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Abstract

The present study investigates sub-watershed
prioritization for flood susceptibility mapping
of the Silabati River basin (India) based on
morphometric parameters. This river basin is a
sixth-order drainage system with an adendritic
drainage pattern and traverses an area of
4247.99 km2. Almost every year, the lower
stretch of the Silabati river basin experiences
floods due to physiographic characteristics
and excessive rainfall during a short time. The
present work has been conducted with an
integrated outlook involving the morphomet-
ric parameters, geological, and climate data by
geospatial techniques for determining the
probability of spatial flood risk. A ranking
method has been employed to prioritize the
sub-watersheds for susceptibility to flooding.
The results of this study depict that 48.18%
area of the basin including 11 out of 26

sub-watersheds has a high to very high flood
susceptibility area. Drainage density, basin
slope, circulatory ratio, relative relief, relief
ratio, stream frequency, and ruggedness num-
ber are the most important morphometric
parameters for flooding in the study area.
Since there were no such government or
private historical flood records that are
required for flood modeling, various morpho-
metric parameters have been accurately used
to measure sub-watershed-wise flood suscep-
tibility. The performance and efficiency of this
method are validated using ROC and AUC,
which ensures a considerable amount of
accuracy (89.2%) of the study. Moreover, this
research may be used as a guideline for
surface runoff harvesting and flood mitigation
at the sub-watershed level.
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2.1 Introduction

Floods are one of the most vital hydrological and
meteorological hazards (Huang et al. 2008;
Markantonis et al. 2013; Toduse et al. 2020). It
has several negative and sudden impacts on
human life and livelihood especially the agrarian
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economy (Leskens et al. 2014; Yang et al. 2015;
Bui et al. 2020; Islam and Ghosh 2021). United
Nations Office for Disaster Risk Reduction
(UNISDR) reported that the human life losses
due to flood events were around 15 lakhs and
around 11.1% mortality rate in the world during
1996–2015. Developing nations like India, Sri
Lanka, and Bangladesh portray a very high
impact rate. The flood scientists and organiza-
tions have predicted that annual losses up to US
$415 billion worldwide due to floods in 2030
(Grabs 2010; Karamouz and Fereshtehpour
2019; WMO 2016; UNISDR 2015). Floods of
small watersheds area (less than 1,000 km2)
reveal a complex and sudden response time due
to the orographic nature of rainfall in the high
land region (Destroet al. 2018; Obeidat et al.
2021). Some direct and indirect factors such as
rainfall characteristics, drainage properties, infil-
tration, environmental conditions, evapotranspi-
ration, and anthropogenic activities are the
significant factors that impact the intensity of
flood susceptibility (Azmeri and Vadiya 2016;
Jodar-Abellan et al. 2019; Samanta et al. 2018).
Identification of vulnerable areas for floods is a
very important precursor to reduce the negative
impact on human life and infrastructure (Ali et al.
2020).

Watershed management focuses on reducing
the negative impact of surface runoff or floods,
and surplus water use for various beneficial
purposes such as irrigation, groundwater storage,
and reduces erosion (Ratna et al. 2017; Sebastian
et al. 1995). For water resource management, the
optimum use of watersheds is important (Worku
et al. 2020). Morphometric parameters for pri-
oritization of sub-watersheds within a basin is
necessary for the conservation of land and water
resource (Aher et al. 2014). Various research
studies have employed morphometric investiga-
tion for the prioritization of sub-watershed-wise
flood or erosion susceptibility (Bhatt and Ahmed
2014; Abuzied et al. 2016; Ameri et al. 2018;
Asfaw and Workineh 2019; Charizopoulos et al.
2019; Hussein et al. 2019; Kannan et al. 2018;
Rajasekhar et al. 2020; Alam et al. 2020; Das
2020; Islam and Deb Barman 2020). These
researches have employed some algorithms from

some classic works such as Horton (1945, 1932),
Smith (1950), Strahler (1952), Miller (1953), and
Schumm (1956). According to Strahler (1964),
morphometric parameters depicted a relatively
very simple method. To investigate the geomor-
phic history, geological and hydrological condi-
tions of the basins, it may be employed.
Morphometric features of the basin are very
important parameters that influence flood inten-
sity. Therefore, this research of the basin mor-
phometry can provide a very significant database
in relation to their hydrological responses (Borga
et al. 2008). Of late, remote sensing (RS) and
geographical information systems (GIS) have
been extensively employed with the objective of
watershed management (Chatterjee et al. 2013;
Okumura and Araujo 2014; Hasanuzzaman et al
2021). Digital elevation model (DEM) is a very
high-resolution RS data and it’s freely available
for access. It is a very effective tool for the
accurate investigation of watershed morphomet-
ric parameters (Ratnam et al. 2005; Samanta
et al. 2018; Majumder et al. 2019; Hasanuzza-
man and Mandal 2020).

Silabati Basin of West Bengal is also having
ample water resources but very unevenly dis-
tributed in its upper, middle, and lower reaches
of the basin. The western part is a drought-prone
area while the eastern part faces the flood prob-
lem in years of surplus rain. In both cases, people
suffer from loss of life and damage to properties.
Therefore, this region is demanding to utilize the
available water resources judiciously to solve the
problems of water shortage as well as to prevent
the misuse of water. This research work is a
small effort to evaluate the flood of Silabati Basin
that contributes to its present configuration in an
integrated manner for scientific and judicious use
and also for development watershed and sub-
watershed wise surface runoff harvesting and
flood management. Moreover, this type of work
is relatively absent at the national level or
regional level. Thus, the main objective of this
research is the prioritization of sub-watersheds
corresponding to flash floods or floods based on
morphometric analysis using geo-spatial tech-
niques. The output of this present research can be
utilized to help the government to take the
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necessary steps in those regions that are suscep-
tible to floods and very high possibility for runoff
harvesting.

2.2 Study Area

The present study is executed over the Silabati
river basin situated in the southwestern part of
the Bengal Basin. The Silabati or Silai River as
well as Arkusa Nala and their ramifying channels
have furrowed up the Dwarkeswar-Kangsabati
interfluve at Hura block and flows over three
districts of Puruliya, Bankura, and West Medi-
nipur. It is the principal tributary of the Rup-
narayan River (Shit et al. 2015). The river
Silabati originates at Baragram village (23°15′N
and 86°39′E) of Puruliya district on Manbazar-
Adra road and flows southeast for about 20 km
in Puruliya district. The river leaves the district at
Puncha block and enters Bankura district near
Salanpur of Indpur block (Fig. 2.1).

Silabati River watershed presents a unique
physical setting in the sense that hard rock pla-
teau and fringe area, laterite covered upland,
undulating tract, and flat alluvial plain, all are
found in a single basin (Shit et al. 2016; Islam
et al. 2020). Actually, the entire geomorphic unit
is the southeastern continuation of the
Chhotanagpur Plateau (Fig. 2.2). Plateau Fringe
lies in the extreme northwestern part, which is
the remnants of the spurs projecting from the
Chhotanagpur plateau. Its elevation varies from
160 to 227 m and is characterized by high rela-
tive relief and moderate slope. Archaean rocks
composed of granite, gneiss, schist occupy this
area (Dolui et al. 2014; Gayen et al. 2013). The
plateau slope lies in the eastern part of the pla-
teau fringe. This part is covered by crystalline
rocks of the Archaean age and characterized by
hillocks, low ridges, and valleys. Passing over
the plateau slope, the basin area presents a dis-
sected upland covered by hard rocks and old
alluvium with lateritic capping. The terrain is
characterized by irregular, non-contiguous, and
uneven tracts (Shit and Pati 2012). The central
undulating and rolling plain to the east of this
dissected upland presents a flattened and rolling

topography. This lateritic part is underlain by
deposits of older alluvium and shows dissected
badland topography at places (Shit and Maity
2012). This rolling plain gradually merges into a
flat alluvial plain to the east consisting of assor-
ted materials of sub recent to recent age. Flood
plains are confined mainly along the major rivers
which allow sudden discharge sometimes caus-
ing heavy floods.

Silabati River basin has got its climatic char-
acteristics due to its tropical location. The upland
tract in the west is much drier than that of the
eastern part. The basin area enjoys a sub-tropical
humid climate characterized by “Monsoon”
conditions with marked seasonal variations. The
mean annual rainfall of the basin varies from
110 cm in the west to 121 cm in the east
(Fig. 2.2). The rainfall during monsoon months
from June to September receives around 78% of
the total annual rainfall with July and August
being the rainiest months. The temperature starts
rising from March and attains its extremes up to
48 °C during May. Otherwise, the basin is
characterized by a mean minimum temperature
of 21 °C and a maximum temperature of 33 °C.
With the onset of the monsoon, the temperature
drops appreciably. December and January are the
cold months with mean maximum and minimum
temperature as 26 °C and 11 °C, respectively.

2.3 Data and Methods

The conceptual framework of the method applied
in this present study is depicted in Fig. 2.3. For
the objective of watershed characterization and
prioritization of sub-watersheds of the Silabati
River basin, twenty-six morphometric parameters
were selected (Table 2.1). According to the total
weight value of sub-watersheds, the total ranking
method was used for the ranking sub-watersheds
(Watershed prioritization) (Biswas et al. 1999;
Puno and Puno 2019). The main morphometric
parameters of the basin are linear, areal, and relief
aspects of watersheds (Melton 1957; Strahler
1964). For computing the morphometric indices,
basic parameters of a watershed like a basin
length, basin area, perimeter, lengths of streams,
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and the number of streams for each stream order
have been calculated directly from the Digital
Elevation Model (DEM) using GIS techniques.
The DEM was downloaded from www.search.
earthdata.nasa.gov and www.earthexplorer.usgs.
gov with the resolution is 30 m and 12.5 m
(Radar Imagery 2001–2006). First of all, filling
the DEM for finding out the missing data was
accomplished followed by the generation of
stream network and flow accumulation map of
the Silabati River Basin (SRB) and then to sub-
divide the SRB into sub-watersheds. Mathemati-
cal equations were used for the measurement of
other morphometric parameters of the basin like
drainage density, ruggedness number, circularity
ratio, basin relief, length of overland flow, rela-
tive relief ratio, basin slope, hypsometric integral,
elongation ratio, stream frequency, and relief ratio
(Obeidat et al. 2021). These mathematical equa-
tions are depicted in Table 2.1. For the sub-

watersheds prioritization, the morphometric
ranking method (Total Rank) was employed
(Patel et al. 2012). According to morphometric
parameters value, each sub-watershed was divi-
ded into various prioritized rank groups, where
rank 1 represents the very low probability for
floods risk, and so on (Obeidat et al. 2021).

The selected 12 parameters of morphometric
have been employed for the sub-watersheds
susceptibility map of the flood (Table 2.1). All
these parameters of morphometric are related to
flood either directly or indirectly. Out of twelve
parameters, eight parameters (relief ratio, basin
area, circularity ratio, drainage density, basin
slope, ruggedness number, relative relief ratio,
and stream frequency,) have a direct relationship
with the surface flow or flood possibility. The
higher values of eight parameters are indicating
the higher degree of possibility to flood risk. So,
these parameters of sub-watershed having the

Fig. 2.1 Location of the study area
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highest values are given the top rank (5). On the
opposite side, the other four parameters (shape
factor, hypsometric integral, length of overland
flow, and elongation ratio) have an inverse rela-
tionship to surface runoff or flood possibility.
The lower values of the four parameters are
indicating a higher degree of flood possibility and
these parameters are given the top rank (5).
Firstly, each parameter value was summed, and

normalized from 0 to 1 to find out the specific
prioritized rank of the sub-watershed. The same
value of sub-watershed has defined the similar
ranking. After that the sub-watersheds are divi-
ded into five floods susceptibility categories
(very high, high, moderate, low, very low pri-
ority) following a simple equation to demarcate
the interval length that is (Maximum–Minimum)/
5 (Farhan and Anaba 2016).

(a)

(b)

Fig. 2.2 a Climate map and b Geological map (Source Geological Survey of India) of the study area
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2.4 Results and Discussion

2.4.1 Morphometric Parameters

According to the flow accumulation of the SRB,
26 sub-watersheds were demarcated using the
ArcGIS 10.8 software (Fig. 2.4). The final out-
puts of the morphometric investigation of all sub-
watersheds were depicted in Fig. 2.5 and
Table 2.2. To determine the flood susceptibility
map, the geomorphologic and hydrological rela-
tion in the study area was used (Fig. 2.5).

2.4.1.1 Linear Parameters
Basin perimeter is a very significant basic
parameter of morphometric parameters as an

indicator of basin shape and size. The minimum
perimeter value was found as 32 km (SW 5) and
the maximum value was found as 176.44 km
(SW 25). A strong correlation is depicted
between basin perimeter and area (Obeidat et al.
2021). A significant indicator of surface runoff
feature is basin length (Christopher et al. 2010;
Taha et al. 2017). In the present study, basin
length rangesfrom 5.89 km (SW 13) to 49.36 km
(SW 25). Also, a strong correlation is depicted
between stream length and basin length (Obeidat
et al. 2021). The stream order of the SRB extends
up to six orders but all sub-watersheds vary from
first order to fourth order. The high stream
numbers represent the high surface flow or rapid
peak flow (Bhat et al. 2019). In the study river
basin, the total stream number is 2559, and 1285

Fig. 2.3 Conceptual framework of the methodology of the study
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Table 2.1 Detailed information of morphometric parameters

Parameter no Morphometric parameter Formula/definition References

Linear 1 Basin perimeter (P) Perimeter of the watershed (km) Horton (1945)

2 Basin length (Lb) Length of the basin (km) Horton (1945)

3 Stream order (U) Hierarchical rank Strahler (1952)

4 Total number of streams
(Nu)

Total no. of streams of all orders Strahler (1952)

5 Stream length (Lu) Length of the stream (km) Horton (1945)

6 Total number of streams
(Nu)

Total no. of streams of all orders Strahler (1952)

7 Stream length (Lu) Length of the stream (km) Horton (1945)

Areal 8 Basin area (A) Plan area of the watershed (km2) Horton (1945)

9 Drainage density (Dd) (Dd = Lu/ A, where
Lu = total stream length of all orders
(km)
A = area of the watershed (km2)

Horton (1945)

10 Length of overland flow
(Lo)

Lo= 1/(2*Dd), where Dd = drainage
density

Horton (1945)

11 Stream frequency (Fs) Fs= Nu / A, where
Nu = Total number of streams of all
orders
A = area of the basin (km2)

Horton (1945)

12 Elongation ratio (Re) Re= 1.128*(A^0.5)/Lb, where
A = area of the basin (km2)
Lb = basin length (km)

Strahler (1957)

13 Circularity ratio (Rc) Rc= 4 � p x A/ P2; where
p = 3.14
A = area of the basin (km2)
P = perimeter (km)

Schumm (1956)

14 Shape factor (Sf ) Sf= L2b / A, where
Lb = basin length (km)
A = area of the basin (km2)

Miller (1953)

Relief 15 Basin relief (H) H = h� h1, where
h = maximum height (m)
h1= minimum height (m)

Horton (1945)

16 Relief ratio (Rr) Rr= H/Lb, where
H = total relief (km)
Lb = basin length (km)

Malik et al. (2011)

17 Relative relief ratio (Rv) Rv= H/P, where
H = total relief (km)
P = perimeter of the basin (km)

Schumm (1956)

18 Basin slope (Bs) Bs= H/Lb � 60, where
H = total relief (km)
Lb = basin length (km)

Melton (1957)

19 Ruggedness number (Rn) Rn= Dd � H, where
H = basin relief (km)
Dd = drainage density

Farhan and Anaba
(2016)

20 Hypsometric integral (HI) HI = (Emean–Emin)/(Emax–Emin), where
Emean = the weighted mean elevation
Emax = maximum elevation
Emin = minimum elevation

Schumm (1956)
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Fig. 2.4 Sub-watershed of the Silabati River basin with drainage pattern and stream order

Fig. 2.5 The matrix of the Pearson correlation coefficient for all twelve morphometric parameters weight value
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streams are first-order streams (50.2%) in all sub-
watershed. Among the 26 sub-watersheds, SW
25 has the highest total number of the stream
(320) and SW 8 has the minimum total number
of the stream (18 streams). Stream length indi-
cates the contributing area of a basin of a certain
order (Magesh et al. 2011). According to Strahler
(1952), the higher the stream length the lower the
infiltration, and the greatest runoff-producing
power of the basin. The SRB’s total stream
length of all orders is 3274.96 km.

2.4.1.2 Areal Parameters
The sub-basin area of the SRB ranges from 26.26
km2 (SW 19) to 543.42 km2 (SW 25). These sub-
watersheds are located at the maximum rainfall
area of the basin. Drainage density is controlled
mainly by two factors, such as relative relief and
slope of the basin (Magesh et al. 2011). So, it is
directly correlated with flood or flash flood. The
drainage density is high which means minimum
infiltration rate and maximum surface runoff of
the watershed (Kelson and Wells 1989). In the
current study, maximum drainage density was
found as SW 3, and the minimum was found as
SW 5. According to Horton (1945), length of
overland flow denotes the length of water flow
over the land surface before it becomes concen-
trated into defined stream channels. Climate
conditions, rocks, soil material, relief, and veg-
etative are the main influential factors of the
length of overland flow (Youssef et al. 2009).
The length of the overland flow value of the SRB
is 0.77 and it varies from 0.06 (high probability
to flood) for SW 5 to 0.88 for SW 18. Therefore,
sub-watersheds 5 and 6 were given the top rank
(5) that these sub-basins have high susceptibility
for the flood. According to Horton (1932), stream
frequency denotes the ratio between the total
number of streams and area. If the stream fre-
quency value is high, maximum surface flow and
minimum infiltration are recorded (Melton
1957). The highest stream frequency of the SRB
is found for SW 3 and the lowest for SW 1. SW 3
with the high vulnerability of sub-watershed for
flooding with low infiltration capacity. Accord-
ing to Schumm (1956), the bifurcation ratio is the

ratio between the number of stream segments of
a given order to the number of segments of the
next higher order. Its low value means that it is
structurally less disturbed watersheds (Strahler
1964) and the maximum value represents the
high runoff producing capability of a basin in a
short lag time (Howard 1990). The SRB has
found a mean bifurcation ratio value of 2.52, and
it varies from 1.64 to 4.75 across the sub-
watersheds.

According to Horton (1932), the elongation
ratio signals about the basin shape. The elonga-
tion ratio ranges between 0.6 and 0.8, which
means basin characteristics have steep slopes and
high relief. Another side, its value is close to 1
which means that the basin characteristic has
very low relief (Dar et al. 2013). In this work,
SW 12, 13, 18, 19, 20, and 21 have the lowest
sensitivity to flooding, whereas SW 7 has the
highest indicating more susceptibility to flood-
ing. According to Miller (1953), the circulatory
ratio is the proportion of the watershed area to
the area of the circle having the same perimeter
of the watershed. Geological structures, rough-
ness, slope, climate, frequency of stream, and
length of stream are controlled by the circulatory
ratio (Bisht et al. 2018). Its value is directly
correlated with flash floods. Its higher value
indicates the minimum time taken to surface
runoff and maximum time taken to infiltration. In
this research, SW 6 has the lowest circulatory
ratio value, and SW 12 to have the highest value
(high potential for flooding). Sub-watersheds 4,
5, 8, 9, 10, 12, and 16 are given the highest rank
(5) due to the high circulatory ratio value,
whereas sub-watersheds 6 and 26 are referred to
the least rank (1). The shape factor determines
the rate of sediment and water yield (Farhan et al.
2017). The low value of the shape factor repre-
sents maximum relief and steep slopes that
indicate a high probability of flood. The shape
factor values of the SRB vary from 0.93 (SW 12)
to 5.83 (SW 23). Sub-watersheds 1, 2, 3, and 23
with high shape factor values are denoted by the
lowest rank (1), and sub-watersheds 10, 12, 13,
18, 19, 20, and 21 with the low values are
denoted by the highest rank (5).
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2.4.1.3 Relief Parameters
The difference between the highest elevation and
lowest elevation is called basin relief. It plays an
important role in various aspects such as drai-
nage development, erosional properties of the
terrain, landforms development, surface and
subsurface water (Magesh et al. 2011). In this
study, sub-watershed 21 is determined as the
minimum and sub-watershed 3 as the maximum.
It depicts that the basin has the maximum
potentiality to produce floods. In the present
study, SW 12 is the most sensitive sub-watershed
for floods, whereas SW 20 is the least sensitive
one. Sub-watersheds 6, 12, and 13 are found to
have a high value of relief ratio values.
According to Macka (2001), the relative relief
ratio has a direct relationship with the probability
of floods. In the present study, sub-watersheds
20, 21, 22, 23, 25, and 26 with low relative relief
ratio value has been given the lowest rank (1) and
sub-watersheds 3, 4, 5, 6, 8, 12, and 14 with high
values are denoted by the highest rank (5). Basin
slope has an impact on the hydrological pro-
cesses such as the amount of surface runoff and
speed, and the time (Meraj et al. 2013). Steep
slope and high relief of the basin increase the
probability of flash floods. In the present study,
sub-watersheds 1, 2, 20, 21, 22, 23, 24, 25, and
26 with the lowest basin slope values are denoted
by the lowest rank (1). Sub-watersheds 3, 12, and
13 with the highest values are denoted by the
highest rank (5). Ruggedness is the nature of the
surface undulations of the basin (Selvan et al.
2011). If the ruggedness number is maximum,
there is a high possibility for erosion and flash
floods (Patton and Baker 1976). It is directly
related to flooding (Obeidat et al. 2021). Sub-
watersheds of the study areas 8, 12, 13, 18, 19,
20, 21, and 26 with the lowest ruggedness
number are denoted by the lowest rank (1). Sub-
watershed 1 with the highest ruggedness number
are denoted by the highest rank (5). Hypsometric
Integral is a very important parameter to deter-
mine the interrelations existing among the
lithology, climate, erosion, and tectonic uplift
(Pavano et al. 2018). Hypsometric integral value
is lowest for SW 22 and SW 26 and hence these

watersheds are given top rank (5) while SW 5,
SW 7, SW11, and SW 21 with the highest hyp-
sometric integral are given the lowest rank (1).

The eight direct morphometric parameters
(basin slope, basin area, circularity ratio,
ruggedness number stream frequency, relief
ratio, drainage density, and relative relief ratio)
and four indirect parameters (length of overland
flow, shape factor, hypsometric integral, and
elongation ratio) weights are employed for the
Pearson correlation coefficient matrix in Fig. 2.5.
This matrix revealed that the correlation of the
all-morphometric parameters are correlated to
each other. According to the result of the corre-
lation analysis, the strongest correlation has been
found between the basin relief and basin slope
(r = 0.96). Moreover, the circularity ratio to
other morphometric parameters has been found
as the weakest correlation.

2.4.2 Prioritization of the Sub-basin
for Flood Susceptibility

The morphometric total ranking method was
used for assessing the flood hazard. Table 2.2
and Fig. 2.6 illustrate the results of this study.
The total ranking method was used for the total
score of twelve factors for each sub-watershed.
The flood prioritization map of the SRB repre-
sents two sub-watersheds (18, and 21) with very
high flood probability. About 5.61% of the total
area is under this category and this area is also
the same as that of the historical flood. Around
42.57% of the total area encompassing nine sub-
watersheds (12, 13, 17, 19, 20, 22, 24, 25, and
26) are under the high flood susceptibility zone.
The results of the study represent that this is a
high flood-prone area. Around 27.65% of the
total basin area distributed over ten sub-
watersheds (5, 6, 7, 8, 9, 10, 11, 15, 16, and
23) are included in the moderate class flood risk
category. Sub-watersheds 1 and 14 are fall under
the low flood risk class with around 11.60% of
the total basin area. Sub-watersheds 2, 3, and 4
with around 12.68% of the total area of the basin
are included under very low flood risk areas. The
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upper part of the basin is a very low flood risk
area. The lower-middle segment of the river
basin is observed to be in a vulnerable condition
since it belongs to the very high to high flood
susceptible category. Also, these results are the
same as that of the rainfall active area and
geology. Current research represents that rainfall
has a strong relationship with flood susceptibil-
ity. This work will be helpful for the authorities
to take appropriate measures for reducing flood
risk or surfaces runoff harvesting. Moreover, this
work may be employed in other areas, when the
historical flood data and validation are not
available.

2.4.3 Validation

In the present context, accurately measuring and
preparing the flood susceptibility map with vali-
dation is a very crucial and difficult task. The
present study used success and prediction rate
methods to validate the model by comparing
predicted hazard areas to existing hazard loca-
tions (Zare et al. 2013). To do this, a total
number of 200 known flood sites are demarcated
from the flood map of 2017 (Figs. 2.1 and 2.6)
published by the National Remote Sensing
Centre (bhuvan.nrsc.gov.in). Therefore, an area
under curve (AUC) method evaluated the

Table 2.2 Details description of the results of the study with weight values

SW A Dd Lo Fs Re Rc Sf Rr Rv Bs Rn HI Total
rank

Normalization Prioritized rank Priority

1 1 5 2 5 3 1 4 1 1 1 1 5 30 0.40 3 Low

2 2 4 1 2 1 5 5 1 1 1 1 2 26 0.20 2 Very low

3 2 3 1 2 1 3 5 1 1 1 1 1 22 0 1 Very low

4 1 4 1 1 1 2 5 2 2 2 1 4 26 0.20 2 Very low

5 1 1 5 2 2 5 4 3 5 3 1 1 33 0.55 7 Moderate

6 1 1 5 2 2 1 4 5 5 3 2 2 33 0.55 7 Moderate

7 4 5 2 1 4 3 1 1 4 1 5 2 33 0.55 7 Moderate

8 1 3 2 2 3 5 3 3 5 3 1 2 33 0.55 7 Moderate

9 2 5 2 5 2 5 2 2 2 2 2 2 33 0.55 7 Moderate

10 1 5 2 2 2 3 5 2 5 2 2 2 33 0.55 7 Moderate

11 1 5 2 5 3 4 3 2 3 2 2 1 33 0.55 7 Moderate

12 1 4 2 1 1 5 5 5 5 5 1 2 37 0.75 9 High

13 1 5 2 3 1 3 5 5 3 5 1 2 36 0.75 9 High

14 1 4 1 2 1 3 5 4 3 4 1 2 31 0.45 4 Low

15 1 5 2 4 3 2 2 2 3 2 2 4 32 0.50 5 Moderate

16 3 5 2 4 3 3 2 1 1 1 2 5 32 0.50 6 Moderate

17 1 5 2 5 3 4 3 2 4 2 3 2 36 0.75 9 High

18 1 5 2 4 3 5 4 3 5 3 2 2 39 0.85 10 Very high

19 1 5 2 4 3 4 3 2 5 2 2 3 36 0.75 9 High

20 4 5 2 5 3 3 1 1 3 1 4 3 35 0.65 8 High

21 1 5 3 5 3 4 1 5 5 5 2 3 42 1.00 11 Very high

22 1 5 2 5 2 5 4 2 4 2 2 3 37 0.75 9 High

23 4 5 2 5 4 2 1 1 1 1 3 3 32 0.50 6 Moderate

24 5 5 2 5 3 3 2 1 2 1 3 3 35 0.65 8 High

25 5 5 2 5 3 3 2 1 1 1 4 4 36 0.65 8 High

26 1 5 2 4 5 4 3 2 4 2 2 1 35 0.65 8 High
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prediction capabilities of validation of the model
(Swets 1988; Hong et al. 2015). In this work, the
AUC is considered to evaluate the performance
and efficiency of this morphometric method. In
order to assess the validity of the flood suscep-
tibility map, the AUC is computed, and the
output value, i.e., 89.2% depicts that the accu-
racy level of the flood map prepared to adopt the
morphometric analysis technique is well accept-
able (Fig. 2.7). Also, different field photos during
the flood also validate this work (Fig. 2.8).

2.5 Conclusion

Hydro-morphometric analysis and GIS tech-
niques are employed to predict flood vulnerable
areas of the SRB. Since there were no such

Fig. 2.6 Sub-watersheds-wise final flood susceptibility map

Fig. 2.7 Area under curve for validation of flood
susceptibility map
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government or private historical flood records that
are required for flood modeling, sub-watershed-
wise flood susceptibility analysis has been done
using the morphometric investigation. The cur-
rent study result depicts that around 48.18% of
the total basin area is included under the high to
very-high-flood susceptibility category. Basin
slope, relative relief ratio, drainage density, cir-
culatory ratio, relief ratio, stream frequency, and

ruggedness number are the most important mor-
phometric parameters for flooding in the study
area. The performance and efficiency of this
method are validated using the AUC model that
ensures a considerable amount of accuracy
(89.2%) of the study. The flood prioritization map
of the SRB represents two sub-watersheds (18
and 21) with very high flood probability. About
5.61% of the total area is under this category and

Fig. 2.8 a Flood water spill over the area near Ghatal,
b flood water spill over the road near Ghatal, c flood water
spill over the bridge near Chandrakona, d flood water spill

over the area near Chandrakona, e flood water spill over
the area near Salboni, f flood water spill over the road near
Salbani (Source Field Photographs 2020)
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this area is also the same area as the area of the
historical flood. Around 42.57% of the total area
over nine sub-watersheds (12, 13, 17, 19, 20, 22,
24, 25, and 26) are under the high flood suscep-
tibility zone. The result of the study represent that
this is a high flood-prone area. Therefore, the
current study depicts that managing the flood of
the area is much needed. It should be the main
focus of the government to protect human lives
and agricultural land. Moreover, this study carried
out using the combination of morphometric
analysis with GIS may act as an important tool to
understand sub-watersheds parameters related to
flooding management.
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