs exist, rk = X̂.
Taken together, this yields a best abstract transformer algorithm for multiplica-
tion. In Subsect. 7.4, we discuss implementation considerations of the algorithm
with emphasis on reducing computation time. Finally, in Subsect. 7.5, we present
the final algorithm.

7.2 At Most One Double-Unknown k-th Column Pair

An extreme is given by values a ∈ â, b ∈ b̂ for which the value h∗
k(a, b) is minimal

or maximal (Eq. 17). We will show that such a, b can be found successively when
at most one double-unknown k-th column pair is present.

First, for single-unknown k-th column pairs where âi = X̂, b̂k−i �= X̂, we
note that in Eq. 25, the difference between h∗

k when ai = 1 and when ai = 0 is

h∗
k(a, b | ai = 1) − h∗

k(a, b | ai = 0) = −2kbk−i +
k−i−1∑

j=0

2i+jbj . (26)

Since the result of the sum over j must be in the interval [0, 2k −1], the direc-
tion of the change (negative or non-negative) is uniquely given by the value of
bk−i, which is known. It is therefore sufficient to ensure amin

i ← bk−i when mini-
mizing and amin

i ← 1 − bk−i when maximizing. Similar reasoning can be applied
to single-unknown k-th column pairs where âi �= X̂, b̂k−i = X̂.

After assigning values to all unknown bits in single-unknown k-th column
pairs, the only still-unknown bits are the ones in the only double-unknown k-th
column pair present. In case such a pair âi = X̂, b̂j = X̂, j = k − i is present,
the difference between h∗

k when ai and bj are set to arbitrary values and when
they are set to 0 is

h∗
k(a, b) − h∗

k(a, b | ai = 0, bj = 0) =

− 2kaibj + 2iai

(
j−1∑
z=0

2zbz

)
+ 2jbj

(
i−1∑
z=0

2zaz

)
.

(27)

When minimizing, it is clearly undesirable to choose amin
i �= bmin

j . Considering
that the change should not be positive, amin

i = bmin
j = 1 should be chosen if and

only if

2i

(
j−1∑
z=0

2zbz

)
+ 2j

(
i−1∑
z=0

2zaz

)
≤ 2k. (28)

254 J. Onderka and S. Ratschan

When maximizing, it is clearly undesirable to choose amax
i = bmax

j . That said,
amax

i = 1, bmax
j = 0 should be chosen if and only if

2j

(
i−1∑
z=0

2zaz

)
≤ 2i

(
j−1∑
z=0

2zbz

)
. (29)

Of course, the choice is arbitrary when both possible choices result in
the same change. After the case of the only double-unknown k-th column pair
present is resolved, there are no further unknown bits and thus, the values of h∗

k

extremes can be computed as

h∗,min
k =

(
−

k∑
i=0

2kamin
i bmin

k−i

)
+

⎛
⎝k−1∑

i=0

k−i−1∑
j=0

2i+jamin
i bmin

j

⎞
⎠ ,

h∗,max
k =

(
−

k∑
i=0

2kamax
i bmax

k−i

)
+

⎛
⎝k−1∑

i=0

k−i−1∑
j=0

2i+jamax
i bmax

j

⎞
⎠ .

(30)

7.3 Multiple Double-Unknown k-th Column Pairs

Lemma 2. Consider a sequence of integers t = (t0, t1, . . . , tT−1) that fulfills

∀n ∈ [0, T − 2] . |tn+1 − tn| ≤ 2k, t0 + 2k ≤ tT−1. (31)

Then,
∃n ∈ [0, T − 1] . (tn mod 2k+1) < 2k. (32)

Proof. Use Lemma 1 to transform the claim to equivalent

∃v ∈ [min t,max t] . (v mod 2k+1) < 2k. (33)

Since [t1, t1 + 2k] ⊆ [min t,max t], such claim is implied by

∃v ∈ [t0, t0 + 2k] . (v mod 2k+1) < 2k. (34)

As [t0, t0 +2k] mod 2k+1 has 2k +1 elements and there are only 2k elements that
do not fulfill (v mod 2k+1) < 2k, Eq. 34 holds due to the pigeonhole principle. ��
Corollary 1. Given a sequence of integers (t0, t1, . . . , tT−1) that fulfills
Lemma 2 and an arbitrary integer C ∈ Z, the lemma also holds for sequence
(t0 + C, t1 + C, . . . , tT−1 + C).

Theorem 4. Let r̂∗,best
k be the best abstract transformer of multiplication. Let â

and b̂ be such that there are p1, p2, q1, q2 in {0, . . . , k} where

p1 �= p2, p1 + q2 = k, p2 + q1 = k,

âp1 = X̂, âp2 = X̂, b̂q1 = X̂, b̂q2 = X̂.
(35)

Then r̂best,∗
k (â, b̂) = X̂.

Fast Three-Valued Abstract Bit-Vector Arithmetic 255

Proof. For an abstract bit-vector ĉ with positions of unknown bits u1, . . . , un,
denote the concrete bit-vector c ∈ γ(ĉ) for which ∀i ∈ {1, . . . , n} . cui

= si

by γs1,...,sn
(ĉ). Let Φs1,...,sn

(ĉ) def= Φ(γs1,...,sn
(ĉ)).

Now, without loss of generality, assume â only has unknown values in posi-
tions p1 and p2 and b̂ only has unknown positions q1, q2 and p1 < p2, q1 < q2.
Then, for s1, s2, t1, t2 ∈ B, using h(a, b) = Φ(a) · Φ(b),

h(γs1,s2(â), γt1,t2(b̂)) = (2p1s1 + 2p2s2 + Φ00(â)) · (2q1t1 + 2q2t2 + Φ00(b̂)).
(36)

Define A
def= Φ00(â) and B

def= Φ00(b̂) and let them be indexable similarly to
bit-vectors, i.e. A0..z = (A mod 2z+1), Az = ζz(A0..z). Define

hproof
k (γs1,s2(â), γt1,t2(b̂))

def=

2p1+q1s1t1 + 2p1+q2s1t2 + 2q1t1A0..p2−1 + 2p1s1B0..q2−1 +

2p2+q1s2t1 + 2p2+q2s2t2 + 2q2t2A0..p1−1 + 2p2s2B0..q1−1 + AB.

(37)

As Ap1 = Ap2 = Bq1 = Bq2 = 0, hproof
k and h are congruent modulo 2k+1. Define

D(s1, s2, t1, t2)
def= hproof

k (γs1,s2(â), γt1,t2(b̂)) − hproof
k (γ00(â), γ00(b̂)). (38)

As p1 + q2 = k and p2 + q1 = k,

D(s1, s2, t1, t2) = 2p1+q1s1t1 + 2ks1t2 + 2q1t1A0..p2−1 + 2p1s1B0..q2−1+

2ks2t1 + 2p2+q2s2t2 + 2q2t2A0..p1−1 + 2p2s2B0..q1−1.
(39)

Set s1, s2, t1, t2 to specific chosen values and obtain

D(1, 1, 0, 0) = D(1, 0, 0, 0) + D(0, 1, 0, 0),
D(0, 0, 1, 1) = D(0, 0, 1, 0) + D(0, 0, 0, 1),

D(1, 0, 0, 1) = 2k + D(1, 0, 0, 0) + D(0, 0, 0, 1).

(40)

Inspecting the various summands, note that

D(1, 0, 0, 0) ∈ [0, 2k − 1], D(0, 1, 0, 0) ∈ [0, 2k − 1],

D(0, 0, 1, 0) ∈ [0, 2k − 1], D(0, 0, 0, 1) ∈ [0, 2k − 1],

D(1, 1, 0, 0) − D(1, 0, 0, 0) ∈ [0, 2k − 1],

D(0, 0, 1, 1) − D(0, 0, 1, 0) ∈ [0, 2k − 1].

(41)

Recalling Eq. 10, the best abstract transformer can be obtained as

0 ∈ r̂bestk ⇐⇒ ∃a ∈ γ(â), b ∈ γ(b̂) . (hproof
k (a, b) mod 2k+1) < 2k,

1 ∈ r̂bestk ⇐⇒ ∃a ∈ γ(â), b ∈ γ(b̂) . ((hproof
k (a, b) + 2k) mod 2k+1) < 2k.

(42)

Constructing a sequence of hproof
k (γs1,s2(â), γt1,t2(b̂)) that fulfills the conditions

of Lemma 2 then implies that both inequalities can be fulfilled due to Corollary 1,

256 J. Onderka and S. Ratschan

which will complete the proof. Furthermore, as D(s1, s2, t1, t2) only differs from
hproof

k (γs1,s2(â), γt1,t2(b̂)) by the absence of summand AB that does not depend
on the choice of s1, s2, t1, t2, it suffices to construct a sequence of D(s1, s2, t1, t2)
that fulfills Lemma 2 as well.

There is at least a 2k step between D(0, 0, 0, 0) and D(1, 0, 0, 1). They will
form the first and the last elements of the sequence, respectively. It remains
to choose the elements in their midst so that there is at most 2k step between
successive elements.

Case 1. D(0, 1, 0, 0) ≥ D(0, 0, 0, 1). Considering Eqs. 40 and 41, a qualifying
sequence is

(D(0, 0, 0, 0),D(1, 0, 0, 0),D(1, 1, 0, 0),D(1, 0, 0, 1)). (43)

Case 2. D(0, 1, 0, 0) < D(0, 0, 0, 1). Using Eq. 39, rewrite the case condition to

2p2−p1D(1, 0, 0, 0) < 2q2−q1D(0, 0, 1, 0). (44)

As p1 + q2 = k, p2 + q1 = k, it also holds that q2 − q1 = p2 − p1. Rewrite the case
condition further to

2p2−p1D(1, 0, 0, 0) < 2p2−p1D(0, 0, 1, 0). (45)

Therefore, D(1, 0, 0, 0) < D(0, 0, 1, 0). Considering Eqs. 40 and 41, a qualifying
sequence is

(D(0, 0, 0, 0),D(0, 0, 1, 0),D(0, 0, 1, 1),D(1, 0, 0, 1)). (46)

This completes the proof. ��

7.4 Implementation Considerations

There are some considerations to be taken into account for an efficient imple-
mentation of the fast multiplication algorithm.

The first question is how to detect the positions of single-unknown and
double-unknown k-th column pairs. As such pairs have the form 2kaibk−i, it is
necessary to perform a bit reversal of one of the bit-vectors before bitwise logic
operations can be used for position detection. Fortunately, it suffices to perform
the reversal only once at the start of the computation. Defining the bit reversal
of the first z bits of b as λ(b, z) = (bz−1−i)z−1

i=0 , when the machine word size
W ≥ k+1, reversal of the first k+1 bits (i.e. the bits in b0..k) may be performed
as

λ(b, k + 1) = ((bk−i)k
i=0) = ((bW−1−i)W−1

i=W−k−1) = λ(b,W)W−k−1..W−1. (47)

It is thus possible to precompute λ(b,W) and, for each k, obtain λ(b, k + 1) via
a right shift through W − k − 1 bits, which can be performed in constant time.
Furthermore, power-of-two bit reversals can be performed in logarithmic time

Fast Three-Valued Abstract Bit-Vector Arithmetic 257

on standard architectures [1, p. 33–35], which makes computation of λ(b,W)
even more efficient.

The second problem is finding out whether multiple double-unknown k-th
column pairs exist, and if there is only a single one, what is its position. While
that can be determined trivially in linear time, a find-first-set algorithm can also
be used, which can be implemented in logarithmic time on standard architec-
tures [1, p. 9] and also is typically implemented as a constant-time instruction
on modern processors.

The third problem, computation of h∗
k extremes in Eq. 30, is not as easily

mitigated. This is chiefly due to removal of summands with coefficients above 2k

due to 2k+1 congruence. While typical processors contain a single-cycle multi-
plication operation, we have not found an efficient way to use it for computation
of Eq. 25. To understand why this is problematic, computation of h∗

k with 3-bit
operands and k = 2 can be visualised as

(24) (23) (22) (21) (20)

a2 a1 a0

· b2 b1 b0
(−a2b0) a1b0 a0b0

������a2b1 (−a1b1) a0b1

������a2b2 ������a1b2 (−a0b2)
. . .

The striked-out operands are removed due to 2k+1 congruence, while the k-th
column pair summands are subtracted instead of adding them. These changes
could be performed via some modifications of traditional multiplier implementa-
tion (resulting in a custom processor instruction), but are problematic when only
traditional instructions can be performed in constant time. Instead, we propose
computation of h∗

k via

h∗
k(a, b) =

k∑
i=0

ai

(−2kbk−i + 2iΦ(b0..k−i−1)
)
. (48)

As each summand over i can be computed in constant time on standard architec-
tures, h∗

k(a, b) can be computed in linear time. Modified multiplication techniques
with lesser time complexity such as Karatsuba multiplication or Schönhage-
Strassen algorithm [13] could also be considered, but they are unlikely to improve
practical computation time when N corresponds to the word size of normal
microprocessors, i.e. N ≤ 64.

7.5 Fast Abstract Multiplication Algorithm

Applying the previously discussed improvements directly leads to Algorithm 2.
For conciseness, in the algorithm description, bitwise operations are denoted
by the corresponding logical operation symbol, shorter operands have high zeros
added implicitly, and the bits of amin, amax, bmin, bmax above k are not used, so
there is no need to mask them to zero.

258 J. Onderka and S. Ratschan

Algorithm 2. Fast abstract multiplication algorithm

1: function Fast Abstract Multiplication(â, b̂)
2: av

rev ← λ(bv,W) � Compute machine-word reversals for word size W
3: bvrev ← λ(bv,W)
4: am

rev ← λ(am,W)
5: bmrev ← λ(bm,W)
6: for k ∈ {0, . . . , M} do
7: sa ← am ∧ ¬bmrev,W−k−1..W−1 � Single-unknown k-th c. pairs, ‘X’ in a

8: amin ← av ∨ (sa ∧ bvrev,W−k−1..W−1) � Minimize such pairs
9: amax ← av ∨ (sa ∧ ¬bvrev,W−k−1..W−1) � Maximize such pairs

10: sb ← bm ∧ ¬am
rev,W−k−1..W−1 � Single-unknown k-th c. pairs, ‘X’ in b

11: bmin ← bv ∨ (sb ∧ av
rev,W−k−1..W−1) � Minimize such pairs

12: bmax ← bv ∨ (sb ∧ ¬av
rev,W−k−1..W−1) � Maximize such pairs

13: d ← am ∧ bmrev,W−k−1..W−1 � Double-unknown k-th column pairs
14: if Φ(d) �= 0 then � At least one double-unknown 2k pair
15: i ← Find First Set(d)
16: if Φ(d) �= 2i then � At least two double-unknown k-th col. pairs
17: ck ← X̂ � Theorem 4
18: continue
19: end if
20: j ← k − i � Resolve singular double-unknown k-th column pair
21: if 2iΦ(bmin

0..j−1) + 2jΦ(amin
0..i−1) ≤ 2k then � Equation 28

22: amin
i ← 1

23: bmin
j ← 1

24: end if
25: if 2jΦ(amax

0..i−1) ≤ 2iΦ(bmax
0..j−1) then � Equation 29

26: amax
i ← 1

27: else
28: bmax

j ← 1
29: end if
30: end if
31: h∗,min

k ← 0 � Computed amin, bmin, compute minimum of h∗
k

32: h∗,max
k ← 0 � Computed amax, bmax, compute maximum of h∗

k

33: for i ∈ {0, . . . , k} do � Compute each row separately
34: if amin

i = 1 then
35: h∗,min

k ← h∗,min
k − (2kbmin

k−i) + (2iΦ(bmin
0..k−i−1))

36: end if
37: if amax

i = 1 then
38: h∗,max

k ← h∗,max
k − (2kbmax

k−i) + (2iΦ(bmax
0..k−i−1))

39: end if
40: end for
41: if ζk(h∗,min

k) �= ζk(h∗,max
k) then

42: ck ← X̂ � Set result bit unknown

Fast Three-Valued Abstract Bit-Vector Arithmetic 259

43: else
44: cmk ← 0, cvk ← ζk(h∗,min

k) mod 2 � Set value
45: end if
46: end for
47: return ĉ
48: end function

Upon inspection, it is clear that the computation complexity is dominated
by computation of hmin

k , hmax
k and the worst-case time complexity is Θ(N2), prov-

ing Theorem 2. Since the loops depend on M which does not change when signed
multiplication is considered (only N does), signed multiplication is expected to
incur at most a factor-of-4 slowdown when 2N fits machine word size, the pos-
sible slowdown occurring due to possible splitting of most significant bits of
multiplicands (discussed at the start of Sect. 7).

8 Experimental Evaluation

We implemented the näıve universal algorithm, the fast abstract addition algo-
rithm, and the fast abstract multiplication algorithm in the C++ programming
language, without any parallelization techniques used. In addition to successfully
checking equivalence of näıve and fast algorithm outputs for N ≤ 9, we mea-
sured the performance of algorithms with random inputs. The implementation
and measurement scripts are available in the accompanying artifact [9].

To ensure result trustworthiness, random inputs are uniformly distributed
and generated using a C++ standard library Mersenne twister before the mea-
surement. The computed outputs are assigned to a volatile variable to prevent
their removal due to compile-time optimization. Each measurement is taken 20
times and corrected sample standard deviation is visualised.

The program was compiled with GCC 9.3.0, in 64-bit mode and with maxi-
mum speed optimization level -O3. It was ran on the conference-supplied virtual
machine on a x86-64 desktop system with an AMD Ryzen 1500X processor.

8.1 Visualisation and Interpretation

We measured the CPU time taken to compute outputs for 106 random input
combinations for all algorithms for N ≤ 8, visualising the time elapsed in Fig. 1.
As expected, the näıve algorithm exhibits exponential dependency on N and
the fast addition algorithm seems to be always better than the näıve one. The fast
multiplication algorithm dominates the näıve one for N ≥ 6. The computation
time of the näıve algorithm makes its usage for N ≥ 16 infeasible even if more
performant hardware and parallelization techniques were used.

For the fast algorithms, we also measured and visualised the results up to
N = 32 in Fig. 2. Fast addition is extremely quick for all reasonable input sizes
and fast multiplication remains quick enough even for N = 32. Fast multiplica-
tion results do not seem to exhibit a noticeable quadratic dependency. We con-
sider it plausible that as N rises, so does the chance that there are multiple

260 J. Onderka and S. Ratschan

double-unknown k-th column pairs for an output bit and it is set to ‘X’ quickly,
counteracting the worst-case quadratic computation time.

Finally, we fixed N = 32, changing the independent variable to the number of
unknown bits in each input, visualising the measurements in Fig. 3. As expected,
the fast multiplication algorithm exhibits a prominent peak with the easiest
instances being all-unknown, as almost all output bits will be quickly set to ‘X’
due to multiple double-unknown k-th column pairs. Even at the peak around
N = 6, the throughput is still above one hundred thousands computations per
second, which should be enough for model checking usage.

In summary, while the näıve algorithm is infeasible for usage even with 16-bit
inputs, the fast algorithms remain quick enough even for 32-bit inputs.

Fig. 1. Measured computation times for 106 random abstract input combinations.

Fig. 2. Measured computation time for 106 random abstract input combinations, fast
algorithms only.

Fast Three-Valued Abstract Bit-Vector Arithmetic 261

Fig. 3. Measured computation times for 106 random abstract input combinations with
fixed N = 32, while the number of unknown bits in each input varies.

9 Conclusion

We devised a new modular extreme-finding technique for construction of fast
algorithms which compute the best permissible three-valued abstract bit-vector
result of concrete operations with three-valued abstract bit-vector inputs when
the output is not restricted otherwise (forward operation problem). Using
the introduced technique, we presented a linear-time algorithm for abstract addi-
tion and a worst-case quadratic algorithm for abstract multiplication. We imple-
mented the algorithms and evaluated them experimentally, showing that their
speed is sufficient even for 32-bit operations, for which näıve algorithms are infea-
sibly slow. As such, they may be used to improve the speed of model checkers
which use three-valued abstraction.

There are various research paths that could further the results of this paper.
Lesser-used operations still remain to be inspected, most notably the division and
remainder operations. Composing multiple abstract operations into one could
also potentially reduce overapproximation. Most interestingly, the forward oper-
ation problem could be augmented with pre-restrictions on outputs, which would
allow not only fast generation of the state space in forward fashion, but its
fast pruning as well, allowing fast verification via state space refinement. Fur-
thermore, verification of hardware containing adders and multipliers could be
improved as well, e.g. by augmenting Boolean satisfiability solvers with algo-
rithms that narrow the search space when such a structure is found.

262 J. Onderka and S. Ratschan

References

1. Arndt, J.: Bit wizardry. In: Arndt, J. (ed.) Matters Computational, pp. 2–101.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-14764-7 1

2. Boros, E., Hammer, P.L.: Pseudo-Boolean optimization. Discret. Appl. Math.
123(1), 155–225 (2002)

3. Clarke, E.M., Henzinger, T.A., Veith, H.: Introduction to model checking. In:
Handbook of Model Checking, pp. 1–26. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-10575-8 1

4. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages, POPL ’79, pp. 269–282. Association for Computing Machin-
ery, New York (1979). https://doi.org/10.1145/567752.567778

5. Institute of Electrical and Electronics Engineers: IEEE standard multivalue logic
system for VHDL model interoperability (std logic 1164). IEEE Std 1164–1993 pp.
1–24 (1993)

6. Kleene, S.C.: On notation for ordinal numbers. The Journal of Symbolic Logic
3(4), 150–155 (1938)

7. Noll, T., Schlich, B.: Delayed nondeterminism in model checking embedded sys-
tems assembly code. In: Yorav, K. (ed.) HVC 2007. LNCS, vol. 4899, pp. 185–201.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77966-7 16

8. Onderka, J.: Deadline verification using model checking. Master’s thesis, Czech
Technical University in Prague, Faculty of Information Technology (2020). http://
hdl.handle.net/10467/87989

9. Onderka, J.: Operation checker for fast three-valued abstract bit-vector arithmetic
(2021). Companion artifact to this paper

10. Regehr, J., Reid, A.: HOIST: a system for automatically deriving static analyzers
for embedded systems. SIGOPS Oper. Syst. Rev. 38(5), 133–143 (2004)

11. Reinbacher, T., Horauer, M., Schlich, B.: Using 3-valued memory representation
for state space reduction in embedded assembly code model checking. In: 2009
12th International Symposium on Design and Diagnostics of Electronic Circuits
Systems, pp. 114–119 (2009)

12. Reps, T., Thakur, A.: Automating abstract interpretation. In: Jobstmann, B.,
Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 3–40. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-49122-5 1

13. Skiena, S.S.: Introduction to algorithm design. In: Skiena, S.S. (ed.) The Algorithm
Design Manual, pp. 3–30. Springer, London (2008). https://doi.org/10.1007/978-
1-84800-070-4 1

14. Yamane, S., Konoshita, R., Kato, T.: Model checking of embedded assembly pro-
gram based on simulation. IEICE Trans. Inf. Syst. E100.D(8), 1819–1826 (2017)

https://doi.org/10.1007/978-3-642-14764-7_1
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1145/567752.567778
https://doi.org/10.1007/978-3-540-77966-7_16
http://hdl.handle.net/10467/87989
http://hdl.handle.net/10467/87989
https://doi.org/10.1007/978-3-662-49122-5_1
https://doi.org/10.1007/978-1-84800-070-4_1
https://doi.org/10.1007/978-1-84800-070-4_1

	Fast Three-Valued Abstract Bit-Vector Arithmetic
	1 Introduction
	1.1 Our Contribution

	2 Related Work
	3 Basic Definitions
	3.1 Abstract Bit Encodings
	3.2 Abstract Transformers
	3.3 Algorithm Complexity Considerations
	3.4 Naïve Universal Abstract Algorithm

	4 Formal Problem Statement
	5 Modular Extreme-Finding Technique
	6 Fast Abstract Addition
	7 Fast Abstract Multiplication
	7.1 Obtaining a Best Abstract Transformer
	7.2 At Most One Double-Unknown k-th Column Pair
	7.3 Multiple Double-Unknown k-th Column Pairs
	7.4 Implementation Considerations
	7.5 Fast Abstract Multiplication Algorithm

	8 Experimental Evaluation
	8.1 Visualisation and Interpretation

	9 Conclusion
	References

