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Abstract. Deep residual network (DRN) is considered a promising
image classification method for high spatial resolution remote sensing
(HSRRS) images due to its great feature extraction capabilities. The clas-
sification performance of the DRN is greatly relies on the size of training
samples. However, the sample size of HSRRS images is relatively small
due to the high acquisition cost. Blindly increasing the sample size would
requires huge computing resources and image annotation cost, but would
not necessarily improve the classification performance of DRN. In this
paper, a transfer learning-aided DRN method (TL-DRN) is proposed
for a few shot learning to address the performance challenges associated
with HSRRS with relatively small sample size and explore the impact of
sample size on classification performance. In the experiment, the weights
(shared knowledge) obtained by training the ImageNet datasets on the
DRN model are transfered to the TL-DRN model. Experiments with ten
different small-scale training sample sizes are conducted. Experimental
results show that when the total training sample size is increased from
10 to 100, the classification performance of the TL-DRN model tends
to be stable and the mean accuracy of its testing set has stabilized at
around 94%. TL-DRN shows a superiority of up to 16% over DRN, in
terms of classification accuracy.

Keywords: Convolutional neural network · Images classification ·
High spatial resolution remote sensing · Transfer learning

1 Introduction

With the enhancement of remote sensing satellite images resolution, we can
obtain more information to conduct more impactful research related to land
planning, disaster prevention and so on. Classification is one of the most impor-
tant tasks in HSRRS image processing. HSRRS images have rich spatial, shapes,
textures and colors features, which provide good basis for the classification [1].

Deep learning (DL)-based image classification methods usually adopt convo-
lutional neural networks (CNNs) to automatically extract image feature, which
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gets rid of the complex artificial feature design [2–4]. Generally, the deeper the
neural network, the better the classification performance [5]. On account of its
excellent feature extraction capabilities, CNNs have been widely applied in the
tasks of signal modulation recognition [6,7], voice signal processing and other
fields. In recent years, CNNs have developed rapidly, and more and more image
classification models based on CNNs achieved excellent results like VGG [8],
ResNet [9], InceptionV3 [10] and so on. However, these classification models
mainly rely on a great quantity of training samples to obtain high accuracy.
Otherwise overfitting may occur [11], which means that trained models have the
prefect performance on training samples, while perform badly on the indepen-
dent test samples. Due to the difficulty of acquiring HSRRS images, the dataset
of HSRRS is small. In recent years, a great deal of research have shown that
transfer learning could greatly alleviate the phenomenon of over-fitting of the
classification model with small sample size [12]. Y. Boualleg et al. proposed a
CNN-DeepForest based on deep forest and CNNs transfer learning for HSRRS
images classification [13]. Xue et al. proposed a MSDFF model based on multi-
structure deep features fusion for HSRRS image classification [14]. However,
there is still a gap in the drive to find optimum sample size for transfer learning
to achieve the best classification performance.

In this paper, we propose a TL-DRN model for HSRRS image classification.
The proposed model is used to train ten groups of datasets with different sample
sizes to explore the influence of the sample size on the model training. The
mean accuracy is used to evaluate the performance of the model. The main
contributions of this paper can be summarized as below:

1. TL-DRN for HSRRS image classification with limited sample size is proposed.
Experiments have proved that the TL-DRN model is more suitable for HSRRS
image classification in the case of small sample size than the DRN model.

2. The impact of sample size on TL-DRN are studied. Experimental results
confirm that the performance of TL-DRN tends to be stable when the sample
size of training reaches six per category.

2 Theoretical Basis

In this section, CNNs, ResNet50 and transfer learning are introduced in detail.

2.1 CNNs

CNNs is a special artificial neural network. Its main feature is the ability to per-
form convolution operations. Therefore, CNNs is excellent in image classification,
detection and segmentation [15].

The input of CNNs is often raw data such as images and audio. The struc-
ture of CNNs is a hierarchical model composed of convolutional layers, pooling
layers, fully connected layers [16], and activation functions. The original input
information undergoes layer-by-layer operation to extract feature information.
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Then, those information is used for classification through the fully connected
layer [17].

When designing a CNNs, the number of channels in the convolution layer
should be equals to the input data. The number of convolution kernels should
be the same as that of channels output from this layer. The convolution kernel
generally has two attributes: stride (s) and padding (p). Output size of the fea-
ture layer after convolution can be obtained by the following calculation formula
[18]:

n =
N + 2p − f

s
+ 1 (1)

where N , f and n represent the size of the input, the convolution kernel and the
output respectively.

When the image passes through the convolutional part, low-level convolu-
tional layers extract low level semantic features like texture and shape etc., while
high level convolutional layers extract high level semantic features [19]. In gen-
eral, high level semantic features are more convenient for image classification.
Finally, the feature information output by the convolutional layer is mapped
to the labeled sample space through the fully connected layer to complete the
classification task.

2.2 ResNet50 and DRN

As the number of convolutional layers is increased, the high-level semantic fea-
tures of the image can be better extracted. However, the deep network may have
the problem of gradient disappearance or explosion, which hinders the conver-
gence of the network, otherwise known as the degradation problem. To solve the
issue of degradation, ResNet50 is proposed. The ResNet50 network is a stack of
residual networks. The Fig. 1 shows the structure of the residual network. The
principles of the residual network are as follows.

The residual network consists of one residual unit. First, the residual unit
can be written as

yl = h(xl) + F (xl,Wl) (2)

xl+1 = f(yl) (3)

where xl and xl+1 respectively represent the input and output of the l-th residual
unit [20], and every residual unit includes a multi-layer structure generally. F
is the residual function, indicating the learned residual. In addition, h(xl) = xl

indicates the identity mapping and f represents the rectified linear unit (relu)
activation function which is expressed in Eq. (4). The way of adding a highway
between the output and input of the network allows us to easily solve the problem
of gradient dispersion and network performance degradation.

f(x) = max(x, 0) (4)

It should be note that the convolution part of the ResNet50 network is called
as deep residual network (DRN) for the convenience of writing.
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Fig. 1. The architecture of the residual block.

2.3 Transfer Learning

Transfer learning is a learning method for small sample training [21]. It applies
the knowledge and experience learned in other tasks to the current task.

In transfer learning, domains (D) and tasks (T ) are defined, domains are
divided into source domains (Ds) and target domains (Dt), and tasks are divided
into source tasks (Ts) and target tasks (Tt). The domain includes feature space
and edge probability distribution. Given Ds, Ts, Dt, and Tt, transfer learning
uses the knowledge learned from Ds and Ts to enhance the learning of the
prediction function f for Dt, where T = f(D), Ts �= Tt and Ds �= Dt [22].

In terms of image classification processing, some studies have found that no
matter which image dataset is input into the CNNs, the features extracted from
the low level convolutional layers are similar. A great deal of researches have
proved that the features extracted by a dataset after CNNs are often applicable
to another dataset [23]. Therefore, based on this feature, we conduct transfer
learning on small samples.

3 The Proposed HSSRS Classification Based on DRN
and Transfer Learning

In this section, the structure of TL-DRN network, the training method of TL-
DRN, the objective function and evaluation indexs used in the experiments will
be introduced in detail.

3.1 The Structure of TL-DRN

TL-DRN is a deep learning network model composed of DRN and transfer learn-
ing. First, we build the convolution part of the TL-DRN according to the struc-
ture of DRN to prepare for migration. After that, two sets of fully connected
layers are added behind the DRN for classification. The framework of the model
is presented in Fig. 2.
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Fig. 2. The framework of ResNet50 and TL-DRN.

3.2 The Method of TL-DRN Training

The TL-DRN training method consists of three parts: ResNet50 training, net-
work reconstruction and feature transfer, and TL-DRN training. The process is
presented in Algorithm 1.

ResNet50 Training. ResNet50 is composed of CNNs and residual blocks,
which can solve the gradient explosion problem caused by the increase of the
network level. Figure 2 shows the model structure. ImageNet [24] dataset is used
as the source domain to training ResNet50 and it can be expressed as:

DS = {(x1, y1) , (x2, y2) , . . . , (xn, yn)} (5)

where xi = [x(1)
i , x

(2)
i , . . . , x

(k)
i ]T (i = 1, 2, . . . . . . , n), x

(j)
i represents the j-th

feature of the i-th input data of source domain, yi represents the true label
category of source domain. The model can be expressed as:

FS = fResNet50(θDRN , θfc;xi) (6)

where FS represents the output of the model. θDRN indicates the weight param-
eter obtained by training the deep residual convolution part and θfc indicates
the weight parameter obtained from the fully connected layer training.

Network Reconstruction and Feature Transfer. TL-DRN is constructed
according to Fig. 2. Since ResNet50 and TL-DRN have the same DRN struc-
ture, the weight of the convolution part obtained by ResNet50 training can be
extracted and loaded into the convolution part of TL-DRN. The dataset used
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Algorithm 1. The proposed TL-DRN method.
Input: 10 categories of HSRRS images;
Output: The TL-DRN;

Training and testing the ResNet50 on the ImageNet dataset;
Constructing TL-DRN network based on DRN network of ResNet50;
for j-th layer in TL-DRN layers do

for i-th layer in DRN layers do
if j-th layer name == i-th layer name then

Load the weights of layer i to layer j;
Freeze the weights of layer j;

else
Pass;

end if
end for

end for
Training and testing the TL-DRN on the HSRRS images ;
return TL-DRN.

in TL-DRN is ten-category images of HSRRS. In transfer learning, this dataset
represents the target domain, so it can be written as:

DT = {(x1, y1) , (x2, y2) , . . . , (xn, yn)} (7)

where xi = [x(1)
i , x

(2)
i , . . . , x

(k)
i ]T , x

(j)
i represents the j-th feature of the i-th input

data of target domain, yi represents the true label category of target domain.
The model can be expressed as:

F = fTL−DRN (θDRN , θnewfc;xi) (8)

where, the value of θDRN in Eq. (8) is the value of θDRN trained in Eq. (6). θnewfc

indicates the weight parameter obtained from the TL-DRN fully connected layer
training.

TL-DRN Training. After network reconstruction and feature transfer, the
TL-DRN model can learn the knowledge θDRN obtained by ResNet50 training.
Therefore, we only need to train the parameters θnewfc of the fully connection
layer.

3.3 Loss Function

The multi-class categorical cross entropy loss function is used as the loss function
and it can be written as:

L = −
N∑

i=1

yi log (Fi) (9)

where yi is the true label of i-th input and Fi is the result of the i-th output of
the model. N is the number of categories. We aims to train the model to find a
suitable set of θ to minimize the loss function.
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3.4 Evaluation Index of Experimental Results

Firstly, line chart is used to show the training process, where the horizontal
axis represents the epoch of training, the left vertical axis indicates the mean
accuracy, and the right vertical axis indicates the loss value.

Secondly, mean accuracy (MA) judge the overall performance of the classifi-
cation and its calculation formula can be written as [25]:

MA =
1
N

n∑

i=1

Cii (10)

where N is the total sample size of the testset, n is the total number of
categories to be classified, Cii is the number correctly classified for class i.

4 Experimental Results

In this section, we collect different datasets, conduct experiments according the
Section III, and analyze the results of the experiments.

Fig. 3. Accuracy and loss line chart during the period of training and testing for
training sample size is (a) one, (b) ten per category with TL-DRN.

4.1 Data Description

From the UCMerce LandUse [26] and RSI-CB128 datasets [27], ten-category
HSRRS image samples are selected for classification. One image per category is
randomly selected to form a training dataset. Afterwards, {2, 3, 4, · · ·, 10} images
are selected in the same way as in the above. These ten sample sets are used
as small training samples to explore the influence of sample size on TL-DRN
classification. Ten images per category are selected randomly to form a training
dataset. After that, {20, 30, · · ·, 100} images per category are selected in the
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same way as in the above. As a control group, these 10 sample sets with larger
training samples are directly trained by ResNet50. The specific training sample
size is shown in Table 1 and Table 2. In the experiment, all test sets used are the
same, with one hundred samples in each category. It should be noted that the
following operations are performed in the image preprocessing stage: (1) The
input picture size is uniformly changed to the format of 224 × 224 × 3; (2) The
data is effectively expanded by rotating and translating the image. Therefore,
the data set has been expanded twice on the original basis.

4.2 Experiments Setting

There are three experiments in this part. The experiment one explores the influ-
ence of sample size on the transfer learning model. The experiment two and
experiment three serve as control learning groups. First of all, for the first experi-
ment, ten sets of training data with a small sample size were selected. The sample
sizes of these ten training sets are {1, 2, 3, · · ·, 10} per category. The TL-DRN
model is built according to Fig. 2. Experiments with 10 sets of data are con-
ducted according to the TL-DRN training method in Section III. Secondly, for
the second experiment, the same data set as TL-DRN experiment is selected.
The ResNet50 model is built according to Fig. 2 and used to train 10 sets of
training samples separately. At last, for the third experiment, ten sets of train-
ing data with a larger sample size are selected. The sample sizes of these ten
training sets are {10, 20, 30, · · ·, 100} per category. After that, ResNet50 is used
to train ten sets of training samples directly.

Fig. 4. Accuracy and loss line chart during the period of training and testing for
training sample size is (a) one, (b) ten and (c) one hundred per category with ResNet50.

4.3 Experimental Results

First of all, the line graphs of the training process of the three experiments when
the sample size is the smallest and the sample size is the largest are shown in
Figs. 3 and 4. Each line graph shows the changes of the accuracy and loss of the
training set and testing set as the number of training iterations increases. Com-
paring the training process diagram with the smallest sample size and the largest
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Table 1. Testing set mean accuracy on TL-DRN and ResNet50.

TSSPCa 1 2 3 4 5 6 7 8 9 10

TMA/Tb (%) 76.60 83.90 89.00 93.30 94.30 94.80 94.40 94.20 94.80 94.30

TMA/Rc (%) 52.70 45.00 62.40 71.00 73.70 71.90 72.40 82.10 75.20 79.40
a Training sample size per category
b Test Mean Accuracy/TL-DRN
c Test Mean Accuracy/ResNet50

Table 2. Testing set mean accuracy on ResNet50.

TSSPCa 10 20 30 40 50 60 70 80 90 100

TMAb (%) 79.40 91.50 90.10 90.60 92.90 95.50 95.80 96.10 94.60 95.90
a Training sample size per category
b Test Mean Accuracy/ResNet50

sample size of each experiment, we can see that as the sample size increases, the
overfitting problem of the model is better mitigated. For example, the MA of
the training set and testing set of Fig. 3(a) differs by about 20% while differs by
about 6% of Fig. 3(b). Moreover, for small samples, transfer learning can reduce
the overfitting situation (This can be understood by comparing to the image of
Fig. 3(b) and Fig. 4(b)).

For the first experiment, the test MA obtained by the test experiment in the
case of each sample size are given in Table 1. It can be seen clearly that with
the increase of the sample size, the classification performance of our proposed
TL-DRN is also greatly improved. However, the classification performance of
the test fluctuates little, by about 0.3% when the sample size reaches six per
category. The MA of the testing set is around 94.4%.

For the second experiment, comparing the test results of TL-DRN and the
test results of ResNet50 in the same sample size in Table 1, it can be found that
transfer learning greatly improves the performance of classification with small
samples size. At the highest level, TL-DRN improves accuracy by nearly 39%
compared to ResNet50, and at the lowest level, it has a nearly 12% improvement.

For the third experiment, the test MA obtained by the test experiment in
the case of each sample size are given in Table 2. Compared with the first experi-
ment, in the case of ten times the training sample size of the first experiment, the
classification performance of ResNet50 is slightly better than that of TL-DRN
generally. At the highest level, ResNet50 improves accuracy by nearly 7.6% com-
pared to TL-DRN, and at the lowest level, it has a nearly 2.7% drop.

5 Conclusion

In this paper, the influence of the sample size on the classification of TL-DRN
model for ten-category of HSRRS images was investigated. When the sample size
of ten types of HSRRS images reaches six per category, the classification per-
formance of TL-DRN network tends to be stable. In addition, the classification
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effect of the TL-DRN model is far better than that of ResNet50 on training sam-
ples of the same magnitude. And when the training sample size of ResNet50 is 10
times that of TL-DRN, the classification effect of TL-DRN is only slightly lower
than ResNet50. It was also shown that TL-DRN is a good candidate for classi-
fication of HSRRS images. However, when the sample size increases to a certain
level, the continued increase of sample size has little effect on performance. We
will continue to be committed to improving the classification performance of the
model through other methods in the case of small samples.
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