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Abstract

This study combines machine learning (ML) al-
gorithms with statistical models to generate
new hybrid models for flood susceptibility
mapping (FSM) in the Teesta River basin of
Bangladesh (LR). Two-hybrid ML algorithms,

such as ANN-LR and RF-LR models for FSM,
have been created by combining two ML
techniques, such as artificial neural network
(ANN) and random forest (RF), with one
statistical approach, such as logistic regression.
The FSMs were then validated using paramet-
ric and non-parametric receiver operating char-
acteristic curves (ROC), such as empirical and
binormal ROC. We evaluated the impact of the
parameters on FSM using a Random forest-
based sensitivity analysis. The extremely high
(1023–1120 km2) and high flood vulnerability
zones were estimated using three methods and
two hybrid models (521–674 km2). Based on
the ROC’s area under the curve, the ANN-LR
model (ROCe-AUC: 0.883; ROCb-AUC:
0.936) outperformed other models (AUC).
According to the validation results, two hybrid
models outperformed three machine learning
and statistical models. The findings of this
research will aid FSMs in building long-term
flood control strategies by increasing their
efficiency.
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7.1 Introduction

Natural catastrophes have emerged as one of
society’s most critical global issues (Kabir and
Hossain 2021). Flooding is one of the most
prevalent, well-known, and everyday occurrences
among all-natural catastrophes (Ahmed et al.
2021). Floods create a devastating situation and
often occur during the monsoon, especially in the
Indian subcontinent (Zhang et al. 2021), which
receives nearly 80% of the annual rainfall in the
monsoon. Flooding occurs in the surrounding
land area because of heavy rainfall and massive
river runoff (Yousefi et al. 2018). A flood
becomes a catastrophe when it causes significant
damage to people and their livelihood and habitat
(De Silva and Kawasaki 2018). Floods hit Ban-
gladesh every year in the Ganges–Brahmaputra-
Meghna (GBM) basin (Uhe et al. 2019). Riverine,
rainfall-induced, flash, tidal, and cyclonic/storm
surgical floods have all been recorded (Uhe et al.
2019; Islam et al. 2021a). Being the GBM’s
outflow, Bangladesh has to deal with a lot of
stream-flow during the rainy season (which
begins in June and lasts till the end of October).
Floods are more common and conspicuous in
flatlands (which account for 79.1% of the geo-
graphical area) and hence get the most significant
study and planning focus. Approximately 20–
25% of the area is affected by flooding on an
annual basis. Sixty percent of the region had been
impacted by floods in 1987, 1988, and 1998 (Lin
et al. 2019). The socioeconomic repercussions of
these regular floods are enormous. Between 2009
and 2014, floods of various magnitudes affected
57.01% of Bangladeshi houses on average. In
economic terms, the cost of damage was esti-
mated to be 0.85 billion USD (De Silva and
Kawasaki 2018; Rahman et al. 2020).

Despite the enormous financial and develop-
ment costs, flood losses were unavoidable
because of a lack of comprehensive flood
assessment tools for improved preparation. The
flood risk may be defined and assessed in a
variety of ways. The mathematical modeling of
flood susceptibility has been considered the
most complicated process. It is possible to expect

the geographical distribution of floods that have
happened or are expected to occur in a particular
location quantitatively and qualitatively. As a
consequence, flood susceptibility mapping may
help policymakers and other stakeholders estab-
lish disaster preparedness plans. While flood
dangers cannot be eliminated, flood damages
may be circumvented or considerably declined if
flood inundated areas are correctly predicted
(Shafizadeh-Moghadam et al. 2018).

As a consequence, determining flood suscep-
tibility is crucial for disaster assistance.
Researchers have presented a variety of flood risk
assessment models. The bulk of recent models in
geographic information systems (GIS) integrate
hydrological, multi-criteria decision analysis,
hydrodynamic, statistical models (SM), and ML
algorithms (Jamali et al. 2020). GIS and remote
sensing are one of the most significant databases
and tools that have been extensively employed in
hazard analysis (Pourghasemi and Rossi 2019).

The Frequency Ratio (FR) (Aditian et al.
2018), the Analytical Hierarchical Process
(AHP) (Mukherjee and Singh 2020), the Ana-
lytical Network Process (ANP) (Abedi Ghesh-
laghi et al. 2020), Support Vector Machines
(SVM) (Fan et al. 2020), and Random Forest
(RF) (Probst et al. 2019) have all been used to
study flood (Adnan et al. 2020). Every modeling
approach has benefits and drawbacks. The
accuracy, structure, and data of each model affect
its performance. Consequently, a wide range of
ensemble techniques to geohazard susceptibility
and potentiality mapping has gained popularity
quickly (Elmahdy et al. 2020).

Experimental hybrid techniques for FS mod-
eling research have been researched in recent
years since there is a necessity to evaluate
existing prediction methods and procedures to
get a better scientific basis and, as a result, more
accurate conclusions (Eyoh et al. 2018). ANN-
fuzzy logic, rough set-SVM, and other hybrid
approaches created by combining SM with ML
algorithms have been successfully employed in
FS modeling (Chen et al. 2018; Jahangir et al.
2019). However, experts have emphasized that
no model is ideal for modeling and that results
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might differ from area to region and data. Thus, a
new model should be designed and evaluated to
get reliable results. As a result, in order to
achieve the research gaps as mentioned earlier,
the primary objectives are:
1. Construct a hybrid ensemble machine learn-

ing based FSM by merging LR with ML
algorithms.

2. Conduct sensitivity modeling employing RF.
3. Verify the FS models using ROC curves.

The present study will aid decision-makers
and governments in effectively regulating flood
management.

7.2 Materials and Methods

7.2.1 Study Area

The Teesta sub-catchment is in northern Ban-
gladesh and includes the districts of Nilphamary,
Lalmanirhat, Rangpur, Kurigram, and Gaibandha
(Fig. 7.1). Its drainage basin comprises several
minor rivers with heights varying from 5 to
110 m, making it Bangladesh’s most significant
geomorphic unit. During floods, the river’s usual
gradient is between 0.46 and 0.56 m per kilo-
meter, reflecting a very level area (Rahman et al.
2011). The research area’s hydrological charac-
teristics are complicated, and the region has a
dense river network. This basin has a subtropical
monsoonal climate. Monsoon (June–September)
and dry (October–November) are the two major
seasons in the basin (October–December). This
basin gets around 1900 mm of precipitation per
year on average (Islam et al. 2021b), with the
monsoon season accounting for 80% of total
annual precipitation.

7.2.2 Materials

In the present study, a variety of datasets have
been obtained and used for flood susceptibility
modeling. The details of datasets used for gen-
erating FSM were tabulated in Table 7.1.

7.2.3 Flood Inventory

For the creation of FSM maps, several
researchers have started with the locations of
previously flooded areas. It was determined that
FSM was based on historical flooding regions.
Two hundred ten flood points have been col-
lected from different sources and a comprehen-
sive site assessment for the inventory map. There
must be a need to acquire non-flood data analo-
gous to the flood data utilized in FSM (Islam
et al. 2021a). The choice was based on the field
survey, which included an identical amount of
non-flood locations (210 points). Using a random
separation to all flood and non-flood datasets, 80
(336):20 (84) training and testing datasets have
been generated (Fig. 7.1). Training data has been
employed to calibrate the model, while testing
data has been employed to measure the accuracy
of the models (Mallick et al. 2021). In the same
way, inventory maps for other locations have
been generated.

7.2.4 Methods for Preparing FS
Conditioning Factors

Flood-influencing variables must be included as
independent variables when creating a flood
susceptibility map (El-Haddad et al. 2021; Azareh
et al. 2019). According to Dodangeh et al. (2020),
contributing factors utilized in one research area
may have no effect in another, hence parameter
identification must be event based. Among the
highly significant and often utilized variables are
elevation, aspect, TWI, SPI, STI, LULC, TRI,
distance to the river (dR), curvature, soil condi-
tion, slope, and rainfall. The contributing vari-
ables have been translated into 30 m spatial
resolution using resampling technique.

The topography and its derivative variables
serve a vital part in determining FSM (Falah
et al. 2019) (Fig. 7.2). Topography has a direct
impact on runoff speed (Abdel-Fattah et al.
2017), and high slopes increase the speed of
runoff and reduce infiltration rates (Abdel-Fattah
et al. 2017). Furthermore, the dR has a significant
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impact on flood magnitude. High drainage den-
sity causes a reduced capture rate and hence flow
accumulation, which is one of the variables that
substantially influences flood occurrence (Ogato
et al. 2020; Bogale 2021).

Rainfall is recognized as the vital variable in
determining FS levels (Wasko and Nathan 2019).
Because heavy rain in a short period of time can
create flash flooding (Wasko and Nathan 2019).

In the ArcGIS 10.3 environment, acquired pre-
cipitation data from four Bangladeshi meteoro-
logical stations was utilized to create rainfall
using the kriging interpolation procedure.
Because the amount of data is so small, this
approach is highly recommended (Islam et al.
2021b). The research area’s annual rainfall, on
the other hand, ranges from 361 to 550 mm
(Fig. 7.3c).

Fig. 7.1 The location of the study area

Table 7.1 Materials used for preparing FSM

Data
types

Purpose Resolution/scale Source

ASTER
DEM

For deriving different topographic and
hydrologic parameters like slope,
aspect, curvature, TPI, STI, TWI

Version 2, spatial
resolution: 30 m

https://asterweb.jpl.nasa.gov/
gdem.asp

Landsat
8 OLI

For generating LULC Path/Row: 138/42,
Spatial resolution:
30 m., date:
19/03/2019

https://earthexplorer.usgs.gov/

Rainfall For generating rainfall map – Meteorological Department
(BMC), Dhaka

Soil
map

For preparing soil types map 1:50,000 Natural Resources Conservation
Service of United States
Department of Agriculture
(USDA)
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Soil property is the most critical factor for
generating overflow (Yin et al. 2019). Flügel
(1995) contends that soil quality regulates water
penetration, affecting rainfall-runoff generation
while indigenous climatic forms and erosion
procedures also play a role. When the degree of
penetration is high, susceptibility events are more
likely to occur. According to USDA soil classi-
fication, the research area comprises 12 different
types of soil (Fig. 7.3d).

LULC affects surface runoff, which in turn
affects sediment flow, and hence has a substantial
impact on the incidence of FS (Islam et al. 2021a).
FS is relatively high in built-up areas because the
LULC totally regulates surface flow generation
and infiltration. Because different land use features
preclude or help water for penetrating and gener-
ating surfacewater. The forest environment, on the
other hand, increaseswater infiltration, resulting in
lower FS (Islam et al. 2021b). The association
between FS occurrences and plant density is

adverse while comparing hydrological reactions at
different temporal conditions. A LULC map has
been created using the ANN model in ENVI soft-
ware (version 5.3) (Talukdar et al. 2020) and
classified into six classes (Fig. 7.3e).

7.2.5 Multicollinearity Analysis

The 12 conditioning variables were examined to
see whether there was any association between
them using the VIF and tolerance approach. If the
variables are multicollinear, they are interrelated,
and one of them could be predicted by other fac-
tors. Hence, it must be eliminated from the model.
Among various models, such as Pearson’s corre-
lation coefficients, variance decomposition pro-
portions, the VIF, and tolerance are the most
frequent and extensively utilized. Multicollinear-
ity is present if the VIF is more than ten or the
tolerance is less than 0.1 (Talukdar et al. 2021).

Fig. 7.2 Data layers for FSconditioning factors such as a elevation, b curvature, c TRI and d aspect, e slope, and f TWI
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7.2.6 Method for FS Modeling

7.2.6.1 Artificial Neural Network (ANN)
Artificial Neural Networks (ANNs) mimic the
human nervous system and are able to acquire
and simplify from instances to provide expres-
sive solutions even while the input data includes
errors or is inadequate (Jahangir et al. 2019;
Khoirunisa et al. 2021). Many problems have
been solved with ANNs (Kia et al. 2012).
Reconstruction of the strange association
between a set of input variables, such as rainfall
and output variables, such as streamflow or
groundwater level using ANN has been carried
out (Fang et al. 2021) (Kia et al. 2012). This
means that artificial neural networks can be used
for flood predictions.

7.2.6.2 Random Forest (RF)
Random forest (Breiman 2001) could be sum-
marized as a decision tree ensemble approach. It
generates decision trees by randomly picking
data from the training set. The decision trees
were assessed independently during the training
stage, with the best score being the average of the
trees’ outcomes. When generating decision trees,
RF seeks to identify the most essential charac-
teristics, hence feature selection is crucial.
For RF, there are a few key factors to consider.
The first is the forest’s number of trees, which
determines how many decision trees are formed
during training. A large number of trees help in
generalizing the model better, according to the
general approach to setting this parameter. The
number of features is another parameter that

Fig. 7.3 Data layers for FS conditioning factors such as a SPI, b STI, c rainfall d soil types, e LULC, and f distance to
river
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refers to the depth of the decision trees. Accuracy
can be improved by using a higher number of
characteristics. It should be noted that bigger
numbers take longer to compute, therefore time
should be taken into account while
parameterizing.

7.2.6.3 Logistic Regression
The LR method has been regarded as highly
applied model in predicting natural hazards like
flood, landslide, and drought susceptibility by
many scholars throughout the world (Ali et al.
2020). In this work, the logistic regression model
was chosen as one of the multivariate analytic
methods to quantitatively measure flood suscep-
tibility. The use of logistic regression to create a
multivariate regression connection between a
target variable and certain conditioning variables
is effective for forecasting the presence or
absence of the events like flood and landslide. By
adding an appropriate link function to the con-
ventional linear regression model, logistic
regression allows the variables to be either con-
tinuous or discrete, or any mix of both, and they
do not have to have normal distributions (Cao
et al. 2020). The dependent variable in this study
is a binary variable (0 or 1), with 1 indicating the
existence of a flood and 0 indicating the absence
of a flood.

7.2.7 Validation of the Models

The Receiver Operating Characteristic
(ROC) curve is a common means of visually
illustrating a marker’s discriminating accuracy
for differentiating between two populations. It
has been utilized in radiology, psychology, epi-
demiology, factory inspection systems, and
biomedical informatics, among other fields. The
application of the ROC curve for natural hazards
prediction has expanded recently, with
researchers assessing the efficiency of models in
discriminating between positive and negative
functions of natural hazards (Tehrany et al.
2014). A depiction of the false positive rates
versus the true positive rates for different diag-
nostic test cutoff settings is known as a ROC

curve. The area under the ROC curve is the most
often used metric for describing accuracy (AUC).
The AUC may have a value of 0–1, with higher
AUC values showing better accuracy (Yesilnacar
and Topal 2005).

The nonparametric ROC techniques do not
make assumptions about the distributions of
diagnostic test results and do not produce a
smooth ROC curve. On the other hand, para-
metric techniques presume that some function of
the diagnostic test measures is normally dis-
tributed in both the positive and negative events,
but with different means in each case. The
parametric ROC approaches may create a smooth
ROC curve. For the nonparametric ROC analysis
in our work, we employed the empirical tech-
nique. We performed the parametric ROC anal-
ysis using the binormal approach.

7.3 Sensitivity Analysis

Mean decrease accuracy (MDA) and mean
decrease Gini (MDG) coefficient are two signif-
icant measures for ranking variables and select-
ing variables in Random Forest. MDA analyzes
the change in prediction accuracy when the val-
ues of a variable are randomly permuted com-
pared to the original data, which determines the
relevance of a variable. When a variable is used
to produce a Random Forest split, MDG is the
total of all Gini impurity reductions generated by
that variable, normalized by the number of trees
in the Random Forest (For details of RF, see
method section).

7.4 Results and Discussion

7.4.1 Computation of the Multi-
collinearity Analysis
and Importance
of the Parameters

Findings of the multicollinearity test show the
VIF and tolerance values of the variables are less
than ten and greater than 0.2, respectively.
Therefore, there is no requirement to concern
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about multicollinearity between independent
variables. Since all twelve flood-conditioning
factors were included in this present research,
FS maps included them all. The multicollinearity
analysis findings for this research are as follows:

Elevation (VIF: 2.71, TOL: 0.635), slope
(1.34, 0.805), curvature (1.08, 0.794), TWI
(1.19, 0.653), SPI (1.56, 0.629), distance to river
(1.3, 0.9), rainfall (2.76, 0.846), soil types (1.32,
0.804), and LULC (1.1, 0.803), aspect (1.08,
0.725), TRI (1.2, 0.821), STI (1.62, 0.87).

7.4.2 Description of the Parameters

The FS of an area may be affected by various
factors (Bhattacharya et al. 2021). Influencing
factors in this study were presented in Figs. 7.2
and 7.3. Low-lying locations, particularly those in
the floodplain, retain higher soil moisture due to
the continuous depressions, increasing the flood-
ing probability. The elevation of the study area
varied from 18 to 69 m above sea level (Fig. 7.2).
In general, the capacity to recharge water is
highest while the curvature has the feature of a
concave surface. On the other hand, the water
recharge capacity is less on the plain surface
(Mishra et al. 2019). The DEM was used to create
a curvature map with a range of 0.32–0.82 degrees
of curvature (Fig. 7.2). The DEM has been
employed to generate a curvature map with a
range of 0.32–0.82 (See Fig. 7.2b.) A total of nine
classifications were established: zero to twenty-
five, twenty-five to sixty-five, seventy-five to
ninety-five, and one hundred and fifty to three
hundred and sixty-five (Fig. 7.2). The presence of
a flat or mild slope is also advantageous since it
helps to slow down water flow and enhance the
sensitivity to recharge (Mahato and Pal 2019).
The slopes that were employed in this study varied
from 0 to 5.75°. TRI helps to determine howwater
flow was affected by competing for underlying
surfaces (Fig. 7.2d) (Straatsma and Baptist 2008).
Due to the rapid water flow created by the high
hills around the Teesta River, it has lower TRI
because of the rapid water flow, which suggests a
greater likelihood of flooding (Mahato et al.
2021). According to the findings of this study, the

highest TRI score was 27. (See Fig. 7.2 for an
example.) A high TWI also guarantees that a
person’s susceptibility to infection is regenerated,
which is beneficial. Between TWI levels and FS,
there is a significant inverse relationship. Fig-
ure 7.3 depicts TWI value ranges from −1.54
to −7.72 linearly. Therefore, regions with higher
SPI and STI values are more vulnerable to floods
because of the greater water level represented by
higher SPI and STI values (Bui et al. 2019).
According to the findings of this investigation, the
highest STI level measured was 140.64. Fig-
ure 7.3 depicts the distance between this location
and the river, which was 1503 m in this case. It
was possible to account for extra rainfall and
water penetration by analyzing soil data (Johnson
2000). The 12 soil types were identified in this
study area (Fig. 7.3).

7.4.3 FS Models and Their Validation

Figure 7.4 depicts the FS models built using
hybrid machine learning techniques such as
ANN, RF, LR, and combined ANN-LR and RF-
LR. In the present study, we first applied stan-
dalone ML algorithms, and then we applied
semi-machine learning algorithms, like logistic
regression, for predicting flood susceptibility
zones. Then, we developed hybrid models by
integrating ML algorithms with the LR model.
The LR model has been employed to define the
weights for each parameter. The parameters are
then allocated weights and turned into weighted
parameters. We then used machine learning
methods like ANN and RF to create hybrid
models. In this way, ANN-LR and RF-LR hybrid
models have been created. The weights derived
using the LR model is as follows:

FSM = 18.30 + (Aspect * 0.0012) + (Curva-
ture * 0.0325) + (Elevation * 0.0825) + (LULC
* 0.3694) + (Rainfall * 0.156) + (Distance to
river * 0.0884) + (Slope * 0.3029) + (Soil types
* 0.0027) + (SPI * 0.0007) + (STI *
0.0032) + (TWI * 0.1975) + (TRI * 0.0761).

There are five categories in Jenkin’s natural
break method: very high, high, moderate, low,
and very low flood susceptible zones. This
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algorithm was used to classify the produced flood
susceptible models (Fig. 4.4). Parallel to the
drainage path of the watershed, the flood vul-
nerability zone runs northwest-southeast. Places
with high susceptibility zones are concentrated in
the south and southeast, whereas areas with low
susceptibility zones are concentrated in the north
and northwest of the country.

For ANN model, 2.26 and 36.69% of the
entire basin area observed very “high” and
“high” flood susceptibility, respectively
(Table 7.2). However, all models anticipated
1023.99 km2

–1120.58 km2 regions to be very
susceptible to flooding. All models projected that
800.01 km2

–1103.01 km2 regions were very low
flood susceptible zone (Table 7.2). According to
the models, most river catchment areas were
classified as having high to very high FS zones.
However, since the region’s size varies, it is vital
to choose the most accurate model.

The AUC of empirical and binormal ROC
curves has been utilized to test the FS models
based on the GPS locations that have been col-
lected (Meten et al. 2015; Nahayo et al. 2019).
The AUC under each ROC (empirical and
binormal) for ANN, it is 0.874 and 0.912; for
RF, it is 0.88 and 0.93; for LR, it is 0.861 and
0.873; for ANN-LR, it is 0.883 and 0.936; and
for the RF-LR model, it is 0.89 and 0.92
(Fig. 7.5a–e). Results of ROC curves show that
the ANN-LR model was the most effective, fol-
lowed by the RF-LR model, the RF model, the
ANN model, and the LR model. According to the
binormal ROC curve, the best model was ANN-
LR (AUCb: 0.936), followed by RF (AUCb:
0.93), RF-LR (AUCb: 0.92), ANN (AUCb:
0.912), and LR (AUCb: 0.912). Overall, all of
the models performed well, with hybrid machine
learning methods beating all of them in terms of
overall performance.

Fig. 7.4 FS models using a ANN, b RF, c LR, d ANN-LR, and e RF-LR
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Table 7.2 Calculation of
area for five FS zones

FS zones Area (km2)

ANN RF LR ANN-LR RF-LR

Very high 1102.21 1023.99 1071.70 1045.91 1120.58

High 584.87 546.11 674.62 521.65 627.35

Moderate 361.61 592.62 395.50 596.45 444.38

Low 507.79 722.03 584.31 668.68 642.29

Very low 1103.01 800.01 956.86 806.01 848.96

Fig. 7.5 Application of empirical and binormal ROC curve for validating the FS models based on a ANN, b RF, c LR,
d ANN-LR, and e RF-LR
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7.4.4 Sensitivity Analysis Using
Machine Learning
Algorithms

Advanced ensemble machine learning methods
must be developed in order to map robust flood
susceptibility zones. Dependent on the intricate
mathematical association between historical
floods and their conditioning factors, these
algorithms can only depict the likely area around
the future occurrence of a considerable and
quantifiable amount of flooding. On the other
hand, these models do not address the role that
variables play in a given region during a flood
event. Since several variables impact the possi-
bility of flooding, the issue arises on how flood
control strategies could be designed and imple-
mented without this knowledge.

If the variables’ influence on FS is uncertain,
how management plans will be established and
implemented. Floods may be less damaging if the
variables of a particular area are identified that are
associated with susceptibility zones. Conse-
quently, it is essential to identify which factors
have the most considerable impact. The

significance of each triggering variable was
determined using matrices from RF-based sensi-
tivity models, such as MDG and MDA. Both the
MDG and the MDA are significant metrics
(Hollister et al. 2016). Results show that all the
variables of the FSM model were taken into
consideration, with dR, TWI, and aspect being
the most important (Fig. 7.6). Among 12 vari-
ables, three of them were less influential than
others in deciding the importance of the variables.

7.5 Conclusion

The present research focuses on creating hybrid
models that use machine learning and statistical
approaches to forecast flood susceptibility mod-
els. Three algorithms and two hybrid models
were used to estimate the very high (1023–1120
km2) and high flood susceptibility zones (521–
674 km2) flood susceptibility zones. The ANN-
LR-based FSM (ROCe-AUC: 0.883; ROCb-
AUC: 0.936) beat all FS models as per the
AUC value. Results show that two hybrid models
beat three ML and statistical models in terms of

Fig. 7.6 Sensitivity analyses of susceptibility conditioning factors in terms of best FS models using a MDG, and
b MDA
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performance. On the other hand, an RF-dependent
sensitivity analysis was devised to assess the
importance of the input factors for FSM. The
distance to the river was the most dominating and
sensitive variable for FSM, followed by slope,
curvature, elevation, LULC, and SPI.

Hybrid models beat three ML and statistical
models when it came to FS modeling. These
findings lead the researchers to recommend
adopting hybrid and ensemble algorithms for
predicting natural hazards based on various fac-
tors in the future. Additionally, this study rec-
ommends that a few other hydrological,
geological, and climatic variables be incorpo-
rated into the models for enhancing the robust-
ness of the model findings. The Teesta River
basin is acknowledged for flooding because of
irregular rainfall, dams’ construction, and other
artificial issues. Therefore, these findings might
be helpful in the creation of long-term flood
control and farming techniques. Specifically, the
paper states that land cover and vegetation con-
ditions appeared as significant conditioning
variables for FSM. Deforestation, conversely, is
incontrovertible realities. Consequently, the
maintenance of forest cover will benefit flood
control. Further research is required for the sci-
entific evaluation of floods at distinct susceptible
zones to provide more accurate advice on what
management techniques should be implemented
from each possible zone.
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