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18.1  Background

Organic acidemias are disorders of branched 
chain amino metabolism in which non-amino 
organic acids accumulate in serum and urine. 
They are defects in the degradation pathways of 
leucine, isoleucine, and valine. These condi-
tions are usually diagnosed by examining 
organic acids in urine with abnormal metabo-
lites also notable on acylcarnitine profile. 
Organic acidemias comprise a variety of disor-
ders and include methylmalonic acidemia 
(MMA), propionic acidemia (PROP), isovaleric 
acidemia (IVA), glutaric acidemia, type 1 (GA-
1), 3- methylcrotonyl carboxylase deficiency 
(3-MCC), 3- methylglutaconic acidemia 
(3-MGA), methylmalonyl- CoA epimerase defi-
ciency (MCEE), and vitamin B12 uptake, trans-
port, and synthesis defects [1–3].

All are autosomal recessive with the exception 
of the rare, x-linked disorder, 2-methyl-3- 
hydroxybutyryl-CoA dehydrogenase deficiency 
(MHBD). The two primary disorders of isoleu-

cine and valine catabolism are propionic acide-
mia (PROP) and methylmalonic acidemia 
(MMA) and the primary organic acidemia of leu-
cine catabolism is isovaleric acidemia (IVA). 
These three disorders will be discussed in detail 
in this chapter. GA-1 is addressed in Chaps. 19 
and 20. The incidence of MMA ranges from 
1:83,000  in Quebec to 1:115,000  in Italy to 
1:169,000  in Germany and that of PROP from 
1:17,400  in Japan to 1:165,000  in Italy to 
1:277,000  in Germany [4–7]. On the basis of 
newborn screening data, the incidence of IVA has 
a range of 1:62,500 live births in Germany to 
~1:250,000 in the United States [7, 8]. Newborn 
screening via tandem mass spectrometry has 
allowed earlier diagnosis and has revealed a 
higher incidence of these disorders than previ-
ously noted based on clinical presentation sug-
gesting a broader phenotype with milder and/or 
asymptomatic individuals [4, 5, 7, 9–13]. 
Techniques for newborn screening continue to be 
refined to aid in increased sensitivity and speci-
ficity of screening [14, 15].

The oxidation of threonine, valine, methio-
nine, and isoleucine results in propionyl-CoA, 
which propionyl-CoA carboxylase converts into 
L-methylmalonyl-CoA, which is metabolized 
through methylmalonyl-CoA mutase to succinyl- 
CoA. Whereas the breakdown of the above amino 
acids is felt to contribute to ~50% of the 
propionyl- CoA production, gut bacteria and the 
breakdown of odd-chain-length fatty acids also 
substantially contribute to propionyl-CoA pro-
duction (~ 25% each) with a minimal contribu-
tion by cholesterol metabolism [16–19] 
(Fig. 18.1).

PROP is caused by a deficiency of the mito-
chondrial enzyme, propionyl-CoA carboxylase 
(PCC) [9, 19]. The enzyme is composed of two 
subunits, an alpha and beta subunit, each 
encoded by a different gene, PCCA and PCCB, 
respectively [9]. The enzyme is biotin-depen-
dent with biotin binding to the alpha subunit 
[19, 20]. Deficiency of the enzyme results in the 
accumulation of propionyl-CoA and increased 
concentrations of free propionate in blood and 
urine. Identification of methylcitrate and 
3- hydroxypropionate are the major diagnostic 
metabolites seen on organic acid analysis [19, 

Core Messages
• Organic acidemias (OA) are defects in 

the degradation of leucine, isoleucine, 
and valine.

• OA can present as either a severe neona-
tal onset form (poor feeding, vomiting, 
lethargy, tachypnea, progressing to aci-
dosis, respiratory distress, coma, death) 
or late-onset (usually recurrent ketoaci-
dosis or lethargy with catabolic stress).

• Nutrition treatment involves use of pro-
piogenic amino acid free medical foods 
and restriction of natural protein in 
PROP and MMA and protein restriction 
with or without leucine-free medical 
food and supplemental glycine in IVA.

• Outcomes in PROP and MMA have been 
guarded with frequent neurological com-
plications, renal dysfunction, cardiomyop-
athy and optic atrophy but are improving 
with earlier identification and treatment, as 
well as with liver or liver-kidney transplan-
tation; outcomes in IVA are often normal.
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21]. Elevation of propionylcarnitine (C3) can be 
seen on acylcarnitine profile [9, 21].

Classic MMA is caused by a deficiency of 
the enzyme, methylmalonyl-CoA mutase, an 
adenosylcobalamin (AdoCbl)-dependent 
enzyme consisting of two identical subunits 
(2α) [9, 19, 21] (Fig. 18.2). About 50% of cases 
of MMA are due to a defect in the mutase apo-
enzyme; in others, it is due to a defect in the 
uptake, transport, or synthesis of its adenosyl-
B12 coenzyme causing variant forms of MMA 
that may or may not be associated with homo-
cystinuria. Individuals who are deficient in 
mutase activity may be further designated as 
mut− or mut0 pending residual enzyme activity 
[19]. There is good correlation between residual 
enzyme activity and severity of the clinical phe-
notype [21]. Acquired methylmalonic aciduria 
can also be seen with acquired deficiency of 
vitamin B12 in pernicious anemia and in transco-
balamin II deficiency [9]. Hence, vitamin B12 
deficiency must be excluded in all individuals 

with elevated methylmalonic acid concentra-
tions [9, 19]. Deficiency of the mutase enzyme 
results in the accumulation of methylmalonyl- 
CoA and propionyl-CoA and is reflected in ele-
vations of methylmalonic acid and propionic 
acid in blood and urine [19, 21]. Methylmalonic 
acid, methylcitrate, 3- hydroxypropionate, and 
3-hydroxyisovalerate are found on urine organic 
acid analysis [9, 19, 21]. Propionylcarnitine 
(C3) is also found on acylcarnitine profile in 
MMA [9, 21].

IVA was initially described in 1966 and was 
the first organic acidemia described. IVA is 
caused by a deficiency of the enzyme, 
 isovaleryl- CoA dehydrogenase, an enzyme 
important in leucine catabolism and also impor-
tant in the transfer of electrons to the respiratory 
chain [9, 19]. The consequent accumulating 
metabolites include isovaleric acid, isovalerylg-
lycine, 3-hydroxyisovaleric acid, and isovaleryl-
carnitine (C5) [9, 19] (Fig. 18.3). These are easily 
identified on urine organic acid analysis and the 

Fig. 18.1 Metabolic pathway of propionic acidemia (PROP)
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Fig. 18.2 Metabolic pathway of methylmalonic scidemia (MMA)

Fig. 18.3 Metabolic pathway of isovaleric acidemia (IVA)
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latter on acylcarnitine profile. The excretion of 
isovalerylglycine and 3-hydroxyisovaleric acid 
are diagnostic.

18.2  Clinical Presentation

Organic acidemias may present at any age. In 
general, they can be divided into two broad 
groups—a severe, neonatal presentation and a 
chronic late-onset presentation.

18.2.1  Severe Neonatal Onset Form

The clinical presentation of the severe, neonatal 
onset form of these disorders can be quite similar 
for all three disorders. As is typical with inborn 
errors of metabolism, the pregnancy and birth 
history for the child is often unremarkable. 
Following an initial symptom-free period which 
may last from hours to weeks, the infant then 
develops nonspecific symptoms, such as poor 
feeding, vomiting, dehydration, lethargy, tachy-
pnea, and hypothermia and if unrecognized, 
quickly progresses to respiratory distress, apnea, 
bradycardia, coma, cerebral edema, and death [9, 
13, 16, 19, 21]. Despite newborn screening, many 
children are critically ill at the time of initial pre-
sentation [13]. At the time of presentation, the 
physical examination is primarily one of altered 
mental status and encephalopathy, but dehydra-
tion, hepatomegaly, abnormal tone, and seizure- 
like activity may also be seen [9, 13, 16, 19]. A 
sweaty feet or dirty sock smell is classically 
described for IVA secondary to excretion of 
3-hydroxyisovaleric acid [9–11]. An antenatal 
presentation of PROP with nephromegaly and 
acute neonatal kidney injury has also been 
reported [22].

18.2.2  Chronic Late Onset Form

The late onset form typically presents after 30 days 
of age and maybe much later including into ado-
lescence or adulthood [19]. McCrory et al. noted 
one-third of patients with PROP were ascertained 
by clinical presentation after one year of age [13]. 

Individuals may present with recurrent attacks of 
ketoacidosis with coma or lethargy and ataxia dur-
ing times of catabolic stress such as during an ill-
ness or following a high protein meal [9, 19]. The 
presentation may mimic diabetic ketoacidosis 
[23–26]. Childhood and adolescent onset patients 
have presented with chronic renal failure [27]. 
Other individuals may present with acute hemiple-
gia, hemianopsia, or cerebral edema, or symptoms 
that mimic a cerebral vascular accident, cerebral 
tumor, or acute encephalitis [13, 19]. In addition, 
symptoms may simulate a neurologic disorder 
presenting with hypotonia, weakness, ataxia, sei-
zures, progressive spasticity, movement disorder, 
vision loss, or developmental delay. Symptoms 
may also be misdiagnosed as a gastrointestinal 
disorder secondary to presenting with failure to 
thrive, anorexia, chronic vomiting, or a Reye-like 
presentation [9, 13, 19, 21, 27]. Some individuals 
may present with hematologic manifestations or 
present with recurrent infections [9, 19]. Adult 
presentations have included acute metabolic aci-
dosis with renal and respiratory failure [28] and 
isolated dilated cardiomyopathy [29].

18.2.3  Laboratory Studies 
and Diagnosis

Laboratory studies typically reveal a severe 
metabolic acidosis with an elevated anion gap, 
ketosis, and hyperammonemia [9, 16, 19, 21]. 
Hyperuricemia, hyperlacticacidemia, and hypo-
calcemia may also be seen. Blood glucose can be 
reduced, normal, or elevated [16, 19]. Bone mar-
row involvement as reflected by neutropenia, 
anemia, thrombocytopenia, or pancytopenia can 
also be observed and is a rather unique finding of 
organic acidemias [9, 16, 19]. Diagnostic metab-
olites, as noted above, are seen on urine organic 
acid analysis and acylcarnitine profile. 
Quantitative plasma amino acids and urine 
amino acids are useful to investigate the possi-
bility of combined MMA and homocystinuria 
due to vitamin B12 synthesis defects. Striking 
elevations of glycine and alanine can be seen in 
blood and urine and may be an early clue to 
diagnosis and explains the historical descriptive 
term of “ketotic hyperglycinemias” [9, 21]. The 
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diagnosis may be confirmed by enzyme assay or 
molecular studies. Organic acidemias are 
increasingly identified via newborn screening 
with elevations in propionylcarnitine (C3) for 
PROP and MMA and elevated isovalerylcarni-
tine (C5) for IVA.

18.2.4  Complications

Organic acidemias are multisystem disorders with 
individuals at risk for a variety of complications. 
Complications arise despite apparent good meta-
bolic control [30–32]. Neurologic complications 
include metabolic stroke with edema evolving 
into necrosis of the basal ganglia, especially the 
globus pallidus, and leading to a disabling move-
ment disorder, motor dysfunction, and hypotonia 
[19, 21, 33–35]. Cortical volume loss, basal gan-
glia lesions, cerebral and vermian atrophy, and 
delayed myelination may be seen on neuroimag-
ing [9, 19, 21, 34, 36, 37]. Restricted diffusion 
may be noted during acute events [36]. Clinically, 
seizures, deafness, optic nerve atrophy, neuropa-
thy, myopathy, developmental delay, attention 
deficit-hyperactivity disorder (ADHD), and autis-
tic features are seen [33, 35, 38–41] (Box 18.1). 
One study reported approximately 50% of 
affected individuals have an IQ < 80 [33], while 
another study suggested >70% of individuals with 
PROP have cognitive deficits [42]. The etiology 
of this neurologic damage is unclear. Theories 

include direct toxic effects of methylmalonic acid, 
propionic acid, and methylcitrate, impairment of 
energy metabolism as mediated by synergistic 
inhibition of the Krebs cycle and mitochondrial 
respiratory chain by the three metabolites, accu-
mulation of decarboxylates in the central nervous 
system, neuroinflammation, interference of cyto-
skeleton assembly in neuronal and glial cells, and 
disruption of signaling pathways that promote 
apoptosis of neuronal cells [30, 42–50]. Elevations 
in lactate and ammonia in plasma and lactate, glu-
tamine, glycine, and alanine in cerebrospinal fluid 
have also been detected in a patient with neuro-
logic symptoms but no signs of catabolism sug-
gesting that neurologic abnormalities may be 
related to localized metabolic derangements [31, 
51]. Data suggests a synergistic effect of methyl-
malonic acid and ammonia disturbing the redox 
homeostasis and causing morphological brain 
abnormalities, including vacuolization, ischemic 
neurons, and pericellular edema in a rat model 
[52]. Propionate accumulation also results in mor-
phological alterations in cerebral cortex astro-
cytes [35].

Another complication of organic acidemias is 
renal tubular acidosis with hyperuricemia leading 
to chronic renal impairment and eventually to 
renal failure [9, 19, 40] (Box 18.2). This is espe-

Box 18.1: Neurological Complications of 
Organic Acidemias
• Metabolic stroke with edema evolving 

into necrosis of the basal ganglia and 
globus pallidus which leads to disabling 
movement disorder, motor dysfunction 
and hypotonia

• Cerebral atrophy and delayed 
myelination

• Seizures
• Optic nerve atrophy, deafness
• Neuropathy or skeletal myopathy
• Developmental delay, autistic features

Box 18.2: Complications of Organic 
Acidemias
• Renal tubular acidosis (RTA) with 

hyperuricemia; chronic renal impair-
ment leading to renal failure

• Superficial desquamation and alopecia 
due to nutrient or essential amino acid 
deficiency

• Cardiomyopathy, long QT syndrome
• Pancreatitis  – acute, chronic and/or 

recurrent
• Carnitine deficiency
• Osteopenia or osteoporosis
• Ovarian failure
• Liver disease including nonalcoholic 

steatohepatitis, fibrosis, and cirrhosis
• Possible increased risk of infections

J. A. Thomas
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cially prominent in individuals with MMA; how-
ever, renal disease and failure have also been 
reported in individuals with propionic acidemia 
with an age-dependent decline [53–56]. Renal 
histology reveals tubulointerstitial nephritis with 
fibrosis, tubular atrophy, and mononuclear 
inflammatory infiltrate [55, 57–59]. Renal dis-
ease is found in the majority of individuals with 
MMA who are over 6 years of age and may be 
due to chronic glomerular hyperfiltration second-
ary to excessive methylmalonic acid excretion 
[10, 19, 34, 46]. The risk of developing renal fail-
ure seems to correlate with methylmalonic acid 
exposure over time and depends on the disease 
type with mutase-deficient patients at greater risk 
than patients with cobalamin defects [58]. Thus, 
minimizing renal injury may require strict meta-
bolic control to maintain methylmalonic acid 
concentrations as low as possible [19].

Furthermore, cardiomyopathy, more common 
in PROP than MMA and more commonly dilated 
than hypertrophic, may occur during acute 
decompensations or be the presenting feature and 
may be rapidly fatal [19, 60–64]. The pathogen-
esis of the cardiomyopathy is unclear—carnitine 
or micronutrient deficiency, infection, or acute 
energy deprivation have all been postulated [21, 
32, 51]. Cardiomyopathy appears to develop 
independent of any specific metabolic profile and 
appears to occur at any age [32, 51, 62]. The 
mean age of presentation in one series was 
7 years [62]. Long QT syndrome (delayed repo-
larization of the heart) is also reported and may 
occur in as high as 70% of patients with PROP 
[32, 65–68].

A secondary carnitine deficiency due to accu-
mulation of propionyl-CoA and increased con-
centration of acylcarnitines is also common [19]. 
Superficial desquamation, alopecia, and corneal 
ulcerations similar to staphylococcal scalded skin 
syndrome or acrodermatitis enteropathica-like 
syndrome, typically associated with diarrhea, 
may be seen secondary to acute protein malnutri-
tion or essential amino acid deficiency, especially 
isoleucine deficiency [51, 69–71]. Immune dys-
function has also been suggested with an increased 
risk for viral or bacterial infections, but good 
studies are lacking [51]. Chronic moniliasis has 

been described and reflects the effect of propionyl- 
CoA and methylmalonate on T-cell number and 
function [9]. Finally, acute, chronic, and recurrent 
pancreatitis, osteopenia or osteoporosis, ovarian 
failure, and liver abnormalities including nonalco-
holic steatohepatitis, fibrosis, and cirrhosis may 
also occur; the etiologies of which remain unclear 
[9, 21, 32, 40, 51, 54, 72–79].

18.3  Pathophysiology

The pathogenesis of the clinical features of 
organic acidemias remains complex and incom-
pletely understood. The metabolic blocks cause 
metabolite accumulation triggering an endoge-
nous intoxication. Propionyl-CoA and its metab-
olites inhibit the Krebs cycle resulting in reduced 
GTP and ATP synthesis, inhibit potassium chan-
nel flow, and are known to have inhibitory effects 
on pyruvate dehydrogenase complex, succinyl- 
CoA synthetase, ATP-citrate lyase, and N-acetyl- 
glutamate synthetase activities, and on the 
glycine cleavage system [9, 17, 18, 42, 80, 81]. 
Furthermore, methylmalonyl-CoA is known to 
inhibit pyruvate carboxylase [17, 82, 83]. 
Similarly, isovaleric acid causes marked inhibi-
tion of Na(+), K(+) ATPase activity [84]. 
Methylcitrate, itself, inhibits citrate synthase, 
aconitase, isocitrate dehydrogenase, and gluta-
mate dehydrogenase activities, disturbs mito-
chondrial energy homeostasis, decreases ATP 
generation [42, 81, 85] and has been shown to 
cause morphologic changes and apoptosis of 
brain cells [43]. Thus, there is an energy deficit 
secondary to substrate insufficiency and toxin 
accumulation [86], as well as a direct impact on 
Krebs cycle intermediates resulting in secondary 
effects on other pathways [42, 44]. These inhibi-
tory effects appear to explain some of the clinical 
signs seen in MMA and PROP, such as the hypo-
glycemia, lactic acidemia, hyperglycinemia, and 
hyperammonemia [17].

In addition, it has become increasingly evi-
dent that there is significant mitochondrial dys-
function, impairment of the oxidative 
phosphorylation system, increased production of 
reactive oxygen species (ROS), and increased 
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autophagy [30, 35, 42, 46, 59, 87–95]. The 
chronic effect of inhibition of mitochondrial 
energy production leads to oxidative stress, mito-
chondrial DNA damage, and altered mitochon-
drial morphology [44, 96]. The oxidative stress is 
mediated by increased levels of reactive oxygen 
species (ROS) and reduced ROS-protective levels 
of glutathione [44]. In addition, there are exten-
sive mitochondrial ultrastructural changes in 
liver and kidney samples from MMA patients 
providing more evidence of mitochondrial dys-
function and respiratory chain impairment [59, 
87, 89, 92, 97]. Mutase deficiency has been 
linked to mechanisms that cause mitophagy dys-
function and accumulation of damaged mito-
chondria that generate epithelial stress and tissue 
damage [87, 97]. Proteomic studies also suggest 
disturbances in proteins involved in energy 
metabolism, cellular detoxification, oxidative 
stress, cytoskeleton assembly, gluconeogenesis, 
and Kreb cycle anaplerosis [98, 99]. Finally, 
Storgaard et  al. also suggested involvement of 
impaired lipolysis, blunted fatty acid oxidation, 
compensatory increase in carbohydrate utiliza-
tion, and low work capacity as contributors to the 
pathophysiology of organic acidemias [100].

The etiology of the hyperammonemia seen in 
organic acidemias is different than that seen in 
urea cycle disorders. Recall that in the urea cycle, 
carbamoyl-phosphate synthesis is activated by 
N-acetylglutamate (NAG) [101]. Propionyl-CoA, 
which is accumulating in PROP, and isovaleryl- 
CoA, accumulating in IVA, are potent inhibitors 
of N-acetylglutamate synthase (NAGS) [11, 
102]. Thus, NAG production is reduced and lack 
of NAG results in carbamoyl-phosphate synthe-
tase inhibition and elevated ammonia concentra-
tions [102]. It has also been suggested that 
hyperammonemia may be related to the inability 
to maintain adequate concentrations of glutamate 
precursors through a dysfunctional Krebs cycle 
secondary to accumulating methylcitrate and the 
decline in citric acid excretion [101].

18.4  Management

The goal of treatment of an individual with an 
organic acidemia is to reduce the accumulation 
of toxic metabolites, maintain normal growth, 

development, and nutritional status, prevent 
catabolism, and minimize complications [19, 
44]. Therapy is multifaceted and typically 
involves a diet based on restriction of propio-
genic amino acids, medication supplementation, 
and life-long monitoring [44]. Individualized 
dietary prescriptions, as prescribed by a meta-
bolic nutritionist, balance the necessary intake of 
the restricted amino acids, other protein, and 
energy to provide the recommended daily allow-
ances of nutrients and allow for adequate growth 
[103]. This is frequently accomplished by the 
use of special propiogenic amino acid-restricted 
medical foods combined with a prescribed 
amount of intact protein provided by breast milk 
or regular infant formula in infancy and regular 
solid foods in older children [19]. Provision of 
total protein intake modestly above the dietary 
reference intake (DRI) is well-tolerated and can 
provide a buffer against catabolism [32]. The tar-
get plasma range for restricted amino acids in 
PROP and MMA (isoleucine, valine, methio-
nine, threonine) is low normal to normal [104]. 
In IVA, it is often sufficient to restrict natural 
protein to the recommended minimum daily 
requirements without the use of a leucine-free 
medical food [19, 104]. The target plasma range 
for leucine is 50–180 μM or normal range for the 
laboratory and 200–400 μM for glycine [104].

For all patients, particular attention must be 
paid to adequate energy intake. Energy require-
ments have been reported to be lower than pre-
dicted for age and sex during the well-fed state 
secondary to lower energy expenditure [105–
107]. During illness, however, resting energy 
expenditure increases, requiring increased caloric 
intake to prevent catabolism and decompensation 
[19, 103]. These needs may require the use of 
additional fat and carbohydrate sources or 
protein- free modules. Catabolism is the major 
reason for acute decompensation [32]. If individ-
ual amino acids are found to be low, supplemen-
tation may be required, but no studies prove the 
efficiency of consistent supplementation of iso-
leucine and valine [107]. Nutrition management 
guidelines have been published by Yannicelli, 
Knerr et al., and Jurecki et al. [103, 104, 108] and 
are described in Chap. 21.

Therapy of IVA varies slightly from that of 
PROP and MMA.  Isovaleryl-CoA conjugates 
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with glycine via the enzyme, glycine-N-acylase, 
forming isovalerylglycine, and also binds with 
carnitine, via carnitine N-acylase, to form isova-
lerylcarnitine [109, 110]. Both products, isova-
lerylglycine and isovalerylcarnitine, are easily 
excreted in the urine. This feature is exploited for 
both acute and chronic management. Thus, gly-
cine (150–300  mg/kg/d) and carnitine (50–
100  mg/kg/d) are both supplemented in 
individuals with IVA resulting in excretion of 
isovaleric acid [9, 11, 16, 19, 82, 83, 104, 109–
114]. Subsequently, a strict metabolic diet may 
not be needed.

Supplementation of L-carnitine (100–400 mg/
kg/d divided 2–3 times per day) is also an impor-
tant aspect of the treatment of PROP and MMA 
[9, 19, 21, 32, 33, 103]. Provision of oral carni-
tine is effective in preventing carnitine depletion, 
regenerating the intracellular pool of free coen-
zyme A (CoA), and allows urinary excretion of 
propionylcarnitine, thereby reducing propionate 
toxicity [19, 104]. High doses of carnitine may 
cause a fishy odor due to overproduction of 
methylamines and may cause diarrhea [9, 103] 
but may be particularly helpful in PROP [32].

All patients with MMA should be tested for 
responsiveness to vitamin B12 [9, 19]. Testing 
regimes vary, but responsiveness can be deter-
mined by monitoring quantitative plasma or urine 
methylmalonic acid concentrations or by measur-
ing metabolites via urine organic acid analysis. 
Vitamin B12 responsiveness leads to prompt and 
sustained decrease of propionyl-CoA byproducts 
[19]. Results should be confirmed by additional 
studies. Many vitamin B12-responsive patients 
may need minimal to no protein or amino acid 
restriction [19]. In responsive patients, vitamin 
B12 is supplemented orally once per day or intra-
muscularly or subcutaneously daily or weekly 
with a beginning dose of 1 mg [19, 104]. A biotin 
responsive form of PROP has not been seen, but 
biotin dosed at 5–20 mg/d is sometimes supple-
mented in PROP [9, 32, 33, 103, 104].

As propionate production may result from gut 
bacteria, an intermittent antibiotic regime to 
reduce gut propionate production is sometimes 
implemented. The antibiotic, metronidazole, has 
been reported to be effective in reducing urinary 
excretion of propionate metabolites when used at 
a dose of 10–20 mg/kg once per day [16, 19, 103, 

104]. The regime of therapy varies, but 7–10 con-
secutive days each month is a common practice 
[19, 33, 37, 104]. Some care providers prefer 
neomycin (50 mg/kg) because it is not absorbed 
[9]. Care must be taken to avoid complications 
associated with chronic antibiotic use including 
leukopenia, peripheral neuropathy, and pseudo-
membranous colitis. Metronidazole may also 
cause anorexia and dystonia [32, 103]. There are 
no studies that evaluate the clinical efficacy of 
metronidazole in improving clinical outcome, 
reducing ammonia concentrations, or reducing 
episodes of acute decompensation [32]. Overall, 
results of intermittent antibiotic use have been 
variable as measured by change in metabolite 
excretion, likely reflecting a variable coloniza-
tion of gut bacteria by organisms which may or 
may not produce propionate [9].

Administration of N-carbamylglutamate 
(100–250  mg/kg/d) with or without ammonia 
scavengers has been suggested to help restore 
ureagenesis and improve acute hyperammonemia 
[18, 32, 44, 115, 116]. Increasing data is begin-
ning to also suggest benefit of chronic use of 
N-carbamylglutamate (50  mg/kg/d) including a 
decrease in mean ammonia concentrations and a 
decrease in acute episodes of decompensation 
[44, 117]. Similarly, chronic therapy with sodium 
benzoate (150–250 mg/kg/d) has been proposed 
to help correct chronic hyperammonemia and 
hyperglycinemia [33]; however, there is no evi-
dence that supports a role of sodium benzoate in 
chronic treatment especially given the evidence 
that higher glycine concentrations may be indica-
tive of good metabolic control [32, 118]. 
Multivitamins may be given to reduce the risk of 
micronutrient deficiency. Citric acid and orni-
thine alpha-ketoglutarate have also been pro-
posed to help sustain Krebs cycle flux and 
promote anaplerosis during illness and chronic 
management [96, 101, 119] with citric acid being 
most efficacious in one study of three agents 
[120]. In addition, coenzyme Q10 and vitamin E 
have been suggested as possible therapies for 
MMA-related optic neuropathy or secondary 
respiratory chain deficiency [46, 121, 122] and 
angiotension II inhibition has been suggested to 
help delay renal disease [123]. The role of growth 
hormone and supplemental alanine to promote 
anabolism has been suggested, but experience is 
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limited [9, 32, 124–126]. Glutathione deficiency 
treated with high doses of ascorbate has also been 
reported [127].

In addition, prompt treatment of intercurrent 
illnesses, particularly those placing the individual 
at risk for catabolism (e.g., vomiting, diarrhea, 
fever), and avoidance of fasting is paramount to 
reduce the risk of acute decompensations. Many 
children develop anorexia and feeding difficulties 
necessitating the placement of a gastrostomy 
tube to prevent fasting and ensure adequate 
dietary intake [33, 75, 128]. Patients and families 
should be provided an emergency medical letter 
as well as a sick day protocol [32]. A medical 
alert bracelet or necklace is also recommended 
[32].

Management of an acute decompensation 
involves reduction or discontinuation of protein 
and provision of energy to stop catabolism and 
promote anabolism by infusion of glucose and 
intralipid [21]. Fluid recommendations are stan-
dard for age. Using a 10% dextrose solution at 
120–150 mL/kg/day (or 1.5 times maintenance) 
often can provide the necessary level of glucose 
delivery [37, 104]. Rehydration should occur 
over a 48-hour period to prevent cerebral edema 
[104]. Additional calories are added by using 
intralipid at 1–3 gm/kg/day [37, 104]. If hyper-
glycemia develops, an insulin drip (0.01–
0.1 units/kg/h) may be necessary, but the dextrose 
delivery rate or amount should not be decreased 
[9, 37, 104]. Bicarbonate supplementation 
(1–2 mEq/kg) may be necessary to help correct 
acidosis [104]. If severe hyperammonemia is 
present, hemodialysis, hemofiltration, continu-
ous chronic renal replacement (CCRT), extracor-
poreal membrane oxygenation (ECMO), and/or 
ammonia scavenging medications may be neces-
sary [33, 37, 104, 129, 130]. Sodium benzoate 
and sodium phenylacetate, however, should be 
used with caution in patients with organic acide-
mias because glutamine concentrations can 
already be low and they may potentiate ammonia 
toxicity by blocking the urea cycle through 
sequestration of CoA [44, 115]. 
Carbamylglutamute (100–250 mg/kg/d) has been 
demonstrated to be beneficial in controlling the 
hyperammonemia associated with an acute 

decompensation [33, 44, 102, 115, 131–135]. 
Administration of intravenous L-carnitine in rel-
atively high doses (100–400 mg/kg/d) is used in 
acute illness [37, 104]. Metabolic decompensa-
tion in PROP may be complicated by hyperlacti-
cacidemia due to thiamin deficiency, requiring 
supplementation (10 mg/kg/d) [104, 136, 137]. If 
the illness is prolonged, total parenteral nutrition 
may be necessary. Otherwise, reintroduction of 
protein occurs as tolerated, but should be reintro-
duced within 24–36  hours of therapy initiation 
[37, 104]. Frequent monitoring of laboratory 
studies and for possible complications is required.

For a fragile, medically intractable individual, 
liver, kidney, or combined liver kidney transplan-
tation may be considered [138–148]. 
Transplantation is not a cure as it only partially 
corrects the enzymatic defect, but may result in 
improved survival, metabolic stability, neuro-
logic function, and quality of life [32, 33, 86, 
138–141, 149–155]. Perioperative complica-
tions, especially vascular complications, how-
ever, are common [138]. Liver transplantation 
has also been shown to improve cardiomyopathy 
[62, 156, 157], but cardiomyopathy has also 
recurred following transplantation [158]. Dietary 
therapy, perhaps liberalized, and L-carnitine sup-
plementation are continued following transplan-
tation [142, 145, 147, 149, 159]. Neurologic 
dysfunction, including metabolic stroke, and 
renal disease are not always prevented with trans-
plantation [9, 17, 19, 32, 33, 160, 161]. One-year 
survival rate following transplantation was 72.2% 
in a multi-site, retrospective study of 12 individu-
als with PROP [32, 150] and may be up to 100% 
at experienced centers [138, 141, 162]. Therapies 
under investigation include import of transactiva-
tion of transcription (TAT) conjugated enzymes, 
viral vector-mediated gene transfer, systemic 
messenger RNA therapy, and genome editing 
[163–166].

18.5  Monitoring

Monitoring of patients with organic acidemias 
will vary according to each clinics’ practice but 
should occur with some degree of regularity. 
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Patients should be seen routinely in clinic with 
routine monitoring of laboratory studies. 
Quantitative plasma amino acids should be 
obtained at least monthly in all patients managed 
with a restricted diet, although this practice var-
ies between clinics. Quantitative methylmalonic 
acid is available in selected laboratories and may 
be used to follow individuals with MMA [9]. 
There is no established biomarker for monitor-
ing therapeutic control in IVA [11]. Propionate 
concentrations may be difficult to obtain for 
 individuals with PROP; some advocate follow-
ing the methylcitrate to ctirate ratio via quantita-
tive urine organic acid analysis or dried blood 
spots, if available [167, 168]. Propionylcarnitine 
has not been demonstrated to correlate with 
severity or level of control [32]. Ammonia, acid-
base balance, and anion gap have been demon-
strated to be important biochemical parameters 
in identifying an impending metabolic decom-
pensation and to assess severity of PROP and 
MMA patients [169, 170]. The frequency of 
monitoring laboratory studies varies pending the 
patient’s age and clinical stability. Laboratory 
studies to obtain every 6–12  months include 
complete blood count, complete metabolic panel 
(to include electrolytes, renal and liver function 
studies), carnitine, urinalysis, β-type natriuretic 
peptide, cystatin C, and calculated glomerular 
filtration rate, as well as annual nutrition moni-
toring studies to include prealbumin, 
25-hydroxyvitamin D, vitamin B12, iron, ferritin, 
and other micronutrients (thiamin, selenium) 
[32]. Additional laboratory studies to consider 
during acute illness include complete blood 
count, complete metabolic panel (to include 
electrolytes, renal and liver function studies), 
amylase, lipase, ammonia, osmolality, lactate, 
coagulation studies, creatine kinase, and urine 
ketones. Families can also be taught to test for 
urine ketones using ketone reagent strips at home 
as an early warning sign for pending decompen-
sation [9] (Box 18.3).

Recent evidence suggests fibroblast growth 
factor 21 (FGF21) may be a predictive biomarker 
for metabolic stress in patients with MMA and 
PROP [171, 172]. The plasma concentrations of 
FGF21 appear to correlate with disease subtype 
and markers of mitochondrial dysfunction and 

are not affected by nutritional status or renal dis-
ease [171, 172]. Molema et al. suggested FGF21 
levels >1500 during stable metabolic periods pre-
dicted an increase in long-term complications in 
patients with MMA and PROP [171]. This labo-
ratory study, however, is not yet readily available 
for clinical use.

In addition to laboratory studies, management 
of an individual with an organic acidemia often 
requires the involvement of additional subspe-
cialty services including neurology, nephrology, 
cardiology, neuropsychology, endocrinology, and 
ophthalmology. The utilization of these subspe-
cialties is individualized to the clinical presenta-

Box 18.3: Laboratory Monitoring in Organic 
Acidemiasa

• Routine:
 – Plasma amino acids
 – Prealbumin
 – Serum methylmalonic acid concen-

trations (MMA)
 – Urine Organic Acids

Urinary methylcitrate to citrate 
ratio (MC  ≤  2 times citrate in 
PROP)

• Annual
 – Complete blood count
 – Electrolytes, renal and liver function 

tests
 – Calculated creatinine clearance and 

glomerular filtration rate (GFR)
 – Carnitine (total, free and esterified)
 – Nutrient adequacy: vitamin D, B12, 

thiamin, iron studies, minerals (zinc, 
selenium)

 – β-type naturiuretic peptide
 – Urinalysis
 – Cystatin C

• Acute illness (additional)
 – Amylase, lipase, ammonia, ketones, 

lactate, coagulation studies, osmolal-
ity, CK

aFrequency depends on age of patient 
and clinical status, recommended monthly 
routine laboratory evaluations.
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tion of the patient. The patient may be seen yearly 
if monitoring is only required to assess increased 
risk or may be seen more frequently if organ sys-
tem involvement is already noted [32]. Cardiology 
evaluation, however, with echocardiogram, ECG, 
and 24-hour Holter monitoring is recommended 
yearly in individuals with PROP [32] and MMA 
and during acute illnesses [27]. Schreiber et  al. 
also recommended a baseline electroencephalo-
gram and repeat studies as clinically indicated in 
all patients with PROP [35]. Long-term and 
repeated neuropsychological assessment is an 
excellent tool for tracking developmental prog-
ress or decline over time. Early evaluation and, if 
necessary, intervention are recommended begin-
ning at a young age. Routine bone densitometry 
(DEXA scan) is also recommended for all 
patients typically beginning at age 5  years [27, 
173]. Baseline endocrinology evaluation should 
be considered for female patients in late adoles-
cence or thereafter. Nephrotoxic medications and 
medications that prolong the QT interval should 
be used with caution [27].

18.6  Summary

The outcome of individuals with organic acide-
mias is quite variable. In general for PROP and 
MMA, late onset forms appear to have a better 
prognosis as compared with early onset forms, 
mut− MMA patients appear to do better than mut0 
patients, and individuals with vitamin B12 respon-
sive MMA appear to have improved outcome 
over patients with vitamin B12 unresponsive 
forms [10, 21, 34, 40, 58, 128, 174, 175]. In 
MMA, an earlier age of onset, the presence of 
hyperammonemia at diagnosis, and a history of 
seizures also predict more severe impairment 
[176]. The duration of hyperammonemia, abnor-
mal acid–base balance with metabolic acidosis, 
and coma correlate with poor neurologic out-
come [44]. Also, in general, individuals with IVA 
appear to have a better outcome than those with 
MMA or PROP; however, in contrast to MMA 
and PROP, the neurocognitive outcome in 
patients with a neonatal presentation is more 
favorable than in patients with a late diagnosis 

[177, 178]. Mortality has been reported to be 
>80% in the neonatal onset form of these disor-
ders and as high as 40% before 16 years of age in 
the late onset forms [33, 179]. Survival has 
improved [33]. The survival at one year of age in 
patients with mut0 was 65% in the 1970s but has 
increased up to 90% in the 1990s [17]. Death 
may be due to cerebral edema, cerebral or cere-
bellar hemorrhage, infection, renal failure, heart 
failure, arrhythmias, cardiomyopathy, pancreati-
tis, or irreversible metabolic decompensation [9, 
51, 63, 68, 179–181].

Morbidity is also high with frequent compli-
cations, poor growth and nutritional status, poor 
neurodevelopmental progress with frequent pro-
gressive neurocognitive deterioration, abnormal 
neurologic signs such as chorea and dystonia, 
and frequent and severe relapses of metabolic 
decompensation [6, 10, 21, 33, 68]. Overall, 
developmental outcome is poor in PROP and 
MMA with the majority of patients demonstrat-
ing developmental delay [6, 33, 51, 68, 75, 86, 
178]. Martin-Hernandez et  al. reported on the 
long-term needs of adult patients with organic 
acidemias [40]. In this series of 15 patients, 
largely with late onset disease, two-thirds of the 
patients had neurologic or visceral complica-
tions, and three-quarters of them required some 
kind of social support [40]. In contrast, develop-
mental outcome in IVA is normal in 60% or more 
of the patients [86, 178]. In addition, long-term 
complications and the risk of metabolic decom-
pensations associated with catabolic stress in 
individuals with IVA are also much less frequent 
than compared to PROP and MMA [40, 178]. 
Evaluation of older patients is beginning to sug-
gest a risk of psychiatric disorders [86].

Outcome and prognosis, however, may be 
changing and improving with early identification 
via newborn screening. A benign MMA pheno-
type has been described and some patients with 
MMA have remained symptom-free [4, 182, 
183]. In addition, infants diagnosed with IVA by 
newborn screen have also remained asymptom-
atic with carnitine supplementation and mild or 
no dietary restriction and retrospectively identi-
fied siblings ranging in age from 3 to 11 years 
were also asymptomatic [7, 11]. Dionisi-Vici 
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et al. compared the outcome of 29 patients with 
MMA, PROP, or IVA diagnosed clinically to 18 
similar patients diagnosed by newborn screen-
ing. The newborn screened population demon-
strated an earlier diagnosis, significantly reduced 
mortality (11% compared to 51%) and an 
increased number of patients with normal devel-
opment at <1  year of age [10]. A more stable 
clinical course with less frequent relapses of 
decompensation was also demonstrated [10]. 
Similar findings were also found by Grünert 
et  al. in a population of patients with PROP, 
however, they did not demonstrate a reduction of 
complications in patients diagnosed by newborn 
screening [184]. Overall, newborn screening and 
early diagnosis may result in decreased early 
mortality, decrease severity of initial symptoms, 
and improved neurodevelopmental outcome 
[10]. Outcome data, however, is early and lim-
ited and more long-term follow-up studies are 
needed.
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