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Abstract. Designing agent-basedmodels is a difficult task. Some guidelines exist
to aidmodelers in designing theirmodels, but they generally do not include specific
details on how the behavior of agents can be defined. This paper therefore pro-
poses the AbCDemethodology, which uses causal discovery algorithms to specify
agent behavior. The methodology combines important expert insights with causal
graphs generated by causal discovery algorithms based on real-world data. This
causal graph represents the causal structure among agent-related variables, which
is then translated to behavioral properties in the agent-based model. To demon-
strate the AbCDe methodology, it is applied to a case study in the airport security
domain. In this case study, we explore a new concept of operations, using a service
lane, to improve the efficiency of the security checkpoint. Results show that the
models generated with the AbCDe methodology have a closer resemblance with
the validation data than a model defined by experts alone.
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1 Introduction

Agent-based models have shown to be useful in a variety of areas, ranging from urban
planning to ecology and security [1]. Some guidelines exist to aid (new) modelers in
their model development, and they share some similarities [2, 3]. Most of these guide-
lines are quite high-level, and do not go beyond a description of which elements have
to be defined. A notable exception is the ‘overview, design concepts, and details’(ODD)
protocol, which has been used widely in literature [4, 5]. It provides a detailed set of
steps, along with guidelines, to design agent-based models and individual-based mod-
els. The ODD protocol has evolved over time. Firstly, it was observed that there was
a lack of decision-making features in the ODD protocol; the protocol did not support
the definition of human behavior that contains decisions, adaptation, and learning. This
leads to a revised version of ODD, the ODD+D (Decision) protocol [6]. However, the
lack of properly incorporating data in the empirical models was an important issue with
ODD+D. Therefore, ODD+2D (ODD + Decision + Data) [7] was introduced to solve
this lacking. While this method added structure to incorporating data in agent-based
models, the creativity of the modeler remains a central component. With more and more
data becoming available over the last decades, methods to interpret and understand this

© Springer Nature Switzerland AG 2022
K. H. Van Dam and N. Verstaevel (Eds.): MABS 2021, LNAI 13128, pp. 15–28, 2022.
https://doi.org/10.1007/978-3-030-94548-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94548-0_2&domain=pdf
http://orcid.org/0000-0003-2019-2022
http://orcid.org/0000-0001-6879-1134
http://orcid.org/0000-0003-3803-6714
https://doi.org/10.1007/978-3-030-94548-0_2


16 S. Janssen et al.

data became better as well. Numerous methods to find these patterns and relationships
exist, of which regression, neural networks, and clustering are three examples [8]. A
particularly promising method to find relationships between variables is that of causal
inference [9]. These causal graphs show the causal relationships between variables and
identify structure in the dataset. In this work, we propose the Agent-based Causal dis-
covery Design methodology (AbCDe), a novel methodology that aids the development
of agent-based models using causal discovery.

This paper is structured as follows. In Sect. 2, related work in the areas of designing
agent-based models and causal discovery are reviewed. Then, the AbCDe methodology
as proposed in this work is outlined in Sect. 3. The case study is outlined in Sect. 4.
Finally, the work is concluded in Sect. 5.

2 Related Work

Designing agent-based models is a complex task. An agent-based model has three main
components: agents, environment, and interactions. Klugl and Bazzan [3] state that
agent-based models are an appropriate choice when a system meets a set of six different
conditions. These conditions for instance include the existence of local interactions and
heterogeneity in states and behavioral rules. However, the work lacks a proper method
to describe how agents can be defined. It is recognized by the community that a uniform
framework or methodology for designing agent-based models is lacking [2]. To design
a conceptual model or model a software program, there are two popular standards, the
Unified Modeling Language (UML) and the ‘overview, design concepts, and details’
(ODD). UML is used to represent different classes in object-oriented programming and
the connection between them [29].

The ODD protocol has been used widely in literature [4, 5]. While the ODD protocol
contains detailed steps to design agent-based models, no insights on how to design
the behavioral properties of agents are provided. With the right dataset, data-driven
methods may be useful in specifying the behavioral properties of agents. These methods
find relationships between variables in a dataset, which could determine relationships
between actions of agents and the outcomes in the environment. The successor of the
ODDprotocol, theODD+2Dprotocol, consists of twomajor steps: 1) data preprocessing,
and 2) linking data [7]. The link between data components and agent-based modeling
elements in ODD+2D consists of three main sections: 1) overview, 2) design concepts,
and 3) details.

While the ODD+2D adds structure to incorporating data in agent-based models, it
remains up to the modeler how to use this data. This topic was explored in detail in [10].
In that work, behavioral properties of agents are learned from data by applying machine
learning techniques, such as support vector machines. While these more traditional
machine learning techniques are effective tools to learn behavioral properties, they do
not reveal the structure of relationships between variables related to agents.Aparticularly
promising method to reveal this structure is that of causal discovery.

Traditionally, mathematical analysis is used to find relationships between variables.
However, a relationship between two variables does not necessarily mean that one vari-
able causes the other. In the field of causality, causal relationships between variables are
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found by using causal graphs [9, 11]. Causal graphs can be created using twomain meth-
ods. In the first method, experts use their knowledge to manually create a graph, while
in the second method causal graphs are generated using data. An example of manually
creating a causal graph using expert knowledge is discussed in [12]. The second method,
which is also applied in this work, uses causal discovery algorithms. These algorithms
can broadly be categorized into two categories: score-basedmethods [13] and constraint-
based methods [14]. Score-based methods assign a score to a set of potential graphs and
then select the graph with the highest score. Constraint-basedmethods define constraints
on causal graphs based on statistical independence of variables. In the constraint-based
category, the PC algorithm [16] is very popular, while in the score-based category, the
GES algorithm [22] is frequently used in literature.

The most extensive work in the interaction of agent-based modelling and causality
is by Casini and Manzo [15], who provide a technical report on the differences and
similarities of agent-based modeling and causality. However, their work only focuses
on analyzing agent-based models, and not on designing them. Then, Kvassay et al. [16]
provide a method, based on causal partitioning, to analyze causal relationships relating
to emergence in agent-based models. This work also focuses on analyzing agent-based
model behavior and does not cover designing them either. Guerini and Moneta [17]
cover the topic of agent-based model validation. They estimate time-series of economic
models using structural vector autoregressive (SVAR) models. Using causal discovery
algorithms, they generate two SVAR models: one based on results generated by the
designed agent-based model, and the other based on actual data. When the two SVAR
models are similar enough, the agent-based model is considered validated. This work
only covers agent-based model validation and does not cover designing agent-based
models. Finally, Janssen et al. [18] developed a methodology that uses causal discovery
algorithms to analyze emergent behavior in agent-based models. They show that causal
graphs can he experts to interpret and identify emergent behavior in agent-based models.
To overcome the lack of work using causal discovery algorithms to design agent-based
models, we introduce the AbCDe methodology below.

3 Methodology

This section outlines the novel Agent-based Causal discovery Design methodology,
called AbCDe, which is used to design agent-based models with the aid of causal dis-
covery algorithms. The methodology includes all aspects needed to design agent-based
models, and uses causal discovery algorithms in one of its steps.

The methodology exploits the ever-growing availability of data to design agent-
based models. Using data on the behavior of agents, a causal graph is generated using
causal discovery algorithms. This graph is then, with the aid of experts, translated into
behavioral properties of agents. These properties ultimately determine the dynamics of
the model, leading to insights into the phenomenon that is modeled. Causal discovery
algorithms provide amore structuredmethod to develop agent-basedmodels than relying
on experts alone.However, experts are still needed inmany aspects of themethodology to
ensure that the model is of high quality. This combination of causal discovery algorithms
and experts can lead to better models than models created by experts alone.
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TheAbCDemethodology containsfive steps,which are graphically outlined inFig. 1.
As with many modelling studies, in the first step of AbCDe, the purpose of the model
is specified, research questions are formulated and hypothesis are formulated. Then, in
the second step of the methodology the scope of the model is determined. This specifies
what elements will be included in the model and what will not be included. Once the
scope is clarified, a conceptual model is formalized. The conceptual model forms the
basis for the remainder of the methodology. In this model, agents are identified first. An
agent, in this work, is defined as an entity that perceives its environment through sensors
and acts upon that environment through effectors [19]. In this step, we specifically focus
on the identification of the agents to be modeled, along with their characteristics and the
behavior that they can exhibit. Only the higher-level behavior that the agent exhibits is
specified (i.e., what the agent can do); the full specification of the behavior (i.e., how
the agent does it) will be done in step 4.

Fig. 1. The AbCDe methodology as used in this work. (Color figure online)

After identifying the agents and specifying the environment, data is collected about
the behavior and characteristics of the agents in the model in step 3. This data is obtained
byobserving agents, their actions, and the consequences of these actions in the realworld.
This will later be used to specify behavioral properties of agents. Depending on what is
modeled, different types of data can be collected. The collected data that will be used to
generate behavioral properties is always on the agent-level (and not population-level),
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and should therefore contain as much detail about the characteristics of the agent (as
defined in the conceptual model of the previous step), its behavior and the results of this
behavior. Data is therefore in the form of characteristics of agents, actions performed by
agents, effects of agent actions on the environment and effects of agent actions on other
agents. The collected data is then analyzed following standard data analysis techniques,
such as clustering, regression, and statistical tests. This provides early insights into the
behavior of agents and will be useful for the next step of the methodology.

In step 4, behavioral properties are formalized based on two sources: causal discovery
and expert input. This step includes the unique contribution of this paper in which causal
discovery is used to define behavioral properties (green box of Fig. 1). Both causal
discovery and expert input are discussed in detail below, combined with a discussion on
how to translate them into behavioral properties.

Causal discovery algorithms (see also Sect. 2) are used to infer a causal structure
from the gathered data of step 3. Before applying the algorithm, the data has to be
preprocessed. This preprocessing is done to ensure that only individual agent behavior
is found, and not collective emergent effects. These emergent effects should be part of
the model, but not explicitly coded into the behavior of agents. It should emerge from
the behavior and interaction of agents in the model (see also the work of Janssen et al.
[18]).

Furthermore, the dataset has to be organized such that a single causal graph for a
single agent is produced. Data of other agents can be included in the dataset for the agent
under consideration, so that observable behavior, such as communication and alterations
of the environment, can be found by the causal discovery algorithms as well.

After preprocessing, a causal discovery algorithm is applied to the dataset, lead-
ing to a causal graph representing the behavior of an agent in the model. The gener-
ated graphs relate characteristics of agents to exhibition of their behavior by means of
including an arrow between them. Results of the behavior of other agents or properties
of environmental objects are included in the graph following the same standard.

After generating the causal graphs, an expert provides input for two purposes. While
causal discovery is useful, applying it still requires some level of expert knowledge [23].
The expert checks the graph that was generated for inconsistencies with their knowledge
and the original data analysis that was performed in the previous step. These inconsis-
tencies are then fixed in the graph. Second, the expert provides additional insights based
on theories from literature or their experience. These insights can be used to compensate
for missing data in the dataset, and provide another means to specify behavioral prop-
erties in the next step. After obtaining both the causal graph and the input of experts,
the behavioral properties are specified. These properties can be obtained from the graph
(enhanced by the expert) by selecting a variable to be used as a behavioral property and
using its parents as building blocks to specify the behavior.

Finally, in step 5, the defined model is implemented, calibrated, and validated. When
the model sufficiently resembles validation data, the AbCDe methodology is finished.
When this is not the case, the methodology returns to step 2.
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4 Case Study

We apply the AbCDe methodology to a case study in the field of airport security. In air-
port terminals, the security checkpoint is the most important bottleneck for passengers
(leading to unwanted waiting time) and an important source of costs for airport man-
agement. As airport passenger numbers are projected to increase in the future, security
checkpoints have to be operated efficiently. In this case study, we explore a new concept
of operations, using a service lane, to improve the efficiency of the security checkpoint.
Service lanes process passengers that are expected to be slow, and the other open lanes
(defined as normal lanes) process the remaining passengers. A standard lane is a lane in
which no experiment took place, and all passengers are processed. This concept of oper-
ations is projected to improve the overall throughput of the system, as faster passengers
do not have to wait for slower passengers in front of them. Slow passengers also receive
extra help from experienced security officers, potentially increasing the throughput as
well.

We design an agent-based model following the AbCDe methodology to determine
the effects of implementing a service lane on the throughput of the security checkpoint,
as compared to a standard setup.

The purpose of the model is to determine the effects of implementing a service lane
on the throughput of the security checkpoint, as compared to a standard setup. The scope
of this experiment is to find passengers behavioral traits in the collect and drop section
at the security checkpoint in the airport, while disregarding cognitive behavior of the
passengers. Now that the scope of themodel is clarified, we specify the conceptual model
(step 2 of AbCDe). This conceptual model is specified inmore detail in a technical report
[28], but the most important elements are provided below.We identify the environmental
objects that are modeled first. These are outlined below.

• Luggage. Luggage is owned by a passenger and has a specific threat level. This is a
real value between 0 and 1.

• Box. Object in which luggage is dropped. Luggage can be dropped into multiple
boxes.

• Walk-throughmetal detector (WTMD).Randomly specifies passengers that require
an explosive trace detection (ETD) test or patdown.

• Flight. Abstract concept that has an associated flight time. Passengers are associated
with exactly one flight.

• Queue separator. Physical objects that are used to form queue areas for passengers.

Now that the environment of the model is specified, we specify the agents of the
model.

• Passenger. Agent that is associated with a flight, moves through the security
checkpoint.

• X-ray operator. Uses the X-ray sensor to determine if luggage needs an extra check,
and communicates this with the luggage check operator.

• Luggage check operator. Checks luggage when requested by the X-ray operator.
• Patdown operator. Performs patdowns and ETD checks.
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Wecollected data of passengersmoving through the security checkpoint atRotterdam
The Hague Airport [26] (step 3 of AbCDe). Data for a total of 2277 passengers, flying to
16 different destinations was gathered. Three types of lanes were considered: standard,
normal and service lanes. Data for standard lanes were gathered between 23 February
2018 and 17 April 2018, while data for normal and service lanes were collected on the
experimental days: 17 December 2018 and 18 December 2018. A service lane was used
to process passengers that are expected to be slow, while the normal lanes processed
the other passengers. As mentioned in earlier, the scope of this paper is based on the
generation of behavioral properties on the drop and collect behavior of passengers. We
use the data of the standard lanes to generate the behavioral properties of the agent, while
we use data of the service lane experiment to validate the models.

To generate the graphs, we combine the score-based GES [22] algorithm and the
constraint-based PC algorithm [16], following the work of Janssen et al. [18] (see also
Sect. 2). We use the following variables from the dataset to generate the graph for the
characteristics model: drop, collect (the time a passenger takes to drop/collect luggage
on/from the belt), boxes (the number of boxes the passenger uses at the security check-
point), type (the type of passenger, see Table 2 and 3), and group size (the size of the
group the passenger travels with, see Table 2). These variables are a combination of the
characteristics of the agent, and the two behavioral properties that we are interested in
(drop and collect) and are used to generate the causal graph that we will refer to as the
characteristics model.

The same variables are used for a causal model that we define as the extended model.
However, the following variables are additionally used in the extendedmodel: dropp (the
drop time of the previous passenger in line), wait Ip (the time the previous passenger
waited between dropping luggage and going through the WTMD), boxesp, typep, and
group sizep (the boxes, type, and group size of the previous passenger respectively). It
is important to note that these consist of the observable behavior and characteristics (i.e.
observable by the passenger) of the passenger in front of the passenger for which the
behavioral properties are defined.

Figure 2a and Fig. 3a show the graphs that were generated by the causal discovery
algorithm for the characteristics model and the extended model respectively. Based on
expert insights, these graphs are translated to their final versions, as shown in Fig. 2b
and Fig. 3b. This procedure of using expert insight to update the graphs is aided by the
work of Shrier and Platt [12].

The graph generated for the characteristics model shows that both ETD (the time the
passenger receives an Explosive Trace Detection) and patdown (the time the passenger
receives a patdown) are not connected to any other variable in the graph. That means
that these are independent variables that will be generated in the model independently
as well. Both boxes and type show a causal relationship with both drop and collect.
This implies that these characteristics combined are of influence on the speed in which
passengers drop and collect luggage. The generated graph additionally shows that boxes
is caused by both drop and collect. Based on expert advice, we assume this link to be
unidirectional in the direction of drop and collect. Finally, the size of the group influences
collect, but not drop. In a security checkpoint, passengers traveling in groups often wait
for each other to finish collecting their luggage. In this way, they can continue their
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journey to the gate together. This is not the case for dropping luggage, as passengers can
only pass through the WTMD individually.

The extended model is based on a generated graph that contains five more variables
and is therefore more complex. This shows that some variables related to the previous
passengers are closely related to the same variables of the passenger under consideration.
To allow for a fair comparison between the two models, we assume that both the group
size and the type of agent are independently generated. The arrows between variables
show the causalities between them.

To this end, we remove the links groupp group, typep etd, typep type
and dropp group. Another important factor that we use to correct the graph, is the
assumption that the passenger under consideration cannot influence the characteristics
or behavior of the passenger that is next in line.

(a) The generated graph for the char. model. (b)The expert-based corrected graph for the char. model.

Fig. 2. The generated graph for the characteristicsmodel, alongwith the expert-based corrections.
Gray variables are characteristics of passengers, while white variables are observable behaviors.

The links drop dropp, boxes boxesp and type boxesp are therefore
removed. Finally, we reverse the direction of the arrow drop boxes to correct the
direction of causality.

Now that the graphs are complete, we transform them into agent behavior (step 4d
of the AbCDe methodology). This is done by fitting distributions of a variable using its
parent variables in the causal graph. For the characteristics model (Fig. 2b), we generate
conditional random distributions for the time the passenger takes to drop luggage (based
on boxes and type), and collect luggage (additionally based on the group size). To fit
these distributions, we use data of all passengers in the calibration set that possess the
right characteristics. Equations 1–2 below show the drop and collect distributions for a
business passenger traveling alone with one box worth of luggage.

drop = GeneralizedExtremeValueDistribution(43.95, 19.81,−0.07) (1)

collect = NormalDistribution(36.12, 20.93) (2)

where the Normal distribution is parameterized by its mean (first param.) and stan-
dard deviation (second param.), and the Generalized Extreme Value distribution is
parameterized by its location (1st param.), scale (2nd param.) and shape (3rd param.).
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A similar procedure as above is followed for the extendedmodel. However, the parent
variables that specify the drop and collect distribution are continuous, as compared to
discrete and categorical variables in the characteristicsmodel.We therefore use amethod
to fit a generalized linear model [25], based on maximum likelihood estimation (MLE),
for the drop and collect distributions. We use the Poisson distribution as a basis for
both the drop and collect variables, and a linear combination of their respective parent
variables to specify the parameter λ of the Poisson distribution. Equations 3–6 show the
distributions for drop and collect.

λ1 = 3.30 + 0.24 × boxes + 0.009 × dropp − 0.001 × (
boxes × dropp

)
(3)

dropp = PoissonDistribution(exp λ1) (4)

λ2 = 3.86 + 0.006 × drop − 0.002 × waitIp − 2.18e−5 × (drop × waitIp) (5)

collect = PoissonDistribution(exp λ2) (6)

The boxes parameter is based on the passenger type, the number of boxes that the previous
passenger used (boxesp) and the time between dropping luggage and going through the
WTMD of the previous passenger (waitIp). When collecting data, we observed that
passengers will take longer to drop their luggage if they cannot continue to the WTMD
yet. For instance, they realize they have their belts still on and use an extra box to put that
in, or take off their shoes and put that in a new box. This may explain the relationship
between the number of boxes and these parameters.

(a) The generated graph for the extended model. (b) The corrected graph for the extended model.

Fig. 3. The generated graph for the extended model, along with the expert-based corrections.

We follow a generalized linear modeling approach to specify the boxes distribution
in the extended model as well. However, as type is a categorical variable, we specify a
distribution for each passenger type individually. Equations 7–8 show the distribution
for the business passenger; other passenger types are defined similarly.
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λ3 = 0.9 − 0.03 × boxesp − 0.01 × waitIp + 0.003 × (
boxesp × waitIp

)
(7)

drop = PoissonDistribution(exp λ3) (8)

We have implemented these twomodels in theAATOMsimulator, an agent-based airport
terminal operations simulator [25], as well as a model based on expert-input alone. For
calibration, we focus our analysis on a setup with a single standard lane open. For
validation, we focus the analysis on a single service lane and a single normal lane open.
We calibrated the model with the data that was collected for the nine standard lanes.
All important parameters, their descriptions, and their calibrated values can be found
in Tables 1, 2 and 3. We ran a total of N = 1,000 simulations for all three models, and
extracted the following four output values for each simulation run: wait I time, wait II
time (time between WTMD passage and collecting luggage of passengers), throughput
(number of passengers processed per hour) and occupation (mean number of passengers
in the security checkpoint). We perform linear normalization for each of these output
values, using the following functions.

σ = sd(X ) (9)

xmin = mean(X ) − 2σ (10)

xmax = mean(X ) + 2σ (11)

xnorm = x − xmin
xmax − xmin

(12)

Where X represents the vector of all output values of a specific type (i.e. all simulated
wait I times), and x ∈ X. We perform the same procedure for these output parameters
in the real data. We calculate the Euclidean distance between each of the simulated and
the real data and find that the calibration data closely resembles simulated data.

For validation, we change the distribution of arriving passenger types, have two lanes
open instead of one, and specify one lane as a service lane (see Table 3). The proportion
of passengers per type that are sent to the service lane is also specified in Table 3. We
normalize the data following the same approach as the calibration and calculate the
distance again. The resulting distances to the validation data for the calibrated models
are shown in Table 4.
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Table 1. The calibrated parameters of the model (simplified table).

Parameter Description Calibrated value

Passenger

desiredSpeed The desired
speed (in m/s)
that the
passenger moves
through the
checkpoint

Calibrated based on the data that was
collected for the nine standard lanes

groupSize The size of the
group the
passenger travels
with

Based on groupSizeDistribution (Table 2)

Operator

WTMDCheckDistribution The distribution
of patdown times

GeneralizedExtremeValueMathDistribution
(19.19, 9.35, −0.01);

Flight

arrivalDistribution The distribution
in which
passengers arrive

20% (first half hour), 60% (second), 20%
(third), 0% (last) based on the expert
knowledge at the airport

Passenger distribution

passengerTypeDistribution The distribution
of passenger
types in the
population

Table 3

groupSizeDistribution The distribution
of group sizes in
the population

Table 2

serviceLaneDistribution The proportion
of passengers per
type that will be
directed to the
service lane

Table 3

Results show that the extended model has the lowest distance to validation data.
It is followed by the expert model and finally the characteristics model. These results
indicate that building a model with our methodology can improve the accuracy of the
models over models developed by experts alone. While more work is needed to show
the (dis)advantages of the methodology, these initial results are promising.
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Table 2. The distribution of group sizes
for the different passenger types.

Group
size 1

Group
size 2

Group
size 3

Business 0.75 0.16 0.09

Senior 0.12 0.67 0.21

Young 0.02 0.15 0.83

Family 0.33 0.52 0.27

PRM 0.16 0.58 0.26

Regular 0.34 0.50 0.16

Table 3. The proportion of passengers.

Calibration Validation Service
lane

Business 0.15 0.17 0.21

Senior 0.17 0.23 0.60

Young 0.15 0.13 0.41

Family 0.11 0.07 0.76

PRM 0.012 0.004 1.00

Regular 0.41 0.37 0.51

Table 4. The calibrated models along with their distances to the validation data.

Model desiredSpeed Distance

Expert 1.4 3.6071

Characteristics 1.4 3.6486

Extended 1.5 3.4862

5 Discussion and Conclusion

Causal discovery algorithms translate data into a directed causal graph that reveals the
causal structure among variables. In this paper, we investigated how these algorithms
can be incorporated in the design process of agent-based models. We proposed an agent-
based model-design methodology, called AbCDe, that uses causal discovery algorithms
and the growing availability of data to specify behavioral properties. This methodology
combines traditional expert-based model design techniques with causal graphs to design
better models. We applied the methodology to a case study in the airport domain. The
models that were generated with the AbCDe methodology show closer resemblance
to validation data than an existing expert-based model. Future work can also focus on
developing dedicated causal discovery algorithms for agent-based model development,
instead of adapting existing algorithms for that purpose.

An important issue that occurred during the generation of causal graphs is that dif-
ferent algorithms and parameters produce quite diverse causal graphs. By integrating the
PC algorithm with the GES algorithm, this problem is partially addressed, but certainly
not solved. Further developments in the field of causality will address this problem.

A major advantage of our methodology is that it provides modelers with a toolbox
to design agent-based models. In cases where agent-specific data can be gathered, such
as our example of airport security checkpoint, our methodology can impact the final
quality of the developed model.
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