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Preface

This volume presents selected papers from the 22nd International Workshop on Multi-
Agent-Based Simulation (MABS 2021), a workshop hosted by the 22nd International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2021), origi-
nally planned to be held in London, which took place as a fully virtual event during May
3–7, 2021.

The meeting of researchers from multi-agent systems (MAS) engineering and the
social/economic/organizational sciences is recognized as a source of cross-fertilization,
and it has undoubtedly contributed to the body of knowledge produced in the MAS
area. The excellent quality of this workshop has been recognized since its inception and
its proceedings have been regularly published in Springer’s Lecture Notes in Artificial
Intelligence series. More information about the MABS workshop series may be found
at https://www.pcs.usp.br/~mabs/.

The goal of theworkshop is to bring together researchers interested inMASengineer-
ing with researchers aiming to find efficient solutions to model complex social systems
from areas such as economics, management, organization science, and social sciences
in general. In all these areas, agent theories, metaphors, models, analyses, experimental
designs, empirical studies, and methodological principles all converge in simulation as
a way of achieving explanations and predictions, exploration and testing of hypotheses,
and better designs and systems.

In this edition, 23 submissions were received from which we selected 18 for pre-
sentation (near 78% acceptance) and 14 for the post-proceedings (60% acceptance).
The papers presented in the workshop have been revised and reviewed again in order to
become part of this post-proceedings volume.

We are truly grateful to all authors for their contribution. We are also very grateful
to all the members of the Program Committee for their hard work.

May 2021 Koen H. Van Dam
Nicolas Verstaevel

https://www.pcs.usp.br/~mabs/
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Social Simulation for Non-hackers

H. Van Dyke Parunak(B)

Parallax Advanced Research, Beavercreek, OH 45431, USA
van.parunak@parallaxresearch.org

Abstract. Computer simulation is a powerful tool for social scientists, but pop-
ular platforms require representing the semantics of the model being simulated
in computer code, leading to models that are either expensive to construct, inef-
ficient, or inaccurate. We introduce SCAMP (Social Causality using Agents with
Multiple Perspectives), a social simulator that uses stigmergy to execute models
that are written as concept maps and spreadsheets, without requiring any program-
ming expertise on the part of the modeler. This Repast-based framework has been
extensively exercised in the DARPA Ground Truth program to generate realistic
social data for analysis by social scientists.

Keywords: Social simulation · Stigmergy · Polyagent · Repast

1 Introduction

Social simulation is a two-edged sword. On the one hand, computer simulation of social
scenarios opens new research perspectives. On the other, computer programming and
the social sciences involve complementary skills that can be difficult to integrate. There
are three approaches to constructing a social simulation, each with drawbacks:

1. An expert programmer and a social scientist can work closely together to build the
model. This approach is expensive and poses challenges of knowledge acquisition
analogous to those experienced in the early days of expert systems.

2. The social scientist can learn some programming, typically in a platform such as
NetLogo, and program the model personally. While some social scientists have
commendably and creditably pursued this path, the effort needed to learn advanced
programming idioms and testing disciplines is onerous and distracts the researcher
from the social science aspects of the problem.

3. An experienced programmer may construct the model based on an intuitive under-
standing of the problem, again risking inaccuracy, this time by missing the social
and psychological nuances of the scenario.

SCAMP (Social Causality using Agents with Multiple Perspectives) is a framework
constructed in Repast [1] whose models are external to the computer code, rather than
embedded in it. Social scientists construct these models using concept maps, a drawing
program, and a spreadsheet,model.xlsx. The key tomoving themodel outside of the code
is stigmergy, inspired by social insects [8] but well documented in human systems as
well [17], and a central technique of “swarm intelligence” [25]. Swarming agents move

© Springer Nature Switzerland AG 2022
K. H. Van Dam and N. Verstaevel (Eds.): MABS 2021, LNAI 13128, pp. 1–14, 2022.
https://doi.org/10.1007/978-3-030-94548-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94548-0_1&domain=pdf
http://orcid.org/0000-0002-3434-5088
https://doi.org/10.1007/978-3-030-94548-0_1


2 H. V. D. Parunak

over these external models, coordinating their actions by leaving and sensing changes to
them. While stigmergic techniques are common for modeling subcognitive behaviors,
in SCAMP these techniques capture sophisticated psychological and social features
[19], including preferential choice, goal-based reasoning, dynamic social affiliations
that modulate agent preferences, non-deterministic decision-making, mental simulation,
and bounded rationality. SCAMP’s combination of event-driven causality, geospatial
interactions, goal-based reasoning, and social networks draws on our earlier work on
multi-perspective modeling [4, 21].

We1 developed SCAMP for the DARPA Ground Truth program [26]. It was one
of four simulators that generated socially realistic data that social scientists used to
test methods for extracting causality from data. The known causal structure of each
simulation then allowed evaluation of the analysis methods. A forthcoming issue of
Computational and Mathematical Organization Theory (CMOT) will document each
facet of the overall program. SCAMP’s model represented a civil conflict inspired by
recent events in Syria, and was constructed entirely by professional geopolitical analysts
with no programming experience, demonstrating the point of this paper.

Section 2 describes the SCAMP stigmergic architecture, while subsequent sections
document the various components of the model that social scientists construct, using a
toy model for clarity: definitions of the social groups active in the scenario (Sect. 3),
a causal event graph (CEG) (Sect. 4), the geospatial context of the scenario (Sect. 5),
a set of hierarchical goal networks (HGNs) (Sect. 6), and discontinuous changes to
agents (Sect. 7). SCAMP exposes a very large parameter space to users, but a default
mechanism (not discussed here for lack of space) reduces the complexity of bringing
up a new model. Section 8 describes the data produced by SCAMP and summarizes the
full conflict model used in Ground Truth, and Sect. 9 concludes.

2 The SCAMP Architecture2

A SCAMP agent repeatedly chooses among accessible alternatives, based on their fea-
tures and its own preferences. Alternatives are nodes in a graph and are accessible if
they are adjacent to an agent’s current location. The central graph is a directed graph of
the types of events in which an agent may participate, and the outgoing edges from one
event type indicate others that an agent could coherently choose next. Thus every path
through this graph is a valid narrative about the domain. Some events are geospatial
requiring an agent to move spatially, and lead the agent to a geospatial lattice, on which
agents can move from one location to any adjacent one.

Each agent has a home group. The groups in our conflict scenario are an oppressive
Government, neutral People, an Armed Opposition seeking to replace the government
with democratic institutions, Violent Extremists with strong ideological motives, Relief
Agencies, and the Military, initially affiliated with the Government.

1 In addition to the author, the SCAMP team included J.A. Morell of 4.699 LLC; L. Sappelsa
of ANSER LLC; J. Greanya and S. Nadella of Wright State Research Institute (now Parallax
Advanced Research). Kathleen Carley of CMU consulted on social network issues.

2 An ODD protocol for SCAMP is available [14].
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Each node that an agent can choose carries a vector in an underlying feature space
with three kinds of features.

Some features describe intrinsic characteristics of the choice, in [−1, 1].Ageospatial
node might be characterized by its terrain and gradient, while an event is marked by its
impact on the physical, psychological, and economic wellbeing of participating agents.

Some features summarize the recent presence of agents by group (one feature per
group), in [0, 1]. Agents augment these features as they traverse the graph, like insects
depositing pheromones. Like pheromones, presence features evaporate over time.

Some features describe the urgency of a node for achieving each group’s goals, in
[0, 1]. Urgency features vary over time, depending on the state of the system.

Each group has a baseline set of scalar preferences in [−1, 1] over the feature space.
When agents are initialized, they draw their preferences from distributions whose means
are defined by their group’s baseline.

At any moment, an agent is participating in one event and has a set of accessible
alternatives. To make its choice, it computes the inner product, between its preference
vector and the feature vector of each accessible alternative, exponentiates these values (to
make them positive), and normalizes them to form a roulette wheel. This fundamentally
stochastic decision process recognizes recent research in decision making [16] showing
that the basis for human choice is not deterministic preference, but a probabilityPr(A, B)
of choosing A over B. SCAMP is heavily influenced by the decision field model [2] of
stochastic decision theory. Modelers can adjust the degree of determinism by exponen-
tiating the roulette segments and renormalizing. An exponent of 0 makes all segments
equal, yielding random choice, while an exponent larger than 1 biases the choice toward
the strongest alternative.

People make decisions using mental simulations [12, 13], a mental rehearsal of
possible story trajectories to decide how to proceed. SCAMP implements this insight by
representing each active entity as a set of agents, a polyagent [23]. One agent, the avatar,
is persistent, andmanages a population of transient ghosts that simulate its possible future
courses of action to a limited horizon. Each ghost explores one possible future, using
preferences and features. As it moves, it augments the presence features for the groups
with which its avatar is affiliated. Collectively, the ghosts develop a field over alternative
trajectories. To simulate a scenario, the avatar selects from its alternatives, weighting its
choice by the presence features on each accessible alternative.

SCAMP’s accessibility to non-programmers is evident by comparing it with the other
three social simulations in the Ground Truth program, each using a different agent-based
social modeling technology. In the huge space of social simulations (e.g., [3, 5–7]), these
three offer a particularly apt comparison because they were all constructed for the same
purpose: generate realistic social data to test analysis methods in the social sciences.
SCAMP’s social expressivity is comparable to them.

GeorgeMasonUniversity, TulaneUniversity, and theUniversity of Buffalo produced
a model of Urban Life [36] in the MASON modeling toolkit [15] and its GeoMASON
extension [35]. Numerous aspects of the model are generated algorithmically, includ-
ing the agent population, the geospatial map, and the social network among the agents.
The system provides a pre-defined set of triggers (sensitive to both internal and exter-
nal factors), behaviors to which they lead, actions that make up behaviors, and goals
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that determine when actions stop. Defining new triggers, behaviors, actions, and goals
requires programming, but a drag-and-drop interface allows modelers to assemble and
parameterize these components to define a scenario..

Raytheon BBN produced ACCESS [28] in the Repast framework. The model high-
lights the interactions among individual agents, groups to which they belong, and the
overall population or “world.” ACCESS models space as a list of locations, but without
orientation or distances, so there is no “map” for a user to enter, and the individual
behaviors are determined by equations embedded in the code.

USC ISI produced a disaster world [27] in their PsychSim social simulation frame-
work. Agents are driven by partially observable Markov decision processes (POMDPs)
and can reason recursively about one another. PsychSim provides one interface that
allows social scientists to create simulation models directly, and another allowing them
tomanipulate the parameters governing the simulation.However, both interfaces abstract
over the full complexity of a PsychSim model (e.g., limiting the types of probability dis-
tributions and reward functions), so specifying arbitrary probability and utility models
requires sufficient programming ability to use the PsychSim API.

GMUand ISI both support non-programmers whowish tomodify a scenario, but still
require programmers to modify details, and introduce proprietary interfaces. SCAMP
allows non-programmers to define new groups, actions, and goals and their relations,
using tools with which they may already be familiar.

3 Group Definitions

The modeler defines the model’s groups in the groups tab of model.xlsx. SCAMP also
supports an impersonal Environment group whose agents generate background events
not modeled in detail, such as drought and economic collapse.

Agents have a home group, but can affiliate with other groups, if their preference
vector is close enough to the baseline vector of those groups.

The user provides each group with an ID number, a descriptive name, and a short
abbreviation used in defining other parameters that refer to the group (in our scenario,
Gov, Peo, AO, VE, RA, Mil, and Env). For each group, the user defines.

• A baseline preference vector in [−1, 1]n, specifying the group’s preference for each
feature in the n-dimensional feature space. −1 indicates that the group’s agents are
strongly repelled from the feature; +1 indicates that they are strongly attracted to it.

• Starting locations in geospace where agents in the group should begin.
• Overall speed of geospatial movement of agents in the group.
• Parameters governing how agents in a group affiliate with other agents:

– Do group members affiliate with other groups?
– Does the group accept affiliations from agents in other groups, and if so, how
close must they be to its baseline preference vector? A high threshold (close to 1)
characterizes an exclusive group, while a low one (close to 0) marks an open one.

• How much variation is applied when sampling individual agents from the group
baseline? Groups can range from highly homogeneous group to more diverse.
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• Does the group reason strategically by using a hierarchical goal network (HGN)?
• How many agents in the group should SCAMP initially generate?

Some execution parameters governing the polyagent simulation can also vary by
group, including how many ghosts the avatar sends out, how far they explore into the
future, and how many iterations they perform before reporting. In our work so far, these
have been set by system developers rather than by modelers, but an area of future work
is deriving them from variables that are meaningful to modelers.

4 Causal Event Graph

SCAMP’s central modeling construct is the Causal Event Graph (CEG), a directed graph
whose nodes represent different types of events, based on our previous work on narrative
spaces [24, 30]. The CEG is inspired by narrative graphs in common use in intelligence
analysis [9], cyber security planning [33], discrete event simulation [31], analysis of
social disagreement [32], computer games [14] and the study of natural-language texts
[29], among other applications. In all these formalisms,

• Nodes are event types, not the variables used in other causal formalisms.
• A directed edge between two nodes indicates a causal relation between event types.
• Every trajectory through the graph represents a possible narrative.
• The graph summarizes many possible narratives.

Most event types make sense only for members of some groups. Those groups “have
agency” for those events, and agents can choose to participate in events for which their
groups (home or affiliated) have agency. As a result, the CEG is a collection of group-
specific subgraphs, though some event types support participation by multiple groups.
In particular, the CEG has a single START node and a single STOP node for which
all groups have agency. Figure 1 illustrates a simple CEG for a well-known children’s
rhyme:

Little Miss Muffet sat on a tuffet/eating her curds and whey.
Along came a spider and sat down beside her/and frightened Miss Muffet away.
Alternative paths through the CEG generate not only the canonical version of the

poem, but a version that ends, “and she ate that too,” another that ends, “and they began
to play,” and others as well.

An event inSCAMPoccurswhenagents participate in an event typeover a continuous
period. Multiple events of the same type can occur during a simulation run.

Time in SCAMP is an integer, representing units of domain time (hour, day,week,…)
appropriate to the domain. Each event type has a transit time (how long an agent par-
ticipates in the event before selecting another) and an effect time (how long the event’s
presence features remember the agent’s participation). The modeler specifies nominal
values for these variables in the events tab of models.xlsx based on each event’s seman-
tics. SCAMP samples the actual times for each participating agent from an exponential
distribution, reflecting interarrival times of a Poisson process.

CEGs have two kinds of edges.
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Fig. 1. CEG for Little Miss Muffet

Agency edges (solid arrows in Fig. 1) capture an agent’s possible choices. These
reflect the subjective choices made by the modeler. For example, in Fig. 1, the modeler
has decided that eating a spider (node 10) only makes sense after eating curds (another
solid food), not after eating (actually, drinking) the liquid whey, while either 2 or 3 can
be followed by reading a book.

The agency edges labeled “then” connect an antecedent event to a single successor,
while the “thenGroup” multiedge specifies a group of events that execute concurrently.
Such a group of events behaves like a single event with the following constraints:

1. It can have at most one event type that requires geospatial movement (it makes sense
for an agent to walk and chew gum, but not to walk from A to B while driving from
A to C).

2. The transit time for the set of events is the maximum of the events in the group.
3. The set of event types accessible to the agent after completing the group is the union

of the successor events of the event types in the group. (Thus in this case, the agent
may well choose to eat the spider after eating whey, but the causal precondition is
eating the curds, which will also be complete.)

Agency edges define the narrative trajectories available to agents. Every event type
must fall on at least one trajectory from START to STOP, subject to two restrictions and
one exception. The restrictions are:

1. Each agency edge must define a coherent snippet of narrative, so that it makes sense
for an agent on the first event type to participate subsequently in the second one. As
a result, any path of agency edges through the CEG is a meaningful narrative.

2. An agency edge can only join two events if the same group has agency for both.

The exception is that the agent change system described in Sect. 7 can move agents
discontinuously across theCEG, providing an exit fromevent types that are not connected
to STOP and an entrance to event types that are not connected to START.
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Influence edges (dashed edges in Fig. 1) capture causal influences among event types
between which agents do not move directly (for example, an impersonal Environment
event type such as a drought causing People agents to move from the countryside into
the city). The effect of an influence edge depends on the level of participation in the
influencing event type (that is, the total presence feature on the influencing node in the
CEG). An influence edge adjusts the segments in the roulette wheel corresponding to
the influenced event type, based on the total presence features on the influencing event
type (that is, the degree of recent participation in the influencing event).

The hard influences prevent and enable probabilistically exclude or include an event
type’s segment in the roulette, depending on the total presence features on the influencing
event. Soft influence edges, enhance and inhibit, adjust the size of the influenced event’s
segment, based on the influencer’s presence features.

Modelers construct the CEG, with its events, agency edges, and influence edges,
using CMapTools, a concept mapping tool [11]. The events tab in model.xlsx records.

• The groups that have agency for the event type;
• The values in [−1, 1] of the intrinsic features in the event type’s feature vector, for
each group that has agency for the event type;

• The nominal values of the transit time and effect time for the event type;
• For event types that involve geospatial movement, a destination in geospace for each
group that has agency in the event type;

• Whether or not the event type can be immediately repeated.

5 Geospatial Context

Some event types (e.g., “go to the post office”) require physical movement. When an
agent participates in such an event type, it drops into geospace (a hexagonal lattice) and
moves through it until it reaches its destination, at which point its participation in the
event ends, and it chooses another event type. The transit time for a geospatial event
depends on the length of the agent’s geospatial journey. Participation in an event moves
an agent through time. Geospatial events also move agents through space.

Figure 2 shows successive steps in Miss Muffet’s movement, starting with her initial
location (1). Superimposed on the terrain map are her home (magenta, lower left), the
tuffet (green, center), and the spider web (yellow, upper right). For example, event 12
“go for a walk” has a destination of the tuffet, so to complete this event, Miss Muffet
must drop into geospace (3), move from her current location at home to the tuffet (4),
and then return to the event node (5).

Hexagonal tiles in geospace, like events in event space, have feature vectors. Intrinsic
features reflect the gradient of the underlying terrain. Presence features record the recent
presence of agents of different groups. Urgency features record the proximity of the tile
to the destination for each group, while the wellbeing features record the gradient of
the local terrain. The transit time for an agent to move through one hex depends on the
movement speed defined for its group, and the local terrain (it takes longer to cross water
than to travel on land).

Modelers construct the geospatial model using the GIMP drawing program [35],
which represents an image as a stack of layers. A required heightmap layer (the grayscale
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background in Fig. 2) shows the local elevation over the region of the map, while dis-
tinctive features (such as rivers, road networks, cities, and national boundaries) are
distinguished by the layer in which they are represented and the colors used to depict
them. The regions tab of model.xlsx identifies regions that can be specified as initial
locations for groups and as destinations for events. For each region, it specifies.

• An identifier (e.g., R003) used to refer to the region in the events and groups tabs
• A descriptive name for the region (e.g., “rivers,” “capital city”)
• The name of the GIMP layer containing the region
• The GIMP name of the color used to represent the regions
• The region’s falloff , indicating how far away it is detectable by agents in geospace
(falloff = 1 means that a gradient leading to the region is defined everywhere, while
0 means that an agent must stumble across the region before knowing where it is)

• A speed modifier for each group, indicating how that region impacts speed of agents
of that group in moving across the region.

SCAMP reads the GIMP file saved in the OpenRaster file format. Mechanisms for
movement of agents through geospace guided by polyagents in SCAMP are refined from
methods we demonstrated in earlier projects [18, 22].

Themodeler determines for each event typewhether it involves geospatialmovement.
In our conflict model, of 467 event types, 360 do not involve movement. In addition,
while the transit time of a geospatial event is determined dynamically as the agent
moves through geospace, the modeler can define a nominal transit time to be used if
the geospatial processing is turned off (by a Repast parameter). Thus SCAMP readily
accommodates non-geospatial scenarios.
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Fig. 2. Agent movement between CEG and geospace (Color figure online)

6 Hierarchical Goal Networks

Human decisions reflect not only the immediate characteristics of available alternatives,
but also the actors’ long-range goals. SCAMP supports a hierarchical goal network
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Fig. 3. HGN for Miss Muffet

(HGN) [34] for each group, capturing the group’s high-level goal and its decomposition
into subgoals. The lowest level subgoals are “zipped” to events in the CEG that either
support or block them [20]. Figure 3 shows an HGN for Miss Muffet, zipped to events
in Fig. 1. Agents do not move over the HGN as they do over the CEG and geospatial
lattice, but the HGN modulates their movement in event space.

Each goal maintains two scalar variables in [0, 1]: its satisfaction, and its urgency.
Satisfaction accumulates through a sigmoid, so it saturates at 1. At the root, urgency
= 1 – satisfaction. The root determines its satisfaction by querying its subgoals
recursively. Satisfaction propagates upward through or relations as the maximum of
the satisfaction levels of the subgoals, and through and relations as the minimum. The
lowest-level subgoals determine their satisfaction from the presence features of events
in the CEG. Once the root goal knows its satisfaction, it propagates its urgency to its
subgoals. The urgency of a higher-level goal is passed directly to subgoals that support
it via and. Subgoals joined by an or subtract their own urgency from that of their parent
goal. This process is inspired by quality in TÆMS [10], as implemented in our earlier
work [20].

Satisfaction and urgency are thus driven by agent participation (reflected in presence
features) in CEG events zipped to the HGN. The presence features on CEG events
determine satisfaction of leaf subgoals, while urgency on those subgoals modifies the
urgency features of events zipped to them. The HGN converts agent presence on events
in the CEG into the urgency of those events for the strategic objectives of each group.

An event for which one group has agency can change the satisfaction of goals of
other groups, and also respond to the urgency levels in other HGNs, if it is zipped to
subgoals in those HGNs. As a result, agents can modulate their decisions by the desire
to advance or hinder the goals of other groups.

Domain experts capture HGNs in CMapTools. The HGNs and the zip relations can
be included in the same CMap file containing the CEG. It is also possible to generate
separate HGNs and capture the zips between events and leaf-level subgoals in the zips
tab of model.xlsx.
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7 Agent Changes

Realistic modeling requires that agents change over time. In SCAMP, some changes are
continuous. For instance: 1) Each event has an impact on an agent’s emotional, physical,
and economicwell-being, and an agent’s preference for these features changes depending
on its current state in each of these dimensions. 2) As agents meet other agents, either
by participating with them in the same events or by meeting them in geospace, they
influence one another’s preferences.

But some realistic agent changes are discontinuous. Agents should be able to 1)
enter and leave the simulation as it runs (for example, through influx of new foreign
fighters, or death in combat); 2) change group membership (not just side affiliations),
either voluntarily as a result of interactions with other agents, or involuntarily as a result
of abduction and forced indoctrination; 3) change location discontinuously (for example,
when protestors injured in a street protest are moved to a hospital); or 4) suspend and
resume involvement in the scenario (for example, by being taken prisoner and then
later released). The groupChanges tab of model.xlsx provides a powerful facility for
discontinuous changes. It allows the modeler to specify.

• The event type or geospatial location that triggers the change, when an agent enters
it;

• The maximum number of affected agents;
• The before-and-after home group of affected agents;
• The before-and-after location (either in event space or geospace) of affected agents;
• If the transition depends on the presence of agents of some group at some location,
the groups and locations involved;

• The probability that the change will actually happen if triggered;
• Groups that increase (promoters) or hinder (blockers) the probability of the transition,
and where they must be located to have this effect.

To enable birth and death of agents, SCAMP recognizes the pseudo-group Guf
(named for the repository of souls in Jewish mysticism). An agent that changes from
Guf to one of the regular groups is born at that point, while one that changes from a
regular group to Guf is removed from the simulation.

To enable suspension of agents, SCAMP supports pseudo-events of the form Lnnn
(for “Limbo”). If a rule moves an agent from a CEG node to a Limbo node, the agent
ceases to participate in the simulation until execution of another rule moves it from the
Limbo node back to some CEG node.
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8 SCAMP’s Data

SCAMP uses Repast’s user interface to display the total presence pheromone on each
CEG node and geospatial hex and the satisfaction on each HGN goal in real time, but it
also generates several logs that can be analyzed after a run and compared across different
parameter settings. These include:

• Agent state over time, including event participation, group affiliations, physical loca-
tion, preference vector, meetings with other agents, group membership and location
changes, and emergent social networks

• The number and total length of agents’ pairwise meetings on events and in geospace
• Presence pheromone entropy over events, by group and total, over time
• The strength of influence edges over time
• The satisfaction level at the root of each group’s HGN over time.

From these logs, we can construct answers to many questions that an interviewer
might ask research subjects in a real scenario. Here are some examples that we answered.

• What were you doing on a given date?
• What was the last thing you were doing before your present activity?
• What other options did you consider at that time?
• What influenced your choice of this option?
• What options are you considering next, and how would you prioritize them?
• Whom have you met recently?
• How strong is your relation to those people?
• How satisfied are you with your achievement of your objectives?
• How happy are you about your current economic, physical, psychological state?
• How sympathetic are you to a specific group (e.g., the government)?

Additional logs of internal SCAMP variables can easily be added.

Fig. 4. CEG for conflict model. Node colors show
which groups have agency for each event type.

The full conflict model has a CEG
with 467 event types involving six
groups (Fig. 4). The HGNs for these
groups have a total of 77 goals and
subgoals, zipped to 253 events (of
which 177 are distinct). Figure 5
shows geospace, which includes four
countries and their borders, numer-
ous cities, and diverse terrain. Our
forthcomingCMOT paper [26] reports
on results generated by this model,
including variations in group satis-
faction as the scenario evolves, maps
showing the interactions of agents in geospace, and population changes over time, in
addition to results of the experiments with the social science teams in the program.
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9 Discussion and Next Steps

Fig. 5. Geospace for conflict model

The capabilities described in this
report evolved during the 30 months
of the Ground Truth program, driven
both by the needs of modelers to cap-
ture the social dynamics of a com-
plex scenario and by the informa-
tion requests posed by the social
scientists. By the end of the pro-
gram, SCAMP had matured into a
robust, flexible system. Parsing the
wide range of data that modelers can
define externally necessarily results
in a complex code base, but it is sup-
ported with thorough unit tests and
commented to trace its behavior to
the underlying causal metamodel of
the system. Our experience with two
different teams of modelers without
programming experience shows that non-hackers can indeed construct complex mod-
els in SCAMP. The largest drawback is the large number of parameters that they must
specify, though a system of defaults can reduce this considerably. The model graphs and
spreadsheet can have bugs, just as code can (e.g., undefined locations, dead-ends in the
CEG), but every time a model revision encountered a new bug, we added tests for it in
the code, so that SCAMP itself now flags a wide range of possible model flaws.

A number of future directions for SCAMP are possible.

• Our success in representing a complex social situation in the Ground Truth program
suggests that the system will be useful in providing decision-makers with planning
insight in other domains. We are exploring opportunities, and welcome opportunities
to collaborate with other researchers.

• Currently, models are constructed manually. We are exploring techniques that would
automate the partial construction of models (for example, the basic structure of the
CEG) from archival materials that describe a domain of interest.

• Like any agent-based model that can capture human cognition, SCAMP runs much
more slowly (on a per-agent basis) than an equation-based model. We are exploring
techniques to address this challenge, including hybrid models that either alternate
or integrate an equation-based model with SCAMP, and a renormalization approach
inspired by theoretical physics.

• SCAMP includes some execution parameters (e.g., pheromone deposit and evapora-
tion rates) that in their present form are not meaningful to modelers and must be set
by developers. If we can map these to variables that are psychologically and socially
meaningful, we can reduce the involvement of programmers even further.
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Abstract. Designing agent-basedmodels is a difficult task. Some guidelines exist
to aidmodelers in designing theirmodels, but they generally do not include specific
details on how the behavior of agents can be defined. This paper therefore pro-
poses the AbCDemethodology, which uses causal discovery algorithms to specify
agent behavior. The methodology combines important expert insights with causal
graphs generated by causal discovery algorithms based on real-world data. This
causal graph represents the causal structure among agent-related variables, which
is then translated to behavioral properties in the agent-based model. To demon-
strate the AbCDe methodology, it is applied to a case study in the airport security
domain. In this case study, we explore a new concept of operations, using a service
lane, to improve the efficiency of the security checkpoint. Results show that the
models generated with the AbCDe methodology have a closer resemblance with
the validation data than a model defined by experts alone.

Keywords: Causal discovery · Agent-based modelling · Airport security

1 Introduction

Agent-based models have shown to be useful in a variety of areas, ranging from urban
planning to ecology and security [1]. Some guidelines exist to aid (new) modelers in
their model development, and they share some similarities [2, 3]. Most of these guide-
lines are quite high-level, and do not go beyond a description of which elements have
to be defined. A notable exception is the ‘overview, design concepts, and details’(ODD)
protocol, which has been used widely in literature [4, 5]. It provides a detailed set of
steps, along with guidelines, to design agent-based models and individual-based mod-
els. The ODD protocol has evolved over time. Firstly, it was observed that there was
a lack of decision-making features in the ODD protocol; the protocol did not support
the definition of human behavior that contains decisions, adaptation, and learning. This
leads to a revised version of ODD, the ODD+D (Decision) protocol [6]. However, the
lack of properly incorporating data in the empirical models was an important issue with
ODD+D. Therefore, ODD+2D (ODD + Decision + Data) [7] was introduced to solve
this lacking. While this method added structure to incorporating data in agent-based
models, the creativity of the modeler remains a central component. With more and more
data becoming available over the last decades, methods to interpret and understand this
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data became better as well. Numerous methods to find these patterns and relationships
exist, of which regression, neural networks, and clustering are three examples [8]. A
particularly promising method to find relationships between variables is that of causal
inference [9]. These causal graphs show the causal relationships between variables and
identify structure in the dataset. In this work, we propose the Agent-based Causal dis-
covery Design methodology (AbCDe), a novel methodology that aids the development
of agent-based models using causal discovery.

This paper is structured as follows. In Sect. 2, related work in the areas of designing
agent-based models and causal discovery are reviewed. Then, the AbCDe methodology
as proposed in this work is outlined in Sect. 3. The case study is outlined in Sect. 4.
Finally, the work is concluded in Sect. 5.

2 Related Work

Designing agent-based models is a complex task. An agent-based model has three main
components: agents, environment, and interactions. Klugl and Bazzan [3] state that
agent-based models are an appropriate choice when a system meets a set of six different
conditions. These conditions for instance include the existence of local interactions and
heterogeneity in states and behavioral rules. However, the work lacks a proper method
to describe how agents can be defined. It is recognized by the community that a uniform
framework or methodology for designing agent-based models is lacking [2]. To design
a conceptual model or model a software program, there are two popular standards, the
Unified Modeling Language (UML) and the ‘overview, design concepts, and details’
(ODD). UML is used to represent different classes in object-oriented programming and
the connection between them [29].

The ODD protocol has been used widely in literature [4, 5]. While the ODD protocol
contains detailed steps to design agent-based models, no insights on how to design
the behavioral properties of agents are provided. With the right dataset, data-driven
methods may be useful in specifying the behavioral properties of agents. These methods
find relationships between variables in a dataset, which could determine relationships
between actions of agents and the outcomes in the environment. The successor of the
ODDprotocol, theODD+2Dprotocol, consists of twomajor steps: 1) data preprocessing,
and 2) linking data [7]. The link between data components and agent-based modeling
elements in ODD+2D consists of three main sections: 1) overview, 2) design concepts,
and 3) details.

While the ODD+2D adds structure to incorporating data in agent-based models, it
remains up to the modeler how to use this data. This topic was explored in detail in [10].
In that work, behavioral properties of agents are learned from data by applying machine
learning techniques, such as support vector machines. While these more traditional
machine learning techniques are effective tools to learn behavioral properties, they do
not reveal the structure of relationships between variables related to agents.Aparticularly
promising method to reveal this structure is that of causal discovery.

Traditionally, mathematical analysis is used to find relationships between variables.
However, a relationship between two variables does not necessarily mean that one vari-
able causes the other. In the field of causality, causal relationships between variables are



Using Causal Discovery to Design Agent-Based Models 17

found by using causal graphs [9, 11]. Causal graphs can be created using twomain meth-
ods. In the first method, experts use their knowledge to manually create a graph, while
in the second method causal graphs are generated using data. An example of manually
creating a causal graph using expert knowledge is discussed in [12]. The second method,
which is also applied in this work, uses causal discovery algorithms. These algorithms
can broadly be categorized into two categories: score-basedmethods [13] and constraint-
based methods [14]. Score-based methods assign a score to a set of potential graphs and
then select the graph with the highest score. Constraint-basedmethods define constraints
on causal graphs based on statistical independence of variables. In the constraint-based
category, the PC algorithm [16] is very popular, while in the score-based category, the
GES algorithm [22] is frequently used in literature.

The most extensive work in the interaction of agent-based modelling and causality
is by Casini and Manzo [15], who provide a technical report on the differences and
similarities of agent-based modeling and causality. However, their work only focuses
on analyzing agent-based models, and not on designing them. Then, Kvassay et al. [16]
provide a method, based on causal partitioning, to analyze causal relationships relating
to emergence in agent-based models. This work also focuses on analyzing agent-based
model behavior and does not cover designing them either. Guerini and Moneta [17]
cover the topic of agent-based model validation. They estimate time-series of economic
models using structural vector autoregressive (SVAR) models. Using causal discovery
algorithms, they generate two SVAR models: one based on results generated by the
designed agent-based model, and the other based on actual data. When the two SVAR
models are similar enough, the agent-based model is considered validated. This work
only covers agent-based model validation and does not cover designing agent-based
models. Finally, Janssen et al. [18] developed a methodology that uses causal discovery
algorithms to analyze emergent behavior in agent-based models. They show that causal
graphs can he experts to interpret and identify emergent behavior in agent-based models.
To overcome the lack of work using causal discovery algorithms to design agent-based
models, we introduce the AbCDe methodology below.

3 Methodology

This section outlines the novel Agent-based Causal discovery Design methodology,
called AbCDe, which is used to design agent-based models with the aid of causal dis-
covery algorithms. The methodology includes all aspects needed to design agent-based
models, and uses causal discovery algorithms in one of its steps.

The methodology exploits the ever-growing availability of data to design agent-
based models. Using data on the behavior of agents, a causal graph is generated using
causal discovery algorithms. This graph is then, with the aid of experts, translated into
behavioral properties of agents. These properties ultimately determine the dynamics of
the model, leading to insights into the phenomenon that is modeled. Causal discovery
algorithms provide amore structuredmethod to develop agent-basedmodels than relying
on experts alone.However, experts are still needed inmany aspects of themethodology to
ensure that the model is of high quality. This combination of causal discovery algorithms
and experts can lead to better models than models created by experts alone.
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TheAbCDemethodology containsfive steps,which are graphically outlined inFig. 1.
As with many modelling studies, in the first step of AbCDe, the purpose of the model
is specified, research questions are formulated and hypothesis are formulated. Then, in
the second step of the methodology the scope of the model is determined. This specifies
what elements will be included in the model and what will not be included. Once the
scope is clarified, a conceptual model is formalized. The conceptual model forms the
basis for the remainder of the methodology. In this model, agents are identified first. An
agent, in this work, is defined as an entity that perceives its environment through sensors
and acts upon that environment through effectors [19]. In this step, we specifically focus
on the identification of the agents to be modeled, along with their characteristics and the
behavior that they can exhibit. Only the higher-level behavior that the agent exhibits is
specified (i.e., what the agent can do); the full specification of the behavior (i.e., how
the agent does it) will be done in step 4.

Fig. 1. The AbCDe methodology as used in this work. (Color figure online)

After identifying the agents and specifying the environment, data is collected about
the behavior and characteristics of the agents in the model in step 3. This data is obtained
byobserving agents, their actions, and the consequences of these actions in the realworld.
This will later be used to specify behavioral properties of agents. Depending on what is
modeled, different types of data can be collected. The collected data that will be used to
generate behavioral properties is always on the agent-level (and not population-level),
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and should therefore contain as much detail about the characteristics of the agent (as
defined in the conceptual model of the previous step), its behavior and the results of this
behavior. Data is therefore in the form of characteristics of agents, actions performed by
agents, effects of agent actions on the environment and effects of agent actions on other
agents. The collected data is then analyzed following standard data analysis techniques,
such as clustering, regression, and statistical tests. This provides early insights into the
behavior of agents and will be useful for the next step of the methodology.

In step 4, behavioral properties are formalized based on two sources: causal discovery
and expert input. This step includes the unique contribution of this paper in which causal
discovery is used to define behavioral properties (green box of Fig. 1). Both causal
discovery and expert input are discussed in detail below, combined with a discussion on
how to translate them into behavioral properties.

Causal discovery algorithms (see also Sect. 2) are used to infer a causal structure
from the gathered data of step 3. Before applying the algorithm, the data has to be
preprocessed. This preprocessing is done to ensure that only individual agent behavior
is found, and not collective emergent effects. These emergent effects should be part of
the model, but not explicitly coded into the behavior of agents. It should emerge from
the behavior and interaction of agents in the model (see also the work of Janssen et al.
[18]).

Furthermore, the dataset has to be organized such that a single causal graph for a
single agent is produced. Data of other agents can be included in the dataset for the agent
under consideration, so that observable behavior, such as communication and alterations
of the environment, can be found by the causal discovery algorithms as well.

After preprocessing, a causal discovery algorithm is applied to the dataset, lead-
ing to a causal graph representing the behavior of an agent in the model. The gener-
ated graphs relate characteristics of agents to exhibition of their behavior by means of
including an arrow between them. Results of the behavior of other agents or properties
of environmental objects are included in the graph following the same standard.

After generating the causal graphs, an expert provides input for two purposes. While
causal discovery is useful, applying it still requires some level of expert knowledge [23].
The expert checks the graph that was generated for inconsistencies with their knowledge
and the original data analysis that was performed in the previous step. These inconsis-
tencies are then fixed in the graph. Second, the expert provides additional insights based
on theories from literature or their experience. These insights can be used to compensate
for missing data in the dataset, and provide another means to specify behavioral prop-
erties in the next step. After obtaining both the causal graph and the input of experts,
the behavioral properties are specified. These properties can be obtained from the graph
(enhanced by the expert) by selecting a variable to be used as a behavioral property and
using its parents as building blocks to specify the behavior.

Finally, in step 5, the defined model is implemented, calibrated, and validated. When
the model sufficiently resembles validation data, the AbCDe methodology is finished.
When this is not the case, the methodology returns to step 2.
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4 Case Study

We apply the AbCDe methodology to a case study in the field of airport security. In air-
port terminals, the security checkpoint is the most important bottleneck for passengers
(leading to unwanted waiting time) and an important source of costs for airport man-
agement. As airport passenger numbers are projected to increase in the future, security
checkpoints have to be operated efficiently. In this case study, we explore a new concept
of operations, using a service lane, to improve the efficiency of the security checkpoint.
Service lanes process passengers that are expected to be slow, and the other open lanes
(defined as normal lanes) process the remaining passengers. A standard lane is a lane in
which no experiment took place, and all passengers are processed. This concept of oper-
ations is projected to improve the overall throughput of the system, as faster passengers
do not have to wait for slower passengers in front of them. Slow passengers also receive
extra help from experienced security officers, potentially increasing the throughput as
well.

We design an agent-based model following the AbCDe methodology to determine
the effects of implementing a service lane on the throughput of the security checkpoint,
as compared to a standard setup.

The purpose of the model is to determine the effects of implementing a service lane
on the throughput of the security checkpoint, as compared to a standard setup. The scope
of this experiment is to find passengers behavioral traits in the collect and drop section
at the security checkpoint in the airport, while disregarding cognitive behavior of the
passengers. Now that the scope of themodel is clarified, we specify the conceptual model
(step 2 of AbCDe). This conceptual model is specified inmore detail in a technical report
[28], but the most important elements are provided below.We identify the environmental
objects that are modeled first. These are outlined below.

• Luggage. Luggage is owned by a passenger and has a specific threat level. This is a
real value between 0 and 1.

• Box. Object in which luggage is dropped. Luggage can be dropped into multiple
boxes.

• Walk-throughmetal detector (WTMD).Randomly specifies passengers that require
an explosive trace detection (ETD) test or patdown.

• Flight. Abstract concept that has an associated flight time. Passengers are associated
with exactly one flight.

• Queue separator. Physical objects that are used to form queue areas for passengers.

Now that the environment of the model is specified, we specify the agents of the
model.

• Passenger. Agent that is associated with a flight, moves through the security
checkpoint.

• X-ray operator. Uses the X-ray sensor to determine if luggage needs an extra check,
and communicates this with the luggage check operator.

• Luggage check operator. Checks luggage when requested by the X-ray operator.
• Patdown operator. Performs patdowns and ETD checks.
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Wecollected data of passengersmoving through the security checkpoint atRotterdam
The Hague Airport [26] (step 3 of AbCDe). Data for a total of 2277 passengers, flying to
16 different destinations was gathered. Three types of lanes were considered: standard,
normal and service lanes. Data for standard lanes were gathered between 23 February
2018 and 17 April 2018, while data for normal and service lanes were collected on the
experimental days: 17 December 2018 and 18 December 2018. A service lane was used
to process passengers that are expected to be slow, while the normal lanes processed
the other passengers. As mentioned in earlier, the scope of this paper is based on the
generation of behavioral properties on the drop and collect behavior of passengers. We
use the data of the standard lanes to generate the behavioral properties of the agent, while
we use data of the service lane experiment to validate the models.

To generate the graphs, we combine the score-based GES [22] algorithm and the
constraint-based PC algorithm [16], following the work of Janssen et al. [18] (see also
Sect. 2). We use the following variables from the dataset to generate the graph for the
characteristics model: drop, collect (the time a passenger takes to drop/collect luggage
on/from the belt), boxes (the number of boxes the passenger uses at the security check-
point), type (the type of passenger, see Table 2 and 3), and group size (the size of the
group the passenger travels with, see Table 2). These variables are a combination of the
characteristics of the agent, and the two behavioral properties that we are interested in
(drop and collect) and are used to generate the causal graph that we will refer to as the
characteristics model.

The same variables are used for a causal model that we define as the extended model.
However, the following variables are additionally used in the extendedmodel: dropp (the
drop time of the previous passenger in line), wait Ip (the time the previous passenger
waited between dropping luggage and going through the WTMD), boxesp, typep, and
group sizep (the boxes, type, and group size of the previous passenger respectively). It
is important to note that these consist of the observable behavior and characteristics (i.e.
observable by the passenger) of the passenger in front of the passenger for which the
behavioral properties are defined.

Figure 2a and Fig. 3a show the graphs that were generated by the causal discovery
algorithm for the characteristics model and the extended model respectively. Based on
expert insights, these graphs are translated to their final versions, as shown in Fig. 2b
and Fig. 3b. This procedure of using expert insight to update the graphs is aided by the
work of Shrier and Platt [12].

The graph generated for the characteristics model shows that both ETD (the time the
passenger receives an Explosive Trace Detection) and patdown (the time the passenger
receives a patdown) are not connected to any other variable in the graph. That means
that these are independent variables that will be generated in the model independently
as well. Both boxes and type show a causal relationship with both drop and collect.
This implies that these characteristics combined are of influence on the speed in which
passengers drop and collect luggage. The generated graph additionally shows that boxes
is caused by both drop and collect. Based on expert advice, we assume this link to be
unidirectional in the direction of drop and collect. Finally, the size of the group influences
collect, but not drop. In a security checkpoint, passengers traveling in groups often wait
for each other to finish collecting their luggage. In this way, they can continue their
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journey to the gate together. This is not the case for dropping luggage, as passengers can
only pass through the WTMD individually.

The extended model is based on a generated graph that contains five more variables
and is therefore more complex. This shows that some variables related to the previous
passengers are closely related to the same variables of the passenger under consideration.
To allow for a fair comparison between the two models, we assume that both the group
size and the type of agent are independently generated. The arrows between variables
show the causalities between them.

To this end, we remove the links groupp group, typep etd, typep type
and dropp group. Another important factor that we use to correct the graph, is the
assumption that the passenger under consideration cannot influence the characteristics
or behavior of the passenger that is next in line.

(a) The generated graph for the char. model. (b)The expert-based corrected graph for the char. model.

Fig. 2. The generated graph for the characteristicsmodel, alongwith the expert-based corrections.
Gray variables are characteristics of passengers, while white variables are observable behaviors.

The links drop dropp, boxes boxesp and type boxesp are therefore
removed. Finally, we reverse the direction of the arrow drop boxes to correct the
direction of causality.

Now that the graphs are complete, we transform them into agent behavior (step 4d
of the AbCDe methodology). This is done by fitting distributions of a variable using its
parent variables in the causal graph. For the characteristics model (Fig. 2b), we generate
conditional random distributions for the time the passenger takes to drop luggage (based
on boxes and type), and collect luggage (additionally based on the group size). To fit
these distributions, we use data of all passengers in the calibration set that possess the
right characteristics. Equations 1–2 below show the drop and collect distributions for a
business passenger traveling alone with one box worth of luggage.

drop = GeneralizedExtremeValueDistribution(43.95, 19.81,−0.07) (1)

collect = NormalDistribution(36.12, 20.93) (2)

where the Normal distribution is parameterized by its mean (first param.) and stan-
dard deviation (second param.), and the Generalized Extreme Value distribution is
parameterized by its location (1st param.), scale (2nd param.) and shape (3rd param.).
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A similar procedure as above is followed for the extendedmodel. However, the parent
variables that specify the drop and collect distribution are continuous, as compared to
discrete and categorical variables in the characteristicsmodel.We therefore use amethod
to fit a generalized linear model [25], based on maximum likelihood estimation (MLE),
for the drop and collect distributions. We use the Poisson distribution as a basis for
both the drop and collect variables, and a linear combination of their respective parent
variables to specify the parameter λ of the Poisson distribution. Equations 3–6 show the
distributions for drop and collect.

λ1 = 3.30 + 0.24 × boxes + 0.009 × dropp − 0.001 × (
boxes × dropp

)
(3)

dropp = PoissonDistribution(exp λ1) (4)

λ2 = 3.86 + 0.006 × drop − 0.002 × waitIp − 2.18e−5 × (drop × waitIp) (5)

collect = PoissonDistribution(exp λ2) (6)

The boxes parameter is based on the passenger type, the number of boxes that the previous
passenger used (boxesp) and the time between dropping luggage and going through the
WTMD of the previous passenger (waitIp). When collecting data, we observed that
passengers will take longer to drop their luggage if they cannot continue to the WTMD
yet. For instance, they realize they have their belts still on and use an extra box to put that
in, or take off their shoes and put that in a new box. This may explain the relationship
between the number of boxes and these parameters.

(a) The generated graph for the extended model. (b) The corrected graph for the extended model.

Fig. 3. The generated graph for the extended model, along with the expert-based corrections.

We follow a generalized linear modeling approach to specify the boxes distribution
in the extended model as well. However, as type is a categorical variable, we specify a
distribution for each passenger type individually. Equations 7–8 show the distribution
for the business passenger; other passenger types are defined similarly.
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λ3 = 0.9 − 0.03 × boxesp − 0.01 × waitIp + 0.003 × (
boxesp × waitIp

)
(7)

drop = PoissonDistribution(exp λ3) (8)

We have implemented these twomodels in theAATOMsimulator, an agent-based airport
terminal operations simulator [25], as well as a model based on expert-input alone. For
calibration, we focus our analysis on a setup with a single standard lane open. For
validation, we focus the analysis on a single service lane and a single normal lane open.
We calibrated the model with the data that was collected for the nine standard lanes.
All important parameters, their descriptions, and their calibrated values can be found
in Tables 1, 2 and 3. We ran a total of N = 1,000 simulations for all three models, and
extracted the following four output values for each simulation run: wait I time, wait II
time (time between WTMD passage and collecting luggage of passengers), throughput
(number of passengers processed per hour) and occupation (mean number of passengers
in the security checkpoint). We perform linear normalization for each of these output
values, using the following functions.

σ = sd(X ) (9)

xmin = mean(X ) − 2σ (10)

xmax = mean(X ) + 2σ (11)

xnorm = x − xmin
xmax − xmin

(12)

Where X represents the vector of all output values of a specific type (i.e. all simulated
wait I times), and x ∈ X. We perform the same procedure for these output parameters
in the real data. We calculate the Euclidean distance between each of the simulated and
the real data and find that the calibration data closely resembles simulated data.

For validation, we change the distribution of arriving passenger types, have two lanes
open instead of one, and specify one lane as a service lane (see Table 3). The proportion
of passengers per type that are sent to the service lane is also specified in Table 3. We
normalize the data following the same approach as the calibration and calculate the
distance again. The resulting distances to the validation data for the calibrated models
are shown in Table 4.
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Table 1. The calibrated parameters of the model (simplified table).

Parameter Description Calibrated value

Passenger

desiredSpeed The desired
speed (in m/s)
that the
passenger moves
through the
checkpoint

Calibrated based on the data that was
collected for the nine standard lanes

groupSize The size of the
group the
passenger travels
with

Based on groupSizeDistribution (Table 2)

Operator

WTMDCheckDistribution The distribution
of patdown times

GeneralizedExtremeValueMathDistribution
(19.19, 9.35, −0.01);

Flight

arrivalDistribution The distribution
in which
passengers arrive

20% (first half hour), 60% (second), 20%
(third), 0% (last) based on the expert
knowledge at the airport

Passenger distribution

passengerTypeDistribution The distribution
of passenger
types in the
population

Table 3

groupSizeDistribution The distribution
of group sizes in
the population

Table 2

serviceLaneDistribution The proportion
of passengers per
type that will be
directed to the
service lane

Table 3

Results show that the extended model has the lowest distance to validation data.
It is followed by the expert model and finally the characteristics model. These results
indicate that building a model with our methodology can improve the accuracy of the
models over models developed by experts alone. While more work is needed to show
the (dis)advantages of the methodology, these initial results are promising.
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Table 2. The distribution of group sizes
for the different passenger types.

Group
size 1

Group
size 2

Group
size 3

Business 0.75 0.16 0.09

Senior 0.12 0.67 0.21

Young 0.02 0.15 0.83

Family 0.33 0.52 0.27

PRM 0.16 0.58 0.26

Regular 0.34 0.50 0.16

Table 3. The proportion of passengers.

Calibration Validation Service
lane

Business 0.15 0.17 0.21

Senior 0.17 0.23 0.60

Young 0.15 0.13 0.41

Family 0.11 0.07 0.76

PRM 0.012 0.004 1.00

Regular 0.41 0.37 0.51

Table 4. The calibrated models along with their distances to the validation data.

Model desiredSpeed Distance

Expert 1.4 3.6071

Characteristics 1.4 3.6486

Extended 1.5 3.4862

5 Discussion and Conclusion

Causal discovery algorithms translate data into a directed causal graph that reveals the
causal structure among variables. In this paper, we investigated how these algorithms
can be incorporated in the design process of agent-based models. We proposed an agent-
based model-design methodology, called AbCDe, that uses causal discovery algorithms
and the growing availability of data to specify behavioral properties. This methodology
combines traditional expert-based model design techniques with causal graphs to design
better models. We applied the methodology to a case study in the airport domain. The
models that were generated with the AbCDe methodology show closer resemblance
to validation data than an existing expert-based model. Future work can also focus on
developing dedicated causal discovery algorithms for agent-based model development,
instead of adapting existing algorithms for that purpose.

An important issue that occurred during the generation of causal graphs is that dif-
ferent algorithms and parameters produce quite diverse causal graphs. By integrating the
PC algorithm with the GES algorithm, this problem is partially addressed, but certainly
not solved. Further developments in the field of causality will address this problem.

A major advantage of our methodology is that it provides modelers with a toolbox
to design agent-based models. In cases where agent-specific data can be gathered, such
as our example of airport security checkpoint, our methodology can impact the final
quality of the developed model.
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Abstract. To solve complex tasks, individuals often autonomously organize in
teams. Examples of complex tasks include disaster relief rescue operations or
project development in consulting. The teams that work on such tasks are adap-
tive at multiple levels: First, by autonomously choosing the individuals that
jointly perform a specific task, the team itself adapts to the complex task at
hand, whereby the composition of teams might change over time. We refer to
this process as self-organization. Second, the members of a team adapt to the
complex task environment by learning. There is, however, a lack of extensive
research on multi-level adaptation processes that consider self-organization and
individual learning as simultaneous processes in the field of Managerial Sci-
ence. We introduce an agent-based model based on the NK-framework to study
the effects of simultaneous multi-level adaptation on a team’s performance. We
implement the multi-level adaptation process by a second-price auction mech-
anism for self-organization at the team level. Adaptation at the individual level
follows an autonomous learning mechanism. Our preliminary results suggest that,
depending on the task’s complexity, different configurations of individual and col-
lective adaptation can be associated with higher overall task performance. Low
complex tasks favour high individual and collective adaptation, while moderate
individual and collective adaptation is associated with better performance in case
of moderately complex tasks. For highly complex tasks, the results suggest that
collective adaptation is harmful to performance.

Keywords: Adaptation · Complex tasks · Agent-based modeling

1 Introduction

Disaster relief rescue operations [17], or project development in consulting firms [3]
are examples of tasks that can be characterized as complex tasks. These and many other
complex tasks have two characteristics in common: (i) A single individual alone usually
cannot find a solution to complex tasks, as the capabilities required to solve them are
greater in scope than the ones a single individual possesses [5], and (ii) complex tasks
are formed by various subtasks that are interdependent [7].
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Individuals are required to coordinate and share their capabilities to solve complex
tasks. We refer to this process as team formation [16]. Team formation often occurs
autonomously, i.e., agents form teams by themselves and without the direct interven-
tion of a central planner or decision-maker [12]. Giving individuals the possibility to
autonomously organize themselves into teams can, for example, be found in firms that
engage in consulting work [3], or professional service firms that are organized as a
partnership (such as law or accounting firms) [6].

Teams that engage in complex problem solving might be dynamic in their compo-
sition, as they change by adapting to the particular task they face [3]. Adaptation at the
team level is referred to as collective adaptation. However, not only the team as a col-
lective adapts, but also the individual agents (who make up a team) adapt by learning [3]
(i.e., agents go through a process of individual adaptation). Thus, a team that is formed
to solve a complex task goes through a continuous multi-level adaptation process. By
successfully adapting at the individual and collective level to a particular complex task,
the team’s performance is expected to improve [4].

Previous research indicates that individual agents adapt their capabilities to the
task requirements by learning about the task they face [2], becoming more capable
of performing the task, and thus improving the overall task performance [4]. To model
individual adaptation, we consider a learning approach that can be characterized as
autonomous. Learning is autonomous when it occurs without any interaction between
agents or the intervention of a central agent who can take the role of a supervisor or a
teacher. Similar approaches to autonomous learning can be found in [10,11].

Individual agents are endowed with the ability to adapt and to autonomously form
teams. Research in economics and Managerial Science often assumes that agents are
homogeneous (i.e., following the concept of the representative agent) [1]. This assump-
tion implies that any collective (e.g., a team) is just the aggregation of a set of homo-
geneous agents. This allows researchers to study collective adaptation similarly to indi-
vidual learning, since teams can be treated as uniform entities that go through a pro-
cess of learning [14]. However, the notion of homogeneity in agents poses a problem,
as this assumption is rather unrealistic and does not reflect real-life settings properly:
Individuals usually differ in their characteristics [1]. In contrast, by considering het-
erogeneous agents, we drop this restrictive assumption and give this research a more
realistic perspective [19]. Moreover, it also allows for implementing collective adapta-
tion as a process differing from just the aggregation of individual learning dynamics.
For example, by autonomously forming and recurrently reorganizing teams, a contin-
uous process of collective adaptation emerges by reconsidering the role of the current
members of the team against other potential members with different capabilities [8].
A significant branch of the previous literature concerning team self-organization has
implemented auction-based mechanisms for team formation, in which an auction is
held and the highest bidders are selected to form the team [15]. We consider collective
adaptation as a self-organization process which follows an auction-based approach.

It seems reasonable to think that more adaptation is always positive for perfor-
mance. However, in contrast to popular belief, more knowledge can be a burden. Pre-
vious research has shown that individual learning is beneficial for task performance,
but only up to a threshold [11,13]. Moreover, researchers argue that recurrent team
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self-organization can be harmful to performance in certain circumstances [8]. This is
related to the exploration vs exploitation dilemma, which states that individuals should
adequately balance searching for new solutions (i.e., exploration) against building on
the solutions already at their disposal (i.e., exploitation) [13]. According to [11], the
emergence of new solutions is positive for performance only at early stages of task-
solving. However, at later stages, acquiring new solutions instead of building on the cur-
rent ones known can lead to sub-optimal situations in terms of task performance [11].
We consider a multi-level perspective on this dilemma: Exploration can be increased
either by increasing individual learning or by self-organizing the team more often. Both
actions imply that the team is actively looking for new solutions. Decreasing individual
learning or self-organization, in turn, can be associated with more exploitation of the
current solutions available.

While some researchers in Managerial Science have focused on the study of learn-
ing processes that consider the interplay between the individual level and the team level
[2,13], a multi-level adaptation approach that combines both individual learning and
team self-organization has not been extensively studied. There are two main reasons
for this. First, as outlined previously, many researchers work under the assumption of
homogeneity of agents in a team [1]. Since all agents of the model are homogeneous,
there exists no incentive to look for replacements. The second reason for multi-level
adaptation not being properly studied in this field is that stable team structures have
been associated with higher task performance [9]. However, there is research outside
the field of Managerial Science in which multi-level adaptation via individual learning
and team self-organization has been studied. For example, in Physics, [8] propose an
approach to adaptation in which agents freely form or break-up teams, combining it
with individual learning. Results suggest that recurrent self-organization can in fact act
as a mechanism for collective adaptation that improves complex task performance [8].

Given the vast range of complex tasks in real-life settings [3,17], the conflicting
findings on the role of self-organization on performance [8,9], and the lack of extensive
implementation of multi-level adaptation in Managerial Science research, it is impor-
tant to understand the relationship between simultaneous adaptation at multiple levels
and complex task performance. Due to the reasons outlined above, there is a research
gap in the field of Managerial Science that we aim to fill. By implementing a multi-
level adaptation approach to a practical Managerial Science problem, our objective is
to understand better how simultaneous individual and collective adaptation affect task
performance. To do so, we propose an agent-based model based on the NK-framework
for Managerial Science [11] and perform a simulation study. This NK-framework stud-
ies decision-making using an evolutionary approach, in which complex tasks are solved
by sequentially making decisions and improving task performance step-by-step [11].
This contrasts with other modeling choices such as neoclassical modeling, in which
systems are modeled so the global maximum is found in the fewest possible steps [19].
The remainder of this paper is structured as follows: Sect. 2 discusses the model and
its most important aspects. Results are presented in Sect. 3, and a discussion about
the results is provided in Sect. 4. Finally, Sect. 5 provides a conclusion and potential
avenues for future research.
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Fig. 1. Sequence of events during simulation runs

2 Model

We propose a model that serves as an abstraction of any complex decision-making
task performed by humans. Figure 1 provides an overview of the events of the model
sequentially. Each element of the model sequencing is discussed in detail in the follow-
ing subsections. We model situations in which a population of P ∈ N agents faces a
task of N ∈ N binary choices1 (see Sect. 2, Task environment and agents). The agents’
capabilities are limited in the following two ways: (i) Single agents cannot solve the
task on their own, so they have to collaborate with other agents in a team2 consisting
of M ∈ N < P members to jointly find a solution to the task; and (ii) agents cannot
evaluate the entire set of possible solutions simultaneously. To overcome limitation (i),
agents are endowed with the capability of recurrently self-organizing into a team (see
Sect. 2, Adaptation at the collective level). Concerning limitation (ii), we endow the
agents with the capability of adapting to the task environment by sequentially exploring
the solution space and learning new solutions in the process. We refer to this process
as individual adaptation (see Sect. 2, Adaptation at the individual level). The model
architecture is illustrated in Fig. 2. We observe for t = {1, . . . , T} ⊂ N periods how
individual and collective adaptation affect task performance and interact.

Task Environment and Agents. We base the task environment on the NK-framework
[11] and formalize the complex decision problem, which agents face, by the string
d = (d1, . . . , dN ), where dn ∈ {0, 1} for n = {1, . . . , N} ⊂ N. Since agents are
limited in their capabilities (see Sect. 2, Adaptation at the individual level), we segment
the decision problem into M parts of equal size S ∈ N = N/M . Within the team, agent
m = {1, . . . , M} ⊂ N is responsible for the subtasks dm = (dS·(m−1)+1, . . . , dS·m).
Each decision dn is associated with a performance contribution f(dn) ∼ U(0, 1).
K ∈ N0 interdependencies among decisions di shape the complexity of the task d,
so that performance contribution f(dn) might not only be affected by dn but also by

1 E.g., whether to enforce a dress code in the workplace or not, whether to hire a new employee
or not.

2 We assume that only one team is formed.
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Fig. 2. Model architecture

K other decisions. K represents the complexity of the overall task. We formalize the
corresponding contribution function by

f(dn) = f(dn, di1 , . . . , diK )
︸ ︷︷ ︸

Kinterdependencies

, (1)

where {i1, . . . , iK} ⊆ {1, . . . , , n − 1, n + 1, . . . , N}, and 0 ≤ K ≤ N − 1. To
compute performance landscapes3 of different complexity based on Eq. 1, we consider
the stylized interdependence structures illustrated in Fig. 3.

Fig. 3. Stylized interdependence structures

3 For a detailed discussion of the resulting landscapes’ characteristics, the reader might consult
[11].
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We denote agent m’s solution to their problem dm and the solution to the entire
problem d at time step t by dmt and dt, respectively. We compute agent m’s perfor-
mance in t according to

φ(dmt) =
1
S

∑

dnt∈dmt

f(dnt) (2)

and the performance associated with the solution of the team of M agents by

Φ(dt) =
1
M

M
∑

m=1

φ(dmt) =
1
N

N
∑

n=1

f(dnt) . (3)

Agent m’s utility in time step t includes the performance of their subtasks dm and
the residual performance coming from the other M − 1 agents’ decisions Dm =
(d1, . . . ,dr), where r = {1, . . . , M} and r �= m. Agent m’s utility in t follows the
linear function

U(dmt, Dmt
︸︷︷︸

(d1t,...,drt)

) = α · φ(dmt) + β · 1
M − 1

M
∑

r=1
r �=m

φ(drt) , (4)

where α ∈ R and β ∈ R indicate the weights for agent m’s own and residual perfor-
mances, respectively, and α + β = 1. The objective of the agents is to maximize the
utility function U(dmt,Dmt) at each time step t.

Adaptation at the Individual Level. Since agents face binary choices, there are 2S possi-
ble solutions for each subtask. Agents are limited as they do not know the entire solution
space within their subtask. Initially, they only know a subset of Q ∈ N < 2S solutions.
Agents are homogeneous concerning the capacity Q and heterogeneous with respect to
the Q solutions they actually know. We endow agents with the capability of adapting
to their subtask environment that is defined by their decision problem dm (see Fig. 2).
With probability p, agents randomly learn an unknown solution to dm that differs in the
value of only one decision dn from the set of currently known solutions. Since agents’
capabilities are limited, they are limited in their memory and may forget solutions they
do not frequently use because of a low associated utility. Agents randomly forget a solu-
tion from the subset of Q with the same probability p like they learn new solutions. The
forgotten solution is chosen at random, using a uniform distribution. All the solutions
an agent knows can be forgotten, except the one that is utility maximizing at that par-
ticular time step t. A similar approach to individual adaptation based on autonomous
learning can be found in previous implementations of the NK-framework, for example,
in [10].

Adaptation at the Collective Level. We assume that the population of P agents is
equally distributed across M subtasks so that for each subtask, there are J ∈ N = P/M
agents who can find a solution to this subtask. Consequently, J agents compete for a
slot in the team; and all P agents autonomously organize themselves in a team finally
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composed of M agents. The self-organizing process follows the concept of a second-
price auction and always occurs at timestep t = 1. Afterwards, τ − 1 other auctions
are held over the remaining T − 1 time steps in regular intervals, so for t > 1, auc-
tions are held each time t mod T

τ = 0. This means that τ auctions take place over the
considered time horizon T each T

τ time steps.
We implement this second-price auction process in the following way: To become a

team member, agents place bids. These bids represent what agents intend to contribute
to team performance. Since the selection mechanism follows a second-price auction,
agents have incentives to reveal their true contributions [18]. Agents, however, cannot
observe the other agents’ bids and this is why they assume that the residual decisions
Dmt−1 will remain constant from implemented solution at t − 1. Agents compute the
expected utilities for all their solutions to their subtasks dm available in time step t
according to U(dmt,Dmt−1) (see Eq. 4). Each agent submits the highest attainable
expected utility among the different solutions as their bid in t. Consequently, there are
J bids for each slot in the team. Following the logic of second-price auctions, the team
comprises those agents M who submit the highest proposals per slot. For being a part
of the team, agents are charged the second-highest bid per slot.4

Decision-Making Process. In each time step t, the M team members are tasked with
finding a solution dt to the complex task d. Agents are autonomous in their decisions,
and there is no communication or coordination between agents. The decision-making
process is a two-stage process. First, each agent m focuses on their subtask dmt and
computes the expected utility for each solution available in this particular time step.
Since we do not allow for communication, the agents calculate the expected utility fol-
lowing the same process described earlier in Sect. 2 for each solution known. The agent
chooses the solution that promises the highest utility. In the first step, each agent comes
up with an S binary values vector that represents the solution to their subtask. Second,
once all agents have submitted their solutions, the overall solution is computed by con-
catenating all of the M solutions chosen by the agents. The solution to the complex
problem in t, dt, is thus represented by a vector of N binary values. We compute the
performance of the overall solution according to Eq. 3, and agents receive the resulting
utility according to Eq. 4.

3 Results

Scenarios. An overview of the model’s variables and the values they can take is given
in Table 1. With the values provided in Table 1 for the number of auctions that occur at
each simulation, we identify three different scenarios. First, for τ = 1, there is initial
collective adaptation: The auction process occurs only at the first period, never to be
repeated. Second, for τ = 20, there is moderate collective adaptation, with the team
self-organizing each T

τ = 10 time steps. Finally, for τ = 200, there is high collective
adaptation, with the team self-organizing at each time step.

4 Since agents only experience utility if they are team members, they always have incentives to
participate in this process.
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Table 1. Variables of the model

Type Description Denoted by Values

Exogenous variable Complexity K {3, 5, 11}
Probability of
individual adaptation

p {0, 0.1, 0.2, 0.3, 0.4, 0.5}

Number of auctions
held

τ {1, 20, 200}

Observed variable Team performance Ct ∈ [0, . . . , 1]

Other variables Time steps t ∈ [0, . . . , 200]

Temporal horizon T 200

Number of decisions N 12

Weights of utility α, β 0.5

Simulation runs R 1,500

Number of subtasks M 3

Number of agents P 30

Performance Measure. During each simulation run r and at every time step t, the team
performance Φ(dt) is normalized by the highest possible performance in that simulation
run, max(Φr). Based on this measure, we compute the average performance of the
scenario for each timestep t as follows:

Φ̃t =
1
R

T
∑

t=1

Φ(dt)
max(Φr)

. (5)

We further condense the average distance per timestep, Φ̃t, to the total Manhattan Dis-
tance. This means that we compute the difference at each time step t between aver-
age performance Φ̃t and the maximum performance max(Φr). Then each difference
is summed over the T time steps5. We formalize the total Manhattan Distance MD as
follows:

MD =
T

∑

t=1

(1 − Φ̃t) (6)

Please note that a higher Manhattan Distance MD implies a higher average distance to
the maximum, and thus a lower overall performance.

In Fig. 4, we plot the Manhattan Distance for each scenario studied. The x-axis of
each subplot represents the probability of individual adaptation. On the y-axis, we plot
the three scenarios considered for collective adaptation. The three subplots represent the
results for different complexity levels (see Fig. 3). Each point of a subplot represents a
total Manhattan Distance MD for a particular configuration of individual and collective

5 Note that since performance has been normalized using Eq. 5 and then averaged, maximum
performance is max(Φr) = 1.
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Fig. 4. Results for scattered interdependencies

adaptation. A point located in a lighter (darker) area implies lower (higher) MD, and
thus a better (worse) performance.

Individual Adaptation. The results suggest that the probability of individual adaptation
p has a considerable effect on task performance. In particular, there is a substantial
decrease in the total Manhattan Distance MD, when agents are capable of learning,
i.e., when p > 0. This pattern is robust across all interdependence structures under
consideration (i.e., for each level of K), as shown in all three subplots of Fig. 4. The
effect of individual learning on performance is highly significant. This suggests that
promoting learning is beneficial for task performance even when it is very low.

Regarding p > 0.1, there is a decreasing marginal positive effect of individual
adaptation on performance in low complexity scenarios (i.e., the subplot (A) in Fig. 4).
The marginal effect is smaller when the probability of learning increases from p =
0.1 to p = 0.5 as compared to a shift from p = 0 to p = 0.1. This is true for all
three collective adaptation scenarios considered. Thus, beginning to learn about a task
has huge implications on performance. However, any increase in individual adaptation
reduces the overall impact of individual learning on performance, even when this effect
is still positive.

For higher levels of complexity (see subplots (B) and (C) in Fig. 4), this positive
effect eventually turns negative. As a consequence, the overall performance declines.
For example, subplot (B) in Fig. 4 (i.e., for K = 5) shows that a team with high collec-
tive adaptation reaches its lowest total distance of MD = 20.00 at a learning probabil-
ity of p = 0.1. Further increases in individual adaptation appear to affect performance
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negatively, surpassing MD = 25.00 for p = 0.5. Eventual decreases in performance
can also be observed for moderate collective adaptation and for initial collective adap-
tation (both for p > 0.4). This pattern of initial growth but with an eventual decline in
performance is even more pronounced in scenarios of high complexity (i.e., K = 11,
see subplot (C) in Fig. 4). Results imply that, for moderate or high levels of complexity,
individual adaptation and task performance are related in the form of an inverted-U:
Initial increases in individual adaptation are positive for task performance, although the
marginal effect decreases with each successive increase. Eventually, the relationship
turns negative and performance is harmed as a consequence of increasing individual
adaptation.

Collective Adaptation. The results suggest that whether collective adaptation has a
positive or negative impact on performance depends on the complexity of the scenario
studied. For low levels of complexity (represented by the subplot (A) in Fig. 4), we
can observe that high collective adaptation is associated with higher performance as
compared to scenarios with either moderate or initial collective adaptation (except for
p = 0, in which all three teams perform very similarly, and p = 0.1, in which high
and moderate collective adaptation perform similarly). Moreover, the highest possible
performance in low complexity scenarios considered is attained by a team exhibiting
high collective adaptation, reaching a total distance below MD = 1.00 for p = 0.5.
When facing a task that is not highly complex, results suggest that it is beneficial for
performance to increase the effort in finding new solutions (i.e., increasing exploration),
at both the individual and collective level.

However, in scenarios with medium complexity (see subplot (B) in Fig. 4), for most
values of p, moderate collective adaptation leads to higher performances compared to
both high or initial collective adaptation scenarios. There are two exceptions to this,
which are for the extreme values of p = 0 (in which moderate and high collective adap-
tation perform very similarly) and p = 0.5 (in which moderate and initial collective
adaptation perform very similarly). For 0 < p < 0.5, moderate collective adaptation
is associated with a higher performance than any other alternative. Moreover, the high-
est attainable performance in all medium complexity scenarios considered occurs for
moderate collective adaptation and p = 0.4 and is around MD = 15.00. In contrast to
low complexity scenarios (except for the extreme case of p = 0, in which agents do not
learn at all), high collective adaptation is always associated with the lowest performance
compared to the other two alternatives. The results suggest that increasing exploitation
(exploration) by decreasing (increasing) collective adaptation can be harmful to perfor-
mance. Moderate collective adaptation, in turn, improves performance in the majority
of cases.

Results in scenarios of high complexity, as shown in subplot (C) of Fig. 4, sug-
gest that increasing collective adaptation is detrimental to performance when individual
learning occurs (i.e., for p > 0). There is an exception in the extreme case of p = 0.5,
in which initial and moderate collective adaptation are associated with a similar perfor-
mance around MD = 43.00. For 0 < p < 0.5, initial collective adaptation is asso-
ciated with a higher performance than any other alternative. Furthermore, the highest
attainable performance for high complexity scenarios is attained by a team with initial
collective adaptation and p = 0.2, with approximately MD = 38.00. When tasks are
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highly complex, stability in team composition seems to be a good choice, since the
recurrent reorganization of a team eventually impairs task performance.

4 Discussion

Our research is concerned with multi-level adaptation and its relationship with task per-
formance in teams. Results indicate that, in low complexity environments, putting a lot
of effort into adaptation at both the collective and the individual level cannot be asso-
ciated with negative effects on performance. This extends the insights about adaptation
in complex environments provided by [11]: When facing a task of low complexity, high
exploration does not decrease the overall task performance, because sub-optimal, long-
term solutions are less likely. Since only a single level of adaptation was considered
in [11], our results contribute to previous research by showing that this is also true for
multi-level settings.

For moderate levels of complexity, our results show that the exploration vs exploita-
tion dilemma can be applied in a multi-level adaptation setting, too. Also, a proper
balance between exploration and exploitation is key to improving task performance in
teams. These insights are in line with previous research [11,13,14,20] regarding the
exploration vs exploitation dilemma. Our results differ from previous research in that
exploration can be increased either by increasing individual or collective adaptation. In
particular, when considering moderately complex tasks, the results suggest that mod-
erate individual learning has to be combined with moderate collective adaptation to
improve performance. These findings are consistent with previous results, which indi-
cate that recurrent self-organization of teams combined with individual learning can be
associated with higher task performance [8]. In real-life settings this moderate adapta-
tion at both levels could be achieved, for example, by allowing employees of a firm to
dedicate a limited amount of working hours to self-education and training; combined
with holding regular team meetings with employees outside the team to discuss the state
of the task and other members’ contributions.

The results for low and moderate complexity indicate that recurrent self-
organization can be beneficial for task performance. These insights contrast views in
the field of Managerial Science that characterize team reorganization as harmful to per-
formance [9]. In particular, team stability has been associated with high degrees of
team-level learning and, eventually, higher performance [9]. In this context, adaptation
occurs just at the team level, following a learning process for the collective. This high-
lights the importance of considering multi-level adaptation. By considering multiple,
simultaneous adaptation processes (in this case, by endowing agents with the capabili-
ties of learning combined with recurrent team self-organization), emerging insights into
topics such as team reorganization differ from those found in previous research. Since
adaptation has been considered as occurring at multiple levels, for example, by [13],
we believe that these findings and similar implementations help to understand better the
relationship between adaptation and task solving in teams and to relate the insights to
real-life problems.

Our results also contribute to the literature on multi-level adaptation and task perfor-
mance when considering highly complex tasks. Previous research on multi-level adap-
tation and task performance (which is, in itself, not extensive) has not considered highly



40 D. Blanco-Fernández et al.

complex tasks (see, for example, [8]). Thus, we can consider our results as a first step
in the matter of studying multi-level adaptation under high complexity. We find that,
in highly complex tasks, collective adaptation is negative for performance, and that the
positive effect of individual adaptation is limited considerably. As the previous litera-
ture shows, highly complex environments are associated with lower benefits for explo-
ration, since the probability of finding sub-optimal, long-term solutions is very high
[11]. Again, our results can be understood as extensions to previous insights on the
exploration vs exploitation dilemma by considering multi-level adaptation.

This set of results provides an extension to approaches that consider a single level
of adaptation [11,13,14,20]. Our research adds to the literature in Managerial Science
by providing a discussion on individual and collective adaptation, both occurring simul-
taneously. To our knowledge, there is a lack of an extensive implementation of a multi-
level adaptation approach that considers autonomous individual learning and team self-
organization in Managerial Science. By considering these two aspects, we believe that
our research provides a novel approach to multi-level adaptation in this field. Our results
should then be understood as both complementary to previous findings in the literature
and an extension [11,20].

5 Conclusion

Individual and collective adaptation are two factors that strongly determine the perfor-
mance of a task. In particular, we have found that high individual and collective adap-
tation increase task performance when task complexity is low. However, this changes
when complexity increases. When tasks are moderately complex, teams need to com-
bine individual learning with moderately recurrent team self-organization up to a thresh-
old in order to reach the highest attainable performance. If the task is highly complex,
low individual learning combined with no collective adaptation is the best alternative
in terms of task performance. These aspects show that the exploration vs exploitation
dilemma also holds when considering multi-level adaptation.

However, our research has some limitations. For example, the importance of coordi-
nation and communication is not addressed [20]. Also, we do not consider the potential
costs that individual and collective adaptation might incur in. Further extensions of the
model may include endowing agents with the capabilities of choosing more or less
individual adaptation [7] or breaking up the formed team [8], and including alternative
mechanisms of adaptation such as social learning [2]. The implementation of these and
further aspects might help in extending our research.

Another aspect that has been mentioned but not extensively studied in this paper is
the role of interdependencies between the agents’ decisions. We study one structure of
interdependencies at three different levels (see Fig. 3). Previous research has shown that
not only the level of interdependencies, but also the structure of those interdependencies
(i.e., which actual decisions are interdependent with each other), can lead to different
insights into task performance in groups [14]. A potential extension to this paper could
consider the impact of alternative interdependence structures.

Finally, our results suggest the existence of an interaction effect between adaptation
at multiple levels, as a simultaneous increase of adaptation at both levels eventually
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leads to “too much exploration” and a decrease in task performance. Extensions of this
research may elaborate on this. Despite its limitations, we believe that our research is
a first step towards the study of multi-level adaptation and its effects on performance.
Moreover, it also serves as a departure point for future research on the topic of multi-
level adaptation and complex task performance in teams.
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Abstract. We introduce a new software toolbox for agent-based simu-
lation. Facilitating rapid prototyping by offering a user-friendly Python
API, its core rests on an efficient C++ implementation to support simu-
lation of large-scale multi-agent systems. Our software environment ben-
efits from a versatile message-driven architecture. Originally developed
to support research on financial markets, it offers the flexibility to sim-
ulate a wide-range of different (easily customisable) market rules and
to study the effect of auxiliary factors, such as delays, on the market
dynamics. As a simple illustration, we employ our toolbox to investigate
the role of the order processing delay in normal trading and for the sce-
nario of a significant price change.

Owing to its general architecture, our toolbox can also be employed
as a generic multi-agent system simulator. We provide an example of
such a non-financial application by simulating a mechanism for the coor-
dination of no-regret learning agents in a multi-agent network routing
scenario previously proposed in the literature.

Keywords: Multi-agent systems · Reinforcement learning · Software
toolbox · Model prototyping · Latency · Colocation · Simulation

1 Motivation

Complementing the classical methods of statistical analysis and mathematical
modelling, agent-based modelling (ABM) of financial markets has recently been
gaining traction [4,9,11,12]. In particular, applications of this paradigm to mar-
ket microstructure [2] have attracted increasing attention. To name but a few,
they include the study of statistical properties of limit order books [3], (non-)
strategic behavior of a collective of traders [10] when modelled via the flow of
their orders, as well as research into market bubbles and crashes [13]. With the
ever-increasing importance of automated trading in finance and the rising popu-
larity of artificial intelligence in academic and industrial research, the importance
of the ABM approach in the study of electronic markets is likely to grow further.
c© Springer Nature Switzerland AG 2022
K. H. Van Dam and N. Verstaevel (Eds.): MABS 2021, LNAI 13128, pp. 42–56, 2022.
https://doi.org/10.1007/978-3-030-94548-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94548-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-94548-0_4


Fast Agent-Based Simulation Framework with Applications 43

The diversity of use cases of ABM in finance and economics is reflected by
the recent proliferation of a variety of software tools tailored to the particu-
larities of their respective applications, as can be seen in the aforementioned
sources. What is missing is an efficient code base implementing a general, all-
encompassing multi-agent exchange framework that can be easily adapted to
simulate scalable ABMs based on any particular exchange as a special case.
Among many other conceivable use cases, such a software environment could
serve as a flexible toolbox allowing its users to investigate a range of research
questions. Such could include, but are not limited to, the following:

– The impact of different matching algorithms on the (learned) behaviour and
revenues of (adaptive) trader agents inhabiting a given limit order book
(LOB);

– The amount of strategic decision making required to explain some of the
important statistical properties of these LOBs;

– The response of strategic trader agent behavior to a change in the rules of
the order matching, as well as to changing infrastructural effects such as
communication delays.

– Conversely to the above, the impact of different learning behaviors of the
trading agents on the ensuing market dynamics.

To address the need for such a toolbox, we introduce the Multi-Agent
eXchange Environment (MAXE), a general code environment for the simula-
tion of agent-based models, with a database ready-to-use agents for simulation
of electronic exchanges and other financial markets. For convenience, MAXE also
provides a Python API to facilitate rapid prototyping of artificial agents. How-
ever, since the meaningfulness of ABMs often rests on the capability to simulate
large agent populations, the core of the implementation was written in C++,
with an eye for computational and memory efficiency, as well as for support
for native multi-threading for execution of separate simulation instances (with
possibly varying parameters) in parallel.

The remainder of this paper is structured as follows: After placing our tool-
box into the context of previous, related simulator packages in Sect. 2, Sect. 3
proceeds with introducing the architecture of MAXE. We present different use
cases of our framework. Section 4 contains an illustration of a simple study of
the effects of communication delays. Section 5 shows how MAXE can be utilised
in the general context of agent-based modelling, and Sect. 6 compares MAXE’s
performance in a simple simulation scenario to that of a contender. Concluding
remarks can be found in Sect. 7.

2 Related Work

Beyond simple market replay approaches, there still is a need for publicly avail-
able ABM software sufficiently generic to be capable of simulating the markets
and many other environments at scale. Our toolbox was designed to meet this
demand. The most closely related toolboxes we are aware of include Adaptive
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Modeler [7], Swarm [18], NetLogo [17], Repast [8], and ABIDES [5]. In what is
to follow, we briefly summarise the features of these packages in relation to ours.

Adaptive Modeler [7] is a “freemium” specialized market simulator first
released in 2003 and still maintained. At the core of the software is a virtual mar-
ket featuring a predefined set of classes of agents that may be further adjusted
by the user by changing various parameters such as the population sizes, agent
wealth, or class mutation probability. Once an environment consisting of traders
and traded assets is specified, the user may start the simulation whilst keeping
track of outputs such as the event log, quotes, or various economic statistics. All
of these functionalities are – or can easily be – implemented in MAXE as well.
In addition however, MAXE also allows the creation of completely customised
agents with arbitrary behavior and simulate them on an arbitrary timescale, as
the unit time step is not bound to any physical measure of time and can thus
be chosen to represent an arbitrarily small fraction of a second.

Swarm [18] is an open-source ABM package for simulating the interaction of
agents and their emergent collective behaviour. First released in 1999, it remains
maintained today. Whilst not directly designed for financial modelling, it has
been used to create the Santa Fe Artificial Stock Market [14] that, for the first
time, reproduced a number of stylized facts about the behaviour of traders and
further emphasized the importance of modelling of financial markets. Unlike
swarm, MAXE comes with an incorporated time-tracking unit that takes care
of the delivery of messages between the agents involved and the advancement
of simulation time. This allows for a transparent unified channel of inter-agent
communication, enabling simple scheduling of agent tasks (as outlined in an
example in Fig. 1) and greatly simplifying output generation and debugging.

NetLogo [17] and RePast [8] are general-purpose software frameworks for
agent-based modelling. On top of simulation capabilities, both of these tools
feature components enabling easy display of data, and have extensively been
used for research in social sciences. They have been previously used for small-
scale simulation of financial markets, though their distributions do not feature
readily available agents for market simulation. In comparison to the extensive
constraints placed on the agent interface by either, MAXE places no constraints
on the design of the agent, apart from requiring that the agents conform to the
minimal messaging structure, for which there are template agent classes readily
available.

JADE [1] is an open-source software framework for peer-to-peer agent based
applications. It is fully implemented in Java, and as such suffers from the memory
limitations and reliance on garbage collecting as it exists in a managed environ-
ment. It, however, benefits from the platform of choice by being runnable on
every operating system supporting the Java runtime binaries, and even allows
its users to run simulations across multiple devices simultaneously.

ABIDES [5] is the newest open source market modelling tool. Released as
recently as 2019, it was specifically designed for LOB simulation. Aimed to
closely resemble NASDAQ by implementing the NASDAQ ITCH and OUCH
messaging protocols it hopes to offer itself as a tool for facilitation of AI research
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on the exchange. Just as MAXE, ABIDES and allows users to implement their
own agents in Python. However, since MAXE also allows specification in C++
we expect that MAXE has an edge in terms of the execution efficiency and
scalability. Moreover, MAXE, being based on a compiled binary core interact-
ing directly with the operating system allows for multi-threaded execution of
simulations, which becomes an advantage when simulating a range of similar
simulations differing only in a number of input parameters. Apart from that,
MAXE comes with the implicit support for the trading at multiple exchanges at
once and for limit order books matched with different matching algorithms, in
particular pro-rata matching. MAXE is also highly modular due to the option
to develop a database of agents first, and then configure a set of simulations via
an XML configuration file.

3 Architecture

MAXE is based on a message-driven, incremental protocol. Its core logic steps
forward time and delivers messages, and thus while it was developed with the
modelling of financial markets in sight, it can easily be utilised for simulating
many general multi-agent systems unrelated to finance, an example of which
we give in Sect. 5. We will, nevertheless, continue to present MAXE’s features
mainly in the light of market simulation, believing that it will turn out to be its
most popular application.

In MAXE, every relevant entity of a trading system one would wish to model
(e.g. exchanges, traders, news outlets or social media) can be implemented as
an agent. This is different to the usual approach to agent-based modelling of
exchanges where at the centre of the simulation is the exchange concerned and
the communication protocol between the entities of the trading system is made
to resemble the one of the real exchange, often to ease the transition of any
models developed there into production environments. As it is the case with any
common implementation of message-driven frameworks, agents taking part in
the simulation remain dormant at any point in simulation time unless they have
been delivered a message. When a message is due to be delivered, the simulation
time freezes as all agents that have been delivered at least one message begin
to take turns to deal with their inbox. Each agent is given an unlimited amount
of execution time to process the messages they have been delivered and to send
messages on their own. Messages can be dispatched either immediately (i.e. with
zero delay) or scheduled to be delivered later in the future by specifying a non-
negative delay which can be used to, for example, model latency, that we will
show in Sect. 4.

At the beginning of a simulation, each agent is delivered a message that
allows them to take initial actions and possibly schedule a wake-up in the future
by addressing a message to themselves. At the end of the simulation, a message
of similar nature is sent out to all agents to allow them to process and save
any data they might have been gathering up to that point for further analysis
outside the simulation environment. Figure 1 shows an example communication
of an agent that trades based on regular L1 quote data from the exchange.
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Aside from its core, MAXE also contains a small initial repository of common
agents that can be expanded upon by its users. This initial repository includes
an exchange agent that can operate a number of different matching mechanism,
as well as a collection of zero-intelligence and other simple agents. An overview
of the top level of the hierarchy of available agents is depicted in Fig. 2. Further
details on the various agents can be found in the code repository [15].

For simplicity and in order to facilitate convenient prototyping of trading sys-
tem models, MAXE has been built with an interactive console interface, designed
to read the simulation configurations from a hand-editable XML file, and is,
despite the overall emphasis on the performance, supplemented with an addi-
tional Python interface. A user of MAXE wishing to quickly try out an idea
for an agent-based model would thus proceed as follows: First, they would con-
sider whether any of the built-in agent types fit their needs. For any agent type
with custom behaviour they would write a Python script, testing it in a ‘mock’

Fig. 1. A sequence diagram of an example communication between a trading agent,
exchange agent, and the simulation environment.
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environment API that is provided. Once satisfied with the scripted behaviour
of individual agents, they would with ease set up the simulation of their model
by writing an XML configuration file, and once satisfied with the overall model,
they would have the option to scale up to hundreds of thousands of agents by
re-implementing the behaviour first scripted in Python in C++. Some resource
limits for MAXE when running solely agents implemented in C++ are discussed
in Sect. 6.

4 Example Case Study – Processing Delay in Market
Dynamics

As discussed previously, MAXE can serve as a simulation environment of many
types of multi-agent systems. As a first example related to financial markets,
we demonstrate MAXE’s ability to simulate some aspects of “market physics”.
In particular, we utilise it to examine the effect processing or communication
delays have on various statistics of the market dynamics following a large trade.

Fig. 2. The class diagram of the simulation-agent hierarchy of the simulator.

4.1 The Model

The core of the model consists of one exchange agent with a modifiable choice of
matching algorithm and a population of zero-intelligence trading agents interact-
ing with the exchange. The exchange agent maintains the limit order book and
executes orders submitted by the trading agents. At the beginning of the simu-
lation, the LOB contains two small orders, one on each side of the book with the
initial bid-ask spread S0, to serve as the indicators of the opening prices for further
trading.

Following the start of the simulation, traders place orders and are given a
fixed period of time to reconstruct the LOB to match the empirical average shape
from [3] by placing orders in a manner described below. In the simulation runs
focused on statistics not related to the study of impactful trades, the remaining
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time is used to measure those. The other type of simulations experiences an
impact agent entering the exchange and making a large trade, following which
more statistics are computed. The simulation runs over a fixed time horizon of
40000tp, chosen by experimentation focused on the setup appearing to have dealt
with the largest of the trades used in our experiment.

The behaviour of our trading agent is similar to the behaviour presented in [3]
that has been previously shown to be able to reconstruct the LOB’s shape to be
resembling the one of real LOBs of highly liquid stocks on the Paris Bourse. The
behavior presented in [3] is further adjusted by some features of the behaviour
presented in [10], which has been shown to be able to explain some of the dynamic
properties of the LOB, including the variance of the bid-ask spread. For a detailed
specification of the agents’ behaviour we refer the reader to [15].

According to the L1 information available to the trader at the time they are
making the decision (which may be outdated due to the communication delay
between the trader and the exchange), each trader places both market and not
immediately marketable limit orders according to a Poisson process with rate rp,
with the fraction of the market orders fm being a parameter of the simulation.

Each order has lifetime distributed according to the exponential distribution
with mean tl that was a parameter of the simulation. Thus, the stream of the
cancellation orders can be thought of as a marked Poisson process with rate
rc = 1

lo
and where the marking probability is inversely proportional to the

number of orders in the LOB. The price of the order is drawn from the empirical
power-law distribution relative to the best price at the time of observation.

We define the processing delay d, or simply delay to be the duration between the
time the information about the state of the limit order book is produced for trad-
ing agents and the time when the exchange processes the agent’s order against the
LOB. This time includes the two-way latency between the agent and the exchange,
the (simulation) time it takes the exchange to process the queue of incoming orders,
and decision time on the trader’s side. Furthermore, taking the zero-intelligence
approach to model the trading and the limit order book as a whole, the process-
ing delay can also be thought of as encapsulating the time it takes the trader to
decide whether and how to trade and possibly evaluating their strategy given the
information becoming available during that time, and we shall use this fact when
interpreting our findings. We also define greed g to be the size of a large market
order expressed as a fraction of the total volume (i.e., considering the volume of
all price levels) in the queue it is meant to be executed against.

4.2 Findings

When simulating, we treated the placement frequency rp as fixed and looked at
the effects of the other two time-based parameters, rc and d, relative to it. The
observed effects turned out to be independent of the matching algorithm used.
Perhaps somewhat more surprisingly, the cancellation rate rc appeared not to
have had any effect on the statistics considered (see below).
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Notation: If Q is the quantity we are observing, let e[Q] denote the empirical
simulation-time-weighted mean of Q and v[Q] the empirical simulation-time-
weighted variance of Q.

We found that the mean bid-ask spread e[S] increased linearly with the
fraction of market orders fm (with a hint of convexity), decreased with d, and
appeared to converge to the bid-ask spread of the initial setup S0, coming within
a few ticks distance of S0 for all sufficiently large delays d. The relationship
between the parameters involved is depicted in Fig. 3a and fitted (R2 = 0.90)

e[S] ≈ S0 + s0fme−s1d.

The time-weighted variance of the best bid and ask prices (simply the “best”
price B(t) at time t as the behavior is the same for both sides of the queue, see
Fig. 3c) appeared to monotonously decrease with increasing d and, to increase
exponentially with increasing fm, coming to a negligible distance from 0 for
sufficiently large values of the delay d.

(a) (b) (c)

Fig. 3. Statistics of the simulation L1 data, namely the mean bid-ask spread, bid-ask
spread variance, and the variance of the best price, plotted against d (in multiples of
tp) for different values of fm.

Shape of the Average Impact Scenario. Turning our attention to the sce-
nario of an impactful trade occurring at time tI, we define the climb C to be
the immediate increase in the best price B following a large (10-100x the size
of average market order) trade against the respective order queue. We further
define F to be the difference between the highest and the lowest point the best
price attains after tI, and I to be the long term impact of the trade, i.e. the
difference between the equilibrium best price prior to the impactful trade and
the equilibrium price to which the best price “settles” long after tI. We expressed
the volume of the large trade considered as a fraction of the volume available on
the respective order queue at the time the trade is executed and denote it by g.

We have found empirically that, irrespective of the volume of the large trade
affecting the best price, e[B](t) seemed to exhibit the same feature of going
through the phases of fall, overreaction, and settlement (see Fig. 4). The climb
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in the best price itself occurred almost instantly after tI in the vast majority of
cases, with the exception when a delayed limit order unaware of the sudden price
movement significantly improved the new best price but was quickly eliminated
by newly incoming marketable orders. The first phase, fall, exhibited a steep
best price fall towards the future equilibrium and its steepness decreased with
increasing latency d. The fall was succeeded by something that could described
as an overreaction, a phase during which the best price dived further below the
future equilibrium price and hit the absolute minimum at the time at which
the bid-ask spread was also minimal. The best bid and ask prices then diverged
again towards their new equilibrium in the settlement phase.

The identification of such patterns has the potential of being of practical
utility. They might endow us with a method for predicting the price at which
the best price will settle after a large trade given the information about the
long-term variance of and current information about the values of the bid-ask
spread.

Fig. 4. Shown is the shape of the average best price evolution after suffering a large
aggressing trade.

The Large Trade Scenario. We observed that both e[C] and e[F ] decreased
linearly for large delays and small delays with small values of g (Fig. 5a and
Fig. 5b). In addition, large values of g seemed to allow the climb and fall to peak
at a specific small delay.

The long-term impact appeared to be mostly linear with d with the down-
wards slope decreasing with the increasing values of greed, increases linearly with
fm (Fig. 5c). Furthermore, it did not seem to exhibit the same peak as climb and
fall do, demonstrating that these two compensated for each other in the long run.
Furthermore, the logarithm of the long term impact increased proportionally to
the volume traded, in keeping with the results presented in [16].

We said that the best price had reached stability if the moving average with

a fixed window of size w had fallen within the distance of
√

v[B]
w .

Whilst we found significant evidence that the impact of a large trade on the
best price depends on the greed parameters, perhaps surprisingly, the mean and
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variance of the time did not seem to exhibit any notable dependence on the level
of greed, i.e. the best price appears to converge to stability in time independent
of the size of the large trade nor the share of the marketable orders fm (Fig. 6b).

Further evidence of such behavior was found when producing the results
depicted in Fig. 6c. Here, we looked at the proportion of the runs of the simulation
in which the price fulfilled the post-impact stability criterion given above before
the simulation was terminated. As can be seen from the plot, simulation runs
for higher values of the parameter fm would see the price succeed to become
stabilised in the time horizon of the simulation more often than for the lower
values, but the greed parameter had again little to no effect on the proportion
of the runs that would become stabilised for varying values of d. This is further
supported by setting a time limit on convergence in the distant future from
the impactful trade and measuring the convergence success rate, defined as the
proportion of the simulation runs that succeeded in converging before that time
(see Fig. 6c).

(a) (b) (c)

Fig. 5. Absolute mean climb, mean fall, and mean long-term impact (in price ticks)
plotted against the processing delay d (in multiples of tp) for fixed values of fm and
varying values of greed g.

(a) (b) (c)

Fig. 6. Convergence statistics shown against d (as a multiple of tp) for different values
of fm. The time is also expressed as a multiple of the mean order placement rate rp.
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5 Example Use Case – Market-Based Coordination
of Learning Agents

The generality of MAXE’s architecture allows us to simulate multi-agent systems
with no relation to finance at all. As a specific example we now implement the
experiment presented in [6], concerning a multi-agent mechanism that, under
some assumptions about agents’ rationality, gives plausible solutions for routing
problems.

Consider a finite directed graph G = (V,E), in which each edge e ∈ E has
capacity γ(e) and a fixed intrinsic cost ce for each unit of flow that is to be
directed through the edge. Suppose that there are players who each want to
send an amount of flow dsr from some vertex s to r – that is, player Psr wants
to direct dsr from s to r and to that end has an individual plan represented
by a vector fsr = (fe

sr)e∈E . We require the players to plan in such a way that
the resulting flows through the graph conserve flow. The players’ planning is
influenced by two soft constraints: βe(ν) = max{0, ueν} where ν = fe

sr − γ(e)
is the amount by which the flow directed through e exceeds e’s capacity, and
βsr(ν) = max{0, usrν} where the argument ν = −dsr +

∑
e∈E fe

sr is the amount
by which the player’s plan exceeds her demand.

On the implementation side we shall represent every player by an agent.
Then, following the approach of [6] we transform the soft constraints of the
problem by introducing two additional groups of adversarial agents: one for
edge, and one for demand constraints. These agents selfishly choose prices for
exceeding the edge capacities and failing to meet players’ demands, respectively.

In particular, at the beginning of every iteration, each (player-, edge-,
demand-) agent decides on their plan following the Greedy Projection Algo-
rithm [19]. Player-agents decide on how to direct the flow, whereas the adver-
sarial edge- and demand-players decide on the price they are going to charge
the player-agents for their respective constraint violations. Player-agents then
poll the adversarial agents on their prices and store the information for the
decision-making in next iteration of the game.

A simple example of an averaged player plan after a number of iterations is
depicted in Fig. 7. In this experiment, following [6] to the letter, we had a 6-node
network and three players P2,3, P1,4, and P4,6 with demands 30, 70 and 110. We
set c(2,3), c(3,2) = 10, and ce = 1 for all other edges e. Edges (5, 6) and (6, 5) had
capacities of 50, while all other capacities were 100.

Figure 7 also shows the output (the resulting flows) of our simulation run
that ended up being entirely consistent with the solution found in [6].
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Fig. 7. A graphical representation of the experiment output consistent with the simu-
lation run in [6].

6 A Performance Comparison

Although numerous software packages can be used for simulation of financial
markets, we identified ABIDES as a top contender for MAXE, being extensi-
ble enough to allow for almost arbitrary simulation of limit order books while
featuring a small group of default agent types allowing for an easy simulation
setup.

MAXE and ABIDES vary fundamentally in how they approach simulation.
While MAXE uses its own, general messaging protocol, ABIDES uses a combi-
nation of NASDAQ ITCH-OUCH protocols and agent wake-up scheduling. To
examine how these two different approaches affect the simulation performance
we considered one of the simplest multi-agent market models conceivable, in
which agents require only very little computation to decide how to act.

Inspired by ABIDES’ RMSC01 configuration, we thus started with a unit
population for ABIDES consisting of a single market-maker and 25 ABIDES-
default zero-intelligence agents, and a population for MAXE of the same size
consisting of MAXE’s equivalent agents. We scaled the unit population by the
factors of 1, 2, 4, 8, 16, while examining the average runtime of 1 h of simulation
time over 10 attempts for factors 1, 2, 4, 8. In the case of the 16-factor, only three
runs were considered due to the large demands on memory and duration of the
program run.

The results of our simulation are shown in Fig. 8. We only comment on the
relative runtime performance of ABIDES and MAXE as the agent population
increases.

For small agent populations there does not seem to be a significant differ-
ence in the performance of the two simulators. As the agent population grows,
the runtime of MAXE becomes more clearly separated from that of ABIDES.
This is most likely due to the different methods of agent communication han-
dling employed by the two simulators. Our plot stops at 416 agents, after which
the memory demand of the Python environment running ABIDES exceeded the
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16 GiB of memory available in our small workstation and the operating sys-
tem resorted to swapping, significantly hindering the runtime performance of
ABIDES. A test run of ABIDES on 450 agents resulted in a Python Memory
error. We noticed that ABIDES, at present, does not allow for regular flushing of
trading history to the disk, and we believe that a small adjustment to the design
of the simulator, coupled with the employment of an appropriate memory man-
agement strategy, could resolve the memory greediness currently limiting the
feasibility of ABIDES’ use when a larger number of agents is involved. For com-
parison, a simulation consisting of a population of 100,022 agents in MAXE with
the same setup fit comfortably into 100 MiB of memory.

In summary, the plot of Fig. 8 is consistent with our intuition that the design
choices made for the key components of MAXE do indeed result in marked
performance improvements over alternative packages when a larger population
of agents is to be simulated.

Fig. 8. A runtime comparison of MAXE and ABIDES.

7 Conclusions

We have introduced a new multi-agent simulation framework for financial market
microstructure, called the Multi-Agent eXchange Environment (MAXE). There
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are a number of distinctive advantages MAXE offers over alternative simulation
frameworks such as ABIDES [5]. Most notably, our framework was designed to
be fast and flexible; it allows the modelling of different matching rules and can
model latency.

We have demonstrated its potency for research into market dynamics. In
particular, we utilised MAXE to showcase a mini study of the impact the delay
in processing order has on a few LOB statistics and on the behaviour of the
best prices after a large trade is registered with the exchange. We have also
shown that MAXE is suitable for applications beyond the study of financial
markets, as we used it to simulate a multi-agent reinforcement-learning network
routing scenario. As our first evidence provided suggests, MAXE can be used
to simulate markets and multi-agent systems more efficiently than comparable
existing toolboxes. We therefore hope that it will be useful to facilitate research
across different disciplines in need of simulating large-scale agent-based models.

Expanding on our illustrative case studies would be interesting in particular,
given the dearth of studies utilising ABM in the context of pro-rata matching
rules. We hope such inquiries would be greatly aided by our MAXE package,
providing a standardised, scalable, and easily customisable toolbox to support
this kind of research.
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Abstract. People spontaneously synchronize their mental states and behavioral
actions when they interact. This paper models general mechanisms that can lead
to the emergence of interpersonal synchrony by multiple agents with internal cog-
nitive and affective states. In our simulations, one agent was exposed to a repeated
stimulus and the other agent started to synchronize consecutively its movements,
affects, conscious emotions and verbal actions with the exposed agent. The behav-
ior displayed by the agentswas consistent with theory and empirical evidence from
the psychological and neuroscience literature. These results shed new light on the
emergence of interpersonal synchrony in a wide variety of settings, from close
relationships to psychotherapy. Moreover, the present work could provide a basis
for future development of socially responsive virtual agents.

Keywords: Social agent model · Emergent synchrony patterns · Social
simulations · In-Sync model

1 Introduction

People spontaneously synchronize their movements, affective responses, and verbal
actionswhen they interactwith each other. Such interpersonal synchrony has been related
to a variety of positive outcomes in social settings. For instance,Miles and colleagues [20]
found that synchrony was the most pronounced for minimal groups of people who were
most divergent in terms of their artistic taste, suggesting that synchrony might serve as
a tool to bridge social distance and intergroup differences. Elevated levels of movement
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synchrony have further been shown to foster social affiliation [10], cooperation [45] and
compassion [39]. Moreover, interpersonal synchrony has been suggested to be a key
component of a good therapeutic alliance, or working relationship, between patients and
therapists in psychotherapy [19].

Crucially, interpersonal synchrony has mostly been examined separately in the fields
of movement science, psychophysiology and (cognitive) linguistics, respectively, with-
out relating them to each other, e.g. [17, 26, 29]. Nevertheless, it is plausible that associ-
ations between these different types of interpersonal synchrony exist [4, 18, 21, 24, 33].
To date, only a few theories have attempted to integrate the different modalities of inter-
personal synchrony into onemodel. One of these theories is the Interpersonal Synchrony
(In-Sync) model [18]. The In-Sync model seeks to explain how two actors mutually
synchronize their behaviors and experiences (for example, patient and therapist during
psychotherapy). At its core, themodel supposes that higher-level synchrony processes of
language and emotion regulation are affected by more elementary synchrony processes
of movement and physiology.

The present paper presents computational simulation experiments in which two
agents synchronize with each other by an emergent process. The aim is to examine
how agent-based simulations created through general mechanisms derived and oper-
ationalized from theories and findings in psychology (see Sect. 2.1) can achieve the
emergence of interpersonal synchrony. These interpersonal synchrony patterns will be
evaluated against the principles of the In-Sync model and other theories of interper-
sonal coordination, as discussed in more detail in Sect. 2.2. The simulations are based
on agent models where the internal agent processes are, in addition to the interactions
between the agents, also modeled in some detail. To achieve this, we use a network-
oriented agent modeling approach, as previously presented in [37, 38]. In this approach,
the internal agent processes are modeled by a dynamic interplay of mental states based
on general psychological (and neural) mechanisms. Section 3 presents the multi-agent
model in terms of its scientific background and architecture. Section 4 describes the
simulation methods, including parameter specifications. Section 5 presents the results
of the performed social simulations, followed by concluding remarks in Sect. 6.

2 Psychological Background

2.1 General Psychological Mechanisms Used to Design the Agent Models

When individuals prepare to execute a certain action, like a movement, they assess what
the effect of this action will be as part of their decision-making process. According to
Damasio [2, 3], through a prediction loop such internal simulations generate an internal
sensory representation of the likely outcome of an action. In other words, mental pre-
dictions of actions are done before these actions are actually executed; these predictions
are triggered by an action preparation which can be activated via a stimulus-response
effect or based on a similar action observed in other individuals [6, 7, 11]. In the lat-
ter case, mirror neurons are a relevant general mechanism that have received extensive
empirical support from patient, brain stimulation and brain imaging studies [12]. Mirror
neurons are neurons that would fire both when individuals prepare for their own action
or body change to perform and when individuals observe a corresponding action by
somebody else [13, 31]. Incoming connections (from sensory representation states) to
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mirror neurons (modeled as preparation states) are called mirroring links in the current
paper. The preparation of the action by mirror neurons serves as a starting point for the
internal simulation of the prediction loop. The twin concepts of internal simulations and
mirror neurons provide a neurobiological explanation for the attunement of actions and
emotions [13]. The precise role of mirror neurons in human behavior is still being inves-
tigated. Nevertheless, the notions of internal simulations and mirroring serve as usable
and operationalizable constructs for a simulation model on interpersonal synchrony.

2.2 Emerging Synchrony Among Individuals

Of the three interpersonal synchrony – movement, physiological/affective and language
synchrony - types that we consider here, movement synchrony is probably themost well-
documented. Controlled experiments have shown that people naturally synchronize their
movements, such as in finger-tapping paradigms [29]. More generally, people display a
consistent tendency to synchronize their movements with familiar and unfamiliar others,
in both structured and unstructured environments [5, 30, 42].

Physical experiences like movements have been argued to serve as grounding or
scaffolding for higher-order mental processes [1, 14, 22, 43]. For example, emotional
language comprehension has been shown to emerge faster when people’s (facial) move-
ments are congruent with the emotions from the text comprehension task [9]. Synchrony
in language (also known as ‘linguistic alignment’, or ‘accommodation’) has also been
reported to occur at several levels of representation, ranging from low-level speech
properties to syntactic structure [15, 25, 27], and accommodation in speech is also
well-documented.

Finally, a third type of interpersonal synchrony occurs for physiological responses.
Physiological synchrony is shown to be important throughout development: Human
infants in the uterus already adapt their physiological responses to theirmother’s [16, 41],
and physiological synchrony between children and their caretaker during childhood
prepares children to individually regulate their emotions [5]. Additionally, physiological
synchrony emerges in close relationships between adults [23] and when unacquainted
adults are involved in a collective ritual [17].

An influential account of affect is proposed by Russell [32] and states that physiolog-
ical changes form the basis for core affect. Core affect is defined as ‘a neurophysiological
state consciously accessible as the simplest raw (nonreflective) feelings evident inmoods
and emotions’. Core affect is situated on two dimensions (valence and arousal) and fluc-
tuates immediately after an event occurs to prepare people to act. Conscious emotions
are enabled by core affect [32] and they arise when there is a conflict among lower-order
processes (such as motor expressions and physiological responses). These conscious
emotions at a higher-order level help to solve the insufficiency at the lower-order levels
[8]. Verbal actions rely on language that can be generated once emotions are experienced
in conscious awareness [8]. Once people put their feelings into words, this in turn can
influence their emotional states [35]. Based on previous findings, we expect that the
following patterns will be obtained in the agent simulations:

• Synchrony between people can be found in the form of comparable patterns over time.
• At the (intra-)individual level, movement will emerge first followed by conscious
emotions (that are enabled by affect) to end with verbal actions.
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• At the inter-individual level, movement synchrony will be followed by affective
synchrony and language synchrony will emerge in the end.

• The different types of synchronies will be interdependent. Concretely, we expect that
when the movements are disabled, the emergence of other types of synchrony will be
complicated, as stated by the embodied cognition theories about synchrony.

3 The Two-Agent Model

3.1 General Approach of Agent Modeling

To model the emergence of interpersonal synchrony, two agents were designed with
internal mental processes modeled as a dynamic interplay of mental states [36]. The
structure of the two modeled agents is displayed in Fig. 1. The structure of the model
is based on the general internal simulation and mirror neuron mechanisms outlined in
Sect. 2.1 in order to test an emerging interplay of the different synchronies outlined
in Sect. 2.2. These mechanisms are modeled by causal relations between mental states
(e.g., the sensory representation of a stimulus, emotions, preparations). Themental states
are represented by nodes with values that change over time (also simply called states)
and the causal relations by connections between them, enabling interactive dynamics. In
this way the mental states create an emergent mental process by which their activations
dynamically change over time. These dynamical changes are affected by the input states
and result in the output states, which in turn affect the input states of the agent itself
and/or the other agent. Here the agent’s input (sensing) states concern, for example,
hearing the relevant verbal actions or seeing the relevant movements of the other agent.
The output (execution) states concern the agents’ actions and body states that are visible
to the external world, including, for instance, the execution of a movement, the (facial)
expression of affect and looking at the other agent. The interplay between internal (cog-
nitive and affective) mental states involves, for example, the representations of the other
agent’s movement, the preparation of the agent’s own movement, affect, and conscious
emotion.

These causal networks are conceptualized by a labeled graph based on the following
labels:

• A connection weight ωX ,Y is associated with each connection from a state X to state
Y; this denotes the strength of that connection.

• A combination function cY for each state Y ; this defines the aggregation of the impact
from all incoming connections on that state.

• A speed factor ηY for each state Y to time the effect of the impact in a state-specific
manner.

Each of these labels contain specific parameter values that need to be tuned. As can
be seen, each agent has the same 15 states, fromwhich 7 internal (invisible for the outside
world; colored white), 3 input and 5 external states. A brief explanation of all the states
of agent A is provided in Table 1 and all states of two agents A and B are presented
in Table A1 from the 23-page Appendix (https://www.researchgate.net/publication/349
694211). Furthermore, the role matrices used in our MATLAB software environment

https://www.researchgate.net/publication/349694211
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(as described in [37] and [38], Ch 9) for the different experiments are also available in
this Appendix (part G).

3.2 Conceptual Representations for the Agent Model

First, agents A and B can receive input from a stimulus worldsti for some predefined
time periods, meaning the activation of worldsti alternates between 0 (sti not present)
and 1 (sti present), with sti being an instance of a stimulus. The model structure of all
agents is the same. Therefore, for the sake of simplicity, we focus in the current paper
on the model of an agent A with respect to a single other agent B. Within the presented
scenario, this external stimulus only influences A by a causal relation to the sensory
representation repstiA of this stimulus which in turn directly triggers the agent’s three

internal preparation states: prepmovA , affectaffA and prepverA,B, with mov, aff and ver being
an instance of movement, affective response and a verbal action of agent A, respectively.
Note that prepverA,B has an A,B subscript as this state denotes the preparation of only those
verbal actions from agent A to B. The agent model also includes a sensory representation
state for the verbal actions ver′ (repver′A ) and the movements mov′ of any other agent
(repmov

′
A ), with the prime symbol ′ indicating that the behavior comes from the other

agent B (without prime means that it comes from agent A). Each of these two sensory
representation states is affected by the agent’s three input states: hearing the verbal cues

ver′ (hearver′A,B), seeing the affective expressions aff
′ (seeaff

′
A,B) and seeing the movements

mov′ (seemov′
A,B ) of any other agent.

As mov′ is assumed to be a movement similar to mov, repmov
′

A is directly connected

with prepmovA , affectaffA and prepverA,B and these (reciprocal) causal links show how the
sensory representation of lower movement processes serve as a base for (higher) inter-
nal action preparations and the connections from each preparation state to repmov

′
A in

turn reflect the feedback from the higher-order to the lower-order processes. Further-
more, repmov

′
A directly influences the gaze direction of the agent (lookA,B), because the

sensory representation of the other agent’s movement mov′ can enhance the agent’s
visual focus. State repver

′
A causally affects affectaffA and prepverA,B, but not the prepara-

tion state for movement because the latter is a lower-order process. The execution of
listenA,B is also directly triggered by repver

′
A because the sensory representation of the

other agent’s verbal action can alert the agent to listen more focused. The mental pro-
cesses, starting from the representation states, ultimately lead to both conscious emo-
tions (internal state emotionaffA ) and executed actions in the physical world (lookA,B,

listenA,B,movemovA , exp_affectaffA , talkverA,B).
Regarding the preparation states, prepmovA influences both the actual execution of

the movement movemovA and its representation repmov
′

A , thereby highlighting the dynamic

interplay of one’s representation ofmov′ and one’s own executionmov.The state affectaffA

directly influences repmov
′

A , the expression of the affective response aff (exp_affectaffA )

and the conscious emotionaffA of aff. The fact that the sensory representation of ver′ does
not get feedback from affectaffA reflects the higher-order process of language compared
to the lower-level affective changes. State prepverA,B has an immediate effect on repmov

′
A ,
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repver
′

A and the execution of the verbal action talkverA,B. State talkverA,B in turn triggers

emotionaffA which in turn directly affects prepverA,B. This feedback loop reflects the need
of conscious emotions to initiate verbal actions ver and at themeantime how these verbal
actions ver themselves further shape the conscious emotions of the affective response
aff .

The Coupling Between the Sensing and Execution States
In a situation with multiple agents, we can connect the execution states of any agent A to
the sensory states of any agent B. Specifically, each of agent A’s sensing states receives
two input connections, one from their own execution state and one from an execution
state of agent B. Specifically, hearver

′
A,B gets input from listenA,B because listening is

required to receive auditory cues and from the execution talkver
′

B,A of the verbal action

ver′ of agent B. Both seeaff
′

A,B and seemov
′

A,B are activated by lookA,B to capture the need of
looking at agent B to get visual cues from this agent. Regarding the input connections

from Agent B, the expression exp_affectaff
′

B of the affective response for aff ′ is directly
linked to state seeaff

′
A,B for seeing aff ′ and similarly the execution state movemov

′
B of the

movement mov′ is directly linked to seemov
′

A,B .

General Mechanisms
In line with the general psychological mechanisms outlined in Sect. 2.1, in addition to
stimulus-response links, each agent contains prediction loops and mirroring links. Both
direct and indirect effects are predicted through the prediction loops. The prediction
loops from prepmovA to repmov

′
A and from prepverA,B to repver

′
A consist of the prediction

of direct effects (i.e., what the effect of the execution of a certain action will be on the
sensory representation of this action). The indirect effects (i.e., the effect of a preparation
of a certain action on the representation of another action) regard the prediction loops
from prepverA,B to repmov

′
A and from affectaffA to repmov

′
A . Concerning the mirroring links, the

connection from repmov
′

A to prepmovA mirrors the actionmovement and the connection from
repver

′
A to prepverA,B mirrors the verbal action of another agent. In principle the connection

from seeaff
′

A,B to affectaffA through both repmov
′

A and repver
′

A can also be interpreted as a

mirroring path, because every sensory representation is a) influenced by seeaff
′

A,B and b)

internally influences affectaffA through the representation states of both the verbal action
(repver

′
A ) and the movement (repmov

′
A ). It is argueable that the model could also in addition

contain a repaff
′

A , however, we have decided to not include this additional state for reasons

of simplicity. There were already multiple pathways from seeaff
′

A,B to affectaffA itself.

Connection Weights
All the connection weight ωX ,Y values were fixed on the value 1, except the ωX ,Y

of all incoming connections to affectaffA and affectaff
′

B . The incoming connections to
these affect states from respectively repmov

′
A and repmovB were set to 2 and all the other

connectionswere set to 0.5. In this way, the less complex sensorimotor processes serve as
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a foundation or ‘grounding’ [1] for the affective responses. Furthermore, the connection
weight ωworldsti, repstiB

is set to 0 because agent B did not receive a sti.

Fig. 1. The model for the two agents and the stimulus from the world.

3.3 Numerical Representations for the Agent Model

We used the software environment described in [37] and [38], Ch 9. In this software
environment, the conceptual representations of the multi-agent model are mapped onto
their associated numerical representations as follows:
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Table 1. The description of all the states of agent A

State Explanation

worldsti World state for stimulus sti

seeaff
′

A,B Agent A receives the visual cues of the affective expression aff ′ of agent B

seemov
′

A,B Agent A receives the visual cues of the agent B movement mov′

hearver
′

A,B Agent A receives the verbal cues ver′ of agent B by hearing them

repstiA Sensory representation state for stimulus sti in agent A

repver
′

A Sensory representation state of agent B verbal action ver′ in agent A
repmov

′
A Sensory representation state of agent B movement mov′ in agent A

prepmovA Preparation state for movement mov in agent A

affectaffA Preparation state for affective response aff in agent A

prepverA,B Preparation state for verbal action ver of agent A to agent B

movemovA Execution state for movement mov in agent A

emotionaffA The conscious emotional state for aff in agent A

exp_affectaffA The expression of the affective response aff in agent A

talkverA,B Verbal action ver of agent A to agent B

lookA,B Agent A looks at agent B

listenA,B Agent A listens to agent B

• Y (t) denotes the activation value for state Y of an agent at time point t; this is a real
number, usually in the range [0, 1].

• The single causal impact impactX ,Y (t) = ωX ,Y X (t) defines at each time point t the
single impact from state X connected to state Y on state Y , where ωX ,Y is the weight
of the connection from X to Y .

• Aggregating of multiple single causal impacts through combination function cY (. . .)

is defined by

aggimpactY (t) = cY
(
impactX1,Y (t), . . . , impactXk ,Y (t)

) = cY
(
ωX1,Y X1(t), . . . ,ωXk ,Y Xk (t)

)

for the states X1, . . . ,Xk from which Y has incoming connections.
• The speed factor ηY determines how the effect of aggimpactY (t) on state Y is exerted

gradually over time:

Y (t + �t) = Y (t) + ηY
[
aggimpactY (t) − Y (t)

]
�t

• This leads to the following difference or differential equation for Y :
Y (t + �t) = Y (t) + ηY

[
cY

(
ωX1,Y X1(t), . . . ,ωXk ,Y Xk(t)

) − Y (t)
]
�t, or

dY (t)
dt = ηY

[
cY

(
ωX1,Y X1(t), . . . ,ωXk ,Y Xk(t)

) − Y (t)
]
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All agent states use the advanced logistic sum combination function cY (. . .), whereas
the world state for stimulus sti uses the step-modulo combination function cY (. . .); see
Table 2.

Table 2. The two combination functions used

Name Formula Parameters

Advanced logistic sum
combination function
alogisticσ,τ(V1, . . . ,Vk )

[
1

1+e−σ(V1+···+Vk−τ)
− 1

1+eστ

](
1 + e−στ

)
Steepness σ

Excitability
threshold τ

Step-mod function
stepmodρ,δ(V1, . . . ,Vk )

for time t
if mod(t, ρ) < δ then x = 0, else 1

Repeated time
interval ρ
Duration of value 0
δ

4 Simulation Method for the Agents

We will present three scenarios. All initial state values were set to 0 in all simulations.
Regarding the first/main simulation, as specified with the input parameters of the step-
modulo combination function (see Table 3), agent A is exposed to an external stimulus
sti for 150 time units every time after 150 time units without stimulation. This process
(a total of 300 time units) is repeated until the end of the simulations. We deliberately do
not further specify stimulus sti because there are numerous situations that can provoke
interpersonal synchrony. Such repeated stimulimay concretely regard, for instance, daily
life events that one person shares with another person, a series of therapy sessions or
a dance choreography, meaning these agent simulations might have a wide variety of
applications. The activation level of sti can vary over specific applications, however, for
the sake of simplicity, we have decided to use activation level 1 over all simulations. The
(length of the) stimulus sti intervals for this main social simulation were selected such
that, as can be seen in Fig. 2 and Fig. B1-4 from theAppendix, (most of) themental states
ended in their equilibrium phase for both the stimulus sti present and absent periods.
In Fig. 2 and the Appendix Fig. B1-4 and C1-4 is it shown that emerging limit cycle
behavior occurs right from the start.

The characteristics of the two agents have been set according to the homeostatic
regulation of neuronal excitability principle, which refers to the adaptation of neurons’
internal properties to control a desired activation level; e.g., [44]. More specifically, as
agent B (the agent not directly receiving the stimulus) gets less incoming activation than
agent A, we have mimicked this principle by putting some of the excitability threshold
and steepness values from the advanced logistic sum combination function of agent B
lower than for agent A. The speed factors of almost all states equaled 0.5. The speed
factor of the stimulus was set to 2 to ensure the fast appearance and disappearance of the
stimulus. In contrast, the speed factors of the looking direction and the focus of listening
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were set to 0.2 (possible scale range: 0 to 1, with higher speed factors indicating that
the specific state will change quicker) for both agents because in the real world these
actions often do not rapidly change.

The second simulation consists of shorter stimulus and non-stimulus intervals (each
of them lasting 10 time units instead of 150), and this is the only difference from the
main simulation. This is a representative example for the cases where no equilibria are
reached within the stimulus and non-stimulus periods. The third simulation is exactly the
same as the main simulation except that the states related to movement were disabled in
both agents (see Appendix, part H). The aim of this third simulation was to test whether
synchrony can emerge without movement.

Table 3. The values for the main characteristics of the model: speed factors η and combination
function parameters σ and τ for each agent state and combination function parameters ρ and δ for
the stimulus sti

State η σ τ State η σ τ

seeaff
′

A,B 0.5 1 0.4 seeaffB,A 0.5 1 0.4

seemov
′

A,B 0.5 1 0.4 seemovB,A 0.5 1 0.4

hearver
′

A,B 0.5 1 0.4 hearverB,A 0.5 1 0.4

repstiA 0.5 20 0.6 repstiB 0.5 20 0.6

repver
′

A 0.5 1 0.4 repverB 0.5 1 0.4

repmov
′

A 0.5 1 3 repmovB 0.5 1 2

prepmovA 0.5 4 0.8 prepmov
′

B 0.5 2 0.3

affectaffA 0.5 5 0.8 affectaff
′

B 0.5 2 0.6

prepverA,B 0.5 1 3.5 prepver
′

B,A 0.5 1 2.5

movemovA 0.5 4 0.3 movemov
′

B 0.5 4 0.1

emotionaffA 0.5 2 0.3 emotionaff
′

B 0.5 2 0.1

exp_affectaffA 0.5 2 0.4 exp_affectaff
′

B 0.5 2 0.4

talkverA,B 0.5 4 0.3 talkver
′

B,A 0.5 4 0.3

lookA,B 0.2 1 0.3 lookB,A 0.2 1 0.5

listenA,B 0.2 2 0.3 listenB,A 0.2 1 0.4

worldsti 2 ρ

300
δ

150
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5 Analysis of the Two-Agent Model: Main Simulation

To validate the two-agent model, we derived some testable predictions from the literature
(as discussed in Sect. 2). First, the occurrence of a limit cycle. Synchrony is quantified as
the same states of agent A and B that exhibit comparable patterns over time. Therefore,
we focus for each agent on corresponding actions. Equivalent states of agent A (solid
lines) and B (dashed lines) are colored the same in all figures. As shown in Fig. 2, Fig.
B1-4 and Fig. C1-4 from the Appendix regarding the main simulation, all the states
of both agent A and B are activated after the stimulus sti is presented to agent A and
deactivated when sti is no longer present, resulting in a limit cycle for the model.

Fig. 2. Activation levels over 800 time units (with 150 non-stimulus time units alternated with
150 stimulus time units) for the execution states of the two agents. Corresponding states of agent
A (solid lines) and B (dashed lines) are indicated in the same color, whereas the stimulus sti is
indicated in yellow. (Color figure online)

This finding demonstrates that emergent synchrony patterns between agents can
originate through communication/interaction when only one agent actually receives a
stimulus sti. Note that such synchrony patterns would not be able to emerge when agent
B cannot receive sensing information from agent A as an input (i.e., see or hear agent
A). These emergent synchrony patterns remain consistent over time, indicated by the
repetitive (equally high) peaks of each of two agents’ states across the stimulus sti
episodes. Furthermore, as can be seen in Fig. 2 and Fig. B1-4 from the Appendix, each
of the state activations of agent A precedes activation of the equivalent state of agent
B, except the input and representation states. The reasoning behind the latter is that the
input states, and thereby the representation states that are directly dependent on the input
states, of agent A require input from the output states of agent B and thus cannot precede
these states of agent B in terms of activation. The analysis of the simulation with shorter
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stimulus and non-stimulus intervals, a more extensive evaluation of the sequence of the
different types of synchrony and the simulation without movement can be retrieved from
the Appendix, part H.

6 Discussion

Our agent models demonstrate the emergence of movement, expression of affective
response, and language synchrony in two agents. Moreover, conscious emotional syn-
chrony occurred as well. The social simulations based on the described general psy-
chological mechanisms succeeded in reproducing emerging synchrony patterns that are
widely reported in the literature, in the same order as predicted by several theories about
synchrony. Obviously, certain parameter settings for these generalmechanisms represent
certain types of persons. The example simulation settings describe a specific dyad.When
the parameter settings are tuned differently, other types of dyads can be represented as
well. Thus, by considering realistic input, internal and output states in the agent mod-
els, we were able to capture a complex process of mental representations of the physical
world and perceived similarities that do occur during interpersonal synchrony under spe-
cific circumstances. In particular, the importance of embodiment through movements
for cognition is demonstrated [1].

Interpersonal synchrony belongs to a broader class of synchrony patterns that is
observed in the natural life and behavioral sciences [28, 34]. This means that our simu-
lations can potentially be extended to other domains aswell. Based onour agentmodeling
and the conceptual In-Sync model, therapeutic sessions between therapists and patients
can be an interesting application field. Agent-based computationalmodels like ourmodel
can be the basis for the development of virtual agents that might be used in settings to
interact with humans.

There are also some limitations that could be explored in future work. First, we
modeled only two agents. How synchrony patterns evolve in, for example, triads andwith
different stimulus episodes across agents are potential future simulations. Second, future
work should verify whether the same synchrony patterns in the agents hold on empirical
data. Third, the current agents are non-adaptive: for example, the excitability thresholds
are fixed over time. Adaptive agents might be able to automatically tune their synchrony
behavior in varying situations, thereby maintaining their equilibria states in even more
unpredictable environments. Fourth, the internal states of our agent models could always
be extended, for example by including more specific states. A typical example would
be to include a representation state of the affective expression of other agents or to
separate the representation states for one’s own movements and the movements of other
agents. Fifth, we did not include some anticipation theories from psychology in our agent
models. Based on somefinger tapping experiments [40], it would also be possible that the
follower (in our case agent B) anticipates on the leader (agent A) and thereby becomes
effectively the leader in synchrony. Sixth, in the future, variable stimulus intervals and/or
levelsmight be incorporated to explore how the emerging synchrony and commonground
evolve. Finally, future work is needed in which more extensive analysis on the interplay
between limit cycles, equilibria and synchronization is conducted.
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Abstract. We describe ACE0, a lightweight platform for evaluating the
suitability and viability of AI methods for behaviour discovery in multi-
agent simulations. Specifically, ACE0 was designed to explore AI methods
for multi-agent simulations used in operations research studies related
to new technologies such as autonomous aircraft. Simulation environ-
ments used in production are often high-fidelity, complex, require signif-
icant domain knowledge and as a result have high R&D costs. Minimal
and lightweight simulation environments can help researchers and engi-
neers evaluate the viability of new AI technologies for behaviour discov-
ery in a more agile and potentially cost effective manner. In this paper
we describe the motivation for the development of ACE0. We provide a
technical overview of the system architecture, describe a case study of
behaviour discovery in the aerospace domain, and provide a qualitative
evaluation of the system. The evaluation includes a brief description of
collaborative research projects with academic partners, exploring differ-
ent AI behaviour discovery methods.

1 Introduction

In this paper we provide an overview of ACE0, a lightweight multi-agent-based
simulation (MABS) environment designed for evaluating AI behaviour discov-
ery methods for operations research studies. In operations research and analy-
sis, multi-agent simulations have a long track record of being used to evaluate
technologies for acquisition and their subsequent employment. In the aerospace
domain, multi-agent simulations have been used to model, simulate and ulti-
mately compare and assess aircraft to support acquisition programs and to
help evaluate how they may be operated at both a tactical and strategic level.
In large engineering projects, these constructive simulation environments allow
large organisations in government and industry to reduce cost and risk on com-
plex projects.

In many of these simulations, agent behavioural models have been used to
represent the decision making of both human and autonomous systems. For
example, a significant body of work exists around using agent models to represent
pilot decision making in constructive simulations of air operations [5,8,18,25].
Typically, agent oriented software engineering (AOSE) techniques are used to
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elicit domain knowledge [4] and to then handcraft agent behaviour models using
technologies such as finite state machines, behaviour trees, or more sophisti-
cated approaches such as the belief-desire-intention (BDI) model of agent rea-
soning. However, one of the limitations of using traditional AOSE techniques is
that the domain knowledge elicited and ultimately programmed in agent code
represents current operational practices for existing technologies. The introduc-
tion of new technologies such as autonomous aircraft (also commonly known as
UAV; unmanned air vehicles) poses a challenge for the development of agent
behavioural models, as they are unlikely to be operated in the same way that
traditional aircraft are operated.

Hence, there is a requirement to augment traditional AOSE techniques with
exploratory AI methods from fields such as machine learning, evolutionary algo-
rithms and automated planning. The long term goal is to discover novel tactics,
strategies and concepts of operations (CONOPS) that current domain experts
may otherwise not have considered [24]. We use the term behaviour discovery to
include all of these methods and their application.

One of the challenges in evaluating new exploratory AI methods for their
viability for behaviour discovery, is the complexity of production simulation
environments. Production simulators are often complex, requiring significant
software engineering and domain expertise to deploy effectively, and typically
involve the interplay of many high-fidelity computational models. The added
complexity of deployment on high performance computing clusters can make it
cost prohibitive (in schedule and resources) to use one of these environments to
evaluate the viability of an exploratory AI algorithm. Often there are additional
complications relating to intellectual property and security that make academic
collaboration difficult.

Fig. 1. 3D visualisation of autonomous aircraft simulated in ACE0

In this paper we propose using a lighter weight, lower fidelity MABS for eval-
uating exploratory AI methods that does not incur the overhead of a production
environment. We present ACE0 as one such lighter weight MABS, and describe
our experience to date in evaluating exploratory AI methods in the aerospace
domain.
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The remainder of the paper provides a high level system overview of the
ACE0 MABS, followed by a case study of its application in the aerospace tactics
domain, with an evaluation of some of the exploratory AI methods that have been
investigated to date. We conclude by discussing some of the future challenges
for agent behaviour discovery with multi-agent simulation.

Our contributions in this paper are threefold; (a) we pose the problem of
agent behaviour discovery as future challenge for the fields of both multi-agent
simulation and agent oriented software engineering; (b) we present ACE0 as a
reference MABS for conducting exploratory AI analysis in a lightweight environ-
ment; and (c) we outline a series of lessons and challenges for agent behaviour
discovery arising from our experience with ACE0 in the aerospace domain.

2 System Overview

In this section we provide a high level overview of ACE0 and its associated com-
ponents. As mentioned in Sect. 1, ACE0 was developed as a research simulator
to reduce the costs of exploring AI algorithms in a production simulation envi-
ronment. In the air combat operations analysis domain, lightweight research
simulators are not uncommon, with LWAC [26] and AFGYM [28] being recent
examples. While ACE0 does have a focus on the aerospace domain, the archi-
tecture is generic and can be extended to model naval and ground entities.
Furthermore, the architecture supports the grouping of entities into teams, and
allows agents to undertake command and control of both individual entities and
teams of entities. This allows for the modelling and representation of joint (air,
maritime and land) operations. The complexities of team modelling are outside
the scope of this paper and hence the focus will be on exploratory AI methods
for multiple agents outside of a team structure.

We begin our description of ACE0 with a high level UML diagram shown in
Fig. 2. At the highest level ACE0 consists of a time-stepped multi-agent simula-
tion engine, and a results generator that is used for post simulation run analytics.
The top entity being simulated is a Scenario, which can be assembled from a user
specified library of predefined entities (for example different types of aircraft)
and their associated initial conditions. The Scenario consists of a model of the
Environment which facilitates communication and interaction between entities,
and one or more teams specified by the Team class. Each team is made up a
Team Agent, typically representing the decision making of the team commander
or leader, and one or more Entity objects. Each object represents an embodied
entity such as an aircraft, ship or vehicle. Each Entity is made up of a number
of computational components. These include sensor and weapon models, and
a dynamics model that represents how the entity moves through the physical
environment. The control system is a separate model that can take high level
commands from an agent and translate them into lower level commands that
are understood by the dynamics model. Finally, the agent model represents the
decision making model for the entity, taking as input the entire entity state
(dynamics, sensors, weapons etc.) and generating commands for all these com-
ponents. The Agent represents the decision making component of the entity,
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Fig. 2. High level static design architecture of the ACE0 MABS.

which may be a model of a human decision making or the reasoning component
of an autonomous system.

When representing an autonomous aircraft, the pilot agent can reason about
higher level decision making, and generate higher level actions (such as flying
to a waypoint or changing heading). The flight control system (FCS) model
has the responsibility for translating these into low level aircraft roll, pitch and
throttle commands which are understood by the flight dynamics model. As will
be discussed later, selecting a suitable level of action abstraction has a significant
effect on the suitability and viability of exploratory AI algorithms for behaviour
discovery.

The ability to reason about behaviour at different levels of abstraction is key
to evaluating different exploratory algorithms for behaviour discovery. This is
critical for client driven operations analysis studies where the level of abstraction
selected for the state and action spaces has a significant effect on how the results
of the study can be presented and explained. One can imagine that a study
investigating behaviour algorithms for a control system would use lower level
representations of system state and action when compared to studies which
focus on behaviour discovery at the tactical, operational or strategic level.

To address this requirement, ACE0 supports a spectrum of abstraction lev-
els for behaviour discovery. This is demonstrated in Fig. 3. In the top half of
Fig. 3 we see the common 〈Agent,Action,Environment, State〉 reasoning loop.
However, the abstraction level for agent action and environment state varies
depending on the type of agent being used. ACE0 provides examples of three
levels of agent abstraction, including low-level implementations using goal-based
agents, intermediate levels using finite state machines (FSMs), and higher levels
where behaviours are assembled into reusable behaviour trees [3,14]. This allows
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Fig. 3. A spectrum of behaviour abstractions (with respect to agent actions, behaviours
and state space representations) are supported in ACE0.

the evaluation of an exploratory AI algorithm at different levels of abstrac-
tion. Figure 3 shows examples of agents integrated into ACE0 using different
approaches. In some cases, such as for evolutionary algorithms, they were eval-
uated at all three of the levels of abstraction exposed by ACE0. Specific details
in the context of a use case will be provided in the next section.

3 Case Study: Aerial Manoeuvring Domain

In this section we present a case study from the aerial manoeuvring domain,
which involves one autonomous aircraft manoeuvring behind another while main-
taining the position for a certain amount of time. We use this simple scenario as
a case study (a) as a way of providing an initial evaluation of exploratory algo-
rithms, (b) because it requires a relatively simple explanation in terms of domain
knowledge, (c) it can be implemented at multiple levels of action abstraction,
and (d) it can be easily implemented using well known behaviour specification
methods such as finite state machines or behaviour trees, providing standardised
baselines. This type of manoeuvre is called a Stern Conversion Intercept [23] and
can be employed operationally for a number of reasons including formation fly-
ing, aerial refuelling, visual identification or in the case of air combat situations,
weapons employment. A schematic of this manoeuvre can be seeing in Fig. 4a.

While it is possible to provide raw environmental state information to various
exploratory algorithms (such as the position and orientation of both aircraft), we
can consider a smaller subset of features if we consider the relative orientation
of the two aircraft. Consider two aircraft (denoted blue and red) flying relative
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to each other at separation distance R. We can define their relative orientation
through a number of angles as shown in Fig. 4b. From the perspective of the
blue aircraft, the red aircraft is at an antenna train angle ATABR relative to
the blue’s aircraft’s velocity vector �VB . The blue aircraft is also at an aspect
angle of AABR relative to the red aircraft’s tail (the anti-parallel of the red
velocity vector �VR). From the perspective of the blue aircraft, we can define any
situation1 using four features; ATA, AA, R and the difference in velocity ΔV .

Fig. 4. (Left) Schematic of a stern conversion intercept. (Right) Relative Orientation:
AARB + ATABR = AABR + ATARB = π where ATA ∈ (−π, π) and AA ∈ (−π, π).

Given a random starting position and orientation, the initial goal of the blue
aircraft is to manoeuvre itself behind the red aircraft’s tail such that ATA = 0
and AA = 0. There may be additional constraints on range and velocity differen-
tial given the nature of the blue aircraft’s mission. In order to achieve the goal we
need to find a policy, behaviour or tactic that satisfies these conditions either as
a single manoeuvre or a sequence of manoeuvres. By plotting the absolute value
of the aspect angle |AA| against the absolute value of the |ATA|, we can plot
the trajectory of the blue aircraft through orientation space as demonstrated
by Park [19]. This allows us to classify the angular situation at any given time
into broad categories such as Offensive, Defensive, Neutral and Head-On. An
example of such a trajectory can be see in Fig. 5(b).

We can use the angular situation information together with other parameters
to allow us to score and assess how well the blue UAV is doing relative to the red
UAV. By defining a number of scoring functions we can compare the performance
of different AI aerial manoeuvring algorithms. We define three scoring functions
S1, S2 and S3; some from existing approaches in the literature and some adapted
from operational metrics.

1 This is a simplified view of the situation, as one can consider higher order features
such as turn rates and other time derivatives of the basic state space variables.
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Fig. 5. (a) Trajectories of blue and red UAVs from ACE0 simulation with different
starting positions, but flying throught the same set of waypoints. (b) The trajectory of
the blue UAV relative to the red UAV through the situation orientation space. (Color
figure online)

We denote the first scoring function S1 as the Offensive Quadrant score as
it provides a score of +1 if the blue UAV is located in the bottom left quadrant
of the angular situation chart shown in Fig. 5(b).

S1 =

{
1, |AA| ≤ π

2 and |ATA| ≤ π
2

0, otherwise
(1)

The second scoring function consists of an angular and a range component.
The score for the intercepting UAV is maximised when the ATA = 0, AA = 0
and the range between the two UAVs is R = Rd, where Rd is the desired range
and will be mission dependent. The hyperparameter k modulates the relative
effect of the range component on the overall score. The angular component of
the score has been used widely [1,2], but the range dependence was introduced
by McGrew [17] and hence we refer to S2 as the McGrew Score.

S2 =
1
2

[(
1 − AA

π

)
+

(
1 − ATA

π

)]
exp

(−|R − Rd|
πk

)
(2)

The third scoring function is constructed from Shaw’s description [23] based
on the conditions required for a rear quarter weapon employment against a
hostile aircraft. The conditions that must be met for a period of time include
constraints on the aspect and antenna train angles (|AA| ≤ 60◦ and |ATA| ≤
30◦), a range between the minimum and maximum range of the weapon system,
and a difference in speed less than a nominated minimum. This is a strict set of
constraints that need to be met and in the terminology of reinforcement learning
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may be considered a sparse reward. We designate this as the Shaw Score and
define it as follows.

S3 =

{
1, |AA| ≤ π

3 , |ATA| ≤ π
6 , Rmin ≤ R ≤ Rmax, Δv ≤ vmin

0, otherwise
(3)

While these scoring functions are not the only ones that can be considered,
having a variety of ways of evaluating the performance of an AI algorithm or
approach is important as different approaches will perform differently against
different metrics. The scoring functions in practice serve two purposes. First,
they are domain-specific operational metrics that allow one AI algorithm to be
compared to another. Second, they can be used within an AI algorithm either
in their current form or in a modified form to find a solution. For example, they
may take the form of a reward function in reinforcement learning, or a fitness
function in an evolutionary algorithm.

Fig. 6. (Left) Implementation of the Stern Conversion Intercept as a Behaviour Tree
in ACE0. Higher-level behaviours such as PurePursuit become available as first order
actions to exploratory AI algorithms. (Right) Trajectory of a blue aircraft in orientation
space successfully performing a Stern Conversion Intercept.

The scoring functions were implemented in ACE0 together with a number
of baseline handcrafted agents using approaches such as finite state machines
and behaviour trees. The environment state space was implemented at multiple
levels including both raw state space information (such as the positions, orienta-
tions and velocities of each aircraft), as well as engineered features as described
previously. The action space was also implemented in a number of ways. Tra-
ditional approaches to action space representation in these types of simulations
are quite low-level; for example 〈TurnLeft, TurnRight, SpeedUp, SlowDown〉.
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By implementing baseline behaviours as finite state machines and behaviour
trees, the possibility for high-level action spaces becomes available to the algo-
rithms being considered. For example, the behaviour nodes shown in the hand-
engineered behaviour tree in Fig. 6 become available to exploratory algorithms
for reasoning at higher levels of abstraction.

4 Evaluation

We provide a qualitative evaluation of the ACE0 MABS focusing on limitations,
the user experience of AI researchers and software engineers and we briefly
describe four research projects in which ACE0 was used to evaluate AI behaviour
discovery methods in collaboraiton with university partners.

4.1 Multi-agent-Based-Simulation Architecture Limitations

While ACE0 was specifically designed for exploring AI problems in the aerospace
domain, it has provision to support maritime and land units. These can be
used support joint domain modelling but their completion is planned for future
development. The architecture can be extended to explore AI agent models in
other domains (e.g. in games) but this will require additional work that is not
available out of the box.

The system implements a time-stepped simulation architecture that allows
variable time-stepped execution on a per component basis but as of this stage
does not support event-based simulation. The architecture was designed with
computational models of lower fidelity in mind. Some AI algorithms may require
higher fidelity underlying representational models. These are planned to be
added on as needed basis driven by the requirements of the research program.

A basic model of agent teaming is supported, where agents can be option-
ally grouped together to work in teams with a separate agent acting as a team
leader or commander. However at this stage more sophisticated models of roles
within teams and complex command and control structures are slated for future
releases.

4.2 User Evaluation

The ACE0 environment was developed for users with software development expe-
rience in either computer science or software engineering with a background in
artificial intelligence and/or multi-agent systems but not necessarily with any
prior knowledge about the aerospace operations domain.

A key driver was to enable researchers to learn both the simulation environ-
ment and the domain relatively quickly so that they could focus their efforts in
their specific area of agent decision making expertise. To do this, a series of inter-
active computational tutorials in the form of JupyterLab notebooks [9,20] were
developed. The notebooks not only formed the core documentation for ACE0 but
also allowed researchers to experiment with parameters and agent behavioural
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Fig. 7. Screenshot of interactive ACE0 tutorials in the form of computational Jupyter-
Lab notebooks.

models and observe the results in real-time. Figure 7 shows a screenshot of the
tutorial interface. The researchers were also provided with a copy of XCombat
a 3D animation tool for visualising the trajectories of the aircraft flown by the
pilot agents (see Fig. 1).

Over twenty notebooks were developed covering a spectrum of topics rang-
ing from installation, to explaining the architecture, details about the aerospace
domain, explaining the agent percept and action interfaces, metrics and measures
of effectiveness for evaluating, data processing, analysis and visualisation. Note-
books were also used as a step by step guide on rapidly developing pilot agent
models using either finite state machines (FSMs) or Behaviour Trees (BTs),
that could be deployed immediately and run within the JupyterLab notebook
environment.

The tutorials start with describing how to develop a pilot agent to control the
simulated aircraft using lower level actions such as turning, climbing, descend-
ing and changing speed. These basic building blocks are then used to develop
more sophisticated maneuvers, initially as an individual aircraft, then relative to
another adversarial aircraft and finally developing more complex tactics for mul-
tiple aircraft working together as team. These examples are followed by tutorials
on the calculation of metrics for evaluating agent performance as well as data
analysis and visualisation for explaining agent behaviour.

To date, over twenty five researchers from six institutions (four universities,
a public R&D lab and a software development company) have used ACE0 to
develop agents for behaviour discovery as will be described in Sect. 4.3. This has
included researchers and engineers with a range of expertise including professors,
lecturers, post-doctoral researchers, software engineers and PhD, masters and
undergraduate students. By all accounts the combination of the tutorials as well
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as ongoing support and collaboration from the development team allowed the
researchers to get up to speed with the environment in a relatively short time.
In most cases the researchers were able to go through all the tutorials in one or
two days, by the end of which they had each built simple agents working in ACE0
and had an initial introduction to the domain. This compares very favourably
with current production level multi-agent simulation environments which have
a steep learning curve and typically require a two week training course (a one
week analyst’s course and a one week software developer’s course) to get started.

4.3 Research Applications

Evolutionary Algorithms. The first investigation into exploratory AI and
behaviour discovery algorithms considered evolutionary algorithms [12,15]. The
first phase of the project started with taking an existing FSM implementation of
the stern conversion intercept and evolving the tactical parameters to result in an
optimally evolved tactic. This was followed by taking the basic behaviours in an
FSM, deleting the transitions between them and evolving a new behavioural
agent with evolved state transitions. The third phase involved breaking the
behaviours down even further and looking at evolving behaviours from the low
level commands available to the UAV. More complex behaviours in the form of
behaviour trees (BTs) were explored in the fourth and fifth stages of the project.
The research investigated the effect of evolving tactical behaviours for complex
behaviour trees and using a library of conditions and behaviours, and then using
genetic programming methods to generate new behaviour trees [16]. Developing
a viable cost function was a primary challenge in all the evolutionary algorithm
research undertaken.

Automated Planning. The second project investigated the application of
automated planning using width-based search techniques [13] to develop an agent
capable of executing a stern conversion manoeuvre. In order to generate a plan
for the blue aircraft one must be able to predict the state of the simulation (for
blue and red) at a finite horizon. Since classical planning is a model-based app-
roach, a model of the dynamics of the system was required. As such this work
involved a novel combination of hybrid planning with optimal control [21,22]
(specifically model predictive control) that resulted in a high-performing pilot
agent capable of manoeuvring the blue UAV to achieve the goal. As a follow-on
from this research project, ACE0 was used to investigate behaviour recognition
using planning, building on the methods developed by Vered [27].

Generative Adversarial Networks. The third project involved exploring the
feasibility of Generative Adversarial Networks (GANs) for behaviour generation
in ACE0. The aim of this work was to generate new tactical behaviour based
on examples of existing successful behaviours or tactics. The initial focus in
this project was to consider behaviours (or plans) as sequences of goal-directed
actions. As such, a generalised technique to generate goal-optimised sequences
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could be used not only for tactical behaviour but also other sequences (such as
text generation [7]). While the research here is still in progress, further details can
be found in the work on OptiGAN [6] that uses trajectory data from ACE0, with
a combination of a GAN and a reinforcement learning (RL) approach to generate
sequences of actions to achieve the goal of a stern conversion manoeuvre.

Reinforcement Learning.The fourth project (currently in progress) is focused
on generating pilot tactical behaviour (i.e. policies) using reinforcement learn-
ing. The project has two distinct parts. The first part is to look at traditional
reinforcement learning techniques with a view to exploring multi-objective rein-
forcement learning (MORL) using ACE0. Preliminary results have investigated
reward structures [10] and supervised policy learning [11].

The longer term plan is to explore deep reinforcement learning in ACE0. Spe-
cific research questions of interest include exploring state space representations,
continuous action spaces, reward shaping and more importantly, multi-agent and
team based reinforcement learning to discover and learn new tactical behaviours
for teams of autonomous aircraft.

5 Conclusions

The ACE0 MABS has undergone an initial round of evaluation in four separate
academic research groups with specialties in different sub-fields of artificial intel-
ligence. The outcomes from these initial studies are currently being evaluated
for consideration to transition into a large scale simulation environment. ACE0
is intended as a lightweight environment for AI algorithm evaluation, and as a
result may not capture all of the nuances that arise in a large-scale deployed
simulation environment. A number of challenges arise when developing an envi-
ronment such as this. The first is maintaining a balance between simplicity and
the complexity present in a production simulation environment. The second is
one of scale; while some behaviour discovery approaches might be viable in a sim-
pler environment, the extended computation time required by a more complex
environment might make the approach unviable for practical use.

The results from the previously described research projects provide a base-
line for considering which AI techniques should be transitioned from research
into development for production-level simulation environments. In addition to
assessing the suitability and viability of a specific method for operations analysis
studies, the experience also allows the operations researchers to scope resource
requirements in terms of budget, schedule and staffing (i.e. AI and software
engineering expertise required for deployment).

A number a future challenges remain. First, a deeper understanding must be
developed of the suitable levels of abstraction for state space, action space and
cost/reward representation. Second, in a future where algorithms can discover
new tactical behaviour, how do we measure both the novelty and robustness of
the discovered behaviour? Finally, we need to consider how exploratory AI meth-
ods can be integrated into existing techniques and methods in agent-oriented
software engineering.
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Abstract. The global Covid-19 pandemic has raised many questions
about how we occupy and move in the built environment. Interior envi-
ronments have been increasingly discussed in numerous studies highlight-
ing how interior spaces play a key role in the spread of pandemics. One
societal challenge is to find short-term strategies to reopen indoor venues.
Most current approaches focus on an individual’s behavior (maintaining
social distance, wearing face masks, and washing their hands) and gov-
ernment policies (confinement, curfew, quarantine, etc.). However, few
studies have been conducted to understand a building’s interior where
most transmission takes place. How will the utilization of existing inte-
rior spaces be improved above and beyond universally applied criteria,
while minimizing the risk of disease transmission? This article presents
an agent-based model that examines disease transmission risks in various
“interior types” in combination with user behaviors and their mobility, as
well as three types of transmission vectors (direct, airborne and via sur-
faces). The model also integrates numerous policy interventions, includ-
ing wearing masks, hand washing, and the possibility of easily modifying
the organization of spaces. Different studies at various scales were con-
ducted both on the University of Guadalajara (UdeG) campus as well as
at the MIT Media Lab to illustrate the application of this model.

1 Introduction

The Covid-19 pandemic has caused great disruption in higher education insti-
tutions. Institutional coordination challenges dramatically increased when con-
sidering the process of reintroducing in person learning both during and post
pandemic. In this context, setting up experiments with real people to test dif-
ferent interventions poses too high a risk for participants. To overcome this
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challenge, computer models can be used as a tool to explore different strategies
in a virtual environment, so called in silico, before implementation [1]. Strategies
for mitigating an influenza pandemic are well known and have been tested in
silico [2]. Traditional approaches, based on compartmentalized epidemiological
models, can be found as well as other approaches like this individual example
[3]. These approaches have provided promising results at the scale of an entire
country but they are not sufficient to assess risk at the scale of interiors as this
approach cannot embed the actual dynamic of local interaction [4]. Our app-
roach studies the dynamics of the infection risk at the building level and offers
an increased understanding of the impact of a localized intervention in both time
and space.

This context is particularly well suited for agent-based modeling (ABM) [5].
With this approach, the profiles of users as well as characteristics of the built
environment can be considered. The characteristics can include the interactions
among occupants as well as the interactions between the occupants and their
environment where they are operating. ABM enables rapid comparisons of dif-
ferent interventions and evaluation of their respective influence on the dynamics
of the disease in order to determine an optimized combination of strategies such
as the one developed by [6].

The model, developed using the GAMA Platform [7], explores successive
simulations showing the effects of different interventions on the risk of infection
inside of a specific space (e.g. classrooms, building, campus) for a given popula-
tion (student, teachers, etc.). It is based on scientific observations and statements
and policies from global experts (e.g. OECD [8] and (WHO) [9]) regarding health
measures applied to school contexts. It allows rapid comparisons between inter-
ventions to assess their influence and efficacy on disease transmission to support
the optimizations of combined strategies. Finally, this tool has been conceived
as an interactive platform where decision makers can test and evaluate different
policies that can be easily replicated on other spaces and potentially with other
types of diseases.

The article is organized as follows. Section 2 presents in detail the implemen-
tation of the model. Section 3 compares different interventions and illustrates the
use case of the different campuses of the University of Guadalajara. We finally
conclude in Sect. 4 on the perspective and limitations of such an approach.

2 Model

2.1 Overview of the Model

To evaluate and minimize the risk of infection for the users of the built environ-
ment, we created a model that estimates each person’s potential exposure to the
virus in each location considered. The experiment consisted of people involved
in daily activities in a given space, some of whom were assumed to be infected.
We estimated the viral load to which non-infected individuals can be exposed
throughout a day. We thus considered that exposure is a function of concentra-
tion and time. Three transmission vectors were assumed (droplets, fomites, and
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aerosols) and taken in account as shown in Fig. 1. This approach gives the pos-
sibility not only to identify the risk of infection at the individual level but also
at a macro level. The model then allows for the comparison of the mitigation
efficiency of different interventions or policies.

Fig. 1. Illustration of the three different modes of transmission of the virus. (a) droplets
transmission: an infected person transmits a viral load to other humans at a given
range. (b) Fomites transmission: an infected person transmits a viral load to a surface
by contact. The surface then transmits a viral load to the people who touch it. (c)
Aerosols transmission: light particles transmit an airborne viral load to people in the
same room. Circles represent people and squares represent objects. Red: infectious,
orange: exposed to the virus, green: safe. (Color figure online)

2.2 Description of the Model Entities

People. In our study, agents representing individual people have individual
behaviors that are determined according to personal characteristics such as
agenda, age, occupation etc. Daily generic agendas can be easily modified or
extended. They describe activities such as working in an office, entering a room,
going to a workstation, eating out, going home, etc., which are events occuring
at specific moments. Agendas are created using an ad hoc generator: a set of
scenario-dependant activities (with their target location and start time) for each
agent. The choice of activities can be refined thanks to behavioral data extracted
from questionnaires and interviews. Some activities lead to specific agent behav-
iors: for example, an agent working at the library may move to pick up a book or
to talk with a colleague. In the same way, a queue system can optionally be used:
if a queue policy is chosen, agents wishing to enter a room will have to queue
to enter it (queue respecting a certain physical distance defined in parameter if
possible). Agents have a fixed epidemiological status as infected, susceptible. Sus-
ceptible agents also have a cumulated viral load attribute which is a list of three
elements representing the viral load received by droplets, fomites and aerosols
transmission.

Space. The spatial environment consists of a collection of spatial entities Room
in which People can perform different kind of activities. Rooms are made of a list
of entrances and places such as desks and/or chairs. Aerosol particles can spread



Using Agent-Based Modelling 89

the virus within a room. Each Room has a viral load attribute that represents
the virus concentration in the air and which is increased by the respiration
of infected people and decreased by ventilation. Susceptible People receive a
quantity of virus that is a function of that concentration (see Sect. 2.3). The
viral concentration in each room is represented by a color gradient in order to
easily identify risky areas.

2.3 Description of the Model Processes

Simulation Initialization. A simulation is initialized by creating a synthetic
population of agents people, and agents Room from floor plan files (.dxf or
.gis). A compatible file should specify at least the four following layers as closed
polylines: Walls; Entrance; Offices or Meeting rooms. Optional layers include
Furniture, Chair, Sanitation and Toilets. The virtual pedestrian network is built
by defining the walking zone, then applying a Delaunay triangulation to it to
calculate the skeleton of the virtual pedestrian network. Other parameters are
loaded from data files or can be directly modified to trigger different interven-
tions. The number of generated people is set accordingly to the density scenario
variable. Based on a normal day activities, they are assigned schedules and tar-
gets such as work places that can be set by different methods:

– data : if the floor plan contains a layer describing the desk layout then each
people has a desk assigned to him as a target;

– distance : people’s targets are defined in order to respect a minimal distance
between people (e.g. 2 m);

– building occupancy : the maximum number of people in a building is set by
its capacity;

– room occupancy : the maximum number of people in a room is set by its
capacity.

Epidemic Status Initialization. At the start of each simulation, a given
amount of the people (initial nb infected) is set to the infected status, others
are set to susceptible. Note that since the experiment duration is at the scale
of the day, susceptible people do not have the time to turn infectious, thus the
epidemiological status of agents remains unchanged during the whole simulation
time. As a consequence, the risk of contamination is quantified by a person’s
viral load people.

Process Overview and Scheduling. Simulations run during a given duration
expressed in hour by (time spent). Different agenda scenarios can be chosen,
by default a person who enters the building by one of the entrances (chosen
randomly) then goes to his assigned working place for a given amount of time
(time spent) and exits by the same entrance as he entered. A more typical day
would be when people enter the building in the morning, go out for lunch and go
back to work. The agenda or activity can easily be modified to add activity such
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as going to get a coffee or to the restrooms. Regarding people agents mobility, we
use the method developed in [10]: agents walk on a continuous space and follow
a pre-constructed virtual pedestrian network. They calculate the shortest path
and follow the succession of nodes as intermediate objectives. The agents avoid
collisions with others by using a repulsion mechanism inspired by the social force
model [11]. More details on pedestrian mobility can be found in [10,12].

2.4 Virus Propagation - Risk Prediction

It is now established that respiratory viruses are transmitted in three different
ways. Firstly, the virus can be transmitted by large respiratory droplets which is
a vector of transmission to nearby persons. Secondly airborne transmission due to
smaller droplets (aerosols) which stay suspended in the air and can travel longer
distances can also lead to infection [13,14]. Finally transmission can happen via
a contaminated surface.

Droplets. Most of the respiratory virus transmission occurs from large infected
droplets that can be produced either by coughing, sneezing or even breathing
in close proximity to another person. As a consequence, social distancing is
considered as an efficient protection measure. Droplets are involved in a person-
to-person infection, which means that an infected person transmits a viral load
to other persons next to him/her. If a susceptible person is at a distance below
a given threshold, he/she will receive a viral load per time step given by

v0
dΔt

(
1 − eseparator

)(
1 − eemission

mask

)(
1 − ereception

mask

)
,

where Δt is the time step duration and v0
d the viral load transmitted per unit

of time by an infected person. The quantity of virus transmitted is reduced by
prevention measures like separators, a mask worn by the infected person and
a mask worn by the susceptible person, with respective efficiency eseparator,
eemission
mask and ereception

mask .

Aerosols. Studies have historically used a threshold of 5 µm to differentiate
between large and small particles, but researchers are now suggesting that a
threshold of 100 µm better differentiates aerodynamic behaviour of particles.
Particles that would fall to the ground within 2 m are likely to be 60–100 µm
in size. Investigators have also measured particle sizes of infectious aerosols and
have shown that pathogens are most commonly found in small particle aerosols
(<5 µm), which are airborne and breathable. Initially it was thought that air-
borne transmission of Covid-19 was unlikely, but growing evidence has high-
lighted that infectious microdroplets are small enough [13]. In the model, the
concentration of virus in aerobic particles is considered for each room, and is
increased due to the infected people’s respiration and talking. At each time step,
each infected person transmits a viral load that can be reduced by wearing masks.
The viral load in the air is updated according to the formula
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vair := vair + cVbreath(1 − eemission
mask )Δt

for each infected person, where Vbreath is volume of air inspired/expired per
unit of time, and c the viral concentration in the air expired.

The viral load in the air decays because of ventilation. After a time Δt, the
viral load in the air is updated according to the formula

vair := vair(1 − dair)Δt

where dair is the decay rate per unit of time due to ventilation.
People get infected by breathing the air. The amount of viral load ingested

by breathing decreases with masks. It is given by

(1 − ereception
mask )vair

(

1 −
(

1 − Vbreath

V

)Δt
)

where V is the volume of the room. The same quantity of viral load is removed
from the room’s air.

Fomites. Latest research suggests that fomites are not a major route of trans-
mission. However, even if attempts to culture the virus on surfaces were unsuc-
cessful, Covid-19 can persist for days on inanimate surfaces. Surface agents has
a viral load attribute which increases by interaction with infected individuals,
decreases when transmitting the virus to a susceptible individual by contact, and
decays at a given rate. Contamination of a surface per cycle and per infected
person is given by

vsurface := vsurface + v0
fΔt

(
1 − eemission

mask

)

where v0
f is the viral load transmitted by an infected person per unit of time.

Decay per time step is given by

vsurface := vsurface(1 − d)Δt

where d is the decay rate per unit of time. When in contact with a susceptible
person during a time Δt, the viral load on the surface decreases and is updated
according to the following formula:

vsurface := vsurface(1 − r)Δt

where r ∈ [0, 1] is the proportion of virus transmitted to the person per
unit of time. The actual viral load that is ingested through hand-to-mouth after
touching an infected surface is decreased by wearing a mask. The amount of
viral load ingested is then

vsurfaceTHtM

(
1 − ereception

mask

) (
1 − (1 − r)Δt

)

where THtM is the proportion of virus transmitted from the hand to the
mouth.
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2.5 Parameters

Some parameters are set based on values found in the literature, while others are
estimated. Values are shown in Table 1. We normalize the viral load transmitted
via droplets to 1, and estimate the other viral loads relatively. It is suggested
in [15] that the mask efficiency is high (above 70%). Masks prove to be a good
protection while worn by emitters and receivers, and they also reduce transmis-
sion via fomites. The proportion of the droplets which evaporate to aerosols is
not well known. The proportion of small aerosols is larger, but the viral load
per particle is smaller [16]. The proportion of contamination through aerosol is
unclear. As a consequence, we choose to set parameter c in order to emit an
equivalent viral load to the droplets. Fomite parameters are estimated bearing
in mind that the transmission is supposed to be very low [15]. The decay rate on
surface is estimated based on experiments on plastic in [17]. Ventilation parame-
ter is set in order to renew 98% of the air of a room in 10 h (natural ventilation)
or 1 h (forced ventilation).

Table 1. Parameters used in the model. Variable with no reference have been esti-
mated.

Variable Definition Value Source

v0d Viral load transmitted per unit of time
(droplets)

1 s−1 Set as a
reference

v0f Viral load transmitted per unit of time on
surfaces

0.25 s−1 Estimated

Vbreath Air volume inspired or expired 8 L.mn−1 [15]

c Viral concentration in breath 10 L−1.mn−1 [15,16]

THtM Transfer rate from hand to mouth 30% Estimated

r Virus transfer rate from surface to hand when 0.01 s−1 Estimated

dair Virus load decay rate: by natural ventilation 10−4 Estimated

by forced ventilation 10−3 Estimated

d Virus load decay rate on surface 3.10−5 [17]

eemission
mask Mask efficiency: percentage of the viral load 70% [15]

emission being blocked

ereceptionmask Mask efficiency: percentage of the viral load 70% [15]

reception being blocked

eseparator Separator efficiency: percentage of particles
blocked

90% Estimated
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2.6 Outputs

We illustrate the possibilities of the proposed model on a specific case study
(one floor of the MIT Media Lab) in order to compare the impact of separated
interventions against a reference scenario without any interventions (Fig. 2). The
outputs provide global indicators about the population and a more detailed visu-
alisation of the status of each individual to allow comparison of different kinds of
interventions. Global indicators consist of time series representing the temporal
evolution of the viral load to which people have been exposed to for each type
of contamination, and a histogram representing the distribution of the popula-
tion into three levels of risk (low, medium and high) to which each individual
has been exposed. Simulations also provide an animated spatial visualisation of
the building (floor plan) with the location and epidemiological status of people
(infected, or low/medium/high risk).

Fig. 2. Comparison of the three interventions with the reference scenario, for the MIT
Media Lab building. 1) no intervention, 2) use of masks, 3) social distancing and
lowering the density, and 4) replacing the natural ventilation by air conditioning.

3 Results

3.1 Stochasticity Sensitivity Analysis

We first analyze the impact of the randomness of the simulations on the three
types of transmissions. The main objective is to find a threshold number of repli-
cates beyond which the mean values of such indicators are sufficiently accurate.
To do this, we compare the output of these three indicators between replicates
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of the simulation. We undertake this exploration on a typical example of use of
the model (one floor of the MIT Media Lab) with no specific intervention. We
perform 100 replicates of such a simulation and compare the variability of the
results with different number of replicates. We observe that with a low number
of replicates the standard error is very high. With 20 replicates, the standard
error is low for the droplet transmission but remains high for the two other
transmission types. With 50 replicates, the difference is very slight for all indi-
cators. Increasing the number of replicates further beyond 50 does not have a
great impact on the aggregate trend of the simulation results. For the study
of the scenario presented in the following section, we decide to set the number
of replicates at 50 in order to minimize the required computation time while
maintaining a good statistical accuracy.

3.2 Use Cases: University of Guadalajara (UdeG) and MIT Media
Lab

The public University of Guadalajara (UdeG) leads a complex educational
ecosystem that includes more than 300.000 students, 16.000 staff members, which
are distributed on several campuses over Guadalajara City. UdeG sets up a gen-
eral protocol to reopen its facilities based on international organizations’ rec-
ommendations. We select for this work three sites of UdG campuses (CUCS
classroom, CUAAD office, CUCEA library, see Fig. 3), in addition to the MIT
Media Lab. In the following subsections, we analyse the exposure to the virus
through the three ways of transmission, then we compare the effectiveness of
the combinations of different interventions including wearing masks (interven-
tion 1), social distancing (intervention 2) and ventilation (intervention 3). For
each scenario and each site, we run a batch of 50 replications and report the
mean values of the indicators. Such scenarios are built so that each visualization
highlights the concepts explained in Sect. 2 in a way that students and staff can
quickly understand.

3.3 Analysis of the Virus Transmission Without Intervention

For all use cases, transmission by droplets appears to be the most effective way,
while fomites is the least effective. Without any intervention, people are at high
risk when in the same room as an infected person, even if the room size is large,
highlighting a high transmission rate despite a relatively modest contribution in
the viral load. Scarce presence of people at high risk in rooms without infected
people suggests that they were exposed at close range to infected people when
moving. It is confirmed by the fact that the viral load time series show a fast
increase of droplet contamination at the beginning of the simulation and at the
end, when people go to their desk or go away. Aerosols contamination starts
later, since the quantity of virus in the air slowly increases with time.
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As shown on Fig. 4, the configuration and usage of the buildings impacts the
relative proportions of exposure to droplets, fomites and aerosols: large rooms
like the library in CUCEA are less favourable to the transmission via aerosols.

3.4 Comparison of Different Combinations of Interventions

We study the impact of three interventions: 1) use of masks, 2) social distanc-
ing and lowering the density and 3) replacing the natural ventilation using air
conditioning. Simulations outputs are presented in Fig. 2. The risk reduction is
compared for the different combinations of interventions. The mean risk reduc-
tions for each combination are shown in Table 2.

It appears that the most efficient single intervention is the use of masks.
Indeed, under the assumption that high filtering capability is provided and that
they are used properly, they provide a protection against the three ways of con-
tamination. Masks effectiveness is homogeneous among the different scenarios.
In Fig. 2.1, wearing masks significantly decreases the exposure to the virus in

Fig. 3. The model has been experimented on three sites in the UdG university. The 3
sites have been chosen in order to cover different use cases. CUCS represents the first
floor of a building made of 10 different classrooms and two meeting rooms. CUCEA is a
mix between classrooms, meeting rooms and contains also a library used as a common
area. CUAAD is made of meeting rooms and classrooms.
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Fig. 4. Comparison of the exposure to the virus through the different vectors of trans-
mission for the different UdG sites.

Table 2. Risk reduction measured as the percentage of drop in cumulative viral load
relative to a scenario without any intervention, for different use cases and for all kinds
of combinations of interventions (1: masks, 2: social distance and lower density, 3:
ventilation).

Site
Interventions

1 2 3 1+2 1+3 2+3 1+2+3

CUCS 90.4% 47.7% 31.6% 95.2% 93.4% 78.2% 98.0%

CUAAD 90.4% 56.3% 27.3% 96.0% 93.1% 83.4% 98.5%

CUCEA 91.1% 65.5% 17.9% 97.0% 92.2% 76.3% 97.9%

Media Lab 90.3% 15,0% 14,0% 92,1% 92.2% 33.2% 94.3%

droplets and aerosols, the vast majority of people being at low risk. However
people at a close distance of infected individuals seem to be still at high risk,
highlighting that proximity still plays an important role in disease transmission.

Social distancing comes in second, apart for the Media Lab. It provides good
protection against droplets when people are at their desks, but less when they
pass each other while moving. This intervention comes along with a lower density.
In Fig. 2.2, it appears that the building occupancy drops from 796 to 583 since the
desks layout has to be changed in order to fulfill a minimum distance constraint.
The effectiveness of such a measure highly depends on the original space use
and configuration: desk optimization has a lower effect in Media Lab since the
original layout already has large space between desks.

Finally, ventilation decreases the concentration of aerosols and thus exposure
to the airborne virus, but not to fomites and droplets. As a consequence, it is
the least effective intervention. It might prove to be more efficient for longer
durations, since the exposition to aerosols increases with time. Ventilation is
more efficient within buildings with small rooms (CUCS, CUAAD), and should
be recommended accordingly. A combination of two interventions increases the
protection, 1+2 and 1+3 being more efficient than 2+3. Combination 1+2+3
marginally increases the protection compared to 1+2 alone (less than 2.8%).
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Complying with the CDC recommendation social distancing and improving
ventilation comes at a cost that may be difficult to handle. If wearing a mask
is cheap and easy to impose, ventilation may require work on buildings. Social
distancing maybe the hardest to comply with, since a lower building occupancy
may require that students partly attend classes from home. The logistics for such
an intervention may also be a barrier. This study suggests that the most effective
intervention is wearing masks. It can be complemented with others interventions,
but since they marginally increase the effectiveness, they should be considered
as secondary, and may be omitted in case their cost or logistic is too important.

4 Conclusion and Perspective

This model has been used to inform the academic community of UdeG about
efficient ways to protect their community from the spread of Covid-19. Graphical
and quantitative outputs have proven to be a good medium to illustrate the way
the pandemic propagates and the efficiency of the different recommendations.
Once the different simulation scenarios were analyzed and the most appropri-
ate forecasts were developed for the use of the different spaces on campuses,
the results were disseminated in an educational video and campaign, in order
to educate people about the benefits of complying with the CDC recommenda-
tions. Further developments of the model will aim at providing not only a better
prediction of the risk of contamination but also a more realistic agent behavior
in order to take in account other dynamics. It is however, important to consider
the results from this work with care, since there is still a major uncertainty on
the relative importance of aerosols and droplets in the chain of contamination.
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Abstract. Modelling social phenomena in large-scale agent-based sim-
ulations has long been a challenge due to the computational cost of
incorporating agents whose behaviors are determined by reasoning about
their internal attitudes and external factors. However, COVID-19 has
brought the urgency of doing this to the fore, as, in the absence of viable
pharmaceutical interventions, the progression of the pandemic has pri-
marily been driven by behaviors and behavioral interventions. In this
paper, we address this problem by developing a large-scale data-driven
agent-based simulation model where individual agents reason about their
beliefs, objectives, trust in government, and the norms imposed by the
government. These internal and external attitudes are based on actual
data concerning daily activities of individuals, their political orientation,
and norms being enforced in the US state of Virginia. Our model is
calibrated using mobility and COVID-19 case data. We show the util-
ity of our model by quantifying the benefits of the various behavioral
interventions through counterfactual runs of our calibrated simulation.

Keywords: Large-scale social simulation · Norm reasoning agents ·
Computational epidemiology

1 Introduction

In social systems in general, and in the science of epidemiology in particular,
human behavior has always been recognized to play a crucial role [9]. This is espe-
cially true in the COVID-19 pandemic since, prior to the availability of vaccines,
efforts at containing the epidemic have emphasized behavioral changes, such as
mask wearing, physical distancing (e.g., keeping 6 ft apart), and social distancing
(e.g., working from home, schooling from home). Compliance with these recom-
mendations has varied widely, both spatiotemporally and demographically [12].
In most places, these non-pharmaceutical interventions (NPIs) were implemented
c© Springer Nature Switzerland AG 2022
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starting in March 2020. For example, in the US state of Virginia nine Execu-
tive Orders (EOs) were implemented between March and July 2020. Were some
of these EOs more effective than others in limiting the spread of COVID-19?
More generally, what determines the effectiveness of NPIs? Does their timing
and sequence matter? These are all important questions to answer for devel-
oping effective mitigation plans for the next major epidemic. In this work, we
propose an agent-based simulation approach for these problems, focusing on an
analysis of the EOs implemented in Virginia.

Computational models of disease spread, including agent-based simulations,
have become quite sophisticated. However, incorporating realistic models of
human behavior in these simulations remains a challenge [5,10]. Most models
assume a certain level of compliance with a behavioral intervention, and apply
it uniformly at random [16]. In reality, however, compliance can be highly non-
uniform as it depends on a number of factors, including: demographics, peer
influence, political orientation, risk assessments, and beliefs about the efficacy of
the behavior [2,4]. To improve epidemic simulations, we therefore need methods
for the realistic modeling of behavior.

Belief-Desire-Intention (BDI) models developed in the MAS community, par-
ticularly those incorporating normative reasoning, are a natural fit for this prob-
lem [15]. However, it has been challenging to find appropriate data to calibrate
such behavior models in simulations. Our approach is to use cellphone-based
mobility data and a synthetic population [1] to create a data-driven simulation
which is sufficiently detailed that the effects of behavioral responses to the EOs
can be evaluated. To address the challenges of scaling, we adapt the BDI-based
multiagent programming technology, 2APL [6,7], to support discreet time steps
and deferral of action execution. We integrate this new library, Sim-2APL, with
a new distributed agent-based simulation framework we call PanSim. This aspect
of the work is presented in our companion paper [3]. In the current paper, we
focus on the simulation design and evaluation. Our main contribution here is a
framework that allows detailed investigation of the effects of non-pharmaceutical
interventions through the use of multiple sources of data and appropriate behav-
ioral models for agents.

2 Simulation Design

In this section, we describe our COVID-19 simulation, the key components of
which are illustrated in Fig. 1. We start with a synthetic population of the
US state of Virginia, where agents have realistic demographics, weekly activity
schedules, and activity locations drawn from real location data. In our simula-
tion, each individual in the synthetic population is represented by a norm-aware
Sim-2APL agent (Sect. 2.2) which reasons about whether to comply with the
various EOs that were implemented in Virginia (Sect. 2.3). The agents interact
via a disease model implemented in the novel PanSim distributed environment
(Sect. 2.4). In Sect. 3 we show how we calibrate the parameters of our simulation
with real-world data, while in Sect. 4 we evaluate our simulation by comparing
the disease progression when different norm interventions are put in place.
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Fig. 1. COVID-19 simulation setting.

2.1 Data Sets Used in the Simulation

We use four data sets in this work, as described briefly below.

Synthetic Population of Virginia, USA: Agents in our simulation are drawn
from a synthetic population of the state of Virginia, USA. This synthetic popu-
lation has been constructed from multiple data sources including the American
Community Survey (ACS), the National Household Travel Survey (NHTS), and
various location and building data sets, as described in [1]. This gives us a very
detailed representation of the region we are studying (multiple counties within
Virginia). Agents are assigned demographic variables drawn from the ACS, such
as age, sex, race, household income, and political orientation. In each county c,
we label each household as Democratic with probability equal to the percent-
age of Democratic voters in the 2016 U.S. presidential elections in county c, and
Republican otherwise. Agents are also assigned appropriate typical weekly activ-
ity patterns by integrating data from the NHTS. For each activity, each agent is
assigned an appropriate location, using data about the built environment from
multiple sources, including HERE, the Microsoft Building Database, and the
National Center for Education Statistics (for school locations).

Mobility Data: In order to model the changes in mobility due to various
Executive Orders (EOs) implemented between March and July 2020, we use
anonymized and privacy-enhanced cellphone-based mobility data provided by
Cuebiq. This data set contains location pings generated from the cellphones of a
large number of anonymous and opted-in users throughout the USA. Cuebiq col-
lects data with informed consent, anonymized all records and further enhanced
privacy by replacing pings corresponding to home and work locations with the
centroids of the corresponding Census blockgroups. We aggregate the data to the
county level as follows. First we calculate the average radius of gyration for cell-
phone users in the county. The radius of gyration is given by r =

∑
l d(l, lc)/k,

where l is the location (latitude and longitude) of the user, lc is the centroid of all
the locations visited by the user on that day, k is the number of locations visited
by the user on that day, and d is the Haversine distance. We then calculate a
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mobility index as the percentage change in average r over all users in a given
region on a given day compared with the average for the same day of the week
in the same region during January and February of 2020, i.e., before any EOs
were issued. For example, the mobility index for a specific Monday in May 2020
is the percentage change in the average r on that day compared to the average
over all Mondays in January and February 2020.

COVID-19 Case Data: We use county-level COVID-19 case data from USA
Facts to calibrate the disease model in our simulation. A caveat is that the
number of confirmed cases probably under-counted the number of actual cases
substantially, especially early in the epidemic, due to limited testing. We com-
pensate for this in the simulation calibration by choosing a scale factor of 30,
i.e., we assume that the actual number of cases was 30× the reported number of
cases. This arbitrary choice can straightforwardly be changed without affecting
the methodology in our work.

Executive Orders in Virginia: We use a data set on Executive Orders that
were implemented in each state in the USA [14] from the Johns Hopkins Coro-
navirus Resource Center [11]. From this we extract the ones that were imple-
mented in Virginia in the period between March 1st and June 30th, 2020. In
the simulation, EOs are represented by norms that agents may obey or vio-
late, as described in Sect. 2.3. We quantify the benefits of these EOs through
counterfactual runs of our calibrated simulation in Sect. 4.

2.2 Agents Activities and Deliberations

Each agent in the synthetic population is characterized by its weekly activity
schedule, a set of typical daily activities over the course of one week. The sched-
ule defines the location, start time and duration of all agents’ activities as one
of 7 distinct high level activity types: HOME, stay at or work from home; WORK,
go to work or take a work-related trip; SHOP, buy goods (e.g., groceries, clothes,
appliances); SCHOOL, attend school as a student; COLLEGE, attend college
as a student; RELIGIOUS, religious or other community activities; and OTHER,
any other activity, including recreational activities, exercise, dining at a restau-
rant, etc. For example, one activity in an agent’s schedule could state “SHOP at
location l between 7 p.m. and 8 p.m.” These activity types categorize a larger
number of low-level activity types, including but not limited to those describing
the categories above. The high level activity types are what the agents use for
reasoning, while the lower level activity types – which we do not use for reason-
ing because they are not guaranteed to have been sampled accurately during the
creation of the synthetic populations – are only used to assign the location and
activity time and duration according to the activity schedule. Each simulation
step corresponds to one day, and at each simulation step, each agent retrieves
and performs the activities from its activity schedule for the day of the week
corresponding to that step.

We interpret each activity in an agent’s daily schedule as a (to-do) goal for the
corresponding Sim-2APL agent. For each activity (i.e. goal) in its daily schedule,
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the agent generates a plan based on its goal, identifies any norms applicable to
the activity, and decides whether it will obey or violate the norm(s) (See Sect. 2.3
below). If there are no applicable norms, or if the agent decides not to obey the
norm, the agent uses the default plan for the to-do goal, i.e., the planned daily
activity. However, if the agent decides to obey an applicable norm, the default
plan for the daily activity is transformed into a norm-aligned plan. For example,
if a norm specifies a mask should be worn in public places, the SHOP activity in
the example above will be transformed into a SHOP activity with a “wearing a
mask” modality.

2.3 Reasoning with Norms

We consider 11 norms representing a subset of the Executive Orders imple-
mented in the state of Virginia (US). We distinguish regimented norms (R) that
cannot be violated by agents, from non-regimented norms (NR) where agents
may autonomously decide whether to comply with the norm or not. In addition,
some norms have parameters that further specify the applicability of a partic-
ular instance of the norm to the activity itself or to the agent considering that
activity. For example, the type parameter of the BusinessClosed norm specifies
the type of business to which the norm instance applies (e.g., an instance may
specify that only Non-Essential Business (NEB) should close), while the size and
type parameters of the SmallGroups norm specify the maximum size of groups
permitted in a context of a particular type (e.g., no more than 10 people are
allowed in a public space). The type parameter of SchoolsClosed, finally, specifies
the grade levels that are closed (e.g., K-12 specifies all K-12 level schools are
closed, i.e. the norm applies only to activities of type SCHOOL when the agent
performing the SCHOOL activity is attending K-12 level education). The norms
are summarized in Table 1 and briefly explained in Table 2. Figure 2 shows the
date on which each norm came into force.

Factors Influencing Agent Decisions. If a regimented norm applies to an
activity of an agent, the agent simply obeys the norm. If a non-regimented norm
applies, the agent’s decision whether to obey or violate the norm is influenced by
a number of factors determined by the agent’s beliefs and preferences regarding
the activity. For example, in deciding whether to maintain physical distancing in
a particular shop (i.e., to obey a MaintainDistance norm during a SHOP activity
in a particular shop), agents take into account how many other agents they
have observed maintaining physical distancing (dist) in the shop in the past,
and their trust in the government1. Note that a norm may not be applicable to
(relevant for) certain activities or agents, e.g., the norm WearMaskPublInd is
not applicable to WORK or SCHOOL. Each factor is represented by a real value in
the interval [0, 1], and the factors are summarized in last five columns of Table 1.
1 Our choice of the factors influencing the agents’ decisions, as well as of the norms

mentioned above, should be considered as a ‘proof of concept’ to illustrate our frame-
work. In more realistic simulations, elicitation of the most relevant factors in a well-
designed study would be paramount. This is left for future work.
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Each agent’s initial trust in the government is determined by sampling a
beta distribution Betav(αv, βv) (with v = R for Republican and v = D for
Democrat), where αv = μv · κ, βv = (1 − μv) · κ. The means μR and μD are
determined by calibration (explained in Sect. 3); κ = αv+βv = 100 characterizes
the spread of the distribution, and, for simplicity, is fixed for both distributions.
To simulate the decreasing compliance with measures that in reality manifested
over time, agents in our simulation decrease their trust in the government by
a constant factor f per simulation step after tf simulation steps (days). Both
tf and f are fixed for all agents and are determined through calibration. The
factor acc specifies the probability that an agent can be accommodated to work
from home (in our simulation acc = 0.45 [8], and is the same for all agents). The
factors mask, dist and symp specify the fraction of other agents encountered at
a certain location who were wearing a mask, maintaining physical distancing,
and who were (visibly) symptomatic, respectively. Symptoms are only visible
if an agent is actually infected (determined by the disease model PanSim, see
Sect. 2.4), but not all infected agents are symptomatic. The factor all specifies
the number of agents encountered at a given location in excess of the maximum
number of agents allowed by the norms currently in force.2

Table 1. Which activities are affected by regimented (R) and non-regimented (NR)
norms, and the factors influencing the decision to comply with each norm.

Norm Id Param Type Activity types transformations Influencing agents believes

WORK SHOP OTHER SCHOOL RELIGIOUS trust symp acc mask dist all

AllowWearMask n1 – NR mod mod mod mod mod x x

BusinessClosed n2 type R del

EmplWearMask n3 – R mod

EncourTelework n4 – NR del x x x

MaintainDistance n5 – NR mod mod mod mod mod x x

RedBusinessCapac n6 perc R del

SchoolsClosed n7 type R del

SmallGroups n8 size, type NR del del del del del x x x

StayHome n9 appl NR del del del del del x

TakeawayOnly n10 – R short

WearMaskPublInd n11 – NR mod mod mod x x

Violating or Obeying a Norm. To determine whether to obey or violate
a norm n when performing an activity act , the agent calculates a probability
p(n, act) of obeying n at the current simulation step, given by:

p(n, act) =
1

1 + e(−k · (x − x0))
(1)

2 Due to space limitations, we refer to the code repository for the specific details of
the factors: https://bitbucket.org/goldenagents/sim2apl-episimpledemics.

https://bitbucket.org/goldenagents/sim2apl-episimpledemics
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where x represents the evidence for complying with n computed as the aver-
age value of the factors (excluding the trust factor) that support the compliance
with n when performing act, x0 = 1 − trust represents the agent’s distrust in
the institution that issued n, and k is the logistic growth rate or steepness of
the curve (k = 10 in our simulation). Note that when the trust in the institution
is extreme (e.g., x0 is close to 0 or 1), the decision to comply with the norm
becomes more “resistant” to evidence supporting norm compliance. For exam-
ple, if the agent has no trust in the institution (i.e., x0 = 1), the probability
of complying with a norm that depends only on the factor mask is 0.5 when
100% of other agents do wear a mask, but drops off steeply as the value of mask
declines (when 75% of other agents do wear a mask, the probability to comply
with the norm drops to approximately 0.07 for k = 10). However, if the trust
value is more balanced (e.g., x0 = 0.5), the decision to comply with the norm
relies more on the supporting evidence.

Table 2. A brief explanation of the norms enforced in our simulation and of their
parameters.

Id Interpretation Parameters

n1 Mask wearing is allowed and encour-
aged

–

n2 Businesses of type type are closed type ∈ {NEB}: the type of business,
NEB = Non Essential Business

n3 Employees working in retail must wear
a mask during work activities

–

n4 Telework is encouraged –

n5 Physical distance of 1.5 m should be
maintained

–

n6 Capacity of business should be reduced
to perc

perc: percentage of business capacity

n7 Schools of type type are closed type ∈ {K12, HE,K12 or HE}: the
type of school, K12 = primary and sec-
ondary education HE = Higher Edu-
cation (HE)

n8 The maximum allowed size of groups of
type type is size

type ∈ {public, private, all}: the target
settings, either public, private or both
(all); size ∈ N: maximum size of groups

n9 Stay at home if belong to category appl appl ∈ {sick or age ≥ 65, all}: the
group of agents to which the norm
applies, either people sick or older than
65 (sick or age ≥ 65), or everyone (all)

n10 Only take away allowed for restaurants –

n11 A mask must be worn in public indoor
settings

–
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When an agent violates a norm with respect to a scheduled activity, the norm
is ignored for that activity and the agent adopts the default plan for the activity
(the to-do goal of the agent). When an agent obeys a norm with respect to an
activity, the activity is subject to a transformation. We distinguish three types
of transformations of activities:

– mod : the modality (in our model either wearing a mask or practicing physical
distancing) of the activity is changed. For example, when the norm Wear-
MaskPublInd is obeyed for the SHOP activity, the agent performs that activ-
ity while wearing a mask. In the code, the modality is a flag that is inter-
preted by PanSim and affects the susceptibility or infectivity of an agent (see
Sect. 2.4).

– del : the activity is cancelled. When an activity is cancelled, it is transformed
into a HOME activity, unless the agent can shift the next scheduled activity.
For example, if an agent is scheduled to go to WORK, but its working place
is closed, the agent will stay HOME, unless in its daily schedule there is a
consequent activity (e.g., a SHOP activity) that can be performed earlier.

– short : the activity is shortened. For example, when obeying a TakeawayOnly
norm, the agent will spend less time at the restaurant.

The Activity Types Transformations shown in Table 1 specify how the norms
affect each activity type. If no transformation is indicated in Table 1 for a pair
〈norm n, activity type at〉, the norm n does not apply to activities of type at.
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Fig. 2. Cumulative number of combined recorded cases in the counties of Goochland,
Fluvanna, and Charlottesville (blue line). Red and green lines are introduction of new
restrictions and relaxations of previous ones. (Color figure online)

2.4 Environment Design

To model the spread of COVID-19, we implemented a novel distributed agent-
based epidemic simulation platform, which we call PanSim. In PanSim, a simu-
lation progresses in discrete timesteps. When a Sim-2APL agent decides to visit
a location, it interacts with other agents visiting that location, and observes
the visible attributes exhibited by these agents such as: coughing, wearing mask,
social distancing, etc., allowing it to modify its behavior based on its observations
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at subsequent timesteps. The probability of symptomatic and asymptomatic
agents transmitting or becoming infected per unit time (5 minutes) under dif-
ferent action modalities such as the wearing of a mask or physical distancing,
is given by the probabilistic addition of all individual interactions of that day.
To simulate cases being introduced from outside, we artificially expose 5 agents
during the first 5 days of the simulation, and 3 more agents each simulation day
after.

The novelty of PanSim lies in the fact that, unlike previous epidemic simu-
lation frameworks, PanSim has explicit support for modeling human behavior,
increasing the number and type of social phenomena that can be modeled, and
allowing disease progression to be driven by explicit colocation rather than statis-
tical likelihood of contact between agents. The colocation in turn is the result of
locations and times that individual agents – implemented in any agent program-
ming language – can explicitly choose for their activities. PanSim further allows
scaling up the number and complexity of agents and visits by distributing the
simulation across multiple compute nodes, where each node simulates a distinct
set of agents and locations. PanSim synchronizes its instances across compute
nodes by sharing only the data relating to agents visiting a location simulated
on another node, ensuring all its instances remain synchronized throughout the
simulation with minimal communication. Both the framework and experiments
showing the scalability are described in detail in the companion paper [3].

3 Calibration

We calibrate the behavior and disease parameters independently from each other
in two distinct processes. For this reason, the best parameters for either model
were not yet available when calibrating the other. In each process, the parame-
ters for the model not being calibrated were fixed to our best estimations (based
on results of earlier trial runs) of the values. In other words, the parameters for
the disease model were fixed in the process in which we calibrated the behav-
ior model, and vice versa. Both calibration processes are performed by means of
Nelder-Mead (NM) minimization [13]. NM iteratively refines an initial configura-
tion of parameters until it finds a local optimum that minimizes a given objective
function, in this case the Root Mean Square Error (RMSE) between observations
in the simulation and the real world. Calibration was performed using data from
the counties of Charlottesville (41119 unique agents in the synthetic population,
83.25% of which voted Democratic, 16.75% Republican), Fluvanna (24109 unique
agents, 45.35% Democratic, 54.65% Republican), and Goochland (20922 unique
agents, 37.55% Democratic, 62, 45% Republican) for a total of 86150 agents,
61.55% Democratic, 33, 45% Republican. These counties have been selected for
their proximity, number of agents, and variation in voting preference. For each
set of parameters selected by NM, we run 5 different simulations in order to
account for non-determinism in the simulation.

Agent Parameters. We calibrate the four parameters of the agent model intro-
duced in Sect. 2.3, i.e., the means μD and μR of the two beta distributions



108 J. de Mooij et al.

Fig. 3. The mobility index observed in the simulation plotted against that recorded
by Cuebiq in each simulated county (a), and percentage confirmed cases (×30) of the
population plotted against that of the recovered agents in the simulation (b).

from which we sample the trust attitudes of Democratic and Republican agents,
respectively, the fatigue factor f , and the time step tf in the simulation at which
the fatigue becomes active. We calculate the RMSE between the mobility index
in our simulation and in the real-world Cuebiq data (calculated as per Sect. 2.1).
We apply a smoothing to the mobility index of each day by averaging it with
the mobility index of the 6 preceding days in order to smooth out the intrinsic
difference in the weekly repeated mobility trends between the synthetic popu-
lation and Cuebiq data. We perform these simulations with the disease model
parameters fixed to inf s = 0.00045 and inf a = 0.0003375 (best estimate).

Disease Model Parameters. The two parameters of the disease model that
are calibrated are the infectivity of symptomatic (inf s) and asymptomatic (inf a)
agents. We calculate the RMSE between the cumulative infection case count in
the three simulated counties and the number of recovered agents in our sim-
ulation. The agent parameters are fixed to μD = 0.776816, μR = 0.106955,
f = 0.0125, and tf = 60 (best estimate).

Calibration Results. For both calibration processes, we run NM until 10
consecutive configurations of parameters did not improve the objective func-
tion. The final parameters determined by our calibration are: μD = 0.704621,
μR = 0.004685, f = 0.0125 and tf = 60 for the agent model (RMSE: 17.6574),
and inf s = 0.0000481 and inf a = 0.0000241 for the disease model (RMSE:
2052.0222). Figure 3 compares the mobility (Fig. 3a) and the number of recov-
ered agents (Fig. 3b) resulting from these parameters with the real data. The
agent parameter calibration found a relatively good fit for the decrease in mobil-
ity, including the increase in mobility after the first few weeks. However, the large
differences between the different counties could not be reproduced by our simu-
lation. The disease model calibration resulted in a slightly less aggressive spread
of the disease than the (scaled) recorded case count in the first few months of
the COVID-19 outbreak.
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4 Quantifying the Effects of Normative Interventions

We perform an experiment with the calibrated models to understand the relative
impact of the measures instigated by the institutions in Virginia on the behavior
of its residents. Given the list of n = 9 normative interventions that took place in
Virginia as per Fig. 2, we run 10 different experiments: in experiment Ei, for 0 ≤
i ≤ n, we enact only the first i executive orders. For example, in experiment E0,
no norm is enforced, i.e., we simulate a scenario where no behavioral intervention
takes place; in experiment E1, we enact only the first EO, i.e., norms {n1, n4}
starting from March 12th; in experiment E2 we enact the first two EOs, i.e.,
{n1, n4} starting from March 12th and also {n7(K12 )} starting from March
13th, etc. In each experiment we compute the total number of agents that has
been infected at the end of the simulation. This time, we include the county of
Louisa in the simulation, for a total of 119087 agents. We run each experiment
5 times to account for non-determinism in the simulation.

Fig. 4. Cumulative cases in E1-10, and in the real-world (×30, blue line). (Color figure
online)

Figure 4 shows the number of recovered agents at each time step in the simu-
lations (SIR plots available in the code repository), with the standard deviation
between the 5 runs shown as the confidence interval. E0 shows that if no mea-
sures had been taken, the spread of COVID-19 would have been several times
more rapid. The higher curves do not show exponential growth until the end of
the simulation, since our simulation contained only 119087 agents. After a suffi-
ciently large portion of the population has been infected it becomes increasingly
hard for the disease to encounter susceptible agents, slowing the spread.

Table 3 shows the total number of agents that have been infected at the end
of the simulation (including those not yet recovered). The experiment E9, where
all the norms were enforced, shows the lowest number of total infections, with
a reduction of 27% in cases compared the E8 – in which the maximum group
size was completely lifted instead of relaxed from 10 to 50 people – and an 83%
reduction compared to the experiment where no norms were enforced.

The largest decrease was from E5 to E6, closely follows by E6 to E7. In
the last EO in E6 the maximum group size of 10 was also applied to private
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Table 3. The average number of cumulative cases in each experiment

Exp. Cumulative cases Diff. w.r.t. Ei−1 Diff. w.r.t. E0

E0 90983.6 ± 41.802 0.0%

E1 80711.0 ± 343.627 −11.29% −11.29%

E2 71616.2 ± 241.017 −11.27% −21.29%

E3 71760.6 ± 297.292 +0.20% −21.13%

E4 64674.4 ± 445.714 −9.870% −28.92%

E5 49118.0 ± 4162.414 −24.05% −46.01%

E6 30505.0 ± 10202.892 −37.89% −66.47%

E7 20599.0 ± 4423.636 −32.47% −77.36%

E8 21195.6 ± 4044.473 +2.90% −76.70%

E9 15569.6 ± 5144.708 −26.54% −82.89%

gatherings, in addition to the already closed K-12 schools higher education was
closed, and physical distancing was declared compulsory. In the last EO in E7,
the earlier reduction of business capacity to 10 was relaxed to 50% capacity,
but offset by requiring all employees to wear masks. Given the large uncertainty
in E6, we cannot conclusively declare it more effective than E7, but rank both
as similarly effective. This means that, from the norms considered in this work,
restricting the group size in private settings, making physical distancing compul-
sory, and requiring employees to wear masks were the most effective in reducing
the spread of COVID-19.

It should be noted that for the purpose of this work, various simplifications
have been applied to the actual norms enforced. Moreover, in practice the EOs
(including relaxations) have been issued in response to the actual spread of
COVID-19 at that time, while in our simulation they were fixed to their original
dates. Nevertheless, these results show that behavioral responses of individual
agents to normative interventions, and not just the effect of an assumed level of
compliance, can be studied through our proposed simulation framework.

5 Conclusion

We presented a novel distributed agent-based simulation framework for large-
scale multi-agent simulations of norm-governed behaviors in epidemics, and
applied it to the case of COVID-19. We modeled a population of agents rep-
resenting individuals from the state of Virginia, whose daily behavior was deter-
mined from multiple data sources, including the American Community Survey.
We calibrated and validated the behavior exhibited by the agents, affected by
the norms enforced in the state of Virginia (such as school and business closures,
mask-wearing and physical distance interventions) using Cuebiq mobility data
and the COVID-19 infection data. We used the model to compare the sensitivity
of the COVID-19 outbreak size to the different normative interventions. In future
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work, we intend to evaluate the scalability of our framework, to introduce more
complex agents dynamics, such as inter-agent communications, and to evaluate
a number of different hypothesis about the COVID-19 pandemic.

Future work also includes improving the simulation calibration. We believe
that reducing the arbitrary scaling of the observed number of cases from 30 to a
smaller factor will result in better calibration. Improving the mobility calibration
to reflect the variations in mobility index from one county to another may require
further refinement of the behavior model. We are also working on scaling up to
larger populations, such as all the 133 counties and independent cities in the
state of Virginia, which add up to over 7.6 million agents, and evaluating more
complex experiment designs.

More broadly, we believe that effective intervention to mitigate novel epi-
demics requires methods to evaluate the effects of normative interventions in
detail, which in turn requires being able to model human behavioral choices and
responses. Through the use of substantial real-world data, BDI models of agent
reasoning, and a scalable simulation platform, we can come closer to this goal.
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Abstract. Multi-agent simulation (MAS) plays an important role in
analyzing our societies because it can model complexity in societies and
assimilate a variety of social data. However, the execution of MAS is com-
putationally expensive. When running numerous executions to determine
optimal policy, it is crucial to develop a more computationally efficient
mathematical model that is able to sufficiently substitute for the original
simulation. In this paper, we propose a machine learning framework for
developing neural network models, called MAS network , that can substi-
tute for MAS. Furthermore, we propose an effective feature representa-
tion of agent parameters and a systematic dataset design for learning. We
confirmed that the MAS network replicated the system dynamics of the
simulation and that the MAS network accurately learned the sensitivity
of output and input relation even at unknown parameter points.

Keywords: Multi-agent simulation · Surrogate model · Deep neural
network · Pedestrian flow simulation

1 Introduction

Our societies are becoming increasingly complex. Multi-agent simulations (MAS)
play a key role in the analysis of our societies. MAS models have sufficient
flexibility to represent complexity in societies and to assimilate a variety of social
data. Therefore, existing simulation models are used to analyze and improve
social systems in the real world [12,13]. However, MAS has a disadvantage of
long execution time, moreover, its execution is computationally expensive. Thus,
when running numerous virtual experiments in MAS to determine an optimal
policy (e.g., [2,11]), execution time becomes a problem. In practice, this type of
optimization application repeatedly arises in daily or weekly planning tasks. It
is crucial to develop a more computationally efficient mathematical model that
is an adequate substitute for the original simulation model without losing the
power of expression.
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Fig. 1. Schematic of MAS network. (a) Multi-agent simulations (MAS), Sim makes
future states of agents (positions of characters) based on their parameters and their
past states. (b) The states of agents can be aggregated as population of each spot
(sizes of circles), that is, we can do coarse-graining of the agent dynamics as population
dynamics by the aggregate function, agrSD. (c) MAS network, fθ, learns the population
dynamics for each parameters.

Here, we present a machine learning framework for developing computation-
ally efficient mathematical models, called “MAS network”, that can substitute
for MAS (see Fig. 1). Our framework is based on a neural network-based sur-
rogate model approach in physics, in which a simulator is mapped to a deep
neural network through end-to-end learning using a variety of input and output
data of the simulation. For example, [9] proposed a machine learning frame-
work that can learn simulation models of various physical domains. In [4], the
authors proposed an approximation model based on convolutional neural net-
work for real-time prediction of non-uniform steady laminar flow (see also [7]).
In [3], neural network surrogate models for animation based on physical prin-
ciples are proposed. Training such neural networks on MAS with large state
spaces of thousands of agents and complex dynamics of their interaction is dif-
ficult with standard end-to-end learning. In this paper, we introduce a method
that represents simulations on the system dynamics level for training; that is, we
attempt to capture aggregated population dynamics instead of individual agent
dynamics.

The main advantage of our proposed framework is that it can achieve compu-
tational efficiency without losing valid resolution and valuable details. Generally,
predicting the aggregated numbers is the primary objective of MAS, for example,
predicting how many people are in a specific location, how many people belong
to a particular social class, or how many people are infected with a contagion.
Compared to pure system dynamics models, the advantage of a multi-agent sim-
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ulation is the reproducibility of emergent phenomena arising from micro-level
interaction. Through experiments, we confirmed that neural networks built on
our framework could capture such valuable emergent details.

We evaluated our proposed MAS network by using several deep learning
architectures, and we confirmed that these networks could sufficiently learn a
pedestrian flow simulation. Our MAS network were able to learn the relationship
between the simulator input, which is the set of agent parameters and environ-
mental parameters, and the simulator output, which is the number of people in
each location, indicating congestion. We showed that our method could predict
congestion dynamics even when situations are unknown. Furthermore, we showed
the reproducibility of emergent phenomena arising from micro-level interaction.

The contributions of this study are summarized as follows:

1. We propose a framework for constructing surrogate models of MAS.
2. We propose an effective feature representation of agent parameters.
3. We propose a systematic dataset design of MAS for the surrogate models.

2 Framework Definition

2.1 Multi-agent Simulation

We consider the MAS that is described as follows. The simulation has several
parameters, and we denote by P the set of parameters. For example, in the
pedestrian flow simulation, the parameters include, but are not limited to, the
number of agents, the agents’ preferences, the number of services, the processing
speeds of the services. During the simulation, the simulation is given the input
to the parameters, P ∈ P. Based on the input, the simulation outputs the state,
X ∈ X , where X is the set of states of the simulation. For example, in the
pedestrian flow simulation, each state, X, represents all agents’ positions. The
simulation outputs the state at the next time-step based on the input to the
simulation, P , and the state at the previous time-step. Then, the simulation
repeats this procedure from the first time-step to the last time-step.

That is, when we denote by X ∗ the set of finite sequences (X0,X1, . . . , Xt)
of states in X , the multi-agent simulation is represented by a mapping Sim : P ×
X ∗ → X . For each input to parameters P ∈ P, the execution of the simula-
tion until the time-step T is represented by the sequence (X0, X̂1

P , . . . , X̂T
P ) such

that X̂t
P = Sim(P, (X0, X̂1

P , . . . , X̂t−1
P )) for every integer t ∈ {1, 2, . . . , T} (see

Fig. 1(a)). X0 represents the initial state where no one has appeared in the sim-
ulation environment. For each input to parameters P ∈ P and for each positive
integer T , the state sequence yielded by Sim is X̂t0:T

P = (X0, X̂1
P , . . . , X̂T

P ) ∈ X ∗.

2.2 Coarse-Graining as System Dynamics

Usually, the MAS has many variables. Thus, the dimension of each state of
the simulation, X ∈ X , is substantial. Thus, when we predict the simulation
dynamics, we focus on some aggregated information obtained from each state.
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That is, we have to consider an appropriate aggregate function, agr : X → A,
that maps each state of the simulation to some aggregated information, A ∈ A.
A is the set of the aggregated information. We define A := {agr(X) | X ∈ X}.
We denote by A∗ the set of finite sequence (agr(X0), agr(X1), . . . , agr(Xt)) of
aggregated information.

We introduce an aggregate function, agrSD, which coarse-grains state of the
simulation from a system dynamics perspective. The function, agrSD, summa-
rizes the state of the simulation, set explicitly of each agent state, into a set
of several agent population states (see Fig. 1(b)). The idea behind this is that
MAS can be captured as stocks and flows systems. The stock is the number
of agents belonging to each population and flow is the states transition from
one population to another population. An aggregated information, A, is an N
length real vector representing the states of N agent populations. For exam-
ple, in the pedestrian flow simulation, when we input a set of each agent state,
agrSD outputs the numbers of agents in each spot, where each population is
related to each spot. The definitions of each population can be arbitrary accord-
ing to objective and simulation type, such as the number of people in (station,
shop, intersection, . . .), (upper class, middle class, worker class, . . .), (suscep-
tible, infected, recovered, . . .), or so on. For each input to parameters P ∈ P
and each positive integer T , the aggregated information of X̂t0:T

P by agrSD is
Ât0:T

P = (agrSD(X0), agrSD(X̂1
P ), . . . , agrSD(X̂T

P )) ∈ A.∗.

2.3 MAS Network

We denote by fθ the surrogate model with parameters θ. MAS network as a
surrogate model is mapping from the input to the simulation and the history of
the agent population states until the current time-step to the states at the next
step, fθ : P ×A∗ → A. For example, in the pedestrian flow simulation, the MAS
network is given the input to the simulation and the number of agents in the
spots from the first time-step to the (t− 1)th time-step, and then it predicts the
numbers of agents in the spots at the tth time-step. For each input to parameters
P ∈ P, the prediction of the surrogate model until the time-step T is represented
by (A0, Ã1

P , . . . , ÃT
P ) such that

Ãt
P = fθ(P, (A0, Ã1

P , . . . , Ãt−1
P )) (1)

for every integer t ∈ {1, 2, . . . , T} (see Fig. 1(c)). For each input to parameters
P ∈ P, for each positive integer T , the state sequence yielded by fθ is Ãt0:T

P (fθ) =
(A0, Ã1

P , . . . , ÃT
P ) ∈ A∗.

Our goal is to find a surrogate model that can approximate the state sequence
yielded by the simulation and the aggregated function, Ât0:T

P . In machine learning
approach, assuming some probabilistic model (e.g., neural networks) f , we obtain
the surrogate model by solving

min
θ

max
P∈P

L(Ât0:T
P , Ãt0:T

P (fθ)), (2)

where L is a loss function that calculates a difference between state sequence
yielded by Sim and agrSD, Ât0:T

P , and state sequence predicted by fθ, Ãt0:T
P (fθ).
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3 Implementation

3.1 Neural Network Architecture

We use a type of neural network called a recurrent neural network (RNN) as a
probabilistic model, fθ. An RNN consists of a recurrent layer, ht+1 = σθ1(h

t, xt),
and a fully connected layer, yt+1 = φθ2(h

t+1), where ht is the hidden state, xt is
the input of the network, yt+1 is the output, and θ1, θ2 are parameters of each
layer. Recursive form of the RNN fits MAS network’s that predicts the next
population state from the parameters and past population states (Eq. 1).

We tested our framework using three RNN architectures: long short-term
memory (LSTM) [5], sequence-to-sequence (seq2seq) [10], and attention [1]. An
LSTM is an RNN with two hidden states, a cell state vector functioning as
long-term memory and a hidden state vector functioning as short-term memory.
In LSTM, the number of hidden layers was 2 and the number of nodes in the
hidden layer was 128. A seq2seq is an architecture that consists of two RNNs:
an encoder network and a decoder network. In seq2seq, a gated recurrent unit
(GRU), which has the same functions as LSTM and is more computationally
efficient than LSTM, was used for the encoder network and the decoder network;
the number of hidden layers was 1, and the number of the hidden nodes was
128. Attention model is an extension of seq2seq, where the decoder generates
an output sequence using its hidden state plus the hidden state of the encoder
at all times-step. In the attention model, network parameters were the same as
those of seq2seq.

3.2 Loss Function and Optimization Procedure

For a variety of P , we computed the mean squared error (MSE) of the simulated
state sequence, Ât0:T

P , and the predicted state sequence, Ãt0:T
P (fθ), as loss, that

is,

L(Ât0:T
P , Ãt0:T

P (fθ)) =
1

TN

T∑

t=1

N∑

n=0

(ât,n
P − ãt,n

P )2, (3)

where ât,n
P and ãt,n

P are real numbers representing the number of agents on a
spot, respectively. That is, Ât

P = {ât,0
P , ât,1

P , . . . , ât,N
P } and Ãt

P = {ãt,0
P , ãt,1

P ,

. . . , ãt,N
P }. We optimized the model parameters θ over this loss using the Adam

optimizer [6]. We performed 200 epoch training with a learning rate of 0.001.
We implemented our models using PyTorch 1.7.1 [8]. It took approximately half
a day to train a model on an NVIDIA Tesla V100 SXM2 (16GiB HBM2). We
followed standard supervised learning procedures.

We generated simulation results on various parameters, then randomly
divided them into training data (80%) and test data (20%). The training data
was used to train the model by searching for the best model parameters that
minimize the loss using the Adam optimizer. The test data were used only to
evaluate the performance of the trained model, where the metric of performance
is MSE, which is same as the loss function (Eq. 3). In our simulation, the time-
step, T , is 1000, and the state’s size, N , is 6.
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3.3 Input and Output Representations

Commonly, simulations have multiple parameters. In the MAS, there are param-
eters related to the agent and related environment. In the pedestrian flow sim-
ulation, the agent parameters are the preference, destination list, arrival time,
and congestion avoidance tendency of each agent, which governs all the pop-
ulation dynamics. The environment parameters are each spot’s number of the
server, service time per visitor, and network, which strongly relate to the indi-
vidual population. In that sense, the former are global parameters, and the latter
are local parameters of each population. From this perspective, we design input
features representations.

We define P as set of parameter vectors {P 0, P 1, . . . , Pm, . . . , PM}. Each
parameter vector corresponds to each parameter of the simulation. Each element
of the parameter vector relates to each population, Pm = {pm,0, pm,1, . . . , pm,N}.
We input the parameter vectors to an RNN sequentially (Fig. 2). Note that there
are two types of parameter vector: agent parameters, i.e., global parameters, and
environment parameters, i.e., local parameters. The agent parameters share value
within the vector, and the environment parameters do not share value within the
vector. That is, the agent parameters are pm,0 = pm,1 = · · · = pm,N , whereas,
the environment parameters are pm,0 �= pm,1 �= · · · �= pm,N .

Fig. 2. Input and output of our RNN. The symbols below the σ functions are input
to the RNN from left to right. A0 is a N length zero vector. The symbols above the
φ functions are the outputs of the RNN. We repeatedly applied φ and σ to an input
sequence. The LSTM applies to the whole process. In the seq2seq and the attention, the
encoder networks work only on encoding parameters, and the decoder networks work
only on generating predictions. The decoder networks compute predictions through φ
and π, using the encoder’s hidden states at P 0 to P M .

Preliminary experiments showed that an overlong parameter inhibited the
learning process. In our simulation, the agent parameter’s length reaches a thou-
sand because the simulation has hundreds of agents and each agent has several
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parameters. Hence, we introduce a feature representation technique to perform
dimensionality reduction of the agent parameters. We classify the agent into
several segments according to their features’ similarity and use the segments’
distribution as the agent parameters. The procedure of this segmentation is as
follows: 1) Calculation of the similarity of each agent using Euclidean distance
of their features. 2) Clustering of the agents with K-means using the calculated
distance. 3) Summarizing the number of agents in each cluster. 4) Replacing the
agent parameter by the distribution of the cluster. We compared our segmenta-
tion feature representation and statistical dimensionality reduction techniques:
principal component analysis (PCA) and autoencoder. The statistical techniques
compute latent variables from a purely statistical perspective; thus, it is difficult
to interpret the summarized values. Whereas summarized values computed by
our segmentation feature representation is superior in interpretability.

We normalized all of the simulation’s parameter, input and output element-
wise to 0–1, using the minimum and maximum value training data.

4 Experimental Setup

4.1 Simulation Model

We tested our framework using a pedestrian flow simulation. The pedestrian
flow simulation represents a simple street of a city consisting of six spots: three
facilities, one intersection, one entrance, and one exit. Each facility provides
service to visitors through a server, and the number of the servers and the service
time per visitor are parameterized. The geography of the street is modeled as a
queueing network, where each node represents each spot. The topology of the
network is parameterized.

We prepared three pedestrian agents with different decision-making and
interaction: migration agent, avoidance agent, and ori2dest agent. The pedes-
trian agents, which imitate shopper, tourist, or worker behavior, repeat the fol-
lowing sequence of actions: First, the agent arrives at the street. Next, the agent
selects a facility to visit next from among its destinations. Furthermore the agent
moves to the facility. If no one is waiting in the facility’s queue, the agent can
immediately receive a service; otherwise, the agent waits in line. After receiving
the service, the agent removes the facility from its destination list and selects
the next facility. This sequence of actions is repeated until the destination’s set
is empty; the agent then leaves the street.

Three types of agents have differences in the decision and the interac-
tion. Migration agent models people who avoid congestion using a smart
device. The agent selects the next facility based on its preference, distance
from the current position to the facility, and degree of congestion. Specifically,
agent i at position p computes its own utility Ui(a, p) for each facility a by
Ui(a, p) = αi(a) + d(a, p) + βici(a). Then, the agent selects a facility that max-
imizes the utility as the next to visit. That is, the agent behaves following the
discrete choice model that considers a congestion avoidance tendency. αi(a) is
the preference of pedestrian i for facility a; d(a, p) is the travel cost between a
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and p; and ci(a) is the congestion cost of a. β is a factor that determines pedes-
trian i’s tendency to avoid congestion. The agent always decides sequentially
and does not plan its route in advance. The agent can always get the latest con-
gestion information from the intelligent device. Avoidance agent is another
type of model representing congestion-avoidance behavior. The avoidance agent
models people who avoid congestion but do not use a smart device to do so.
Avoidance agent i at position p computes its own utility Ui(a, p) for each facility
a by Ui(a, p) = αi(a) + d(a, p). Then, the agent selects a facility that maximizes
the utility, similar to the migration agent. The avoidance agent does not con-
sider congestion when it decides which facility to visit next. However, if a visited
facility’s congestion exceeds agent i’s congestion threshold then i reselects the
next destination upon arrival. In this model, the congestion threshold, γi, rep-
resents pedestrian i’s congestion avoidance tendency. Ori2dest agents do not
interact with each other. The ori2dest agent models people just moving from
an origin to a destination, such as commuters and workers; the agent does not
avoid congestion in any way. The ori2dest agent model is the same as that of
the avoidance agent except the reselection behavior is eliminated.

4.2 Dataset Design

We tested our framework using three datasets generated by three simulation
containing each type of agent. Each dataset consists of simulation results sam-
pled from parameter space. Random sampling from the entire parameter space,
P, generates too sparse a dataset. In contrast, random sampling from limited
parameter space can not produce a good surrogate model because space may
not cover parameters that we want to predict. We introduce a method to define
a sampling parameter space from what it could happen (scenario) and what we
can do (policy). In the method, the sampling parameter space is defined by the
two space’s product: a scenario parameter space that covers all of the situations
that we assume in the simulation and a policy parameter space that covers all of
the policies that we want to test. In the pedestrian flow simulation, the former is
the size of each segment (108 parameters), and the latter are each spot’s number
of the server, service time per visitor and network (48 parameters).

The dataset design procedure is as follows: 1) Enumerating the scenario
parameters and the policy parameters. 2) Defining ranges of each parameter
and slicing them by regular intervals. 3) Making candidate of parameters as a
combination of each parameter’s value. 4) Randomly sampling from the can-
didate and running the simulation. Each dataset consists of 10,000 simulation
results generated from different parameters. We split the dataset as training data
(80%) and test data (20%).

5 Results

Our results show that the MAS network can predict the simulation dynamics
even with agents with a complicated manner of interaction (Fig. 3). The networks
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Fig. 3. Examples of the prediction results of the MAS network. Each panel shows the
congestion dynamics of a facility. The horizontal axis is the time-step, and the vertical
axis is the number of agents in the facility. The curves represent the ground truth
(simulation output, gray) and prediction (red). Each row represents each parameter
set’s results (a–d). Each group of three columns is the results of a surrogate model
trained using the specified type of agent (Ori2dest,Avoidance,Migration), and we
made three surrogate models for each agent type. Each column is the results of each
facility (F1, F2, F3). In the same row, the same simulation parameters were used, except
for the agent model. All of the results were computed using the test data. The results
were predicted by the attention architecture and segmentation feature representation.
(Color figure online)

can predict valuable details, such as variation in population trends, that arise
from micro-level interaction. For example, in Fig. 3b, the F2 curves changed by
the different congestion avoidance tendency between the ori2dest and avoidance
or the ori2dest and migration agent are reproduced. Moreover, the networks
showed the capability of predicting radically different dynamics (Fig. 3a–d).

The MAS network using the attention architecture showed a lower MSE
than the other architectures for all agent types (Fig. 4). LSTM lacks the expres-
sive power necessary for learning the dynamics, whereas seq2seq has sufficient
expressive power but requires more epochs to converge than the attention model
(Fig. 5). Our task involved, roughly speaking, “translating” a series of simulation
parameters to a series of degrees of congestion. LSTM is a general architecture
mainly used for predicting unknown parts of a series from known parts of it (e.g.,
predicting future values from past time series), whereas seq2seq and attention,
which belong to the encoder-decoder model, are architectures designed explic-
itly for translation tasks (e.g., machine translation). The difference in perfor-
mance between the architectures may be due to their relative suitability for the
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Fig. 4. Accuracy of the models. Each bar represents the mean squared error (MSE)
between the model’s predictions and the test data’s ground truth. The vertical axis
is log-scaled. The three-column groups show the results of models trained using three
different datasets, generated by simulations using the ori2dest agent, avoidance agent,
and migration agent. Each bar represents the MSE of an evaluated RNN architecture:
LSTM (gray), seq2seq (blue), and attention (warm colors); the MSE of each feature
representation using the attention architecture is separated: autoencoder (yellow), PCA
(orange red), and segmentation (red). (Color figure online)

Fig. 5. Learning curves of the models. Each panel shows the learning curves of models
trained using three different datasets using the ori2dest agent, avoidance agent, or
migration agent. The horizontal axis is the epoch of training, and the vertical axis is
the mean squared error (MSE) (log-scaled) in the test data. Each curve represents the
MSE of an evaluated RNN architecture: LSTM (black), seq2seq (blue) and attention
using segmentation representation (red). (Color figure online)

task. The segmentation feature representation, a feature representation method
suitable for MAS, showed roughly the same MSE as the other dimensional-
ity reduction techniques (Fig. 4 warm-colored bars). In the attention model, we
can identify which elements in the input series are most related to predicting
an element in the output series from the attention weight. We may reveal the
input-output structure of the MAS as a complex system by analyzing the atten-
tion weight. We consider that our segmentation feature representation is vital for
such advanced analysis, because interpretability of input values is a prerequisite
for the analysis.

The MAS network correctly reproduced the output’s sensitivity to input
parameters even at unknown parameter points (Fig. 6). The network repro-
duced the main effects, for example, when the processing speed per visitor of
F1 decreased, the queue length of F1 increased (Fig. 6, first row). Moreover,
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Fig. 6. Sensitivity of output to input. Each panel shows the congestion dynamics of
each facility (F1, F2, F3) and each curves represents the ground truth (gray) and
prediction (red). The horizontal axis is the time-step and the vertical axis is the number
of agents. Each column shows the results of a simulation conducted with that F1’s
processing speed per visitor set as each value (F1 : 1,2,3,4). Each row shows the
results of a simulation conducted with that F2’s processing speed per visitor set as each
value (F2 : 1,2,3,4). These results were predicted by a model trained by the migration
agent dataset using the attention architecture and segmentation feature representation.
Not all of the parameters are were included in the training data. (Color figure online)

the network reproduced the interaction effects. For example, when the process-
ing speed of F2 was slow, the same manipulation caused F1’s queue length to
change and F2’s queue length change (Fig. 6, fourth row).

6 Conclusion

We introduced the MAS network as a framework for constructing surrogate
models for MAS. Our results provide evidence of their ability to learn popula-
tion dynamics even if they contain emergent phenomena arising from micro-level
interactions. We confirmed that the MAS network accurately learned output and
input relation’s sensitivity even at unknown parameter points. Our approach that
builds a surrogate model using coarse-graining population information will have
applicability to a domain where daily prediction and optimization are required
(i.e., urban transportation management using MAS). The reason why the com-
putational complexity of the predictors built by our framework is robust relative
to the number of agents; for example, in the pedestrian flow simulation, where
the computational complexity increases with respect to the number of spots,
N , and is constant with respect to the number of agents. For example, we may
compute optimal daily staff allocation of an airport terminal based on the user
distribution forecast for the next day by using our surrogate models and black-
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box optimization technique. Because this study was limited in testing the toy
model, applying our framework to real-scale simulations is future work.
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Real-Time Inference of Urban Metrics
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Agent-Based Model Coupling Mobility
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Abstract. This paper describes the latest advancements in the Hous-
ing and Mobility Mode Choice module of CityScope, a data-driven tan-
gible platform developed by MIT City Science (CS) to facilitate more
participatory decision-making processes. The ultimate objective of the
Module is to easily predict people’s reactions to potential urban dis-
ruptions and policies by previously characterizing their behavioural pat-
terns. The main phase of this work consisted of a generic Agent-Based
Model coupling mobility mode and housing choice, which was calibrated
and validated for the Metropolitan Boston Area and Kendall Square
in Cambridge, US. However, the integration of such model onto the
CityScope platform resulted challenging, due to the complexity of the
represented dynamics. The present paper addresses this problem mak-
ing use of machine learning to train a surrogate model that will enable
the real-time visualization and analysis of the suggested actions. The
real-time nature of the obtained urban metrics will allow to append this
Module to the current easily-understandable CityScope feedback system,
bringing different stakeholders together to consensually shape the most
favourable urban scenario. This Module represents the first step towards
the development of a dynamic incentive system where CS seeks to pro-
mote urban characteristics such as equality, diversity, walkability, and
efficiency.

Keywords: Agent-based modelling · Real-time computing · Response
surface methodology · Dynamic urban planning · Pro-social city
development

1 Introduction

In line with the sustainable development goals established by the United
Nations [19], MIT City Science Group (CS) aims at developing tools that will
help bring different stakeholders together in an effort to make urban areas safe,
inclusive, resilient and sustainable [1,19]. To this end, a new line of research
within the CS Group seeks to develop a dynamic incentive system where dynam-
ically reconfigurable set of pro-social incentives will focus on fulfilling citizens’
c© Springer Nature Switzerland AG 2022
K. H. Van Dam and N. Verstaevel (Eds.): MABS 2021, LNAI 13128, pp. 125–138, 2022.
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aspirations [12,27]. An agent-based model was created as a first step towards
the aforementioned incentive system [27]. Citizens’ behavioural patterns when
choosing their residential mobility mode and housing option were characterized
and calibrated for the specific use case of the Metropolitan Boston Area and
Kendall Square (Cambridge, US). The definition of such patterns enabled the
prediction of citizens’ reactions to various urban disruptions. Likewise, it opened
the door to an in-depth study of the effects of modifying the urban configuration
in the Square and applying various housing incentives.

The ultimate goal of this dynamic incentive system is its inclusion on
CityScope, a data-driven tangible platform that helps different stakeholders—
including a wide range of profiles like planners, politicians, industry partners, and
citizens—reach an agreement on which are the most convenient urban actions
to be taken [1,10]. It is thanks to its instant feedback system, which is, indeed,
represented in a user-friendly way, that conflicting interests can be discussed
and various potential solutions immediately tested. Nevertheless, in order to be
able to facilitate consensus, it is necessary that the results of urban simulations
are obtained real time. The agent-based model presented in [27] did not meet
this criterion, which gave rise to the approach detailed in the present document.
We suggest and develop a methodology where the original model will feed a
machine learning algorithm that enables the immediate representation of the
required urban metrics under a wide range of possible alternatives.

This paper is organized as follows. Section 2 describes the original agent-
based model coupling mobility mode and housing choice and presents previous
applications of the suggested real-time conversion methodology. Section 3 out-
lines the details of the procedure used for the creation of the actual surrogate
model and illustrates the validation process. It also gives a detailed summary of
the agents that constitute the real-time model, the behaviours of each of them
and their dynamics. Section 4 gives some final thoughts on the effectiveness of
the method and suggests future research approaches.

2 Background

2.1 Mobility Mode and Housing Choice ABM

In a previous paper, citizens’ behavioural patterns regarding their mobility mode
and housing choice were characterized using an agent-based model [27]. The
definition of the parameters that affect their decision-making process allows the
prediction of the effects that potential urban disruptions (in the form of extra
housing units being built in the area) and policies (in the form of financial
incentives over the housing rent price) might entail. This is, therefore, key when
assessing the suitability of the suggested actions as part of the dynamic incentive
system.

This agent-based model was based on the well-known Schelling segregation
model [23]. Each “citizen agent” was given a random housing option in iteration
0 and in each subsequent iteration they would decide whether an alternative
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housing unit would best fit their needs. The scoring process used for assess-
ing the appropriateness of each housing option included housing and mobility-
related preferences. This approach was inspired by [9,16] and was adapted
to each agents’ income profile [4]. Both qualitative and quantitative criteria
were considered when defining transportation and housing preferences. Mobility-
related parameters included price, resulting commuting time, difficulty of usage,
and social pattern, while housing-related factors consisted of price, commuting
time—using the most convenient mobility mode—, zone preference, and diver-
sity acceptance. Figure 1 displays the reasoning process that each “citizen agent”
goes through when choosing their housing and, consequently, residential mobility
mode.

In order to calibrate agents’ decision-making parameters, an error minimiza-
tion process was held. The base scenario, where neither additional housing area
nor financial incentives were offered, was compared to current census [8] and
transportation data [5] for Kendall Square (Cambridge, US) and the Metropoli-
tan Boston Area. Two different errors were then defined: (1) housing error being
the difference in income-profile-based spatial distribution (2) mobility error being
the difference in the distribution of transportation usage. The preference param-
eters were adjusted so as to minimize the variations between simulation results
and the real scenario. The hill climbing algorithm was used to explore the param-
eter space that would lead to a minimum amount of Root Mean Square Error.
The housing error obtained after the calibration process accounted for 3.87%
and the resulting mobility error accounted for 2.30%. The code of the main
agent-based model and the one used for performing the calibration process are
available on the following github repository1.

GAMA Platform. The dynamics of the urban scenario were artificially repro-
duced using GAMA platform [11]. GAMA allows users to develop simulations
that are spatially explicit where GIS data can be easily incorporated [25]. This
same agent-based simulation platform has been effectively deployed on various
previous CityScope projects, including Volpe [1], Andorra [10], and CityMa-
trix [28]. In this last project [28], GAMA platform was deployed to run com-
putationally intensive transportation and energy simulations, and these results
were then used to train a surrogate model.

2.2 Related Work

As stated in [27], the results obtained from the suggested ABM were not imme-
diate and, thus, could not be directly integrated onto the CityScope real-time
feedback system. Table 1 displays the wall-clock time (in seconds) needed for ini-
tializing the simulation and for performing the first four iterations. The number
of “citizen agents” used in such simulation was 11,585, which corresponds the

1 https://github.com/CityScope/CS Dynamic Urban Planning.

https://github.com/CityScope/CS_Dynamic_Urban_Planning
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Fig. 1. Flow chart representing the housing and mobility mode evaluation process.
In each iteration each “citizen agent” compares the score obtained by their current
housing option A with respect to an alternative random housing option B. This score
is calculated as a weighted mean value considering each agent’s preferences regarding
housing—price, zone, diversity acceptance, commuting time—and mobility mode—
commuting time, commuting cost, difficulty of usage, social pattern—. The simulation
converges whenever the amount of people willing to move to the alternative housing
unit is below a certain threshold.
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number of people working in Kendall Square according to the American Com-
munity Survey Data of 2017. These computations were held in a PC with an
Intel Core i7-8565 CPU and a processor base frequency of 1.8 GHz.

Table 1. Wall-clock time needed for the initialization and first four iterations of the
main agent-based model for 11,585 “citizen agents”.

Initialization Iteration 1 Iteration 2 Iteration 3 Iteration 4

Wall-clock time [secs] 114.41 80.68 77.60 77.63 77.22

The issue of having individual models that are too computationally inten-
sive directly compromises the real-time simulation architecture [24]. This kind
of scenarios are fairly common in different areas of engineering [15] and architec-
ture [26]. In engineering, computer simulated experiments play a key role when
analyzing a wide range of alternatives for a design [15]. When these designs
are being explored through expensive analysis codes such as Computational
Fluid Dynamics (CFD) or Computational Structural Dynamics (CSD), creat-
ing approximation models, known as surrogate models, becomes important [13].

The surrogate model approach relies on sampled data to define input-output
behaviours and to easily explore the space of design [13]. Aerospace [17,22],
water engineering [3], architecture [26] or urban planning [28] are just some of
the research areas where surrogate modeling methodologies have been deployed
in recent years. In this last paper [28], a convolutional neural network (CNN)
was trained with traffic and solar simulations and was then used as a surrogate
model to foresee the effects of alternative actions and infer urban metrics real
time. Due to the similarity of the treated issue, [28] is of special interest for the
presented approach.

3 Architecture of the Suggested Methodology

In line with the aforementioned approaches, this section details (1) the steps
followed to create the dataset out of what-if scenarios applied to the main ABM
(batch experiments), (2) the usage of such dataset for training the machine
learning algorithm that constitutes the surrogate model, (3) the validation of
the surrogate model and (4) its usage in the real-time agent-based model. The
methodology followed is graphically represented in Fig. 2 and the corresponding
source code is publicly available on this github repository (see Footnote 1).
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1. GENERATION OF WHAT-IF SCENARIOS 2. DATA INGESTION

3. CONSTRUCTION OF THE
SURROGATE MODEL4. REAL-TIME VISUALIZATION
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Fig. 2. Workflow of the suggested approach. The first step consists of a what-if-scenario
generation step, where the main agent-based model presented in [27] is used to identify
the consequences of having extra housing units built and financial incentives given over
the market-driven rent price. For each what-if scenario urban metrics are calculated
through the main ABM and arranged in matrices formed by 19 columns. The surrogate
model (based on a k neighbour regressor) has been trained using 80% of the generated
data and tested using the rest 20%. The real-time ABM uses this surrogate model to
infer the t = 0 scenario for a certain input combination (built area, incentive given)
and represents the daily commute of “citizen agents”.
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3.1 Batch Experiments. Generation of What-If Scenarios

In order to create a representative dataset covering a wide range of possible case
studies, various what-if scenarios have been performed.

The inputs in each of these scenarios include the amount of area (in m2)
devoted to housing and the percentage of subsidy over the market price given
to the citizens in the form of a pro-social financial incentive. It should be noted
that these area and subsidy parameters only refer to the possible construction
of new housing units in Volpe as mentioned in [27]. They have been assumed
to be comprised of robotic micro-units (each of them would count with a 60 m2

surface area) based on the CityScience Group vision and the subsidy percentage
has been applied over the medium rent price in that area according to [20].

In the original mobility mode and housing model, once the iterative pro-
cess has converged—meaning that the amount of people willing to move to an
alternative housing option is below a threshold—each “citizen agent” eventually
chooses a geolocated housing option and the most convenient available mobil-
ity mode for that residency. Nevertheless, for the real-time version of this same
model, some general urban metrics have been defined as outputs. These will be
calculated depending on the specific inputs (additional housing area and financial
incentive) that characterize each what-if scenario. Outputs include: percentage
of people working in Kendall Square that are actually living within the Square,
percentage of citizens working in Kendall and belonging to income profile i that
live in the Square [i = 0(< $30, 000), . . . , 7(> $200, 000)], percentage of usage
of each transportation mode [car, bus, metro, bike, walking], mean commut-
ing time, mean commuting distance, and the occupancy rate of the additional
housing area. Such urban metrics have been chosen based on their usefulness
for determining the suitability of urban actions within the framework of the
CityScope radar [1].

3.2 Data Ingestion and Arrangement

The information extracted from the suggested what-if scenarios can be repre-
sented using Response Surfaces. This methodology identifies the influence of
several input variables on performance measures, called responses, and facili-
tates their visualization thanks to its graphical perspective [18]. Figure 3 shows
the Response Surface corresponding to the percentage of people living and work-
ing in Kendall for each of the studied cases. A hundred batch experiments have
been performed following a 0.1 step in subsidy and 2E05 m2 step in additional
housing area.

This data has been structured using matrices of 19 columns. The first two
columns correspond to the inputs (built area and financial incentive) while the
rest of the columns represent each of the outputs of interest. As the information
has been obtained following batch experiments with a constant step of incre-
ment, it has been necessary to randomize the data to prevent this uniformity
from affecting the model training procedure [6]. Data rows were, thus, randomly
shuffled fifty times.
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Fig. 3. Response surface resulting from the batch experiments performed to the original
mobility mode and housing model with respect to the proportion of people working
and living in Kendall. The x axis indicates the amount of residential area constructed
in the Volpe site [m2], while the y axis indicates the level of financial aid given to
the workers as a proportion of the total market prices for the area [/1]. The z axis
is, precisely the percentage of people—of any income profile—working in Kendall that
would end up living within a 20-min walking distance from their working place [/1].

3.3 Design of the Surrogate Model

The outputs resulting from the what-if scenarios have been deployed for training
a k-neighbour regressor on Python. The Scikit-learn library [21] has been used
for this purpose.

Training. 80% of the available rows have been used for training the model
while the rest 20% was devoted to model testing following the Pareto Princi-
ple [7]. k has been set to 6, since this is the value that leads to the best accuracy
score for our particular dataset. Figure 4 displays the R2 obtained for different
values of k, justifying our particular election. The effect of each neighbour in
the final prediction has been weighted based on the distance to the point being
evaluated. The idea behind the usage of a weighted k-nearest neighbour method-
ology is that the observations within the learning set that are close to the new
observation should have a bigger influence than those that are far away [14]. In
order to put equal weight on each covariate when computing the distances, it is
necessary to standardize the values [14] and, thus, the extra housing area has
been normalized—financial aid was already a rate between 0 and 1—.

Validation. Figure 5 shows the comparison between the simulated and pre-
dicted values for the first output, that is to say, the percentage of citizens working
and living in Kendall. For this particular case a R2 = 0.979 has been obtained
and the Root Mean Square Error is 1.98%. In general terms, the mean value for
R2 has been 0.844 and RMSE has never exceeded 5.75%. The prediction capacity
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Fig. 4. R2 and their normalized inverse values—these have been displayed to repre-
sent the characteristic elbow curve that determines the most suitable value for k—for
different k neighbours tested. The best prediction capacity is obtained whenever the
value of k is set to six, which justifies the election made in this document.

of such a surrogate model has been considered acceptable based on its similarity
with the precision (R2 = 0.8) obtained by [28]. All of the aforementioned com-
putations have been performed using a PC with an Intel Core i7-8565 CPU and
a processor base frequency of 1.8 GHz. Training and Validating the surrogate
model (once the dataset resulting from the main agent-based model had been
created) has required 102 min.

3.4 Real-Time ABM Description

Following the methodology that [28] presented, once the surrogate model has
been defined, trained and validated, the urban metrics mentioned in Sect. 3 will
be inferred real time for any input combination. This will constitute the t =
0 state for a simple agent-based model that represents the daily commute in
the Square, adopting the approach presented by [9]. The time required for the
initialization of the real-time ABM is 5.7 s and a mean of 34 ms for each step of
the simulation (for an Intel Core i7-8565 CPU and a processor base frequency
of 1.8 GHz), which enables the inclusion of this module in the CityScope plat-
form [1].

Entities, State Variables, and Scales. The environmental variables
include:

– Building: polygon representing the edifices within the Square [8]. Each build-
ing will be formed by the following attributes: category: type of usage given
to the building in question—it might be residential, industrial, mixed use
etc.—, from grid: boolean parameter indicating whether the building belongs
to the construction area or not—this variable is essential since at this point
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Fig. 5. Difference in results between the simulated values—orange—and the predicted
values—blue—using the k-neighbour regressor for the percentage of people living and
working in Kendall [/1]. The x axis represents each of the 20 what-if scenarios used for
testing (20% of 100 batch experiments), whilst the y axis represents the proportion of
citizens working and living in Kendall. The RMSE obtained for this metric has been
1.98%. (Color figure online)

financial incentives are only implemented for the housing units belonging to
the grid—, and is entry point: boolean parameter indicating if the polygon
accounts for an entry point to the Square or if it is a physical building—the
percentage of people working and living in the Square will only be assigned
physical buildings that are located within the 1 km× 1 km area surrounding
the Square as their housing option—.

– Entry point: abstract species representing the entry points to the Square
(parent: building). The percentage of people who are working in the Square
but live elsewhere in each case will be assigned an entry point in iteration 0.

– Road: network of roads that agents can use to move around [8]. If their
chosen mobility mode is the metro, they will only use these roads to get to
the corresponding stop.

– Metro line: network of metro lines where “metro agents” will be able to
move around [8]. The only attribute of this species is the line they belong to.

– Bus and metro stops: mobility hubs where “citizen agents” will head to in
order to make use of buses and metros [8]. Attributes include: waiting people:
number of “citizen agents” waiting for the correspondent vehicle to arrive,
route/line: route (for buses) or line (for metros) that the stop belongs to [8].

The agents species that constitute this model include:

– People: these agents represent citizens who are working in the Square—
11,585 according to the American Community Survey Data of 2017—and who
might live or not within the 1 km× 1 km area (the proportions are inferred
from the surrogate model depending on the amount of additional area built
and the given financial incentive). Their attributes include: income profile:
income profile they belong to, mobility mode: mobility mode they chose—
information extracted from the proportions obtained in the regressor—,
lives in Square: boolean parameter defining whether this agent lives in the
Square or commutes from an external point, living place: building or entry
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point that acts as the agent’s living place depending on whether they live
in the Square or elsewhere, objectives: list of trip objectives that the agent
will complete throughout the day based on their hourly schedule, and cur-
rent objective: their current objective.

– Bus and metro: both “metro agents” and “bus agents” present the same
attributes and dynamics with the exception of “metro agents” stopping in
“metro stops” and moving around using the topology defined by “metro
lines” and “bus agents” stopping in “bus stops” and moving around using
the topology defined by “roads”. Their attributes include: stops: list of hubs
where these agents have to stop, stop passengers: list of “citizen agents” wait-
ing in the stop, my target: stop these agents are heading to, and route/line:
route (for buses) or line (for metros) that they are covering.

Process Overview. The dynamics of this model are driven by the behaviours
of two main agents: “citizen agents” and “transit agents”—that is to say, “bus
agents” and “metro agents”—. At each time step ‘citizen agents’ will: (1) Check
their daily schedule to check whether they need to change their current location.
(2) If so, move to their destination making use of their corresponding mobility
mode and topology. As far as “transit agents” are concerned, their dynamics can
also be narrowed down into three main steps: (1) Head to the next stop within
their route or line (2) Collect the passengers that are waiting at that stop and
make the ones who arrived at their destination descend. (3) Once 30 time steps
are completed, move to their next destination.

Initialization and Input Data. The initialization of the model has relied
on three main axes: the information extracted from the surrogate model, files
containing GIS data, and .csv files containing the daily schedules of the pro-
files. The first piece of information enables the calculation of the percentage
of people living and working in Kendall according to their income profile and
depending on the amount of additional housing area that is being built and the
given financial incentive. Thanks to the training and validation of the surrogate
model, the urban metrics resulting from any combination of additional hous-
ing units built and given financial incentives that may not have been directly
simulated using the main ABM can also be inferred. Additionally, information
regarding the Volpe construction area occupancy rate, the distribution of usage
of different mobility modes, mean commuting time and mean commuting dis-
tance is extracted. This information is key when generating “citizen agents” in
iteration 0 and assigning them a specific housing and mobility option depend-
ing on their income profile. The second group of files includes (1) a shapefile
containing the buildings that are currently available in Kendall Square [8], (2)
a shapefile containing the road network of the Square [8], (3) a shapefile where
the metro network of the area is included [2], (4) shapefiles with the mobil-
ity hubs (for metro and bus) [2], (5) a shapefile containing the entry points to
the Square. When it comes to .csv files, a file containing an hourly schedule of
“citizen agents” depending on their profile has been incorporated following the
proposal in [9].
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4 Discussion and Conclusion

In the present paper a methodology has been suggested and implemented for
getting a real-time model out of a computationally expensive ABM evaluating
additional housing offer and financial incentives—with a previous characteri-
zation of citizens’ behavioural patterns regarding mobility mode and housing
choice—. A surrogate model based on a k-neighbour regressor has been devel-
oped, trained, and validated. The information extracted from this model enables
the identification of the following outputs: (1) the percentage of people working
and living in Kendall according to their income profile and depending on the
amount of housing area built and the financial aid offered, (2) the construction
area occupancy rate, (3) the distribution of different mobility modes usage, (4)
the mean commuting time and (5) the mean commuting distance. All of these
metrics are of great interest when estimating the suitability of the suggested
urban disruptions within the feedback framework of the CityScope platform [1].
In order to train such a model, batch experiments have been performed covering
a hundred different what-if scenarios. This has led to a R2 mean metric of 0.844,
which proves an acceptable prediction capacity, in line with the results obtained
in similar research approaches [28]. Should this measure be improved, a more
abundant testing set should be created, taking into account the computational
cost that this might entail. The aforementioned surrogate model has been used
for feeding a simple ABM that represents the commuting patterns of people
working in the Square according to the what-if scenario that is being evaluated.
Although this real-time ABM is enough to graphically represent the differences
between the suggested actions, should a more in-depth study of traffic jams or
public transportation saturation be performed, further research into the metrics
defining congestion in roads or overcrowding in mobility hubs would be neces-
sary. It should also be noted that, when transferring this model onto the tangible
platform, the extra housing area built in Volpe construction site would be the
result of the amount and type of Lego bricks that different stakeholders ended
up selecting, following the CityScope approach [1].

A final remark concerning further research into the development of the so
called dynamic incentive system is also necessary. This paper, along with the
original ABM coupling mobility mode and housing choice [27], have defined a
methodology to evaluate the consequences of various urban disruptions related
to housing and the corresponding financial incentives. The development of an
equivalent model for other incentives which are not housing-related is the logical
continuation of the present work. When a model embracing a wide range of incen-
tives is created, a possible strategy for making the whole concept dynamic would
rely on the pre-training of an algorithm capable of learning from the effects of
static incentives. This algorithm would then be used for dynamically predicting
the incentives needed to obtain the desired values of the defined metrics (which
would, indeed, constitute a multi-objective optimization process).
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10. Grignard, A., Macià, N., Pastor, L.A., Noyman, A., Zhang, Y., Larson, K.:
CityScope Andorra: a multi-level interactive and tangible agent-based visualiza-
tion, pp. 1939–1940. International Foundation for Autonomous Agents and Multi-
agent Systems (2018)

11. Grignard, A., Taillandier, P., Gaudou, B., Vo, D.A., Huynh, N.Q., Drogoul, A.:
GAMA 1.6: advancing the art of complex agent-based modeling and simulation.
In: Boella, G., Elkind, E., Savarimuthu, B.T.R., Dignum, F., Purvis, M.K. (eds.)
PRIMA 2013. LNCS (LNAI), vol. 8291, pp. 117–131. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-44927-7 9

12. MIT Media Lab City Science Group: Algorithmic zoning. https://www.media.mit.
edu/projects/algorithmic-zoning-dynamic-urban-planning/overview/. Accessed
Feb 2021

13. Han, Z.H., Zhang, K.S.: Surrogate-based optimization. In: Real-World Applications
of Genetic Algorithms (2012)

14. Hechenbichler, K., Schliep, K.: Weighted k-nearest-neighbor techniques and ordinal
classification. Collaborative Research Center 386 (2004)

15. Jiang, P., Zhou, Q., Shao, X.: Surrogate-model-based design and optimization. In:
Surrogate Model-Based Engineering Design and Optimization. STME, pp. 135–
236. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0731-1 7

16. Jordan, R., Birkin, M., Evans, A.: Agent-based modelling of residential mobility,
housing choice and regeneration. In: Heppenstall, A., Crooks, A., See, L., Batty,
M. (eds.) Agent-Based Models of Geographical Systems, pp. 511–524. Springer,
Dordrecht (2012). https://doi.org/10.1007/978-90-481-8927-4 25

https://doi.org/10.1007/978-3-319-96661-8_27
https://doi.org/10.1007/978-3-319-96661-8_27
https://www.mbta.com/
https://doi.org/10.4173/mic.2019.2.1
https://data.census.gov/cedsci/
https://www.cambridgema.gov/CDD/Transportation/fordevelopers/ptdm
https://www.cambridgema.gov/CDD/Transportation/fordevelopers/ptdm
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1007/3-540-45014-9_1
https://www.data.gov/
https://www.data.gov/
https://doi.org/10.1007/978-3-319-96661-8_29
https://doi.org/10.1007/978-3-319-96661-8_29
https://doi.org/10.1007/978-3-642-44927-7_9
https://www.media.mit.edu/projects/algorithmic-zoning-dynamic-urban-planning/overview/
https://www.media.mit.edu/projects/algorithmic-zoning-dynamic-urban-planning/overview/
https://doi.org/10.1007/978-981-15-0731-1_7
https://doi.org/10.1007/978-90-481-8927-4_25


138 M. Yurrita et al.

17. Mack, Y., Goel, T., Shyy, W., Haftka, R.: Surrogate model-based optimization
framework: a case study in aerospace design. In: Yang, S., Ong, Y.S., Jin, Y. (eds.)
Evolutionary Computation in Dynamic and Uncertain Environments. SCI, vol.
51, pp. 323–342. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
49774-5 14

18. Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M.: Response Surface Method-
ology: Process and Product Optimization Using Designed Experiments (2016)

19. United Nations: Sustainable development goals. https://www.un.org/
sustainabledevelopment/cities/. Accessed Feb 2021

20. PadMapper: Apartments for rent from the trusted apartment finder. https://www.
padmapper.com/. Accessed Feb 2021

21. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

22. Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidyanathan, R., Tucker, P.K.:
Surrogate-based analysis and optimization. Prog. Aerosp. Sci. 41, 1–28 (2005).
https://doi.org/10.1016/j.paerosci.2005.02.001

23. Schelling, T.: Models of segregation. Am. Econ. Rev. 59, 488–493 (1969). https://
EconPapers.repec.org/RePEc:aea:aecrev:v:59:y:1969:i:2:p:488-93

24. Stewart, P., Fleming, P., MacKenzie, S.: On the response surface methodology and
designed experiments for computationally intensive distributed aerospace simula-
tions, pp. 476–482. IEEE (2002). https://doi.org/10.1109/WSC.2002.1172919

25. Taillandier, P., et al.: Building, composing and experimenting complex spatial mod-
els with the GAMA platform. GeoInformatica 23(2), 299–322 (2018). https://doi.
org/10.1007/s10707-018-00339-6

26. Wortmann, T., Costa, A., Nannicini, G., Schroepfer, T.: Advantages of surrogate
models for architectural design optimization. Artif. Intell. Eng. Des. Anal. Manuf.
29, 471–481 (2015). https://doi.org/10.1017/S0890060415000451

27. Yurrita, M., et al.: Dynamic urban planning: an agent-based model coupling mobil-
ity mode and housing choice. Use case Kendall square. In: Arai, K. (ed.) Intelligent
Computing. LNNS, vol. 284, pp. 940–951. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-80126-7 66

28. Zhang, Y., Grignard, A., Aubuchon, A., Lyons, K., Lason, K.: Machine learning
for real-time urban metrics and design recommendations (2018)

https://doi.org/10.1007/978-3-540-49774-5_14
https://doi.org/10.1007/978-3-540-49774-5_14
https://www.un.org/sustainabledevelopment/cities/
https://www.un.org/sustainabledevelopment/cities/
https://www.padmapper.com/
https://www.padmapper.com/
https://doi.org/10.1016/j.paerosci.2005.02.001
https://EconPapers.repec.org/RePEc:aea:aecrev:v:59:y:1969:i:2:p:488-93
https://EconPapers.repec.org/RePEc:aea:aecrev:v:59:y:1969:i:2:p:488-93
https://doi.org/10.1109/WSC.2002.1172919
https://doi.org/10.1007/s10707-018-00339-6
https://doi.org/10.1007/s10707-018-00339-6
https://doi.org/10.1017/S0890060415000451
https://doi.org/10.1007/978-3-030-80126-7_66
https://doi.org/10.1007/978-3-030-80126-7_66


Changing Perspectives: Adaptable
Interpretations of Norms for Agents

Christian Kammler1(B), Frank Dignum1, Nanda Wijermans2,
and Helena Lindgren1

1 Department of Computing Science, Ume̊a University, Ume̊a, Sweden
{christian.kammler,frank.dignum,helena.lindgren}@umu.se

2 Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
nanda.wijermans@su.se

Abstract. For agent-based social simulations to be a powerful tool for
policy makers and other decision makers in a given context (e.g. the cur-
rent COVID-19 pandemic), they need to be socially realistic and thus,
appropriately represent complex social concepts, such as social rules. In
this paper, we focus on norms. Norms describe ‘normal’ behavior and aim
at assuring the interests and values of groups or the society as a whole.
People react differently to norms, and focus only on the parts that are rel-
evant for them. Furthermore, norms are not only restrictions on behavior,
but also trigger new behavior. Seeing a norm only as a restriction on cer-
tain behavior misses important aspects and leads to simulations that can
be very misleading. Different perspectives need to be incorporated into
the simulation to capture the variety of ways different stakeholders react
to a norm and how this affects their interaction. We therefore present an
approach to include these different perspectives on norms, and their con-
sequences for different people and groups in decision support simulations.
A perspective is specified by their goals, actions, effects of those actions,
priorities in values, and social affordances. Through modeling perspec-
tives we enable policy makers and other decision makers (the users) to
be active in the modeling process and to tailor the simulation to their
specific needs, by representing norms as modifiable objects, and provid-
ing textual and graphical representations of norms. This provides them
with differentiated insights meaningful for the decisions they are faced
with. We indicate the requirements for both the simulation platform as
well as the agents that follow from our approach. Early explorations of
our social simulation are showing the necessity of our approach.

Keywords: Norms · Social rules · Social simulation

1 Introduction

Social simulations are often seen as modern tools that can provide informa-
tion on how people will react in changing circumstances. This can lead to new
insights into key factors that determine the behavior of people in certain contexts
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(e.g. the current COVID-19 pandemic). Therefore, they can be very well used
as tools to support policy makers and other stakeholders (the users of the sim-
ulation) to make well informed decisions in a domain.

This requires from the to ensure some measure of reality of the model they
use. In this paper we will focus on the role of norms in social simulations. Norms
describe ‘normal’ behavior and aim at assuring the interests and values of groups
or the society as a whole [11]. They can arise from socially accepted behavior,
social norms, but also directly imposed, legal norms. Furthermore, they are not
only constraints on behavior. They can also motivate [2,12] and trigger new
behavior [11].

Norms affect people differently and each individual takes only the parts into
account that are relevant for them. as we will show with an example of a COVID
decision context in Sect. 2. We show that seeing a norm only as a restriction on
certain behavior misses important aspects and leads to simulations that can be
very misleading.

Different perspectives need to be incorporated into the simulation to capture
the variety of ways different stakeholders react to a norm and how this affects
their interaction. Although norms have been studied in social simulations before
e.g. [4,5,10], incorporating different perspectives on norms has not been done
before.

Therefore, we present our approach to modeling different perspectives for
social simulations in Sect. 3. We will first define what we mean by a perspective
and detail what it entails connected to, e.g. goals, values, and social affordances.

Subsequently, we will show how using our approach impacts the interaction
with the simulation from a user (decision-maker) point of view. Boshuijzen-van
Burken et al. [1] showed the benefits and added value of such an user focused
approach. Policy makers and other decision makers must be enabled to be active
in the modeling process to tailor the simulation to their specific needs. To support
them in gaining meaningful insights. To detail on our approach, we will derive
requirements for each of the levels of the system (the user, the system and the
agent).

2 Example

In the context of the current COVID-19 pandemic, we use the following (legal)
norm as an example: a restaurant-size based restriction on number of guests. This
norm may affect different agent groups in different ways, based on the target of
the norm. Note that we are not striving for completeness in this example, we
aim to use two of the affected groups, restaurant owners and guests, to show the
complexity of a simple norm and the necessity for our new approach.

The restaurant owner considers one of the main functions of the restaurant
to provide their income. Therefore, a restaurant owner may be focused on the
financial impact of the norm, but may also (secondary) be focused on the social
impact of the norm. Limiting number of guest has severe financial consequences
for a restaurant owner. Fixed costs, e.g. rent, remain constant, but the income
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(fewer customers) is affected negatively and may trigger coming up with ways to
compensate, e.g. extend opening hours, or bending the rule and allow a group
of four people to enter even though only two seats are left (with the possible
consequence of getting a negative reputation for doing so).

For the guests, the restaurant has mainly a social function. This can be the
place where they gather together with their family and friends and enjoy some
nice food together (social impact focus).

Since the norm is limiting the number of guests, some guests might decide
to reserve a table, while other people might change their eating times. However,
guests might also just keep on going to the same restaurant at the same time to
see if they get lucky to find a table.

Another part of the guests behavior is based on the restaurants owner’s
reaction to the norm. Guests react and can adjust their behavior, based on
certain actions taken by the restaurant owner. Some guests might stay away, if
the restaurant owner is bending the norm, while other guests are fine with that
and still come to the restaurant.

3 Adaptable Interpretations of Norms - Foundations

The restaurant example in the previous section shows that the same norm can
have different impacts on different categories of persons. Thus each category will
look at a norm from its own perspective. If these perspectives are not taken
into account but the norm is seen only as a restriction of a certain state or
action it leads to an oversimplification as illustrated in Fig. 1. Given this inter-
pretation of the norm restaurants will restrict the number of guests, which leads
to less income and therefore possible bankruptcy. This interpretation misses all
the other kind of reactions the parties might have to the norm and subsequent
behavior. When only having one perspective represented, such as the restau-
rant owner, the simulation can only be observed from their perspective and only
their reactions to the norm can be shown, while the guest’s point of view cannot
be observed. Lowering the variable costs, for example, is then just another fac-
tor that is taken into account in addition to the restriction, with no additional
insights.

Fig. 1. Norm as a restriction. Arrows highlight that the achievability of the goal is
limited by the norm

To allow different perspectives to play a role on how the norm affects the
simulation results we need to model what different perspectives exactly are.
This will be done in the following sections.
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3.1 Perspectives

A guest (category) in a restaurant is supposed to have the goal of eating. Thus,
when having the role of a guest, we attribute specific goals with connected actions
to this role - and any person with that role. Therefore we expect a guest to
order food, but not to go to the kitchen and cook. Furthermore, from a guests
perspective, the objects in the context of the restaurant, such as a table, offer
different social action possibilities, such as socializing with friends or family.

These are what we define as social affordances. In addition, we use values
in the goal formation process, as different roles typically prioritize some values.
E.g. a guest will prioritize having a good time, while a restaurant owner values
providing good and ecological food.

Consequently, to represent different perspectives, we make different goals and
actions available to the agents based on their role (i.e. the category they belong
to). Furthermore, different perspectives lead to considering different effects of
the same actions. The guest is interested if the eating leads to having a nice
time, while the restaurant owner considers eating to lead to earnings. Finally,
each perspective will attach different social affordances to the objects present
leading to different available actions and interactions in a situation. Whereas
the relation between goals, actions, and values have been used in agents before,
e.g. [8,17], social affordances are a novel concept that we are introducing in this
paper (see Sect. 3.3). We define a perspective as follows:

Definition 1. A perspective is specified by goals (G), available actions (A),
effects of those actions (EoA), social affordances (SocAffs), and priorities in
values (PrioV).

In the example the guest perspective can be instantiated as follows:
Gguest = {eat food, socialize with friends and family},
Aguest = {go to restaurant, reserve seat, order food, eat, pay, stay after eating,
leave},
EoAguest = {meet with friends and family, have place available, pleasure from
eating food, lose money. socialize},
SocAffsguest(table as example object) = {pleasure(-ability), socialize(-
ability)},
and PrioVguest = {hedonism, stimulation}.

Note that we could give a formal logical definition of all terms, but refrain
from doing so in this paper not to distract from the main goal of the paper to
explain the way perspectives influence the way norms impact a simulation.

3.2 Perspectives, Values, and Goals

Values are evaluation criteria for events and behavior [15,16]. We use them in our
context to determine which goals are important to achieve, and which actions
are most desirable to take, to achieve the goal. Each perspective has its own
priority between values.
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For example: Restaurant owners that give priority to power and achievement
are strongly money driven in their behavior. It leads to adopting goals that are
likely to contribute to getting rich. Thus this restaurant owner will try to serve
as many meals as possible against as little costs as possible. If a restaurant owner
prioritizes environmental values, she will adopt goals that are in line with these
values and e.g. has a goal to create vegetarian dishes.

3.3 Perspectives and Social Affordances

Different groups use objects differently. They look at them from a different per-
spective and have different purposes for them. A table in a restaurant is for the
guests where they can sit, and for the restaurant owner where their guests are
and eat. This means that the same resource, the table in a restaurant, is being
being interpreted differently with regards to actions that can be performed by
different roles.

These different perspectives on objects can be related to the notion of affor-
dances. Affordances describe the “action possibilities provided to the actor by
the environment”1 The classical notion of affordances focuses on the physical
options that are provided, e.g. the table is offering the ability to sit on it, sit-
ability, and put an object on it, place-ability.

We view affordances as a relation between an object and the action possi-
bilities that the object provides, i.e. the object affords the actions. We assume
hereby that the object has the necessary properties to be suitable for the action.
In the simulation, we have the set of n objects O = {o1, o2, ..., on}. We addition-
ally assume that an agent has the necessary capabilities to perform the physical
action (e.g. sitting). Leading us to define the physical affordances of an object
as follows:

Definition 2. The physical affordances (PhysAffs) of an object (oi) describe the
physical action possibilities, {αphysical, βphysical, ...}, that the object (oi) provides

PhysAffs(oi) = {αphysical, βphysical, ...},

for any oi ∈ O where oi has the necessary properties suitable for the actions.

The physical affordances for a table, for example, can then be formalized as:
PhysAffs(table) = {sit, eat, drink,...}

Note that the set of physical affordances does not contain all actions one can
perform with an object. It contains the actions one is “invited” to do with it,
or “normally” do with it. E.g. one can saw the legs from a wooden table, but
that is usually not thought as of an affordance of a table. In general the set of
affordances can be subjective and context dependent. However, for the moment
we use this simple definition which suffices for most social simulations.

People do not use objects in only a pure physical way. They choose their
physical actions based on their role and the social effects of their actions (social
1 https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-

computer-interaction-2nd-ed/affordances, accessed: 02/20/2021.

https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/affordances
https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/affordances
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actions), e.g. people go to a restaurant to sit at a table together to socialize.
This means that sitting together at a table in a restaurant offers socializing.
Therefore, we have to move beyond the physical notion of affordances and look
at the social interpretation of the use of the object next to the physical use. We
call this social affordances. They describe the social use of the physical object.

To incorporate this social notion in the theory of affordances, we look at the
purpose that the object fulfills for a person or a group. Dignum [6] states in his
work on social practices that the purpose “determines the social interpretation
[..] of certain physical situations” [6, p.2]. For example: The purpose of the table
for the restaurant owner is that the guests can sit there and eat.

To define social affordances, we depart from Definition 2, having a physical
object and adding the social aspects of time and location, and the role of the
agent to formulate the social affordances that an object provides. The social
meaning of the time (the social time) of an object refers to the association
with it, e.g. the evening is associated with dinner time. Different times have
different meanings and can therefore influence the available social affordances.
This is similar for the social meaning of the location (the social location), e.g. a
restaurant is a place to eat. We also need to look at the role of the agent, e.g.
being a restaurant owner. Lastly, the role makes an agent belong to a group with
the group’s specific goals, values, and available actions.

With this as a basis, we can now define the social affordances of an object as
follows:

Definition 3. The social affordances (SocAffs) of an object (oi) are the social
effects of the physical actions performed (social actions), {αsocial, βsocial, ...},
with the object (oi). They are determined by the social time (SocT), the social
location (SocL), the role of the agent (RoA) with the associated actions (A(oi)),
and the object (oi) itself. The resulting formalization is then:

SocAffs(oi, SocT, SocL,RoA,A(oi)) = {αsocial, βsocial, ...},

for any oi ∈ O where oi has the necessary properties suitable for the actions.

The social affordances of a table in a restaurant from a guest perspective can
then be instantiated as follows:
SocAffs(table, dinner time, restaurant, guest, {sit(table),eat(table)}) = {having-
pleasure, socialize}

This social view on objects enables to look how a norm affects the social
affordances that an object provides for different agent groups. While the social
affordances stay the same, specific actions might not be desirable anymore for
certain agent groups, due to a norm. This interplay between social affordances
(object-related actions) and norms (group-related action preferences) is crucial
in our approach.

For example: After limiting the amount of people in a restaurant, guests
might not be able anymore to stay after dinner for chatting, as the restaurant
owner wants to make the table free so new guests can enter, eat there and subse-
quently spend more money. Thus, the ability to socialize is altered. Guests can
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now only socialize while eating and not afterwards. Furthermore, the possibility
to relax is impacted, as guests have to leave faster and are not able to relax
afterwards at the table.

Note that social affordances are different from norms, as they fulfill different
functional roles. Social affordances describe the social effects of physical actions.
These effects are defining what individuals expect when using those objects.
Thus, they define the social actions possibilities that are offered by the object.
Thus, they are different from norms, as they are not related to violations and
are more centered around the individual.

In the next section we will investigate further how perspectives can help to
describe the different ways a norm influences a simulation. It is important to
note here that our definition covers only social affordances of physical objects.
The future work we will look at norms and other social structures, and their
affordances.

4 Using Perspectives with Adaptable Interpretations
of Norms

With the definitions of the previous section, we can now investigate the impact
of the introduction of a norm in a simulation. Based on the different goals, the
norm will influence agents differently depending on their perspective. A norm
can form a restriction for one goal, while other goals are unaffected. For example,
limiting the number of people in a restaurant affects the guests and their ability
to visit the restaurant, while the restaurant owner can still keep the restaurant
open in the evening. In order to make sure the perspectives are well captured,
we will enable the users of the simulation to be active in the modeling process,
so they can tailor the simulation towards their needs, see different variations
of what they want to do and to adapt norms on the fly. Therefore, norms are
represented as modifiable objects which will be attached to the agents. The
resulting user requirements will be described in more detail in, what we call, the
user level in Sect. 4.1.

These requirements need to be supported by the system (the simulation
itself). We call this the system level and it will be described in more detail
in Sect. 4.2.

Finally, we will present the resulting agent requirements in, what we call. the
agent level in Sect. 4.3.

4.1 User Level

Users (policy makers and other decision makers) need to gain meaningful insights
from using the simulation. Therefore, they need to be able to tailor the simu-
lation to their needs and thus take actively part in the modeling process. It
is important to note here, that we focus on the adaptability of norms and see
the existing perspectives as not modifiable (see future work). We identify the
following requirements from the user side:
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– Ability to observe the agent’s behavior from different perspectives (UR1)
– Explanations of the simulation based on perspectives (and what they entail),

incorporated social rules, such as norms, and the connections between the
social rules (UR2)

– Ability to manipulate the simulation, ie. having the ability and the support
to instantiate values, goals and available actions of the agents, add, alter, and
delete norms prior to the start of the simulation, and on the fly (UR3)

– Present the above support in a form that is usable and not too complex.
(UR4)

Each of these requirements, UR1 to UR4, will be explained in more detail
now. Policy makers and other decision makers must be able to take different
perspectives and observe the resulting behavior (UR1), such as the restaurant
owner perspective or guest perspective.

For gaining meaningful insights from the simulation and its behavior, it is
crucial to have detailed explanations of what is happening and why this is the
case (UR2). The user must know which perspectives exist in the simulation.
Therefore, it needs to be clear for every component in Definition 1 what it is. For
example, for the restaurant owner perspective, what goals the restaurant owner
has, such as getting income from the restaurant and keeping the restaurant open,
and what their priorities in values are, such as having a priority in power and
achievement.

When looking at the social affordances belonging to a perspective (UR2),
we need to look at Definition 3. The user must have the information about the
existing times in the simulation and what they mean (i.e. the social time), as it
is the case for the locations, physical and social locations. It needs to be clear
that evening means dinner time and that the restaurant is a place to eat. Going
to the available actions for an object (A(oi)), we can now see a connection to
Definition 1, which entails all possible actions of a perspective. It needs to be
clear for the user, which actions can be executed with which objects or if no
objects are necessary to perform that action. The user must be informed that,
when being at the restaurant table, the guest can order food, eat the food, stay
after eating, pay, and leave the table.

A structured text form can be used here. However, textual descriptions can
be vague and therefore, graphical support is needed. This enables the user to see
connections between goals and actions quickly. Furthermore, having connections
between actions and the objects they require shows possible impacts of norms
that have the same object as the actions.

Furthermore, the user must be aware of which social rules exist in the sim-
ulation (UR2). When having a norm that is limiting the amount of people in
restaurant, it needs to be made clear for the user that the objective of the norm
is the restaurant. The objective is then used to highlight which agent groups are
involved with the restaurant, such as the guests for example.

A framework that can be used here to represent norms in a more struc-
tured way, without being too formal, is the widely applied ADICO grammar by
Crawford & Ostrom [3]. The grammar provides a general format for rules [17].
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The need for and the level of explainability is also tightly connected to the
complexity of the simulation which we discuss in UR4. To tackle this challenge,
we use the experience that we gained in our ASSOCC1 project where we pro-
vided an easy to use interface for our complex model, see therefore especially
chapter [14] of our new book [7] for a detailed description.

Adding a new norm or changing an existing one is no trivial task and the
user needs to be supported by the system to do so (UR3). While the ADICO
grammar serves as a good starting point, it is not sufficient and a more detailed
approach is necessary to formulate norms in such a precise way that they can
be used in the simulation, through which the user needs to be guided. We adopt
and extend the ADICO grammar in the following way, based on [9,12,18]:

– Attribute (A): Agent (group)
– Deontic (D) + aIm (I): Fulfillment/Violation condition
– Condition: Activation condition, deactivation condition
– Deadline (Dl)
– Repair (R)
– Or else (O): Punishment

An example of this new ADICDlRO can be found in Fig. 2 below. The figure
also serves as a possible graphical representation of norms.

This graph provides a quick overview of the norms and shows that the restau-
rant owner is responsible to adhere to both norms (A). Furthermore, norms that
share the same object (IObject), and prominent punishments (here 1000$ fine)
can be identified (same, dotted line). The graph also shows that the norm to
have less guests in the restaurant negatively impacts (n-impacts, solid arrow)
the goal of the restaurant owner to make money, as fewer guests can be present
at the same time. The guests share the restaurant (IObject) with the restaurant
owner (shared, dotted line). Based on this shared relationship, guests can now
look at the respective norm and all the relevant elements for them to see how
that can potentially impact their behavior (looks at relationship, dotted arrow).
They now see that their social affordances, in this example socialize-ability, are
negatively impacted (n-impacts, solid arrow). Norm one results in fewer tables
available, and norm two potentially alters the dinner time, due to the mandatory
restaurant closure. Consequently, the figure shows that the two norms negatively
impact the goal of the guests to have dinner at the restaurant (n-impacts, solid
arrow) respectively. As the complexity of the graph can increase rapidly, the user
must have the ability to turn different elements on and off. This is also the case
for different norms and perspectives in general. One can also now see, how much
complexity is necessary to model the behavior compared to the limiting view on
norms as restrictions in Fig. 1.

Finally, taking different perspectives into account also has a high impact on
the complexity of the simulation. The simulation needs to be as complex and as
simple as the user requires it (UR4). If the simulation is too complex, it is not
usable for the user. It may be too convoluted with parameters so that the users

1 https://simassocc.org/.

https://simassocc.org/
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Fig. 2. Visual representation of norms.

are overwhelmed and the simulation becomes a black box, or it is so demanding
that it cannot be run by the traditional machines that users have. However, if
the simulation is not complex enough, then the desired effects and influences
cannot be observed. Some people might decide to wait outside the restaurant
until a table is free and this can lead to a queue in front of the restaurant. Such
a possible queuing behavior needs to be modeled appropriately. Otherwise, this
influencing factor is missed and no informed decisions can be made.

Taking these two sides together, it needs to be clear what the current limi-
tations of the simulation are. Otherwise, the risk increases that users attribute
elements and functions to the simulation that are not present. This is especially
critical when abstractions and simplifications are made.

4.2 System Level

The system describes the simulation in itself. It needs to support the users with
their goals. We therefore identify the following requirements for the system level:

Each of the elements in Fig. 2 need to be interactive. When clicking on an
element, such as an IObject or the user agent group, all connected elements are
highlighted by the system. This enables the user to quickly identify connections
and assess possible impacts.
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Each norm column in Fig. 2 is represented as one modifiable object in the
simulation. The system attaches the objects, the perspective object and the
norm objects, to the agent so they can use it in their deliberation process. The
distribution of the perspectives is determined by the user, prior the start of the
simulation. The social affordances can be made public knowledge.

To support the user with modifying a norm and adding a new one, a ‘lego-
like’ system, where each element of the ADICDlRO represents one building block.
Each of these blocks requires a specific input, and together they make the desired
norm change. This can then also be used to highlight at each step, based on
the given input, which other elements are affected, such as goals, actions of
an agent, or available social affordances. This means that the system needs to
show for actions if they becoming forbidden or obliged, for goals if they become
unachievable, and for social affordances if they get altered. Furthermore, agents
that have these affected elements are then in a special focus to see if they change
their behavior. Those events can be visually indicated during the run and logged
in a table for further analysis. Furthermore, counters and other numerical tools
can be utilized to measure how often certain actions, social affordances, and
objects have been used and how a norm change or the introduction of a new
norm influenced this number. A graph can then be used to see the development
over time, and it becomes clear for the user whether the desired influence was
achieved or not. However, such a ‘lego-like’system needs to be designed very
carefully. A good balance between giving the user freedom and limiting the
input possibilities to prevent senseless input is necessary. Such a directed system
can then also be used for supporting the user to set up the simulation.

Furthermore, the system needs to make sure that the information, when
inspecting an agent, is provided in a meaningful way for the user. Thus, the
inspection has to provide more than just values for the different variables, as in
NetLogo [19] for example. It needs to be immediately clear from the inspection
why the current actions have been chosen and which goal the agent is trying
to achieve. Other objects in the simulation, such as the restaurant, need to be
made inspectable as well. When inspecting an object, information needs to be
provided for the user to see which actions can be performed with the object, and
which norms are affecting this object.

4.3 Agent Level

Based on Fig. 2, we can see what elements need to be present in the agent’s
deliberation process to represent reactions to a new norm. The agent needs
values and the ability to check that one goal aligns more to a value than another
one. Work from [7,8] can be used here as a starting point.

Furthermore, an agent should be able to make alternative plans to reach a
goal when an action becomes forbidden or obliged. It should also be able to
reason with the available social affordances to check which alternative actions
are available. When no actions are available anymore to reach the goal, the agent
must be able to form a new plan to reach a different goal, based on the available
actions. Ideas from previous norm aware approaches, for example [2,5,12], can
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be used here as a starting point. Such a planning behavior also takes place when
the goals or actions are affected by the behavior of other agent groups.

Finally, agents need to be able to communicate with each other. When guests
go to a restaurant to meet their friends, the friends need to be there as well. Thus,
the agents need to be able to coordinate themselves in some way.

5 Preliminary Exploration

We are currently in the early stages of developing a social simulation of our model
using NetLogo [19]. We are targeting the following scenario: Restaurants are
offering three different time slots for eating, early evening (18:00–20:00), middle
evening (20:00–22:00), and late evening (22:00–0:00). This changes the available
social affordances, and the social time (SocT) of having dinner specifically. The
dinner time is now extended, as guests can eat between 18:00–0:00 (6 h), instead
of only eating between 18:00–20:00 (2 h).

Furthermore, the restaurant owners have daily fixed costs, e.g. for rent and
electricity, and variable costs for each guest, e.g. cost of food, service costs and
cleaning the dishes. Guests pay a fixed amount of money for their dinner and
we assume that they have enough money for their dinner. To explore how guests
react to the new eating time slots and if they change their dinner time (due
to the altered social time (SocT)), we distinguish the following cases: norm as
restriction, and norm as trigger of new behavior.

For both of these cases, we assume that people stay at the restaurant for one
time slot, and they want to go once every week to the restaurant. Furthermore, we
only look at the weekends, i.e. Friday to Sunday, as these are the most common
days for people going to the restaurant. Table 1 shows the early explorations that
we were able to make so far. We focus on the restaurants’ financial situation,
i.e. their capital and how it changes over time, and the guest’s satisfaction, i. e.
could guests go to the restaurant or has their spot been denied.

Norm as restriction: Guests do not alter their behavior. They try to go out
for dinner at their usual dinner time and if the restaurant is full, they can
try again the next day, thus the action going to the restaurant is not available
anymore until the next day. We assume that people try to go to the restaurant to
have dinner during the early evening time, i. e. 18:00–20:00, similar to northern
European countries, e.g. Sweden, where people have dinner at around 18:00.

Norm as trigger of new behavior: Guests alter their behavior. Similarly
to the previous case, the agents try to have dinner at their usual dinner time
(early evening). However here, the action to go to the restaurant is available for
every time slot, enabling guests to make use of the altered social affordances.
The changed social time (SocT) allows guests to relax their dinner time and also
go to the restaurant at a later time if the restaurant is full at their desired time.

We can see from these early explorations how a small change in behavior,
as a reaction to a norm, can result in a vastly different outcome. Of course, the
restaurant owner can also adapt to the norm and e.g. make different time slots
to accommodate more people, or offer a booking system.



Changing Perspectives 151

Table 1. Norm as a restriction compared to norm as a trigger of new behavior.

Cases Early explorations

Norm as restriction Restaurant owners are losing money and eventually go
bankrupt, as not enough guests are in the restaurant to
cover their costs. Also, the guest satisfaction is lower, since
not everyone can go to the restaurant within one week

Norm as trigger of
new behavior

Guests also use later time slots to have dinner. This enables
restaurant owners to allocate guests per day rather than per
time slot. These two factors together result in a higher guest
satisfaction, and healthy restaurant capital

While our current explorations are still in their very early stages using a basic
example, they show the necessity of our approach. Seeing the norm as a trigger
of new behavior resulted in different consequences for guests and restaurant
owners, and thus, in a different type of policy-behavior dynamics. We use this
as a starting point for more elaborate simulations going forward.

6 Conclusion

In this paper, we presented an approach to incorporate different perspectives on
norms into the simulation to provide policy makers and other decision makers
with meaningful insights to support them in their decision making. The results
of our preliminary explorations showed the necessity of our approach.

A perspective entails individual and group specific goals, priorities in val-
ues, actions, effects of those actions, and social affordances. Having these, users
(policy makers and other decision makers) can then see how norms impact indi-
viduals and groups differently.

Enabling the user of the simulation to be active in the modeling process,
allows for tailoring the simulation towards their specific needs and to observe
different variations of what they want to achieve.

For our future work, we will formalize the links between the norms and
perspectives. Given the importance of having an implementation, we will focus
on this. We will start with the implementation of the agents based on the ideas
of [1,7,8,13]. We will also focus on making different perspectives adaptable and
what support the users need to adapt them and to add new ones. Additionally,
we will define social affordances for social rules.
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Abstract. Traffic simulation is a tool used by urban planners to assess
the impact of new urban designs and public policies on mobility. Over the
years, numerous traffic models have been proposed, each model offering
different levels of details and performances. Multi-level model coupling
is an interesting approach to combine the advantages of complemen-
tary representations while limiting their drawbacks. In this paper, we
design and evaluate the performances of hybrid traffic models combin-
ing a microscopic model (IDM) with a mesoscopic model (event-driven
and queue-based). The results show that microscopic models have more
diversity in terms of behaviors but reduce the vehicle average speed and
mesoscopic models are more efficient in terms of computational time but
display a higher vehicle speed. Their hybridization then enables to find
a balance between scalability and the variety of the observed behaviors.

Keywords: Traffic simulation · Model composition · GAMA platform

1 Introduction

The sustainable management of mobility is identified as a key component for a
well-functioning Smart City [25]. On one side, technologies are evolving offering
new and more effective transportation modes [22]. On the other side, urban
planners see mobility as an enabler for designing better cities, integrating social,
environmental, and economical components [7]. Therefore, there is an increasing
need for tools that allow to assess the impact of these disruptive innovations
based on “what if” prospective studies [31].

Various traffic simulation models and software tools have been developed to
specifically model, plan and analyze current traffic in terms of offer and demand
[20]. Each tool is focusing on specific aspects of traffic modeling using dedicated
modeling approaches. A microscopic simulation focuses on modeling each vehi-
cle and its dynamics individually, whereas a macroscopic simulation focuses on
aggregated information such as traffic density and traffic flow [16]. To study the
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impact of urban planning decisions, that requires to both observe large-scale
traffic at the scale of a metropolis and focus on the microscopic traffic at the
scale of a ward, it is necessary to design tools that can combine and switch
between those different scales at runtime [13]. Furthermore, it is also interesting
to combine those different models with other models to study for example the
impact on environmental factors [24], or the individual response of citizens to
catastrophic events [8].

Large-scale road traffic in a city, including individual choices in terms of
mobility, is a complex system: it is composed of numerous heterogeneous enti-
ties with nonlinear interactions that are geographically distributed and can be
modeled and/or observed at different levels [13]. The agent-based paradigm is
thus a particularly suitable approach to model such complex phenomena [4] and
to couple various models, being of the same phenomenon at different scales or
different phenomena [11]. The key issues when coupling different models (in par-
ticular of the same phenomenon at different levels) are to control the side effects
at the interaction between models and to avoid divergence of the results [2].

This paper studies the impact of coupling different models of traffic simula-
tion within an agent-based framework. One microscopic (IDM [10]) model and
one mesoscopic (event-driven and queue-based [9]) model have been implemented
and coupled on a road network: moves of vehicles on each road segment can fol-
low the former or the latter model. The main contribution of this paper is to
evaluate the impact of the hybridization (i.e. the ratio of each model type) on
simulation performances (computation time, vehicles’ average speed, and vehi-
cles’ time to reach their target). In short term, the objective is to understand
and quantify the pros and cons of this hybridization and to emphasize the need
for an equilibrium between computation time of the simulation and variety of
agents’ behaviors, and identify challenges for dynamic model coupling. In long
term, the objective is to propose a framework to offer the possibility of dynamic
model coupling applied to mobility simulation.

The paper is organized as follows: Sect. 2 provides background on traffic
simulation and models coupling, Sect. 3 gives details about the two traffic flow
models and their coupling, Sect. 4 analyses the performance of the integrated
coupling of these two models. Finally, Sect. 5 concludes with perspectives.

2 Related Work

Numerous road traffic models have been proposed. Each model is designed with
a specific hypothesis, depending on the simulation objectives and computational
limits. Those models can be classified into three modeling levels [14]:

1. Microscopic [12,29]: such models describe individually the entities involved
in the traffic (vehicles, pedestrians, etc.), their interactions, and lead to emerg-
ing phenomena (such as congestion). They are considered the most accurate
and realistic. However, this representation has some limitations especially
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when upscaling: the computation cost indeed evolves rapidly with the num-
ber of individuals [27,28]. These models are also difficult to calibrate because
of their large number of parameters.

2. Macroscopic [18]: All individual vehicles are here aggregated and such mod-
els focus more on macroscopic variables of average speed, flow, and vehicle
density [15]. The observed behaviors are thus less precise. However, they are
very effective for representing large-scale phenomena in space and time. These
models often use probabilistic concepts, which makes them simple to describe
and calibrate. About traffic, they use concepts from fluid mechanics, including
the conservation laws [21] and differential equations.

3. Mesoscopic [6]: these models consider an intermediate representation
between microscopic and macroscopic models [30]. Two main approaches can
be found in the literature: either the individuals are grouped and thus indi-
vidual behaviors are not taken into account, or the dynamics of the flow of
entities is determined by a simplification of the individual dynamics and man-
aged at the road level [3,28]. The advantage of this approach is to have an
intermediate between the microscopic fine representation of individual vehi-
cles, but expensive and difficult to calibrate, and macroscopic inexpensive
and simple simulations providing coarse results.

Each of these modeling approaches has thus its specificities: macroscopic
models are particularly relevant for large-scale simulations (e.g. the scale of a
metropolis) whereas microscopic ones can be applied to represent precise traffic
in a small ward. When a model is designed for urban planning purposes, it
would be interesting to be able to observe both levels. To this extends it appears
necessary to combine different models.

Multi-level model coupling is a technique used to combine the advan-
tages of complementary representations of the same system. There are three
main types of model coupling [11,19]: integrated (model as a new model from
the combination of two, or more, models), weak (the model as a set of inter-
connected independent models), and strong (model as a set of parallel models
sharing data during the simulation). Model coupling, even if it can be techni-
cally complex when the number of interactions increases, provides huge benefits
in terms of modularity: coupled model could be switched to increase precision
or conversely to reduce computational time. The coupling can also be static or
dynamic [28]. When the coupling is static, the coupled models and the ways
they interact are defined at the initialization of the simulation and cannot be
changed at runtime. This is the most commonly used approach as it does not
need to implement transfer functions at runtime. The dynamic coupling app-
roach allows the system to switch between multiple representations dynamically
depending on specific criteria, such as the CPU load or user needs.

In this paper, we focus on a static hybrid traffic models, i.e. a model cou-
pling different (mesoscopic and microscopic) representations of the same phe-
nomenon: we divide the roads into sections and a specific (microscopic or meso-
scopic) model is associated to each of them, the transition is managed by the
frontier between each section.
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Several works have already investigated the possibility to design a hybrid
model of traffic flow, coupling models at various scales (in general a microscopic
model with a mesoscopic or macroscopic model). Such models are limited to
2 or 3 road sections, each section using either a microscopic or a mesoscopic
model. The objective is to ensure the coherence between these various models:
in particular that the number of vehicles or the flow speed is not altered at
the transition between models [2]. [17] focuses on the compatibility between a
micro and a macro model and in particular on the compatibility of a micro car-
following model at the interface with a macroscopic model. [5] also investigates
how to minimize the perturbations at the interface between 2 levels. [1] focuses
more specifically on the switch from a macroscopic to a microscopic model by
proposing probabilistic desegregation, which could open the door to dynamic
hybrid models.

Whereas previous models only focus on the interfaces between a microscopic
and a macroscopic model, we go one step further by investigating and quantifying
the impact of the hybridization rate, i.e. the rate of mesoscopic road segments
in a hybrid model.

3 Methodology

This section details the design of an agent-based traffic model of a highway road.
The road is sliced into segments of 1 km, where each segment is using its own
traffic model. The objective of the simulations is to study the impact of hybridiz-
ing different types of traffic models within the same simulation by analyzing
vehicles’ average speed, vehicles’ time to reach their target, and computation
time for each simulation. The rest of this section is organised as follows: Sub-
sect. 3.1 introduces the two models used for modelling traffic: one microscopic
model (IDM model [10]) and one mesoscopic model (event-driven and queue-
based [9]), and Subsect. 3.2 describes the implementation of those models within
the agent-based modeling and simulation GAMA platform [26] and the coupling
mechanism.

3.1 Traffic Models

Micro Model: Intelligent Driver Model (IDM) [29]. The first model is
a micro-simulation model that simulates the individual behavior of a vehicle
on a road. IDM is a time-continuous car-following model that describes the
evolution of the position and velocity of each individual vehicle: it models a
vehicle acceleration and deceleration, following the principle that a vehicle tries
to maintain a minimum gap with its front vehicle. The original version of IDM
is used in this experimentation. However, a variation of the model can be found
that includes other factors such as the human reaction time [10]. This model is
described by [10] as follows.

The computation of the nth vehicle acceleration v̇n is given by the equation:

v̇n = an

(
1 −

(
vn

v0
n

)4

−
(

s∗(vn,Δvn)
sn

)2
)

(1)
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where an is the maximum acceleration of the vehicle n, vn is the nth vehicle
velocity, v0

n is the desired speed of the vehicle n. sn is the distance gap between
two vehicles and is defined as: sn = Δxn − ln+1, where sn is the distance bumper
to bumper, Δxn = xn+1 − xn is the distance between the vehicles n and n+1,
and ln the length of the vehicle n.

The desired minimum gap of the vehicle n, s∗
n, is given by:

s∗(vn,Δvn) = s0n + Tnvn − vnΔvn

2
√

anbn

(2)

where s0n is the jam distance of the vehicle n which is the distance between
vehicles in a traffic jam, Tn is the safety time gap of the vehicle n, Δvn =
vn+1 −vn the velocity difference of the vehicle n, and bn the desired deceleration
of the vehicle n.

The IDM model is characterized by the intuitive parameters displayed in the
Table 1 (with the commonly used default values of parameters). It suffers some
limitations such as non-realistic deceleration in case of emergency braking, and
the safety gap is not enough to guaranty safety in critical situations.

Table 1. Common default values of parameters for the IDM model

IDM parameter IDM parameter description Default value

ln The length of the vehicle n (m) 5m

v0n The desired speed of the vehicle n (m/s) 30m/s

s0n The jam distance of the vehicle n (m) 1m

Tn The reaction time of the vehicle n (s) 1.5 s

an The maximum acceleration of the vehicle n (m/s2) 4m/s2

bn The desired deceleration of the vehicle n (m/s2) 3m/s2

Meso Model: A FIFO Queue Combined with the BPR Flow Equation.
The second model is an event-driven queue-based traffic flow model [9]. Vehicles
are aggregated at the road level where each road has a maximum capacity and
a maximum free-flow speed so, when a vehicle enters a road, its traveling time is
computed according to the current road capacity and free-flow speed using the
flow equation provided by [23].

To exit a road, a vehicle has to reach 4 conditions:

1. The vehicle is at the top of the FIFO queue.
2. The time spent by the vehicle in the queue is at least equal to the time

computed by the flow equation when it entered the queue.
3. The outflow capacity of the road (the maximum number of vehicles that can

travel through a road in an hour) is not exceeded.
4. The next road capacity is not exceeded.
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The next road should be (by default) another meso road, in this experimen-
tation, the next road could be also micro, Sect. 3.2 provides details about the
micro-meso coupling.

The Bureau of Public Road (BPR) function is used to compute the flow
equation [23]:

t = tf ∗ (1 + α ∗ (
v

c
)β) (3)

where t is the traveling time, tf = Rd
n/v0

n is the free flow traveling time, Rd
n the

length of the road n, v0
n is the free-flow speed, v the road volume, c the road

capacity. The α and β parameters are two parameters that have to be calibrated:
common values of those parameters are α = 0.15 and β = 4.0. Different values of
α and β can be used to take into account variation in transport infrastructures
such as intersection delay, stop or crosswalk.

The outflow capacity of a road is the maximum number of vehicles that
can leave the road over one hour. To comply with the outflow capacity, a min-
imum time between two vehicles t0 is computed using the following formula:
t0 = 3600/ζ, where t0 is the minimum time between two vehicles and ζ is the
maximum number of vehicles that can leave a road in an hour. ζ value depends
on the characteristics of the road. In this paper, ζ is fixed at 2000 veh/h which
corresponds to the maximum number of vehicles that can exit a segment of a one
lane highway. Therefore, whenever a vehicle exit a road, the next vehicle in line
in the queue will have at least to wait for a minimum time of t0 before exiting
the road itself. This model has proven to be efficient in large-scale scenarios [9].

3.2 Implementation and Coupling Strategy

The two previous models have been implemented within the GAMA platform
[26]. A third model (that is the object of this paper) has been implemented to
couple the microscopic and mesoscopic models on a road, each road segment been
controlled by one of the two traffic models1. The model is composed of two types
of agents, roads and vehicles. Each vehicle moves from the origin of the road to
its target, its moves are controlled by either the microscopic or the mesoscopic
model depending on the road agent. Each vehicle agent is characterized by a
location, speed, and acceleration and the set of parameters used in the IDM
model. Each road agent is characterized by its length, maximum speed, and all
the parameters related to the mesoscopic model.

An important point of the model is that, once it has been created, a vehicle
agent remains in the simulation until it reaches its target: in particular, it is
kept at the transition between the micro and the meso roads. The only difference
between a vehicle in a meso or a micro road is the activation or not of the IDM
behavior: on a micro road, the vehicle computes its own moves following the
IDM model, otherwise, the vehicle is controlled by the road. At the entrance

1 In the following, we will use “meso road” (resp. “micro road”) to refer a road con-
trolled by a mesoscopic (resp. microscopic) model.
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to a meso road, the vehicle registers to the road and waits until the road agent
wakes it up when it can exit the current road and enter the next road.

Different combinations of traffic models can be tested by selecting the model
executed by each road agent, from a fully microscopic model to a fully mesoscopic
model. Therefore, four types of transitions between models have to be designed
to effectively couple the different models and handle the transition from one
model to the other:

– From a mesoscopic model to a mesoscopic model. In this context, no
specific action is required. The vehicle exiting the road just registers to the
new one.

– From a microscopic model to a microscopic model. To avoid side-
effects at the interface between 2 micro roads, vehicles driven by the IDM
model consider a set of contiguous micro roads as a single road, and the
computation of the closest vehicle, etc. will take into account vehicles of the
current road, but also of the next road.

– From a mesoscopic model to a microscopic model. The key issue here
is to compute the vehicle speed at the entrance in a micro road.
1. Step 1: as the vehicle is on a meso road, it does not have any speed in

the sense of the IDM model. So a mean speed vn is computed at first:
vn = Rd

m/tmeso
m , where tmeso

m is the time to travel the current meso road
(considering the time in the jam, this is the true time spend on the road)
and Rd

m its length.
2. Step 2: it consists in detecting whether the vehicle is the leader of the

platoon:
• If there is no vehicle to follow, the vehicle is the leader and it enters

the road with the mean speed computed above;
• Otherwise the vehicle enters the next road with a speed that is the

minimum between the mean speed (computed above) and the speed
of the followed vehicle.

3. Step 3: the IDM behavior is activated, so all the interactions and behav-
iors are computed by the vehicle itself and the road agent is passive.

– From a microscopic model to a mesoscopic model. A vehicle from a
micro road has to take into consideration some meso road capability as the
inflow.
1. Step 1: if the vehicle is the leader of the platoon and the first vehicle

in the road, it computes the time to reach the meso road tr = δd
vn

, where
δd is the distance between the current vehicle and the end of the current
road, and vn the vehicle speed

2. Step 2: the vehicle checks if the time to reach the next road (tr) is
compatible with the outflow duration of the road, which means, the time
to reach the next road is higher than the outflow time from the previous
vehicle.

3. Step 3: if the outflow duration is compatible, the vehicle continues until
the end of the current road, otherwise the vehicle is braking and comes
back to Step 1.



160 J.-F. Erdelyi et al.

4. Step 4: the IDM behavior is deactivated, the road takes the control of
the vehicle.

4 Experiment and Results

The objective is to study the impact of hybridizing a microscopic and a meso-
scopic simulation model on the performances of an agent-based traffic simula-
tion. More precisely, we are interested in studying the heterogeneity of vehicle
behaviors by monitoring average speed and time to travel in different traffic
conditions (inflow value and rate of mesoscopic models), and the computational
time required to execute the simulations.

4.1 Experiment Design

The simulation is initialized with a 10 km section of motorway (segmented by
1 km sections) with two optional exits and one main exit (Fig. 1). Each road agent
is characterized by a length (1 km), a maximum speed (34 m/s), and a model
that has to be chosen between the microscopic and the mesoscopic models. Each
vehicle has its set of IDM parameters initialized with values from Table 1.

Fig. 1. Example of road configuration: blue roads are controlled by a microscopic model
and green ones by a mesoscopic model. The main entrance (resp. exit) is located on
the left (resp. right). (Color figure online)

The experiment configuration is as follows:

– A simulation step lasts 0.1 s;
– A simulation stops after 10 min (of simulation time);
– 80% of the vehicles are going from the main entrance to the main exit and

20% choose randomly an alternative exit among the two other ones.
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We propose to explore the model according to two parameters:

– The inflow of vehicles: it allows to adjust the number of vehicles created
each step: with an inflow of 1500, a new vehicle agent is created every 0.4 s. 5
values are evaluated: [1500, 1800, 2000, 2250, 2400] where 2000 corresponds to
the max outflow. The objective is to study different traffic conditions including
a low traffic inflow (1500 and 1800), the maximum free-flow inflow (2000), and
congested flows (2250 and 2400).

– The percentage of road hybridization, that is the rate of meso roads
(micro roads are considered as the reference). 11 values are explored from 0%
to 100% with an increment of 10%. For each value, the roads executing the
meso-model are randomly chosen.

To limit the effect of stochasticity, 20 replications (i.e. 20 simulations with the
same parameters values) are executed. An exhaustive exploration is performed:
all the combinations of the 11 values of hybridization and the 5 values of inflow
are explored. A total of 1100 simulations 11 hybridisation values × 5 inflows
× 20 runs ) has thus been computed.

For each simulation, three indicators have been computed:

– Mean travel time of vehicles (in s) that exited the road during the simula-
tion;

– Mean speed of all vehicles (in km/h);
– Computation time (in s) required to compute the 10 min simulations.

All simulations have been launched using a MacBook Pro with 2.3 GHz Intel
Core i7 quad cores, 32 GB (3773 MHz) of RAM, and Intel Iris plus graphics
(1536 MB).

4.2 Results

As the complexity of the microscopic model is influenced by the number of
vehicles traveling in the road, we first study the effect of inflow on vehicle density
(with 100% of micro roads). Figure 2 plots the mean density of vehicles in the
road (the difference between the number of vehicles that entered the road and
the number of vehicles that exited it during the simulations) for each inflow
value. The horizontal and vertical axis are respectively the time and the density,
and the color represents the inflow values. The results confirm that the higher
the inflow is, the higher the density is. However, we see that densities for inflows
of 2400 and 2250 are similar and close to the density of value 2000. The general
tendency is linear from time 0 to time 330 and the curve is starting to flatten from
that time. It corresponds to the moment when the first vehicles exit the road.
The lower the inflow is, the stronger is this effect. It is the consequence of road
congestion: with low inflow, vehicles are driving at a higher speed. Therefore,
more vehicles manage to exit the road. Whereas at higher inflow values, vehicles
need more time for exiting the road, leading to congestion.

On the left side, the Fig. 3 plots 3D graphs displaying the distribution of
the mean speed of vehicles during the travel, the time needed to compute the



162 J.-F. Erdelyi et al.

Fig. 2. Mean density of vehicles for each inflow value over time with 100% of micro
roads.

simulation, and the time for vehicles to travel from origin to destination (only
vehicles to the main exit). The x and y axes are the parameters i.e. percentage
of road hybridization and inflow values, and the z-axis displays the computed
metric i.e. speed, time to travel, and computation time. The bold line is the
median value, and the top and bottom lines are respectively the limits of the
first and third quartiles. To ease comparisons, the right side of Fig. 3 plots the
evolution of the median value of each metric for each inflow value. The horizontal
and vertical axis are respectively the hybridization percentage and the metric
value, and the colors represent the different values of the inflow.

First, we can see that for any hybridization rate, an increase of the inflow
leads to a reduction of the maximum speed. However, the full mesoscopic model
(hybrid parameter at 1.0) produces higher speeds than the full microscopic model
(hybrid parameter at 0.0). The range between Q1 and Q3 is narrower with the
mesoscopic model. This could be explained by the fact that using a mesoscopic
model, the vehicles tend to adopt the same behavior. On contrary, the dis-
tribution of speeds is more widespread with the micro model. As vehicles are
influenced by proximity with others, and speed is influenced by acceleration and
deceleration, each vehicle behaves differently. Nevertheless, we can notice that,
for low inflows (below 2000), the distribution remains very limited, even for a
mix of meso and micro roads (e.g. for the hybridization rate of 0.6).

We observe similar results with the travel times. The travel time is lower with
the mesoscopic model than with the microscopic model. The distribution of the
travel time is narrower with the mesoscopic model than with the microscopic
model.
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Fig. 3. On the left: the distribution of speed, computation time and time to travel for
each inflow value. For each curve, the bold line corresponds to the median value, the
top line the 3th quartile and the bottom line to the 1st quartile. On the right: only the
median of the left values indicators.
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The results in terms of computation time confirm that for all hybridization
values and all inflow values, the mesoscopic model is faster than the microscopic
one. The computation time for each inflow value is similarly low when all the
roads are using a mesoscopic model. However, inflow values have a strong influ-
ence on the microscopic model. This could be explained by the fact that the
complexity of the microscopic model is influenced by the number of vehicles,
as vehicles have to compute the distance to the closest vehicle. The more micro
roads there are, the longer the computation is. Therefore, the more hybridization
there is, the faster the simulation is.

From those results, we can conclude that the model coupling strategy offers
an interesting approach for large-scale interactive scenarios where computation
time is crucial. Each model offers different performances. Microscopic models
allow to get more variations in terms of speed and time to travel, whereas micro-
scopic models offer more gain in terms of computation time. By hybridizing the
simulation and coupling both models, we can either decrease the computation
time or increase the variety of observed behavior.

If we look at mesoscopic models, we observe that the inflow value has a low
impact on computation time, but if we look at speed level, inflows of different
values might lead to similar behaviors, and they do not produce an effect on the
time to travel. On the opposite, microscopic models computation time is strongly
influenced by the inflow value, but the model manages to produce different speeds
for each inflow value, and therefore, produce more rich behaviors. By hybridizing
those two models, it is possible to adjust those two criteria without completely
deteriorating the simulation. For example, at low inflow (1500), the two models
produce a relatively similar behaviors in terms of speed and travel time, but the
mesoscopic model offers a better performance in terms of computational time.

While the experimentation is limited to a simple highway and needs to be
experimented in real world scenarios, we see in those results the first step towards
dynamic coupling of traffic models in large scale scenarios.

5 Conclusion

There is a growing need for simulation tools that can interactively explore large-
scale mobility scenarios. Such tools should offer the possibility to adjust between
scalability, and therefore address the question of computational time needed to
compute a simulation (requiring a traffic model at macroscopic or mesoscopic
level), and realism of the observed behaviors (requiring a traffic model at micro-
scopic level). Interactive exploration makes it necessary to be able to zoom in a
specific area and thus to switch at runtime between models. Before addressing
the question of the dynamic coupling of models, these needs impose to explore
the impact of coupling models of the same phenomenon at different scales.

Historically, traffic simulation tools have been divided into microsimulation,
macrosimulation and microsimulation. Microsimulation offers more variety in
terms of behavior but needs more computational time. Therefore, they are lim-
ited to small scale simulation. On the other side, macrosimulation offers large
scale scenarios, but individual behavior is aggregated.
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To address this question, we present in this paper an agent-based traffic
simulation in which mesoscopic and microscopic models are coupled. Through
experimentation, we show that a hybridization strategy to adjust either the
computational time or the variety of behavior is feasible. Simulations show the
quantitative impacts of various rates of microscopic and mesoscopic models on
the travel time, speed and computation times. In particular, we observe inter-
esting results showing that in some inflow value ranges, both models behave
quite similarly in terms of vehicle speed or travel time, but with a huge gain of
computation time for the mesoscopic model. By dynamically switching between
microscopic and mesoscopic models, it is, therefore, possible to adjust in real
time the simulation to either increase its response speed or increase the variety
of the observed behaviors. However, this switching will result in variations in
terms of speed and time to travel. In addition, we would like to explore the pos-
sibility of calibrating the mesoscopic model online, using the well-known IDM
(micro) model.

This work is a first step towards a dynamic coupling strategy for large-scale
mobility scenario. Future work will include evaluation of the strategy in the real
context of the two French cities of Bordeaux and Dijon, and evaluation of the
performance in context where users dynamically change the model run by the
roads. At longer term, we intend to develop a middleware framework to couple
models at runtime according to users inputs or specific metrics (e.g. CPU load).

Acknowledgement. This work is part of the SwITCh (Simulating the transition of
transport Infrastructures Toward smart and sustainable Cities, ANR-19-CE22-0003)
research project funded by the French Research Agency.
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precondition for a well-functioning smart city. Transp. Res. Procedia 45, 604–611
(2020)

26. Taillandier, P., et al.: Building, composing and experimenting complex spatial mod-
els with the GAMA platform. GeoInformatica 23(2), 299–322 (2019)

27. Taplin, J.: Simulation models of traffic flow. In: The 34th Annual Conference of
the Operational Research Society of New Zealand, New Zealand, p. 12 (1999)

https://doi.org/10.1007/978-3-030-03098-8_28
http://arxiv.org/abs/1205.0561
http://arxiv.org/abs/1205.0561
http://arxiv.org/abs/1205.0561


Exploration of Model Coupling Strategies 167

28. Tchappi Haman, I., Kamla, V.C., Galland, S., Kamgang, J.C.: Towards an multi-
level agent-based model for traffic simulation. Procedia Comput. Sci. 109, 887–892
(2017)

29. Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical obser-
vations and microscopic simulations. Phys. Rev. E 62(2), 1805–1824 (2000)

30. Vorraa, T., Brignone, A.: Modelling traffic in detail with mesoscopic models: open-
ing powerful new possibilities for traffic analyses. WIT Trans. Built Environ. 101,
659–666 (2008)

31. Wegener, M.: The future of mobility in cities: challenges for urban modelling.
Transp. Policy 29, 275–282 (2013)



The Recruitment Game: An Agent-Based
Simulation

Siavash Farahbakhsh1(B) and Mario Paolucci2

1 Social Sciences Unit, Flanders Research Institute for Agriculture,
Fisheries and Food, Merelbeke, Belgium

siavash.farahbakhsh@ilvo.vlaanderen.be
2 Laboratory on Agent-Based Social Simulation, Institute of Cognitive Science

and Technology, CNR, Rome, Italy
mario.paolucci@cnr.it

Abstract. While the studies on terrorism and radicalization are forego-
ing, the socialization aspect of recruitment for terrorist organizations has
stayed under-explored. In this paper, we develop an agent-based model
simulating the socialization process of recruitment for terrorist organi-
zations. In conceptualizing the socialization process, we implement an
asymmetric game-theoretical model, with the two players of recruiter
and target. The players have predominant strategies in which they differ
based on their kinds. Our results show that initial ratios of different kinds
in the population such as denouncer and vulnerable, in the simulation
environment, have significant effects on the population of recruiters.

Keywords: Recruitment game · Agent-based modeling · Game
theory · Terrorism

1 Introduction

The literature on terrorism and radicalization is very rich. Different aspects such
as the role of communication (Bouko et al. 2021), networks (Martinez-Vaquero
et al. 2019; Calderoni et al. 2021), ideologies (Kruglanski and Fishman, 2009;
van den Hurk and Dignum 2019), typologies of terrorists (Horgan et al. 2018),
recruitment strategic motivations (Bloom 2017), radicalization stages (Klausen
et al. 2016), and strategic gains for social groups (Daniel et al. 2003; Sandler
2003, 2017; Skyrms 2014) are studied.

There is a consensus among scholars in this field that the emergence of terror-
ism has less to do with socioeconomic factors such as wealth and education and
they are associated mostly with ideologies and socialization (Horgan 2003; Turk
2004; Kruglanski and Fishman 2009). Joining a terrorist organization contains
a socialization process, which relies on an attraction-selection-attrition frame-
work (Schneider 1987; Bretz et al. 1989). Hence, potential targets for terrorist
organizations, based on a shared reality and their attitudes, are attracted to
an extremist or terrorist recruiter. Nevertheless, joining a terrorist organization
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K. H. Van Dam and N. Verstaevel (Eds.): MABS 2021, LNAI 13128, pp. 168–179, 2022.
https://doi.org/10.1007/978-3-030-94548-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94548-0_13&domain=pdf
http://orcid.org/0000-0002-4110-8742
http://orcid.org/0000-0002-8276-1086
https://doi.org/10.1007/978-3-030-94548-0_13


The Recruitment Game: An Agent-Based Simulation 169

contains risk-taking and arguably, strategy. That is, both parties, the potential
target, and the recruiter, when facing each other, decide to act or not based
on their risk evaluation, as they are aware of active efforts made by legitimate
agents to prevent recruitment from happening.

Despite the existing rich literature on radicalization and terrorism, the socio-
logical foundations of terrorism require further research. More precisely, besides
a very few studies (van den Hurk and Dignum 2019; Calderoni et al. 2021;
Martinez-Vaquero et al. 2019), computational models of terrorism’s recruitment
illustrating socialization processes of terrorist organizations are rare. In this
respect, this study aims to explore, with a computational approach, the mecha-
nisms of a terrorism recruitment process through the lens of individual decisions
and their collective outcome.

In investigating our research question, we take an agent-based simulation
approach (Edmonds and Meyer 2017; Epstein 2006). We build up a model of an
environment where recruiters and potential targets, both possibly being snitches,
interact and play a two-player asymmetric recruitment game. The game is initi-
ated by recruiters in which they may target potential agents, and they wait for
the targets’ response.

In other words, we focus here on the social consequences of individual deci-
sions, generated from individual traits, in a high-stakes recruitment game with
hostile undercover agents. This is just one of several components needed to
describe a real situation with high complexity and a strong dependence on indi-
vidual paths and external drivers (e.g. terror events). Nevertheless, the part
we study is a critical part that some other models neglected; having a better
understanding of recruitment sustainability in abstract conditions might be an
important ingredient for further, more situated studies.

More precisely, previous related models such as Calderoni et al. (2021), even
though calibrated, employ as the main decision for a target to be recruited a
simple threshold. Whereas, our model, with a game-theoretical approach, opens
up the black box of that threshold, aiming to the understanding of the dynamism
of interactions between recruiters and potential targets. Hence, our approach,
which is presented here with a toy model, could be further applied as an add-on
to existing radicalization-related simulation models.

In the next sections, first, we elaborate on the recruitment game simulation
model. Second, we present the results of the model.

2 The Model

We propose here an agent-based model where interacting heterogeneous agents
of two types – recruiter, target– coexist. The interaction between the recruiter
and the target is formalized through a recruitment game. The recruitment game
contains decisions and actions that a recruiter and a target must take together.
The decision for both parties includes risk-taking, incentive, and penalty-related
elements. Below we describe the model structure.
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2.1 Structure, Initial Settings, Parametrization

Agents are either residents or recruiters. In this version of the model, agents
exhibit a fixed behavior, predetermined at startup. In the residents’ population,
agents can be one of three kinds, vulnerable to the recruiters’ offers, refusing
them, or even denouncing recruiters when they are approached. Similarly, in the
recruiters’ population, the kind distinguishes true recruiters from undercover
agents aimed to fond out the vulnerable population.

The model is initiated as follows. We build the two groups of agents; residents
and recruiters. We assign kind to all agents depending on whether they are res-
idents or recruiters. We ask the two groups to interact and play the recruitment
game. Below we elaborate the recruitment game as the main model dynamics.

2.2 Recruitment Game

With a game-theoretical approach, we design the interaction between the
recruiters and the potential targets. In designing the recruitment game, we first
assume the two players: recruiter and target. We further by the assumption that
in the first step, the game is initiated by the request of the recruiter. In the
second step, the target should respond to the recruiter’s offer, which is to join
the terrorist organization, thus becoming a recruiter him/herself. Hence, our
modeling approach is to design a sequential asymmetric game, where the play-
ers do not have perfect information about the other player’s potential responses
(Gibbons 1992; Sandler 2003). The rewards of the game depend on the actual
intentions of the players, which could be sincere or not. The recruiter could be
actually organizing terror acts, or she could be an undercover informant. The
target could also be a potential terrorist, a non-harmful citizen, or also be an
undercover agent. Targets that are not denouncers nor vulnerable simply refuse
to be recruited.

In formalizing the strategies of the two players, we rely on the variable kind,
and we define the following strategies for the players.

1. Recruiter’s possibilities based on its kind:
(a) Recruit (R), when the recruiter asks the target to join the terror orga-

nization.
(b) Undercover (U), as the above, but in fact the recruiter is an undercover

agent will remove the target if that decides to join.
2. Target’s possibilities, when approached by a recruiter, based on its kind:

(a) Denounce (D), denouncing the recruiter and thus removing it from the
game.

(b) Accept (A), accepting the recruiter’s offer to join a potential terrorist
organization. This choice turns the agent to a recruiter.

(c) Refuse (A), refusing to join the terrorist organization with no other
effect.
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Recruiter

Target

(xRD, xR)

D

(xRA, xR)

A

(xRR, xR)

R

R

Target

(xUD, xU )

D

(xUA, xU )

A

(xUR, xU )

R

U

Fig. 1. Extended recruitment game

Based on the described groups, strategies, and sequences, we can draw the
following game tree (see Fig. 1), which is an asymmetric game in an extensive
form. The game tree can be formulated as a normal game.

Moreover, based on the presented game tree, Table 1 demonstrates the game
transformation into a payoff matrix, where the row player is the recruiter and
the column player is the target.

Table 1. Payoff matrix for the recruitment game, where x stands for the payoff gain e.g.
xRD is the gain of a recruiter who chose to Recruit, and then his/her target responded
to Denounce

D A R

R (xRD, xR) (xRA, xR) (xRR, xR)

U (xUD, xU ) (xUA, xU ) (xUR, xU )

Hence, the developed recruitment game is an asymmetric game. In order to
assign utility values to the payoffs in Table 1, we would need agents to weigh
internally the risk of being apprehended, perhaps in its simplest form as the cost
of being caught times its probability. But how to calculate the cost of such a
life-threatening event?

As an alternative to this calculation, in the present work, we examine the
population structure of the game, assuming that playing the game would either
affect the kind of the agent or remove it from the game, as in the specification
above.
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Thus, in the next section, We start by using the model to explore a parameter
space of initial population mixes and agent reachability.

2.3 Parametrization and Model Initialization

We parametrize the simulation model in which we will have a population of
targets and recruiters, who are different based on their kind. Table 2 shows the
model parameters, notation, range, values, and description. All parameters are
function of the number of targets in the simulation.

Table 2. Description of parameters, with notations, range, and descriptions

Parameter Notation Range Values Description

Recruiters
ratio

Rr [0, 1] (0.1, 0.3, 0.5) The ratio of recruiters
to the number of targets
in the simulation
environment

Undercover
ratio

Ur [0, 1] (0.1, 0.4) The ratio of recruiters
whose kind is
Undercover over the
total number of
recruiters. The rest are
true recruiters, their
kind being Recruit

Denouncer
ratio

Dr [0, 1] (0.025, 0.075, 0.125, 0.175) The ratio of targets that
incline toward
denouncing targets in
case of being
approached. Their kind

is Denounce

Vulnerable
ratio

Vr [0, 1] (0.1, 0.25, 0.50, 0.75, 0.9) The ratio of targets that
are vulnerable in case of
being approached. Their
kind is Accept

+ Radius θ [0, 10] (1, 3) The distance that a
recruiter, in its
surrounding, can span to
reach a potential target

3 Results

3.1 Global Sensitivity Analysis

To test our model, we take a global sensitivity approach and we ran simulations
by varying all the combinations parameters. More precisely, following the ranges
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shown in Table 2, we varied Rr, Ur and Dr, in the 0−0.5 interval with increments
of 0.1, Vr in the 0−1 interval with the increments of 0.1, and θ at the two values
θ = 1 and θ = 3. We repeat each experiment 10 times letting it run for 200
steps, each step randomly activating all the recruiters. Knowing the repetitions
and parameters, we ended up with 146410 observations. We expect that without
the defense offered by denouncers and undercover agents, all vulnerable agents
will eventually be recruited; to the contrary, when the opposition is strong, the
recruiter’s population will die out.

When plotting our global sensitivity results, we noticed that two factors can
characterize the outcome variable; 1) the number of recruiters who survive in the
simulation over time, and 2) the time when the recruiters population reaches its
maximum. This time factor suggests three sub-patterns. The first pattern (a) is
of uncontrolled growth until every agent is a recruiter. The second (b) is an initial
surge that is later controlled and reduced by the defensive strategies (denouncers,
undercover). Finally, the third pattern (c) shows a decrease of the recruiters at
the onset, bringing to extinction. These patterns can usefully be distinguished
by capturing the (last) moment when the number of recruiters reaches a global
maximum. This is the last step for pattern (a), an intermediate step for pattern
(b), and zero step for pattern (c). Thus, the time when a simulation reaches its
maximum value for the number of recruiters can distinguish which of the pattern
we are seeing.

Regarding the role of each parameter on the evolution of recruiters’ popu-
lation, on the first sight, it appears that all of the parameters have a visible
influence. However, their effects are not uniform. This makes the ground to con-
sider different value sets for each parameters in designing the experiments.

3.2 Experimental Design

Based on the global sensitivity analysis, we reduce the parameter values to the
most sensitive regions for the outcome variable. The main experiment values
are indicated in Table 2. The selected parameters values show 5 × 3 × 2 × 4 ×
2 = 240 parameters configurations, therefore, runs. In order to calculate how
many repetitions for each configuration are needed, we applied statistical power
analysis following Secchi and Seri (2017). The results suggested to repeat each
configuration 43 times. Moreover, based on the sensitivity analysis, we decided
to focus on the time steps below 50 as after this value, no major changes are
visible. Hence, knowing the number of configurations, and repetitions, we ran
our model 10320 times, and knowing the limiting time step, 526320 observations
were resulted.

3.3 Experiment Results

We present our results in two steps. First, we show the evolution of recruiters
population over time under different parameters configurations. Second, we focus
on the growth of recruiters population until it reaches its maximum.
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Recruiters’ Population over Time: Figure 2 shows the evolution of recruiters’
population over time under different conditions. Based on Fig. 2, it appears that
all the parameters have observable effects on the evolution of recruiters’ popula-
tion over time. In the meantime, the trajectories are very different when compar-
ing the two settings of the two settings of θ = 1 with θ = 3. In this regard, when
the recruiters stay mostly in their neighborhood (θ = 1), all the other parameters
have an observable effect. More precisely, an increase in the denouncer ratio (Dr)
and undercover ratio (Ur) leads to a lower recruiters’ population. Comparing the
effects of the denouncer ratio (Dr) and undercover ratio (Ur) based on the set val-
ues, one may argue that the denouncer ratio (Dr) has a more significant effect on
the population of recruiters over time since by smaller changes in its set value the
trajectory also changes.

Fig. 2. Evolution of recruiters’ population over time

The effect of recruiters ratio (Rr) appears linear. The more initial recruiters
are in the model, the more recruiters population will remain at time step 50.
This also holds for the Vr parameter. That is, when there are more vulnerable
in the population, in general, there will be more recruiters at the end of the
simulation.
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On the contrary, when the recruiters move beyond their neighborhood (θ = 3),
most of the parameters effect disappear. Seemingly, by moving further, given the
simulation space, recruiters are exposed to denouncers and undercovers with a
higher probability. This will result in a recruiters’ population disappearing (be
caught) in a short time. This mechanism is specifically observable when Dr ≥
0.075, which shows an effective level of denouncers in the population. Furthermore,
at θ = 3, Rr ≥ 0.3 and Dr ≥ 0.075, the peaks of recruiters’ population start to
disappear, shifting from pattern b to pattern c; a decrease of the recruiters right at
the onset, bringing to extinction at the end of the simulation. Change in the peaks
and patterns motivates us to look into also the peak of recruiters’ population.

Recruiters’ Population Maximum Growths: Figure 3 shows the growth of
recruiters population until its reaches its maximum. More precisely, the outcome
variable Gr we plot here is:

Gr =
Mr − Ir

Tm

where Mr is the maximum of recruiters’ population, Ir is the initial pop-
ulation of recruiters, and Tm is the time it takes in order for the recruiters
population to reach its maximum. Thus, Gr summarizes both the time of the
peak and its intensity.

We show the values of Gr in Fig. 3, that exhibits a general pattern, which
can be observed on the diagonals of each sub-graph where there is a change
from darker colors to lighter colors. The darker the color is, the smaller Gr is,
with the peak intensity being low or reached late. In contrast, when the color is
light, that means, the peak intensity is high, caused by showing a large growth of
recruiters population in a short time. This sets ground on which bases to assess
the growth of recruiters population and how to respond to it.

This representation might be used to decide policy intervention. For example,
assuming that all parameter could be modified in small amounts at a compara-
ble cost, the neighbors of a specific situation could be observed to decide which
parameter has the stronger effect in each context. In practice, the simplest policy
decision would be to move in the direction that brings about the darkest hue. As
Fig. 3 suggests, at any radius (θ), the general pattern seems to be at a 45◦ diag-
onal, which shows the linear effect of recruiters’ ratio (Rr) and vulnerable ratio
(Vr). This suggests the more initial recruiters and vulnerable in the population
will result in a higher Gr and peak intensity for the recruiters’ population. In this
line of argumentation, one may suggest that policy instruments should be imple-
mented in order to decrease the vulnerable ratio (Vr) first, which could be seen as
more of a mitigation approach. However, when it comes to decreasing the recruiter
ratio (Rr), it may not be obvious how and when besides direct intervention by the
governments.

Furthermore, when comparing the sub-graphs of Fig. 3 in a horizontal way, we
can see the effect of the undercover ratio (Ur) parameter. The more undercovers
are in the population, the less value of Gr, thus peak intensity for the recruiters’
population. Hence, increasing the undercover ratio (Ur) is an effective instrument
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Fig. 3. Growth of recruiters’ population until reaching its maximum

in tackling the peak of the recruiters’ population. Nevertheless, this instrument
can be seen as a costly solution as in order to have a significant effect the Ur

needs to be increased by large steps (i.e. Ur = 0.1 → Ur = 0.4). This means,
not only there needs to be an investment in attracting the population to become
undercover, but also a certain level of undercover is needed to have an effective
strategy.

Similarly, the effect of the denouncer ratio (Dr) parameter can be seen when
comparing the sub-graphs of Fig. 3 vertically. In general, an increase in the
denouncer ratio (Dr) results in lower ranges of Gt and peak intensity for the
recruiters’ population. Its effect is particularly visible when one compares the set-
ting of Dr = 0.025 with Dr = 0.175. Therefore, increasing the denouncer ratio
(Dr) can be seen as an instrument, which unlike the undercover ratio (Ur) does
not need a large increase to be effective. Increasing the denouncers’ population
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(a) Random Forest Cross Validation: summary statistic of recruiter’s population

(b) Random Forest Cross Validation: summary statistics of recruiter’s population, denouncers, and accept

Fig. 4. Cross validation results

could be seen as a mitigation plan aiming to attract a certain level of the popu-
lation who are willing to take a risk and denounce the recruiters while ignoring
possible networks (kinship, friends, etc.).

3.4 Calibration and Identification Approach

Following the sensitivity analysis, we plan to train our model for a potential
calibration of this model. Using this model, one may access to some summary
statistics, which could be at an abstract level e.g. the number of recruiters iden-
tified at the highest peak of terrorism in fragile neighborhoods, or the number
of denouncing cases, etc. Therefore, our model parameters should fit potential
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data, and if not, the new layers of the model should improve the fitness. In this
regard, following Carrella (2021)1, we deployed a Random Forest cross-validation
method. Practicing the calibration method, we ran our model 5000 times, where
we set the model parameters (see Table 2) at random uniform values.

We consider two scenarios: 1) only one accessible summary statistics; (num-
ber of reported recruiters at their highest peak), 2) adding two more summary
statistics to the first scenario (number of people who accepted the recruitment,
and the number of people who denounced the recruiters). Figure 4 shows the
results of this analysis.

On the one hand, Fig. 4a shows the confidence interval when using only one
summary statistic. The confidence interval is large and it suggests a poor per-
formance for all the parameters. Therefore, getting access to only one summary
statistic could not be useful for the model calibration of our recruitment model
to be the parameters’ estimates will be not performing well. On the other hand,
Fig. 4b shows the confidence interval when using only three summary statistics
instead. In this case, the confidence intervals reach closer to the true estimates
and it shows a better performance. Therefore, comparing Fig. 4a and Fig. 4b,
one may suggest deploying at least three summary statistics, which could cali-
brate the recruitment model if it is used as an add-on to existing threshold-based
recruitment models.

4 Conclusions

Our research shows the possibility of the implementation of recruitment games
through agent-based modeling.

In this research, we have developed an agent-based model simulating an envi-
ronment, where recruiters of terrorist organizations target civilians in order to
attract them to their organization. Our results showed that different initial con-
ditions lead to different trajectories of the recruiter’s population. More precisely,
the vulnerable and denouncer ratios appear to have significant effects on the
recruiter’s population. On the one hand, when there are either more vulner-
able or recruiters in the population, more recruiters will result in the overall
population. On the other hand, increasing the denouncer and undercover ratios
results in a decrease in the recruiters’ population. Furthermore, the effect of
radius, the distance which a recruiter could go and reach a target has a very
strong effect in which, when recruiters are willing to move further away and
beyond their neighborhood, they will face higher probabilities of being exposed
to other undercovers and denouncers, thus being caught leading to a decrease in
recruiters’ population.

Our results also put forward the attention on the peak intensity of the
recruiters’ population. This is particularly interesting as it emphasizes the
moment that the recruiters’ population together with its gravity in a sense how
many recruiters are in the environment. With this context, the role of introduced

1 https://carrknight.github.io/abm/2021/02/18/freelunch.html.

https://carrknight.github.io/abm/2021/02/18/freelunch.html
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parameters could be seen as crucial in influencing the peak and the intensity of
the recruiters’ population.
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Abstract. Collective action research of natural resource use aims to
understand why and when collective overuse arises. Agent-based simula-
tions and behavioural experiments are part of the toolkit for this quest.
In most agent-based simulation models however, individual and collec-
tive decision-making are discerned, but the crucial transition between
these two stances is understudied. In this paper we formalise computa-
tional agents able to think and act from an individual, social, or col-
lective stance using a combination of empirical findings and theoret-
ical models on togetherness. To this end, we use a conceptual agent
framework to adapt and extend an existing agent-based model designed
to advance the understanding of group processes for sustainable gover-
nance of dynamic common pool resource environments. The findings of
the paper are mainly a conceptual model and future research will fur-
ther develop the framework as well as the agent-based model for further
understanding of the processes involved.

Keywords: Togetherness · Collective action · Decision modes ·
Agent-based modelling

1 Introduction

Research on collective action regarding use of natural resource targets under-
standing and practices to avoid collective overuse. It covers a vast domain of
empirical, experimental, and modelling work including agent-based simulations
[21]. At the core lies the dilemma that individuals have to restrain themselves so
that the collective (including that individual) can continue to benefit from a par-
ticular resource. Whether or not an individual feels part of a group or considers
the effects of choices on other individuals has a profound influence on decisions
and behaviour. For many challenges humanity faces, the difference between act-
ing collectively versus individually is crucial, e.g. behaviour change to maintain
available resources.
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The study of how large groups of people govern natural resources and how
to improve this governance is one of the main topics within sustainability sci-
ence. Among the most iconic and influential work is the work of Elinor Ostrom
and her colleagues. Using empirical evidence, Ostrom challenged the then dom-
inating view that over-exploiting of resources by communities is unavoidable,
i.e. Hardin’s tragedy of the commons [14]. She showed this theoretical construct
had little to no relation to reality. Ostrom found communities are very much
able to self-organise, and that a government (top-down) or privatisation are not
the only ways of dealing with resources that are finite and freely accessible [19].
The ability of a community to self-organise and collectively avoid over-use of
resources directly relates to a degree of togetherness in such a community. Find-
ings regarding communities world-wide led to the identification of factors that
contribute to successful self-organisation and resource management. These fac-
tors were further investigated using behavioural experimental and agent-based
models to unpack the causal mechanisms underlying self-organisation and in
particular factors that strengthen or weaken the capacity for collective action.
Still much needs to be done to understand why, when, and how self-organisation
works see e.g. [6,16]. Particularly when including/integrating the role of group
dynamics, social identity etc., build on a social constructionist approach, where
for instance these preference evolve through social interaction [9]. Or - to address
the core of this paper - how do humans switch from one mode of decision mak-
ing to another (e.g. individualistic versus collectivist)? Some work exists that
reflects on the different decision mechanisms when reasoning from individual
versus collective modes [26,27], and what makes one feel part of a group or not
and to what degree one identifies with/has autonomy in such a group ([22,27]).
The connection of these insights, ways of seeing and studying are the key to
advancing our why, when, and how understanding of the emergence of collective
action in common pool resource (CPR) problems.

How and when individuals transition to collectively oriented decision-making
is understudied and undervalued. Many studies focus on the how and when of
cooperation or coordination arise [17,21]. Their focus is on the factors and situa-
tions leading to collective action, rather than on the meta-level decision-making
of switching between the individual and collective decision-making mode. This
falls between the cracks of scholarly domains focusing on either individual or
collective oriented individuals [9]. Most computational agent models currently
in use to understand, reproduce, or predict human behaviour also fall short.
Here, the starting point is often individual agents reasoning from an individual
stance. To understand and address problems of collective action our computa-
tional agents need to be able to think and act individually and collectively, which
requires the conceptual design to be based on understandings of being in either
mode and how an agent transitions from one mode to the other. As agents in our
work represent humans, we turn to the theories and models used to understand
human behaviour and decision-making.

In this paper we share the design and formalisation of agents capable of tran-
sitioning between being individual, social, or collectively oriented when deciding
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on their behaviour based on empirical insights on ‘togetherness’/collectiveness.
This allows for agents being situated in a group in which decision-making and
behaviour can (depending on the situation) be influenced by being aware of
others (social) as well as by belonging to a group (collective). We adapt and
extend an existing agent-based model designed to advance understanding of
group processes for sustainable governance of dynamic common pool resource
environments [24,30]. By using a combination of empirical findings and theoret-
ical models on the (emergence of) togetherness, we develop a conceptual model,
providing a set of decision trees reflecting the social and collective mode of deci-
sion making as well as the process by which these decision trees get activated.
Finally, we will propose next steps in formalising but also in refining empirical
data collection and experimental design. These steps underline one of the main
points of this paper, namely the importance of continuous interplay between the-
oretical models, simulation models and outcomes, and empirical data for deeper
understanding of social processes.

This paper is firmly located within agent-based social simulation, an area of
research within agent-based simulation with a strong base in research traditions
in the social and behavioural sciences as well as e.g. population ecology. In the
modelling of the agent internal decision making and the interaction between the
agents and their environment, theoretical models and empirical findings in these
areas are used to build simulations that help understand or predict social level
phenomena of interacting individual agents. We recognise that in what one may
call main stream agent-based simulation research this coupling is less strong
while in our research domain - agent-based social simulation -, the coupling is
particularly strong. Thus, we will start with an overview of theories relevant for
our research before moving to the empirical part of our work before connecting
these two parts to the agent-based social simulation model under development.

2 Models of Individual and Social Decision-Making
and Behaviour

Human behaviour and decision-making have been studied in various research
areas. Amongst others in philosophy, and more in particular social ontology,
however, these generally lack empirical grounding. Research areas that combine
empirical research and theoretical models based on the empirical findings range
from sociology (and related areas such as political science and anthropology) via
social psychology to psychology. The explanatory model of these areas mirrors
the collective, social, and individual level respectively. In agent-based systems
some of these theories and models have been used, with a particularly strong
position for individual-centred models (reflecting its connection to AI, which is
in its turn closely connected to cognitive science). In these models, delibera-
tion and goal-directed planning are key and the individual agent ranks action
alternatives according to an all encompassing utility function to choose the best
alternative. Philosophically, agent research has its primary home in the belief-
desires-intentions (BDI) approach which has a similar take on agent reasoning.
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At the core of BDI is the idea of (human) agents being primarily planning agents
[3] and has a philosophical base in the work of amongst others Michael Bratman.
Given that there are concerns about the possibility of BDI models to learn [20]
or to interact with other agents in a multi-agent environment [10] it is surprising
it has become so popular in agent research. In the following we will present a
few relevant agent decision-making models from the different areas.

In sociology, a long-lasting debate has been about the so-called micro-macro
link [1] which expresses the need for investigating the relationship between the
individual agent and interaction between individuals and the society at large
of which it is part as expressed in institutional, cultural, and societal aspects.
The debate includes how concepts on each of the two levels can play a role in
explaining and predicting behaviour.

Rational choice theory is one of the main models in use which places all
emphasis on individualistic decision-making, in the line of methodological indi-
vidualism based on the stance of Max Weber where individual actions that are
driven by intentions are the base for any effects on a social level. It is close to
the idea of homo economicus as used in economic theory to explain individual
choices. The model of decision-making is that of utility maximisation. The BDI
model is a perfect mapping of this stance.

On the other hand of the spectrum we find homo sociologicus, first branded
by Dahrendorf [7], where individual behaviour is steered by the social role the
individual plays and thus follows the norms that apply. A later take on the homo
sociologicus from philosopher and social ontologist Margaret Gilbert describes
this as agents acting based on their self-identification as a member of a social
group constituted by a set of norms [11,23]. To quote the opening sentence from
her later collection of essays:

We are social individuals: beings both independent and interdependent,
units that are unified into larger wholes. Living together, we live our lives
in terms of two distinct standpoints: the personal standpoint and the col-
lective standpoint [12].

The notion of togetherness is crucial for the way people in a community decide
and behave, and therefore important to include in the formalisation of mecha-
nisms of collective action. The work done in sustainability science on collective
action stresses this importance of togetherness by focusing on the ability of com-
munities to self-organise, however needs to connect beyond the institutional level
of collective action only.

Social psychology on the other hand, focuses on individual decision making
while being part of a group. Agent models are rarely endowed with a sensitivity
to togetherness in their decision making process and thereby lacking a crucial
decision pathway to behave collectively. In related social ontological models, the
model of reasoning is team reasoning [2,25] which addresses issues of collective
rationality and collective intentionality as an extension of game theory. This
level brings us closer to a multi-agent perspective.

The micro-macro distinction excludes the meso-level of shared social space
while not sharing collective intentions. There is something between being
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individual (making decisions independent) and being part of a collective (mak-
ing decisions from a collective stance). An example of theories spanning all three
levels of sociality is the social identity approach [22], as developed in social psy-
chology. This is close to the stance Margaret Gilbert presented in the previous
paragraph.

The models presented so far apply the same decision-making model in all
contexts and circumstances. All decision-making is still goal-directed in nature.
This leaves out situations in which there is no deliberation, where actions have a
habitual origin. These may well be the rule and deliberation may be the excep-
tion, as formulated by philosopher Alan Goldman at the opening of [13]:

Days, weeks, months go by in which I engage in no real deliberation about
what to do. ... In none of the(se) ordinary situations is there deliberation in
anything like the way philosophers typically describe: listing and weighing
of reasons on each side of a contemplated action, assigning rough numer-
ical values to reflect the weights, summing and reflectively forming the
intention to perform the action with the greatest weight of reason behind
it.

This habitual level of decision-making is part of the Consumat framework
[15]. This framework is firmly based in psychological theories and explains that
different decision-making models apply in different contexts, mainly depending
on the individual evaluation of its previous choices and the (un)certainty regard-
ing the information to which it has access. The Consumat framework is however
weak in its take on social aspects. A more elaborate framework is the Model
Social Agent, as developed by Carley and Newell [4]. In this framework, social
science concepts characterising different levels of sociality and agent-internal
frameworks, mainly from the cognitive sciences, are combined to create a space
over different types of behaviour that follow from the agent model and situation.
The Model Social Agent framework is particularly strong in its encompassing
of subtly different social theories. Both frameworks inspired the development
of the Contextual Action Framework for Computational Agents (CAFCA) [8]
which we will use in this paper.

CAFCA distinguishes two dimensions of decision-making context that
together frame what models of reasoning can be applied in the resulting con-
text as it is seen by the agent, see Fig. 1. One dimension describes the type of
reasoning: habitual, strategic (goal-driven) or normative. The other dimension
pinpoints the level of sociality in individual, social, and collective. In the indi-
vidual mode the agent interprets the decision as independent of others. In the
social mode agents recognise other agents in the situation but sees oneself as
distinct from or in competition with them. In the collective mode the agent does
not only recognise others but perceives itself as belonging to the others, as a
member of a collective or team.
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Fig. 1. Contextual Action Framework for Computational Agents (CAFCA) applied to
common theories [adapted version of [8]]

3 Empirical Exploration on Togetherness

We collected empirical data to further develop our model in a framed field exper-
iment in the form of a dynamic common-pool resource (CPR) game designed
to capture behavioural responses of resource-dependent small-scale fishers to
potential resource scarcity [18]. The experiment is a so-called ‘pen-and-paper
experiment’ in which 4 participants (fishers in our case) sit at a table, get infor-
mation on paper, and are accompanied by an experiment leader who guides
them through the game rounds. The group plays for the duration of 14 rounds,
a duration of which the participants are not aware. In each game round the
group of 4 fishers could: i) communicate face-to-face, ii) individually and anony-
mously harvest resources by writing down how much resource units they want,
and then iii) were informed by the experiment leader about the resulting fish-
stock (after harvesting and renewal of the resource). Based on how they played
they received payment for each unit of resource after the game. This set-up is
common for behavioural experiments on CPR use.

To unpack the role of togetherness empirically, we qualitatively examined
group dynamics processes in this behavioural experiment of collective action sit-
uation of natural resources. More specifically, after six of the 42 the behavioural
experiments with the Thai fishers in different coastal communities, debriefing
interviews were conducted with the experimenter team to get a feel for the
group dynamics to support the formalisation process. The choice for which group
depended on the availability of the experiment team (afternoon session only) and
the presence of the first author (first half of the field experiments). The aim of
the project for this data collection is to formalise the influence of perception
of change in the resource on their actions via their internal characteristics and
processes. We asked questions about the group dynamics, their perceptions and
attributions, but also on whether they felt like a group, whether this changed



186 N. Wijermans and H. Verhagen

throughout the experiment etc. In five of the six debrief interviews group-feel
could be discerned.

3.1 Inspiration and Reflections on Togetherness of Thai Fishers
Participating in Behavioural Experiments

When analysing the interviews from the angle of togetherness we notice how
the individual-social-collective way of looking at decision making and behaviour
allows for describing the situations that occurred.

Group A: A Collective and an Individual. In this particular group, partic-
ipant #3 always took more than the others, while pretending they didn’t under-
stand. The other three however (participants #1, #2, #4) felt like a psychologi-
cal group, they talked, strategised and attempted to convince #3 to adapt their
behaviour. Over time they suspected #3 of taking too much and this changed
the group dynamics. From that point onward #4 also took more, whereas #2
starts to take even less to compensate for #3.

Reflections. Group A can be described in many ways. On group level as a badly
functioning group, and one may even say this was not a psychological group,
there was no togetherness. However, there clearly was a subgroup (majority)
that started out as a well functioning group and they were severely affected
by the one person that took out too much. The effect led to entirely different
changes in mode: some went more deeply in the collective mode by restricting
oneself even more (damage-control for the group) while others removing oneself
from the collective by taking out more (damage-control for self). These are core
nuances that remain hidden when describing this situation as a non-cooperative
group or as erosion of cooperation in presence of defection.

The other reflection concerns the concept of a collective. Does this imply a
group in which all feel part of the same group or a majority that feels part of the
group? What do we mean when we talk about collectives? It is thus important to
distinguish between the thinking/decision-making and the behaviour regarding
the level of sociality (individual-social-collective). The thinking/decision mode
relates to what is valued or in focus, e.g. the group vs individual gains, how
considering other individuals plays a role in the decision. The behaviour can
be completely in line with the decision mode, but can also be different, e.g. an
individual shows behaviour that can be considered motivated for the collective
but actually is based on social motives. Particularly in changing situations (e.g.
times of polarisation), the importance of unpacking the underlying factors and
processes and understanding the why under behaviours is crucial for starting to
anticipate behavioural change and differences in collective commitments.

Group B: Tragedy of Cultural Rules. This groups seemed to be trapped in
their mechanisms around age and influence, and the group happened to have a
large age gap. The elder group members have influence, but limited knowledge
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and engagement. The group members with adequate knowledge had no influence
as they were younger and thus resorted in either no engagement (participant #1)
or kept trying to talk and involve the others (participant #4), but were ignored.
This resulted in very little to no communication and repeated depletion of the
resource. Nonetheless, apart from #3 who trusted everyone, all participants indi-
cated to feel part of the group. The Thai research team attributed this to the
participants bonding in the village. And #3 did trust everyone, but felt not part
of the group because they just moved out of the village.
Reflections. This particular group underlines the importance of cultural sensi-
tivity, but also at the role of age or being part of a particular generation in the
(in)ability of forming a psychological group (all feel part of the group). This
group also points at the important of understanding the different reasons for
why someone (doesn’t) feel part of the group.

Group C: Group with Conflict. Group C can be considered a group that
had a group-feel even while conflicts occurred. When the situation turned bad,
the group pulled together to think and act as a group, even though it was too
late to make the fish stock increase. There was a conflict when there was a big
unexpected drop in resource. Participant #2 got angry with participant #4. As
a consequence, the group stopped communicating for a while causing the fish to
decrease too much to allow replenishment despite renewed communication about
the strategy. In the beginning everyone followed participant #4, who was always
taking more than agreed. After the conflict everyone followed the suggestions
of participant #2. There were more tensions, as #4 wanted to end the game
because wanting to take time to pray (religion), whereas participant #2 wanted
to play as long as possible. Also, participant #2 told participant #4 “Don’t be
greedy” because participant #4 always said he wanted to catch a lot.
Reflections. In this group many things are going on. Firstly, the participant #4
clearly has two groups in mind they feel part of and by the sound of it, the other
(religion-defined) group affects their behaviour in the strongest sense (wanting to
end the game). Secondly, participant #2 upholds strong value of fairness/focus
on the optimal range of fish stock and normatively points out when someone is
not behaving appropriately and tries to make the person behave appropriately
in the collective.

4 Formalising Fishing Together

The empirical narratives provided in the previous section serve as inspiration for
realistic group(-feel) situations and dynamics without claiming to be complete
or representative. They help us think and advance type of agent formalisation,
theories and other empirical knowledge we need to include the transition to and
from collective to improve realism of our agents and real life complexity in our
empirical understandings.

To formalise collective decision making, we depart from an existing model
of human collective action in a common pool resource dilemma, called Agen-
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tEx [30]. AgentEx refers to the family of models that seek to (causally) under-
stand collective action and sustainable resource use, while combining behavioural
experiments and agent-based modelling (ABMs). The way the approaches are
combined depends on the focus on the project and model. For example, in the
AgentEx-I the aim was to explain a behavioural experimental result that theory
could not explain. The AgentEx-I model was developed after data collection,
where the agents embodied a possible explanation. In a follow up project, on
the other hand, the data collection of and around behavioural experiments was
designed to serve the empirical needs to design the agents, aiming to unpack the
role of perception on (collective) decision making.

In parallel, we used CAFCA to reflect on the dimensions of decision-making
in the AgentEx-I model (see Fig. 2) we realised that the model could in CAFCA
terms couldn’t produce collective behaviour (as indicated by the grey cells con-
taining ‘AgentEx’) (see [30] for more details of such analysis). As it makes sense
to include collective decision making to study collective action problems, we
developed a conceptual model of AgentEx-I that reflects collective decision-
making using the qualitative inspirations described in the previous section. This
extension complements the individual (decisions independent of others) and
social (decisions are affected by the agent itself and the fact that other agents
act and exist in the world as well) with collective decision making (decisions
are affected by relationships with other agents in the group the agent is part
of) in the AgentEx model. Other possible extensions would include the habitual
and normative level respectively, if applicable. For this, we need more and other
empirical data though.

Fig. 2. Contextual Action Framework for Computational Agents (CAFCA) applied
to agent-based model of common pool resource group dynamics - AgentEx. AgentEx
shows to reside on the strategic level on the reasoning dimension, whereas on the
sociality dimension it can show behaviour on all levels of sociality, but its reasoning
resides on the individual and social level of sociality.
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4.1 AgentEx+Collective—A Conceptual Model

In AgentEx-I, the behavioural outcomes could be ‘take more than an equal
share’, ‘take the equal share’ and do not take anything out. Each of these types
of behaviours are the result of different motivations and their connected decision-
making. There is a strong distinction between following the strategy of the group
versus one’s own strategy. The decision making is at its heart utility maximising
(going for the highest gains), with some individual attributes (high trust, and
social preferences) that prevent an individual from pursuing short-term maximal
personal gain. This is reflected by the white decision points on left side of the
AgentEx decision tree in Fig. 3.

A key take away of the empirical inspirations on the role of togetherness is
that feeling part of a group is essential in the way decision making takes place.
CAFCA departs from the presence of different decision modes connected to how
an individual relates to others in the sociality dimension being either individual
(independent of others), social (in competition or cooperation with others) or
collective (collaborative, together with others). The combination of these insights
lead us to include collectives decision making path in the decision tree, in the
form of an top node that discerns between whether on feels part of the group or
not.

The further refinements of the collective decision tree branch toward
behaviour was also informed by the stress in the empirical inspirations on both
(not) feeling part of a group and the role of one’s perception of others feeling
part of the group. The latter was illuminated by the different ways participants
dealt with how others experienced group feel. For example, suspicion of others
taking out too much resulted in acting to do ‘group damage control’ while others
performed individual damage control, in which the group feel of others made a
person weaker or stronger connected the to group and acted accordingly. Based
on these, we formalised the collective decision tree branch and connected to
the individual and social decision tree branches. In Fig. 3 these complementary
decision paths are reflected by the dotted lines.

5 Discussion and Conclusion

In this paper we argue for the importance of including and formalising collective
decision-making mechanisms in agents and take some first formalisation steps.
We contribute by formalising how such a collective decision-making mechanisms
may look like using an existing model of collective action in a natural resource
use context (AgentEx). More specifically we 1) made use of qualitative empirical
insights gained by debriefing interviews after a behavioural field experiment of
the same decision context of the model; 2) made a formal suggestion for collective
decision-making mechanism in the form of a decision tree branch integrated in
the AgentEx decision tree.

Within and beyond the study of collective action there is an unrecognised
need for the formalisation of agent-based social simulations able to represent
different modes of decision making depending on the context of sociality they
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Fig. 3. Decision tree AgentEx (left branch) complemented with collective decision
mode pathways (top decision point and right branch), where the different modes of
decision making - individual (solid yellow lines), social (dotted purple lines) and col-
lective (dashed blue lines), can lead to the same behaviour for different reasons.

are in and mechanisms to adapt accordingly. Modelling decision making is often
trapped in rational actor thinking, while the social sciences suggest many alter-
native ways and insights on how decisions are made depending on the context
[5]. For the sake of social realism and context sensitivity, agent-based simula-
tion modellers working on models reflecting real-world human interaction need
to advance to formalising other ways of describing decision making, to encom-
pass both individual agency and collective agency. This boils down to mod-
ellers engaging with social sciences and integrate (and thereby value) theoretical
insights and empirical insights of a ‘qualitative’ nature. Not only will this support
model building, but also exploring and extending the ability to reflect different
social realities that are important in supporting the complex challenges we face
as humanity.

While taking a small step in this grand ambition, it paves a way to go.
Providing tools that critically assess decision situations with CAFCA, but also
demonstrate the inclusion and formalisation of such ‘low attention’ areas such as
collective minded decision-making in agents. We will continue taking baby steps
towards our grand challenge, and consider the following points in advancing the
formalisation of collective decision-making in agents:
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Further Development of AgentEx: As a next step we will implement this
conceptual model of collective decision making in AgentEx and explore the role
of different initial conditions for the group member to feel part of the group [0,
25%, 50%, 75%, 100%] and compare these with the old AgentEx outcome for a
baseline situation. We will check the effect on both cooperation and sustainable
resource use to see the implications of this inclusion. Directly after, we would
focus on togetherness dynamics. To conceptualise, formalise and test the role of
changing group feel based on the outcomes of the group. E.g. good/bad resource
state increases/decreases, participation of others in conversation yes/no etc.

Empirical Insights on Reasoning: In this paper we deepened the social-
ity dimension of CAFCA for the formalisation of collective action, by reflect-
ing on what level of sociality (individual, social, collective) decision making is
represented. However, a decision context is defined by the sociality and reason-
ing dimension. What are reasoning modes used by who, when, and why in the
context of collective action for natural resource use. In particular, do the rea-
soning modes relate to the different ways they have been modelled in CAFCA
(automatic, strategic or normative) or do they follow other types of decision
models e.g. following Weber’s taxonomy of decision-modes calculation-based,
recognition-based, role-based or affect-based) [28,29]? For future data collection
we thus aim at including questions regarding the mode of decision-making of the
participants. This will enable us to the unpack the decision context and its for-
malisation, thereby identifying the relevant decision context for this application
domain and enable the agents to switch decision mode (based on reasoning and
sociality).

CAFCA in Context: While using CAFCA in an application domain using
AgentEx, we encountered some aspects that require reflection on CAFCA - as
CAFCA has been developed from an application domain neutral stance. We
realised that a behavioural outcome in AgentEx (taking out nothing) is influ-
enced by the relation a person may feel for nature or a natural resources, e.g.
not wanting a fish stock to be depleted, forest to disappear etc.). While apply-
ing the analytical framework to reflect on the sociality dimension (individual,
social, collective) to a social-ecological decision situation, this social-ecological
aspect of sociality is missing. It triggered a thought experiment, would there be
another branch with top node that reflects the (dis-)connection to nature that
potentially affects decision-making and behaviour via a deliberate path from
ones values/morals to behaviour. It concerns unpacking quite a complex black
box, beyond the scope of this paper, but worthwhile to explore as relevant for
the inclusion to this model.
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5. Constantino, S.M., Schlüter, M., Weber, E.U., Wijermans, N.: Cognition and
behavior in context: a framework and theories to explain natural resource use deci-
sions in social-ecological systems. Sustain. Sci. 16(5), 1651–1671 (2021). https://
doi.org/10.1007/s11625-021-00989-w

6. Cumming, G.S., et al.: Advancing understanding of natural resource governance:
a post-Ostrom research agenda. Curr. Opin. Environ. Sustain. 44, 26–34 (2020).
https://doi.org/10.1016/j.cosust.2020.02.005

7. Dahrendorf, R.: Homo Sociologicus: ein Versuch zur Geschichte. Westdeutscher
Verlag, Bedeutung und Kritik der Kategorie der sozialen Rolle. Köln und Opladen
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