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Abstract. Motivated by autonomous warehouse applications in the real world,
we study a variant of Multi-Agent Path Finding (MAPF) problem where robots
also need to pick and deliver some items on their way to their destination. We
call this variant the Multi-Agent Pick and Delivery with Capacities (MAPDC)
problem. In addition to the challenges of MAPF (i.e., finding collision-free plans
for each robot from an initial location to a destination while minimizing the max-
imum makespan), MAPDC asks also for the allocation of the pick and deliver
tasks among robots while taking into account their capacities (i.e., the maximum
number of items one robot can carry at a time). We study this problem with two
different approaches, action planning vs path finding, using Answer Set Program-
ming with two different computation modes, single-shot vs multi-shot.

Keywords: Multi-agent path finding · Pick and delivery with capacities ·
Action planning · Answer set programming

1 Introduction

Most warehouses share the same general pattern of material flow [1]: they receive
bulk shipments, put them away for quick retrieval, pick them in response to customer
requests, and then pack and ship them out to customers. The third component of this
flow, i.e., order-picking, typically accounts for about 55% of warehouse operating costs.
With increasing demand on e-commerce due to the pandemic, the importance and effect
of order-picking also increase [9]. Furthermore, among the three main phases of order-
picking (i.e., traveling to the location of the product, searching for the product at that
location, and grabbing/collecting the product), traveling comprises the greatest part of
the expense of order-picking.

With these motivations, we study a variant of Multi Agent Pathfinding (MAPF)
problem, where the agents need to pick and deliver some items on their way to their
destination. We call this problemMAPDC. In addition to the challenges of MAPF (i.e.,
finding collision-free plans for each agent from its initial location to a goal destination
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while minimizing the maximum makespan),MAPDC asks also for the allocation of the
pick and deliver tasks among agents while taking into account their capacities (i.e., the
maximum number of items one agent can carry at a time).

We study this problem with two different approaches, action planning vs path find-
ing, based on Answer Set Programming (ASP) [2,7,11,15,17].

In the planning approach, we represent the agents’ actions (i.e., moving to a loca-
tion, picking a product, delivering a product), and the change in the warehouse (i.e.,
over the locations and the bags of agents) by an action domain description in ASP. This
description takes into account the collision constraints and the capacity constraints.
After that, we model MAPDC as a planning problem, with its initial state description
(i.e., initial locations of agents and the order-picking tasks) and goal description (i.e.,
destinations of agents while enforcing all the tasks are completed).

In the path finding approach, we model MAPDC as a graph problem. We view the
warehouse environment as a graph, allocate tasks to each agent, and compute a path and
its traversal recursively for each agent, respecting the collision and capacity constraints
and ensuring the completion of all tasks, while minimizing the maximum makespan.

We compare these two approaches empirically with randomly generated instances
over various sizes and types of warehouses (e.g., where shelves are shorter/longer,
closer/farther to/from each other). We use the ASP solver CLINGO [5] in our experi-
ments, considering single-shot vs multi-shot computations.

2 Related Work

MAPF is a well-studied problem with various optimizations, using different
approaches, such as ASP [4], ILP [21], SAT [19], and search-based [18] methods.

Considering pick and delivery tasks assigned to agents, some variants of MAPF
have been studied. For instance, TAPF [13] generalizes MAPF by assigning targets to
teams of agents, while G-TAPF [16] further allows greater number of tasks per agent.
MAPDC differs from G-TAPF in that it does not consider teams of agents or assumes
an order of tasks.MAPDC considers capacity constraints of the agents and asks for the
order of tasks as well.

Liu et al. [12] study MAPD problems (i.e., MAPDC where the capacity of each
agent is 1) by first assigning tasks to agents, and then using a search-based path find-
ing algorithm to compute collision-free paths. The search stage tries to minimize the
makespan after committing to the task assignment found in the first stage. Although
dividing the overall problem into two stages scales better, it does not guarantee optimal
solutions for the overall problem. MAPDC considers capacity constraints and guaran-
tees optimal solutions without dividing the problem into two parts.

For the offline setting, Honig et al. [10] propose a Conflict Based Search (CBS) app-
roach to solve MAPD. It is complete and optimal for the sum of path lengths, a metric
different from the one we consider in our approaches. CBS is known to scale poorly as
the number of conflicts among agents increases [16]. Along these lines, authors have
also presented a bounded sub-optimal approach (ECBS) to improve scalability.

In online versions of MAPD [14], agents have to fulfil a stream of delivery tasks.
The tasks are allocated to free agents such that every agent can execute at most one task.
Then, a path from the initial location to the pick-up location, and then to the delivery
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location, and finally to the destination, is computed. The agents cannot rest in their
destinations after they finish executing tasks. Grenouilleau et al. [8] also address online
MAPD problems where new tasks appear whenever they arrive. They first assign tasks
to agents using an heuristics approach and use a modified A* search algorithm so that
one search call is sufficient, instead of two calls, for finding the two paths of the agent:
one from its current location to the pickup location and the other one from the pickup
location to the delivery one.

Different from these studies, we focus on an offline method that allocates tasks to
compute plans, and that computes plans to pick and deliver the allocated tasks. There-
fore, in our approach, task allocation and planning are not decoupled: they are handled
at the same time. Furthermore, an agent can handle more than one task at a time, and it
is not assumed to disappear when it reaches its destination.

Chen et al. [3] solve MAPD problem in both offline and online settings. Similar to
MAPDC problem, they also consider capacities where agents can carry multiple items
at a time. Unlike the previous MAPD solution techniques, their search-based algo-
rithm handles task assignment and path finding simultaneously. Even though consider-
ing actual path costs while assigning tasks to agents improves the quality of solutions
found, in its current form, their algorithm does not guarantee optimality, unlike our
proposed solutions for the MAPDC problem. Regarding optimality of solutions, they
propose a variant of the algorithm where local search techniques are used to further
improve the best solution at hand.

Another related study is by Vodrazka et al. [20] since they introduce a planning
approach to solve and studyMAPF. They consider a special case of a planning problem
with only two actions, move and wait, subject to the constraint that there is no collision
between the agents. They present a method that first computes a sequential plan where
at most one agent moves to a free location at a time, and cuts the sequential plan into
sub-plans, and parallelize them so that several agents can move at a time without any
vertex collision. These authors also present another method that splits the move action
into start-move and finish-move actions, and ensures that, for each action, the agents
need to have a token as a precondition and pass the token to another agent as an effect.
Our planning method for MAPDC considers picks and delivers as well. Thanks to the
expressive formalism of ASP, concurrent plans can be generated without further need
to split sequential plans or actions.

Overall, different from the related work, both of our action planning and path find-
ing based approaches address the offline version of MAPDC while considering the
capacities of agents, solve the task assignment and path finding problems simultane-
ously to ensure the optimality of solutions in terms of the overall completion time (the
maximum makespan) of tasks.

3 MAPDC-P: Solving MAPDC with a Planning Approach

We model the MAPDC as a planning problem by representing actions of agents and
changes in the warehouse by an action domain description which also considers all
collision and capacity constraints. Agents use these plans to navigate from their starting
locations to destinations while picking up and delivering items. Our goal is to pick-up
and deliver every item in tasks, while optimizing the overall completion time of tasks.
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3.1 MAPDC as a Planning Problem

We consider the environment of agents as a graph G = (V,E) where the set V of loca-
tions form a 4-neighbour grid and the edges E are based on the adjacent locations in
this grid. Some of the locations may be occupied with shelves and they are treated as
static obstacles for the agents.

The functional fluent position represents the locations of agents. Specifically, for an
agent i ∈ A the fluent value pos(i) = l@x represents the location of i at time step x ≤
u∈Z

+ is l ∈V . Consecutively, pos(i) = init(i)@0 and pos(i) = goal(i)@u hold, where
init and goal functions specify the initial and goal locations of agents, respectively.

Agents move along the edges of the graph. Considering the grid structure of the
environment, we model move(i,dir) action of agent i, where dir is among four car-
dinal directions. Specifically, an action occurrence move(i,dir)@x represents a move-
ment of agent i in direction dir at time step x. Whenever pos(i) = l1@x− 1 holds,
a move(i,dir)@x action occurrence changes the position of the agent i such that
pos(i) = l2@x holds where (l1, l2) ∈ E and position l2 is adjacent to l1 in the direc-
tion dir1.

In a MAPDC problem, we consider vertex and edge collisions. A vertex collision
occurs whenever pos(i) = l@x and pos( j) = l@x hold for two different agents i and j
at time point x. Similarly, an edge collision occurs whenever pos(i) = l1@x, pos( j) =
l2@x, pos(i) = l2@y, and pos( j) = l1@y hold s.t. i �= j, y= x+1 and (l1, l2) ∈ E.

Each task t ∈ T of the form (id, p,d) has a unique identifier id, a pick up location
p ∈V , and a delivery location d ∈V . A task must be assigned to a unique agent and the
agent fulfils it by picking up a product from the task’s pick up location and carrying the
product until delivered to the task’s delivery location. To this end, an agent may perform
pickup and deliver actions with the condition that the agent must be at the pick up
and delivery locations, respectively. Specifically, for a task (id, p,d) action occurrences
pickup(i, id)@x and deliver(i, id)@x are possible if pos(i) = p@x− 1 and pos(i) =
d@x− 1 hold, respectively. Additionally, for the latter action to be possible the agent
must be carrying the product respective to the task. The boolean fluent carrying is used
for representing the products an agent carries. The occurrence pickup(i, id)@x causes
carrying(i, id)@x to hold and the fluent keeps holding until deliver(i, id)@y occurs
such that y > x. Note that a task with identifier id is fulfilled whenever a deliver(i, id)
action occurs by an agent i at time step x. Moreover, the product related to a task cannot
be picked up more than one time by an agent. To this end, for an action pickup(i, id)
occurrence, neither the task with id id is fulfilled before nor the agent i is carrying the
product related to the task.

A plan, which is composed of occurrences of actions move, pickup and deliver, is
a solution of a MAPDC problem, if and only if there are no vertex or edge collisions
considering the position fluent values projected by the actions in the plan, all agents are
at their goal locations at the last time step of the plan, all tasks are fulfilled, and each
agent carries at most c number of products at any time step, where capacity c is given
as an input of the problem. The last condition constrains that for any agent i and any

1 The effects of an action appear at the same time step as the occurrence of the action, instead
of the next time step, to comply with the multi-shot ASP formulation ofMAPDC-P explained
in the next section.
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time step x,
∣
∣{id | carrying(i, id)@x holds}∣

∣ ≤ c. Based on these notations, MAPDC
problem can be defined as a planning problem (i.e.,MAPDC-P) as illustrated in Fig. 1.

3.2 Solving MAPDC-P Using Multi-shot ASP

We rely on multi-shot ASP [5] for solving theMAPDC-P problem. Multi-shot solving
is used to encode dynamic domains, such as planning problems, where the logic pro-
gram changes during the solving process. Given a planning problem, one can encode a
multi-shot ASP program by partitioning the whole program into three parts; the static
part where knowledge that does not change with time is represented, the cumulative part
corresponding to knowledge that accumulates at increasing time steps, and the volatile
part where we represent knowledge that is added for a specific time step and retracted
when the time step is increased during the multi-shot solving process. As a planning
problem, MAPDC-P is naturally suitable for encoding via multi-shot ASP.

Fig. 1. MAPDC-P:MAPDC as a planning problem.
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During multi-shot solving, CLINGO increases the time step until it finds an answer
set, which corresponds to a plan for the problem. This way of solving has the advan-
tage that the computed plan will be optimal in terms of the time steps. Hence, a plan
for a MAPDC-P problem found by multi-shot solving will be optimal regarding its
makespan.

In our encoding unlike the common practice in ASP community where actions are
executed at time step x and its effects are seen at time step x+ 1, we encode effects
of an action at the same time step as the occurrence of the action to eliminate the extra
grounding and solving step that otherwise multi-shot solver would need in order to work
with the atoms of the next time step.

Similar to a multi-shot ASP encoding of a general planning problem, our
MAPDC-P encoding has three parts. The static part is mainly composed of the grid
environment and facts from the MAPDC-P instance. For this part, we rely on the
encoding of M domain in asprilo for the instance format and some domain predicate
signatures. Asprilo is a framework for experimenting with logistic domains in ASP [6].
Briefly, we use predicates isRobot/1, task/3, shelfPos/3, and finalPos/2 for
representing agents, tasks, locations of shelves (these will be used as pick up and deliv-
ery locations of tasks), and goal locations of agents, respectively. Additionally, we have
instances of pos/1 and nextto/3 predicates to represent set V of grid locations and
subset of edges E, where each edge has no location occupied by an obstacle.

The static part also includes the following rule. This choice rule succinctly assigns
each task to a unique agent. Later, the assign/2 predicate will be used as preconditions
for representations of actions pickup and deliver. Note that the #program directive
groups a set of rules as a program part. Here the static part is named as base.

#program base.
1{assign(I,ID): isRobot(I)}1 :- task(ID,P,D).

In the cumulative part, we represent dynamic knowledge ofMAPDC-P accumulat-
ing with each increasing time point. Specifically, in this part we represent actions and
fluents of the domain. Below, an instance move(i,dir,x) of the move/3 predicate
represents the action occurrence move(i,dir)@x and the predicate direction/1 rep-
resents cardinal movement directions. Note that parameter x in all the remaining rules
is a program part parameter. It represents time steps in our domain and is controlled
by CLINGO during incremental grounding of the program part named as step by the
#program directive. Basically, it is instantiated with value 1 and incremented by 1
in each grounding stage of multi-shot solving. Hence, the choice rule below encodes
that each agent can move in any of the directions at a time step. The upper bound
in the choice rule head neatly represents the constraint that no parallel movement
actions are allowed for an agent. The second rule represents the effect of movement
action. An instance pos(i,l,x) of the pos/3 predicate represents the fluent valuation
pos(i) = l@x holds. The third rule constrains that no agent moves in a direction where
there is no edge from the current position of the agent.

#program step(x).
{move(I,DIR,x): direction(DIR)} 1 :- isRobot(I), time(x).
pos(I,L,x) :- move(I,DIR,x), pos(I,L’,x-1), nextto(L’,DIR,L).
:- move(I,DIR,x), pos(I,L ,x-1), not nextto(L ,DIR,_).
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Next two rules represent the position fluent is inertial and functional, respectively.
For any agent, when there is no reason to change its location (whenever it does not
move), its location from the previous time step stays the same for this time step. Related
to this, an agent must be at exactly one location at each time step.

{pos(I,L,x)} :- pos(I,L,x-1), isRobot(I), time(x).
:- {pos(I,L,x)}!=1, isRobot(I), time(x).

The following group of rules guarantees that there are no edge or vertex collisions
in the plan found as an answer set. The moveto(l’,l,x) instance in an answer set
represents that an agent has moved from l’ to l at time step x.

moveto(L’,L,x) :- nextto(L’,DIR,L), pos(I,L’,x-1), move(I,DIR,x).
:- moveto(L’,L,x), moveto(L,L’,x), L < L’.
:- {pos(I,L,x): isRobot(I)}>1, pos(L), time(x).

The rules presented upto now in the cumulative part are based on the encoding of
asprilo’s M domain [6], which basically encodes the MAPF problem.

In aMAPDC-P problem, agents can perform additional pick up and deliver actions.
The following rule represents that an agent i can choose to pick up a product for the task
id at time step x if the task id has been assigned to i (assign/2 predicate in the body),
agent i is not already carrying the product for id (negative carrying/3 predicate), and
the task id has not been fulfilled yet (negative delivered/3 predicate).

{pickup(I,ID,x)} :- pos(I,P,x-1), task(ID,P,D),
assign(I,ID), not delivered(ID,x), not carrying(I,ID,x-1).

Similarly, the following choice rule represents deliver actions where
deliver(i,id,x) basically corresponds to the action occurrence deliver(i, id)@x in
a plan. Note that, for a deliver action, we need the agent must be carrying the respective
product (represented by the carrying/3 predicate in rule body).

{deliver(I,ID,x)} :- carrying(I,ID,x-1), pos(I,D,x-1),
task(ID,P,D), assign(I,ID).

Considering the previous rules defining pickup and deliver actions, an atom of the
form carrying(i,id,x) represents that the fluent carrying(i, id) holds at time step
x. The first rule in the following group states that carrying fluent is a direct effect of
pickup action. Similarly, delivered(id,x) represents that task id has been fulfilled
via delivered fluent. This fluent is an effect of deliver action (represented by third rule).
While the second rule represents that carrying fluent does not change its value until the
agent delivers the respective package, the last rule represents that the delivered fluent
persists after becoming true.

carrying(I,ID,x) :- pickup(I,ID,x).
carrying(I,ID,x) :- carrying(I,ID,x-1), not deliver(I,ID,x).
delivered(ID,x) :- deliver(I,ID,x).
delivered(ID,x) :- delivered(ID,x -1).

Thanks to the powerful construct of aggregates in ASP, the following constraint rule
prevents any agent carry more products than the capacity c at any time step.
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:- isRobot(I),time(x),#count{ID : carrying(I,ID,x)} > c.

The following rules comprises the volatile part where we represent knowledge that
does not accumulate and is related to a specific time step. In a typical multi-shot encod-
ing of a planning problem, this part is used for representing goal conditions of the prob-
lem. While the first rule guarantees that all tasks are fulfilled, the second one assures all
agents are at their destination locations at the last time step u. Note that the query/1
predicate is an external one that is controlled by CLINGO. Given an instance of it (e.g.,
query(y)), CLINGO sets its truth value as true when searching for a plan at horizon y.
In case no plan is found for horizon y, the truth value of query(y) becomes false and
the current horizon is incremented.

#program check(x).
:- ordered(ID), not delivered(ID,x), query(x).
:- finalPos(I,L), not pos(I,L,x), query(x).

4 MAPDC-G: Solving MAPDC with a Path Finding Approach

We model theMAPDC problem as a graph problem. The idea is to view the warehouse
environment as a graph, allocate tasks to each agent, and compute a path and its traversal
for each agent, respecting the collision constraints and ensuring the completion of all
tasks, while minimizing the maximum makespan.

4.1 MAPDC as a Graph Problem

We view the environment as a graph G= (V,E). A path Pi that an agent i ∈ A traverses
in this graph is characterized by a sequence 〈wi,1,wi,2, . . . ,wi,ni〉 of vertices such that
{wi, j,wi, j+1} ∈ E for all j < n. A traversal traversali of a path Pi by an agent i within
some time ui (ui ∈ Z

+) is a function that maps each time step x ≤ ui, to a vertex in Pi
describing the location of agent i at time x.

For two agents i, j ∈ A, they collide with each other at time step x if they are at
the same location (i.e., traversali(x) = traversal j(x)) or when they are swapping their
locations (i.e., traversali(x) = traversal j(x−1) and traversali(x−1) = traversal j(x)).

Each given task (id, p,d) is associated by a product id that needs to be picked up at
some location p ∈V and delivered at some other location d ∈V . We suppose that each
pickup and delivery takes one unit of time. Each agent has a limited capacity to carry at
most c number of tasks. We describe the bag of an agent i ∈ A by a function carryi that
maps every time step x ≤ ui to a set of tasks (i.e., products) that the agent is carrying at
that time step.

As the tasks are completed during the traversal traversali of Pi, we need to pay
attention to that the tasks are picked up before they are delivered, and the number of
items carried by agent i is not more than its capacity c. We say that an agent i completes
a task (id, p,d) ∈ Ti within time ui if there exist a pickup time x and a delivery time
y (0≤x< y≤ui) such that traversali(x)= p, traversali(y)=d and (id, p,d) ∈ carryi(z)
for every time step z between x and y only.

An agent i finishes its traversal in ui < t time steps. After time step ui, the agent
stays at its goal location. We define traversali for time steps greater than ui as a constant
function: traversali(x) = goal(i),ui≤x≤ t.
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Fig. 2. MAPDC-G:MAPDC as a graph problem.

Based on these notations, MAPDC problem can be defined as a graph problem
(i.e., MAPDC-G) as illustrated in Fig. 2. Given the environment G whose some parts
are occupied by obstacles O, the initial and goal locations for each agent, a set T of all
tasks to be handled by the agents, the goal is to allocate the tasks in T to all agents, and,
for each agent i, to find a path Pi and a collision-free traversal traversali of Pi ensuring
that agent i completes the allocated set Ti of tasks by a time step ui ≤ t.

4.2 Solving MAPDC-G Using Multi-shot ASP

We present a multi-shot formulation of MAPDC-G in ASP, based on the definition
in Fig. 2. The input graph G of the problem is described by predicates node/1 and
edge/2; the obstacles, agents, and tasks are described by the predicates obs/1,

agent/1, task/3, respectively; and the initial and goal locations of agents are
described by predicates init/2 and goal/2.

The traversal of a path, and the bag of an agent are described by predicates
traverse/3 and carry/3. Here, traverse(I,T,N) expresses that the agent I is
at the location N at time step T, whereas carry(I,T,ID) expresses that the agent I
carries the product specified by the task ID at time step T.

The ASP formulation forMAPDC-G consists of three parts: base, step, check.
Note that Listing 7 in [5] should be included at the beginning of the formulation.
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The base program is grounded only once. It consists of the rules expressing that the
traversals start at the initial locations of agents, and each task is assigned to one agent:

traverse(I,0,S):- agent(I), init(I,S).
1{assign(I,ID): agent(I)}1 :- task(ID,P,D).

The step program is grounded incrementally for t=1,2,3,.... For each agent, a
path and its traversal are generated recursively ensuring that the agent cannot be at two
different locations.

1{traverse(I,t,X); traverse(I,t,Y):edge(X,Y)}1 :- traverse(I,t-1,X).
:- traverse(I,t,X), traverse(I,t,Y), agent(I), node(X), node(Y), Y<X.

Then the following constraints are used to ensure that agents do not collide with
each other at a node or an edge, or with obstacles.

:- traverse(I,t,X), traverse(J,t,X), node(X), agent(I), agent(J), I<J.
:- traverse(I,t-1,X), traverse(I,t,Y), traverse(J,t-1,Y),

traverse(J,t,X), agent(I), agent(J), edge(X,Y), I<J.
:- traverse(I,t,X), obs(X).

For the scheduling of the tasks, we use the predicates taskStart/3 and
taskFinish/3. An agent can start a task if the agent is at the picking location of the
product of that task. An agent can finish a task if the agent is at the delivery location of
the product of that task, provided that the task is already started at a previous time-step.

{taskStart(I,ID,t)}1 :- agent(I), task(ID,P,D), assign(I,ID),
traverse(I,t,P).

{taskFinish(I,ID,t)}1 :- agent(I), task(ID,P,D), assign(I,ID),
traverse(I,t,D), taskStart(I,ID,T), time(T), T<t.

Agents start carrying the products at the scheduled start times and continue carrying
them until the scheduled finish times. Agents cannot carry more than their capacities.

carry(I,t,ID) :- taskStart(I,ID,t).
carry(I,t,ID) :- carry(I,t-1,ID), not taskFinish(I,ID,t).
:- agent(I), {carry(I,t,ID):task(ID,P,D)} > c.

The check program is grounded for each value of t until a solution is computed. In
particular, we need to ensure that every task is completed, and that agents should end
up at their destinations.

:- {taskFinish(I,ID,T):time(T)}!=1, agent(I), assign(I,ID), query(t).
:- agent(I), goal(I,X), not traverse(I,t,X), query(t).

Table 1.Warehouse configurations used in our experiments.

Configuration 1 2 3 4 5 6 7

Grid size 10× 10 10× 10 10× 10 10× 10 10× 20 10× 40 20× 20

Shelf width 1 1 2 2 2 2 2

Vertical distance 1 1 1 2 2 2 2

Horizontal distance 1 2 1 2 2 2 2
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5 Experimental Evaluations

We have experimentally evaluated MAPDC-P and MAPDC-G to better understand
their scalability in terms of the computation time. To this end, we have generated
7 different warehouse environments, varying the grid size, shelf width and horizon-
tal/vertical distances between shelves as described in Table 1.

For each such warehouse configuration, we have created 9 instances that vary the
number of agents, the number of tasks and the capacity of the agents. For every com-
bination of configuration, agent number, task number and capacity, we have randomly
generated 5 instances and reported the average computation times and makespans.

In each instance, the initial and goal locations of agents lie at the bottom row of the
layout and were chosen randomly. Picking and delivery locations of tasks are selected
from a pool of nodes that are vertically adjacent to the shelf nodes. In order to have
predictable hardness for tasks, picking and delivery locations of the tasks pass through
exactly one shelf in the vertical direction. Combinations that only differ in capacity have
the same instances except for the capacity values.

For the experiments, we have used CLINGO (4.5.4) with default and handy config-
urations, on a Linux server with dual 2.4GHz Intel E5-2665 CPUs and 64 GB memory.
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#tasks:4

#agents:4-8
#tasks:8
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Fig. 3. Scalability as the number of agents increases when capacity = 1 (Table 2).
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Table 2. Results with CLINGO’s default configuration

Configuration Agents Tasks Capacity MAPDC-G MAPDC-P

CPU time Makespan (#solved) CPU time Makespan (#solved)

Configuration 1 2 2 1 0.46 24.4 (5) 0.53 24.4 (5)

2 4 1 0.96 31.4 (5) 2.57 31.4 (5)

2 4 2 0.69 29.8 (5) 2.19 29.8 (5)

4 4 1 0.86 23.6 (5) 0.79 23.6 (5)

4 8 1 3.52 28.6 (5) 4.33 28.6 (5)

4 8 2 1.45 27.0 (5) 2.69 27.0 (5)

8 8 1 2.29 25.0 (5) 2.55 25.0 (5)

8 16 1 128.86 28.2 (5) 71.54 28.2 (5)

8 16 2 6.72 26.2 (5) 12.27 26.2 (5)

Configuration 2 2 2 1 0.39 21.2 (5) 0.37 21.2 (5)

2 4 1 0.88 29.6 (5) 2.28 29.6 (5)

2 4 2 0.81 29.2 (5) 2.34 29.2 (5)

4 4 1 0.98 24.6 (5) 0.96 24.6 (5)

4 8 1 7.36 29.8 (5) 6.75 29.8 (5)

4 8 2 1.66 27.4 (5) 3.10 27.4 (5)

8 8 1 2.95 27.2 (5) 3.87 27.2 (5)

8 16 1 95.61 27.6 (5) 59.76 27.6 (5)

8 16 2 6.53 26.6 (5) 11.92 26.6 (5)

Configuration 3 2 2 1 0.40 22.8 (5) 0.44 22.8 (5)

2 4 1 1.04 33.4 (5) 4.01 33.4 (5)

2 4 2 0.76 31.4 (5) 2.68 31.4 (5)

4 4 1 0.95 26.4 (5) 1.05 26.4 (5)

4 8 1 4.13 30.8 (5) 7.15 30.8 (5)

4 8 2 2.66 29.8 (5) 6.28 29.8 (5)

8 8 1 2.78 26.4 (5) 3.65 26.4 (5)

8 16 1 286.58 29.4 (5) 165.75 29.4 (5)

8 16 2 6.95 27.8 (5) 21.45 27.8 (5)

Configuration 4 2 2 1 0.45 23.4 (5) 0.48 23.4 (5)

2 4 1 1.01 29.8 (5) 2.48 29.8 (5)

2 4 2 0.74 27.4 (5) 1.69 27.4 (5)

4 4 1 1.07 26.2 (5) 0.96 26.2 (5)

4 8 1 13.74 30.2 (5) 8.87 30.2 (5)

4 8 2 2.31 26.4 (5) 3.49 26.4 (5)

8 8 1 2.39 25.0 (5) 3.05 25.0 (5)

8 16 1 201.95 28.8 (5) 107.11 28.8 (5)

8 16 2 7.02 26.4 (5) 19.34 26.4 (5)

Configuration 5 2 2 1 1.92 35.4 (5) 2.69 35.4 (5)

2 4 1 13.23 47.4 (5) 44.88 47.4 (5)

2 4 2 3.84 41.6 (5) 23.37 41.6 (5)

4 4 1 4.66 37.4 (5) 6.19 37.4 (5)

4 8 1 30.69 42.6 (5) 38.96 42.6 (5)

4 8 2 11.81 41.0 (5) 29.34 41.0 (5)

8 8 1 9.73 34.8 (5) 17.99 34.8 (5)

8 16 1 410.00 39.5 (4) 429.42 39.5 (4)

8 16 2 38.94 36.6 (5) 139.65 36.6 (5)

(continued)
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Table 2. (continued)

Configuration Agents Tasks Capacity MAPDC-G MAPDC-P

CPU time Makespan (#solved) CPU time Makespan (#solved)

Configuration 6 4 4 1 27.82 56.6 (5) 70.44 56.6 (5)

4 8 1 429.16 72.5 (4) 440.65 70.3 (3)

4 8 2 110.65 65.0 (5) 253.01 65.0 (5)

8 8 1 50.86 52.6 (5) 212.67 52.6 (5)

8 16 1 422.37 54.0 (1) timeout timeout

8 16 2 187.27 57.6 (5) 138.18 48.0 (1)

16 16 1 176.37 58.2 (5) timeout timeout

16 32 1 timeout timeout timeout timeout

16 32 2 440.93 55.2 (4) timeout timeout

Configuration 7 4 4 1 16.99 43.0 (5) 16.21 43.0(5)

4 8 1 162.02 56.2 (5) 233.99 56.2 (5)

4 8 2 42.35 52.4 (5) 127.96 52.4 (5)

8 8 1 48.76 48.0 (5) 64.74 48.0 (5)

8 16 1 440.30 57.0 (3) 816.92 56.5 (2)

8 16 2 72.97 51.4 (5) 511.79 49.8 (4)

16 16 1 128.51 49.4 (5) 544.47 47.0 (4)

16 32 1 timeout timeout timeout timeout

16 32 2 264.36 52.2 (4) timeout timeout
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Fig. 4. Scalability as the number of tasks increases when capacity = 1 (Table 2).
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For each configuration, we have analysed the effect of changing the number of
agents, tasks, and capacity on performances of our solution methods for MAPDC-P
and MAPDC-G. In order to have a controlled comparison, we have doubled a factor
while keeping the others fixed, and compared the results for both methods. The results
are presented in Table 2.

We have observed (Fig. 3) that increasing the number of agents helps both
MAPDC-P and MAPDC-G in finding solutions more efficiently. This observation
makes sense as increasing the number of agents effectively reduces the number of tasks
assigned to an agent, and, in turn, reduces the maximum makespan for the problem
instance.

We have observed (Fig. 4) that increasing the number of tasks increases the number
of tasks that needs to be completed by each agent. Hence, the maximum makespan also
increases, and this reduces the efficiency of bothMAPDC-P andMAPDC-G. Note that
some of the instances could not be solved within the time limit as the number of tasks
increases to 32 for 16 agents.

Similar to increasing the number of agents, increasing the capacity of agents (Fig. 5)
leads to a decrease in maximum makespan, and thus reduces the computation time for
both MAPDC-P and MAPDC-G. It is interesting to compare results in Figs. 3 and 5.
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Fig. 5. Scalability as the capacity increases (Table 2).
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Even though increasing the number of agents and the capacity both reduce the max-
imum makespan and improve runtime performance, improvements in Fig. 5 are more
visible. This showcases the importance of capacity in theMAPDC problem. Increasing
the number of agents reduces the maximum makespan, but at the same time strains the
solving process due to increased number of possible collisions to avoid.

We have also compared the single-shot and multi-shot computations of CLINGO

over someMAPDC instances (Table 3). The single-shot ASP formulations ofMAPDC
utilize weak constraints to optimize the maximum makespan, while a sufficiently small
upper bound is provided on the makespan for the purpose of grounding. In our experi-
ments with single-shot, we have provided the optimum makespans as upper bounds on
makespans. In this way, the single-shot computations do not need to make too many
optimizations for large upper bounds but show their best performance alleviating the
disadvantage of grounding due to large makespans. It can be seen that even under these
ideal conditions, the multi-shot computations perform nearly as good as the singleshot
ones for many instances. The run-time of multi-shot computations include the time

Table 3. Comparison of single-shot and multi-shot computations over Configuration 5
instances.

Agents Tasks Capacity Single-shot Multi-shot

MAPDC-G MAPDC-P MAPDC-G MAPDC-P

CPU time Makespan
(#solved)

CPU time Makespan
(#solved)

CPU time Makespan
(#solved)

CPU time Makespan
(#solved)

2 2 1 2.98 35.4 (5) 0.99 35.4 (5) 1.92 35.4 (5) 2.16 35.4 (5)

2 4 1 9.52 47.4 (5) 27.59 47.4 (5) 13.23 47.4 (5) 27.48 47.4 (5)

2 4 2 4.63 41.6 (5) 8.13 41.6 (5) 3.84 41.6 (5) 14.54 41.6 (5)

4 4 1 7.51 37.4 (5) 4.49 37.4 (5) 4.66 37.4 (5) 4.79 37.4 (5)

4 8 1 25.11 42.6 (5) 39.14 42.6 (5) 30.69 42.6 (5) 41.68 42.6 (5)

4 8 2 12.62 41.0 (5) 40.48 41.0 (5) 11.81 41.0 (5) 36.41 41.0 (5)

8 8 1 15.49 34.8 (5) 16.63 34.8 (5) 9.73 34.8 (5) 13.15 34.8 (5)

8 16 1 146.90 39.5 (4) 493.02 39.5 (4) 410.00 39.5 (4) 307.07 39.5 (4)

8 16 2 29.71 36.6 (5) 255.04 36.6 (5) 38.94 36.6 (5) 128.82 36.6 (5)

Table 4. Single-shot computations with anytime search vs multi-shot computations, over Config-
uration 7 instances (agents, tasks, capacity), with the time threshold of 1000 secs and the upper
bound 80 on makespan.

Instance Single-shot anytime Multi-shot

MAPDC-G MAPDC-P MAPDC-G MAPDC-P

CPU time Makespan
(#opt/#solved)

CPU time Makespan
(#opt/#solved)

CPU time Makespan
(#opt/#solved)

CPU time Makespan
(#opt/#solved)

(4, 4, 1) 95.58 43.0 (5/5) 57.99 43.0 (5/5) 16.99 43.0(5) 16.21 43.0(5)

(4,8,1) 201.12 56.2 (5/5) 794.14 56.2 (4/5) 162.02 56.2(5) 233.99 56.2(5)

(4,8,2) 122.59 52.4 (5/5) 710.64 52.4 (5/5) 42.35 52.4(5) 127.96 52.4(5)

(8,8,1) 189.66 48.0 (5/5) 202.67 48.0 (5/5) 48.76 48.0(5) 64.74 48.0(5)

(8,16,1) 855.31 58.2 (2/5) timeout timeout 440.30 57.0 (3) 816.92 56.5 (2)

(8,16,2) 255.07 51.4 (5/5) 997.27 76.5 (0/2) 72.97 51.4(5) 511.79 49.8(4)

(16,16,1) 457.70 49.4 (5/5) 997.23 67.0 (0/4) 128.51 49.4 (5) 544.47 47.0 (4)

(16,32,1) 997.61 69.4 (0/5) timeout timeout timeout timeout timeout timeout

(16,32,2) 836.89 54.0 (2/5) timeout timeout 264.36 52.2 (4) timeout timeout
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required to find the optimum makespan, making them more practical to use, in particu-
lar, withMAPDC-P.

Furthermore, we have evaluated the single-shot computations with anytime search,
with time threshold of 1000 s, over some MAPDC instances with an upper bound of
80 on makespan (Table 4). We have observed that anytime search helps with finding
a suboptimal solution for all instances, in particular, for MAPDC-G, but at the cost
of computation time due to grounding with a large makespan. MAPDC-G computes
optimal solutions for 34 instances (out of 45 instances), using anytime search; and, for
some of the remaining instances (e.g., with 8 agents, 16 tasks, 1 capacity), the average
suboptimal values are close to the optimal ones.

Finally, our experiments show that using CLINGO with handy configuration (as
in [4]) improves the computational performances of MAPDC-P and MAPDC-G for
hard instances (cf. results for Configurations 6 and 7 at Table 5). This suggests the use
of CLINGO with a portfolio of different configurations.

Table 5. Results with CLINGO’s handy configuration

Configuration Agents Tasks Capacity MAPDC-G MAPDC-P

CPU time Makespan (#solved) CPU time Makespan (#solved)

Configuration 6 4 4 1 57.50 56.6 (5) 44.43 56.6 (5)

4 8 1 393.59 72.5 (4) 479.13 72.5 (4)

4 8 2 75.52 65.0 (5) 212.28 65.0 (5)

8 8 1 107.17 52.6 (5) 94.21 52.6 (5)

8 16 1 283.07 54.0 (1) 734.57 54.0 (1)

8 16 2 184.27 57.6 (5) 491.01 50.5 (2)

16 16 1 336.67 58.2 (5) 801.47 54.7 (3)

16 32 1 timeout timeout timeout timeout

16 32 2 414.33 55.2(5) timeout timeout

Configuration 7 4 4 1 38.92 43.0 (5) 12.92 43.0 (5)

4 8 1 140.77 56.2 (5) 214.01 56.2 (5)

4 8 2 61.09 52.4 (5) 91.01 52.4 (5)

8 8 1 101.25 48.0 (5) 48.13 48.0 (5)

8 16 1 372.09 54.8 (4) 818.10 57.0 (3)

8 16 2 129.54 51.4 (5) 451.97 51.4 (5)

16 16 1 270.70 49.4 (5) 378.01 47.0 (4)

16 32 1 timeout timeout timeout timeout

16 32 2 328.81 52.3 (4) timeout timeout

6 Conclusions

We have introduced two novel methods, based on action planning (MAPDC-P) and
path finding (MAPDC-G), to find optimal solutions for the Multi-Agent Pick and
Delivery with Capacities problem (MAPDC). Both methods rely on formulating the
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problems in Answer Set Programming, and take advantages of multi-shot computation
of the ASP solver CLINGO.

We have experimentally evaluated these two methods on a rich set of benchmark
instances that are randomly generated with varying numbers of agents, tasks and capac-
ities, over different warehouses that vary in grid size, shelf width, and horizontal/vertical
distances between shelves. We have observed that MAPDC-P is more efficient in time
in small instances while MAPDC-G scales better for larger instances. We have also
observed that MAPDC-P benefits more from the multi-shot computation.

We have also experimentally evaluated these two methods considering two other
computation modes of ASP: single-shot and anytime search. We have observed the
advantages of multi-shot computation over single-shot computation, in particular for
MAPDC-P, in terms of computation time, and the advantages of single-shot anytime
computation, in particular for MAPDC-G, in terms of the number of problems solved.

In this study, we have evaluated two approaches (i.e., action planning and path find-
ing) in the context of declarative programming. Further evaluations considering non-
declarative approaches (e.g., based on search) are part of our ongoing work.
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