
James Cheney
Simona Perri (Eds.)

LN
CS

 1
31

65

Practical Aspects of
Declarative Languages
24th International Symposium, PADL 2022
Philadelphia, PA, USA, January 17–18, 2022
Proceedings

Lecture Notes in Computer Science 13165

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873

More information about this subseries at https://link.springer.com/bookseries/7408

https://springerlink.bibliotecabuap.elogim.com/bookseries/7408

James Cheney · Simona Perri (Eds.)

Practical Aspects of
Declarative Languages
24th International Symposium, PADL 2022
Philadelphia, PA, USA, January 17–18, 2022
Proceedings

Editors
James Cheney
University of Edinburgh
Edinburgh, UK

Simona Perri
University of Calabria
Rende, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-94478-0 ISBN 978-3-030-94479-7 (eBook)
https://doi.org/10.1007/978-3-030-94479-7

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-1307-9286
https://orcid.org/0000-0002-8036-5709
https://doi.org/10.1007/978-3-030-94479-7

Preface

This volume contains the papers presented at the 24th International Symposium
on Practical Aspects of Declarative Languages (PADL 2022). The symposium
was co-located with the 49th ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL 2022), and took place during January 17–18, 2022.
The conference was planned to be held in Philadelphia, Pennsylvania, and as of this
writing it is planned to go ahead as a traditional in-person event following the nearly
two years of disruption caused by the COVID–19 pandemic.

PADL is a well-established forum for researchers and practitioners to present
original work emphasizing novel applications and implementation techniques for all
forms of declarative programming, including programming with sets, functions, logics,
and constraints. The contributions to PADL 2022 were particularly focused on new
ideas and approaches for principled implementation, fuzzing and declarative debugging,
domain specific languages, and real-world applications ranging from blockchain to web
programming.

Originally established as a workshop (PADL 1999 in San Antonio, Texas), the
PADL series developed into a regular annual symposium; previous editions took place in
San Antonio, Texas (1999), Boston, Massachusetts (2000), Las Vegas, Nevada (2001),
Portland, Oregon (2002), New Orleans, Louisiana (2003), Dallas, Texas (2004), Long
Beach, California (2005), Charleston, South Carolina (2006), Nice, France (2007), San
Francisco, California (2008), Savannah, Georgia (2009), Madrid, Spain (2010), Austin,
Texas (2012), Rome, Italy (2013), San Diego, California (2014), Portland, Oregon
(2015), St. Petersburg, Florida (2016), Paris, France (2017), Los Angeles, California
(2018), Lisbon, Portugal (2019), New Orleans, Louisiana (2020), and Copenhagen,
Denmark (2021, virtual event due to COVID-19 pandemic).

This year, the ProgramCommittee accepted nine full papers, four application papers,
and one short paper (extended abstract), selected from 22 submissions. Each submission
was reviewed by at least three Program Committee members and went through a
five-day online discussion period by the Program Committee before a final decision
was made. The selection was based only on the merit of each submission and regardless
of scheduling or space constraints.

We would like to express thanks to the Association for Logic Programming (ALP)
and theAssociation for ComputingMachinery (ACM) for their continuous support of the
symposium, and Springer for their longstanding, successful cooperation with the PADL
series. We are very grateful to all members of the PADL 2022 Program Committee and
external reviewers for their invaluable work. Many thanks to Marco Gavanelli, the ALP
Conference Coordinator. We are happy to note that the conference was successfully
managed with the help of EasyChair.

We note that this was an unusual year due to the continued disruption and uncertainty
of the COVID–19 pandemic, although with the development of vaccines and widespread
vaccination programs the outlook is considerably more hopeful than a year ago. Many
(if not most) members of our research community have been adversely affected, in a

vi Preface

variety of ways, and while the situation has improved, the pandemic has undoubtedly
had an impact on the amount of scientific activity that people have been able to engage
in. We are therefore even more thankful to our reviewers for their time and care, and to
all contributors to this year’s PADL.

January 2022 Simona Perri
James Cheney

Organization

Program Chairs

James Cheney University of Edinburgh, UK
Simona Perri University of Calabria, Italy

Program Committee

Andres Löh WellTyped, Germany
Chiaki Sakama Wakayama University, Japan
Daniela Inclezan Miami University, USA
Ekaterina Komendantskaya Heriot-Watt University, UK
Esra Erdem Sabanci University, Turkey
Francesco Calimeri University of Calabria, Italy
Jan Christiansen Flensburg University of Applied Sciences, Germany
Konstantin Schekotihin University of Klagenfurt, Austria
Lukasz Ziarek University at Buffalo, USA
Lionel Parreaux Hong Kong University of Science and Technology,

China
Marco Maratea University of Genoa, Italy
Marina De Vos University of Bath, UK
Martin Erwig Oregon State University, USA
Martin Gebser University of Klagenfurt, Austria
Michael Greenberg Stevens Institute of Technology, USA
Paul Tarau University of North Texas, USA
Pavan Kumar Chittimalli TCS Research, India
Pedro Cabalar University of Corunna, Spain
Roly Perera The Alan Turing Institute, UK
Tomas Petricek University of Kent, UK
Torsten Grust University of Tübingen, Germany
Tran Cao Son New Mexico State University, USA
Yukiyoshi Kameyama University of Tsukuba, Japan

Additional Reviewers

Mohammed El-Kholany
Danila Fedorin
Elena Mastria
Maria Concetta Morelli

Jack Pattison
Bhargav Shivkumar
Pierre Tassel
Jessica Zangari

Abstracts of Invited Talks

People, Ideas, and the Path Ahead

Marcello Balduccini

Saint Joseph’s University, Elemental Cognition
marcello.balduccini@gmail.com

Abstract. While recent advances in machine learning have yielded
impressive results, researchers, practitioners, and even companies are
beginning to recognize that true artificial intelligence requires much
more sophisticated reasoning capabilities. Knowledge representation and
declarative programming are arguably in a premier position to aid in the
achievement of such capabilities. In this paper, I reflect on people and
ideas that have had a great influence on my view of knowledge repre-
sentation and of declarative programming. Through these lenses, I will
discuss what I consider to be some of the most important milestones in
the evolution of the field over the past years. I will conclude my reflection
with my take on what this may tell us about the path that lies ahead and
about areas where research efforts may yield considerable benefits.

Declarative Programming and Education

Shriram Krishnamurthi

Brown University, Providence, RI, USA

Abstract. Education has always been one of the major uses of advanced
programming languages. However, the impact of declarative techniques
is now threatened by multiple forces: the rise of Python, large codebases
in conventional languages, the growth of synthesis, and more.

This talk will take stock of where we stand, and suggest ways in
which programming problems may have finally caught up with where
declarative techniques shine. It will also discuss some open problems in
programming education that have for too long been overlooked by many
segments of the declarative community. Making progress on these chal-
lenges can lead to much more widespread use of declarative languages,
while failure to do so could lead to fresh bouts of exclusion.

Contents

Invited Talk

People, Ideas, and the Path Ahead . 3
Marcello Balduccini

Answer Set Programming

Modelling the Outlier Detection Problem in ASP(Q) . 15
Pierpaolo Bellusci, Giuseppe Mazzotta, and Francesco Ricca

Multi-agent Pick and Delivery with Capacities: Action Planning Vs Path
Finding . 24
Nima Tajelipirbazari, Cagri Uluc Yildirimoglu, Orkunt Sabuncu,
Ali Can Arici, Idil Helin Ozen, Volkan Patoglu, and Esra Erdem

Determining Action Reversibility in STRIPS Using Answer Set
Programming with Quantifiers . 42
Wolfgang Faber, Michael Morak, and Lukáš Chrpa

Functional Programming

Functional Programming on Top of SQL Engines . 59
Tobias Burghardt, Denis Hirn, and Torsten Grust

CircuitFlow: A Domain Specific Language for Dataflow Programming 79
Riley Evans, Samantha Frohlich, and Meng Wang

Languages, Methods and Tools

Timed Concurrent Language for Argumentation: An Interleaving Approach 101
Stefano Bistarelli, Maria Chiara Meo, and Carlo Taticchi

Towards Dynamic Consistency Checking in Goal-Directed Predicate
Answer Set Programming . 117
Joaquín Arias, Manuel Carro, and Gopal Gupta

Implementing Stable-Unstable Semantics with ASPTOOLS and Clingo 135
Tomi Janhunen

xiv Contents

Smart Devices and Large Scale Reasoning via ASP: Tools and Applications . . . 154
Kristian Reale, Francesco Calimeri, Nicola Leone, and Francesco Ricca

Declarative Solutions

Decomposition-Based Job-Shop Scheduling with Constrained Clustering 165
Mohammed M. S. El-Kholany, Konstantin Schekotihin, and Martin Gebser

Modeling and Verification of Real-Time Systems with the Event Calculus
and s(CASP) . 181
Sarat Chandra Varanasi, Joaquín Arias, Elmer Salazar, Fang Li,
Kinjal Basu, and Gopal Gupta

Parallel Declarative Solutions of Sequencing Problems UsingMulti-valued
Decision Diagrams and GPUs . 191
Fabio Tardivo and Enrico Pontelli

Green Application Placement in the Cloud-IoT Continuum 208
Stefano Forti and Antonio Brogi

Author Index . 219

Invited Talk

People, Ideas, and the Path Ahead

Marcello Balduccini1,2(B)

1 Saint Joseph’s University, Philadelphia, PA, USA
2 Elemental Cognition, Wilton, CT, USA

marcello.balduccini@gmail.com

Abstract. While recent advances in machine learning have yielded
impressive results, researchers, practitioners, and even companies are
beginning to recognize that true artificial intelligence requires much
more sophisticated reasoning capabilities. Knowledge representation and
declarative programming are arguably in a premier position to aid in the
achievement of such capabilities. In this paper, I reflect on people and
ideas that have had a great influence on my view of knowledge repre-
sentation and of declarative programming. Through these lenses, I will
discuss what I consider to be some of the most important milestones in
the evolution of the field over the past years. I will conclude my reflection
with my take on what this may tell us about the path that lies ahead
and about areas where research efforts may yield considerable benefits.

Keywords: Knowledge representation · Answer set programming ·
Non-monotonic reasoning · Declarative programming · Practical
applications

1 Introduction

I was honored to be asked to give an invited talk to PADL 2022. This article
summarizes the key points of my talk.

I decided to structure my talk as reflection on people and ideas that have
had a great influence on my view of knowledge representation and of declarative
programming. Interestingly, these ideas have corresponded to important mile-
stones in the evolution of the field over the past years. While many researchers
have contributed to these milestones, in this article I will refer specifically to the
people who have communicated those idea to me first-hand, as a way to honor
their impact on my views: Michael Gelfond’s idea that the Knowledge Repre-
sentation (KR) methodology and Answer Set Programming (ASP) [15,23] itself
were viable for practical applications; Henry Kautz’s suggestion that declarative
languages of different nature could be hybridized into languages suitable for use
in industrial applications; and David Ferrucci’s idea that agents can be thought
partners, capable of intelligently engaging humans when faced with problems
beyond their individual capabilities. I conclude my reflection with my take on
the path that lies ahead and about areas where research efforts may yield con-
siderable benefits.
c© Springer Nature Switzerland AG 2022
J. Cheney and S. Perri (Eds.): PADL 2022, LNCS 13165, pp. 3–12, 2022.
https://doi.org/10.1007/978-3-030-94479-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94479-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-94479-7_1

4 M. Balduccini

2 KR Methodology and Practical Applications

At the time it was conceived, Michael Gelfond’s idea was a bold one: that ASP,
coupled with a rigorous KR methodology, would be viable for practical applica-
tions, both in terms of convenience of use and in terms of scalability.

I was exposed to this idea when I joined Michael’s lab at Texas Tech Uni-
versity as a fresh Ph.D. student, and got involved in Michael’s and Monica
Nogueira’s research on the USA Advisor reasoning system [4]. At the time we
started working on the USA Advisor, demonstrations of ASP were mostly lim-
ited to the level of academic exercises and initial performance evaluations (e.g.,
[11]). There were some concerns that ASP programs would not scale enough to
be usable in practical applications, particularly when the programs were writ-
ten following a rigorous KR methodology and, even more so in the case of an
action-language based approach [16].

The rigorous KR methodology I am referring to is what Michael was very
careful in instilling all of his students. When one is formalizing a dynamic
domain, one should first of all answer the questions: What are the objects of the
domain? What are the relations? What are the actions? Following this catego-
rization, one would then proceed to representing the effects of actions in terms
of dynamic causal laws, state constraints and executability conditions, either
directly encoded in an action language or translated to ASP. Very importantly,
fluents and actions should have a precise informal meaning stated in English. The
problem should, then, be formulated first using precise English statements that
(a) follow the expression patterns of laws of action languages, and (b) leverage
the English phrases associated with fluents and actions. The English statements
should then be translated into ASP in a direct way, so that every ASP statement,
when it was read back into English, would match the original English statement.

This approach is designed to yield elegant and fully declarative specifications,
which was in fact the case in the USA Advisor. Two of my favorites:1

% Tank node N1 is pressurized by tank X if it is connected
% by an open valve to a node which is pressurized by tank X.

h(pressurized_by(N1,X),T) :- time(T),
tank_of(N1,R),
link(N2,N1,V),
h(in_state(V,open),T),
tank_of(X,R),
h(pressurized_by(N2,X),T).

% If the input value of a NOT gate is S1 at time t and its delay
% is d then its output value is opposite value S2 at time t+d.

h(value(W2,S2),T1) :-

1 For historical faithfulness, I copy them here in their entirety, including the original
comments from the formalization of the USA Advisor.

People, Ideas, and the Path Ahead 5

of_type(G,not_gate),
delay(G,D),
time(T),
time(T1),
T1 = T+D,
input(W1,G),
output(W2,G),
opposite(S1,S2),
h(value(W1,S1),T),
not is_stuck(W2,G).

At the time when we created the USA Advisor, the first rule was a striking
example of ASP’s ability to elegantly capture complex kinds of knowledge. Not
only the rule was part of a recursive definition, which would have been a challenge
in many other languages at the time, it embedded such a recursive definition
within a state constraint, thus capturing the evolution of the state of the domain
over time in a way that mirrored faithfully the intuition. The second rule was,
too, related to recursive definitions, but my fascination with it lies in the fact
that it was in fact not a rule that we had written for the USA Advisor.

Some time before we focused on the USA Advisor, we had worked on using
ASP and the KR methodology for representing digital circuits and reasoning
about them [3]. This rule is part of what we called the “General Theory of
Digital Circuits in A-Prolog.”

Thus, what is striking to me is that, even at that time, Michael had such a
clear conception of modularity in ASP, that it allowed us to reuse in the USA
Advisor a rather sophisticated module that we had previously created indepen-
dently of it, and we were able to do so without any substantial modifications.

But what was the scalability of the formalization? Did it scale to the needs
of this first industrial application of ASP? Indeed, it was, and to some extent it
surprised even us by how well it performed. We had been given a time threshold
of 20 minutes for every problem instance and we found that the system was, on
average, orders of magnitude faster than that and never got even close to that
threshold even in the most challenging cases.

The fact that we were concerned about scalability is clearly visible in certain
statements. For instance, we preferred to ground manually the rules encoding
the law of inertia and in doing so we restricted the groundings only to the fluents
that we knew “mattered”, e.g.

% Tanks maintain correct pressure unless some leak
% occurs along their path for some time.

h(pressurized_by(X,X),T1) :- next(T,T1),
tank_of(X,R),
h(pressurized_by(X,X),T),
not nh(pressurized_by(X,X),T1).

6 M. Balduccini

This would be unnecessary nowadays. In fact, given what we learned later about
the performance of the system, in hindsight we could have probably trusted the
grounding of the rules of inertia to the lparse grounder. However, this shows
the level of concern and lack of a generally clear picture of what might affect
performance and what might not.

Something that is important to remark is that this success was not only due
to Michael’s great KR capabilities and intuition. Instrumental to the success of
this project was also the excellent work by Illka Niemela, Tommi Syrjanen, and
others that had given us grounder lparse and solver smodels [25].

3 Hybrid Declarative Languages for Practical
Applications

Henry Kautz was my supervisor when I joined the Eastman Kodak Research
Labs. I had been asked to investigate ways to automate decision-making pro-
cesses of commercial print shops: given a set of print jobs (e.g., books or maga-
zines), which presses, cutters, binders, and other devices should be used, which
device configurations would minimize waste and costs, and what was the best
schedule for the work? The agent should also be able to respond to sudden
unexpected events, such as devices becoming unavailable or “rush jobs” com-
ing it while others are already in production. The response should consist of
incremental changes that minimize disruptions and additional costs.

It was known in the industry that, when humans experts were carrying out
those decision-making processes, an important factor of their success was the
heuristic knowledge that they had accumulated over the years – so much so that
(I was told) experienced people were paid substantial salaries and were regarded
as key elements of the manufacturing process. Because of this, an additional
constraint I was given was that the system should make it possible to easily
incorporate heuristic knowledge as it might be provided by human experts.

On the one side, I expected the expert knowledge to be in the form of com-
monsensical statements, possibly defaults and their exceptions, and so it was
clear to me that a non-monotonic language like ASP would be most appropri-
ate. On the other hand, intuition and preliminary experiments showed me that
ASP-based formalizations of this underlying “planning-while-scheduling” prob-
lem would not scale well for practical use. It seemed clear that a representation
based on Constraint Satisfaction Problems (CSP) [19] would be most appropriate
for that.

Of course, the underlying problem was that whichever approach I adopted,
would need to be viable for a practical, industry-sized application. I was explain-
ing all of this to Henry in a meeting, when he pointed me to the approach taken
in Satisfaction Modulo Theories (SMT) [26] as a possible solution.

SMT had demonstrated that it was possible to overcome the expressive short-
comings and performance shortcomings of individual declarative languages by
hybridizing them. The bet was that ASP and Constraint Programming could
be hybridized in a way that allowed us to solve this “planning-while-scheduling”

People, Ideas, and the Path Ahead 7

problem augmented with expert knowledge, and to do so in a way that was
scalable.2

The idea of hybridizing ASP and CP was not entirely new. A couple of
years earlier, Baselice, Bonatti and Gelfond had published a paper proposing a
possible approach [9], and I was aware that Veena Mellarkod, Michael Gelfond
and Yuanlin Zhang had been working for some time on a related implementation
[24]. However, what was surprising – almost shocking – to me was the proposal
of using such a hybrid for a practical application, when the work I was aware of
had been limited to academic exercises.

Sure enough, preliminary tests on Mellarkod’s system showed that it would
not scale to the type of application we were building. Additionally, Veena’s
system leveraged specific solving algorithms. That was a problem for me, since
there was substantial uncertainty in my mind on exactly which solvers to use.
Lparse and smodels? The new gringo grounder [12] and clasp solver [13]? And
which constraint solver? Ilog, to which I had been introduced in a previous Kodak
project? The constraint solver embedded in some Constraint Logic Programming
(CLP) system? And should the constraint solver need to support finite domains
only or larger domain variables?

This prompted me to develop EZCSP [1,5,6], which I literally intended as an
easy (hence “EZ”) way of encoding CSP by means of a host language featuring
strong KR foundations and support for non-monotonic constructs. The view of
ASP as a host language for a constraint satisfaction language allowed me to
adopt a loosely coupled view of the two languages and of the underlying solvers,
making it possible to experiment with multiple combinations of ASP solvers and
constraint solvers, as well as different types of variable domains.

Henry’s intuition proved to be a good one. Developing EZCSP as a
lightweight layer that leveraged existing solvers without modifications allowed
me to conduct experiments with various solver combinations and quickly iden-
tify one that scaled to the level needed for our application. Remarkably, the first
use of EZCSP coincided with its first industrial-sized, deployed application [1],
which to the best of my knowledge was also the first deployed application of
what we later came to call Constraint ASP [5]. The final product, which was
running EZCSP at its core, even came with a user interface designed by UX
expert Stacie Hibino.

I think all of this is an amazing demonstration of the power of constraint-
based languages, a term that I use to denote both ASP and CP languages, as
well as of Henry’s intuition about the potential of a hybrid solution of ASP and
CP.

2 As an aside, our work on the USA Advisor had also been influenced by one of
Henry’s ideas, specifically Kautz and Selman’s work on solving planning problems
by reducing them to satisfiability problems [20].

8 M. Balduccini

4 Intelligent Agents as Thought Partners

David Ferrucci, the creator of IBM Watson, currently heads Elemental Cogni-
tion3 (EC), a research-driven company aiming at developing and using a full
spectrum of AI techniques to deliver revolutionary products that solve challeng-
ing, real-world problems.

When I first started collaborating with EC, two aspects fascinated me: on
one side, David and EC fully understood the importance of KR, non-monotonic
reasoning and declarative programming in achieving sophisticated agent capa-
bilities. On the other side, David was adamant in his vision that agents should
be “thought partners.” As such, they should collaborate with humans rather
than just acting autonomously. One particularly striking instance of this is that
it may well happen that agent may sometimes be unable to solve a certain prob-
lem, either due to lack of knowledge or to performance limitations. In those
cases, the agent should be capable of recognizing the issue and of engaging the
humans in intelligent ways, in order to overcome the obstacle together.

This latter idea was quite striking to me, as it was in partial divergence with
idea of agents as fully autonomous, to which I had subscribed since my early
steps in AI. Then again, while at a first glance it may seem that giving up full
autonomy might be an indication of a reduced level of intelligence, David’s idea
of agents as thought partners requires in fact even greater intelligence.

David’s vision has struck a chord with a several parties, and has already led to
successful projects. One of my favorite is a project that contributed to making the
Superbowl possible in 2021 in spite of having been held in the midst of the covid-
19 pandemic.4 EC’s PolicyPath app and underlying systems were involved in
enforcing the access policy for corporate-level employees – approximately 40,000
people.

There were a number of important lessons that we learned from this project
in relation to the use of KR, some of which are discussed in more details in [2].
In a nutshell, we faced even more challenges than I had faced before, or than I
had expected.

On the one side, intelligent interaction with a user requires a level of intro-
spection by the agent that is extremely challenging. Together with that comes
the agent’s need to explain its reasoning and its conclusions in terms that the
user can understand – likely in an interactive dialogue – which is another very
challenging task.

However, there are also challenges at the level of more typical KR and rea-
soning tasks, which were surprising to me. While reasoning about actions and
change has made enormous progress since John McCarthy’s seminal papers [17],
some types of statements that are straightforward for humans are still diffi-
cult to formalize precisely and efficiently. I will summarize here some of these
observations.

3 https://ec.ai.
4 https://www.billboard.com/pro/super-bowl-halftime-show-covid-safety-

coronavirus/.

https://ec.ai
https://www.billboard.com/pro/super-bowl-halftime-show-covid-safety-coronavirus/
https://www.billboard.com/pro/super-bowl-halftime-show-covid-safety-coronavirus/

People, Ideas, and the Path Ahead 9

Consider for instance the statement “after international travel, one is not
allowed access to the office for 14 days.” Formalizing such statements requires
some notion of “wall-clock” time and mechanisms allowing fluents to change
value without intervening observations.

Action languages such as H [10], while possibly suitable, have a complex
semantics and can reduce performance considerably due to the complexity of
the underlying implementation. Additionally, in all access policies we studied,
time and change were simpler than in typical uses of H and did not justify its
use. Additive fluents [21] offer a potential solution, but once again appeared to be
more sophisticated than needed, and it is unclear how to conveniently cause value
changes in fluents, even if one were to formalize them via triggers. For instance,
the statement “one is not allowed access to the office for 14 days” requires the
ability to count down the given amount of time and to cause a fluent, say,
has access to be false for that duration and to become true at the end unless
other causes intervene. While additive fluents could be used to represent the
amount of time left, changing that value over time in a convenient way seems less
straightforward. An additional challenge was that one would also want somehow
to ensure that has access is allowed to revert to true at the end of that period.

We were able to solve this challenge by introducing the notion of “timed” flu-
ents – essentially, numerical fluents whose value naturally decays (or, in principle,
increases) over time. However, this raised a performance problem: representing
explicitly every state and state transition related to the evolution of a timed
fluent becomes problematic when one is considering a long period of time, e.g.
in the order of months or years. That is because, in principle, every change in
the value of a timed fluent causes a state transition. It should be noted that this
is strongly related to the problem faced in formalizing hybrid domains discussed
in [10] and preceding articles.

With inspiration from that line of research, we realized that only part of
those state transitions are critical to the evolution of the domain. In the exam-
ple above, states remain “sufficiently” similar to each other until the timed fluent
reaches 0, unless of course other causes intervene. We were thus able to refine
the representation in such a way that only the “relevant” states were explicitly
considered, and rules of the formalization itself were responsible for determin-
ing which states were relevant. For instance, in our example, there is only one
“relevant” state 14 days from now.

While this approach yielded a satisfactory solution for medium-sized problem
instances, our experiments showed that in the presence of larger time horizons
or when more complex policies were considered, near real-time interaction with
the user was still beyond reach.

One particularly interesting case was that of a subject for whose state the
agent has already calculated the evolution over time, possibly for several months.
Note that this evolution does not necessarily need to be only future-facing. It
may contain past observations for a prolonged amount of time and the agent
needs to be able to consider how the subject’s state evolved in response to those
observations – as the user may want to ask questions about them – and how
those observations may affect future states.

10 M. Balduccini

Suppose now that a new observation is received, such as a covid test result.
The information might be about the current moment in time, but could also
be previously unavailable information about a past moment. Recomputing the
entire evolution from scratch was found to take several minutes, making near
real-time interaction impossible.

The obvious solution was to adopt the approach of an incremental computa-
tion, especially leveraging clingo’s incremental solving capabilities [18]. Indeed,
clingo’s incremental solving has been demonstrated to yield substantial perfor-
mance improvements. For instance, in planning problems, one can look for a
plan up to a certain maximum length and, if no such plan is found, one can have
the solver incrementally consider additional time steps, and do so by reusing and
extending the search space built for the prior computation rather than recreating
it from scratch every time.

Unfortunately, this approach did not quite seem to work for our use case,
where the observations may trigger a recomputation of past states or may cause
the discovery of new “relevant” states between states that had already been
computed. Situations of these types violate the conditions of the Module The-
orem [27] and are thus not directly solvable with clingo’s incremental solving
capabilities.

We were eventually able to solve the problem by developing algorithms that
essentially “roll back” the search space to the latest point in the search process
from which incremental computations could be applied. While this allowed us
to solve the problem at hand – and, in fact, improve performance by multiple
orders of magnitude – the solution was quite specific to the particular formulation
and problem domain, and to the best of our knowledge, no general solution is
currently available.

EC’s efforts have highlighted a number of additional, and very interesting,
challenges, which are outside of the scope of this article, such as those related to
the prevalence of incomplete knowledge in practical applications, more so than
research exercises typically consider, and to the need to draw at least partial
inferences in spite of such incomplete knowledge – all while maintaining the
ability to interact with the user in near real-time.

5 Conclusion

In this paper, I have reflected on people and ideas that have had a great influ-
ence on my view of knowledge representation and of declarative programming,
and that have coincided with what I consider to be important milestones in the
evolution of our field, some of which I have been honored to be involved with at
least in part: the idea that a rigorous KR methodology and ASP itself could be
viable for practical applications, the idea that declarative languages of different
nature could be hybridized into languages suitable for use in industrial applica-
tions, and the idea that agents could be thought partners, capable of intelligently
engaging humans when faced with problems beyond their individual capabilities.

People, Ideas, and the Path Ahead 11

While enormous progress has been made over the past decades, much work
still remains in order to design agents that are truly intelligent and can act as
such thought partners. Work has already been under way for several years on
explanatory reasoning and on building more efficient ASP solvers that rely on
non-ground solving techniques. However, research will also be needed in other
directions. In particular, the research on incremental solving so far seem to have
only scratched the surface and will need to be extended beyond the confines of
the Module Theorem. Additionally, research is needed on representation, and
specifically on techniques for declaratively, but efficiently, stating the conditions
under which an agent should stop reasoning and seek assistance – and what to
ask for. At least in part, prior work on sensing actions is a starting point (e.g.,
[7,8,22], as is the research on epistemic specification (e.g., [14]).

References

1. Balduccini, M.: Industrial-size scheduling with ASP+CP. In: Delgrande, J.P.,
Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp. 284–296. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20895-9 33

2. Balduccini, M., Barborak, M., Ferrucci, D.: Action languages and COVID-19:
lessons learned. In: 2nd Workshop on Causal Reasoning and Explanation in Logic
Programming (CAUSAL2020) (2020)

3. Balduccini, M., Gelfond, M., Nogueira, M.: A-Prolog as a tool for declarative pro-
gramming. In: Proceedings of the 12th International Conference on Software Engi-
neering and Knowledge Engineering (SEKE2000), pp. 63–72 (2000)

4. Balduccini, M., Gelfond, M., Nogueira, M.: Answer set based design of knowledge
systems. Ann. Math. Artif. Intell. 47(1–2), 183–219 (2006)

5. Balduccini, M., Lierler, Y.: Constraint answer set solver EZCSP and why integra-
tion schemas matter. J. Theory Pract. Logic Program. (TPLP) 17(4), 462–515
(2017)

6. Balduccini, M., Lierler, Y., Schüller, P.: Prolog and ASP inference under one roof.
In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS (LNAI), vol. 8148, pp. 148–
160. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40564-8 15

7. Baral, C., McIlraith, S.A., Son, T.C.: Formulating diagnostic problem solving using
an action language with narratives and sensing. In: Proceedings of the 2000 KR
Conference, pp. 311–322 (2000)

8. Baral, C., Son, T.C.: Formalizing sensing actions - a transition function based
approach. Artif. Intell. J. 125(1–2), 19–91 (2001)

9. Baselice, S., Bonatti, P.A., Gelfond, M.: Towards an integration of answer set and
constraint solving. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol.
3668, pp. 52–66. Springer, Heidelberg (2005). https://doi.org/10.1007/11562931 7

10. Chintabathina, S., Watson, R.: Logic Programming, Knowledge Representation,
and Nonmonotonic Reasoning: Essays Dedicated to Michael Gelfond on the Occa-
sion of His 65th Birthday, chap. A New Incarnation of Action Language H, pp.
560–575. LNAI (LNCS), Springer Verlag, Berlin (2011). https://doi.org/10.1007/
978-3-642-30743-0 38

11. Erdem, E.: Application of Logic Programming to Planning: Computational Exper-
iments (1999). http://www.cs.utexas.edu/users/esra/papers.html

https://doi.org/10.1007/978-3-642-20895-9_33
https://doi.org/10.1007/978-3-642-40564-8_15
https://doi.org/10.1007/11562931_7
https://doi.org/10.1007/978-3-642-30743-0_38
https://doi.org/10.1007/978-3-642-30743-0_38
http://www.cs.utexas.edu/users/esra/papers.html

12 M. Balduccini

12. Gebser, M., Kaminski, R., Ostrowski, M., Schaub, T., Thiele, S.: On the input lan-
guage of ASP grounder Gringo. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR
2009. LNCS (LNAI), vol. 5753, pp. 502–508. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-04238-6 49

13. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set
solving. In: Veloso, M.M. (ed.) Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (IJCAI 2007), pp. 386–392 (2007)

14. Gelfond, M.: New semantics for epistemic specifications. In: Delgrande, J.P., Faber,
W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp. 260–265. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-20895-9 29

15. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunc-
tive databases. New Gener. Comput. 9, 365–385 (1991). https://doi.org/10.1007/
BF03037169

16. Gelfond, M., Lifschitz, V.: Representing action and change by logic programs. J.
Logic Program. 17(2–4), 301–321 (1993)

17. Hayes, P.J., McCarthy, J.: Some philosophical problems from the standpoint of
artificial intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol.
4, pp. 463–502. Edinburgh University Press (1969)

18. Kaminski, R., Schaub, T., Wanko, P.: A tutorial on hybrid answer set solving with
clingo. In: Ianni, G., et al. (eds.) Reasoning Web 2017. LNCS, vol. 10370, pp.
167–203. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61033-7 6

19. Katriel, I., van Hoeve, W.J.: Handbook of Constraint Programming, Chap. 6.
Global Constraints, pp. 169–208. Foundations of Artificial Intelligence. Elsevier
(2006)

20. Kautz, H., Selman, B.: Planning and satisfiability. In: Proceedings of the 10th
European Conference on Artificial Intelligence (ECAI92), pp. 359–363 (1992)

21. Lee, J., Lifschitz, V.: Additive fluents. In: Provetti, A., Son, T.C. (eds.) Answer
Set Programming: Towards Efficient and Scalable Knowledge Representation and
Reasoning. AAAI 2001 Spring Symposium Series, March 2001

22. Levesque, H.J.: What is planning in the presence of sensing? In: Proceedings of
the 13th National Conference on Artificial Intelligence, pp. 1139–1146 (1996)

23. Marek, V.W., Truszczynski, M.: The Logic Programming Paradigm: a 25-Year Per-
spective, chap. Stable Models and an Alternative Logic Programming Paradigm,
pp. 375–398. Springer Verlag, Berlin (1999). https://doi.org/10.1007/978-3-642-
60085-2 17

24. Mellarkod, V.S., Gelfond, M., Zhang, Y.: Integrating answer set programming
and constraint logic programming. Ann. Math. Artif. Intell. 53, 251–287 (2008).
https://doi.org/10.1007/s10472-009-9116-y

25. Niemelä, I., Simons, P.: Logic-Based Artificial Intelligence, chap. Extending the
Smodels System with Cardinality and Weight Constraints, pp. 491–521. Kluwer
Academic Publishers (2000)

26. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT module theories:
from an abstract Davis-Putnam-Longemann-Loveland procedure to DPLL(T). J.
Artif. Intell. Res. 53(6), 937–977 (2006)

27. Oikarinen, E., Janhunen, T.: Modular equivalence for normal logic programs. In:
Proceedings of the Seventeenth European Conference on Artificial Intelligence
(ECAI 2006), pp. 412–416 (2006)

https://doi.org/10.1007/978-3-642-04238-6_49
https://doi.org/10.1007/978-3-642-04238-6_49
https://doi.org/10.1007/978-3-642-20895-9_29
https://doi.org/10.1007/BF03037169
https://doi.org/10.1007/BF03037169
https://doi.org/10.1007/978-3-319-61033-7_6
https://doi.org/10.1007/978-3-642-60085-2_17
https://doi.org/10.1007/978-3-642-60085-2_17
https://doi.org/10.1007/s10472-009-9116-y

Answer Set Programming

Modelling the Outlier Detection Problem
in ASP(Q)

Pierpaolo Bellusci, Giuseppe Mazzotta(B), and Francesco Ricca

University of Calabria, Rende, Italy
giuseppe.mazzotta@unical.it, ricca@mat.unical.it

Abstract. Knowledge discovery techniques had important impact in
several relevant application domains. Among the most important knowl-
edge discovery tasks is outlier detection. Outlier detection is the task
of identifying anomalous individuals in a given population. This task is
very demanding from the computational complexity point of view, being
located in the second level of the polynomial hierarchy. Angiulli et al. in
2007 proposed to employ Answer Set Programming (ASP) to compute
outliers. Their solution is based on the saturation technique and, as a
consequence, it is very hard to evaluate by ASP systems. In this paper
we resort to Answer Set Programming with Quantifiers (ASP(Q)) to
provide a more declarative, compact and efficient modeling of the outlier
detection problem. An experiment on syntetic benchmarks proves that
our ASP(Q)-based solution can handle databases that are three order of
magnitude larger than the ASP-based one proposed by Angiulli et al.

Keywords: Answer Set Programming · Outlier detection · Knowledge
representation

1 Introduction

The development of effective knowledge discovery techniques has become a very
active research area in recent year due to the important impact it has had in
several relevant application areas [8]. One interesting task is to identify anoma-
lous individuals from a given population, for example, for bank fraud detection,
network robustness analysis or intrusion detection. For the detection of these
values, called outliers, several techniques have been already developed [2,7,9],
typically through Data Mining methods, such as clustering, where large amounts
of data are examined looking for values that could create inconsistencies.

These techniques are based on statistical factors that could lead to models
with poor generalization capabilities. So, there are approaches in the literature
that tried to exploit declarativity and expressiveness of logic programming in
order to describe, in a more general way, the normal behaviour of individuals [3].

Partially supported by MISE under project MAP4ID “Multipurpose Analytics Plat-
form 4 Industrial Data”, N. F/190138/01-03/X44.

c© Springer Nature Switzerland AG 2022
J. Cheney and S. Perri (Eds.): PADL 2022, LNCS 13165, pp. 15–23, 2022.
https://doi.org/10.1007/978-3-030-94479-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94479-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-94479-7_2

16 P. Bellusci et al.

In this article, we start from the work on outlier detection by Angiulli and
colleagues [3], that was based on Answer Set Programming (ASP) [4,6], and we
aim at providing a revised logic-based method for computing outliers that allows
us to deal with instances that the previous approach is not able to treat, and in
general it is more efficient in terms of execution time.

The Outlier detection task is very demanding from the computational com-
plexity point of view, being located in the second level of the polynomial hier-
archy [3]. For this reason the approach proposed by Angiulli and colleagues was
based on an encoding technique called saturation [5]. As a consequence, it is a
very involved solution that is also hard to evaluate by ASP systems [1].

In this paper we resort to Answer Set Programming with Quantifiers
(ASP(Q)) [1] to provide a more declarative, compact and efficient modeling
of the outlier detection problem focusing on the brave semantics [3]. An experi-
ment on synthetic benchmarks proves that our ASP(Q)-based solution can han-
dle databases that are three order of magnitude larger than the ASP-based one
proposed by Angiulli et al.

2 Preliminaries

In this section we recall some basic notions about Answer Set Programming
(ASP) and ASP with Quantifiers (ASP(Q)).

ASP. A variable is a string starting with uppercase letter, a constant instead
is any integer number or any string starting with lowercase letter. A term is
either a constant or a variable. An atom a is of the form p(t1, ..., tn) where p is
a predicate of ariety n and t1, ..., tn are terms. If t1, ..., tn are constants then a
is a ground atom. A rule r is of the form:

a1 ∨ ... ∨ an ← b1, ..., bm, not c1, ..., not cl (1)

where not represents the negation as failure, Hr = {a1, ..., an} is a set of atoms,
referred as head, B+

r = {b1, ..., bm} and B−
r = {c1, ..., cl} are set of atoms,

referred as positive and negative body, respectively. Given a rule r, if Hr = ∅
then r is a constraint ; if B+

r ∪ B−
r = ∅ then r is a fact ; if |Hr| ≤ 1 then r is

a normal rule. A program P is a finite set of rules. If P contains only normal
rules then P is a normal program. The dependency graph of a program P is a
labeled directed graph in which nodes are predicates in P and there will be a
positive (resp. negative) edge from p to p′ if p appears in the positive (resp.
negative) body of a rule where p′ appears in the head. A program P is stratified
if the dependency graph of P does not contain cycles with negative edges. Given
a program P , the Herbrand Universe is the set of constants appearing in P ,
denoted by UP ; the Herbrand Base is the set of all ground atoms that can be
built by using predicate in P and constants in UP , denoted by BP ; the ground
instantiation of P , ground(P), is the union of all possible ground instantiations
of rules in P . A ground instantiation of a rule r ∈ P is defined by a variable
substitution σ that maps variables in r to constant in UP . An interpretation I

Modelling the Outlier Detection Problem in ASP(Q) 17

for the program P is a set of ground atoms such that I ⊆ BP . I is a model for P
if for each rule r ∈ ground(P), if B+

r ⊆ I ∧B−
r ∩I = ∅ then Hr ∩I �= ∅. A model

M is a minimal model if for each M ′ ⊂ M , M ′ is not a model for P . Given an
interpretation I for a program P we define Gelfond-Lifschitz reduct, P I , as the
set of rules of the form Hr ← B+

r , such that r ∈ ground(P), B−
r ∩ I = ∅ and

Hr �= ∅. I is an answer set (stable model) of P , if I is a model for P and it
is a minimal model of P I . We denote by AS(P) the set of all answer sets (or
stable models) of P . A program P is coherent if it admits at least one answer
set, otherwise it is incoherent.

Let W be a set of atoms. Then, P bravely entails W (resp. ¬W), denoted by
P |=b W (resp. P |=b ¬W), if there exists M ∈ AS(P) such that each atom in
W is evaluated true (resp. false) in M. Conversely, P cautiously entails W (resp.
¬W), denoted by P |=c W (resp. P |=b ¬W), if for each model M ∈ AS(P),
each atom in W is true (resp. false) in M. For a stratified program P , P |=c W
iff P |=b W .

Example 1. Let P be the following ASP program:

r1 : a ∨ b.
r2 : c.

We have that, AS(P) = {{a, c}, {b, c}}. If W = {c} then P cautiously entails W ,
P |=c W , since c is true in each M ∈ AS(P); if W = {a} then P bravely entails
W , P |=b W , since there is an answer set where a is true, that is M = {a, c},
but a is not true in all answer sets.

ASP(Q). An ASP with Quantifiers program Π is of the form:

�1P1 �2P2 · · · �nPn : C (2)

where, for each i = 1, . . . , n, �i ∈ {∃st,∀st}, Pi is an ASP program, and C is a
stratified normal ASP program. ∃st and ∀st are named existential and universal
answer set quantifiers, respectively. An ASP(Q)program Π of the form (2) is
existential if �1 = ∃st, otherwise if �1 = ∀st then Π in universal. Given a
program P and an interpretation I over BP , and an ASP(Q)program Π the
form (2), we denote by fixP (I) the set of facts and constraints {a | a ∈ I}∪{←
a | a ∈ BP \ I}, and by ΠP,I the ASP(Q)program of the form (2), where P1

is replaced by P1 ∪ fixP (I), that is, ΠP,I = �1(P1 ∪ fixP (I)) · · · �nPn : C.
Coherence of ASP(Q) programs is defined inductively:

– ∃stP : C is coherent, if ∃ M ∈ AS(P) such that C ∪ fixP (M) is coherent;
– ∀stP : C is coherent, if ∀ M ∈ AS(P), C ∪ fixP (M) is coherent;
– ∃stP Π is coherent, if ∃ M ∈ AS(P) such that ΠP,M is coherent;
– ∀stP Π is coherent, if ∀ M ∈ AS(P), ΠP,M is coherent.

Example 2. Consider the ASP(Q) program Π = ∃stP1∀stP2 : C, where

P1 = {x(1) ∨ x(2)}

18 P. Bellusci et al.

P2 = {y(1) ∨ y(2) ← x(1); y(2) ← x(2)}
C = {← y(1), not y(2)}

The program P1 has two answer sets {x(1)} and {x(2)}. Hence, to establish
the coherence of Π, we have to check if at least one of {x(1)} and {x(2)} is
a quantified answer set of Π. Considering {x(1)}, we have fixP1({x(1)}) =
{x(1); ← x(2)}. Under the notation used above, P ′

2 = P2 ∪ fixP1({x(1)}).
Thus, AS(P ′

2) = {{x(1), y(1)}, {x(1), y(2)}}. For M = {x(1), y(1)} we have
fixP ′

2
(M) = {x(1); y(1);← x(2);← y(2)}, and it is clear that the program C ∪

fixP ′
2
(M) is not coherent. Therefore, {x(1)} is not a quantified answer set of

Π. On the other hand, a similar analysis for the other answer set of P1, {x(2)},
shows that it is a quantified answer set of Π.

3 Outlier Detection

Outlier detection is the task of identifying anomalous individuals in a given
population. We now recall the formalization of the problem proposed in [3].

Let P rls be a logic program encoding general knowledge about the world,
called rule component, and let P obs be a set of facts encoding some observations
of the current state of the world, called observation component. Then, the struc-
ture P = 〈P rls, P obs〉 is a rule-observation pair that establish a relation between
the general knowledge encoded in P rls and the observations of the world encoded
in P obs. Given a rule-observation pair P, the goal is to identify a set O, if there
is one, of observations, facts in P obs, that are ‘anomalous’ (i.e., outliers) accord-
ing to the general theory P rls and the other facts in P obs\O. The basic idea
of identifying O is to find a witness set W ⊆ P obs, that is, a set of facts that
a theory can explain, if and only if all the facts in O were not observed. This
intuition is formalized in the following definition.

Definition 1. [3] Let P = 〈P rls, P obs〉 be a rule-observation pair and let O ⊆
P obs be a set facts. Then, O is an outlier in P if there is a nonempty set W ⊆
P obs with W ∩ O = ∅, called outlier witness for O in P, such that:

1. P (P)W |= ¬W
2. P (P)W,O �|= ¬W

where P (P) = P rls ∪ P obs, P (P)W = P (P)\W, P (P)W,O = P (P)W\O, and
|= denotes entailment under either cautious semantics (|=c) or brave semantics
(|=b).

An important feature accounted in Definition 1 is the possibility of dealing
with the two different semantics that are commonly used in the logic program-
ming framework, which are brave and cautious semantics. Comparing the two
semantics, we can notice that under cautious reasoning the Definition 1 is strict
in requiring that for each stable model, the witness set W is not entailed by the
theory obtained by removing W itself (cond. 1), but then it just requires the

Modelling the Outlier Detection Problem in ASP(Q) 19

1: down(X) ← computer(X), not predecessorUp(X).
2: predecessorUp(X) ← wired(Y,X), up(Y).
3: up(X) ← computer(X), not down(X).
4: computer(s). computer(a). ... computer(t).
5: wired(s, a). ... wired(g, t).
6: up(s).

(a) Agent’s background knowledge (b) Instance of agent’s observation

Fig. 1. Computer network example from [3]

existence of a model explaining some facts in W after the removal of the outlier
O (cond. 2). Conversely, under brave semantics the definition is loose in the first
point, because it requires that W is true in at least one stable model, but, for
the condition 2, it requires that each model of P (P)W,O entails some facts in
W. As example for the Definition 1, let us consider the problem in Fig. 1.

Example 3. (from [3]) Consider an agent A that is in charge of monitoring the
connectivity status of the computer network N shown in Fig. 1b. The agent’s
background knowledge is modelled by a logic program P rls

N in Fig. 1a, which is
used by A to check whether the computer s is connected to t.

In order to monitor the network, A observes the actual status of each com-
puter X in the network using a set of observed facts, say P obs

N , defined on the
down and up predicates. Assume now that P obs

N comprises the facts {down(a),
up(b), down(c), up(d), up(e), up(f), up(g), up(h), up(t)}; in the figure, the com-
puters observed as down are marked in bold.

Let us consider PN = 〈P rls
N , P obs

N 〉 as the rule-observation pair. We can notice
two anomalous things in P obs

N , which are down(a) and down(c). These observa-
tions may be clearly viewed as unexpected according to the background knowl-
edge, although only one lead to an inconsistency. Indeed, let W be the witness
set {up(d), up(e), up(f), up(g), up(t)} and O be the outlier set {down(c)}, then
it is easy to see that P (PN)W |=b ¬W and P (PN)W,O �|=b ¬W are satisfied.
Therefore, {down(c)} is an outlier in P (PN) , and W is an outlier witness for
O in PN (under the brave semantics). Actually, since the program has exactly
one stable model, it is the case that down(c) is an outlier and W its witness also
under cautious semantics.

4 ASP(Q) Encoding

Starting from the formal definition of outlier detection problem [3] and Quan-
tified ASP [1], we provide a more declarative, compact and efficient modeling
of the outlier detection problem exploiting the ASP with Quantifiers. Let us
consider the case of a pair P = 〈P rls, P obs〉 such that P rls is a generic logic
program, and therefore may have more than one model. Specifically we focus
on brave semantics, where it is necessary to check if there exists a stable model

20 P. Bellusci et al.

Program 1. General ASP(Q) encoding schema for brave sematics
1: %@exists (defines P1)
2: ρc1(P

rls)
3: ρobs(P

obs)
4:
5: {o(X):obs(X)}.
6: {w(X):obs(X),not o(X)}.
7:
8: c1(X) :- not w(X), obs(X).
9: bad c1 :- w(X), c1(X).

10:
11: %@forall (defines P2)
12: ρc2(P

rls)
13:
14: c2(X) :- not o(X), not w(X), obs(X).
15: sat c2 :- w(X), c2(X).
16:
17: %@constraint (defines C)
18: :- bad c1.
19: :- not sat c2.

for condition 1 (of Definition 1) such that for all stable models of condition 2
(of Definition 1) is valid. Hence, we model a ASP(Q)program Π of the form
∃stP1∀stP2 : C such that P1 is used for checking condition 1 in Definition 1,
while P2 is used for checking condition 2 in the same definition, and C is used to
impose some constraints. The encoding Π is shown in Program 1. We present the
encoding in the syntax of the qasp solver by Amendola et.al, where %@keyword
where keyword ∈ {forall, exists, constraint} indicate the scope of the logic
programs in plain text files. In order to better understand, the idea behind our
approach let us define ρx as a rewriting function that given a ASP program P , it
replaces each atom p ∈ P with x(p) where the atom p became a function-symbol
and x is an arbitrary predicate. For example let P = {a(D) ← b(D), not c(D).},
ρx(P) = {x(a(D)) ← x(b(D)), not x(c(D)).}}.

This allows us to exploit the grounding phase of the ASP system to sim-
ulate the programs P (P)W and P (P)W,O, and also gives us the opportunity
to make the encoding more general. In particular, under the existential quanti-
fier we compute ρc1(P rls) for checking condition 1 and ρobs(P obs) to generalize
observed facts. Finally, under the forall quantifier we use ρc2(P rls) for checking
condition 2. Analyzing in more detail the encoding, in the program P1 there are
two choice rules for guessing the outlier and the witness sets. The first choice
rule guesses a set of outliers from the set of observations, such that for each
observation in the set the rule can decide whether to instantiate o(X) or not.
Since from Definition 1, the set of outliers O and the set of witness W have to
be disjoint, the second choice rule performs the guess of a set of witness from
the observations, such that for each observation, which is not an outlier, the rule
can decide whether to instantiate w(X) or not. At the end of P1, there are the

Modelling the Outlier Detection Problem in ASP(Q) 21

Fig. 2. Graphs comparing the tests performed on the Network dataset

main rules for checking condition 1. The first rule aims to simulate the P (P)W ,
adding to c1 all the observations that are not witness. The second rule is used to
evaluate if condition 1 is not satisfied using the atom bad c1, which is true if in
c1 there is at least an observation that is also true in the witness set violating the
condition P (P)W |= ¬W. Program P2, instead, contains only the rules necessary
for checking condition 2. The first rule aims to simulate the P (P)W,O, adding
to c2 all the observations that are neither outlier nor witness. The second rule
is used to evaluate if the condition 2 is satisfied using the atom sat c2, which
is true if in c2 there is an observation that is also true in the witness set, and
therefore satisfying the condition P (P)W,O �|= ¬W. Hence, we can deduce that
the interest is only in stable models in which bad c1 is false and sat c2 is true,
and this is modeled by the program under the constraint keyword. Summariz-
ing, the program P1 encodes the observations P obs, generates the possible outlier
and witness set and evaluates condition 1. Afterward, the program P2 evaluated
condition 2 and, finally, the program C imposes that the previous encoded con-
ditions have to be satisfied. In this way, for a candidate answer set of P1 we
impose that observations, outlier and witness facts must be true in every model
of P2.

5 Experiments

1In this section we analyze the results obtained with the new approach for outlier
detection running qasp solver by Amendola et al. by comparing it with the one
proposed in [3]. The two implementations have been evaluated on a dataset
based on Example 3 in which two types of graph are used. In particular we have
structured graphs, in which the architecture is close to a real network simulating
connection between different subnets, and random graphs, in which each node is
connected to at most with 10% of the network. The entire evaluation has been
conducted considering graph of different dimension in terms of the number of
1 https://github.com/MazzottaG/QASP-OutlierDetection.

https://github.com/MazzottaG/QASP-OutlierDetection

22 P. Bellusci et al.

nodes and also varying the number of observations (i.e., in one case we consider
only 80% of the observations to measure the impact of the size of this set). More
specifically, we have considered 10 instances for each combination of number of
nodes and number of observations, run on an Intel i9-8950HK CPU with 32 Gb
of RAM with a timeout set to 200 s. Figure 2 shows the comparison between
the two approaches in terms of average execution time. Results demonstrate
the effectiveness of the proposed approach both in terms of solved instance and
execution time. In particular, our approach is able to deal with larger graphs,
up to 1000 nodes, while the one by Angiulli et al. is able to solve only instances
with 5 nodes taking a longer execution time. Moreover, having more observations
seem to impact positively on performance, probably because it is more probable
to find a guess satisfying the conditions.

6 Conclusion

Inspired by the way the work done by Angiulli et al. [3], we have introduced a new
declarative approach for computing outliers that is based on ASP(Q). Comparing
our encoding with the one employed by Angiulli et al. it becomes clear that we
use less symbols (number of atoms and rules in the program). Indeed, the ASP
encoding of Angiulli et al. has to resort to the saturation techniques [5], thus
resulting in a less readable and computationally-expensive encoding. Instead,
our solution, that is based on ASP(Q), offers an alternative and more efficient
approach. An experiment proves empirically that our ASP(Q)-based solution
can handle databases that are three order of magnitude larger than previous
approach. As future work we plan to extend our approach to cautious semantics.

References

1. Amendola, G., Ricca, F., Truszczynski, M.: Beyond NP: quantifying over answer
sets. Theory Pract. Logic Program. 19(5–6), 705–721 (2019)

2. Angiulli, F., Fassetti, F., Serrao, C.: ODCA: an outlier detection approach to deal
with correlated attributes. In: Golfarelli, M., Wrembel, R., Kotsis, G., Tjoa, A.M.,
Khalil, I. (eds.) DaWaK 2021. LNCS, vol. 12925, pp. 180–191. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-86534-4 17

3. Angiulli, F., Greco, G., Palopoli, L.: Outlier detection by logic programming. ACM
Trans. Comput. Logic 9(1), 7 (2007)

4. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Com-
mun. ACM 54(12), 92–103 (2011)

5. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming:
Propositional case. Ann. Math. Artif. Intell. 15(3–4), 289–323 (1995). https://doi.
org/10.1007/BF01536399

6. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3/4), 365–386 (1991). https://doi.org/10.1007/
BF03037169

https://doi.org/10.1007/978-3-030-86534-4_17
https://doi.org/10.1007/BF01536399
https://doi.org/10.1007/BF01536399
https://doi.org/10.1007/BF03037169
https://doi.org/10.1007/BF03037169

Modelling the Outlier Detection Problem in ASP(Q) 23

7. Gupta, M., Gao, J., Aggarwal, C.C., Han, J.: Outlier detection for temporal data:
a survey. IEEE Trans. Knowl. Data Eng. 26(9), 2250–2267 (2014)

8. Maimon, O., Rokach, L. (eds.): Data Mining and Knowledge Discovery Handbook,
2nd edn. Springer, Boston (2010). https://doi.org/10.1007/978-0-387-09823-4

9. Ord, K.: Outliers in statistical data. Int. J. Forecast. 12(1), 175–176 (1996)

https://doi.org/10.1007/978-0-387-09823-4

Multi-agent Pick and Delivery with Capacities:
Action Planning Vs Path Finding

Nima Tajelipirbazari1 , Cagri Uluc Yildirimoglu2 , Orkunt Sabuncu1 ,
Ali Can Arici3, Idil Helin Ozen3, Volkan Patoglu2 , and Esra Erdem2(B)

1 Department of Computer Engineering, TED University, Ankara, Turkey
2 Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey

esra.erdem@sabanciuniv.edu
3 Ekol Logistics, Istanbul, Turkey

Abstract. Motivated by autonomous warehouse applications in the real world,
we study a variant of Multi-Agent Path Finding (MAPF) problem where robots
also need to pick and deliver some items on their way to their destination. We
call this variant the Multi-Agent Pick and Delivery with Capacities (MAPDC)
problem. In addition to the challenges of MAPF (i.e., finding collision-free plans
for each robot from an initial location to a destination while minimizing the max-
imum makespan), MAPDC asks also for the allocation of the pick and deliver
tasks among robots while taking into account their capacities (i.e., the maximum
number of items one robot can carry at a time). We study this problem with two
different approaches, action planning vs path finding, using Answer Set Program-
ming with two different computation modes, single-shot vs multi-shot.

Keywords: Multi-agent path finding · Pick and delivery with capacities ·
Action planning · Answer set programming

1 Introduction

Most warehouses share the same general pattern of material flow [1]: they receive
bulk shipments, put them away for quick retrieval, pick them in response to customer
requests, and then pack and ship them out to customers. The third component of this
flow, i.e., order-picking, typically accounts for about 55% of warehouse operating costs.
With increasing demand on e-commerce due to the pandemic, the importance and effect
of order-picking also increase [9]. Furthermore, among the three main phases of order-
picking (i.e., traveling to the location of the product, searching for the product at that
location, and grabbing/collecting the product), traveling comprises the greatest part of
the expense of order-picking.

With these motivations, we study a variant of Multi Agent Pathfinding (MAPF)
problem, where the agents need to pick and deliver some items on their way to their
destination. We call this problemMAPDC. In addition to the challenges of MAPF (i.e.,
finding collision-free plans for each agent from its initial location to a goal destination

This work has been partially supported by Tubitak Grant 118E431.

c© Springer Nature Switzerland AG 2022
J. Cheney and S. Perri (Eds.): PADL 2022, LNCS 13165, pp. 24–41, 2022.
https://doi.org/10.1007/978-3-030-94479-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94479-7_3&domain=pdf
http://orcid.org/0000-0002-6695-7492
http://orcid.org/0000-0003-1607-8753
http://orcid.org/0000-0003-1432-042X
http://orcid.org/0000-0001-6644-3937
http://orcid.org/0000-0001-8384-7810
https://doi.org/10.1007/978-3-030-94479-7_3

Multi-agent Pick and Delivery with Capacities 25

while minimizing the maximum makespan),MAPDC asks also for the allocation of the
pick and deliver tasks among agents while taking into account their capacities (i.e., the
maximum number of items one agent can carry at a time).

We study this problem with two different approaches, action planning vs path find-
ing, based on Answer Set Programming (ASP) [2,7,11,15,17].

In the planning approach, we represent the agents’ actions (i.e., moving to a loca-
tion, picking a product, delivering a product), and the change in the warehouse (i.e.,
over the locations and the bags of agents) by an action domain description in ASP. This
description takes into account the collision constraints and the capacity constraints.
After that, we model MAPDC as a planning problem, with its initial state description
(i.e., initial locations of agents and the order-picking tasks) and goal description (i.e.,
destinations of agents while enforcing all the tasks are completed).

In the path finding approach, we model MAPDC as a graph problem. We view the
warehouse environment as a graph, allocate tasks to each agent, and compute a path and
its traversal recursively for each agent, respecting the collision and capacity constraints
and ensuring the completion of all tasks, while minimizing the maximum makespan.

We compare these two approaches empirically with randomly generated instances
over various sizes and types of warehouses (e.g., where shelves are shorter/longer,
closer/farther to/from each other). We use the ASP solver CLINGO [5] in our experi-
ments, considering single-shot vs multi-shot computations.

2 Related Work

MAPF is a well-studied problem with various optimizations, using different
approaches, such as ASP [4], ILP [21], SAT [19], and search-based [18] methods.

Considering pick and delivery tasks assigned to agents, some variants of MAPF
have been studied. For instance, TAPF [13] generalizes MAPF by assigning targets to
teams of agents, while G-TAPF [16] further allows greater number of tasks per agent.
MAPDC differs from G-TAPF in that it does not consider teams of agents or assumes
an order of tasks.MAPDC considers capacity constraints of the agents and asks for the
order of tasks as well.

Liu et al. [12] study MAPD problems (i.e., MAPDC where the capacity of each
agent is 1) by first assigning tasks to agents, and then using a search-based path find-
ing algorithm to compute collision-free paths. The search stage tries to minimize the
makespan after committing to the task assignment found in the first stage. Although
dividing the overall problem into two stages scales better, it does not guarantee optimal
solutions for the overall problem. MAPDC considers capacity constraints and guaran-
tees optimal solutions without dividing the problem into two parts.

For the offline setting, Honig et al. [10] propose a Conflict Based Search (CBS) app-
roach to solve MAPD. It is complete and optimal for the sum of path lengths, a metric
different from the one we consider in our approaches. CBS is known to scale poorly as
the number of conflicts among agents increases [16]. Along these lines, authors have
also presented a bounded sub-optimal approach (ECBS) to improve scalability.

In online versions of MAPD [14], agents have to fulfil a stream of delivery tasks.
The tasks are allocated to free agents such that every agent can execute at most one task.
Then, a path from the initial location to the pick-up location, and then to the delivery

26 N. Tajelipirbazari et al.

location, and finally to the destination, is computed. The agents cannot rest in their
destinations after they finish executing tasks. Grenouilleau et al. [8] also address online
MAPD problems where new tasks appear whenever they arrive. They first assign tasks
to agents using an heuristics approach and use a modified A* search algorithm so that
one search call is sufficient, instead of two calls, for finding the two paths of the agent:
one from its current location to the pickup location and the other one from the pickup
location to the delivery one.

Different from these studies, we focus on an offline method that allocates tasks to
compute plans, and that computes plans to pick and deliver the allocated tasks. There-
fore, in our approach, task allocation and planning are not decoupled: they are handled
at the same time. Furthermore, an agent can handle more than one task at a time, and it
is not assumed to disappear when it reaches its destination.

Chen et al. [3] solve MAPD problem in both offline and online settings. Similar to
MAPDC problem, they also consider capacities where agents can carry multiple items
at a time. Unlike the previous MAPD solution techniques, their search-based algo-
rithm handles task assignment and path finding simultaneously. Even though consider-
ing actual path costs while assigning tasks to agents improves the quality of solutions
found, in its current form, their algorithm does not guarantee optimality, unlike our
proposed solutions for the MAPDC problem. Regarding optimality of solutions, they
propose a variant of the algorithm where local search techniques are used to further
improve the best solution at hand.

Another related study is by Vodrazka et al. [20] since they introduce a planning
approach to solve and studyMAPF. They consider a special case of a planning problem
with only two actions, move and wait, subject to the constraint that there is no collision
between the agents. They present a method that first computes a sequential plan where
at most one agent moves to a free location at a time, and cuts the sequential plan into
sub-plans, and parallelize them so that several agents can move at a time without any
vertex collision. These authors also present another method that splits the move action
into start-move and finish-move actions, and ensures that, for each action, the agents
need to have a token as a precondition and pass the token to another agent as an effect.
Our planning method for MAPDC considers picks and delivers as well. Thanks to the
expressive formalism of ASP, concurrent plans can be generated without further need
to split sequential plans or actions.

Overall, different from the related work, both of our action planning and path find-
ing based approaches address the offline version of MAPDC while considering the
capacities of agents, solve the task assignment and path finding problems simultane-
ously to ensure the optimality of solutions in terms of the overall completion time (the
maximum makespan) of tasks.

3 MAPDC-P: Solving MAPDC with a Planning Approach

We model the MAPDC as a planning problem by representing actions of agents and
changes in the warehouse by an action domain description which also considers all
collision and capacity constraints. Agents use these plans to navigate from their starting
locations to destinations while picking up and delivering items. Our goal is to pick-up
and deliver every item in tasks, while optimizing the overall completion time of tasks.

Multi-agent Pick and Delivery with Capacities 27

3.1 MAPDC as a Planning Problem

We consider the environment of agents as a graph G = (V,E) where the set V of loca-
tions form a 4-neighbour grid and the edges E are based on the adjacent locations in
this grid. Some of the locations may be occupied with shelves and they are treated as
static obstacles for the agents.

The functional fluent position represents the locations of agents. Specifically, for an
agent i ∈ A the fluent value pos(i) = l@x represents the location of i at time step x ≤
u∈Z

+ is l ∈V . Consecutively, pos(i) = init(i)@0 and pos(i) = goal(i)@u hold, where
init and goal functions specify the initial and goal locations of agents, respectively.

Agents move along the edges of the graph. Considering the grid structure of the
environment, we model move(i,dir) action of agent i, where dir is among four car-
dinal directions. Specifically, an action occurrence move(i,dir)@x represents a move-
ment of agent i in direction dir at time step x. Whenever pos(i) = l1@x− 1 holds,
a move(i,dir)@x action occurrence changes the position of the agent i such that
pos(i) = l2@x holds where (l1, l2) ∈ E and position l2 is adjacent to l1 in the direc-
tion dir1.

In a MAPDC problem, we consider vertex and edge collisions. A vertex collision
occurs whenever pos(i) = l@x and pos(j) = l@x hold for two different agents i and j
at time point x. Similarly, an edge collision occurs whenever pos(i) = l1@x, pos(j) =
l2@x, pos(i) = l2@y, and pos(j) = l1@y hold s.t. i �= j, y= x+1 and (l1, l2) ∈ E.

Each task t ∈ T of the form (id, p,d) has a unique identifier id, a pick up location
p ∈V , and a delivery location d ∈V . A task must be assigned to a unique agent and the
agent fulfils it by picking up a product from the task’s pick up location and carrying the
product until delivered to the task’s delivery location. To this end, an agent may perform
pickup and deliver actions with the condition that the agent must be at the pick up
and delivery locations, respectively. Specifically, for a task (id, p,d) action occurrences
pickup(i, id)@x and deliver(i, id)@x are possible if pos(i) = p@x− 1 and pos(i) =
d@x− 1 hold, respectively. Additionally, for the latter action to be possible the agent
must be carrying the product respective to the task. The boolean fluent carrying is used
for representing the products an agent carries. The occurrence pickup(i, id)@x causes
carrying(i, id)@x to hold and the fluent keeps holding until deliver(i, id)@y occurs
such that y > x. Note that a task with identifier id is fulfilled whenever a deliver(i, id)
action occurs by an agent i at time step x. Moreover, the product related to a task cannot
be picked up more than one time by an agent. To this end, for an action pickup(i, id)
occurrence, neither the task with id id is fulfilled before nor the agent i is carrying the
product related to the task.

A plan, which is composed of occurrences of actions move, pickup and deliver, is
a solution of a MAPDC problem, if and only if there are no vertex or edge collisions
considering the position fluent values projected by the actions in the plan, all agents are
at their goal locations at the last time step of the plan, all tasks are fulfilled, and each
agent carries at most c number of products at any time step, where capacity c is given
as an input of the problem. The last condition constrains that for any agent i and any

1 The effects of an action appear at the same time step as the occurrence of the action, instead
of the next time step, to comply with the multi-shot ASP formulation ofMAPDC-P explained
in the next section.

28 N. Tajelipirbazari et al.

time step x,
∣
∣{id | carrying(i, id)@x holds}∣

∣ ≤ c. Based on these notations, MAPDC
problem can be defined as a planning problem (i.e.,MAPDC-P) as illustrated in Fig. 1.

3.2 Solving MAPDC-P Using Multi-shot ASP

We rely on multi-shot ASP [5] for solving theMAPDC-P problem. Multi-shot solving
is used to encode dynamic domains, such as planning problems, where the logic pro-
gram changes during the solving process. Given a planning problem, one can encode a
multi-shot ASP program by partitioning the whole program into three parts; the static
part where knowledge that does not change with time is represented, the cumulative part
corresponding to knowledge that accumulates at increasing time steps, and the volatile
part where we represent knowledge that is added for a specific time step and retracted
when the time step is increased during the multi-shot solving process. As a planning
problem, MAPDC-P is naturally suitable for encoding via multi-shot ASP.

Fig. 1. MAPDC-P:MAPDC as a planning problem.

Multi-agent Pick and Delivery with Capacities 29

During multi-shot solving, CLINGO increases the time step until it finds an answer
set, which corresponds to a plan for the problem. This way of solving has the advan-
tage that the computed plan will be optimal in terms of the time steps. Hence, a plan
for a MAPDC-P problem found by multi-shot solving will be optimal regarding its
makespan.

In our encoding unlike the common practice in ASP community where actions are
executed at time step x and its effects are seen at time step x+ 1, we encode effects
of an action at the same time step as the occurrence of the action to eliminate the extra
grounding and solving step that otherwise multi-shot solver would need in order to work
with the atoms of the next time step.

Similar to a multi-shot ASP encoding of a general planning problem, our
MAPDC-P encoding has three parts. The static part is mainly composed of the grid
environment and facts from the MAPDC-P instance. For this part, we rely on the
encoding of M domain in asprilo for the instance format and some domain predicate
signatures. Asprilo is a framework for experimenting with logistic domains in ASP [6].
Briefly, we use predicates isRobot/1, task/3, shelfPos/3, and finalPos/2 for
representing agents, tasks, locations of shelves (these will be used as pick up and deliv-
ery locations of tasks), and goal locations of agents, respectively. Additionally, we have
instances of pos/1 and nextto/3 predicates to represent set V of grid locations and
subset of edges E, where each edge has no location occupied by an obstacle.

The static part also includes the following rule. This choice rule succinctly assigns
each task to a unique agent. Later, the assign/2 predicate will be used as preconditions
for representations of actions pickup and deliver. Note that the #program directive
groups a set of rules as a program part. Here the static part is named as base.

#program base.
1{assign(I,ID): isRobot(I)}1 :- task(ID,P,D).

In the cumulative part, we represent dynamic knowledge ofMAPDC-P accumulat-
ing with each increasing time point. Specifically, in this part we represent actions and
fluents of the domain. Below, an instance move(i,dir,x) of the move/3 predicate
represents the action occurrence move(i,dir)@x and the predicate direction/1 rep-
resents cardinal movement directions. Note that parameter x in all the remaining rules
is a program part parameter. It represents time steps in our domain and is controlled
by CLINGO during incremental grounding of the program part named as step by the
#program directive. Basically, it is instantiated with value 1 and incremented by 1
in each grounding stage of multi-shot solving. Hence, the choice rule below encodes
that each agent can move in any of the directions at a time step. The upper bound
in the choice rule head neatly represents the constraint that no parallel movement
actions are allowed for an agent. The second rule represents the effect of movement
action. An instance pos(i,l,x) of the pos/3 predicate represents the fluent valuation
pos(i) = l@x holds. The third rule constrains that no agent moves in a direction where
there is no edge from the current position of the agent.

#program step(x).
{move(I,DIR,x): direction(DIR)} 1 :- isRobot(I), time(x).
pos(I,L,x) :- move(I,DIR,x), pos(I,L’,x-1), nextto(L’,DIR,L).
:- move(I,DIR,x), pos(I,L ,x-1), not nextto(L ,DIR,_).

30 N. Tajelipirbazari et al.

Next two rules represent the position fluent is inertial and functional, respectively.
For any agent, when there is no reason to change its location (whenever it does not
move), its location from the previous time step stays the same for this time step. Related
to this, an agent must be at exactly one location at each time step.

{pos(I,L,x)} :- pos(I,L,x-1), isRobot(I), time(x).
:- {pos(I,L,x)}!=1, isRobot(I), time(x).

The following group of rules guarantees that there are no edge or vertex collisions
in the plan found as an answer set. The moveto(l’,l,x) instance in an answer set
represents that an agent has moved from l’ to l at time step x.

moveto(L’,L,x) :- nextto(L’,DIR,L), pos(I,L’,x-1), move(I,DIR,x).
:- moveto(L’,L,x), moveto(L,L’,x), L < L’.
:- {pos(I,L,x): isRobot(I)}>1, pos(L), time(x).

The rules presented upto now in the cumulative part are based on the encoding of
asprilo’s M domain [6], which basically encodes the MAPF problem.

In aMAPDC-P problem, agents can perform additional pick up and deliver actions.
The following rule represents that an agent i can choose to pick up a product for the task
id at time step x if the task id has been assigned to i (assign/2 predicate in the body),
agent i is not already carrying the product for id (negative carrying/3 predicate), and
the task id has not been fulfilled yet (negative delivered/3 predicate).

{pickup(I,ID,x)} :- pos(I,P,x-1), task(ID,P,D),
assign(I,ID), not delivered(ID,x), not carrying(I,ID,x-1).

Similarly, the following choice rule represents deliver actions where
deliver(i,id,x) basically corresponds to the action occurrence deliver(i, id)@x in
a plan. Note that, for a deliver action, we need the agent must be carrying the respective
product (represented by the carrying/3 predicate in rule body).

{deliver(I,ID,x)} :- carrying(I,ID,x-1), pos(I,D,x-1),
task(ID,P,D), assign(I,ID).

Considering the previous rules defining pickup and deliver actions, an atom of the
form carrying(i,id,x) represents that the fluent carrying(i, id) holds at time step
x. The first rule in the following group states that carrying fluent is a direct effect of
pickup action. Similarly, delivered(id,x) represents that task id has been fulfilled
via delivered fluent. This fluent is an effect of deliver action (represented by third rule).
While the second rule represents that carrying fluent does not change its value until the
agent delivers the respective package, the last rule represents that the delivered fluent
persists after becoming true.

carrying(I,ID,x) :- pickup(I,ID,x).
carrying(I,ID,x) :- carrying(I,ID,x-1), not deliver(I,ID,x).
delivered(ID,x) :- deliver(I,ID,x).
delivered(ID,x) :- delivered(ID,x -1).

Thanks to the powerful construct of aggregates in ASP, the following constraint rule
prevents any agent carry more products than the capacity c at any time step.

Multi-agent Pick and Delivery with Capacities 31

:- isRobot(I),time(x),#count{ID : carrying(I,ID,x)} > c.

The following rules comprises the volatile part where we represent knowledge that
does not accumulate and is related to a specific time step. In a typical multi-shot encod-
ing of a planning problem, this part is used for representing goal conditions of the prob-
lem. While the first rule guarantees that all tasks are fulfilled, the second one assures all
agents are at their destination locations at the last time step u. Note that the query/1
predicate is an external one that is controlled by CLINGO. Given an instance of it (e.g.,
query(y)), CLINGO sets its truth value as true when searching for a plan at horizon y.
In case no plan is found for horizon y, the truth value of query(y) becomes false and
the current horizon is incremented.

#program check(x).
:- ordered(ID), not delivered(ID,x), query(x).
:- finalPos(I,L), not pos(I,L,x), query(x).

4 MAPDC-G: Solving MAPDC with a Path Finding Approach

We model theMAPDC problem as a graph problem. The idea is to view the warehouse
environment as a graph, allocate tasks to each agent, and compute a path and its traversal
for each agent, respecting the collision constraints and ensuring the completion of all
tasks, while minimizing the maximum makespan.

4.1 MAPDC as a Graph Problem

We view the environment as a graph G= (V,E). A path Pi that an agent i ∈ A traverses
in this graph is characterized by a sequence 〈wi,1,wi,2, . . . ,wi,ni〉 of vertices such that
{wi, j,wi, j+1} ∈ E for all j < n. A traversal traversali of a path Pi by an agent i within
some time ui (ui ∈ Z

+) is a function that maps each time step x ≤ ui, to a vertex in Pi
describing the location of agent i at time x.

For two agents i, j ∈ A, they collide with each other at time step x if they are at
the same location (i.e., traversali(x) = traversal j(x)) or when they are swapping their
locations (i.e., traversali(x) = traversal j(x−1) and traversali(x−1) = traversal j(x)).

Each given task (id, p,d) is associated by a product id that needs to be picked up at
some location p ∈V and delivered at some other location d ∈V . We suppose that each
pickup and delivery takes one unit of time. Each agent has a limited capacity to carry at
most c number of tasks. We describe the bag of an agent i ∈ A by a function carryi that
maps every time step x ≤ ui to a set of tasks (i.e., products) that the agent is carrying at
that time step.

As the tasks are completed during the traversal traversali of Pi, we need to pay
attention to that the tasks are picked up before they are delivered, and the number of
items carried by agent i is not more than its capacity c. We say that an agent i completes
a task (id, p,d) ∈ Ti within time ui if there exist a pickup time x and a delivery time
y (0≤x< y≤ui) such that traversali(x)= p, traversali(y)=d and (id, p,d) ∈ carryi(z)
for every time step z between x and y only.

An agent i finishes its traversal in ui < t time steps. After time step ui, the agent
stays at its goal location. We define traversali for time steps greater than ui as a constant
function: traversali(x) = goal(i),ui≤x≤ t.

32 N. Tajelipirbazari et al.

Fig. 2. MAPDC-G:MAPDC as a graph problem.

Based on these notations, MAPDC problem can be defined as a graph problem
(i.e., MAPDC-G) as illustrated in Fig. 2. Given the environment G whose some parts
are occupied by obstacles O, the initial and goal locations for each agent, a set T of all
tasks to be handled by the agents, the goal is to allocate the tasks in T to all agents, and,
for each agent i, to find a path Pi and a collision-free traversal traversali of Pi ensuring
that agent i completes the allocated set Ti of tasks by a time step ui ≤ t.

4.2 Solving MAPDC-G Using Multi-shot ASP

We present a multi-shot formulation of MAPDC-G in ASP, based on the definition
in Fig. 2. The input graph G of the problem is described by predicates node/1 and
edge/2; the obstacles, agents, and tasks are described by the predicates obs/1,

agent/1, task/3, respectively; and the initial and goal locations of agents are
described by predicates init/2 and goal/2.

The traversal of a path, and the bag of an agent are described by predicates
traverse/3 and carry/3. Here, traverse(I,T,N) expresses that the agent I is
at the location N at time step T, whereas carry(I,T,ID) expresses that the agent I
carries the product specified by the task ID at time step T.

The ASP formulation forMAPDC-G consists of three parts: base, step, check.
Note that Listing 7 in [5] should be included at the beginning of the formulation.

Multi-agent Pick and Delivery with Capacities 33

The base program is grounded only once. It consists of the rules expressing that the
traversals start at the initial locations of agents, and each task is assigned to one agent:

traverse(I,0,S):- agent(I), init(I,S).
1{assign(I,ID): agent(I)}1 :- task(ID,P,D).

The step program is grounded incrementally for t=1,2,3,.... For each agent, a
path and its traversal are generated recursively ensuring that the agent cannot be at two
different locations.

1{traverse(I,t,X); traverse(I,t,Y):edge(X,Y)}1 :- traverse(I,t-1,X).
:- traverse(I,t,X), traverse(I,t,Y), agent(I), node(X), node(Y), Y<X.

Then the following constraints are used to ensure that agents do not collide with
each other at a node or an edge, or with obstacles.

:- traverse(I,t,X), traverse(J,t,X), node(X), agent(I), agent(J), I<J.
:- traverse(I,t-1,X), traverse(I,t,Y), traverse(J,t-1,Y),

traverse(J,t,X), agent(I), agent(J), edge(X,Y), I<J.
:- traverse(I,t,X), obs(X).

For the scheduling of the tasks, we use the predicates taskStart/3 and
taskFinish/3. An agent can start a task if the agent is at the picking location of the
product of that task. An agent can finish a task if the agent is at the delivery location of
the product of that task, provided that the task is already started at a previous time-step.

{taskStart(I,ID,t)}1 :- agent(I), task(ID,P,D), assign(I,ID),
traverse(I,t,P).

{taskFinish(I,ID,t)}1 :- agent(I), task(ID,P,D), assign(I,ID),
traverse(I,t,D), taskStart(I,ID,T), time(T), T<t.

Agents start carrying the products at the scheduled start times and continue carrying
them until the scheduled finish times. Agents cannot carry more than their capacities.

carry(I,t,ID) :- taskStart(I,ID,t).
carry(I,t,ID) :- carry(I,t-1,ID), not taskFinish(I,ID,t).
:- agent(I), {carry(I,t,ID):task(ID,P,D)} > c.

The check program is grounded for each value of t until a solution is computed. In
particular, we need to ensure that every task is completed, and that agents should end
up at their destinations.

:- {taskFinish(I,ID,T):time(T)}!=1, agent(I), assign(I,ID), query(t).
:- agent(I), goal(I,X), not traverse(I,t,X), query(t).

Table 1.Warehouse configurations used in our experiments.

Configuration 1 2 3 4 5 6 7

Grid size 10× 10 10× 10 10× 10 10× 10 10× 20 10× 40 20× 20

Shelf width 1 1 2 2 2 2 2

Vertical distance 1 1 1 2 2 2 2

Horizontal distance 1 2 1 2 2 2 2

34 N. Tajelipirbazari et al.

5 Experimental Evaluations

We have experimentally evaluated MAPDC-P and MAPDC-G to better understand
their scalability in terms of the computation time. To this end, we have generated
7 different warehouse environments, varying the grid size, shelf width and horizon-
tal/vertical distances between shelves as described in Table 1.

For each such warehouse configuration, we have created 9 instances that vary the
number of agents, the number of tasks and the capacity of the agents. For every com-
bination of configuration, agent number, task number and capacity, we have randomly
generated 5 instances and reported the average computation times and makespans.

In each instance, the initial and goal locations of agents lie at the bottom row of the
layout and were chosen randomly. Picking and delivery locations of tasks are selected
from a pool of nodes that are vertically adjacent to the shelf nodes. In order to have
predictable hardness for tasks, picking and delivery locations of the tasks pass through
exactly one shelf in the vertical direction. Combinations that only differ in capacity have
the same instances except for the capacity values.

For the experiments, we have used CLINGO (4.5.4) with default and handy config-
urations, on a Linux server with dual 2.4GHz Intel E5-2665 CPUs and 64 GB memory.

#agents:2-4
#tasks:4

#agents:4-8
#tasks:8

#agents:2-4
#tasks:4.

#agents:4-8
#tasks:8.

#agents:2-4.
#tasks:4

#agents:4-8.
#tasks:8

#agents:2-4.
#tasks:4.

#agents:4-8.
#tasks:8.

0

5

10

15

31.4

28.6

29.6

29.8

33.4

30.8

29.8

30.2

23.6

25.0

24.6

27.2

26.4

26.4

26.2

25.0

31.4

28.6

29.6

29.8

33.4

30.8

29.8

30.2

23.6

25.0

24.6

27.2

26.4

26.4

26.2

25.0

Configuration 1 Configuration 2 Configuration 3 Configuration 4

C
PU

Ti
m
e
(s
ec
)

MAPDC-P
MAPDC-G

#agents:2-4
#tasks:4

#agents:4-8
#tasks:8

#agents:4-8.
#tasks:8

#agents:8-16
#tasks:16

#agents:4-8
#tasks:8.

#agents:8-16
#tasks:16.

0

200

400

600

800

47.4 42.6

70.3

54.0

56.2

56.5

37.4 34.8

52.6

54.7

48.0

55.5

47.4 42.6

72.5 54.0

56.2

57.0

37.4 34.8
52.6

58.2

48.0

57.0

Configuration 5 Configuration 6 Configuration 7

C
PU

Ti
m
e
(s
ec
)

MAPDC-P
MAPDC-G

Fig. 3. Scalability as the number of agents increases when capacity = 1 (Table 2).

Multi-agent Pick and Delivery with Capacities 35

Table 2. Results with CLINGO’s default configuration

Configuration Agents Tasks Capacity MAPDC-G MAPDC-P

CPU time Makespan (#solved) CPU time Makespan (#solved)

Configuration 1 2 2 1 0.46 24.4 (5) 0.53 24.4 (5)

2 4 1 0.96 31.4 (5) 2.57 31.4 (5)

2 4 2 0.69 29.8 (5) 2.19 29.8 (5)

4 4 1 0.86 23.6 (5) 0.79 23.6 (5)

4 8 1 3.52 28.6 (5) 4.33 28.6 (5)

4 8 2 1.45 27.0 (5) 2.69 27.0 (5)

8 8 1 2.29 25.0 (5) 2.55 25.0 (5)

8 16 1 128.86 28.2 (5) 71.54 28.2 (5)

8 16 2 6.72 26.2 (5) 12.27 26.2 (5)

Configuration 2 2 2 1 0.39 21.2 (5) 0.37 21.2 (5)

2 4 1 0.88 29.6 (5) 2.28 29.6 (5)

2 4 2 0.81 29.2 (5) 2.34 29.2 (5)

4 4 1 0.98 24.6 (5) 0.96 24.6 (5)

4 8 1 7.36 29.8 (5) 6.75 29.8 (5)

4 8 2 1.66 27.4 (5) 3.10 27.4 (5)

8 8 1 2.95 27.2 (5) 3.87 27.2 (5)

8 16 1 95.61 27.6 (5) 59.76 27.6 (5)

8 16 2 6.53 26.6 (5) 11.92 26.6 (5)

Configuration 3 2 2 1 0.40 22.8 (5) 0.44 22.8 (5)

2 4 1 1.04 33.4 (5) 4.01 33.4 (5)

2 4 2 0.76 31.4 (5) 2.68 31.4 (5)

4 4 1 0.95 26.4 (5) 1.05 26.4 (5)

4 8 1 4.13 30.8 (5) 7.15 30.8 (5)

4 8 2 2.66 29.8 (5) 6.28 29.8 (5)

8 8 1 2.78 26.4 (5) 3.65 26.4 (5)

8 16 1 286.58 29.4 (5) 165.75 29.4 (5)

8 16 2 6.95 27.8 (5) 21.45 27.8 (5)

Configuration 4 2 2 1 0.45 23.4 (5) 0.48 23.4 (5)

2 4 1 1.01 29.8 (5) 2.48 29.8 (5)

2 4 2 0.74 27.4 (5) 1.69 27.4 (5)

4 4 1 1.07 26.2 (5) 0.96 26.2 (5)

4 8 1 13.74 30.2 (5) 8.87 30.2 (5)

4 8 2 2.31 26.4 (5) 3.49 26.4 (5)

8 8 1 2.39 25.0 (5) 3.05 25.0 (5)

8 16 1 201.95 28.8 (5) 107.11 28.8 (5)

8 16 2 7.02 26.4 (5) 19.34 26.4 (5)

Configuration 5 2 2 1 1.92 35.4 (5) 2.69 35.4 (5)

2 4 1 13.23 47.4 (5) 44.88 47.4 (5)

2 4 2 3.84 41.6 (5) 23.37 41.6 (5)

4 4 1 4.66 37.4 (5) 6.19 37.4 (5)

4 8 1 30.69 42.6 (5) 38.96 42.6 (5)

4 8 2 11.81 41.0 (5) 29.34 41.0 (5)

8 8 1 9.73 34.8 (5) 17.99 34.8 (5)

8 16 1 410.00 39.5 (4) 429.42 39.5 (4)

8 16 2 38.94 36.6 (5) 139.65 36.6 (5)

(continued)

36 N. Tajelipirbazari et al.

Table 2. (continued)

Configuration Agents Tasks Capacity MAPDC-G MAPDC-P

CPU time Makespan (#solved) CPU time Makespan (#solved)

Configuration 6 4 4 1 27.82 56.6 (5) 70.44 56.6 (5)

4 8 1 429.16 72.5 (4) 440.65 70.3 (3)

4 8 2 110.65 65.0 (5) 253.01 65.0 (5)

8 8 1 50.86 52.6 (5) 212.67 52.6 (5)

8 16 1 422.37 54.0 (1) timeout timeout

8 16 2 187.27 57.6 (5) 138.18 48.0 (1)

16 16 1 176.37 58.2 (5) timeout timeout

16 32 1 timeout timeout timeout timeout

16 32 2 440.93 55.2 (4) timeout timeout

Configuration 7 4 4 1 16.99 43.0 (5) 16.21 43.0(5)

4 8 1 162.02 56.2 (5) 233.99 56.2 (5)

4 8 2 42.35 52.4 (5) 127.96 52.4 (5)

8 8 1 48.76 48.0 (5) 64.74 48.0 (5)

8 16 1 440.30 57.0 (3) 816.92 56.5 (2)

8 16 2 72.97 51.4 (5) 511.79 49.8 (4)

16 16 1 128.51 49.4 (5) 544.47 47.0 (4)

16 32 1 timeout timeout timeout timeout

16 32 2 264.36 52.2 (4) timeout timeout

#tasks:4-8
#agents:4

#tasks:8-16
#agents:8

#tasks:4-8
#agents:4.

#tasks:8-16
#agents:8.

#tasks:4-8.
#agents:4

#tasks:8-16.
#agents:8

#tasks:4-8.
#agents:4.

#tasks:8-16.
#agents:8.

0

100

200

300

23.6 25.0 24.6 27.2 26.4 26.4 26.2 25.028.6

28.2

29.8

27.6

30.8

29.4

30.2

28.8

23.6 25.0 24.6 27.2 26.4 26.4 26.2 25.028.6

28.2

29.8

27.6

30.8

29.4

30.2

28.8

Configuration 1 Configuration 2 Configuration 3 Configuration 4

C
PU

Ti
m
e
(s
ec
)

MAPDC-P
MAPDC-G

#tasks:4-8
#agents:4

#tasks:8-16
#agents:8

#tasks:8-16.
#agents:8

#tasks:16-32
#agents:16

#tasks:8-16.
#agents:8.

#tasks:16-32
#agents:16.

0

200

400

600

800

37.4 34.8

52.6

54.3

48.0

49.4

42.6

39.5

54.0

TO 55.5 TO

37.4 34.8
52.6

58.2

48.0

49.4

42.6

39.5 54.0

TO

57

TO

Configuration 5 Configuration 6 Configuration 7

C
PU

Ti
m
e
(s
ec
)

MAPDC-P
MAPDC-G

Fig. 4. Scalability as the number of tasks increases when capacity = 1 (Table 2).

Multi-agent Pick and Delivery with Capacities 37

For each configuration, we have analysed the effect of changing the number of
agents, tasks, and capacity on performances of our solution methods for MAPDC-P
and MAPDC-G. In order to have a controlled comparison, we have doubled a factor
while keeping the others fixed, and compared the results for both methods. The results
are presented in Table 2.

We have observed (Fig. 3) that increasing the number of agents helps both
MAPDC-P and MAPDC-G in finding solutions more efficiently. This observation
makes sense as increasing the number of agents effectively reduces the number of tasks
assigned to an agent, and, in turn, reduces the maximum makespan for the problem
instance.

We have observed (Fig. 4) that increasing the number of tasks increases the number
of tasks that needs to be completed by each agent. Hence, the maximum makespan also
increases, and this reduces the efficiency of bothMAPDC-P andMAPDC-G. Note that
some of the instances could not be solved within the time limit as the number of tasks
increases to 32 for 16 agents.

Similar to increasing the number of agents, increasing the capacity of agents (Fig. 5)
leads to a decrease in maximum makespan, and thus reduces the computation time for
both MAPDC-P and MAPDC-G. It is interesting to compare results in Figs. 3 and 5.

capacity:1-2
#agents:4
#tasks:8

capacity:1-2
#agents:8
#tasks:16

capacity:1-2
#agents:4
#tasks:8.

capacity:1-2
#agents:8
#tasks:16.

capacity:1-2.
#agents:4
#tasks:8

capacity:1-2.
#agents:8
#tasks:16

capacity:1-2.
#agents:4.
#tasks:8

capacity:1-2.
#agents:8.
#tasks:16

0

100

200

300

28.6

28.2

29.8

27.6

30.8

29.4

30.2

28.8

27.0
26.2

27.4 26.6 29.8
27.8

26.4
26.4

28.6

28.2

29.8

27.6

30.8

29.4

30.2

28.8

27.0 26.2 27.4 26.6 29.8 27.8 26.4 26.4

Configuration 1 Configuration 2 Configuration 3 Configuration 4

C
PU

Ti
m
e
(s
ec
)

MAPDC-P
MAPDC-G

capacity:1-2
#agents:4
#tasks:8

capacity:1-2
#agents:8
#tasks:16

capacity:1-2
#agents:4.
#tasks:8

capacity:1-2
#agents:8.
#tasks:16

capacity:1-2
#agents:4
#tasks:8.

capacity:1-2
#agents:8
#tasks:16.

0

200

400

600

800

42.6

39.5

72.5

54.0

56.2

55.5

41.0

36.5 65.0

50.5

52.4

51.0

42.6

39.5 72.5 54.0

56.2

57.0

41.0
36.5

65.0

57.6

52.4
51.4

Configuration 5 Configuration 6 Configuration 7

C
PU

Ti
m
e
(s
ec
)

MAPDC-P
MAPDC-G

Fig. 5. Scalability as the capacity increases (Table 2).

38 N. Tajelipirbazari et al.

Even though increasing the number of agents and the capacity both reduce the max-
imum makespan and improve runtime performance, improvements in Fig. 5 are more
visible. This showcases the importance of capacity in theMAPDC problem. Increasing
the number of agents reduces the maximum makespan, but at the same time strains the
solving process due to increased number of possible collisions to avoid.

We have also compared the single-shot and multi-shot computations of CLINGO

over someMAPDC instances (Table 3). The single-shot ASP formulations ofMAPDC
utilize weak constraints to optimize the maximum makespan, while a sufficiently small
upper bound is provided on the makespan for the purpose of grounding. In our experi-
ments with single-shot, we have provided the optimum makespans as upper bounds on
makespans. In this way, the single-shot computations do not need to make too many
optimizations for large upper bounds but show their best performance alleviating the
disadvantage of grounding due to large makespans. It can be seen that even under these
ideal conditions, the multi-shot computations perform nearly as good as the singleshot
ones for many instances. The run-time of multi-shot computations include the time

Table 3. Comparison of single-shot and multi-shot computations over Configuration 5
instances.

Agents Tasks Capacity Single-shot Multi-shot

MAPDC-G MAPDC-P MAPDC-G MAPDC-P

CPU time Makespan
(#solved)

CPU time Makespan
(#solved)

CPU time Makespan
(#solved)

CPU time Makespan
(#solved)

2 2 1 2.98 35.4 (5) 0.99 35.4 (5) 1.92 35.4 (5) 2.16 35.4 (5)

2 4 1 9.52 47.4 (5) 27.59 47.4 (5) 13.23 47.4 (5) 27.48 47.4 (5)

2 4 2 4.63 41.6 (5) 8.13 41.6 (5) 3.84 41.6 (5) 14.54 41.6 (5)

4 4 1 7.51 37.4 (5) 4.49 37.4 (5) 4.66 37.4 (5) 4.79 37.4 (5)

4 8 1 25.11 42.6 (5) 39.14 42.6 (5) 30.69 42.6 (5) 41.68 42.6 (5)

4 8 2 12.62 41.0 (5) 40.48 41.0 (5) 11.81 41.0 (5) 36.41 41.0 (5)

8 8 1 15.49 34.8 (5) 16.63 34.8 (5) 9.73 34.8 (5) 13.15 34.8 (5)

8 16 1 146.90 39.5 (4) 493.02 39.5 (4) 410.00 39.5 (4) 307.07 39.5 (4)

8 16 2 29.71 36.6 (5) 255.04 36.6 (5) 38.94 36.6 (5) 128.82 36.6 (5)

Table 4. Single-shot computations with anytime search vs multi-shot computations, over Config-
uration 7 instances (agents, tasks, capacity), with the time threshold of 1000 secs and the upper
bound 80 on makespan.

Instance Single-shot anytime Multi-shot

MAPDC-G MAPDC-P MAPDC-G MAPDC-P

CPU time Makespan
(#opt/#solved)

CPU time Makespan
(#opt/#solved)

CPU time Makespan
(#opt/#solved)

CPU time Makespan
(#opt/#solved)

(4, 4, 1) 95.58 43.0 (5/5) 57.99 43.0 (5/5) 16.99 43.0(5) 16.21 43.0(5)

(4,8,1) 201.12 56.2 (5/5) 794.14 56.2 (4/5) 162.02 56.2(5) 233.99 56.2(5)

(4,8,2) 122.59 52.4 (5/5) 710.64 52.4 (5/5) 42.35 52.4(5) 127.96 52.4(5)

(8,8,1) 189.66 48.0 (5/5) 202.67 48.0 (5/5) 48.76 48.0(5) 64.74 48.0(5)

(8,16,1) 855.31 58.2 (2/5) timeout timeout 440.30 57.0 (3) 816.92 56.5 (2)

(8,16,2) 255.07 51.4 (5/5) 997.27 76.5 (0/2) 72.97 51.4(5) 511.79 49.8(4)

(16,16,1) 457.70 49.4 (5/5) 997.23 67.0 (0/4) 128.51 49.4 (5) 544.47 47.0 (4)

(16,32,1) 997.61 69.4 (0/5) timeout timeout timeout timeout timeout timeout

(16,32,2) 836.89 54.0 (2/5) timeout timeout 264.36 52.2 (4) timeout timeout

Multi-agent Pick and Delivery with Capacities 39

required to find the optimum makespan, making them more practical to use, in particu-
lar, withMAPDC-P.

Furthermore, we have evaluated the single-shot computations with anytime search,
with time threshold of 1000 s, over some MAPDC instances with an upper bound of
80 on makespan (Table 4). We have observed that anytime search helps with finding
a suboptimal solution for all instances, in particular, for MAPDC-G, but at the cost
of computation time due to grounding with a large makespan. MAPDC-G computes
optimal solutions for 34 instances (out of 45 instances), using anytime search; and, for
some of the remaining instances (e.g., with 8 agents, 16 tasks, 1 capacity), the average
suboptimal values are close to the optimal ones.

Finally, our experiments show that using CLINGO with handy configuration (as
in [4]) improves the computational performances of MAPDC-P and MAPDC-G for
hard instances (cf. results for Configurations 6 and 7 at Table 5). This suggests the use
of CLINGO with a portfolio of different configurations.

Table 5. Results with CLINGO’s handy configuration

Configuration Agents Tasks Capacity MAPDC-G MAPDC-P

CPU time Makespan (#solved) CPU time Makespan (#solved)

Configuration 6 4 4 1 57.50 56.6 (5) 44.43 56.6 (5)

4 8 1 393.59 72.5 (4) 479.13 72.5 (4)

4 8 2 75.52 65.0 (5) 212.28 65.0 (5)

8 8 1 107.17 52.6 (5) 94.21 52.6 (5)

8 16 1 283.07 54.0 (1) 734.57 54.0 (1)

8 16 2 184.27 57.6 (5) 491.01 50.5 (2)

16 16 1 336.67 58.2 (5) 801.47 54.7 (3)

16 32 1 timeout timeout timeout timeout

16 32 2 414.33 55.2(5) timeout timeout

Configuration 7 4 4 1 38.92 43.0 (5) 12.92 43.0 (5)

4 8 1 140.77 56.2 (5) 214.01 56.2 (5)

4 8 2 61.09 52.4 (5) 91.01 52.4 (5)

8 8 1 101.25 48.0 (5) 48.13 48.0 (5)

8 16 1 372.09 54.8 (4) 818.10 57.0 (3)

8 16 2 129.54 51.4 (5) 451.97 51.4 (5)

16 16 1 270.70 49.4 (5) 378.01 47.0 (4)

16 32 1 timeout timeout timeout timeout

16 32 2 328.81 52.3 (4) timeout timeout

6 Conclusions

We have introduced two novel methods, based on action planning (MAPDC-P) and
path finding (MAPDC-G), to find optimal solutions for the Multi-Agent Pick and
Delivery with Capacities problem (MAPDC). Both methods rely on formulating the

40 N. Tajelipirbazari et al.

problems in Answer Set Programming, and take advantages of multi-shot computation
of the ASP solver CLINGO.

We have experimentally evaluated these two methods on a rich set of benchmark
instances that are randomly generated with varying numbers of agents, tasks and capac-
ities, over different warehouses that vary in grid size, shelf width, and horizontal/vertical
distances between shelves. We have observed that MAPDC-P is more efficient in time
in small instances while MAPDC-G scales better for larger instances. We have also
observed that MAPDC-P benefits more from the multi-shot computation.

We have also experimentally evaluated these two methods considering two other
computation modes of ASP: single-shot and anytime search. We have observed the
advantages of multi-shot computation over single-shot computation, in particular for
MAPDC-P, in terms of computation time, and the advantages of single-shot anytime
computation, in particular for MAPDC-G, in terms of the number of problems solved.

In this study, we have evaluated two approaches (i.e., action planning and path find-
ing) in the context of declarative programming. Further evaluations considering non-
declarative approaches (e.g., based on search) are part of our ongoing work.

References

1. Bartholdi, J.J., III., Hackman, S.T.: Warehouse and distribution science. Supply Chain and
Logistics Institute, Georgia Institute of Technology (2019)

2. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming: an introduction to the
special issue. AI Mag. 37(3), 5–6 (2016). https://doi.org/10.1609/aimag.v37i3.2669

3. Chen, Z., Alonso-Mora, J., Bai, X., Harabor, D.D., Stuckey, P.J.: Integrated task assignment
and path planning for capacitated multi-agent pickup and delivery. IEEE RAL 6(3), 5816–
5823 (2021). https://doi.org/10.1109/LRA.2021.3074883

4. Erdem, E., Kisa, D., Oztok, U., Schüller, P.: A general formal framework for pathfinding
problems with multiple agents. In: Proceedings of AAAI (2013)

5. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with clingo.
TPLP 19(1), 27–82 (2019). https://doi.org/10.1017/S1471068418000054

6. Gebser, M., et al.: Experimenting with robotic intra-logistics domains. TPLP 18(3–4), 502–
519 (2018). https://doi.org/10.1017/S1471068418000200

7. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Gener. Comput. 9, 365–385 (1991)

8. Grenouilleau, F., van Hoeve, W.J., Hooker, J.N.: A multi-label A* algorithm for multi-agent
pathfinding. In: Proceedings of ICAPS, pp. 181–185 (2019)

9. Guthrie, C., Fosso-Wamba, S., Arnaud, J.B.: Online consumer resilience during a pandemic:
an exploratory study of e-commerce behavior before, during and after a COVID-19 lock-
down. JRCS 61, 102570 (2021). https://doi.org/10.1016/j.jretconser.2021.102570

10. Hönig, W., Kiesel, S., Tinka, A., Durham, J., Ayanian, N.: Conflict-based search with optimal
task assignment. In: Proceedings of AAMAS (2018)

11. Lifschitz, V.: Answer set programming and plan generation. AIJ 138, 39–54 (2002). https://
doi.org/10.1016/S0004-3702(02)00186-8

12. Liu, M., Ma, H., Li, J., Koenig, S.: Task and path planning for multi-agent pickup and deliv-
ery. In: Proceedings of AAMAS, pp. 1152–1160 (2019)

13. Ma, H., Koenig, S.: Optimal target assignment and path finding for teams of agents. In:
Proceedings of AAMAS, pp. 1144–1152 (2016)

https://doi.org/10.1609/aimag.v37i3.2669
https://doi.org/10.1109/LRA.2021.3074883
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1017/S1471068418000200
https://doi.org/10.1016/j.jretconser.2021.102570
https://doi.org/10.1016/S0004-3702(02)00186-8
https://doi.org/10.1016/S0004-3702(02)00186-8

Multi-agent Pick and Delivery with Capacities 41

14. Ma, H., Li, J., Kumar, T.K.S., Koenig, S.: Lifelong multi-agent path finding for online pickup
and delivery tasks. In: Proceedings of AAMAS, pp. 837–845 (2017)

15. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic programming
paradigm. In: Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S. (eds.) The Logic
Programming Paradigm. Artificial Intelligence. Springer, Heidelberg (1999). https://doi.org/
10.1007/978-3-642-60085-2 17

16. Nguyen, V., Obermeier, P., Son, T.C., Schaub, T., Yeoh, W.: Generalized target assignment
and path finding using answer set programming. In: Proceedings of IJCAI, pp. 1216–1223
(2017). https://doi.org/10.24963/ijcai.2017/169

17. Niemelä, I.: Logic programs with stable model semantics as a constraint programming
paradigm. AMAI 25, 241–273 (1999)

18. Sharon, G., Stern, R., Felner, A., Sturtevant, N.R.: Conflict-based search for optimal multi-
agent pathfinding. AIJ 219, 40–66 (2015). https://doi.org/10.1016/j.artint.2014.11.006

19. Surynek, P.: On propositional encodings of cooperative path-finding. In: Proceedings of
ICTAI, pp. 524–531 (2012). https://doi.org/10.1109/ICTAI.2012.77

20. Vodrázka, J., Barták, R., Svancara, J.: On modelling multi-agent path finding as a classi-
cal planning problem. In: Proceedings of ICTAI, pp. 23–28 (2020). https://doi.org/10.1109/
ICTAI50040.2020.00014

21. Yu, J., LaValle, S.M.: Optimal multirobot path planning on graphs: complete algorithms and
effective heuristics. IEEE TRO 32(5), 1163–1177 (2016). https://doi.org/10.1109/TRO.2016.
2593448

https://doi.org/10.1007/978-3-642-60085-2_17
https://doi.org/10.1007/978-3-642-60085-2_17
https://doi.org/10.24963/ijcai.2017/169
https://doi.org/10.1016/j.artint.2014.11.006
https://doi.org/10.1109/ICTAI.2012.77
https://doi.org/10.1109/ICTAI50040.2020.00014
https://doi.org/10.1109/ICTAI50040.2020.00014
https://doi.org/10.1109/TRO.2016.2593448
https://doi.org/10.1109/TRO.2016.2593448

Determining Action Reversibility in STRIPS
Using Answer Set Programming

with Quantifiers

Wolfgang Faber1 , Michael Morak1(B) , and Lukáš Chrpa2

1 University of Klagenfurt, Klagenfurt, Austria
{wolfgang.faber,michael.morak}@aau.at

2 Czech Technical University in Prague, Prague, Czechia
chrpaluk@fel.cvut.cz

Abstract. In the field of automated planning, an action is called reversible when
other actions can be applied in order to revert the effects of this action and return
to the original state. In recent years, there has been renewed interest in this topic,
which led to novel results in the widely known STRIPS formalism and the PDDL
planning language.

In this paper, we aim to solve the computational problem of deciding action
reversibility in a practical setting, applying recent advances in the field of logic
programming. In particular, a quantified extension of Answer Set Programming
(ASP) named ASP with Quantifiers (ASP(Q)) has been proposed by Amendola,
Ricca, and Truszczynski, which allows for stacking logic programs by quantify-
ing over answer sets of the previous layer. This language is well-suited to express
encodings for the action reversibility problem, since this problem naturally con-
tains a quantifier alternation. In addition, a prototype solver for ASP(Q) is cur-
rently developed. We make use of the ASP(Q) language to offer an encoding
for action reversibility, and then report on preliminary benchmark results on how
well this encoding performs compared to classical ASP.

Keywords: Automated planning · Answer set programming · Reasoning about
action and change

1 Introduction

Automated Planning is a field of research that traditionally deals with the problem of
generating sequences of actions, called plans, that transform a given initial state of the
environment to some goal state [19,20]. An action, simply put, is a modifier that acts
upon and changes the environment. An interesting problem in this field is the question
whether an action can be reversed by subsequently applying other actions, thus undoing
the effects that the action had on the environment. This problem has been investigated
on and off throughout the years [10,13], and has recently received renewed interest
[6,15,24].

Action reversibility is an important problem with regard to several aspects. Intu-
itively, actions whose effects cannot be reversed might lead to dead-end states, that is,
c© Springer Nature Switzerland AG 2022

J. Cheney and S. Perri (Eds.): PADL 2022, LNCS 13165, pp. 42–56, 2022.
https://doi.org/10.1007/978-3-030-94479-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94479-7_4&domain=pdf
http://orcid.org/0000-0002-0330-5868
http://orcid.org/0000-0002-2077-7672
http://orcid.org/0000-0001-9713-7748
https://doi.org/10.1007/978-3-030-94479-7_4

Determining Action Reversibility in STRIPS 43

states from which the goal state can no longer be reached. Early detection of the pos-
sibility of dead-end states is beneficial in the plan generation process [23]. Reasoning
in more complex structures is even more prone to dead-ends [7]. An example is the
concept of Agent Planning Programs [11], which represent networks of planning tasks
where the goal state of one task is an initial state of some other task. In the domain
of non-deterministic planning, notable Fully Observable Non-Deterministic (FOND)
Planning, where actions can have non-deterministic effects, knowledge about reversibil-
ity or irreversibility of each set of effects of actions can contribute to early dead-end
detection, or to generalise recovery from undesirable action effects, which is important
for efficient computation of strong (cyclic) plans [5]. Another aspect is online planning,
where we can observe that applying reversible actions is safe and hence explicitly pro-
viding information about safe states of the environment could be avoided [9]. Another,
although not very obvious, benefit of action reversibility is in plan optimization. If the
effects of an action are later reversed by a sequence of other actions in a plan, these
actions might be removed from the plan, potentially shortening it significantly. It has
been shown that under given circumstances, pairs of inverse actions, which are a special
case of action reversibility, can be removed from plans [8].

A general framework for action reversibility that has recently been introduced
[24] offers a broad definition of the term, and generalises several existing notions of
reversibility, like “undoability” [10], or the concept of “reverse plans” [13]. The con-
cept of reversibility in this general framework directly incorporates the set of states in
which a given action is reversible. This notion is called S-reversibility where S is a set
of states where an action must be reversible. This is then extended to ϕ-reversibility,
where the set of states is characterized by a formula ϕ in terms of propositional logic.
These notions are then further refined to universal reversibility (referring to the set of
all states) and to reversibility w.r.t. some planning task Π (where the action must be
reversible in all reachable states w.r.t. the initial state specified in Π). These last two
versions match the notion of “undoability” proposed in the literature [10]. Furthermore,
the notions can be further restricted to require that some action is reversible by a single
“reverse plan” that does not depend on the state in which the action under consideration
is applied. For single actions, this matches the concept of the “reverse plan” proposed
in the mid-2000s [13].

The complexity analysis of Morak et al. [24] indicates that some of these prob-
lems can be addressed by means of Answer Set Programming (ASP) and Epistemic
Logic Programs (ELPs). An experimental evaluation of these two languages to com-
pute reverse plans has recently been carried out [15].

In this paper, we leverage the translations implemented in plasp [12], and propose
an encoding to solve some of the reversibility problems on PDDL domains, restricted,
for now, to the STRIPS fragment [16]. This encoding is written in a recently proposed
language extension for ASP, namely, ASP with Quantifiers, or ASP(Q) [1], which intro-
duces an explicit way to express quantifiers and quantifier alternations in ASP. Since
deciding ASP(Q) programs is known to be PSPACE-complete in general [1], the same
complexity as deciding STRIPS planning problems [3], the language seems well-suited
for the task. Our ASP(Q) encoding are arguably simpler than the known ASP and
ELP encodings for the problem [15]. Most importantly, though, ASP(Q) allows for a

44 W. Faber et al.

simple modification to decide non-uniform reversibility, for which an ASP or ELP
encoding is unlikely to exist under usual complexity assumptions. We also present pre-
liminary experiments that compare our ASP(Q) encoding with the existing ASP and
ELP encodings.

2 Background

STRIPS Planning. Let F be a set of facts, that is, propositional variables describing the
environment, which can either be true or false. Then, a subset s ⊆ F is called a state,
which intuitively represents a set of facts considered to be true. An action is a tuple
a = 〈pre(a),add(a),del(a)〉, where pre(a) ⊆ F is the set of preconditions of a, and
add(a) ⊆ F and del(a) ⊆ F are the add and delete effects of a, respectively. W.l.o.g.,
we assume actions to be well-formed, that is, add(a)∩del(a) = /0 and pre(a)∩add(a) =
/0. An action a is applicable in a state s if pre(a) ⊆ s. The result of applying an action
a in a state s, given that a is applicable in s, is the state a[s] = (s \ del(a))∪ add(a).
A sequence of actions π = 〈a1, . . . ,an〉 is applicable in a state s0 if there is a sequence
of states 〈s1, . . . ,sn〉 such that, for 0 < i ≤ n, it holds that ai is applicable in si−1 and
ai[si−1] = si. Applying the action sequence π on s0 is denoted π[s0], with π[s0] = sn.
The length of action sequence π is denoted |π|.

A STRIPS planning task Π = 〈F ,A ,s0,G〉 is a four-element tuple consisting of a
set of factsF = { f1, . . . , fn}, a set of actionsA = {a1, . . . ,am}, an initial state s0 ⊆F ,
and a goal G⊆F . A state s⊆F is a goal state (for Π) if G⊆ s. An action sequence π
is called a plan if π[s0] ⊇ G. We further define several relevant notions w.r.t. a planning
task Π . A state s is reachable from state s′ if there exists an applicable action sequence
π such that π[s′] = s. A state s ∈ 2F is simply called reachable if it is reachable from
the initial state s0. The set of all reachable states in Π is denoted by RΠ . An action a is
reachable if there is some state s ∈ RΠ such that a is applicable in s.

Deciding whether a STRIPS planning task has a plan is known to be PSPACE-
complete in general and it is NP-complete if the length of the plan is polynomially
bounded [3].

Answer Set Programming (ASP). We assume the reader is familiar with ASP and will
only give a very brief overview of the core language. For more information, we refer to
standard literature [2,17,22], and, in our case, the ASP-Core-2 input language format
[4].

Briefly, ASP programs consist of sets of rules of the form

a1 | · · · | an ← b1, . . . ,b�,¬b�+1, . . . ,¬bm.

In these rules, all ai and bi are atoms of the form p(t1, . . . , tn), where p is a predicate
name, and t1, . . . , tn are terms, that is, either variables or constants. The domain of con-
stants in an ASP program P is given implicitly by the set of all constants that appear
in it. Generally, before evaluating an ASP program, variables are removed by a process
called grounding, that is, for every rule, each variable is replaced by all possible combi-
nation of constants, and appropriate ground copies of the rule are added to the resulting

Determining Action Reversibility in STRIPS 45

program ground(P). In practice, several optimizations have been implemented in state-
of-the-art grounders that try to minimize the size of the grounding.

The result of a (ground) ASP program P is calculated as follows [18]. An interpre-
tation I (i.e., a set of ground atoms appearing in P) is called a model of P if it satisfies
all the rules in P in the sense of classical logic. It is further called an answer set of P if
there is no proper subset I′ ⊂ I that is a model of the so-called reduct PI of P w.r.t. I. PI

is defined as the set of rules obtained from P where all negated atoms on the right-hand
side of the rules are evaluated over I and replaced by or ⊥ accordingly. The main
decision problem for ASP is deciding whether a program has at least one answer set.
This has been shown to be Σ 2

P-complete [14].

Answer Set Programming with Quantifiers (ASP(Q)). An extension of ASP, referred to
as ASP(Q), has been proposed in [1], providing a formalism reminiscent of Quantified
Boolean Formulas, but based on ASP. An ASP(Q) program is of the form

�1P1�2P2 · · ·�nPn :C,

where, for each i∈ {1, . . . ,n}, �i ∈ {∃st ,∀st}, Pi is an ASP program, andC is a stratified
normal ASP program (this is, as intended by the ASP(Q) authors, a “check” in the sense
of constraints). ∃st and ∀st are called existential and universal answer set quantifiers,
respectively.

The intuitive reading of an ASP(Q) program ∃stP1∀stP2 · · ·Pn :C is that there exists
an answer set A1 of P1 such that for each answer set A2 of P2 extended by A1 . . . such
that C extended by An is coherent (has an answer set).

Let us be more precise about a program P being extended by an answer set, or rather
interpretation I: For an interpretation I, let fP(I) be the ASP program that contains all
true atoms in I as facts and all false atoms in I w.r.t. the Herbrand base of ASP program
P as constraints (i.e. rules of the form ⊥ ← a, for some atom a). Furthermore, for a
program P and an interpretation I, let fP(Π , I) be the ASP(Q) program obtained from
an ASP(Q) Π by replacing the first program P1 in Π with P1 ∪ fP(I). Coherence of an
ASP(Q) program is then defined inductively:

– ∃stP : C is coherent if there exists an answer set M of P such that C∪ fP(M) has at
least one answer set.

– ∀stP :C is coherent if for all answer sets M of P it holds that C∪ fP(M) has at least
one answer set.

– ∃stPΠ is coherent if there exists an answer set M of P such that fP(Π ,M) is coher-
ent.

– ∀stPΠ is coherent if for all answer sets M of P it holds that fP(Π ,M) is coherent.

In addition, for an existential ASP(Q) program Π (one that starts with ∃st), the
witnessing answer sets of the first ASP program P1 are referred to as quantified answer
sets.

In general, deciding coherence for an ASP(Q) program is known to be PSPACE-
complete [1, Theorem 2], and on the n-th level of the polynomial hierarchy for programs
with n quantifier alternations [1, Theorem 3].

46 W. Faber et al.

3 Reversibility of Actions

In this section, we review the notion of uniform reversibility, which is a subclass of
action reversibility as explained in detail by Morak et al. [24]. Intuitively, we call an
action reversible if there is a way to undo all the effects that this action caused, and we
call an action uniformly reversible if its effects can be undone by a single sequence of
actions irrespective of the state where the action was applied.

While this intuition is fairly straightforward, when formally defining this concept,
we also need to take several other factors into account—in particular, the set of possible
states where an action is considered plays an important role [24].

Definition 1. Let F be a set of facts, A be a set of actions, S ⊆ 2F be a set of states,
and a ∈ A be an action. We call a S-reversible if for each state s ∈ S wherein a is
applicable, there exists a sequence of actions π = 〈a1, . . . ,an〉 ∈ A n such that π is
applicable in a[s] and π[a[s]] = s.

The notion of reversibility in the most general sense does not depend on a concrete
STRIPS planning task, but only on a set of possible actions and states w.r.t. a set of
facts. Note that the set of states S is an explicit part of the notion of S-reversibility.

Based on this general notion, it is then possible to define several concrete sets of
states S that are useful to consider when considering whether an action is reversible.
For instance, S could be defined via a propositional formula over the facts in F . Or
we can consider a set of all possible states (2F) which gives us a notion of universal
reversibility that applies to all possible planning tasks that share the same set of facts
and actions (i.e., the tasks that differ only in the initial state or goals). Or we can move
our attention to a specific STRIPS instance and ask whether a certain action is reversible
for all states reachable from the initial state.

Definition 2. Let F , A , S, and a be as in Definition 1. We call the action a

1. ϕ-reversible if a is S-reversible in the set S of models of the propositional formula ϕ
over F ;

2. reversible in Π if a isRΠ -reversible for some STRIPS planning task Π ; and
3. universally reversible, or, simply, reversible, if a is 2F -reversible.

At this point, it is also worth noting that our definition of reversibility in Π , for a
STRIPS instance Π , coincides with the notion of “undoability” as defined by Daum
et al. [10], and our notion of reversibility coincides with their notion of “universal
undoability.”

Given the above definitions, we can already observe some interrelationships. In par-
ticular, universal reversibility (that is, reversibility in the set of all possible states) is
obviously the strongest notion, implying all the other, weaker notions. It may be par-
ticularly important when one wants to establish reversibility irrespective of the con-
crete STRIPS instance. On the other hand, ϕ-reversibility may be of particular interest
when ϕ encodes the natural domain constraints for a given planning task. Formally
stated in the following proposition, it follows straightforwardly from the definitions of
reversibility.

Determining Action Reversibility in STRIPS 47

Proposition 1. Let F , A , and a be as in Definition 1. Then, reversibility of a implies
S-reversibility for any set S ⊆ 2F of states, and further implies reversibility in Π for
any STRIPS planning task Π with facts F and actions A .

Note that all notions of reversibility of some action a proposed so far simply require
that for any state s there exists a sequence of actions that undoes the effects of a after
application to s. However, sometimes, it may be useful to look at a set of actions and
recognise that some sequence of actions in that set always undoes the effect of some
action a, independent of the state s in which a was applied. This leads to the more
restrictive notion of uniform reversibility.

Definition 3. Let F , A , S, and a be as in Definition 1. We call a uniformly S-
reversible if there exists a sequence of actions π = 〈a1, . . . ,an〉 ∈ A n such that for
each s ∈ S wherein a is applicable it holds that π is applicable in a[s] and π[a[s]] = s.
The more specific notions of reversibility of Definition 2 analogously apply to uniform
reversibility.

The notion of uniform reversibility naturally gives rise to the notion of the reverse
plan. We say that some action a has an (S-)reverse plan π if a is uniformly (S-)reversible
using the sequence of actions π . It is interesting to note that this definition of the reverse
plan based on uniform reversibility now coincides with the same notion as defined by
Eiter, Erdem, and Faber [13]. Note, however, that in that paper the authors use a much
more general planning language.

Even if the length of the reverse plan is polynomially bounded, the problem
of deciding whether an action is uniformly (ϕ-)reversible is intractable. In particu-
lar, deciding whether an action is universally uniformly reversible (resp. uniformly
ϕ-reversible) by a polynomial length reverse plan is NP-complete (resp. in ΣP

2) [24].

4 ASP(Q) Encodings of Reversibility

After reviewing the relevant features of plasp, described by [12], in Sect. 4.1, we first
present an ASP(Q) encoding for determining uniform reversibility in Sect. 4.2 and then
an encoding for non-uniform reversibility in Sect. 4.3.

4.1 the plasp Format

The system plasp, described by Dimopoulos et al. [12], transforms PDDL domains
and problems into facts. Together with suitable programs, plans can then be computed
by ASP solvers—and hence also by ELP solvers, since ELPs are a superset of ASP
programs. Given a STRIPS domain with facts F and actions A , the following relevant
facts and rules will be created by plasp:

variable(variable("f")). for all f ∈ F
action(action("a")). for all a ∈ A
precondition(action("a"),variable("f"),value(variable("f"),true))

:- action(action("a")).
for each a ∈ A and f ∈ pre(a)

48 W. Faber et al.

postcondition(action("a"),effect(unconditional),variable("f"),
value(variable("f"),true)) :- action(action("a")).

for each a ∈ A and f ∈ add(a)
postcondition(action("a"),effect(unconditional),variable("f"),

value(variable("f"),false)) :- action(action("a")).
for each a ∈ A and f ∈ del(a)

In addition, a predicate contains encodes all possible values for a given variable
(for STRIPS, this is either true or false).

Example 1. The STRIPS domain with F = { f} and actions del- f = 〈{ f}, /0,{ f}〉 and
add- f = 〈 /0,{ f}, /0〉 is written in PDDL as follows:

(define (domain example1)

(:requirements :strips)

(:predicates (f))

(:action del-f

:precondition (f)

:effect (not (f)))

(:action add-f

:effect (f)))

plasp translates this domain to the following rules (plus a few technical facts and
rules):

variable(variable("f")).

action(action("del-f")).

precondition(action("del-f"),variable("f"),value(variable("f"),true))

:- action(action("del-f")).

postcondition(action("del-f"),effect(unconditional),variable("f"),

value(variable("f"),false)) :- action(action("del-f")).

action(action("add-f")).

postcondition(action("add-f"),effect(unconditional),variable("f"),

value(variable("f"),true)) :- action(action("add-f")).

4.2 a Uniform Reversibility Encoding Using ASP(Q)

In this section, we present our ASP(Q) encoding for checking whether, in a given
domain, there is an action that is uniformly reversible. As we have seen in Sect. 4.1,
the plasp tool is able to rewrite STRIPS domains into ASP rules even when no concrete
planning instance for that domain is given. We present an encoding for (universal) uni-
form reversibility, which can, however, easily be extended to uniform ϕ-reversibility. To
a degree, our encoding is based on the sequential-horizon.lp encoding for solving
planning tasks in the plasp distribution.

Note that universal uniform reversibility is computationally easier than ϕ-uniform
reversibility (under standard complexity-theoretic assumptions). For a given action (and
polynomial-length reverse plans), the former can be decided in NP, while the latter is
harder [24, Theorem 18 and 20]. Our encoding has the power to solve the latter problem.

Determining Action Reversibility in STRIPS 49

The basic idea of the encoding is to have an existentially quantified program first,
which guesses the reverse plan, followed by a universally quantified one, which creates
the trajectories from any choice of the initial state, and the check program will establish
whether the trajectory leads back to the initial state, yielding Π u = ∃stPu

1 ∀stPu
2 :Cu.

The ASP(Q) encoding makes use of the following main predicates (in addition to
several auxiliary predicates, as well as those imported from plasp):

– chosen/1 encodes the action to be tested for reversibility.
– holds/3 encodes that some fact (or variable, as they are called in plasp parlance) is

set to a certain value at a given time step.
– occurs/2 encodes the candidate reverse plan, saying which action occurs at which

time step.

Let us now describe Pu
1 first. It will contain the plasp output for the domain, a fact

chosen(a) for the action a to be checked for reversibility, a fact horizon(k) and a
range of facts time(0..k+1) for reverse plan lengths k. Moreover, Pu

1 contains:

occurs(A, 1) :- chosen(A).

occurs(A, T) | -occurs(A, T) :- action(action(A)), time(T), T > 1.

:- occurs(A,T), occurs(B,T), A!=B.

oneoccurs(T) :- occurs(A,T), time(T), T > 0.

:- time(T), T>0, not oneoccurs(T).

plan(A, T - 1) :- occurs(A, T), T > 1.

The first rule fixes the chosen action at time 1, while the following four lines choose
exactly one of the available actions at times 2 to k+1. The last line just isolates the
reverse plan. Using choice rules and aggregates, presuming that it is guaranteed that
only one action is chosen, this can alternatively be written as:

occurs(A, 1) :- chosen(A).

{occurs(A, T)} :- action(action(A)), time(T), T > 1.

:- #count{A:occurs(A, T)}!=1,time(T), T > 1.

plan(A, T - 1) :- occurs(A, T), T > 1.

It is easy to see that there is a one-to-one correspondence between action sequences
of length k and answer sets of Pu

1 .
Now let us turn to Pu

2 , it contains the following rules:

holds(V, Val, 0) :- chosen(A),

precondition(action(A), variable(V), value(variable(V), Val)).

holds(V,Val,0) | -holds(V,Val,0) :- variable(variable(V)),

contains(variable(V),value(variable(V),Val)).

oneholds(V,0) :- holds(V,Val,0).

:- variable(variable(V)), not oneholds(V,0).

:- holds(V,Val,0), holds(V,Val1,0), Val != Val1.

caused(V, Val, T) :- occurs(A, T),

postcondition(action(A), E, variable(V), value(variable(V), Val)).

50 W. Faber et al.

modified(V, T) :- caused(V, _, T).

holds(V, Val, T) :- caused(V, Val, T).

holds(V, Val, T) :- holds(V, Val, T - 1), not modified(V, T), time(T).

The first rule sets some fluent values that are necessary for executability of the action
to be reversed. The following four rules then guess an initial state, in which the action
to be reversed is executable. The last four rules create the trajectories along the actions
that will be fixed by the answer set of Pu

1 . In particular, the first of the rules deals with
direct action effects, while the remaining ones handle inertia (fluents that are untouched
by the action in question and therefore remain as they are).

Rules 2 to 5 can again be written more compactly using choice rules and an aggre-
gate:

{holds(V,Val,0)} :- contains(variable(V),value(variable(V),Val)).

:- #count{Val:holds(V,Val,0)} != 1, variable(variable(V)).

The last portion of the program, C, checks whether the state at time k+1 is the same
as the initial state and whether the preconditions of all actions is met. Only then the plan
is a reverse plan. This is done using three constraints:

:- holds(V, Val, 0), not holds(V, Val, H+1), horizon(H).

:- holds(V, Val, H+1), not holds(V, Val, 0), horizon(H).

:- precondition(action(A), variable(V), value(variable(V), Val)),

occurs(A, T), not holds(V, Val, T - 1).

It is not hard to check that each quantified answer set of Π u corresponds to a uni-
versal uniform reverse plan of the chosen action. If one wishes to test all actions in the
domain for universal uniform reversibility, one can simply add the following rules to
Pu

1 , which guess an action to be tested for reversibility:

chosen(A) | -chosen(A) :- action(action(A)).

:- chosen(A), chosen(B), A!=B.

onechosen :- chosen(A).

:- not onechosen.

Alternatively, using choice rule and aggregate:

{ chosen(A) } :- action(action(A)).

:- #count{A:chosen(A)} != 1.

This is what we will do in our experiments.

Theorem 1. Given a STRIPS planning task 〈F ,A ,s0,G〉, the ASP(Q) encoding in
this section produces exactly one quantified answer set for each universally uniformly
reversible action a ∈ A and a reverse plan π of length k for a, if it exists.

It is also easy to see that our encoding can be modified for non-universal uniform
reversibility without efforts, it is enough to constrain the initial state in Pu

2 to the set
of states S in question. For instance, if S is encoded via a formula ϕ it is easy remove
initial states that do not satisfy ϕ .

Determining Action Reversibility in STRIPS 51

4.3 A Non-uniform Reversibility Encoding Using ASP(Q)

Let us turn to non-uniform reversibility and modify the encoding of the previous section.
Intuitively, instead of encoding “there exists a plan such that for all initial states it
leads back” here we need an inversion to “for all initial states there exists a plan that
leads back”. But this is fairly straightforward in ASP(Q). For a pre-chosen action to be
reversed this gives rise to Π n = ∀stPn

1 ∃sPn
2 :Cn.

Similar to Pu
1 , Pn

1 will contain the plasp output for the domain, a fact chosen(a)
for the action to be checked for reversibility, a fact horizon(k) and a range of facts
time(0..k+1) for reverse plan lengths k. In addition, it will only contain a guess for
all initial states, in which the action to be reversed is executable. We use a separate
predicate holds0 just to avoid sharing predicate names over different programs (the
prototype tool that we experimented with does not support this either).

holds0(V, Val, 0) :- chosen(A),

precondition(action(A), variable(V), value(variable(V), Val)).

holds0(V,Val,0) | -holds0(V,Val,0) :- variable(variable(V)),

contains(variable(V),value(variable(V),Val)).

oneholds0(V,0) :- holds0(V,Val,0).

:- variable(variable(V)), not oneholds0(V,0).

:- holds0(V,Val,0), holds0(V,Val1,0), Val != Val1.

Pn
2 then contains essentially the remaining rules of Π u plus one rule that interfaces

holds0 with holds:

holds(V,Val,0) :- holds0(V,Val,0).

occurs(A, 1) :- chosen(A).

occurs(A, T) | -occurs(A, T) :- action(action(A)), time(T), T > 1.

:- occurs(A,T), occurs(B,T), A!=B.

oneoccurs(T) :- occurs(A,T), time(T), T > 0.

:- time(T), T>0, not oneoccurs(T).

plan(A, T - 1) :- occurs(A, T), T > 1.

caused(V, Val, T) :- occurs(A, T),

postcondition(action(A), E, variable(V), value(variable(V), Val)).

modified(V, T) :- caused(V, _, T).

holds(V, Val, T) :- caused(V, Val, T).

holds(V, Val, T) :- holds(V, Val, T - 1), not modified(V, T), time(T).

Finally, Cn is unchanged, i.e., Cn ≡Cu.
It is easy to see that Π n encodes universal non-uniform reversibility, and again a

modification to non-universal non-uniform reversibility is straightforward.
For testing all actions in the domain for non-uniform reversibility, one needs to add

an extra existential program that guesses the action to be reversed, say Pn
0 :

chosen(A) | -chosen(A) :- action(action(A)).

52 W. Faber et al.

:- chosen(A), chosen(B), A!=B.

onechosen :- chosen(A).

:- not onechosen.

∃stPn
0 Π n will then produce a quantified answer set for all non-uniformly reversible

actions in the domain.

5 Experiments

We have conducted preliminary experiments on universal uniform reversibility, as it
allows for comparison to existing ASP-related solving methods. We have obtained an
as-yet-unpublished prototype implementation for ASP(Q) from Francisco Ricca, called
qasp version 0.1.2, and implemented a tool for generating Π u as presented in Sect. 4.2.
All our benchmark files, including generator scripts, are available at https://seafile.aau.
at/d/eb22aab5223f4e8abfcc/.

The domains of our generated benchmarks are reused from [15] and look as follows:

(define (domain rev-i)

(:requirements :strips)

(:predicates (f0) ... (fi))

(:action del-all

:precondition (and (f0) ... (fi))

:effect (and (not (f0)) ... (not (fi))))

(:action add-f0

:effect (f0))

...

(:action add-fi

:precondition (fi-1)

:effect (fi)))

The action del-all has a universal uniform reverse plan 〈 add-f0, . . . , add-fi 〉.
We have generated instances from i= 1 to i= 6 and from i= 10 to i= 200 with step
10. We have analyzed runtime and memory consumption of two problems: (a) finding
the unique reverse plan of size i (by setting the constant horizon to i) and proving
that no other reverse plan exists, and (b) showing that no reverse plan of length i-1
exists (by setting the constant horizon to i-1). We compare our encoding, described
in Sect. 4.2, to the “general” ASP and ELP encodings presented by Faber, Morak, and
Chrpa [15]. We omit the “simple” ASP and ELP encodings presented therein, since they
make use of a complexity-theoretic shortcut (and hence are only able to solve universal
uniform reversibility), which cannot be exploited with our ASP(Q) encoding. Hence,
to get comparative benchmarks, all three encodings that we benchmark here are able to
solve the exact same problem: uniform ϕ-reversibility.

We used plasp 3.1.1 (https://potassco.org/labs/plasp/), as well as eclingo 0.2.0
(https://github.com/potassco/eclingo) and built on top of clingo 5.4.1 (https://potassco.
org/clingo/), and clingo itself, for the ASP and ELP benchmark set, and the preliminary
ASP(Q) solving tool qasp, version 0.1.2, which rewrites ASP(Q) programs to Quanti-
fied Boolean Formulas (QBFs) and then use the well-known QuAbS QBF solver [21]

https://seafile.aau.at/d/eb22aab5223f4e8abfcc/
https://seafile.aau.at/d/eb22aab5223f4e8abfcc/
https://potassco.org/labs/plasp/
https://github.com/potassco/eclingo
https://potassco.org/clingo/
https://potassco.org/clingo/

Determining Action Reversibility in STRIPS 53

0 10 20 30 40

0

500

1,000

Number of facts

R
un
tim

e
(s
)

ASP encoding
ELP encoding

ASP(Q) encoding

0 10 20 30 40

0

100

200

300

Number of facts

M
em

or
y
(M

B
)

ASP encoding
ELP encoding

ASP(Q) encoding

Fig. 1. Calculating the unique reverse plan (plan length equals number of facts)

(see the benchmark archive for qasp), on a computer with a 2.3 GHz AMD EPYC 7601
CPU with 32 cores and 500 GB RAM running CentOS 8. We have set a timeout of
20 min and a memory limit of 16 GB (which was never exceeded).

The results for problem (a) are plotted in Fig. 1, requiring that solvers output all
models that they find (i.e. after finding the first and only model containing a reverse
plan, they have to prove that this is also the last model). As expected, and as already
known [15], the plain ASP encoding performs best, given the extensive optimizations
that have gone into ASP solvers over the years. Both the ELP encoding and the ASP(Q)
encoding offer similar benchmark performance, which is, however, much worse than for
the ASP encoding. This is not surprising, given the fact that neither ELP nor ASP(Q)
solvers are optimized. In fact, both are preliminary system prototypes that need fur-
ther optimization to realize their performance potential. However, clearly, both systems
are able to solve a portion of the provided benchmarks within the 20 min time window
given. The much more elegant and readable language that is offered by ASP(Q), when
compared to encoding ΣP

2 -level problems in ASP, is a tradeoff that may be worth con-
sidering. For the qasp system, memory consumption is higher than for the ASP and ELP
solvers as well. This was, again, expected, as the qasp system is written in Java, where
as eclingo and clingo are written in the leaner C++ programming language (interfacing
via python).

The results for problem (b) are plotted in Fig. 2. Interestingly, compared to (a), all
the encodings performed significantly better, but overall offer a similar picture.

In total, the ELP and ASP(Q) encodings scale worse than the ASP encoding. How-
ever, since these systems solve the same problem from a complexity-theoretic perspec-
tive, we see this as an indicator of how much optimization potential is still “hidden”
for qasp, or any solver for the ASP(Q) language. Due to the elegance of the model-
ing language, however, we hope that our paper will encourage further development and
improvements in the young field of ASP(Q) solvers.

54 W. Faber et al.

0 10 20 30 40

0

500

1,000

Number of facts

R
un
tim

e
(s
)

ASP encoding
ELP encoding

ASP(Q) encoding

0 10 20 30 40

0

100

200

Number of facts

M
em

or
y
(M

B
)

ASP encoding
ELP encoding

ASP(Q) encoding

Fig. 2. Determining nonexistence of a reverse plan (plan length one step too short)

6 Conclusions

In this paper, we have given a review of several notions of action reversibility in STRIPS
planning, as originally presented by Morak et al. [24]. We then proceeded, on the basis
of the PDDL-to-ASP translation tool plasp [12], using the relatively novel language of
ASP with Quantifiers, ASP(Q), to offer an encoding to solve the task of uniform ϕ-
reversibility of STRIPS actions, given a corresponding planning domain. When given
to an appropriate solving system, this encoding, combined with the ASP translation of
STRIPS planning domains produced by plasp, then yields a set of models, each one rep-
resenting a (universal) uniform ϕ-reverse plan for each action in the domain, for which
such a reverse plan could be found. This encoding appears much more natural than the
saturation-based ASP encoding, but arguably also more natural than the ELP encoding
in [24]. Importantly, we were also able to provide a similar encoding for non-uniform ϕ-
reversibility of STRIPS actions, which (under usual complexity assumptions) is impos-
sible to achieve using ASP and ELP.

In order to test whether our encodings can be used in practice, we performed a
set of benchmarks on artificially generated instances by checking whether there is an
action that is universally uniformly reversible. We compared our ASP(Q) encoding to
two existing encodings presented by Faber, Morak, and Chrpa [15], which make use
of the power of world views containing multiple answer sets in ELP, and the encoding
technique of saturation as of [14] in ASP, respectively, to encode universal quantifiers.
This feature, of course, is present directly in the language of ASP(Q). All of the encod-
ings we compared try to directly encode the definition of uniform reversibility: for an
action to be uniformly reversible, there must exist a plan, and this plan must revert the
action in all possible starting states (where it is applicable). Hence all of the encodings
in our benchmark set are powerful enough to test for uniform ϕ-reversibility.

For the ELP and ASP communities, it will probably not come as a surprise that
our ASP(Q) encoding, using a prototype solving system, perform worse than the ASP
encoding, using a heavily optimized solver. We see this as a call-to-action to further
optimize and improve the qasp system we tested, or, indeed, any other ASP(Q) solver

Determining Action Reversibility in STRIPS 55

in development. From our experiments, it seems that the performance of ASP solvers,
while significantly better, may not be completely out of reach.

For future work, we intend to optimize our encoding further, and test them with
optimized versions of ASP(Q) solvers, as they become available. Also, since qasp uses
a rewriting to QBF, different backend QBF solvers should be tested. It would also be
interesting to see how the encodings perform when compared to a procedural implemen-
tation of the algorithms proposed for reversibility checking by [24]. We would also like
to compare our approach to existing reversibility tools proposed in the literature, like
RevPlan1 (implementing techniques of [13]) and undoability (implementing techniques
of [10]). However, this requires matching the version (uniform, non-uniform, universal,
etc.) and setting (STRIPS, ADL, other planning languages) of reversibility that these
tools solve. Furthermore, we aim to explore how our techniques can be extended to
planning languages more expressive than STRIPS. We envision various avenues for
that, one is to deal with “lifted representations” (going beyond propositional atoms),
another one is to allow for non-deterministic action effects. With the power of the
quantifier operators in ASP(Q), such extensions to our encoding should be doable in
an elegant, readable way, whereas plain ASP soon reaches the limits of its expressive
power.

Acknowledgments. Supported by the S&T Cooperation CZ 05/2019 “Identifying Undoable
Actions and Events in Automated Planning by Means of Answer Set Programming”, by the Czech
Ministry of Education, Youth and Sports under the Czech-Austrian Mobility program (project
no. 8J19AT025) and by the OP VVV funded project “Research Center for Informatics”, number
CZ.02.1.01/0.0/0.0/16 019/0000765.

References

1. Amendola, G., Ricca, F., Truszczynski, M.: Beyond NP: quantifying over answer
sets. Theory Pract. Log. Program. 19(5–6), 705–721 (2019). https://doi.org/10.1017/
S1471068419000140

2. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun.
ACM 54(12), 92–103 (2011). https://doi.org/10.1145/2043174.2043195

3. Bylander, T.: The computational complexity of propositional STRIPS planning. Artif. Intell.
69(1–2), 165–204 (1994). https://doi.org/10.1016/0004-3702(94)90081-7

4. Calimeri, F., et al.: Asp-core-2 input language format. Theory Pract. Log. Program. 20(2),
294–309 (2020). https://doi.org/10.1017/S1471068419000450

5. Camacho, A., Muise, C.J., McIlraith, S.A.: From FOND to robust probabilistic planning:
computing compact policies that bypass avoidable deadends. In: Proceedings ICAPS, pp.
65–69 (2016). http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13188

6. Chrpa, L., Faber, W., Morak, M.: Universal and uniform action reversibility. In: Proceedings
KR (2021)

7. Chrpa, L., Lipovetzky, N., Sardiña, S.: Handling non-local dead-ends in agent planning pro-
grams. In: Proceedings IJCAI, pp. 971–978 (2017). https://doi.org/10.24963/ijcai.2017/135

8. Chrpa, L., McCluskey, T.L., Osborne, H.: Optimizing plans through analysis of action depen-
dencies and independencies. In: Proceedings ICAPS (2012). http://www.aaai.org/ocs/index.
php/ICAPS/ICAPS12/paper/view/4712

1 http://www.kr.tuwien.ac.at/research/systems/revplan/index.html.

https://doi.org/10.1017/S1471068419000140
https://doi.org/10.1017/S1471068419000140
https://doi.org/10.1145/2043174.2043195
https://doi.org/10.1016/0004-3702(94)90081-7
https://doi.org/10.1017/S1471068419000450
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13188
https://doi.org/10.24963/ijcai.2017/135
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4712
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4712
http://www.kr.tuwien.ac.at/research/systems/revplan/index.html

56 W. Faber et al.

9. Cserna, B., Doyle, W.J., Ramsdell, J.S., Ruml, W.: Avoiding dead ends in real-time heuristic
search. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), pp. 1306–1313 (2018)

10. Daum, J., Torralba, Á., Hoffmann, J., Haslum, P., Weber, I.: Practical undoability checking
via contingent planning. In: Proceedings ICAPS, pp. 106–114 (2016). http://www.aaai.org/
ocs/index.php/ICAPS/ICAPS16/paper/view/13091

11. De Giacomo, G., Gerevini, A.E., Patrizi, F., Saetti, A., Sardiña, S.: Agent planning programs.
Artif. Intell. 231, 64–106 (2016). https://doi.org/10.1016/j.artint.2015.10.001

12. Dimopoulos, Y., Gebser, M., Lühne, P., Romero, J., Schaub, T.: plasp 3: towards effec-
tive ASP planning. Theory Pract. Logic Program. 19(3), 477–504 (2019). https://doi.org/
10.1017/S1471068418000583

13. Eiter, T., Erdem, E., Faber, W.: Undoing the effects of action sequences. J. Appl. Logic 6(3),
380–415 (2008). https://doi.org/10.1016/j.jal.2007.05.002

14. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: proposi-
tional case. Ann. Math. Artif. Intell. 15(3–4), 289–323 (1995)

15. Faber, W., Morak, M., Chrpa, L.: Determining action reversibility in strips using answer set
and epistemic logic programming. Theory Pract. Log. Program. 21(5), 646–662 (2021)

16. Fikes, R., Nilsson, N.J.: STRIPS: a new approach to the application of theorem proving to
problem solving. Artif. Intell. 2(3/4), 189–208 (1971)

17. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer set solving in prac-
tice. Synth. Lect. Artif. Intell. Mach. Learn. 6(3), 1–238 (2012). https://doi.org/10.2200/
S00457ED1V01Y201211AIM019

18. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Gener. Comput. 9(3/4), 365–386 (1991). https://doi.org/10.1007/BF03037169

19. Ghallab, M., Nau, D.S., Traverso, P.: Automated planning - theory and practice. Elsevier,
Amsterdam (2004)

20. Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning and Acting. Cambridge University
Press (2016). http://www.cambridge.org/de/academic/subjects/computer-science/artificial-
intelligence-and-natural-language-processing/automated-planning-and-acting?format=HB

21. Hecking-Harbusch, J., Tentrup, L.: Solving QBF by abstraction. In: Orlandini, A., Zimmer-
mann, M. (eds.) Proceedings Ninth International Symposium on Games, Automata, Logics,
and Formal Verification, GandALF 2018, Saarbrücken, Germany, 26–28th September 2018,
EPTCS, vol. 277, pp. 88–102 (2018). https://doi.org/10.4204/EPTCS.277.7

22. Lifschitz, V.: Answer Set Programming. Springer, Heidelberg (2019)
23. Lipovetzky, N., Muise, C.J., Geffner, H.: Traps, invariants, and dead-ends. In: Proceedings

ICAPS, pp. 211–215 (2016). http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/
view/13190

24. Morak, M., Chrpa, L., Faber, W., Fišer, D.: On the reversibility of actions in planning. In:
Proceedings KR, pp. 652–661 (2020). https://doi.org/10.24963/kr.2020/65

http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13091
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13091
https://doi.org/10.1016/j.artint.2015.10.001
https://doi.org/10.1017/S1471068418000583
https://doi.org/10.1017/S1471068418000583
https://doi.org/10.1016/j.jal.2007.05.002
https://doi.org/10.2200/S00457ED1V01Y201211AIM019
https://doi.org/10.2200/S00457ED1V01Y201211AIM019
https://doi.org/10.1007/BF03037169
http://www.cambridge.org/de/academic/subjects/computer-science/artificial-intelligence-and-natural-language-processing/automated-planning-and-acting?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/artificial-intelligence-and-natural-language-processing/automated-planning-and-acting?format=HB
https://doi.org/10.4204/EPTCS.277.7
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13190
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13190
https://doi.org/10.24963/kr.2020/65

Functional Programming

Functional Programming
on Top of SQL Engines

Tobias Burghardt , Denis Hirn , and Torsten Grust(B)

Department of Computer Science, Database Research Group, University of Tübingen,
Tübingen, Germany

tobias.burghardt@student.uni-tuebingen.de,
{denis.hirn,torsten.grust}@uni-tuebingen.de

Abstract. SQL database systems support user-defined functions (UDFs),
but they hardly encourage programming with these functions. Quite the
contrary: the systems’ focus on plan-based query evaluation penalizes
every function call at runtime, rendering programming with UDFs—
especially if these are recursive—largely impractical. We propose to take
UDFs for what they are (namely functions) and subject UDFs to a
pipeline of function compilation techniques well-established by the FP
community (CPS conversion, defunctionalization, and translation into
trampolined style, in particular). The result is a non-invasive SQL-level
compiler for recursive UDFs that naturally supports memoization and
emits iterative CTEs which contemporary SQL engines evaluate effi-
ciently. Functions may not be first class in SQL, but functional program-
ming close to the data can still be efficient.

Keywords: SQL · Recursive UDFs · CPS · Defunctionalization ·
Trampolined style

1 Recursive SQL UDFs: From 1000 s of Plans to One Plan

SQL database engines are experts in the plan-based execution of queries. Engine
internals are specifically designed to support query-to-plan compilation, opti-
mization through plan rewriting, and the—often interpreted—evaluation of the
resulting plans.

“If all you have is a hammer, everything looks like a nail.” SQL user-defined
functions (UDFs) receive this plan-centric treatment, too, but in their case the
results can only be described as sobering: UDF runtime performance often is
disappointing and it is established lore among SQL developers that UDFs are
thus best avoided [12,24,34]. Indeed, SQL applications pay for the engines’ plan-
based approach to UDF evaluation literally with every function call.

To make this concrete, consider UDF floyd(n,s,e) of Fig. 1 which implements
Floyd & Warshall’s algorithm [16] to find the length of the shortest path between
nodes s and e in a directed graph. The function operates over table edges in which

c© Springer Nature Switzerland AG 2022
J. Cheney and S. Perri (Eds.): PADL 2022, LNCS 13165, pp. 59–78, 2022.
https://doi.org/10.1007/978-3-030-94479-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94479-7_5&domain=pdf
http://orcid.org/0000-0002-9168-9012
http://orcid.org/0000-0001-7040-1780
http://orcid.org/0000-0002-8279-0493
https://doi.org/10.1007/978-3-030-94479-7_5

60 T. Burghardt et al.

Fig. 1. Recursive UDF floyd, a SQL transcription of function floyd of Fig. 2b. Yields
NULL if there is no path from nodes s to e via nodes 1 ... n.

Fig. 2. Floyd & Warshall’s algorithm over a directed graph (no negative cycles). We
have floyd(4, 2, 3) = 2 and floyd(3, 3, 2) = ∞, for example.

a row 〈h, t, w〉 represents the directed edge h t
w of length w (Fig. 2a shows a

sample graph and its encoding in table edges).
Note that the code of Fig. 1 constitutes a direct transcription of recursive

function floyd (see Fig. 2b) into SQL. This formulation in functional style [11]
leads to a compact and readable SQL implementation of floyd(n,s,e), yet incurs
a flood of recursive UDF calls during evaluation (the UDF of Fig. 1 performs∑n

i=1 3
i = (3n+1−3)/2 such calls in the absence of memoization). On each top-

level or recursive call, the SQL engine creates a new plan context for callee floyd
to

(p1) compile the SELECT block comprising the function’s body into a plan,
(p2) improve this initial plan through optimizing plan rewrites,
(p3) instantiate the resulting plan given the current arguments n, s, and e,
(p4) evaluate the plan using a Volcano-style interpreter [19], and finally
(p5) tear down plan data structures before the result is returned and the evalu-

ation of the calling query’s plan can resume.

Since the engine needs to keep the plans for callers and callees around, the
evaluation of any recursive UDF f leads to a nesting of plan contexts c0, c1, ...
as depicted in Fig. 3. The repeated effort for plan generation and instantiation
(steps p1 and p2, denoted call in Fig. 3) plus teardown and caller plan resumption
(p5, denoted ret) adds up to a significant runtime toll which can easily dwarf
the productive time spent evaluating the plan for f’s body (steps p3 and p4,
denoted eval). Plans are rich data structures and, in a sense, the engine finds

Functional Programming on Top of SQL Engines 61

itself creating and destroying “super-heavy stack frames” to drive the evaluation
of recursive UDFs.

If we profile the query engine of PostgreSQL (version 13) during the eval-
uation of a call to floyd—which, in this particular case, leads to 88,573 recur-
sive invocations—we find that the system spends 96% of the overall runtime
for function body analysis, query compilation, and plan handling. PostgreSQL
implements function inlining (albeit to depth 1 only which thus is of limited use
for recursive UDFs) and plan caching: steps p1 and p2 are performed only on the
first encounter of a UDF f and the resulting plan is saved for reuse during future
invocations of f. This plan caching, however, does not apply to self-invocations
and we observe that PostgreSQL performs steps p1–p5 over and over for every
recursive call.

Fig. 3. Nested plan contexts built to evaluate a top-level SQL query Q that contains a
call to a linear-recursive UDF f. Overall evaluation time for Q is tω − tα.

The situation certainly is dire, but PostgreSQL indeed fares well if com-
pared to other off-the-shelf SQL DBMSs: MySQL forbids the use of recursion in
SQL UDFs (or stored functions) in the first place [28, § 25.8], while Oracle and
Microsoft SQL Server impose restrictions like recursion-depth limits on UDFs (50
and 32, respectively). PostgreSQL will bail out once the stacked plan contexts
exhaust the DBMS server’s available process memory [27,29,31]. At the bottom
line, UDFs appear to be more of an afterthought in SQL engine design than
anything else.

Goal: Treating SQL UDFs Like Functions (Not Queries). Does the associated
runtime penalty thus render the use of function-centric SQL code—and recursion,
in particular—impractical? Since UDFs in functional style are one elegant way
to express and perform complex computation close to the data [11,36], we would
consider this a true loss.

The present work proposes to abstain from immediate (re-)planning on every
call and instead take recursive UDFs for what they are: functions. This opens
up a box that contains tools other than the plan hammer:

(f1) We view a UDF f as a plain function f in the sense of functional pro-
gramming (FP). Function f operates over values of the SQL data model and
embeds scalar SQL expressions but otherwise is a vanilla function (Sect. 2.1).

62 T. Burghardt et al.

Fig. 4. Using the FP toolbox to compile recursive SQL UDFs into CTEs.

(f2) To f we then apply a pipeline of established function compilation techniques,
see Fig. 4. Specifically, we translate f into continuation-passing style (CPS)
[2,38], defunctionalize [35], and finally transform f into trampolined style [17]
(Sect. 2.2 and 2.3).

(f3) Function f in trampolined style implements a single loop which is readily
expressed in terms of a recursive common table expression (CTE), i.e., an
iterative query form that is widely supported by SQL DBMSs since the advent
of the SQL:1999 standard [13,15,37]. We obtain SQL query Qf, essentially an
CTE-based interpreter loop for UDF f.

(f4) Qf performs no recursive UDF calls and thus will be planned once in tan-
dem with its enclosing SQL query. Further, the CTE form provides hooks
for a variety of optimizations—memoization, in particular—that render the
evaluation of Qf significantly more efficient than the original UDF f which Qf
can replace entirely (Sect. 3).

The above implements a SQL-level compilation from recursive UDFs to CTEs
that is non-invasive and applicable to any DBMS that adheres to SQL:1999—
note that this even includes systems that do not natively support recursive UDFs
(like MySQL). Section 4 applies this new approach to UDF compilation to a set of
recursive functions of varying complexity to demonstrate that function-centric
SQL code indeed is one viable way to efficiently compute close to database-
resident data.

2 Treating SQL UDFs Like Functions (Not Queries)

The following sketches the SQL-to-SQL compilation of recursive UDFs into CTEs.
While we cannot unfold all details, we shine a light on all essential stages of the
pipeline in Fig. 4.

Boxing SQL Subexpressions. We prepare the compilation of UDF f by focusing
on the essence of the recursive computation that f performs, i.e., (1) condition-
als that separate base from recursive cases and (2) the sites of recursive calls.
These essentials are preserved while all other SQL expressions are wrapped in
“black boxes.” The contents of these boxes do not affect the subsequent UDF
compilation steps and the contained SQL fragments only reappear once the final
CTE Qf is emitted.

Figure 5 shows the boxes 1 , ... , 4 and their contained scalar SQL expressions
(in �·�) for UDF floyd of Fig. 1. Free variables and recursive call sites inside a

Functional Programming on Top of SQL Engines 63

box �b�[e0, ... , en] are exposed in terms of box parameters ei: replacing vi by ei

in b yields the original SQL expression. (We abbreviate both �v0�[e] and �e�[]
by e to aid readability.) Besides the boxes, we are left with the top-level SELECT
block whose CASE-WHEN-ELSE-END conditional identifies the base and recursive cases
in floyd.

Fig. 5. UDF floyd and SQL subexpression boxes. (Box 4 occurs three times.)

As discussed here, the compilation scheme applies to recursive SQL UDFs
defined via CREATEFUNCTION f(x1 τ1,...,xn τn) RETURNS τ AS ... that adhere to the
following syntactic constraints:

1. Return type τ is a scalar SQL type (i.e., f may not be a table-valued function),
and

2. in a recursive call f(e1,...,en), only the x1, ... , xn may occur free in the argu-
ments ei. This restriction ensures that we can lift the call out of its enclosing
SQL expression b and place it in the parameter list of box �b�.

2.1 Transition from SQL to FP

Input UDF f is now recast as a first-order function f expressed in a simple ML-
style language. Importantly, since SQL subexpression boxing has left us with the
recursive backbone of the UDF, a (1) case-of conditional, (2) function invocation,
and (3) the boxed expressions themselves already make a complete FP target
language. In consequence, the atomic types of this language are just the scalar
SQL types. For UDF floyd, the resulting function floyd is reproduced in Fig. 6.

Fig. 6. FP-equivalent of UDF floyd. The
boxes remain opaque.

Let us stress once more that this
and all following compilation steps leave
the boxes intact: in particular, we are
never concerned with the FP-equivalent
of the rich semantics of SQL’s SELECT-FROM-
WHERE blocks (as contained in box 2 , for
example). The boxes are not unpacked
before we reach the end of the transla-
tion pipeline and are ready to assemble
the recursive CTE.

64 T. Burghardt et al.

2.2 From Recursion Towards Iteration: CPS and Defunctionalization

Since we are heading towards a single-loop interpreter for UDF f that does not
perform any recursive calls, we proceed by rewriting f’s FP-equivalent f into

Fig. 7. floyd in CPS. Invocation via
floyd(n,s,e,λx.x).

continuation-passing style (CPS) [1,38].
f in CPS exclusively performs tail calls
(which directly translate into iteration
later on). Further, CPS explicitly orders
the evaluation of function arguments—the
CTE-based interpreter, too, will imple-
ment just this ordering. floyd in CPS
(Fig. 7) computes intermediate results s1,
s2, s3 (in this order) and passes these to
the continuations a , b , c , respectively.

Application of the well-established CPS conversion is the first time that we
benefit from entering the FP domain. Here, we are free to build on language
features like the higher-order continuation arguments k, provided that we ensure
that such features can be compiled away before we transition back to SQL.

Continuations as Data: Defunctionalization. In preparation for this back-
transition to the SQL domain in which functions are not first class, we opt to
represent the continuations in terms of data. See Fig. 8 for floyd’s form after this
step.

Fig. 8. floyd after defunctionalization. let in Line 7
matches on closure records.

Defunctionalization [35]
introduces closure records
〈k, env〉 in which tag k
identifies the continuation
(for floyd, k ∈ {a , b , c}) and
env holds the environment
of free variables. For floyd,
env ≡ n, s, e, s1, s2; we re-
place variable v by � if
v is undefined in env and
thus obtain closure records
of fixed width (1 + 5 = 6
in the case of floyd). The
nesting of continuations is

encoded in terms of a stack of closure records (see argument ks of type stack
with operations empty, push, pop, top in Fig. 8). Auxiliary function apply(x,ks)
inspects tag k of the topmost closure record on stack ks and invokes the associ-
ated continuation on argument x. When apply recognizes continuation tag k = z ,
the final result x is returned (see Line 9 in Fig. 8). We can thus start the com-
putation via floyd(n,s,e,push(〈z , �, �, �, �, �〉,empty)).

Functional Programming on Top of SQL Engines 65

2.3 Trampolined Style: Single Loop Replaces Mutual Recursion

We have arrived at the pair f/apply of functions which mutually recurse. (Note:
an input of n mutually recursive SQL UDFs f1, ... , fn would lead us to a family
f1/···/fn/applyof n+1 FP functions at this point.) For the defunctionalized floyd,
the resulting call graph is depicted in Fig. 9a.

The complexity of this call graph is at odds with the single-loop iteration that
SQL’s recursive common table expressions can express (Sect. 3 below elaborates
on the semantics of recursive CTEs). A better match is offered by trampolined
style [17] in which a designated trampoline function is in charge of dispatching all
function calls in a given program: to invoke g from f, (1) f tail calls trampoline,
providing the arguments to be passed on to g along with function label fn= g ,
(2) then trampoline invokes g as directed by fn. trampoline’s full control of whether
and how the computation proceeds enables a wide variety of applications of
trampolined style [17]—here, we are primarily interested in the inherent call
graph simplification it provides (see Fig. 9b). From here, inlining the bodies of
floyd and apply into trampoline yields the single loop we were after (Fig. 9c): the
evaluation of trampoline is iterated until function label argument fn= x directs
the program to exit.

Fig. 9. Call graphs before and after transformation into trampolined style.

We break the trampolined-style program into two functions: rec implements
the single-loop iteration and is invariably required to compile any recursive UDF.
(Section 3 will show that rec embodies SQL’s recursive CTE construct.) rec iter-
atively invokes work horse interpret which performs the UDF-specific computa-
tion, also see Fig. 9d.

interpret systematically derives from the f/apply pair; Fig. 10 shows the
instance originating from floyd/apply of Fig. 8. After inlining, interpret incor-
porates both functions and the outermost case of Line 7 inspects label fn (of
type fun= { f , a }) to proceed either like floyd (f) or apply (a). By construction,
both floydand apply exclusively advance computation through mutual invocation
(unless they return result x). Thus, following trampolined style, in interpret we
encode a call floyd(n,s,e,ks) by returning tuple (f ,n,s,e,�,ks,�) to rec. On
the next iteration, interpret will proceed like floyd as required. Likewise, tuple

66 T. Burghardt et al.

Fig. 10. Trampolined-style interpreter (floyd and apply inlined into interpret).

(a ,�,�,�,x,ks,�) encodes a call apply(x,ks). Returning (x ,�,�,�,�,�,x)
from interpret directs rec to finish the computation with result x. Given argu-
ments n, s, and e, the evaluation can be started via

rec(f ,n,s,e,�,push(〈z , �, �, �, �, �〉,empty),�) . (∗)

Looking closer, interpret operates like a UDF-specific interpreter :

(i1) instructions are of the form (fn,n,s,e,x,ks,res) in which fn and the top
continuation k on stack ks determine which action to perform, before

(i2) the next instruction is returned to rec to advance (or halt) the computation.

This interpreter consumes and produces tuple-shaped instructions (whose regular
format we have tried to indicate via () in Fig. 10). We benefit
from this regularity when we transcribe the interpreter into its equivalent SQL
form in the subsequent section.

3 An Iterative SQL-Based Interpreter for Recursive UDFs

A SQL:1999 recursive common table expression [4,37] takes the syntactic
form WITHRECURSIVE W(···) AS (Qinit UNION ALL Qinterpret). It expresses a compu-
tation that directly fits the single-loop iteration pattern (and one could
argue that recursive CTE is a misnomer). The diagram on the follow-
ing page explains this iterative computation, compare it with Fig. 9d:

Functional Programming on Top of SQL Engines 67

Fig. 11. Iterative CTE-based interpreter replacing the UDF floyd of Fig. 1.

U ← ∅

W ← Qinit

U ← U ∪ W
W ← Qinterpret(W)

W =∅?

(cte1) Empty union table U which will hold the overall
result. Evaluate SQL query Qinit and place its rows in
working table W.

(cte2) If W is empty, return U as the final result. Other-
wise, add the rows of W to U.

(cte3) Evaluate query Qinterpret over the current table W
and replace the contents of W with the resulting rows.
Go to cte2.

We build on these CTEs to construct a SQL formulation of the single-loop UDF
interpreter. Figure 11 shows the CTE we obtain from a straightforward transcrip-
tion of the function pair rec + interpret of Fig. 10 into SQL. (In the SQL code
and tables below, � abbreviates the NULL value.) Here, the CTE is wrapped in a
SQL UDF floyd that could replace the original of Fig. 1. The CTE body in Lines
3 to 35, however, can also stand on its own: it contains no recursive calls and
thus could be inlined at the call sites of floyd.

Just like rec and interpret, the CTE works over tuples (fn,n,s,e,x,ks,res). To
kickstart interpretation, Qinit (i.e., the SELECT of Line 4) places an appropriate
tuple—or: “instruction”, see (∗) above—in working table W (named rec in Fig. 11).
The iterated Qinterpret in Lines 6 to 31 reads the current instruction tuple r off

68 T. Burghardt et al.

table rec, processes it, and emits the subsequent instruction that (1) replaces the
current tuple in rec and (2) also is added to overall result table U. Instruction
processing entails

(ip1) accessing the topmost continuation on stack ks. Much like the let in Line 7
of Fig. 10, we use LATERAL [37] to bind this continuation to k and make it avail-
able to the rest of the query. There is a variety of SQL-side implementation
alternatives for stack ks and its push, pop, top operations. We return to these
below.

(ip2) Then, inspection of the function label r.fn∈ { a , f , x } and closure
tag k.k∈ {a , b , c , z} is used to select the proper subsequent instruction.

append
result[p1]
〈plan for Q1〉

result[p2]
〈plan for Q2〉

Function interpret of Fig. 10 implements step ip2 in terms
of case-ofmulti-way conditionals. Here, we use a tower of pred-
icated SELECT-WHERE query blocks chained together via UNIONALL
(Lines 14 to 30 in Fig. 11). Note that the WHERE predicates are
mutually exclusive such that at most one block can emit an
instruction tuple per iteration. In particular, no tuple is pro-

duced if r.fn= x : working table rec will be empty and the recursive CTE will
finish as required (see cte2 above). Contemporary RDBMSs implement this
form of multi-way dispatch efficiently. Consider Q1 UNIONALL Q2 in which the Qi

contain WHERE predicates pi that are independent of the outcome of their Qi. On
PostgreSQL, this translates into the plan shown on the left. In such a plan, oper-
ators result evaluate the pi before the sub-plans for the Qi are processed [23,31].
Should pi turn out false, the plan for Qi is never entered. This exhibits the
expected characteristic of multi-way branching and proves to be performant also
on other RDBMSs (e.g. on Oracle 19c with its union-all/filter pairs [29]).

Fig. 12. CTE union table result for
floyd(2,2,3).

The assembly of the instruc-
tion tuples themselves directly mim-
ics function interpret (e.g., Line 23
of Fig. 11 is in correspondence with
Line 10 of Fig. 10). Once we unfold
the contained boxes 1 to 4 , we obtain
a syntatically complete CTE that can
replace the original UDF of Fig. 1.

Union Table = Instruction Trace.
Given the semantics of the recursive
CTE, any invocation of this SQL-
based interpreter will yield a union
table U that collects a trace of all
instructions evaluated by the inter-
preter. Each iteration contributes one

row to U . To illustrate, Fig. 12 contains an excerpt of the table resulting from
a call floyd(2,2,3) (disregard the annotations in for now). As expected, we
find rows with fn= f which represent the recursive calls to floyd (cf. Fig. 8),

Functional Programming on Top of SQL Engines 69

including the top-level call floyd(2,2,3). Rows with fn= a correspond to the
application of the current top continuation on stack ks to intermediate result x
(again, recall the invocations of apply in Fig. 8). The single row with fn= x holds
the overall result value in column res. Exactly this (grey) table cell is extracted
and returned by the final SELECT block in Lines 33 to 35 of Fig. 11.

3.1 Memoizing the Results of Recursive Calls

A reduction of function call overhead is welcome and Sect. 4 will assess the
performance advantage that the iterative interpreter has over recursive UDF
evaluation. Avoiding the (re-)evaluation of functions altogether, however, cer-
tainly beats any execution strategy. This is the promise of memoization [6,26]:
once we have spent the effort to evaluate f(args) to value res, memoize the
pair (args, res) and immediately respond with res on subsequent calls with argu-
ments args. For UDFs like floyd(n,s,e)which otherwise performs O(3n) recursive
calls, memoization can be absolutely vital.

The SQL-based interpreter can provide memoization for any UDF f. No
change to f is required. To this end, we associate n-ary UDF f with a table
memo(args,res) of n+1 columns (for floyd, this memo table has columns n s e res
with key (n,s,e)). The following lines augment floyd’s interpreter of Fig. 11 to
perform a lookup in memo for the current arguments (r.n,r.s,r.e):

9 LATERAL (〈lookup in table memo for arguments (r.n,r.s,r.e)〉) AS m("memo?",res),
10 LATERAL (
11 SELECT a AS fn,r.n,r.s,r.e,m.res AS x,r.ks,� AS res
12 WHERE r.fn = f AND m."memo?"
13 UNION ALL

On a successful lookup indicated by m."memo?" = true, the memoized value m.res
is passed directly to the current continuation on top of stack r.ks (Line 11). Effec-
tively, the entire subtree of recursive invocations below call floyd(r.n,r.s,r.e) is
cut short, regardless of whether the call occurs at the top level or deep in the
recursion.

How do we populate table memo? For one answer, inspect the call tree for top-
level invocation floyd(2,2,3) in Fig. 13. When recursive call 2 to floyd(0,2,3) has
computed intermediate result 3, it passes value x = 3 to the top continuation
on stack ks (which will proceed with call 3 as determined by CPS). Since union
table U collects a log of all such continuation invocations in rows with fn= a

(see column x in the row annotated with 2 in Fig. 12), it is a viable source for memo
entries:

(m1) Run the CTE-based interpreter, obtain union table U .
(m2) In U , find all rows u with u.fn= a . If not already present, insert

row (args,u.x) into memo where args denotes the arguments of the current
call.1 (We find 13 such rows if the interpreter has evaluated floyd(2,2,3),

1 To facilitate m2, we assume that the closure records in u.ks additionally provide args.
In Fig. 12, for call 2 , the topmost closure record k1 would hold the arguments
(n,s,e)= (0,2,3). Likewise, k2 would hold (1,2,3) for call 9 .

70 T. Burghardt et al.

Fig. 13. Call tree for top-level call floyd(2,2,3). Edge indicates the i th call performed
by the interpreter. Grey denote the results of the calls.

corresponding to the 13 nodes in the call tree of Fig. 13. The lookup in the
added Line 9 above will find these entries during subsequent interpreter runs.)

Once completely filled, floyd’s memo table contains n3 rows for a graph of n nodes.
Builtin index support for the key lookups performed by Line 9 render this form
of memoization highly efficient—Sect. 4 shines a light on this.

Note that the applicability of memoization hinges on UDF f being referen-
tially transparent, either generally (IMMUTABLE functions [31, § 37.7]) or at least
within a transaction context (STABLE functions like floyd due to its access to
table edges, see Line 9 in Fig. 1). These degrees of referential transparency also
define the lifetime of table memo.

3.2 Optimizations: Slimmer/Shorter Working and Union Tables

The UDF compiler described so far is already fully workable, yet lends itself to
a variety of optimizations that help to reduce space usage and runtime. Below,
we touch on three improvements that aim to cut down CTE working and union
table sizes. The space savings effects increase as we go.

Sharing Argument Columns. The tuple-shaped instructions reserve separate
slots for (1) the arguments of the functions f and apply (recall Sect. 2.3) and
(2) result value res. This defines the width of the rows that we store in the
CTE’s working and union tables W and U . The narrower these rows, the less
space is needed to hold the instruction log in table U .

Since each instruction either invokes f or apply or returns res, these
argument tuple slots can be shared between the functions and res, pro-
vided their types coincide. In the case of UDF floyd, floyd(n,s,e,ks) and
apply(x,ks) currently only share common argument ks, leading to a
tuple width of 1 (fn) + 4 + 2 + 1 (res) − 1 (shared ks) = 7. Given the int-
typed arguments and res, this can be brought down to 1 (fn) + 1 (n|x) +
1 (s|res) + 1 (e) + 1 (ks) = 5. In particular, when multiple mutually recursive
UDFs f1, ... , fn are compiled jointly, argument sharing can drastically reduce
the number of NULL (�) cells in table U .

Continuation Stacks Outside Tables W and U . The SQL array type is one possible
SQL-side implementation of the continuation stack in column ks. top, pop, and

Functional Programming on Top of SQL Engines 71

push then efficiently operate on the array head element. Still, the array’s length
is determined by recursion depth—if we recurse deeply, sizable ks entries lead
to measurable effort when the CTE assembles instruction tuples to be placed in
table W or appended to U .

We have thus experimented with a PostgreSQL extension that hosts the
continuation stack outside of tables W and U . Here, column ks merely refers
to a table-like structure of closure records living in a separate memory region
that is private to the SQL query that runs the interpreter. Section 4 reports
on the runtime advantages of replacing array-based stacks with this tabular
representation.

Avoid Building the Instruction Log. The semantics of WITHRECURSIVE entail the
construction of union table U (see cte1–cte3 at the beginning of this section).
This instruction log has enabled memoization but, indeed, only the single row
with fn= x is essential to return result res to the caller. If we opt to forego
memoization, we can reach for WITHITERATE [12,30]. This non-standard variant of
SQL’s CTE only ever remembers the rows added last to working table W . No
union table U is involved at all. Instead, the last non-empty W is returned as the
final result.

A WITHITERATE-based interpreter only holds the current instruction tuple in
memory, the last of which will have fn= x . Should memoization be of no concern
for a particular UDF, this optimization promises significant space and runtime
savings. We have documented both in the context of earlier related work [12,22]
and also assess the effect of WITHITERATE in Sect. 4.

4 Experiments: Functional Programming on Top of PostgreSQL

Recursive UDF processing through the repeated unfolding and planning of func-
tion bodies renders relational DBMSs as poor programming environments [3,11].
We argue that it does not have to be this way: the SQL UDF compilation strat-
egy of Fig. 4 can turn PostgreSQL into a viable functional programming platform
on which complex computation is performed with and right next to the tabular
data [36].

To make this point, the 10 recursive UDFs of Table 1 address algorithmic
problems that would typically not be considered database-resident computations
due to (1) their inefficiency when expressed as SQL functions or (2) the forbidding
complexity of their manual formulation in terms of a recursive CTE. The UDFs
provide implementations of recursive algorithms taken from a variety of domains,
ranging from typical database workloads (e.g., over time series or graphs) to more
exotic applications. Here, we implement these functions as recursive UDFs in the
compact and readable functional style of floyd (Fig. 1):

– comps, like floyd, operates over relational adjacency encodings of directed
graphs.

– dtw stretches (or shrinks) tabular time series to find minimum-distance match-
ings between two such series, applications of which are found in machine
learning or signal processing.

72 T. Burghardt et al.

Table 1. Impact of compilation and memoization for 10 recursive SQL UDFs.

UDF Description Recursion Overhead [%] Time/Call [ms] Memoize

UDF CTE UDF CTE 15 000 calls

comps Find connected DAG components 2-way 90.64 6.79 3.91 0.48

dtw Dynamic Time Warping distance 3-way 97.59 1.82 196.96 12.57

eval Evaluate arithmetic expressions 2-way 96.00 3.21 22.45 1.04

floyd Find lengths of shortest paths 3-way 96.74 1.88 9605.80 652.40

fsm Parse with a finite state machine Linear 94.08 15.24 0.92 0.10

lcs Find longest common substring 2-way 98.43 0.67 140.88 11.04

mbrot Compute Mandelbrot set Tail 97.43 29.44 129.58 6.74

march Trace border of 2D object Linear 89.37 3.47 39.13 5.76

paths Construct file system path names Tail 92.27 19.75 0.60 0.06

vm Run program on a virtual machine Tail 98.17 1.61 401.00 2.19

– eval, vm implement a simple interpreter and virtual machine which enable
database applications to regard table-resident data as code.

– fsm and lcs are representatives of string-based algorithms, a plethora of which
are found in the data-intensive bioinformatics domain, for example.

– paths realizes a typical bottom-up traversal over hierarchical data (here: a file
system directory tree).

– march implements Marching Squares [25], a classic algorithm in computer
graphics that also applies to geographical and map data.

– mbrot, finally, constitutes a compute-intensive but data-agnostic algorithm,
certainly at the exotic end of the UDF spectrum.

We have also chosen these UDFs to exhibit different recursion patterns (see
column Recursion in Table 1). Interested readers may evaluate the original as
well as compiled UDFs on their local PostgreSQL instances. All required SQL
source files are available for download.2

For reference: the measurements below report the average of multiple runs,
performed on PostgreSQL v13.0. We rely on the vanilla system except where
we explicitly mention the use of the query-private table storage extension,
recall Sect. 3.2. The database system was hosted on a 64-bit Linux machine
(two AMD EPYC™ 7402 CPUs at 2.8GHz and 512GB of RAM, 128GB of
which were assigned to hold the database buffer). The database server’s execu-
tion stack was set to 6MB, sufficient to hold the frames of all recursive UDFs in
our experiments.

Reducing Function Call Overhead (No Memoization). Compilation into CTE
form yields iterative SQL queries that do not perform recursive UDF invocations.
The saved function call overhead (see Fig. 3) is the runtime reduction we are after.
Indeed, we find this overhead to account for 95% of the overall runtime of SQL
queries Q that invoke the UDFs repeatedly with random arguments (averaged
across all UDFs, see column Overhead). It is now apparent that Fig. 3 painted
2 https://github.com/FP-on-Top-of-SQL-Engines/Code.

https://github.com/FP-on-Top-of-SQL-Engines/Code

Functional Programming on Top of SQL Engines 73

Fig. 14. Runtime of SQL query Q before and after UDF compilation, impact of CTE
optimizations.

an optimistic picture: the eval phases of useful work tend to make up no more
than 1/20 of Q’s overall timespan tω − tα.

Even without memoization or the optimizations of Sect. 3.2 enabled, UDF
compilation brings this overhead down to an average of about 8%. The remaining
overhead is to be attributed to Q’s invocation of the non-recursive UDF that
wraps the CTE (see Fig. 11). If this residual overhead is noticeable—e.g., for
computationally lightweight functions like fsm and paths or frequently-invoked
UDFs (mbrot is called 16 950 times by Q)—it may be advisable to inline the CTE
at the UDF call site(s) in Q. This significant reduction of the call overhead is
reflected by column Time/Call which reports on the average runtime per top-
level function call before and after compilation. Call time reductions by a factor
of 10 are typical. For UDF vm, we even measure an improvement by factor 180:
vm is structured in terms of 9 conditional branches each of which handles one
kind of VM instruction. While the branches are mutually exclusive, all 9 contain
recursive calls to vm which are unfolded (once) and then planned during each
invocation. Post compilation, none of this effort remains.

Impact of Memoization. CTEs require time and space to construct union table U
and our approach to memoization (Sect. 3.1) aims to exploit this effort. (Aside:
tail-recursive functions need no stack and this also applies to their CTE form.
Regardless of recursion depth, UDFs mbrot, path, and vm only ever store the initial
closure record 〈z , �, �, �, �, �〉 of (∗) in column ks of tables W and U , keeping
table size and maintenance costs low.) Column memoize of Table 1 documents
the runtime impact of memoization once we enable it for a sequence of 15 000
calls to the compiled UDFs. Over time (from left to right), recursive invoca-
tions find their random arguments in table memo with increasing probability and,
as expected, call times go down. Memoization effects are beneficial across all
10 UDFs of Table 1. The behavior of dtw reflects our choice of arguments in this
particular case: the function is evaluated over time series of increasing length
and timings ramp up until the maximum sequence length has been reached—at

74 T. Burghardt et al.

this point, table memo has completely materialized the function [11]. Note that
for some UDFs, the effects of memoization only manifest after a larger number
of calls: for comps, timings develop like over the course of 150 000 invo-
cations.

Zooming in on UDFs marchand eval. In database application contexts, it is typical
for a SQL query Q to invoke a UDF multiple times. The plots of Fig. 14a and 14b
report the overall runtime of queries Q that perform between 50 and 5 000 top-
level invocations of UDFs march and eval, respectively. Both plots show the order
of magnitude runtime differences between UDFs () and their CTE equivalent
(). The experiment also reveals effects of the CTE optimizations sketched
in Sect. 3.2.

UDF march uses linear recursion to implement the Marching Squares algo-
rithm that traces the border of an object in the 2D plane [25]. Each step of the
recursion adds one point to the border, leading to recursion depths of up to 480
in our experiments (way beyond the depth limits that engines like Oracle or
SQL Server enforce). Once march is compiled into and evaluated as a CTE, we
thus find array-encoded continuation stacks of that same length in column ks of
tables W and U . When the CTE-based interpreter pushes onto those stacks and
embeds them in the next instruction to execute, PostgreSQL performs costly
array copy operations. The tabular continuation stack representation outside
W and U described in Sect. 3.2 avoids these copy costs and admits constant-
time push and pop. The runtime measurements in Fig. 14a manifest these
savings. In addition to sizable stacks, march has to cope with the construction of
a potentially large function result: ever longer arrays of border points accumu-
late in column res of the rows in union table U . The switch from WITHRECURSIVE
to WITHITERATE can avoid the associated row construction and table maintenance
effort (at the cost of disabling memoization), see in Fig. 14a.

Both optimizations only show negligble effects for eval, however. The UDF
performs bottom-up evaluation of subexpressions in a large arithmetic expression
tree. Here, the tree depth of 16 defines the maximum recursion depth. This leads
to short continuation stacks in column ks which are handled efficiently even in
their vanilla array representation: the tabular stack optimization does not pay off
(and overlap in Fig. 14b). Further, the CTE for eval holds comparatively
compact results of type numeric in column res of table U . The use of WITHITERATE
thus, too, only has marginally impact () and the system fares just fine with
the standard WITHRECURSIVE construct.

5 More Related Work

The tension between the sobering performance of UDFs and the growing need to
move computation closer to high-volume data [7,9], has led the DB community
to double down on its efforts to improve the runtime behavior of procedural SQL
code [5,14,18,33].

Recursive UDFs. The massive function call overhead in database engines has
prompted earlier work in which we pursued an (arguably more complex)

Functional Programming on Top of SQL Engines 75

two-phase compilation of recursive SQL UDFs [11]. This approach (1) slices the
UDF body to build a call graph (cf. Fig. 13) as an explicit tabular data struc-
ture, before (2) it uses a recursive CTE to schedule the bottom-up evaluation
of that graph. Access to the graph enabled optimizations like the sharing of
common subcomputations, but graph construction and maintenance resulted in
CTEs that are complex when compared to the simple interpreters emitted by
the present CPS-inspired compilation strategy.

R-SQL [3] divides recursive SQL functions into a pure-SQL core and an
database-external driver program (e.g., Python code). The latter then controls
the iterative in-database evaluation of the core, requiring repeated crossings of
the DB/PL border during query execution. Our SQL-to-SQL compilation scheme
exactly aims to avoid any passes through the infamous bottleneck between the
database engine and external language processors [32].

We argue that UDFs in functional style lead to compact and idiomatic for-
mulations of in-database computation. RaSQL [20] asks developers to express
algorithms directly in terms of generalized recursive CTEs that can be evalu-
ated efficiently provided that the resulting queries have the PreM property [39].
Recursive CTEs are expressive but their fixpoint semantics [4] and syntactic
complexity render them unapproachable for many developers. We would rather
bank on a compiler that generates CTEs for us.

Our focus has been on UDFs expressed in SQL, but the chain of compilation
steps (starting from “plain f ”, recall Fig. 4) is agnostic about the actual source
language. f could be formulated in Links [10], for example. In this case, boxes
would contain Links code which—once translated into SQL using the techniques
described by Cheney et al. in [8]—could be placed inside the generated recursive
CTE to emit a pure SQL equivalent of recursive Links functions (which were not
considered to be shreddable up to now).

Imperative SQL (PL/SQL, T-SQL). Evaluation of imperative code in PL/SQL
procedures (or its PL/pgSQL and T-SQL dialects) involves frequent switches
between plan-based query processing and statement-by-statement code inter-
pretation [12]. The resulting friction at runtime motivated work that transforms
PL/SQL procedures into pure SQL expressions that can be inlined with the call-
ing SQL query. Froid (and its successor Aggify) spearheaded research that aims
to compile PL/SQL away entirely [21,22,34]. Branching off the Froid work, we
devised a PL/SQL-to-SQL compiler that significantly extends the admissable
language constructs, arbitrarily nested iterative control flow, in particular [23].
The compiler emits CTE-based interpreters that resemble those of Sect. 3 and
improves PL/SQL runtime performance significantly.

6 Wrap-Up

We are positive that this SQL UDF compiler is more than a curious ramble
through FP land. The runtime savings of about 90% are significant. Applicability
is immediate since we pursue a non-invasive, source-level transformation that can
be implemented on top of any database engine with SQL:1999 support.

76 T. Burghardt et al.

This is work in flux and a variety of knobs remain to be tuned and turned.
Among these, we currently study batching which evaluates a UDF f for a set of
n arguments. Batching can be implemented by providing n initial instructions
(recall (∗)), one for each argument. Table W will then hold n (not 1) rows during
CTE processing such that, effectively, n calls to f are evaluated in tandem.
Batching will bring down the number of plan context switches between calling
query Q and f once more and also opens up opportunities for parallel function
call evaluation.

References

1. Appel, A.: Compiling with Continuations. Cambridge University Press (1992).
https://doi.org/10.1017/CBO9780511609619

2. Appel, A.: SSA is functional programming. ACM SIGPLAN Not. 33(4) (1998).
https://doi.org/10.1145/278283.278285

3. Aranda, G., Nieva, S., Sáenz-Pérez, F., Sánchez-Hernández, J.: R-SQL: an SQL
database system with extended recursion. Electron. Commun. EASST 64 (2013)

4. Bancilhon, F.: Naive evaluation of recursively defined relations. In: Brodie, M.L.,
Mylopoulos, J. (eds.) On Knowledge Base Management Systems, pp. 165–178.
Springer, New York (1986). https://doi.org/10.1007/978-1-4612-4980-1_17

5. Binnig, C., Behrmann, R., Faerber, F., Riewe, R.: FunSQL: it is time to make SQL
functional. In: Proceedings of the EDBT/ICDT DanaC, Berlin, Germany, March
2012. https://doi.org/10.1145/2320765.2320786

6. Bird, R.: Tabulation techniques for recursive programs. ACM Comput. Surv. 12(4)
(1980). https://doi.org/10.1145/356827.356831

7. Boehm, M., Kumar, A., Yang, J.: Data Management in Machine Learning Systems.
Synthesis Lectures on Data Management, Morgan & Claypool (2019). https://doi.
org/10.2200/S00895ED1V01Y201901DTM057

8. Cheney, J., Lindley, S., Wadler, P.: Query shredding: efficient relational evaluation
of queries over nested multisets. In: Proceedings of the SIGMOD (2014). https://
doi.org/10.1145/2588555.2612186

9. Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J., Welton, C.: MAD skills: new
analysis practices for big data. Proc. VLDB 2(2) (2009). https://doi.org/10.14778/
1687553.1687576

10. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: Links: web programming without
tiers. In: Proceedings of the FMCO, Amsterdam, The Netherlands (2006). https://
doi.org/10.1007/978-3-540-74792-5_12

11. Duta, C., Grust, T.: Functional-style SQL UDFs with a capital ‘F’. In: Proceedings
of the SIGMOD (2020). https://doi.org/10.1145/3318464.3389707

12. Duta, C., Hirn, D., Grust, T.: Compiling PL/SQL away. In: Proceedings of the
CIDR (2020)

13. Eisenberg, A., Melton, J.: SQL:1999, formerly known as SQL3. ACM SIGMOD
Rec. 28(1) (1999). https://doi.org/10.1145/309844.310075

14. Emani, K., Ramachandra, K., Bhattacharya, S., Sudarshan, S.: Extracting equiv-
alent SQL from imperative code in database applications. In: Proceedings of the
SIGMOD, San Francisco, CA, USA, June 2016. https://doi.org/10.1145/2882903.
2882926

https://doi.org/10.1017/CBO9780511609619
https://doi.org/10.1145/278283.278285
https://doi.org/10.1007/978-1-4612-4980-1_17
https://doi.org/10.1145/2320765.2320786
https://doi.org/10.1145/356827.356831
https://doi.org/10.2200/S00895ED1V01Y201901DTM057
https://doi.org/10.2200/S00895ED1V01Y201901DTM057
https://doi.org/10.1145/2588555.2612186
https://doi.org/10.1145/2588555.2612186
https://doi.org/10.14778/1687553.1687576
https://doi.org/10.14778/1687553.1687576
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1145/3318464.3389707
https://doi.org/10.1145/309844.310075
https://doi.org/10.1145/2882903.2882926
https://doi.org/10.1145/2882903.2882926

Functional Programming on Top of SQL Engines 77

15. Finkelstein, S., Mattos, N., Mumick, I., Pirahesh, H.: Expressive Recursive Queries
in SQL. Joint Technical Committee ISO/IEC JTC 1/SC 21 WG 3, Document
X3H2-96-075r1, March 1996

16. Floyd, R.: Algorithm 97: shortest path. Commun. ACM 5(6) (1962). https://doi.
org/10.1145/367766.368168

17. Ganz, S., Friedman, D., Wand, M.: Trampolined style. In: Proceedings of the ICFP,
Paris, France, September 1999. https://doi.org/10.1145/317636.317779

18. Gévay, G., Quiané-Ruiz, J.A., Markl, V.: The power of nested parallelism in big
data processing: hitting three flies with one slap. In: Proceedings of the SIGMOD,
Xi’an, Shaanxi, China, June 2021. https://doi.org/10.1145/3448016.3457287

19. Graefe, G.: Volcano–an extensible and parallel query evaluation system. IEEE
TKDE 6(1) (1994). https://doi.org/10.1109/69.273032

20. Gu, J., et al.: RaSQL: greater power and performance for big data analytics with
recursive-aggregate-SQL on spark. In: Proceedings of the 38th SIGMOD Confer-
ence, Amsterdam, The Netherlands, June 2019. https://doi.org/10.1145/3299869.
3324959

21. Gupta, S., Purandare, S., Ramachandra, K.: Aggify: lifting the curse of cursor
loops using custom aggregates. In: Proceedings of the SIGMOD, Portland, OR,
USA, June 2020. https://doi.org/10.1145/3318464.3389736

22. Hirn, D., Grust, T.: PL/SQL without the PL. In: Proceedings of the SIGMOD
(2020). https://doi.org/10.1145/3318464.3384678

23. Hirn, D., Grust, T.: One WITH RECURSIVE is worth many GOTOs. In: Proceedings of
the SIGMOD (2021). https://doi.org/10.1145/3448016.3457272

24. Lawson, C.: How functions can wreck performance. Oracle Mag. IV(1) (2005).
http://www.oraclemagician.com/mag/magic9.pdf

25. Maple, C.: Geometric design and space planning using the marching squares and
marching cube algorithms. In: Proceedings of the Geometric Modeling and Pro-
cessing, London, UK (2003). https://doi.org/10.1109/GMAG.2003.1219671

26. Michie, D.: “Memo” functions and machine learning. Nature 218(306) (1968).
https://doi.org/10.1038/218019a0

27. Microsoft SQL Server 2019 Documentation. http://docs.microsoft.com/en-us/sql
28. MySQL 8.0 Documentation. http://dev.mysql.com/doc/
29. Oracle 19c Documentation. http://docs.oracle.com/
30. Passing, L., et al.: SQL- and operator-centric data analytics in relational main-

memory databases. In: Proceedings of the EDBT, Venice, Italy (2017)
31. L PostgreSQL (version 13) Documentation. http://www.postgresql.org/docs/13/
32. Raasveldt, M., Mühleisen, H.: Data management for data science: towards embed-

ded analytics. In: Proceedings of the CIDR (2020)
33. Ramachandra, K., Chavan, M., Guravannavar, R., Sudarshan, S.: Program trans-

formations for asynchronous and batched query submission. IEEE TKDE 27(2)
(2015). https://doi.org/10.1109/TKDE.2014.2334302

34. Ramachandra, K., Park, K., Emani, K., Halverson, A., Galindo-Legaria, C., Cun-
ningham, C.: Froid: optimization of imperative programs in a relational database.
Proc. VLDB 11(4) (2018). https://doi.org/10.1145/3186728.3164140

35. Reynolds, J.: Definitional interpreters for higher-order programming languages. In:
Proceedings of the ACM (1972). https://doi.org/10.1145/800194.805852

36. Rowe, L., Stonebraker, M.: The POSTGRES data model. In: Proceedings of the
VLDB, Brighton, UK, September 1987

37. SQL:1999 Standard: Database Languages-SQL-Part 2: Foundation, ISO/IEC 9075–
2:1999

https://doi.org/10.1145/367766.368168
https://doi.org/10.1145/367766.368168
https://doi.org/10.1145/317636.317779
https://doi.org/10.1145/3448016.3457287
https://doi.org/10.1109/69.273032
https://doi.org/10.1145/3299869.3324959
https://doi.org/10.1145/3299869.3324959
https://doi.org/10.1145/3318464.3389736
https://doi.org/10.1145/3318464.3384678
https://doi.org/10.1145/3448016.3457272
http://www.oraclemagician.com/mag/magic9.pdf
https://doi.org/10.1109/GMAG.2003.1219671
https://doi.org/10.1038/218019a0
http://docs.microsoft.com/en-us/sql
http://dev.mysql.com/doc/
http://docs.oracle.com/
http://www.postgresql.org/docs/13/
https://doi.org/10.1109/TKDE.2014.2334302
https://doi.org/10.1145/3186728.3164140
https://doi.org/10.1145/800194.805852

78 T. Burghardt et al.

38. Sussmann, G., Steel, G.: Scheme: an interpreter for extended lambda calculus. AI
Memo (349) (1975)

39. Zaniolo, C., Yang, M., Das, A., Shkapksy, A., Condie, T., Interlandi, M.: Fixpoint
semantics and optimization of recursive datalog programs with aggregates. Theory
Pract. Log. Program. 17(5–6) (2017). https://doi.org/10.1017/S1471068417000436

https://doi.org/10.1017/S1471068417000436

CircuitFlow: A Domain Specific Language
for Dataflow Programming

Riley Evans, Samantha Frohlich , and Meng Wang(B)

University of Bristol, Bristol, UK
meng.wang@bristol.ac.uk

Abstract. Dataflow applications, such as machine learning algorithms,
can run for days, making it desirable to have assurances that they will
work correctly. Current tools are not good enough: too often the inter-
actions between tasks are not type-safe, leading to undesirable runtime
errors. This paper presents a new declarative Haskell Embedded DSL
(eDSL) for dataflow programming: CircuitFlow. Defined as a Symmet-
ric Monoidal Preorder (SMP) on data that models dependencies in the
workflow, it has a strong mathematical basis, refocusing on how data
flows through an application, resulting in a more expressive solution
that not only catches errors statically, but also achieves competitive run-
time performance. In our preliminary evaluation, CircuitFlow outperforms
the industry-leading Luigi library of Spotify by scaling better with the
number of inputs. The innovative creation of CircuitFlow is also of note,
exemplifying how to create a modular eDSL whose semantics necessi-
tates effects, and where storing complex type information for program
correctness is paramount.

Keywords: eDSL · Domain-specific languages · Haskell · Dataflow
programming

1 Introduction

CircuitFlow’s domain is dataflow programming [7], which deals with process-
ing data through transformations with interlinking dependencies. Inputs are
transformed into outputs by tasks, organised into workflows taking the form of
Directed Acyclic Graphs (DAGs) encoding dependencies, where the directional-
ity indicates the direction the data is flowing, and the acyclicity ensures that the
data doesn’t go round in circles. Dataflow programming is highly applicable with
numerous uses spanning from scientific data analysis [10,20] to machine learn-
ing [1,41]. Examples include Data Pipelines, CI Systems, Quartz Composer [17]
and Spreadsheets. It also has the following benefits:

Declarative. Describing the shape of the DAG instead of just indicating the
connections, provides a more user-friendly and declarative experience.

c© Springer Nature Switzerland AG 2022
J. Cheney and S. Perri (Eds.): PADL 2022, LNCS 13165, pp. 79–98, 2022.
https://doi.org/10.1007/978-3-030-94479-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94479-7_6&domain=pdf
http://orcid.org/0000-0002-4423-6918
http://orcid.org/0000-0001-7780-630X
https://doi.org/10.1007/978-3-030-94479-7_6

80 R. Evans et al.

Implicit Parallelism. Since each node in a dataflow is a pure function, it is
possible to parallelise implicitly. The purity of the nodes means that outside of
data dependencies encoded in the dataflow graph, no node can interact with
another. Thus eliminating the ability for a deadlock to occur.

Visual. The dataflow paradigm uses graphs. This provides the programs with
a visual interpretation, allowing end-user programmer to reason visually about
how data passes through the program, much easier than in an imperative app-
roach [15].

Existing dataflow libraries such as Spotify’s Luigi [33] or Apache’s Airflow [2]
have no mechanism to ensure the dependencies are valid. There is no static
checking that the connections in the graph match up, which could cause runtime
crashes, or even worse, the bug could go unnoticed and cause havoc in later tasks.
Consider an example shown in the docs for Luigi [34] that is made up of two tasks:
the first, GenerateWords, generates a list of words and saves it to a file; and the
second, CountLetters, counts the number of letters in each of those words. An
implementation of this in Luigi could have a very subtle bug! GenerateWords
could write the words to a file separated by new lines, while CountLetters
expects a comma-separated list. This shows a key flaw in this system, as it is
up to the programmer to ensure that they write the outputs correctly, and then
that they read that same file in the same way. This error, would not even cause a
run-time error, instead, it will just produce the incorrect result. For a developer,
this is extremely unhelpful: it means more time is used writing tests—something
that no one enjoys. With good development practices, the risk is reduced, but as
functional programmers, we know a better way: abstraction and static typing.

Why not eliminate all of this with an abstraction of the reading and writing of
many different sources and types? The abstraction will help to ensure correctness
of passing data via files by eliminating any possible duplicated code. Instead, just
having a uniform interface to test. Then the abstract interface can be combined
with the type system so that in each program, it is enforced that the types align.

This promotes the need for a new solution with such features that can safely
compose tasks and make use of types to perform static analysis to ensure that
dependencies are valid.

We present CircuitFlow, which takes a different line of attack from its prede-
cessing plumbers like Luigi: rather than focus on how to compose tasks together,
it defines a declarative language that describes how data flows through a work-
flow. In CircuitFlow, it would not be possible to feed the output of one task, with
the type FileStore [String] into a task that expects a CommaSepFile [String]. The
same example, written in CircuitFlow, is defined as:

generateWords :: Circuit ′[Var] ′[()] ′[FileStore] ′[[String]] N1
generateWords = functionTask (const ["apple", "banana", "grapefruit"])
countLetters :: Circuit ′[CommaSepFile] ′[[String]] ′[FileStore] ′[[String]] N1
countLetters = functionTask (map f)

where
f word = (concat [word, ":", show (length word)])

CircuitFlow 81

circuit :: Circuit ′[Var] ′[()] ′[FileStore] ′[[String]] N1
circuit = generateWords <−> countLetters

In this example, it will fail to compile, giving the error:
> Couldn’t match type ‘CommaSepFile’ with ‘FileStore’

Benefiting the user since the feedback loop of knowing if the program will succeed
is reduced. Previously, the whole data pipeline had to be run, whereas now this
information is available at compile-time.

Due to the type heft required for such a language, which includes
DataKinds [39], Singletons [9], Type Families [32], Heterogeneous lists [19],
Phantom Types (a brief introduction of which can be found in Appendix A
of an extended version of this manuscript [11]), it will be embedded.

CircuitFlow draws its origins from monoidal resource theory [6], details of
which can be found in Appendix C [11]. It is then compiled down to a Kahn
Process Network (KPN) that executes the workflow in parallel, to provide the
speed benefits of multi-core processors. The KPN used by CircuitFlow is capable
of handling an exception in a task, without causing the full network to crash,
allowing computation to continue after for successive inputs.

Contributions: A declarative eDSL for creating dataflow programs that:

– employs state of the art DSL design techniques, including indexed data types
à la carte and principled recursion to provide interpretations for the AST.

– uses state of the art Haskell methods to produce a type-safe implementation.
– makes use of indexed functors, extended to support multiple indicies, to con-

struct a type-indexed AST in conjunction with an indexed monadic catamor-
phism to provide a type-safe translation to a KPN.

– has a strong mathematical grounding in monadic resource theories providing
confidence that the language can represent all dataflow diagrams.

– has appealing preliminary benchmark performance against another compet-
ing library—outperforming Luigi by almost 4x on large numbers of inputs.

– exemplifies how to create such a language in a modular manner.
– uses the first known implementation of a Kahn Process Network in Haskell.

Examples that demonstrate the language’s applicability:

– Machine learning: preprocessing of real world song data in comparison to
Spotify’s Luigi.

– Build systems: the thesis this paper is based on was compiled using CircuitFlow
(details in Appendix B [11]).

2 CircuitFlow Language

A use case for CircuitFlow is building data pipelines for machine learning. Con-
sider the example where an audio streaming service would like to create a playlist
full of new songs to listen to. This could require a machine learning model that

82 R. Evans et al.

can predict songs based on the top ten artists and songs that the user has lis-
tened to over the last three months. However, each of the months’ data is stored
in different files that need aggregating together before they can be input into
the model. This problem can be drawn up as a dataflow diagram like Fig. 1. To
achieve this preprocessing, a software developer at said audio streaming service
would need to use the following key features of the CircuitFlow language.

Month 1

Month 2

Month 3

AggSongs

AggArtists

Top10

Top10

T10 Songs

T10 Artists

Fig. 1. A dataflow diagram for pre-processing the song data

2.1 DataStores

Dataflow programming revolves around transforming inputs into outputs. Thus
the first thing the language needs is a way of getting inputs and writing outputs.
For the preprocessing example, this corresponds to a way of interfacing with
the different months of song data; a way to pass on the aggregated songs and
artists to the top ten calculators; and finally somewhere to store the preprocessed
output ready for the machine learning model. In CircuitFlow, DataStores are used
to pass values between different tasks, in a closely controlled manner. To abstract
over the different ways of storing data, they are defined as a type class:

class DataStore f awhere
fetch :: f a → IO a
save :: f a → a → IO ()
empty :: TaskUUID → JobUUID → IO (f a)

The type class provides a way of extracting a value from a DataStore (fetch), a
way to write to one (save), and a way of creating an empty one for a specific
task. Although the user can define their own, the library comes with predefined
DataStores, the simplest is a Var, based on MVars (mutable locations).

newtype Var a = Var {unVar :: MVar a} deriving (Eq)
instance DataStore Var awhere

fetch = readMVar · unVar
save = putMVar · unVar
empty = Var <$> newEmptyMVar

Var doesn’t use its id arguments in empty, however, other predefined stores, such
as FileStore and CSVStore, use them to decide where to place the files created.

CircuitFlow 83

Combined DataStores. A special case of a DataStore, they allow the interfacing
with typed lists, not just a single type. The typed list is a variation on HLists:
IHList (defined below). Combined data stores are automatically derived from
existing DataStore instances, making it easier for tasks to fetch from multiple
inputs by supplying fetch’. (Since tasks can only have one output, there is no
need for a save’ function.)

data IHList (fs :: [∗ → ∗]) (as :: [∗]) where
HCons’ :: f a → IHList fs as → IHList (f ′: fs) (a ′: as)
HNil’ :: IHList ′[] ′[]

class DataStore′ (fs :: [∗ → ∗]) (as :: [∗]) where
fetch’ :: IHList fs as → IO (HList as)
empty’ :: TaskUUID → JobUUID → IO (IHList fs as)

2.2 Circuit Type

A Circuit represents some computation that has some number of inputs and
outputs. In order to statically check dependencies, the Circuit type needs to
store a lot of information.

Circuit (insContainerTypes :: [∗ → ∗]) (insTypes :: [∗])
(outsContainerTypes :: [∗ → ∗]) (outsTypes :: [∗]) (nIns :: Nat)

It has five type parameters: insContainerTypes, a type-list of storage types, for
example ′[VariableStore,CSVStore]; insTypes, a type-list of the types stored in
the storage, for example ′[Int, [(String,Float)]]; outsContainerTypes and outsTypes
mirror that the examples above, but for the outputs instead. The container and
value types are separate, due to the need for them to be “unapplied” for the
DataStore typeclass. Unfortunately, GHC requires a little more information to
perform this match check, such as the seemingly superfluous nIns, a type-level
Nat that is the length of the input lists.

2.3 Circuit Constructors

Above shows the core constructors of the language along with their diagrammatic
representation. Here the relation to resource theories is apparent, the construc-
tors in this library make up a SMP, establishing them as a resource theory able
to represent any DAG. More details can be found in appendices C and D [11].

84 R. Evans et al.

The diagrammatic interpretation also makes translation from dataflow diagrams,
such as Fig. 1, to CircuitFlow code easy.

In the language, there are two types of constructors: those that create basic
circuits and those that compose them. The behaviour of the constructor is
recorded within the types. Here are the types of some basic circuits:

id :: DataStore′ ′[f] ′[a] ⇒ Circuit ′[f] ′[a] ′[f] ′[a] N1
replicate :: DataStore′ ′[f] ′[a] ⇒ Circuit ′[f] ′[a] ′[f, f] ′[a, a] N1

Consider the id constructor, for convenience the nins parameter is shorted with
type synonyms, e.g. N1∼′Succ ′Zero. It can be seen how the type information
for this constructor states that it has 1 input value of type f a and it returns
that same value. Each type parameter in id is a phantom type, since there are
no values stored in the data type that use the type parameters. The replicate
constructor states that a single input value of type f a should be input, and that
value should then be duplicated and output. There is also a swap constructor that
takes two values as input and swaps their order, and dropL/dropR constructors
that will take two inputs and drop the left or the right one respectively.

To use these basic circuits, CircuitFlow provides two constructors named
‘beside’ and ‘then’ to compose circuits. The definition of these constructors will
require type level calculations. This is where closed type families [8] come in,
allowing for type level versions of (+) and (++) [19] (requiring PolyKinds [39]).

The ‘Then’ Constructor, denoted by <−>, is used run one circuit, then
another, encapsulating the idea of dependencies. Through types, it enforces that
the output of the first circuit is the same as the input to the second circuit.

(<−>) :: (DataStore′ fs as,DataStore′ gs bs,DataStore′ hs cs)
⇒ Circuit fs as gs bs nfs → Circuit gs bs hs cs ngs → Circuit fs as hs cs nfs

It employs a similar logic to function composition (·) :: (a → b) → (b → c) →
(a → c). The resulting type from this constructor uses the input types from the
first argument fs as, and the output types from the second argument hs cs. It
then forces the constraint that the output type of the first argument and the
input type of the second are the same—gs bs.

The ‘Beside’ Constructor, denoted by <> is used to run two circuits at the
same time. The resulting Circuit has the types of the two circuits appended
together.

(<>) :: (DataStore′ fs as,DataStore′ gs bs,DataStore′ hs cs,DataStore′ is ds)
⇒ Circuit fs as gs bs nfs → Circuit hs cs is ds nhs
→ Circuit (fs :++ hs) (as :++ cs) (gs :++ is) (bs :++ ds) (nfs :+nhs)

This constructor works by making use of the :++ type family to append the input
and output type list of the left constructor to those of the right constructor. It
also makes use of the :+ type family to sum the number of inputs.

CircuitFlow 85

Tasks are made using a smart constructor task, which requires a type level
Length. To save boiler-plate, CircuitFlow also provides more handy task smart
constructors such as functionTask. This particular smart constructor allows a
simple a → b function to be promoted to a task. It comes in useful returning
to the music preprocessing example as it simplifies the definition of a task that
finds the top ten songs or artists: functionTask (take 10).

2.4 CircuitFlow in Action

preProcPipeline = organiseIns <−> ((aggSongs <−> top10 "t10s.csv")
<> (aggArtists <−> top10 "t10a.csv"))

The above CircuitFlow circuit solves the music processing example. organiseIns
replicates the input values so that they are passed into both aggSongs and
aggArtists. Again, it can be seen how this structure of tasks directly correlates
with the dataflow diagram previously seen in Fig. 1. This helps to make it easier
when designing circuits as it can be constructed visually level by level.

2.5 mapC Operator

Currently a circuit has a static design: once created it cannot change. There are
times when this could be a flaw in the language. For example, when there is a
dynamic number of inputs. CircuitFlow’s mapC allows for dynamic circuits. This
constructor maps a circuit on an input containing a list of items. The input is
fed one at a time into the inner circuit, accumulated back into a list, and then
output.

mapC :: (DataStore′ ′[f] ′[[a]],DataStore g [b])
⇒ Circuit ′[Var] ′[a] ′[Var] ′[b] N1 → Circuit ′[f] ′[[a]] ′[g] ′[[b]] N1

3 CircuitFlow Under the Hood

This section explores the embedding of the CircuitFlow language into Haskell and
how it is translated down to be executed.

3.1 Circuit API

The constructors for the language are actually smart constructors [35], providing
a more elegant way to build the AST that represents the circuit. They bring the
benefits of extensibility and modularity usually found in a shallow embedding,
while still having a fixed core AST that can be used for interpretation.

86 R. Evans et al.

IFunctor. The fixed core AST is implemented via a jacked up version of the
traditional capturing of an abstract datatype as a fixed Functor story [13]. Instead
of Functor, a type class called IFunctor [26] (also known as HFunctor [18]) is used
as it is able to maintain the type indices, which in the case of CircuitFlow, are the
all important dependency phantom type parameters. IFunctor can be thought of
as a Functor transformer: it is able to change the structure of a Functor, whilst
preserving the values inside it. IFunctors can also be used to mark recursive
points of data types, as long as they are paired with a matching IFix to tie the
recursive knot. As Circuit has five type parameters, it needs IFunctor5 and IFix5.

type (�) f g = ∀a.f a → g a

class IFunctor iFwhere
imap :: (f � g) → iF f � iF g

newtype IFix iF a
= IIn (iF (IFix iF) a)

class IFunctor5 iFwhere
imap5

:: (∀a ... e.f a ... e → g a ... e)
→ iF f a ... e → iF g a ... e

newtype IFix5 iF a ... e
= IIn5 (iF (IFix5 iF) a ... e)

Indexed Data Types à la Carte. When building an eDSL one problem that
becomes quickly prevalent is the so called Expression Problem [37]. A popu-
lar solution is Data types à la carte [36]: it combines constructors using the
co-product of their signatures. This technique makes use of standard functors,
however, an approach using IFunctors is described in Compositional data types [3].
This approach is upgraded further to add support for five type indices:

data (iF :+: iG) (f’ :: i → j → k → l → m → ∗) (a :: i) ... (e :: m)
= L :: iF f’ a ... e → (iF :+: iG) f’ a ... e | R :: iG f’ a ... e → (iF :+: iG) f’ a ... e

Using the :+: operator comes with problem of many L’s and R’s, when creat-
ing the AST. The solution, extended from [36] to also accommodate five type
parameters, is to introduce a type class :≺: that injects them automatically.

Data types for each constructor can now be defined individually. The Then
(<−>) constructor is used as an example, however, the process can be applied to
all constructors in the language.

data Then (iF :: [∗ → ∗] → [∗] → [∗ → ∗] → [∗] → Nat → ∗)
(insS :: [∗ → ∗]) (insT :: [∗])
(outsS :: [∗ → ∗]) (outsT :: [∗]) (nins :: Nat) where

Then :: (DataStore′ fs as,DataStore′ gs bs,DataStore′ hs cs)
⇒ iF fs as gs bs nfs → iF gs bs hs cs ngs → Then iF fs as hs cs nfs

Each iF denotes the recursive points in the data type, with the subsequent type
arguments mirroring those seen in Sect. 2.3. A corresponding IFunctor5 instance
formalises the points of recursion, by describing how to transform the structure
inside it. The smart constructor, that injects the L’s and R’s automatically can
be defined for Then adding one extra constraint, to the constructor defined in
Sect. 2.3 (Then :≺: iF), allowing the smart constructor to produce a node in the
AST for any sum of data types, that includes the Then data type.

CircuitFlow 87

Representing a Circuit. Once each constructor has been defined, they can be
combined together to form the CircuitF type to represent a circuit. IFix5 then
ties the recursive knot to define the Circuit type.

type CircuitF = Id :+: Replicate :+: Then :+: ... :+: Task :+: Map
type Circuit = IFix5 CircuitF

Now that it is possible to build a Circuit, which can be considered a specification
for how to execute a set of tasks, there needs to be a mechanism in place to
execute the specification.

3.2 Network Typeclass

A Network represents a mechanism for executing the computation described by a
Circuit. To allow for multiple execution mechanisms, a Network type class defines
the key features each network requires:

class Network nwhere
startNetwork :: Circuit insS insT outsS outsT nIns

→ IO (n insS insT outsS outsT)
stopNetwork :: n insS insT outsS outsT → IO ()
write :: IHList insS insT → n insS insT outsS outsT → IO ()
read :: n insS insT outsS outsT → IO (IHList outsS outsT)

This type class requires that a network has 4 different functions: startNetwork
is responsible for converting the circuit into the underlying representation for a
process network: it will be discussed in more detail in Sect. 3.4; stopNetwork is for
cleaning up the network after it is no longer needed. For example, stopping any
threads running. This could be particularly important if embedding a circuit into
a larger program, where unused threads could be left hanging; write should take
some input values and add them into the network, so that they can be processed;
read should retrieve some output values from the network. nIns is required for
the translation of Circuit to Network, therefore it is not included in the type of a
network.

3.3 The Basic Network Representation

A BasicNetwork is an implementation of a Network that uses a Kahn Process
Network (KPN). This means that each task in a circuit will run on its own
separate thread, with inputs being passed between them on unbounded channels
(from Control.Concurrent). A BasicNetwork stores the multiple input and output
channels, to do so it leverages a special case of IHList.

data PipeList (fs :: [∗ → ∗]) (as :: [∗]) where
PipeCons :: Chan (f a) → PipeList fs as → PipeList (f ′: fs) (a ′: as)
PipeNil :: PipeList ′[] ′[]

88 R. Evans et al.

Using these PipeLists, BasicNetwork is defined using record syntax allowing for
named fields, with accessors automatically generated.

data BasicNetwork (insS :: [∗ → ∗]) (insT :: [∗])
(outsS :: [∗ → ∗]) (outsT :: [∗]) where

BasicNetwork :: {
threads :: Map TaskUUID ThreadId, -- allows threads to be managed
jobs :: Map JobUUID JobStatus, -- avoids duplicate job UUIDs
ins :: PipeList inpS inpT, -- to feed in inputs
outs :: PipeList outsS outsT -- to retrieve outputs

} → BasicNetwork inS insT outsS outsT

The Network type instance for a BasicNetwork is relatively trivial to implement
using Control.Monad’s forM if given a function to transform a Circuit to it.

instance Network BasicNetworkwhere
startNetwork = buildBasicNetwork -- Defined soon...
stopNetwork n = forM (threads n) killThread
write uuid xs n = writePipes xs (ins n)
read n = readPipes (outs n)

The writePipes function will input a list of values into each of the respective
pipes. The readPipes function will make a blocking call to each channel to read
an output from it. This function will block till an output is read from every
output channel.

3.4 Translation to a BasicNetwork

There is now a representation for a Circuit that the user will build, and a repre-
sentation used to execute the Circuit. However, there is no mechanism to convert
between them. This can be achieved by folding the circuit data type into a net-
work. This fold, however, will need to create threads and channels, both of which
are IO actions, and of course it will also need to deal with the numerous type
parameters of Circuit. Such requirements lead to an exciting take on the cata-
morphism method for performing generalised folding of an abstract datatype.

Indexed Monadic Catamorphism. The use of a catamorphism removes the
recursion from any folding of the datatype. This means that the algebra can
focus on one layer at a time. This also ensures that there is no re-computation
of recursive calls, as this is all handled by the catamorphism. icata is able to
fold an IFix iF a and produce an item of type f a. It uses the algebra argument
as a specification of how to transform a single layer of the datatype. Normal
catamorphisms can use monadic computations if defined as follows:

cataM :: (Traversable f,Monad m) ⇒ (∀a.f a → m a) → Fix f → m a
cataM algM (In x) = algM =<< mapM (cataM algM) x

CircuitFlow 89

This monadic catamorphism [12] follows a similar pattern to a standard catamor-
phism, but instead uses functions such as a monadic map—mapM ::Monad m ⇒
(a → mb) → f a → m (f b). This allows the monadic catamorphism to be applied
recursively on the data type being folded.

A similar technique can also be applied to indexed catamorphisms to gain a
monadic version [3], however, to do so an indexed monadic map has to be intro-
duced. imapM is the indexed equivalent of mapM, it performs a natural trans-
formation, but is capable of also using monadic computation. This is included
in the IFunctor type class, and facilitates the definition of icataM.

For Circuit, there is one final step that needs to be done: accommodating the
five type parameters. To do this, IFunctor’s imapM gets gifted the type parameters
to complete the IFunctor5 class and allow the definition of icataM5.

BuildNetworkAlg. The final piece of the translation puzzle is an algebra for
the fold. However, a standard algebra will not be able to complete this trans-
formation. Consider an example Circuit with two tasks executed in sequence:
task1 <−> task2. In a standard algebra, both sides of the Then constructor would
be evaluated independently. In this case it would produce two disjoint networks,
both with their own input and output channels. The algebra for Then, would
then need to join the output channels of task1 with the input channels of task2.
However, it is not possible to join channels together. Instead, the output chan-
nels from task1 need to be accessible when creating task2. This is referred to as
a context-sensitive or accumulating fold. An accumulating fold forms series of
nested functions, that collapse to give a final value once the base case has been
applied. A simple example of an accumulating fold could be, implementing foldl
in terms of foldr.

To be able to have an accumulating fold inside an indexed catamorphism a
carrier data type is required to wrap up this function. This carrier, which shall
be named AccuN, contains a function that when given a network that has been
accumulated up to that point, then it is able to produce a network including the
next layer in a circuit. This can be likened to the lambda function given to foldr,
when defining foldl. The type of the layer being folded will be Circuit a b c d e.

newtype AccuN n asS asT a b c d e = AccuN
{unAccuN :: n asS asT a b → IO (n asS asT c d)}

This newtype has two additional type parameters at the beginning, namely:
asS and asT. They represent the input types to the initial circuit. Since the
accumulating fold will work layer by layer from the top downwards, these types
will remain constant and never change throughout the fold.

Classy Algebra. To ensure that the approach remains modular, the algebra takes
the form of a type class: the interpretation of a new constructor is just a new
type class instance.

90 R. Evans et al.

class (Network n, IFunctor5 iF) ⇒ BuildNetworkAlg n iFwhere
buildNetworkAlg :: iF (AccuN n asS asT) bsS bsT csS csT nbs

→ IO ((AccuN n asS asT) bsS bsT csS csT nbs)

This algebra type class takes two parameters: n and iF. The n is constrained
to have a Network instance, this allows the same algebra to be used for defining
folds for multiple network types. The iF is the IFunctor that this instance is being
defined for, an example is Then or Id. This algebra uses the AccuN data type to
perform an accumulating fold. The input to the algebra is an IFunctor with the
inner elements containing values of type AccuN. The function can be retrieved
from inside AccuN to perform steps that are dependent on the previous, for
example, in the Then constructor.

The Initial Network. Given the use of an accumulating fold, one important
question needs to be answered: what happens on the first layer? The fold needs
an initialNetwork that has matching input and output types:

initialNetwork
:: ∀insS insT.(InitialPipes insS insT) ⇒ IO (BasicNetwork insS insT insS insT)

initialNetwork = do
ps ← initialPipes :: IO (PipeList insS insT)
return (BasicNetwork empty empty ps ps)

The InitialPipes type class constructs an initialPipes based on the type required
in the initial network.

The Translation. Now that the algebra type class, and the initial input to the
accumulating fold is defined, each instance of the type class can be defined.

Basic Constructors. There are several constructors that just manipulate the
output PipeList, these constructors are Id, Replicate, Swap, DropL, and DropR.
The Swap constructor takes two inputs and then swaps them over:

instance BuildNetworkAlg BasicNetwork Swapwhere
buildNetworkAlg Swap = return $ AccuN (λn → do

let PipeCons c1 (PipeCons c2 PipeNil) = outs n
return $ BasicNetwork

(threads n) (jobs n) (ins n)
(PipeCons c2 (PipeCons c1 PipeNil)))

The instance for Swap, defines a function wrapped by AccuN, that takes the
current accumulated network, up to this point. It then transforms the outputs by
swapping c1 and c2, and building a new BasicNetwork. All other leaf constructors
will follow this pattern.

CircuitFlow 91

Task. In a BasicNetwork, a task will run as a separate thread, to do this
forkIO :: IO () → IO ThreadId will be used. Using this function requires some
IO () computation to run, this will be defined by taskExecutor, which will read a
value from each of input channels, execute the task with those inputs, and then
write the output to the output channels. This computation is then repeated
forever. Making use of the taskExecutor, the algebra instance for Task is as:

instance BuildNetworkAlg BasicNetwork Taskwhere
buildNetworkAlg (Task t) = return $ AccuN (λn → do

out ← PipeCons <$> newChan <∗> return PipeNil
taskUUID ← genUnusedTaskUUID (threads n)
threadId ← forkIO (taskExecuter (Task t) taskUUID (outputs n) output)
return $ BasicNetwork

(M.insert taskUUID threadId (threads n)) (jobs n) (inputs n) output

This instance first creates a new output channel, this will be given to the task to
send its outputs on. It then forks a new thread with the computation generated
by taskExecutor. The executor is given the output values of the accumulated
network and the output channel, just created. The resulting network has the
same inputs, but now adds a new thread id to the list and the outputs set to be
the output channels from the task.

Then. The Then constructor is responsible for connecting circuits in sequence.
When converting this to a network, this will involve making use of the accumu-
lated network value to generate the next layer. The instance is defined as:

instance BuildNetworkAlg BasicNetwork Thenwhere
buildNetworkAlg (Then (AccuN fx) (AccuN fy))

= return $ AccuN (fx >=> fy)

This instance has an interesting definition: firstly it takes the accumulated net-
work n as input. It then uses the function fx, with the input n to generate a
network for the top half of the Then constructor. Finally, it takes the returned
network, from the top half of the constructor, and generates a network using the
function fy representing the bottom half of the constructor.

Beside. The Beside (<>) constructor places two circuits side by side. This is the
most tedious algebra to define as the accumulated network needs to be split in
half to pass to the two recursive sides of Beside. Details of its translation can be
found in Appendix E [11].

CircuitFlow also uses the ExceptT monad transformer to fail gracefully.

4 Benchmarks

We use the audio streaming example from Sect. 2 to perform the benchmarking.
It is also the main application domain of Luigi which we will compare with.

92 R. Evans et al.

Haskell benchmarks were taken using criterion [29]; Python 3.8.5 benchmarks
with pytest − benchmark [23]. Each benchmark is tested on thirteen different
numbers of inputs: 1, 10, 100, 200, then at intervals of 200 until 2000, with
measurements repeated and summarised as a mean average. Three months of one
of the author’s own audio history is used, to ensure that the data closely aligns
with the real world. This allows for the evaluation of how each implementation
scales with more inputs. All benchmarks take place on an Intel(R) Core(TM)
i5-4690 CPU at 3.50 GHz (4 cores and no hyper-threading), with 8 GB of RAM
booting Ubuntu 20.04.

Multi-core Haskell. By default the Haskell runtime does not enable multi-core
processing. Considering the aim of this project partly involves making CircuitFlow
run in parallel, multi-core processing is crucial. To enable this the -threaded
flag is set when building the binary. Then, using the runtime options, the number
of threads can be set by adding +RTS -N flags when running the binary. The -N
allows the runtime to select the optimal number of threads for the program.

Parallel vs Serial. The first test will ensure that CircuitFlow’s parallelisation
has a positive effect on run-times. To ensure that the test is fair, the serial
implementation will make use of the same tasks in the pre-processing pipeline.
The inputs and outputs will just be manually fed into each task, in a sequential
way. The results show that CircuitFlow does indeed provide a performance gain,
with a mean speedup of 1.53x.

Profiling the circuit shows that a significant proportion of time is spend
reading CSV files. Optimising speed of CSV parsing and how often a CSV is read
via caching would improve runtime. Another area for improvement is that there
is an expectation on the user to know where is best to split up the workflow into
tasks. It would be beneficial if a circuit could automatically fuse tasks together,
then it would have a positive effect on the runtime.

0 500 1,000 1,500 2,000

0

100

200

Number of inputs

R
un

ti
m
e
(s
)

Single-core CircuitFlow
Serial

(a) Linear

0 500 1,000 1,500 2,000

0

200

400

600

Number of inputs

R
un

ti
m
e
(s
)

CircuitFlow
Luigi

(b) Vs Luigi

Fig. 2. CircuitFlow benchmarks

CircuitFlow 93

1 Core Circuit vs Serial. Another interesting scenario to test is checking
if the network structure adds additional overhead, in a situation where there
is only 1 core. To test this, the multi-core support of the Haskell runtime will
not be enabled: this will then simulate multiple cores with context switching.
Figure 2a, shows the results of this benchmark. It shows that both the linear and
single core implementation scale together in a linear fashion. Most importantly,
CircuitFlow only adds a minor overhead over a linear implementation. This will
be particularly helpful for a user which needs to run code on multiple types
of devices. There is no need for them to create a different implementation for
devices where parallelisation may not be possible.

CircuitFlow vs Luigi. The final benchmark on CircuitFlow is comparing it to
widely used library: Luigi by Spotify [33]. Since Luigi uses a Data Process Net-
work (DPN), it can use any number of threads: in this test it is set to 4—the
same as CircuitFlow. Figure 2b, shows the results of the benchmark.

This shows that CircuitFlow performs better than Luigi on larger numbers
of inputs. CircuitFlow scales linearly with the number of inputs, whereas Luigi’s
runtime appears to grow at a quicker rate than linear.

Why is CircuitFlow So Good? Luigi and CircuitFlow have their differences,
which will likely explain why there is a difference in run times, especially with
larger numbers of inputs.

More Lightweight. Luigi is a far more complex library with advanced features,
not included in CircuitFlow, that may slow Luigi down—one such feature is back
filling. This allows Luigi to avoid running tasks that have already been run. This
feature means that before executing a task the Luigi scheduler has to check if a
task has already been executed. This adds additional overhead to the scheduler
that CircuitFlow does not have. Although this feature does have its benefits, after
the first run of Luigi all run times after are very quick as no tasks will need to be
executed. If CircuitFlow were to implement this feature any overhead it adds will
be partially mitigated by the checks being distributed across multiple threads,
instead of in one central scheduler.

Computation Models. The two libraries use variants of the same computation
model: CircuitFlow uses a KPN and Luigi uses a DPN [22]. This difference is
the main reason why CircuitFlow scales linearly when it needs to process more
input values. CircuitFlow makes use of buffered channels to keep a queue of all
inputs that need to be processed. However, Luigi does not rely on this design,
instead it has a pool of workers with a scheduler controlling what is executed
on each worker. It is this scheduler that causes Luigi to scale non-linearly. As
the number of inputs grow, the scheduler will have to schedule more and more
tasks: this process is not O(n).

94 R. Evans et al.

Multi-processing in Python. CircuitFlow makes use of a static number of threads
defined by the number of tasks in a circuit. Luigi on the other hand can support
any number of workers, however, Luigi suffers from a downfall of Python: threads
cannot run in parallel due to the Global Interpreter Lock. To avoid this Luigi
uses processes not threads, which adds extra overhead. Luigi also creates a new
process for each invocation of a task, which CircuitFlow does not do. This means
that Luigi will start 8000 processes vs CircuitFlow’s 4 threads for the 2000 inputs
benchmark. CircuitFlow’s static number of threads could also be considered a
downside due to the lack of flexibility depending on run-time values. To combat
this more combinators can be introduced that allow for branching or other similar
operations, in fact, mapC is a combinator of this type.

5 Discussion and Related Work

In this section, we cover the embedding techniques that we build upon and how
our process can be replicated. We also discuss other popular workflow libraries
including imperative and functional ones, comparing them to CircuitFlow.

Summary of Embedding Techniques and their General Use. CircuitFlow, which
can be more generally be seen as an eDSL whose semantics needs to use effects
and has rich types to verify program correctness, has been created in a mod-
ular manner that doesn’t compromise on performance. The pivotal parts of
CircuitFlow’s creation can be replicated to produce such other eDSLs. The pro-
cess is one of three parts. The first is the curation of the type information. In
the case of CircuitFlow, this was dependency information, and was achieved using
Haskell’s approximation of dependant types (DataKinds [39] and Singletons [9]
for value promotion/demotion to/from the type level; Type Families [32] for
type information manipulation; and Heterogeneous lists [19] for, well, storing
more than one type in a list). The second act follows the same beats as the clas-
sic embedding story [13]: each construct is created as a separate fixed functor,
where all constructs can be composed together with the beloved Data types à la
carte, and semantics provided through a “classy” algebra. The story just needs
to be jacked up to accommodate the type information and effects, with the trick
being the switch to indexed functors [18,26] and a monadic catamorphism [12].
Finally, the choice of underlying semantics is key for speed as that is ultimately
what will be running. Our choice of KPNs assisted us greatly with CircuitFlow’s
competitive run-time.

Applicative Functors. An example of capturing parallelism in Haskell is to use
applicative functors [27]—a technique employed by the Haxl library [24]. This
approach can leverage the applicative combinators to group together compu-
tation that can be performed simultaneously. There is even the ApplicativeDo
language extension [25], which desugars do notation down to applicative combi-
nators. However, this approach suffers from some forced sequentiality at points.
Take the previously mentioned example Fig. 1, both top ten tasks would be

CircuitFlow 95

grouped together. Leading to neither task being able to begin until both aggre-
gations have been completed.

Arrows. Another method is arrows [16], used by Funflow based on Composing
Effects into Tasks and Workflows [30]. Arrows similarly are often used through
with the notation obtained from the language extension [31], which introduces
a do style notation. They also fall victim to the same problems as applicative
functors. Due to the constructor arr consuming a function, it is not possible to
inspect inside and fully exploit all cases of parallelisation.

The Funflow library that makes use of arrows, does so by noticing that tasks
in workflows are similar to effects in the functional community. It draws from
existing work on combining and analysing effects, with categories and arrows,
and applies this to constructing workflows.

Symmetric Monoidal Categories (SMCs). Linear Haskell is put to excellent use
in Evaluating Linear Functions to Symmetric Monoidal Categories [4] to address
the problem of over sequentialisation found in applicative functors and arrows. It
introduces a new SMC type class that allows for all parallelism to be exposed and
exploited in a workflow. The type class adds new combinators for linear Haskell
functions, that can be composed in a style that aligns with do notation. It uses
atomic types to detail the synchronisation points, and where synchronisation
can be discovered by a scheduler. However, it comes with the caveat that it can
only compose linear functions.

Pipes. [14] focuses on supporting steaming data, which is beneficial as there
is no need to wait for jobs to finish before moving on. This is something that
CircuitFlow is also designed to support without any modifications: a network can
be started and inputs can be streamed in when they are available.

Luigi [33]. Industry-favourite Luigi, used to orchestrate tasks in a data work-
flow, is a library that, as we have seen, falls into the trap of un-typed task
dependencies. It makes use of a central scheduler and workers, allowing work to
be distributed across multiple machines. It also comes with built-in support for
many different output formats, such as files in a Hadoop file system.

SciPipe [21]. An approach for orchestrating external jobs is taken by SciPipe, a
workflow library for agile development of complex and dynamic bioinformatics
pipelines. Unlike CircuitFlow and many other libraries, instead of defining tasks
as functions within the embedding language, SciPipe uses Bash commands to
easily interact with pre-existing binaries. This allows task to be written in the
language most suited for its requirements, however, comes with the downside
of the additional infrastructure required to create all these binaries for each
task. Due to the separation of tasks into bash scripts, type checking interactions
between tasks is significantly harder.

96 R. Evans et al.

Other Typed Dataflow Libraries. DryadLINQ [40] allows for developers to cre-
ate parallel programs in SQL-like LINQ expressions. Similarly to CircuitFlow,
these can be inspected to find any data-parallel sections and then automatically
translated into a distributed execution plan that can run on Dryad—although
CircuitFlow currently lacks a distributed network implementation. FlumeJava [5],
uses lazy evaluation of operations on parallel data structures, to build a dataflow
graph of the steps required. When the value is required the graph is optimised
to evaluate the operations in an optimal way. Unlike CircuitFlow, Naiad [28] can
execute cyclic dataflow programs. It does so on a distributed system, to help
with streaming data analysis or iterative machine learning training.

Staged Selective Parser Combinators [38]. Indexed functors [26], are a new tech-
nique for building typed eDSL. This paper makes use of this new tool to have a
type index representing the type of a parser. This allows it to make optimisations
and translations while ensuring that the value parsed never changes.

6 Conclusion

This paper introduced a new eDSL to declaratively construct data workflows,
which are type-safe and competitive in run-time performance. The design of
CircuitFlow draws its origins from a strong mathematical background, with each
constructor directly representing an axiom in a SMP. This demonstrates the lan-
guage’s completeness at being able to represent any DAG, that a data workflow
may need. The battle for type-safety without compromising run-time or modu-
lar design was a tough one, but one that can be replicated to great avail when
creating languages with a similar requirements.

Acknowledgements. The authors would like to thank Jamie Willis for his insights
while creating CircuitFlow and the anonymous reviewers for their constructive and
helpful comments.

The work is partly supported by EPSRC Grant EXHIBIT: Expressive High-
Level Languages for Bidirectional Transformations (EP/T008911/1) and Royal Society
Grant Bidirectional Compiler for Software Evolution (IESR3170104).

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
2016), pp. 265–283. USENIX Association, Savannah, November 2016

2. Apache: Airflow. http://airflow.apache.org
3. Bahr, P., Hvitved, T.: Compositional data types. In: Proceedings of the Seventh

ACM SIGPLAN Workshop on Generic Programming, WGP 2011, pp. 83–94. Asso-
ciation for Computing Machinery, New York (2011)

4. Bernardy, J.P., Spiwack, A.: Evaluating linear functions to symmetric monoidal
categories. In: Proceedings of the 14th ACM SIGPLAN International Symposium
on Haskell, Haskell 2021, pp. 14–26. Association for Computing Machinery, New
York (2021)

http://airflow.apache.org

CircuitFlow 97

5. Chambers, C., et al.: Easy, efficient data-parallel pipelines. In: ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), 2 Penn
Plaza, Suite 701 New York, NY 10121–070, pp. 363–3751 (2010)

6. Coecke, B., Fritz, T., Spekkens, R.W.: A mathematical theory of resources. Inf.
Comput. 250, 59–86 (2016)

7. Dennis, J.B., Misunas, D.P.: A preliminary architecture for a basic data-flow pro-
cessor. In: Proceedings of the 2nd Annual Symposium on Computer Architecture,
ISCA 1975, pp. 126–132. Association for Computing Machinery, New York (1974)

8. Eisenberg, R.A., Vytiniotis, D., Peyton Jones, S., Weirich, S.: Closed type families
with overlapping equations. In: Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2014, pp. 671–683.
Association for Computing Machinery, New York (2014)

9. Eisenberg, R.A., Weirich, S.: Dependently typed programming with singletons. In:
Proceedings of the 2012 Haskell Symposium, Haskell 2012, pp. 117–130. Associa-
tion for Computing Machinery, New York (2012)

10. Erdmann, M., Fischer, B., Fischer, R., Rieger, M.: Design and execution of make-
like, distributed analyses based on spotify’s pipelining package Luigi. J. Phys. Conf.
Ser. 898, 072047 (2017)

11. Evans, R., Frohlich, S., Wang, M.: CircuitFlow: a domain specific language for
dataflow programming (with appendices) (2021)

12. Fokkinga, M.: Monadic maps and folds for arbitrary datatypes. Memo-
randa Informatica (94–28), June 1994. Imported from EWI/DB PMS [db-
utwente:tech:0000003538]

13. Gibbons, J., Wu, N.: Folding domain-specific languages: deep and shallow embed-
dings (functional pearl). In: Proceedings of the ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 49, August 2014

14. Gonzalez, G.: Pipes. https://hackage.haskell.org/package/pipes
15. Hils, D.D.: Visual languages and computing survey: data flow visual programming

languages. J. Vis. Lang. Comput. 3, 69–101 (1992)
16. Hughes, J.: Generalising monads to arrows. Sci. Comput. Program. 37(1), 67–111

(2000)
17. Inc, A.: Quartz composer user guide, July 2007
18. Johann, P., Ghani, N.: Foundations for structured programming with GADTs. In:

Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 2008, pp. 297–308. Association for Com-
puting Machinery, New York (2008)

19. Kiselyov, O., Lämmel, R., Schupke, K.: Strongly typed heterogeneous collections.
In: Proceedings of the 2004 ACM SIGPLAN Workshop on Haskell, Haskell 2004,
pp. 96–107. Association for Computing Machinery, New York (2004)

20. Kotliar, M., Kartashov, A.V., Barski, A.: CWL-Airflow: a lightweight pipeline
manager supporting Common Workflow Language. GigaScience 8(7), giz084 (2019)

21. Lampa, S., Dahlö, M., Alvarsson, J., Spjuth, O.: SciPipe: a workflow library for
agile development of complex and dynamic bioinformatics pipelines. GigaScience
8(5), giz044 (2019)

22. Lee, E.A., Parks, T.M.: Dataflow process networks. Proc. IEEE 83(5), 773–801
(1995)

23. Maries, I.C.: Time. https://pypi.org/project/pytest-benchmark/
24. Marlow, S., Brandy, L., Coens, J., Purdy, J.: There is no fork: an abstraction for

efficient, concurrent, and concise data access. In: Proceedings of the 19th ACM
SIGPLAN International Conference on Functional Programming, ICFP 2014, pp.
325–337. Association for Computing Machinery, New York (2014)

https://hackage.haskell.org/package/pipes
https://pypi.org/project/pytest-benchmark/

98 R. Evans et al.

25. Marlow, S., Peyton Jones, S., Kmett, E., Mokhov, A.: Desugaring Haskell’s do-
notation into applicative operations. SIGPLAN Not. 51(12), 92–104 (2016)

26. McBride, C.: Functional pearl: Kleisli arrows of outrageous fortune. J. Funct. Pro-
gram (2011, accepted for publication)

27. Mcbride, C., Paterson, R.: Applicative programming with effects. J. Funct. Pro-
gram. 18(1), 1–13 (2008)

28. Murray, D., McSherry, F., Isaacs, R., Isard, M., Barham, P., Abadi, M.: Naiad: a
timely dataflow system. In: Proceedings of the 24th ACM Symposium on Operating
Systems Principles (SOSP), pp. 439–455. ACM, November 2013

29. O’Sullivan, B.: Criterion. http://www.serpentine.com/criterion/
30. Parès, Y., Bernardy, J.P., Eisenberg, R.A.: Composing effects into tasks and work-

flows. In: Proceedings of the 13th ACM SIGPLAN International Symposium on
Haskell, Haskell 2020, pp. 80–94. Association for Computing Machinery, New York
(2020)

31. Paterson, R.: A new notation for arrows. In: International Conference on Functional
Programming, pp. 229–240. ACM Press, September 2001

32. Schrijvers, T., Peyton Jones, S., Chakravarty, M., Sulzmann, M.: Type checking
with open type functions. In: Proceedings of the 13th ACM SIGPLAN Interna-
tional Conference on Functional Programming, ICFP 2008, pp. 51–62. Association
for Computing Machinery, New York (2008)

33. Spotify: Spotify: Luigi. https://github.com/spotify/luigi
34. Spotify: Tasks, April 2020. https://luigi.readthedocs.io/en/stable/tasks.html
35. Svenningsson, J., Axelsson, E.: Combining deep and shallow embedding of domain-

specific languages. Comput. Lang. Syst. Struct. 44, 143–165 (2015). sI: TFP
2011/12

36. Swierstra, W.: Data types á la carte. J. Funct. Program. 18(4), 423–436 (2008)
37. Wadler, P.: The expression problem, November 1998
38. Willis, J., Wu, N., Pickering, M.: Staged selective parser combinators. Proc. ACM

Program. Lang. 4(ICFP), 1–30 (2020)
39. Yorgey, B.A., Weirich, S., Cretin, J., Peyton Jones, S., Vytiniotis, D., Magalhães,

J.P.: Giving haskell a promotion. In: Proceedings of the 8th ACM SIGPLAN Work-
shop on Types in Language Design and Implementation, TLDI 2012, pp. 53–66.
Association for Computing Machinery, New York (2012)

40. Yu, Y., et al.: DryadLINQ: a system for general-purpose distributed data-parallel
computing using a high-level language. In: Proceedings of the 8th USENIX Con-
ference on Operating Systems Design and Implementation, OSDI 2008, pp. 1–14.
USENIX Association, USA (2008)

41. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. In: Proceedings of the 2nd USENIX Conference on
Hot Topics in Cloud Computing, HotCloud 2010, p. 10. USENIX Association, USA
(2010)

http://www.serpentine.com/criterion/
https://github.com/spotify/luigi
https://luigi.readthedocs.io/en/stable/tasks.html

Languages, Methods and Tools

Timed Concurrent Language for
Argumentation: An Interleaving Approach

Stefano Bistarelli1, Maria Chiara Meo2, and Carlo Taticchi1(B)

1 University of Perugia, Perugia, Italy
{stefano.bistarelli,carlo.taticchi}@unipg.it

2 University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
mariachiara.meo@unich.it

Abstract. Time is a crucial factor in modelling dynamic behaviours of intelli-
gent agents: in a real-world environment, activities have a determined tempo-
ral duration and the behaviour of agents is influenced by the actions previously
taken. In this paper, we propose a language for modelling concurrent interaction
between agents that also allows the specification of temporal intervals in which
particular actions occur. Such a language exploits a timed version of Abstract
Argumentation Frameworks to realise a shared memory used by the agents both
to communicate and to reason on the acceptability of their beliefs with respect
to a given time interval. An interleaving model on a single processor is used for
basic computation steps (with maximal parallelism for time elapsing). Following
this approach, at each moment only one of the enabled agents is executed.

Keywords: Argumentation theory · Concurrency · Interleaving

1 Introduction

Agents in distributed environments can perform operations that affect the behaviour of
other components. To describe the interactions that ma take place between intelligent
agents, many formalisms have been proposed for modelling concurrent systems. Con-
current Constraint Programming (CC) [24], for example, relies on a constraint store
of shared variables in which agents can read and write in accordance with some prop-
erties posed on the variables. The basic operations that can be executed by agents in
the CC framework are a blocking Ask and an atomic Tell. These operations realise the
interaction with the store and also allow one to deal with partial information.

When dealing with concurrent interactions, the notion of time plays a fundamen-
tal role: in many “real-life” applications, the activities have a temporal duration (that
can be even interrupted) and the coordination of such activities has to take into con-
sideration this timeliness property. The interacting actors are mutually influenced by
their actions, meaning that A reacts accordingly to the timing and quantitative aspects
related to B’s behaviour, and vice versa. Moreover, the information brought forward
by debating agents that interact in a dynamic environment can be affected by time
constraints limiting, for instance, the influence of some arguments in the system to a

c© Springer Nature Switzerland AG 2022
J. Cheney and S. Perri (Eds.): PADL 2022, LNCS 13165, pp. 101–116, 2022.
https://doi.org/10.1007/978-3-030-94479-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94479-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-94479-7_7

102 S. Bistarelli et al.

certain time lapse. A mechanism for handling time is therefore required to better model
the behaviour of intelligent agents involved in argumentation processes.

In [5], we introduced tcla, a timed extension of the Concurrent Language for
Argumentation [3,6], which models dynamic interactions between agents (using basic
actions like add, rmv, check and test) and exploits notions from Argumentation Theory
to reason about shared knowledge. The time extension is based on the hypothesis of
bounded asynchrony: the computation takes a bounded period of time and is measured
by a discrete global clock. Parallel operations are expressed in [5] in terms of maximal
parallelism. According to the maximal parallelism policy (applied, for example, in the
original works as [22] and [23]), at each moment every enabled agent of the system
is activated. However, this setting implies the existence of an unbounded number of
processors ready to handle the execution of a program.

With this paper we revise tcla semantics by considering a paradigm where the paral-
lel operator is interpreted in terms of interleaving. The interleaving approach limits the
number of enabled agents executed at a time, mimicking the limited number of avail-
able processors as in the real world. We still assume maximal parallelism for actions
depending on time. In other words, time passes for all the parallel processes involved
in a computation. This is accomplished by allowing all the time-only dependent actions
(that we identify through τ-transitions) to concurrently run with at most one action
manipulating the store (a ω-transition). This approach, analogous to that one adopted
in [13], is different from that one of [4,12] (where maximal parallelism was assumed
for any kind of action), and it is also different from the one considered in [8], where
time does not elapse for timeout constructs.

The rest of the paper is organised as follows: in Sect. 2 we summarise the back-
ground notions that will be used to present our proposal; Sect. 3 presents the interleav-
ing version of tcla, providing both the syntax and the operational semantics; Sect. 4
exemplifies the use of timed paradigms in tcla; in Sect. 5 we describe a working imple-
mentation of tcla; Sect. 6 features related works relevant to our study; Sect. 7, finally,
concludes the paper by also indicating possible future research lines.

2 Background

Argumentation Theory aims to understand and model the human natural fashion of rea-
soning, allowing one to deal with uncertainty in non-monotonic (defeasible) reasoning.
In his seminal paper [14], Dung defines the building blocks of abstract argumentation.

Definition 1 (AFs). Let U be the set of all possible arguments1, which we refer to as the
“universe”. An Abstract Argumentation Framework is a pair 〈Arg,R〉 where Arg ⊆ U
is a set of adopted arguments and R is a binary relation on Arg (representing attacks
among adopted arguments).

AFs can be represented through directed graphs, that we depict using the standard
conventions. For two arguments a,b ∈ Arg, the notation (a,b) ∈ R (or, equivalently,
a → b) represents an attack directed from a against b.

1 The set U is not present in the original definition by Dung and we introduce it for our conve-
nience to distinguish all possible arguments from the adopted ones.

Timed Concurrent Language for Argumentation: An Interleaving Approach 103

Definition 2 (Acceptable Argument). Given an AF F = 〈A,R〉, an argument a ∈ A is
acceptable with respect to D ⊆ A if and only if ∀b ∈ A such that (b,a) ∈ R, ∃c ∈ D such
that (c,b) ∈ R, and we say that a is defended from D.

Given an argument framework F we use AF to refer to the arguments of F and RF to
refer to the attack relation of F . We identify the sets of attacking arguments as follows.

Definition 3 (Attacks). Let F = 〈A,R〉 be an AF, a ∈ A and S ⊆ A. We define the sets
a+F = {b ∈ A | (a,b) ∈ R} and S+F =

⋃
a∈S a+F (we will omit the subscript F when it is

clear from the context).

The notion of defence can be used for identifying subsets of “good” arguments. The
goal is to establish which are the acceptable arguments according to a certain semantics,
namely a selection criterion. Non-accepted arguments are rejected. Different kinds of
semantics have been introduced [1,14] that reflect desirable qualities for sets of argu-
ments. We first give the definition for the extension-based semantics, namely admis-
sible, complete, stable, semi-stable, preferred, and grounded semantics (denoted with
adm, com, stb, sst, prf and gde, respectively, and generically with σ).

Definition 4 (Extension-based semantics). Let F = 〈Arg,R〉 be an AF. A set E ⊆ Arg
is conflict-free in F, denoted E ∈ Sc f (F), if and only if there are no a,b ∈ E such that
(a,b) ∈ R. For E ∈ Sc f (F) we have that:

– E ∈ Sadm(F) if each a ∈ E is defended by E;
– E ∈ Scom(F) if E ∈ Sadm(F) and ∀a ∈ Arg defended by E, a ∈ E;
– E ∈ Sstb(F) if ∀a ∈ Arg\E, ∃b ∈ E such that (b,a) ∈ R;
– E ∈ Ssst(F) if E ∈ Scom(F) and E ∪E+ is maximal2;
– E ∈ Spr f (F) if E ∈ Sadm(F) and E is maximal;
– E ∈ Sgde(F) if E ∈ Scom(F) and E is minimal.

Moreover, if E satisfies one of the above properties for a certain semantics, we say
that E is an extension for that semantics (for example, if E ∈ Sadm/com/stb/sst/pr f/gde(F)
we say that E is an admissible/complete/stable/semi-stable/preferred/grounded exten-
sion).

Besides enumerating the extensions for a certain semantics σ , one of the most com-
mon tasks performed on AFs is to decide whether an argument a is accepted in some
extension of Sσ (F) or in all extensions of Sσ (F). In the former case, we say that a is
credulously accepted with respect to σ ; in the latter, a is instead sceptically accepted
with respect to σ .

Example 1. In Fig. 1 we provide an example of AF where sets of extensions are given
for all the mentioned semantics: Sc f (F) = {{}, {a}, {b}, {c}, {d}, {a,c}, {a,d},
{b,d}}, Sadm(F) = {{}, {a}, {c}, {d}, {a,c}, {a,d}}, Scom(F) = {{a}, {a,c}, {a,d}},
Spr f (F) = {{a,c}, {a,d}}, Sstb(F) = {{a,d}}, and Sgde(F) = {{a}}. The singleton
{e} is not conflict-free because e attacks itself. The argument b is not contained in any

2 The set E ∪E+ is also called range of E [10].

104 S. Bistarelli et al.

admissible extension because it is not defended from the attack of a. The empty set
{}, and the singletons {c} and {d} are not complete extensions because a, which is
not attacked by any other argument, has to be contained in all complete extensions.
The maximal admissible extensions {a,c} and {a,d} are preferred, while the minimal
complete {a} is the (unique) grounded extension. Then, the arguments in the subset
{a,d}, that conduct attacks against all the other arguments (namely b, d and e), repre-
sent a stable extension. To conclude the example, we want to point out that argument
a is sceptically accepted with respect to the complete semantics, since it appears in
all three subsets of Scom(F). On the other hand, arguments c and d, each of which is
in one complete extension only, are credulously accepted with respect to the complete
semantics.

Fig. 1. Example of abstract argumentation framework.

Many of the above-mentioned semantics (such as the admissible and the complete
ones) exploit the notion of defence to decide whether an argument is part of an exten-
sion or not. The phenomenon for which an argument is accepted in some extension
because it is defended by another argument belonging to that extension is known as
reinstatement [9]. In the same paper, Caminada also give a definition for a reinstate-
ment labelling.

Definition 5 (Reinstatement labelling). Let F = 〈Arg,R〉 and L= {in,out,undec}. A
labelling of F is a total function L : Arg → L. We define in(L) = {a ∈ Arg | L(a) = in},
out(L) = {a ∈ Arg | L(a) = out} and undec(L) = {a ∈ Arg | L(a) = undec}. We say
that L is a reinstatement labelling if and only if it satisfies the following:

– ∀a,b ∈ Arg, if a ∈ in(L) and (b,a) ∈ R then b ∈ out(L);
– ∀a ∈ Arg, if a ∈ out(L) then ∃b ∈ Arg such that b ∈ in(L) and (b,a) ∈ R.

In other words, an argument is labelled in if all its attackers are labelled out, and
it is labelled out if at least one in node attacks it. In all other cases, the argument is
labelled undec. A labelling-based semantics [1] associates with an AF a subset of all
the possible labellings. In Fig. 2 we show an example of reinstatement labelling on an
AF in which arguments a and c highlighted in green are in, red ones (b and d) are out,
and the yellow argument e (that attacks itself) is undec.

Given a labelling L, it is also possible to identify a correspondence with the
extension-based semantics [1]. In particular, the set of in arguments coincides with a
complete extension, while other semantics can be obtained through restrictions on the
labelling as shown in Table 1.

Timed Concurrent Language for Argumentation: An Interleaving Approach 105

Table 1. Reinstatement labelling vs semantics.

Labelling restrictions Semantics

No restrictions Complete

Empty undec Stable

Minimal undec Semi-stable

Maximal in Preferred

Maximal out Preferred

Maximal undec Grounded

Minimal in Grounded

Minimal out Grounded

3 Syntax and Semantics

The syntax of our timed concurrent language for argumentation, tcla, is presented in
Table 2, where P, C, A and E denote a generic process, a sequence of procedure decla-
rations (or clauses), a generic agent and a generic guarded agent, respectively. Moreover
t ∈ N∪{+∞}.

Table 2. tcla syntax.

P ::=C.A

C ::= p(x) :: A | C.C

A ::= success | f ailure | add(Arg,R) → A | rmv(Arg,R) → A | E | A‖A | ∃xA | p(x)

E ::= c-testt (a, l,σ) → A | s-testt (a, l,σ) → A | checkt (Arg,R) → A | E +E | E +P E | E‖GE

Communication between tcla agents is implemented via shared memory, similarly
to cla [3,6] and CC [24], and opposed to other languages (e.g., CSP [16] and CCS [19])
based on message passing. In the following, we denote by E the class of guarded agents
and by E0 the class of guarded agents such that all outermost guards have t = 0 (note
that a Boolean syntactic category could be introduced in replacement of E0 to handle
guards and allow for finer distinctions). In a tcla process P =C.A, A is the initial agent
to be executed in the context of the set of declarations C.

Fig. 2. Example of reinstatement labelling. (Color figure online)

The operational model of tcla processes can be formally described by a labeled tran-
sition system T = (Conf ,Label,→), where we assume that each transition step exactly

106 S. Bistarelli et al.

takes one time-unit. Configurations (in) Conf are pairs consisting of a process and an
AF F = 〈Arg,R〉 representing the common knowledge base. L = {τ,ω} is the set of
labels that we use to distinguish “real” computational steps performed by processes
which have the control (label ω) from the transitions which model only the passing of
time (label τ). So ω-actions are those performed by processes that modify the store
(add, rmv), check the store (checkt , c-testt , s-testt), call a procedure, and correspond
to exceeding a timeout (check0, c-test0, s-test0). On the other hand, τ-actions are those
performed by timeout processes (checkt , c-testt , s-testt) in case they do not have control
of the processor.

The transition relation
ω−→⊆ Conf × Conf is the least relation satisfying the rules

in Tables 3 and 4, and it characterizes the (temporal) evolution of the system. So,
〈A,F〉 ω−→ 〈A′,F ′〉 means that, if at time t we have the process A and the AF F , then at
time t +1 we have the process A′ and the AF F ′.

In Tables 3 and 4 we give the definitions for the transition rules. The agents success
and f ailure represent a successful and a failed termination, respectively, so they may
not make any further transition. Action prefixing is denoted by →, non-determinism
is introduced via the guarded choice construct E +E, if-then-else statements can be
realised through +P, parallel and guarded parallel compositions are denoted by ‖ and
‖G, and a notion of locality is introduced by the agent ∃xA, which behaves like A with
argument x considered local to A, thus hiding the information on x provided by the
external environment. Moreover, we have the c-testt(a, l,σ) → A, s-testt(a, l,σ) → A
and checkt(Arg,R) → A constructs, which are explicit timing primitives introduced in
order to allow for the specification of timeouts. In Tables 3 and 4 we have omitted
the symmetric rules for the choice operator + and for the two parallel composition
operators ‖ and ‖G. Indeed, + is commutative, so E1 +E2 produces the same result as
(that is, is congruent to) E2 +E1. The same is also true for ‖ and ‖G. Note that +, ‖ and
‖G are also associative. Moreover success and f ailure are the identity and the absorbing
elements under the parallel composition ‖, respectively (namely for each agent A, we
have that A‖success and A‖ f ailure are the agents A and f ailure, respectively).

In the following we give an operational semantics of tcla, where the parallel oper-
ator is modelled in terms of interleaving. While in the maximal parallelism paradigm,
at each moment, every enabled agent of the system is activated, in the interleaving
paradigm, agents may have to wait for the processor to be “free”. Clearly, since we
have dynamic process creation, a maximal parallelism approach has the disadvantage
that, in general, it implies the existence of an unbound number of processes. On the
other hand a naive interleaving semantic could be problematic from the time viewpoint,
as in principle the time does not pass for enabled agent which are not scheduled.

For the operational semantics of tcla we follow a solution analogous to that one
adopted in [4]: we assume that the parallel operator is interpreted in terms of interleav-
ing, as usual, however we must assume maximal parallelism for actions depending on
time. In other words, time passes for all the parallel processes involved in a computa-
tion. Practically, we use τ-actions to make the time pass for agents who do not require
the processor.

We will usually write a tcla process P =C.A as the corresponding agent A, omitting
C when not required by the context. Suppose we have an agent A whose knowledge base

Timed Concurrent Language for Argumentation: An Interleaving Approach 107

Table 3. tcla operational semantics (part I).

〈add(Arg′,R′) → A,〈Arg,R〉〉 ω−→ 〈A,〈Arg∪Arg′,R∪R′′〉〉
where R′′ = {(a,b) ∈ R′ | a,b ∈ Arg∪Arg′} Addition

〈rmv(Arg′,R′) → A,〈Arg,R〉〉 ω−→ 〈A,〈Arg\Arg′,R\{R′ ∪R′′}〉〉
where R′′ = {(a,b) ∈ R | a ∈ Arg′ ∨b ∈ Arg′} Removal

Arg′ ⊆ Arg∧R′ ⊆ R t > 0

〈checkt (Arg′,R′) → A,〈Arg,R〉〉 ω−→ 〈A,〈Arg,R〉〉
Check (1)

Arg′ �⊆ Arg∨R′ �⊆ R t > 0

〈checkt (Arg′,R′) → A,〈Arg,R〉〉 ω−→ 〈checkt−1(Arg′,R′) → A,〈Arg,R〉〉
Check (2)

〈checkt (Arg′,R′) → A,F〉 τ−→ 〈checkt−1(Arg′,R′) → A,F〉 t > 0 Check (3)

〈check0(Arg′,R′) → A,F〉 ω−→ 〈 f ailure,F〉 Check (4)
∃L ∈ Sσ (F) | l ∈ L(a) t > 0

〈c-testt (a, l,σ) → A,F〉 ω−→ 〈A,F〉
Credulous Test (1)

∀L ∈ Sσ (F) | l �∈ L(a) t > 0

〈c-testt (a, l,σ) → A,F〉 ω−→ 〈c-testt−1(a, l,σ) → A,F〉
Credulous Test (2)

〈c-testt (a, l,σ) → A,F〉 τ−→ 〈c-testt−1(a, l,σ) → A,F〉 t > 0 Credulous Test (3)

〈c-test0(a, l,σ) → A,F〉 ω−→ 〈 f ailure,F〉 Credulous Test (4)
∀L ∈ Sσ (F).l ∈ L(a) t > 0

〈s-testt (a, l,σ) → A,F〉 ω−→ 〈A,F〉
Sceptical Test (1)

∃L ∈ Sσ (F).l �∈ L(a) t > 0

〈s-testt (a, l,σ) → A,F〉 ω−→ 〈s-testt−1(a, l,σ) → A,F〉
Sceptical Test (2)

〈s-testt (a, l,σ) → A,F〉 τ−→ 〈s-testt−1(a, l,σ) → A,F〉 t > 0 Sceptical Test (3)

〈s-test0(a, l,σ) → A,F〉 ω−→ 〈 f ailure,F〉 Sceptical Test (4)

〈E1,F〉 ω−→ 〈A,F〉, E1 �∈ E0, A1 �∈ E

〈E1 +P E2,F〉 ω−→ 〈A1,F〉
If Then Else (1)

〈E1,F〉 ξ−→ 〈E ′
1,F〉, E1 �∈ E0, E ′

1 ∈ E

〈E1 +P E2,F〉 ξ−→ 〈E ′
1 +P E2,F〉

E1 ∈ E0,〈E2,F〉 ξ−→ 〈A2,F〉
〈E1 +P E2,F〉 ξ−→ 〈A2,F〉

ξ ∈ {τ,ω} If Then Else (2)

Table 4. tcla operational semantics (part II).

〈E1,F〉 ω−→ 〈A1,F〉, 〈E2,F〉 τ−→ 〈A2,F〉 E1,E2 �∈ E0, A1 �∈ E

〈E1‖GE2,F〉 ω−→ 〈A1‖A2,F〉
Guarded Parallelism (1)

〈E1,F〉 ξ−→ 〈E ′
1,F〉, 〈E2,F〉 τ−→ 〈E ′

2,F〉, E1,E2 �∈ E0, E ′
1,E

′
2 ∈ E

〈E1‖GE2,F〉 ξ−→ 〈E ′
1‖GE ′

2,F〉
ξ ∈ {τ,ω} Guarded Parallelism (2)

E1 ∈ E0,〈E2,F〉 ξ−→ 〈A2,F〉
〈E1‖GE2,F〉 ξ−→ 〈A2,F〉

ξ ∈ {τ,ω} Guarded Parallelism (3)

〈E1,F〉 ω−→ 〈A1,F〉, E1 �∈ E0 A1 �∈ E

〈E1 +E2,F〉 ω−→ 〈A1,F〉
Non Determinism (1)

〈E1,F〉 ξ−→ 〈E ′
1,F〉, 〈E2,F〉 τ−→ 〈E ′

2,F〉
〈E1 +E2,F〉 ξ−→ 〈E ′

1 +E ′
2,F〉

E1 ∈ E0,〈E2,F〉 ξ−→ 〈A2,F〉
〈E1 +E2,F〉 ξ−→ 〈A2,F〉

ξ ∈ {τ,ω} Non Determinism (2)

〈A1,F〉 ξ−→ 〈A′
1,F

′〉, 〈A2,F〉 τ−→ 〈A′
2,F〉

〈A1‖A2,F〉 ξ−→ 〈A′
1‖A′

2,F
′〉

ξ ∈ {τ,ω} Parallelism (1)

〈A1,F〉 ξ−→ 〈A′
1,F

′〉, 〈A2,F〉 � τ−→
〈A1‖A2,F〉 ξ−→ 〈A′

1‖A2,F ′〉
ξ ∈ {τ,ω} Parallelism (2)

〈A[y/x],F〉 ξ−→ 〈A′,F ′〉 ξ ∈ {τ,ω}
〈∃xA,F〉 ξ−→ 〈A′,F ′〉

with y fresh Hidden Variables

〈p(y),F〉 ω−→ 〈A[y/x],F〉 with p(x) :: A and x ∈ {a, l,σ , t} Procedure Call

108 S. Bistarelli et al.

is represented by an AF F = 〈Arg,R〉. An add(Arg′,R′) action performed by the agent
results in the addition of a set of arguments Arg′ ⊆U (where U is the universe) and a set
of relations R′ to the AF F . When performing an Addition, (possibly) new arguments
are taken from U \ Arg. We want to make clear that the tuple (Arg′,R′) is not an AF,
indeed it is possible to have Arg′ = /0 and R′ �= /0, which allows to perform an addition of
only attack relations to the considered AF. It is as well possible to add only arguments to
F , or both arguments and attacks. Intuitively, rmv(Arg,R) allows to specify arguments
and/or attacks to remove from the knowledge base. Removing an argument from an
AF requires to also remove the attack relations involving that argument and trying to
remove an argument (or an attack) which does not exist in F will have no consequences.

The operator checkt(Arg′,R′) realises a timed construct and is used to verify
whether, in a given time interval, the specified arguments and attack relations are con-
tained in the set of arguments and attacks of the knowledge base, without introducing
any further change. If t > 0 and the check is positive, the operation succeeds and the
agent checkt(Arg′,R′) → A can perform a ω-action in the agent A (Rule Check (1)).
If t > 0 but the check is not satisfied, then the control is repeated at the next time
instant and the value of the counter t is decreased; note that in this case we use the
label ω , since a check on the store has been performed (Rule Check (2)). As shown
by axiom Check (3), the counter can be decreased also by performing a τ-action: intu-
itively, this rule is used to model the situation in which, even though the evaluation of
the timeout started already, another (parallel) process has the control. In this case, anal-
ogously to the approach in [13] and differently from the approach in [8], time continues
to elapse (via τ-actions) also for the timeout process. Axiom Check (4) shows that, if
the timeout is exceeded, i.e., the counter t has reached the value of 0, then the process
checkt(Arg′,R′) → A fails.

The rules Credulous Test (1)–(4) and Sceptical Test (1)–(4) in Table 3 are similar to
rules Check (1)–(4) described before. Observe that we have two distinct test operations,
both requiring the specification of an argument a ∈ A, a label l ∈ {in,out,undec} and
a semantics σ ∈ {adm,com,stb, pr f ,gde}. The credulous c-testt(a, l,σ), with t > 0,
succeeds if there exists at least one extension of Sσ (F) whose corresponding labelling
L is such that L(a) = l. Similarly, the sceptical s-testt(a, l,σ), with t > 0, succeeds if
a is labelled l in all possible labellings L ∈ Sσ (F). The operator +P is left-associative
and realises an if-then-else construct: if we have E1 +P E2 and E1 is successful, than E1

will be always chosen over E2, even if E2 is also successful, so in order for E2 to be
selected, it has to be the only one that succeeds. The guarded parallelism ‖G is designed
to allow all the operations for which the guard in the inner expression is satisfied. In
more detail, E1‖GE2 is successful when either E1, E2 or both are successful and all
the operations that can be executed are executed. This behaviour is different both from
classical parallelism (for which all the agents have to succeed in order for the procedure
to succeed) and from nondeterminism (that only selects one branch).

The remaining operators are classical concurrency compositions. Rules Parallelism
(1)–(2) in Table 4 model the parallel composition operator in terms of interleaving,
since only one basic ω-action is allowed for each transition (i.e., for each unit of time).
This means that the access to the shared AF F is granted to one process at a time. How-
ever, time passes for all the processes appearing in the ‖ context at the external level,

Timed Concurrent Language for Argumentation: An Interleaving Approach 109

as shown by rule Parallelism (1), since τ-actions are allowed together with a ω-action.
On the other hand, as shown by rule Parallelism (2), a parallel component is allowed to
proceed in isolation if (and only if) the other parallel component cannot perform a τ-
action. To summarise, we adopt maximal parallelism for time elapsing (i.e., τ-actions)
and an interleaving model for basic computation steps (i.e., ω-actions). By transition
rules, an agent in a parallel composition obtained through ‖ succeeds only if all the
agents succeed. The parallel composition operator enables the specification of com-
plex concurrent argumentation processes: for example, a debate involving many agents
that asynchronously provide arguments can be modelled as a parallel composition of
add operations performed on the knowledge base. Any agent composed through + is
chosen if its guards succeed; the existential quantifier ∃xA behaves like agent A where
variables in x are local to A. Finally, the procedure call (rule PC) has a single parameter
which can be an argument, a label among in, out and undec, a semantics σ , or a instant
of time. If necessary, the procedure call can be clearly extended for allowing more than
one parameter.

In the following we provide the definition for the observables of the language, which
are clearly based only on ω-actions.

Definition 6 (Observables for tcla). Let P =C.A be a tcla process. We define

Oio(P) = λF. {F1 · · ·Fn · ss | F = F1 and 〈A,F1〉 ω−→∗ 〈success,Fn〉} ∪
{F1 · · ·Fn · ff | F = F1 and 〈A,F1〉 ω−→∗ 〈 f ailure,Fn〉}.

4 Modelling a Dialogue

In this section, we provide an example of how tcla programs can be used to model
debates involving several agents taking “turns” to assert their beliefs. A possible use
case for tcla can be identified in modelling information sharing for common resource
management. This problem can be instantiated as done in [15,20] as a debate in a multi-
agent environment where argumentation techniques are exploited for arriving to desir-
able outcomes. We start from the scenario proposed in [20], where three counterparts
debate on the use of fertilisers for oyster production.

Example 2. We have three agents: Alice (a farmer), Bob (an oyster farmer) and Carol
(a state representative). They are debating on the impact of the fertilisers on the oysters
as reported in the following:

– Alice: using a lot of fertiliser helps to have a big yield (argument a);
– Bob: using a lot of fertiliser pollutes the lake and harms the oyster (argument b);
– Carol: using a lot of fertiliser increases the risk of control (argument c);
– Carol: using more fertiliser than the norm implies a fine (argument d);
– Alice: there is no risk of being controlled because of lack of means (argument e);
– Carol: an important polluting event can lead to harden the norms (argument f);
– Alice: lake pollution is not linked to pesticides (argument g).

110 S. Bistarelli et al.

Fig. 3. AF obtained starting from the arguments of Alice, Bob and Carol.

A total of seven arguments are presented, upon which the AF of Fig. 3 is built. We
can write a tcla program emulating such an exchange of arguments, using three agents
in parallel to model the behaviour of Alice, Bob and Carol, respectively. Each agent
inserts the arguments at its disposal into the knowledge base through add operations.
The first argument to appear in the debate is a, and since it does not attack any other
argument, it can be directly added to the AF. The arguments that come after and attack
a, namely b, c, d and f , are not brought forward before a itself has been added. Indeed,
although tcla allows to add arguments and attacks to the knowledge base at separate
times, in this particular example we want arguments that come after a, namely b, c,
d and f , to be added together with their attacks toward a. Also the order in which the
arguments are added must be respectful of the timing with which the debate between the
three contenders takes place. To ensure that those arguments will always be added after
a, agents acting in place of Bob and Carol have to perform, beforehand, a check opera-
tion to verify whether a belongs to the shared memory. Only once the check succeeds,
the agents can go on with the execution. Analogously, Alice will check the arguments
c and d before adding e (which attacks them), and the argument b before adding g.
The resulting program is shown in Table 5. Since parallel executions are handled via
interleaving, only one agent will operate on the knowledge base at a time, simulating
the alternation of the three counterparts in exchanging arguments during the debate.
Check operations, in particular, allow agents to wait for their turn to “speak”. In this
example, we specify a timeout of 9 instants of time, meaning that the check will be
repeated up to 9 times, until it is either satisfied or expired. In our case, checks will
always succeed before their timeouts. Note that a shorter timeout cannot guarantee the
successful termination of all check operations3. Different solutions can also be imple-
mented. For instance, arguments c and d could be added with two distinct operations,
or also, together with f .

3 Using a maximal parallelism approach for the parallel composition, a timeout of 4 time units
would have been sufficient.

Timed Concurrent Language for Argumentation: An Interleaving Approach 111

Table 5. tcla program realising the AF of Fig. 3.

add({a},{}) →
check9({c,d},{}) → Add({e},{(e,c),(e,d)}) → success ‖G

check9({b},{}) → add({g},{(g,b)}) → success

‖
check9({a},{}) → add({b},{(b,a)}) → Success

‖
check9({a},{}) → add({c,d},{(c,a),(d,a)}) → success ‖G

check9({a},{}) → add({ f },{(f ,a)}) → success

5 tcla Simulator

We developed a working implementation for the interleaving version of tcla. Some of
the operations had their syntax translated (see Table 6) to enable users for manually
specifying tcla programs. The core of our implementation consists of a Python script
that covers three fundamental tasks: it serves as interpreter for the tcla syntax, it exe-
cutes programs taken in input, and it communicates with the web interface. The inter-
preter is built using ANTLR4, a parser generator for reading, processing, executing, and
translating structured text. We start from a grammar file defining the constructs given
in Table 2. Any source program, then, is parsed according to the grammar and a parse
tree is generated. Each node of this tree corresponds to one operation to perform, whose
behaviour is defined in a dedicated Python class. Visiting the parse tree is equivalent to
executing the corresponding program.

Table 6. Implementation of tcla operations

tcla syntax Implementation

add(Arg,R) add(Arg,R)

rmv(Arg,R) rmv(Arg,R)

checkt(Arg,R) check(t,Arg,R)

c-testt(a, l,σ) ctest(t,{a},l,σ)

s-testt(a, l,σ) stest(t,{a},l,σ)

E + · · ·+E sum(E,...,E)

E‖G . . .‖GE gpar(E,...,E)

E +P E (E)+P(E)

The parallel execution of ω-actions is handled through interleaving: only one ω-
action can be executed at each step. Such a behaviour is accomplished by means of a
Python lock object which acts as a synchronisation primitive, entrusting the control of

4 ANTLR website: https://www.antlr.org.

https://www.antlr.org

112 S. Bistarelli et al.

the shared memory to one action at a time. In detail, when an ω-action is ready to be
executed, it tries to acquire the lock object. If the object is unlocked, it immediately
changes its status to locked, and the action continues its execution. Before proceeding
to the subsequent step, the action releases the lock, that becomes unlocked again. If,
on the other hand, the object is locked, the action cannot be executed (because another
ω-action has already been granted such privilege upon the acquisition of the lock) and
thus it will be postponed to the next step. Practically, we rewrite the parse tree of the
program so that to each node representing an ω-action A that cannot be executed at a
given step s is assigned a child node which is a clone of A itself, except for possible
timeouts, that are decreased by one. Failed attempts of execution also consume a unit of
time: when the condition of a guarded ω-action is not satisfied, its timeout is decreased
and the execution is postponed by one step.

Differently form ω-actions, τ-actions do not directly interact with the underlying
knowledge base, as they are used to make time pass for timeout operations. Several
τ-actions can be executed in parallel with an ω-action at each step. To obtain maxi-
mal parallelism for τ-actions, we synchronise the threads that implement the agents by
keeping track of time elapsing in each parallel branch of the execution.

The input program is provided to the Python script through a web interface (see
Fig. 4), developed in HTML and JavaScript. After the program has been executed, its
output is also shown within the interface. We have two main areas, one for the input and
the other one for the output. The user enters a program in the dedicated text box (either
manually or by selecting one of the provided examples), after which there are two ways
to proceed: by clicking on the “Run All” button the whole program is executed at once
and the final result is displayed in the output area; alternatively, by clicking on the
“Run 1 Step” button, it is possible to monitor the execution step by step. The interface
communicates with the underlying Python engine through an Ajax call which passes the
program as parameter and asynchronously retrieves the output. After the execution of

Fig. 4. Example of a tcla program executed form the web interface.

Timed Concurrent Language for Argumentation: An Interleaving Approach 113

(a step of) the program, three different components are simultaneously visualised in the
output area, namely the program output, the state of the shared memory and a timeline
representing the behaviour of arguments during time. The program output box shows
the results of the execution, divided by steps. The beginning of each step is marked by a
separating line explicitly showing the step number. The shared memory box is updated
after each step of the execution and shows the AF used as knowledge base. Finally, the
bottom-left box contains the visual representation of arguments during time and shows
the temporal evolution of the AF used by the tcla program. Time is reported on the x
axis and each bar of the timeline shows the intervals of time during which an argument
is contained in the shared memory.

6 Related Work

A formalism for expressing dynamics in AFs is defined in [21] as a Dynamic Argu-
mentation Framework (DAF). This kind of frameworks allows for instantiating Dung-
style AFs by considering “evidence” (a set of arguments to adopt) from a universe of
arguments. DAF generalises AFs by adding the possibility of modelling changes, but,
contrary to our study, it does not consider how such modifications affect the semantics
and does not allow to model the behaviour of concurrent agents.

In our model, AFs are equipped with a universe of arguments that agents use to
insert new information into the knowledge base. The problem of combining AFs (i.e.,
merging arguments and attacks of two different AFs) is addressed in [2], that studies
the computational complexity of verifying if a subset of arguments is an extension for a
certain semantics in incomplete argumentation frameworks. The incompleteness is con-
sidered both for arguments and attack relations. Similarly to our approach, arguments
(and attacks) can be brought forward by agents and used to build new acceptable exten-
sions. On the other hand, the scope of [2] is focused on a complexity analysis and does
not provide implementations for the merging.

Given the very nature of argumentation, it is reasonable to assume that the interac-
tion between entities is regulated by the passing of time [17,18]. Timed Abstract Argu-
mentation Frameworks (TAFs) [7,11] have been proposed to meet the need for includ-
ing the notion of time into argumentation processes. The existence of arguments in a
TAF is regulated by a function that determines the exact intervals of time in which every
argument is available within the framework. In [5] we used tcla construct to dynami-
cally instantiate a TAF. The interleaving approach we propose with the current work,
however, is not suitable for that task: since only one agent can interact with the store at
once, it is not possible to model a TAF in which, for instance, two different arguments
are added and removed in the same instant of time.

A collection of process calculi is presented in [8] as a solution for the lack of formal
definitions of languages like Linda, JavaSpaes and TSpaes. To this regard, an oper-
ational semantics is introduced for enabling formal reasoning and also allowing the
systematic comparison of primitives with respect to their expressiveness. Although the
authors consider the passing of time (which is represented as divided into discrete inter-
vals), time does not elapse for timeout constructs. In our work, instead, also timeout
processes can make time pass.

114 S. Bistarelli et al.

Related to our work, [4,12] extend CC with timed constructs, also based on the
hypothesis of bounded asynchrony. In both approaches, time elapsing is measured by
means of a global clock and each time instant is marked through action prefixing. The
resulting timed languages are able to describe the behaviour of intelligent agents inter-
acting within a dynamic environment. Apart from the different field of application (as
constraint systems in [4]), the main difference with our work lies in the fact that the
authors of [4,12] assume maximal parallelism, instead of interleaving, for concurrent
actions.

Interleaving is used in [13] to model parallel composition of actions in the context
of a temporal logic based on CC. The main purpose of the paper is to devise a logic
for reasoning about the correctness of timed concurrent constraint programs. Indeed,
the authors focus on providing soundness and completeness of a related proof sys-
tem, rather than modelling complex reasoning processes in multi-agent systems. Con-
sequently, a major difference with our work is that information in [13] is monotonically
accumulated in the shared memory (as per classical CC tell operation) and cannot be
retracted by the agents.

7 Conclusion

We presented a formalisation of tcla based on two kinds of actions, τ-actions and ω-
actions, which realise time elapsing and computation steps, respectively. Parallel com-
position of τ-actions is handled through maximal parallelism, while for ω-actions we
adopt an interleaving approach. Indeed, it seems more adequate to the nature of time-
out operators not to interrupt the elapsing of time, once the evaluation of a timeout
has started. Clearly one could start the elapsing of time when the time out process is
scheduled, rather than when it appears in the top-level current parallel context. This
modification could easily be obtained by adding a syntactic construct to differentiate
active timeouts from inactive ones, and by accordingly changing the transition system.
One could also easily modify the semantics (both operational and denotational) to con-
sider a more liberal assumption which allows multiple ask actions in parallel. As future
work, we first plan to use existential quantifiers to extend our language by allowing the
agents to have local stores. Then, we would like to compare the interleaving approach
introduced in this paper with the implementation based on maximal parallelism given
in [5]. In this regard, we could devise a set of benchmark programs to highlight any
differences between the two proposals.

References

1. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics.
Knowl. Eng. Rev. 26(4), 365–410 (2011)

2. Baumeister, D., Neugebauer, D., Rothe, J., Schadrack, H.: Verification in incomplete argu-
mentation frameworks. Artif. Intell. 264, 1–26 (2018)

3. Bistarelli, S., Taticchi, C.: Introducing a tool for concurrent argumentation. In: Faber, W.,
Friedrich, G., Gebser, M., Morak, M. (eds.) JELIA 2021. LNCS (LNAI), vol. 12678, pp.
18–24. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75775-5 2

https://doi.org/10.1007/978-3-030-75775-5_2

Timed Concurrent Language for Argumentation: An Interleaving Approach 115

4. Bistarelli, S., Gabbrielli, M., Meo, M.C., Santini, F.: Timed soft concurrent constraint pro-
grams. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 50–
66. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68265-3 4

5. Bistarelli, S., Meo, M.C., Taticchi, C.: Timed concurrent language for argumentation. In:
Proceedings of CILC 2021–36th Italian Conference on Computational Logic, volume 3002
of CEUR Workshop Proceedings, pp. 1–15. CEUR-WS.org (2021)

6. Bistarelli, S., Taticchi, C.: A concurrent language for argumentation. In: Proceedings of AI3

2020–4th Workshop on Advances in Argumentation in Artificial Intelligence, co-located
with AIxIA 2020–19th International Conference of the Italian Association for Artificial Intel-
ligence, volume 2777 of CEUR Workshop Proceedings, pp. 75–89. CEUR-WS.org (2020)

7. Budán, M.C., Gómez Lucero, M.J., Chesñevar, C.I., Simari, G.R.: Modeling time and valu-
ation in structured argumentation frameworks. Inf. Sci. 290, 22–44 (2015)

8. Busi, N., Gorrieri, R., Zavattaro, G.: Process calculi for coordination: from Linda to JavaS-
paces. In: Rus, T. (ed.) AMAST 2000. LNCS, vol. 1816, pp. 198–212. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-45499-3 16

9. Caminada, M.: On the issue of reinstatement in argumentation. In: Fisher, M., van der
Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 111–123.
Springer, Heidelberg (2006). https://doi.org/10.1007/11853886 11

10. Caminada, M.: Semi-stable semantics. In: Proceedings of COMMA 2006 - 1st International
Conference on Computational Models of Argument, volume 144 of Frontiers in Artificial
Intelligence and Applications, pp. 121–130. IOS Press (2006)

11. Cobo, M.L., Martı́nez, D.C., Simari, G.R.: On admissibility in timed abstract argumentation
frameworks. In: Proceedings of ECAI 2010 - 19th European Conference on Artificial Intel-
ligence, volume 215 of Frontiers in Artificial Intelligence and Applications, pp. 1007–1008.
IOS Press (2010)

12. de Boer, F.S., Gabbrielli, M., Meo, M.C.: A timed concurrent constraint language. Inf. Com-
put. 161(1), 45–83 (2000)

13. de Boer, F.S., Gabbrielli, M., Meo, M.C.: A timed Linda language and its denotational
semantics. Fundam. Informaticae 63(4), 309–330 (2004)

14. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)

15. Emele, C.D., Norman, T.J., Parsons, S.: Argumentation strategies for plan resourcing. In:
Proceedings of AAMAS 2011 - 10th International Conference on Autonomous Agents and
Multiagent Systems, pp. 913–920. IFAAMAS (2011)

16. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–677
(1978)

17. Mann, N., Hunter, A.: Argumentation using temporal knowledge. In: Proceedings of
COMMA 2008 - 2nd International Conference on Computational Models of Argument, vol-
ume 172 of Frontiers in Artificial Intelligence and Applications, pp. 204–215. IOS Press
(2008)

18. Marcos, M.J., Falappa, M.A., Simari, G.R.: Dynamic argumentation in abstract dialogue
frameworks. In: McBurney, P., Rahwan, I., Parsons, S. (eds.) ArgMAS 2010. LNCS (LNAI),
vol. 6614, pp. 228–247. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
21940-5 14

19. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Heidelberg
(1980). https://doi.org/10.1007/3-540-10235-3

20. Paget, N., Pigozzi, G., Barreteau, O.: Information sharing for natural resources management.
Presented at EUMAS 2013 - 11th European Workshop on Multi-Agent Systems (2013)

21. Rotstein, N.D., Moguillansky, M.O., Garcia, A.J., Simari, G.R.: An abstract argumentation
framework for handling dynamics. In: Proceedings of the Argument, Dialogue and Decision
Workshop in NMR 2008, pp. 131–139 (2008)

https://doi.org/10.1007/978-3-540-68265-3_4
https://doi.org/10.1007/3-540-45499-3_16
https://doi.org/10.1007/11853886_11
https://doi.org/10.1007/978-3-642-21940-5_14
https://doi.org/10.1007/978-3-642-21940-5_14
https://doi.org/10.1007/3-540-10235-3

116 S. Bistarelli et al.

22. Saraswat, V.A., Jagadeesan, R., Gupta, V.: Foundations of timed concurrent constraint pro-
gramming. In: Proceedings of LICS 1994 - 9th Annual Symposium on Logic in Computer
Science, pp. 71–80. IEEE Computer Society (1994)

23. Saraswat, V.A., Jagadeesan, R., Gupta, V.: Timed default concurrent constraint program-
ming. J. Symb. Comput. 22(5/6), 475–520 (1996)

24. Saraswat, V.A., Rinard, M.: Concurrent constraint programming. In: Proceedings of POPL
1990 - 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pp. 232–245. ACM Press (1990)

Towards Dynamic Consistency Checking
in Goal-Directed Predicate Answer Set

Programming

Joaqúın Arias1(B) , Manuel Carro2,3 , and Gopal Gupta4

1 CETINIA, Universidad Rey Juan Carlos, Madrid, Spain
joaquin.arias@urjc.es

2 Universidad Politécnica de Madrid, Madrid, Spain
manuel.carro@upm.es,manuel.carro@imdea.org

3 IMDEA Software Institute, Madrid, Spain
4 University of Texas at Dallas, Richardson, USA

gupta@utdallas.edu

Abstract. Goal-directed evaluation of Answer Set Programs is gaining
traction thanks to its amenability to create AI systems that can, due
to the evaluation mechanism used, generate explanations and justifica-
tions. s(CASP) is one of these systems and has been already used to
write reasoning systems in several fields. It provides enhanced expres-
siveness w.r.t. other ASP systems due to its ability to use constraints,
data structures, and unbound variables natively. However, the perfor-
mance of existing s(CASP) implementations is not on par with other
ASP systems: model consistency is checked once models have been gen-
erated, in keeping with the generate-and-test paradigm. In this work, we
present a variation of the top-down evaluation strategy, termed Dynamic
Consistency Checking, which interleaves model generation and consis-
tency checking. This makes it possible to determine when a literal is
not compatible with the denials associated to the global constraints in
the program, prune the current execution branch, and choose a different
alternative. This strategy is specially (but not exclusively) relevant in
problems with a high combinatorial component. We have experimentally
observed speedups of up to 90× w.r.t. the standard versions of s(CASP).

Keywords: Dynamic consistency checking · Goal-directed evaluation ·
Constraints · Answer set programming

Work partially supported by EIT Digital, MICINN projects RTI2018-095390-B-
C33 InEDGEMobility (MCIU/AEI/FEDER, UE), PID2019-108528RB-C21 ProCode,
Comunidad de Madrid project S2018/TCS-4339 BLOQUES-CM co-funded by EIE
Funds of the European Union, US NSF Grants IIS 1718945, IIS 1910131, IIP 1916206.

c© Springer Nature Switzerland AG 2022
J. Cheney and S. Perri (Eds.): PADL 2022, LNCS 13165, pp. 117–134, 2022.
https://doi.org/10.1007/978-3-030-94479-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94479-7_8&domain=pdf
http://orcid.org/0000-0003-4148-311X
http://orcid.org/0000-0001-5199-3135
http://orcid.org/0000-0001-9727-0362
https://doi.org/10.1007/978-3-030-94479-7_8

118 J. Arias et al.

1 Introduction

s(CASP) [3] is a novel non-monotonic reasoner that evaluates Constraint Answer
Set Programs without a grounding phase, either before or during execution.
s(CASP) supports predicates and thus retains logical variables (and constraints)
both during the execution and in the answer sets. The operational semantics of
s(CASP) relies on backward chaining, which is intuitive to follow and lends itself
to generating explanations that can be translated into natural language [1]. The
execution of an s(CASP) program returns partial stable models: the subsets of
the stable models [13] which include only the (negated) literals necessary to
support the initial query. To the best of our knowledge, s(CASP) is the only
system that exhibits the property of relevance [22]. s(CASP) has been already
applied in relevant fields related to the representation of commonsense reasoning:

– An automated reasoner that uses Event Calculus (EC) [2,4] (http://bit.ly/
EventCalculus). s(CASP) can make deductive reasoning tasks in domains
featuring constraints involving dense time and continuous properties. It is
being used to model real-world avionics systems, to verify (timed) properties,
and to identify gaps with respect to system requirements [14].

– The s(CASP) justification framework has been used to bring Explainable
Artificial Intelligence (XAI) principles to rule-based systems capturing expert
knowledge [1,10].

– It is at the core of two natural language understanding systems [8]: SQuARE,
a Semantic-based Question Answering and Reasoning Engine, and StaCACK,
Stateful Conversational Agent using Commonsense Knowledge. They use the
s(CASP) engine to “truly understand” and perform reasoning while gener-
ating natural language explanations for their responses. Building on these
systems, s(CASP) was used to develop one of the nine systems selected to
participate in the Amazon Alexa Socialbot Grand Challenge 4 [9]1, and is
being used to develop a conversational AI chatbot.

– It has been used in ILP systems that generate ASP programs [23] and con-
current imperative programs from behavioral, observable specifications [25].

– A legal expert system [21], developed at the SMU Centre for Computational
Law at Singapore, coded rule 34 of Singapore’s Legal Profession2. Its front-
end is a web interface that collects user information, runs queries on s(CASP),
and displays the results with explanations in natural language.

– s(LAW), an administrative and judicial discretion reasoner [5], which allows
modeling legal rules involving ambiguity and infers conclusions, providing
(natural language) justifications based on them.

However, in the standard implementation of s(CASP), the global constraints
in a program are checked when a tentative but complete model is computed.
This strategy takes a large toll on the performance of programs that generate

1 https://cs.utdallas.edu/computer-scientists-enhance-alexas-small-talk-skills/.
2 https://github.com/smucclaw/r34 sCASP.

http://bit.ly/EventCalculus
http://bit.ly/EventCalculus
https://cs.utdallas.edu/computer-scientists-enhance-alexas-small-talk-skills/
https://github.com/smucclaw/r34_sCASP

DCC in s(CASP) 119

many tentative models and use global constraints to discard those that do not
satisfy the specifications of the problem.

In this work, we propose a technique termed Dynamic Consistency Checking
(DCC) that anticipates the evaluation of global constraints to discard inconsis-
tent models as early as possible. Before adding a literal to the tentative model,
DCC checks if any global constraint is violated. If so, this literal is discarded and
the evaluation backtracks to look for other alternatives. We show, through sev-
eral examples, that using this preliminary implementation, s(CASP) with DCC
is up to 90× faster. Section 2 contains an overview of the syntax, operational
semantics, and implementation of s(CASP). Section 3 explains the motivation
behind DCC with examples, and describes its design and implementation Sect. 4
presents the evaluating results of several benchmarks using s(CASP) with DCC
enabled or not. Finally, in Sect. 5 we draw conclusions and propose future work.
All the program and files used or mentioned in this paper are available at http://
platon.etsii.urjc.es/∼jarias/papers/dcc-padl21/.

2 Background: S(CASP)

An s(CASP) program is a set of clauses of the following form:
a:- ca, b1, . . ., bm, not bm+1, . . ., not bn.

where a and b1, . . . , bn are atoms. An atom is either a propositional variable
or the expression p(t1, . . ., tn) if p is an n-ary predicate symbol and t1, . . .,
tn are terms. A term is either a variable xi or a function symbol f of arity n,
denoted as f/n, applied to n terms, e.g., f(t1, t2, . . ., tn), where each ti is
in turn a term. A function symbol of arity 0 is called a constant. Therefore,
s(CASP) accepts terms with the same conventions as Prolog: f(a, b) is a term,
and so are f(g(X),Y) and [f(a)|Rest] (to denote a list with head f(a) and tail
Rest). Program variables are usually written starting with an uppercase letter3,
while function and predicate symbols start with a lowercase letter. Numerical
constants are written solely with digits.

The term ca is a simple constraint or a conjunction of constraints: an expres-
sion establishing relations among variables in some constraint system [18]. Simi-
lar to CLP, s(CASP) is parametrized w.r.t. the constraint system, from which it
inherits its semantics. Since the execution of an s(CASP) program needs negat-
ing constraints, soundness requires that this can be done in the chosen constraint
system by means of a finite disjunction of basic constraints [11,24].

At least one of a, bi, or not bi must be present. When the head a is not
present, it is supposed to be substituted by the head false. Headless rules have
then the form

:- ca, b1, . . ., bm, not bm+1, . . ., not bn.

and their interpretation is that the conjunction of the constraints and goals has
to be false, so at least one constraint or goal has to be false. For example, the
3 There are additional syntactical conventions to distinguish variables and non-

variables that are of no interest here.

http://platon.etsii.urjc.es/~jarias/papers/dcc-padl21/
http://platon.etsii.urjc.es/~jarias/papers/dcc-padl21/

120 J. Arias et al.

rule :-p, q, expresses that the conjunction of atoms p ∧ q cannot be true: either
p, q, or both, have to be false in any stable model. ASP literature often uses the
term constraint to denote these constructions. To avoid the ambiguity that may
arise from using the same name for constraints appearing among (free) variables
during program execution and in the final models and for rules without heads,
we will refer to headless rules as denials [19].

The execution of an s(CASP) program starts with a query of the form
?- ca, b1, . . ., bm, not bm+1, . . ., not bn.

The s(CASP) answers to a query are partial stable models where each one is a
subset of a stable model that satisfies the constraints, makes non-negated atoms
true, makes the negated atoms non-provable, and, in addition, includes only
atoms that are relevant to support the query. Additionally, for each partial stable
model s(CASP) returns on backtracking partial answer sets with the justification
tree and the bindings for the free variables of the query that correspond to the
most general unifier (mgu) of a successful top-down derivation.

While mainstream ASP systems such as clingo [12] require a preliminary
grounding phase, s(CASP) executes predicate ASP programs and retains logical
variables both during the execution and in the answer sets. As a consequence
of the grounding phase, ASP systems featuring constraints may suffer a loss of
communication from elimination of variables, and face difficulties when having
to deal with large domains [7], which still have to be discrete. On the other
hand, the execution methods for CASP systems are notably complex. For exam-
ple, EZSMT [6] needs explicit hooks to communicate the ASP solver and the
constraint solver used.

2.1 Execution Procedure of s(CASP)

Let us present an abridged description of the top-down strategy of s(CASP):

1. Rules expressing the constructive negation of the predicates in the original
ASP program are synthesized. We call this the dual program. Its mission is to
provide a means to constructively determine the conditions and constraints
under which calls to non-propositional predicates featuring variables would
have failed: if we want to know when a rule such as p(X,Y):-q(X), not r(Y)
succeeds, the dual program computes the constraints on Y under which the
call r(Y) would fail. This is an extension of the usual ASP semantics that
is compatible with the case of programs that can be finitely grounded4. A
description of the construction of the dual program can be found in [2,3,17].

2. The original program is checked for loops of the form r:-q, not r. and
introduces additional denials to ensure that the models satisfy ¬q ∨ r, even if
the atoms r or q are not needed to solve the query. This is done by building
a dependency graph of the program and detecting the paths where this may
happen, including call paths across calls. Therefore, for the program:

4 Note that, in the presence of function symbols and constraints on dense domains,
this is in general not the case for s(CASP) programs.

DCC in s(CASP) 121

1 p :- not q. 2 q :- not p. 3 r :- not r.

s(CASP) will determine that there are no stable models, regardless of the
initial query. For the propositional case, such an analysis can be precise. For
the non-propositional case, an over-approximation is calculated. In both cases,
denials that are not used during program evaluation can be generated. These
may impose a penalty in execution time, but are safe.

3. The denials generated in point 2, together with any denials present in the
original program, are collected in predicates synthesized by the compiler that
are evaluated by adding an auxiliary goal, nmr check/0, at the end of the
top-level query.

4. The union of the original program, the dual program, and the denials is han-
dled by a top-down algorithm that implements the stable model semantics.

Point number 4 is specially relevant. The dual program (point 1) is synthe-
sized by means of program transformations drawing from classical logic. How-
ever, its intended meaning differs from that of first-order logic. That is so because
it is to be executed by a metainterpreter that does not implement the inference
mechanisms of first-order logic, as it is designed to ensure that the semantics of
answer set programs is respected (see Sect. 2.4). In particular, it treats specifi-
cally cyclic dependencies involving negation.

2.2 Unsafe Variables and Uninterpreted Function Symbols

The following code, from [2, Pag. 9] has variables that would be termed as unsafe
in regular ASP systems: variables that appear in negated atoms in the body of
a clause, but that do not appear in any positive literal in the same body.

1 p(X):- q(X, Z), not r(X).
2 p(Z):- not q(X, Z), r(X).

3 q(X, a):- X #> 5.
4 r(X):- X #< 1.

Since s(CASP) synthesizes explicit constructive goals for these negated goals,
the aforementioned code can be run as-is in s(CASP). The query ?-p(A). gen-
erates three different answer sets, one for each binding:

{ p(A | {A #> 5}), q(A | {A #> 5}, a), not r(A | {A #> 5}) }
A #> 5

{ p(A | {A \= a}), not q(B | {B #< 1}, A | {A \= a}), r(B | {B #< 1}) }
A \= a

{ p(a), not q(B | {B #< 1}, a), r(B | {B #< 1}) }
A = a

where the notation V|{C} for a variable V is intended to mean that V is subject
to the constraints in {C}. The constraints A = 5, A �= a, and A = a correspond
to the bindings of variable A that make the atom from the query ?-p(A) belong
to the stable model.

122 J. Arias et al.

Another very relevant point where s(CASP) differs from ASP is in the pos-
sibility of using arbitrary uninterpreted function symbols to build, for example,
data structures. While in mainstream ASP implementations these could give
rise to an infinite grounded program (i.e., if the program does not have the
bound-term-depth property), the s(CASP) execution model can deal with them
similarly to Prolog, with the added power of the use of constructive negation in
the execution and in the returned models.

Example 1. The predicate member/2 below, from [2, Pag. 11], models the mem-
bership to a list as it is usual in (classical) logic programming. The query is
intended to derive the conditions for one argument not to belong to a given list.

1 member(X, [X|Xs]).
2 member(X, [_|Xs]):- member(X, Xs).

3 list([1,2,3,4,5]).
4 ?- list(A), not member(B, A).

This program and query return in s(CASP) the following model and bindings:

{ list([1,2,3,4,5]),
not member(B | {B \= 1,B \= 2,B \= 3,B \= 4,B \= 5}, [1,2,3,4,5]),
not member(B | {B \= 1,B \= 2,B \= 3,B \= 4,B \= 5}, [2,3,4,5]),
not member(B | {B \= 1,B \= 2,B \= 3,B \= 4,B \= 5}, [3,4,5]),
not member(B | {B \= 1,B \= 2,B \= 3,B \= 4,B \= 5}, [4,5]),
not member(B | {B \= 1,B \= 2,B \= 3,B \= 4,B \= 5}, [5]),
not member(B | {B \= 1,B \= 2,B \= 3,B \= 4,B \= 5}, []) }
A = [1,2,3,4,5], B \= 1, B \= 2, B \= 3, B \= 4, B \= 5

I.e., for variable B not to be a member of the list [1,2,3,4,5] it has to be
different from each of its elements.

2.3 s(CASP) as a Conservative Extension of ASP

The behavior of s(CASP) and ASP is the same for propositional programs.
They differ in programs with unsafe variables (not legal in mainstream ASP
systems), programs that could create unbound data structures, or whose variable
ranges are defined in infinite domains (either unbound or bound but dense). Such
programs are outside the standard domain of ASP systems as they cannot be
finitely grounded, For them, s(CASP) extends ASP consistently.

In addition, the domain of the variables is implicitly expanded to include
a domain which can be potentially infinite. Let us use the following example,
from [2, Pag. 12], where we are interested in knowing whether p(X) (for some X)
is or not part of a stable model:

1 d(1). 2 p(X) :- not d(X).

DCC in s(CASP) 123

The only constant in the program is 1, which is the only possible domain for
X in the second clause. That clause is not legal for ASP, as X is an unsafe variable
(Sect. 2.2). Adding a domain predicate call for it (i.e., adding d(X) to the body
of the second clause), makes its model be {d(1)} (not p(1) is implicit).

That second clause is however legal in s(CASP). Making the query ?-p(X)
returns the partial model {p(X| {X \= 1}), not d(X|{X \= 1})} stating that
p(X) and not d(X) are true when X \= 1 , which is consistent with, but more
general than, the model given by ASP. As the model is partial, only the atoms
(perhaps negated) involved in the proof for ?-p(X) appear in that model.

1 scasp(Query) :-

2 solve(Query,[],Mid),

3 solve_goal(nmr_check,Mid,Model),

4 print_just_model(Model).

5

6 solve([],In,['$success' |In]).
7 solve([Goal |Gs],In,Out) :-

8 solve_goal(Goal,In,Mid),

9 solve(Gs,Mid,Out).

10

11 solve_goal(Goal,In,Out) :-

12 user_defined(Goal), !,

13 check_loops(Goal,In,Out).

14 solve_goal(Goal,In,Out) :-

15 Goal=forall(Var,G), !,

16 c_forall(V,G,In,Out).

17 solve_goal(Goal,In,Out) :-

18 call(Goal),

19 Out=['$success',Goal |In].
20

21 check_loops(Goal,In Out) :-

22 loop_type(Goal,In,Loop),

23 s_loop(Loop,Goal,In,Out).

24

25 s_loop(odd,_,_,_) :- fail.

26 s_loop(even,G,In,[chs(G) |In]).
27 s_loop(no_loop,G,In,Out) :-

28 pr_rule(G, Body),

29 solve(Body,[G |In],Out).
30 s_loop(proved,G,In,[proved(G) |In]).
31 s_loop(positive,_,_,_) :- fail.

Fig. 1. Outline of the s(CASP) interpreter’s code implemented in Ciao Prolog.

2.4 The s(CASP) Interpreter

Queries to the original program extended with the dual rules are evaluated by a
runtime environment. This is currently a metainterpreter (see Fig. 1) in Prolog
that executes an algorithm [15] that has similarities with SLD resolution. But it
takes into account specific characteristics of ASP and the dual programs, such
as the denials, the different kinds of loops, and the introduction of universal
quantifiers in the body of the clauses:

1. The query Query is evaluated invoking solve/3 in line 2 starting with an
empty model represented as the empty list [].

2. After the query evaluation, and to ensure that the returned model, Mid, is
consistent with the denials, nmr check (item 3 in page 7) is evaluated in line 3.

3. In line 4, the models that are consistent (and their justifications), Model, are
output by print just model/1.

4. The predicate solve/3 receives a list with the literals in the query (or in the
body of some rule) and evaluates them, one by one, invoking solve goal/3.

124 J. Arias et al.

5. When the literal is a user defined predicate (line 12), the interpreter checks if
there is a loop invoking check loops/3. Three main cases are distinguished
by type loop/3:
Odd loop. When a call eventually invokes itself and there is an odd number

of intervening negations (as in, e.g., p:- q. q:- not r. r:- p.), the
evaluation fails in line 25, to avoid contradictions of the form p∧ ¬p, and
backtracking takes place.

Even loop. When there is an even number of intervening negations (as in
p:- not q. q:- r. r:- not p.), the metainterpreter succeeds in
line 26 to generate several stable models, such as {p, not q, not r}
and {q, r, not p}.

No loop. If no loops are detected, in line 27 the interpreter invokes
pr rule/2 to retrieve the rule that unifies with the goal G and contin-
ues the evaluation by invoking solve/3 with the literals of the rule.

6. The construction forall(Var, G) in line 15 is the dual of the existential
quantifications in the body of the clauses. To evaluate them the runtime
environment invokes the predicate c forall/4 in line 16, which determines
if G holds for all the values of Var—see [3] for implementation details.

7. Finally, operations involving constraints and/or builtins are natively handled
by invoking call/1 in line 18.

3 Dynamic Consistency Checking in s(CASP)

The Dynamic Consistency Checking proposal of [16] is designed for propositional
programs, while our proposal can also take care of predicate ASP programs. It
is based on anticipating the evaluation of denials to fail as early as possible

3.1 Motivation

As we mentioned before, a denial such as :-p, q, expresses that the conjunction
of atoms p ∧ q cannot be true: either p, q, or both, have to be false in any stable
model. In predicate ASP the atoms have variables and a denial such as :-p(X),
q(X,Y) means that:

false ← ∃x, y (p(x) ∧ q(x, y))

i.e., p(X) and q(X,Y) can not be simultaneously true for any possible values
of X and Y in any stable model. To ensure that the tentative partial model is
consistent with this denial, the compiler generates a rule of the form

∀x, y (chki ↔ ¬(p(x) ∧ q(x, y)))

and to ensure that each sub-check (chki) is satisfied, they are included in the
rule nmr check ← chk1 ∧ · · · ∧ chkk ∧ . . ., which is transparently called after the
program query by the s(CASP) interpreter (see Fig. 1, line 3).

However, this generate-and-test strategy has a high impact on the perfor-
mance of programs that create many tentative models and use denials to discard
those that do not satisfy the constraints of the problem.

DCC in s(CASP) 125

1 reachable(V) :- chosen(a, V).

2 reachable(V) :- chosen(U, V), reachable(U).

3 chosen(U, V) :- edge(U, V), not other(U, V). % Choose or not an

4 other(U, V) :- edge(U, V), not chosen(U, V). % edge of the graph.

5

6 :- vertex(U), not reachable(U). % Every vertex must be reachable.

7 :- chosen(U, W), U \= V, chosen(V, W). % Do not choose edges to or

8 :- chosen(W, U), U \= V, chosen(W, V). % from the same vertex.

9 #show chosen/2.

10

11 ?- reachable(a). % Is there a path from a to a?

Fig. 2. Code of the Hamilonian problem á la ASP, available at hamiltonian.pl.

1 % Graph

2 vertex(a).

3 vertex(b).

4 vertex(c).

5 vertex(d).

6 edge(b, a).

7 edge(b, d).

8 edge(a, c).

9 edge(a, b).

10 edge(b, c).

11 edge(c, d).

12 edge(d, a).

13 edge(c, a).

14 edge(a, d).

15 edge(d, b).

a b

d c

Fig. 3. Graph with 4 nodes available at graph 4.pl.

Example 2 (Hamiltonian path problem). Consider the Hamiltonian path prob-
lem, in which for a given graph we search for a cyclic path that visits each node
of the graph only once. The standard ASP code for this problem, available at
hamiltonian.pl, is in Fig. 2. The conditions of the problem are captured (i) in
line 6 to discard tentative paths that do not visit all the nodes, and (ii) in lines 7–
8 to discard paths that have edges violating the properties of the Hamiltonian
path. For the query in line 11, using the graph in Fig. 3 there are three stable
models, one for each Hamiltonian cycle:

{ chosen(a,c), chosen(c,d), chosen(d,b), chosen(b,a),. . . }
{ chosen(a,b), chosen(b,c), chosen(c,d), chosen(d,a),. . . }
{ chosen(a,d), chosen(d,b), chosen(b,c), chosen(c,a),. . . }

As mentioned before, the standard s(CASP) execution follows a generate-
and-test scheme, choosing a cycle that reaches node a from node a and then
discards any cycle in which:

– Not all vertices are reached (line 6), e.g., {chosen(a,b),chosen(b,a)}.
– Two chosen edges reach / leave the same vertex (line 7), e.g., {chosen(a,

b), chosen(d,b), chosen(b,a)} or {chosen(a,b), chosen(b,d),
chosen(b,a)}.

http://platon.etsii.urjc.es/~jarias/papers/dcc-padl21/hamiltonian.pl
http://platon.etsii.urjc.es/~jarias/papers/dcc-padl21/graph_4.pl
http://platon.etsii.urjc.es/~jarias/papers/dcc-padl21/hamiltonian.pl

126 J. Arias et al.

As a consequence, if the evaluation chooses an edge that breaks any of these
conditions, trying combinations with the rest of the edges would be misused
effort.

3.2 Outline of the DCC Approach

The main idea behind our proposal is to anticipate the evaluation of the denials
to fail and backtrack as early as possible. When an atom involved in a denial is a
candidate to be added to a tentative model, the denial is checked to ensure that
it is not already violated. By contrast, the classical implementation of s(CASP)
checked the tentative model as a whole once it had been completely built. The
latter is akin to the generate-and-test approach to combinatorial problems, while
the former tries to cut the search early.

In the most general case, DCC can take the form of a constraint-and-test
instance. While detecting some denial violations can be performed by just check-
ing the current state of the (partial) candidate model, better, more powerful
algorithms can impose additional constraints on the rest of the atoms belong-
ing to the partial model and also on the parts of the denials that remain to be
checked.

These constraints can propagate additional conditions through the candidate
model to ensure that it is consistent with the denials. These conditions will also
remain active for the rest of the construction of the model, so that they can
be carried forward, further reducing the search space. Note that since s(CASP)
includes constraints á la CLP, the effect is very similar to the constraint propa-
gation mechanisms that take place in constraint satisfaction systems, therefore
making a full s(CASP) + DCC system an instance of a constraint-and-generate
evaluation engine.

The current implementation, which we describe in this paper, is a proof of
concept that only checks grounds literals and does not anticipate the consistency
check of constrained literals. As we will see later, this does not have a negative
impact on the soundness of the system.

3.3 Implementation of DCC in s(CASP)

The implementation of s(CASP) + DCC is available as part of the source code
of s(CASP) at https://gitlab.software.imdea.org/ciao-lang/scasp.

Compilation of the Denials. As we mentioned before, the denials are com-
piled in such a way that the interpreter checks consistency by proving that forall
possible values, the negation of the denial is satisfied. For example, for the denial
:-p(X), q(X,Y), the compiler generates the rule:

1 chk1 :- forall(X, forall(Y, not chk_body(X,Y))).
2 not chk_body(X,Y) :- not p(X).
3 not chk_body(X,Y) :- p(X), not q(X,Y).

https://gitlab.software.imdea.org/ciao-lang/scasp

DCC in s(CASP) 127

The last clause includes a call to p(X) to avoid duplicated solutions provided
by the two clauses. If the interpreter is able to prove that for all the possible
values of X and Y the tentative partial model is consistent with the predicate
not chk body(X,Y), then it means that the tentative partial model is a stable
partial model.

The approach followed by the DCC proposal is to detect when a rule like
the above determines that a model candidate is inconsistent. If that is the case,
s(CASP) fails and provokes backtracking to explore the generation of a different
model. In the example above, if a model being generated is consistent with p(X)
∧ q(X,Y), then it should be discarded.

Since it is only necessary to check for violation of denials when adding a goal
involved in one of the denials, the compiler creates a series of rules that state
what has to be checked for in case a goal involved in the denial is generated.
For the case above, if p(X) is added, then q(X,Y) has to be checked to ensure
it does not hold, and the other way around. This is represented as:

1 dcc(p(X), [q(X,Y)]).
2 dcc(q(X,Y), [p(X)]).

which can be understood as “if p(X) is present, check that q(X,Y) is not present”.
In general, given a user defined denial5 of the form :-ca, b1, . . . , bn for each

(negated) literal bk, of a user defined predicate, the compiler generates a DCC
rule dcc(bk, [ca, . . . , bk−1, bk+1, . . .]) for each k, 1 ≤ k ≤ n.

1 % The only clauses that changes

2 s_loop(even,G,In,[chs(G) |In]) :-

3 eval_dcc(G,In). % New call

4 s_loop(no_loop,G,In,Out) :-

5 pr_rule(G, Body),

6 solve(Body,[G |In],Out),
7 eval_dcc(G,In). % New call

8

9 eval_dcc(G,In):-

10 \+ (ground(G),

11 pr_dcc_rule(G,F_Atoms),

12 holds_dcc(F_Atoms,In)).

13 holds_dcc([],_).

14 holds_dcc([F_A |F_As],In) :-

15 holds_dcc_(F_A,In),

16 holds_dcc(F_As,In).

17

18

19 holds_dcc_(F_A,In) :-

20 user_defined(F_A), !,

21 member(F_A,In).

22 holds_dcc_(F_A,In) :-

23 call(F_A).

Fig. 4. Outline of the changes to the s(CASP) interpreter extended with DCC.

Extending the s(CASP) Interpreter with DCC. Figure 4 shows the rele-
vant fragment of the s(CASP) interpreter extended with Dynamic Consistency
Checking. The basic intuition is that as soon as an atom that is involved in a
denial is a candidate to be added to a model, DCC checks whether the candidate

5 The current implementation does not check denials introduced due to olon loops.

128 J. Arias et al.

model is consistent with the rest of the atoms (including builtins) in that denial.
Depending on the result of this check, the candidate atom is added or not. The
modified interpreter performs the following steps:

1. The DCC check starts when the interpreter proves that a goal G holds, by
invoking the predicate eval dcc/2. If it succeeds, G is added to the model
and the evaluation continues. Otherwise, an inconsistency has been detected
and backtracking takes place.

2. The current implementation of eval dcc/2 only evaluates fully instantiated
goals. Therefore, if the G is not ground (line 10), eval dcc/2 succeeds and
the evaluation continues. This is not a source of unsoundness, as in any case
the whole set of denials are checked before finally returning a model.

3. Otherwise, dcc rule(G,F Atoms) (line 11) retrieves the DCC rules that
involve goal G. If there are no DCC rules, eval dcc/2 succeeds.

4. Since one atom in the rule (G) is to be added to the model, we need to
ensure that not all the rest of the atoms in the rule (F Atoms) appear in the
candidate model In. In order not to instantiate the model, this is done by
checking with holds dcc(F Atoms,In) whether all the atoms appear in In6

and then negating (by failure) the calling predicate.

Let us consider a program including the denial :-p(X), q(X,Y). When the
evaluation of p(1) succeeds, and before it is added to the tentative model, the
interpreter calls eval dcc(p(1),[. . .]), where [. . .] is the current tentative
model. Since p(1) is ground, pr dcc rule(p(1),F Atoms) retrieves in F Atoms
a list of the atoms that cannot be true in the model—in this case, [q(1,Y)].
Then, the interpreter checks if the literals in [q(1,Y)] are true in the current
(tentative) model In. If that is the case, holds dcc([q(1,Y)],[. . .]) succeeds,
eval dcc/2 fails, and the interpreter backtracks because the denial has been
violated. Otherwise, the evaluation continues.

It is easy to see that this implementation of dynamic consistency checking is
complete, i.e., we do not lose answers: since only ground goals are checked, there
is no risk of instantiating free variables which could restrict degrees of freedom of
the tentative model and therefore potentially removing solutions. Furthermore,
to ensure correctness, we keep the non-monotonic rule checking that is performed
once the tentative model is found. Note that non-ground goals are at the moment
not subject to DCC rules, but they may be involved in denials, and denials of
atoms not needed to support the query must be checked.

DCC is also used during the execution of the nmr check predicate. As we
mentioned before (item 3 in page 5), denials are compiled into a synthesized
goal, nmr check, that is executed after a model has been generated. During its
execution, DCC rules are actively used to look for atoms that are introduced
and when an inconsistency is flagged, execution fails and backtracks.

Example 3 (Cont. Example 2). Let us consider the Hamiltonian program in
Fig. 2. As explained above, the compiler generates the DCC rules below. For
this example each denial is translated into two specialized rules.
6 For builtins: checking that they succeed if evaluated in the environment of the model.

DCC in s(CASP) 129

1 dcc(vertex(U), [not reachable(U)]).
2 dcc(not reachable(U), [vertex(U)]).
3 dcc(chosen(U,W), [U \= V, chosen(V,W)]).
4 dcc(chosen(V,W), [chosen(U,W), U \= V]).
5 dcc(chosen(W,U), [U \= V, chosen(W,V)]).
6 dcc(chosen(W,V), [chosen(W,U), U \= V]).

By invoking scasp --dcc7 hamiltonian.pl graph 4.pl, s(CASP) evalu-
ates the query ?-reachable(a) following a goal-directed strategy. Let us refer
to the code in Fig. 2 and the graph in Fig. 3 to explain how the evaluation with
DCC takes place:

1. The query unifies with the clause in line 1 but the goal chosen(a,a) fails
because edge(a,a) does not exist.

2. From the clause in line 2, chosen(b,a) is added to the tentative model,
because no DCC rule succeeds. The goal reachable(b) is then called.

3. The goal reachable(b) unifies with the clause in line 1 and chosen(a,b) is
added, because it is consistent with chosen(b,a).

4. As the query succeeds for the model {chosen(b,a), chosen(a,b),
reachable(a), reachable(b), . . . }, s(CASP) invokes nmr check.

5. nmr check executes checks for all the denials. The code corresponding to
line 6 is:

1 chk1 :- forall(U, not chk1_1(U))).
2 not chk1_1(U) :- not vertex(U).
3 not chk1_1(U) :- vertex(U), reachable(U).

i.e., all vertices (vertex(U)) must be reachable (reachable(U)). For vertices
U = a and U = b, reachable(a) and reachable(b) are already in the model,
so there is nothing to check. But for vertex U = c, reachable(c) is not in
the model and therefore reachable(c) has to be invoked while checking the
denials.

6. From the clause in line 1, chosen(a,c) is selected to be added to the model,
but it is discarded by DCC, because of the DCC rule dcc(chosen(V,W),
[chosen(U,W), U \= V]), corresponding to the denial in line 7. Note that
this DCC rule is instantiated to dcc(chosen(a,c), [c \= b, chosen(a,b)]

and the literal chosen(a,b) is already in the model.
7. The evaluation backtracks and continues the search using another edge.

The denial in line 6 makes the interpreter to select edges to reach all vertices.
The interleaving of the dynamic consistency checking prunes the search, which,
as shown in Sect. 4, improves performance.

7 The --dcc flag imply the use of --prev_forall, valid for non-constrained programs.

130 J. Arias et al.

4 Evaluation

In this section we compare the performance of s(CASP) with and without
DCC using a macOS 11.5.2 Intel Core i7 at 2.6 GHz. We use s(CASP) version
0.21.10.09 available at https://gitlab.software.imdea.org/ciao-lang/scasp and, as
mentioned before, all the benchmarks used or mentioned in this paper are avail-
able at http://platon.etsii.urjc.es/∼jarias/papers/dcc-padl21.

Table 1. Performance comparison: s(CASP) and s(CASP)+DCC.

Speedup s(CASP) s(CASP)+DCC

Hamiltonian (4 vertices) 10.0 11.985 1.196

Hamiltonian (7 vertices) 41.1 134.460 3.191

n queens (n=4) 4.3 8.147 1.910

n queens (n=5) 4.9 92.756 18.786

n queens (n=6) 90.8 1362.840 15.001

n queens attack (n=6) 1.0 77.039 76.827

Table 1 shows the results of the performance comparison (in seconds), and the
speedup of s(CASP) with DCC w.r.t. s(CASP) – note that DCC activates the
use of the forall predicate optimized for non-constrained programs, therefore,
for a fair comparison, s(CASP) w.o. DCC should be executed including the
--prev forall flag.

First, we evaluate the Hamiltonian path problem (Example 2) using the
encoding in Fig. 2 (available at hamiltonian.pl) and the graph with 4 vertices
in Fig. 3 (available at graph 4.pl). We see that s(CASP) with DCC obtains a
speedup of 10.0×. When the size of the graph is increased by adding three
vertices8 we obtain a speedup of 41.1×.

We also evaluated the performance of s(CASP) with DCC with the well-
known n-queens problem, using two different versions. These examples are espe-
cially interesting, as they have no finite grounding and thus cannot be run by
other implementations of the stable model semantics. In particular, the size of
the board is not fixed by the programs and therefore the same code can be used
to find solutions to several board sizes.

The first version, n queens (available at n queens.pl), uses denials to discard
solutions where two queens attack each other. The speedup obtained by s(CASP)
with DCC ranges from 4.3× (for n = 4) to 90.8× (for n = 6).

The second version is the one presented in [15, Pag. 37] (available at
n queens attack.pl). In this case, the predicate attack/3 is used to check whether
a candidate queen attacks any previously selected queen. This version does not
have denials, as the check is done as part of the computation, and therefore DCC
checks are not useful.
8 The graph with seven vertices is available at graph 7.pl.

https://gitlab.software.imdea.org/ciao-lang/scasp
http://platon.etsii.urjc.es/~jarias/papers/dcc-padl21
http://platon.etsii.urjc.es/~jarias/papers/dcc-padl21/hamiltonian.pl
http://platon.etsii.urjc.es/~jarias/papers/dcc-padl21/graph_4.pl
http://platon.etsii.urjc.es/~jarias/papers/dcc-padl21/n_queens.pl
http://platon.etsii.urjc.es/~jarias/papers/dcc-padl21/n_queens_attack.pl
http://platon.etsii.urjc.es/~jarias/papers/dcc-padl21/graph_7.pl

DCC in s(CASP) 131

Two interesting conclusions can be drawn from the numbers in the table:

– The execution time of n queens attack does not significantly change using
or not DCC, which supports our assumption that the overhead of using DCC
checks when they are not needed is negligible.

– On the other hand, the DCC-enabled execution for the version with denials
(n queens, column “s(CASP)+DCC”) is faster than the version without
denials (n queens attack, column “s(CASP)”) for a factor of 4.1×. This can
be attributed to the runtime being sophisticated enough to perform checks
earlier and more efficiently than the hand-crafted code, even with the current,
preliminary implementation.

Table 2. Models generated and/or discarded: s(CASP) vs. s(CASP)+DCC.

#models returned #models discarded #DCC detected

s(CASP) s(CASP)+DCC

Hamiltonian (4 vertices) 3 7 7 52

Hamiltonian (7 vertices) 1 13 13 34

n queens (n=4) 2 253 0 44

n queens (n=5) 10 3116 0 167

n queens (n=6) 4 46652 0 742

Table 2 sheds some additional light on the effectiveness of DCC. It contains,
for the same benchmarks as Table 1, how many models were returned, how many
candidate models were discarded by nmr check after they were generated (col-
umn “#models discarded – s(CASP)”), how many (partial) candidate models
were discarded using DCCs (column “#models discarded – s(CASP) + DCC”)
and how many times the dynamic consistency checking detects an inconsistency
and backtracks (column “#DCC detected”).

Let us first focus on the n queens benchmark9. As the size of the board grows,
the number of models that are completely generated and discarded by s(CASP)
without using DCCs grows exponentially; this is of course the reason why its
execution time also increases very quickly. If we look at the column “#models
discarded – s(CASP) + DCC” we see that, when DCC is active, none of final
models is discarded by nmr check. That means that all models not consistent
with the denials have been removed early, while they were being built. We also
see that the number of times that DCC rules were activated is much smaller
than the number of times that nmr check was executed—early pruning made
it possible to avoid attempting to generate many other candidate models. On
top of that, executing DCC rules is done directly in Prolog, while nmr check
is executed using the s(CASP) metainterpreter, and the former is considerably
faster than the latter. This adds to the advantage of early pruning.
9 n queens attack does not have denials, hence we do not include it in this table.

132 J. Arias et al.

The Hamiltonian path benchmark is different and very interesting. The num-
ber of models discarded by nmr check is the same regardless of whether DCC is
activated or not. That means that the DCC could not detect inconsistencies in
candidate models. In this case the advantage of using DCC comes from apply-
ing it when nmr check is invoked to ensure that the final model is consistent
with the denials. nmr check is executed as a piece of (synthesized) code by the
metainterpreter. The denials in the Hamiltonian path not only check, but also
generate new atoms which are checked by the DCC. This accelerates the execu-
tion of nmr check, making it fail earlier, and it is the cause of the speedup of
the Hamiltonian path benchmark.

5 Conclusions

In this paper, we have reported on a preliminary design and implementation of
Dynamic Consistency Checking (DCC), a technique that anticipates the con-
sistency evaluation of tentative models in s(CASP), a goal-directed (predicate)
Constraint Answer Set Programming. This technique translates the denials to
check them as early as possible rather than when a full model is found for a
given query. Its ability to detect inconsistencies before a literal is added to the
tentative model greatly increases the performance. With respect with executions
without DCC. Early denial checking can also beat programs that use auxiliary
predicates explicitly called from the user code to check for inconsistencies.

The current DCC implementation can still be improved, in particular to
properly handle constraints by reducing the domain of constrained variables:
checking denials using literals with constrained variables has to keep track of
the domains of the variables, while avoiding introducing non-determinism when
conflicting values are removed from the domain of the variables.

References

1. Arias, J., Carro, M., Chen, Z., Gupta, G.: Justifications for goal-directed constraint
answer set programming. In: Proceedings 36th International Conference on Logic
Programming (Technical Communications). EPTCS, vol. 325, pp. 59–72. Open
Publishing Association (2020). https://doi.org/10.4204/EPTCS.325.12

2. Arias, J., Carro, M., Chen, Z., Gupta, G.: Modeling and Reasoning in Event
Calculus using Goal-Directed Constraint Answer Set Programming. Theory
and Practice of Logic Programming, pp. 1–30 (2021). https://doi.org/10.1017/
S1471068421000156

3. Arias, J., Carro, M., Salazar, E., Marple, K., Gupta, G.: Constraint answer set
programming without grounding. Theor. Pract. Logic Program. 18(3–4), 337–354
(2018). https://doi.org/10.1017/S1471068418000285

4. Arias, J., Chen, Z., Carro, M., Gupta, G.: Modeling and reasoning in event calculus
using goal-directed constraint answer set programming. In: Gabbrielli, M. (ed.)
LOPSTR 2019. LNCS, vol. 12042, pp. 139–155. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45260-5 9

https://doi.org/10.4204/EPTCS.325.12
https://doi.org/10.1017/S1471068421000156
https://doi.org/10.1017/S1471068421000156
https://doi.org/10.1017/S1471068418000285
https://doi.org/10.1007/978-3-030-45260-5_9
https://doi.org/10.1007/978-3-030-45260-5_9

DCC in s(CASP) 133

5. Arias, J., Moreno-Rebato, M., Rodriguez-Garćıa, J.A., Ossowski, S.: Modeling
administrative discretion using goal-directed answer set programming. In: Alba,
E., et al. (eds.) CAEPIA 2021. LNCS (LNAI), vol. 12882, pp. 258–267. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-85713-4 25

6. Balduccini, M., Lierler, Y.: Constraint answer set solver EZCSP and why integra-
tion schemas matter. Theor. Pract. Logic Program. 17(4), 462–515 (2017). https://
doi.org/10.1017/S1471068417000102

7. Banbara, M., Kaufmann, B., Ostrowski, M., Schaub, T.: Clingcon: the next gen-
eration. Theor. Pract. Log. Program. 17(4), 408–461 (2017). https://doi.org/10.
1017/S1471068417000138

8. Basu, K., Varanasi, S., Shakerin, F., Arias, J., Gupta, G.: Knowledge-driven natural
language understanding of english text and its applications. In: Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 35, pp. 12554–12563 (2021)

9. Basu, K., et al.: CASPR: a commonsense reasoning-based conversational Socialbot.
In: 4th Proceedings of Alexa Prize (Alexa Prize 2021) (2021)

10. Chen, Z., Marple, K., Salazar, E., Gupta, G., Tamil, L.: A physician advi-
sory system for chronic heart failure management based on knowledge patterns.
Theor. Pract. Logic Program. 16(5–6), 604–618 (2016). https://doi.org/10.1017/
S1471068416000429

11. Dovier, A., Pontelli, E., Rossi, G.: A necessary condition for constructive negation
in constraint logic programming. Inf. Process. Lett. 74(3–4), 147–156 (2000)

12. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving
with clingo. Theor. Pract. Logic Program. 19(1), 27–82 (2019). https://doi.org/
10.1017/S1471068418000054

13. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming.
In: 5th International Conference on Logic Programming, pp. 1070–1080 (1988).
http://www.cse.unsw.edu.au/∼cs4415/2010/resources/stable.pdf

14. Hall, B., et al.: Knowledge-Assisted reasoning of model-augmented system require-
ments with event calculus and goal-directed answer set programming. In: Proceed-
ings 8th Workshop on Horn Clause Verification and Synthesis (2021)

15. Marple, K., Bansal, A., Min, R., Gupta, G.: Goal-Directed execution of answer set
programs. In: Schreye, D.D., Janssens, G., King, A. (eds.) Principles and Practice
of Declarative Programming, PPDP 2012, Leuven, Belgium - 19–21 September
2012, pp. 35–44. ACM (2012). https://doi.org/10.1145/2370776.2370782

16. Marple, K., Gupta, G.: Dynamic consistency checking in goal-directed answer set
programming. Theor. Pract. Loging Program. 14(4–5), 415–427 (2014). https://
doi.org/10.1017/S1471068414000118

17. Marple, K., Salazar, E., Gupta, G.: Computing Stable Models of Normal Logic Pro-
grams Without Grounding. arXiv:1709.00501 (2017). http://arxiv.org/abs/1709.
00501

18. Marriott, K., Stuckey, P.J.: Programming with Constraints: An Introduction. MIT
Press, Cambridge (1998)

19. Mellarkod, V.S., Gelfond, M., Zhang, Y.: Integrating Answer Set Programming and
Constraint Logic Programming. Technical Report, Texas Tech University, Octo-
ber 2008, this is a long version of [20]. https://www.depts.ttu.edu/cs/research/
documents/46.pdf

20. Mellarkod, V.S., Gelfond, M., Zhang, Y.: Integrating answer set programming and
constraint logic programming. Ann. Math. Artif. Intell. 53(1–4), 251–287 (2008)

21. Morris, J.: Constraint answer set programming as a tool to improve legislative
drafting: a rules as code experiment. In: ICAIL, pp. 262–263. ACM (2021)

https://doi.org/10.1007/978-3-030-85713-4_25
https://doi.org/10.1017/S1471068417000102
https://doi.org/10.1017/S1471068417000102
https://doi.org/10.1017/S1471068417000138
https://doi.org/10.1017/S1471068417000138
https://doi.org/10.1017/S1471068416000429
https://doi.org/10.1017/S1471068416000429
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1017/S1471068418000054
http://www.cse.unsw.edu.au/~cs4415/2010/resources/stable.pdf
https://doi.org/10.1145/2370776.2370782
https://doi.org/10.1017/S1471068414000118
https://doi.org/10.1017/S1471068414000118
http://arxiv.org/abs/1709.00501
http://arxiv.org/abs/1709.00501
http://arxiv.org/abs/1709.00501
https://www.depts.ttu.edu/cs/research/documents/46.pdf
https://www.depts.ttu.edu/cs/research/documents/46.pdf

134 J. Arias et al.

22. Pereira, L.M., Apaŕıcio, J.N.: Relevant counterfactuals. In: EPIA 89, 4th Por-
tuguese Conference on Artificial Intelligence, Lisbon, Portugal, 26–29 September
1989, Proceedings, pp. 107–118 (1989). https://doi.org/10.1007/3-540-51665-4 78

23. Shakerin, F., Gupta, G.: Induction of non-monotonic logic programs to explain
boosted tree models using LIME. In: AAAI 2019, pp. 3052–3059, January–February
2019. https://doi.org/10.1609/aaai.v33i01.33013052

24. Stuckey, P.: Constructive negation for constraint logic programming. In: Proceed-
ings LICS 1991, pp. 328–339 (1991)

25. Varanasi, S.C., Salazar, E., Mittal, N., Gupta, G.: Synthesizing imperative code
from answer set programming specifications. In: Gabbrielli, M. (ed.) LOPSTR
2019. LNCS, vol. 12042, pp. 75–89. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-45260-5 5

https://doi.org/10.1007/3-540-51665-4_78
https://doi.org/10.1609/aaai.v33i01.33013052
https://doi.org/10.1007/978-3-030-45260-5_5
https://doi.org/10.1007/978-3-030-45260-5_5

Implementing Stable-Unstable Semantics
with ASPTOOLS and Clingo

Tomi Janhunen(B)

Tampere University, Tampere, Finland
Tomi.Janhunen@tuni.fi

Abstract. Normal logic programs subject to stable model semantics
cover reasoning problems from the first level of polynomial time hierarchy
(PH) in a natural way. Disjunctive programs reach one level beyond this,
but the access to the underlying NP oracle(s) is somewhat implicit and
available for the programmer using the so-called saturation technique. To
address this shortcoming, stable-unstable semantics was proposed, mak-
ing oracles explicit as subprograms having no stable models. If this idea
is applied recursively, any level of PH can be reached with normal pro-
grams only, in analogy to quantified Boolean formulas (QBFs). However,
for the moment, no native implementations of stable-unstable semantics
have emerged except via translations toward QBFs. In this work, we alle-
viate this situation with a translation of (effectively) normal programs
that combines a main program with any fixed number of oracles subject
to stable-unstable semantics. The result is a disjunctive program that
can be fed as input for answer set solvers supporting disjunctive pro-
grams. The idea is to hide saturation from the programmer altogether,
although it is exploited by the translation internally. The translation of
oracles is performed using translators and linkers from the ASPTOOLS
collection while Clingo is used as the back-end solver.

1 Introduction

The semantics of answer set programming paradigm (see, e.g., [6,22] for an
overview) rests on the notion of stable models first proposed for normal logic
programs (NLPs) [15] and later generalized for disjunctive logic programs
(DLPs) [16]. The known complexity results [9,30] indicate that NLPs subject
to stable model semantics cover reasoning problems from the first level of poly-
nomial time hierarchy (PH) in a natural way while DLPs reach one level beyond.
In the latter case, however, the access to underlying NP oracle(s) is somewhat
implicit and best understood via the so-called saturation technique from the
original complexity result [9]. When using saturation, the programmer is con-
fronted with the fact that an oracle must be essentially expressed as a Boolean
satisfiability problem, which differs from NLPs with respect to both syntax and
semantics (cf. Sect. 5). In spite of this mismatch, saturation has been successfully
applied when expressing properties pertaining to the second-level of PH [10,13],
e.g., when using meta-programming techniques together with saturation.
c© Springer Nature Switzerland AG 2022
J. Cheney and S. Perri (Eds.): PADL 2022, LNCS 13165, pp. 135–153, 2022.
https://doi.org/10.1007/978-3-030-94479-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94479-7_9&domain=pdf
http://orcid.org/0000-0002-2029-7708
https://doi.org/10.1007/978-3-030-94479-7_9

136 T. Janhunen

The stable-unstable semantics [3] was proposed as a remedy to the problems
identified above. The main ideas are (i) to use NLPs when encoding problems,
(ii) to make a subprogram acting as an oracle explicit, and (iii) to change the
mode of reasoning from stability to instability for the oracle.1 If this idea is
applied in a nested fashion by merging NLPs recursively as combined programs,
any level of PH can be reached with NLPs only, in analogy to quantified Boolean
formulas (QBFs). In a nutshell, according to the stable-unstable semantics, we
seek a stable model M for the main NLP P such that the NLP Q acting as the
oracle has no stable model N that agrees with M about the truth values of atoms
shared by P and Q. In contrast with QBFs, this leaves the quantification of atoms
implicit, i.e., the atoms of P are existentially quantified while the local atoms
of Q are effectively universal. There are follow-up approaches [1,11] that make
the quantification of atoms explicit. Regardless of this objective, the semantics
of quantified programs is still aligned with the stable-unstable semantics, see
[1, Theorem 7] and [11, Appendix B] for details. For the purposes of this work,
however, implicit quantification is very natural, since the quantification of atoms
can be controlled in terms of #show-statements directly supported by Clingo.

For the moment, no native implementations of stable-unstable semantics have
emerged except via translations toward QBFs [3,11]. The goal of this work is
to alleviate this situation with a translation of (effectively) normal programs
that combines a main program P with any fixed number of oracle programs
P1 , . . . , Pn subject to stable-unstable semantics. In this way, we facilitate the
incorporation of several oracles although, in principle, they could be merged into
a single oracle first. The result of the translation is a DLP that can be fed as
input for answer set solvers supporting DLPs. Thus we are mainly concentrating
on search problems that reside on the second level of polynomial hierarchy.

One central idea behind our approach is to hide saturation from the pro-
grammer altogether, even though it is exploited by the translation internally.
The reason behind this is that encoding saturation is error-prone when using
non-ground rules with first-order variables. To this end, consider positive rules

u | p1(X1) | . . . | pk(Xk) ← pk+1(Xk+1) , . . . , pk+m(Xk+m),
d1(Y 1) , . . . , dn(Y n). (1)

used to encode an oracle where the special atom u denotes unsatisfiability, pi:s
are application predicates subject to saturation, and dj :s are domain predicates.
In general, their argument lists Xi:s and Y j :s consist of first-order terms and
the domain predicates in the rule body restrict the possible values of variables
occurring in the rule. Modern grounders are also able to infer part of this domain
information based on the occurrences of predicates elsewhere in a program. Now,
the saturating rules pi(t) ← u should be generated for every ground (non-input)
atom pi(t) appearing in the ground rules of the oracle (see Definition 8 for
details). Overseeing this objective presumes an understanding of which ground
rules are actually produced for the oracle and, therefore, it becomes inherently
difficult to find non-ground counterparts for the saturating rules for individual
1 In terms of QBFs, this amounts to treating a QBF ∃X∀Y φ as ∃X¬∃Y ¬φ.

Implementing Stable-Unstable Semantics 137

predicates pi(X). In the worst case, the only option is to accompany each rule (1)
of the oracle with saturating rules of the forms pi(Xi) ← u, d1(Y 1) , . . . , dn(Y n)
for every 1 ≤ i ≤ k + m. The number of such rules may get high and it is an
extra burden for the programmer to keep these rules in synchrony with (1) when
the rules encoding the oracle are further elaborated.

Our implementation is based on translators and linkers available under the
ASPTOOLS2 collection. Moreover, we expect that the grounding component of
Clingo, namely Gringo, is used for instantiation. Thus we can use any Clingo
program as the main program, exploiting extended rule types, proper disjunc-
tive rules, and optimization as needed. As regards oracles, the translation-based
approach of [21] sets the limits for their support in contrast with main programs.
Due to existing normalization tools [4,5], aggregates can be used. However, the
use of disjunction in rule heads is restricted, i.e., only head-cycle-free disjunc-
tions can be tolerated, as they can be translated away. Finally, optimization does
not make sense in the context of oracles—supposed to have no stable models.

The rest of this article is organized as follows. In Sect. 2, we recall the syntax
and the semantics of logic programs, including stable-unstable semantics. An
account of the modularity properties of stable models is given in Sect. 3. Then, we
concentrate on translations required in the subsequent treatment of oracles, i.e.,
the translation of NLPs into propositional clauses in Sect. 4 and the saturation
technique in Sect. 5. Then we are ready to present our saturation-based technique
for linking a main program with oracle programs in Sect. 6. The details of the
implementation, including a saturating translator unsat2lp, are presented in
Sect. 7. Moreover, we illustrate practical modeling with stable-unstable semantics
in terms of the point of no return problem [2] involving a non-trivial oracle which
is challenging to encode in ASP directly. The paper is concluded by Sect. 8
including a plan for future work.

2 Preliminaries

In this section, we review the syntax and semantics of logic programs and, in
particular, the fragments of normal and disjunctive programs in the propositional
case. Thus, as regards syntax, a logic program is a set of rules of form3

a1 | . . . | ak ← b1 , . . . , bn,not c1 , . . . ,not cm. (2)

where a1 , . . . , ak, b1 , . . . , bn, and c1 , . . . , cm, are (propositional) atoms and “not”
denotes negation by default. Literals are either atoms “a” or their negations
“not a”, also called positive and negative literals, respectively. Using shorthands
A, B, and C for the sets of atoms involved in (2), the rule can be abbreviated as
A ← B,not C where “not C” stands for the set of negative conditions {not c |
c ∈ C}. The intuition behind a rule is that some atom from the head A of the

2 https://github.com/asptools.
3 The syntax of logic programs has been generalized, e.g., with choice, cardinality, and

weight rules in [32], but such extensions can be translated back to normal rules [4].

https://github.com/asptools

138 T. Janhunen

rule can be inferred true whenever the body of the rule is satisfied, i.e., when all
atoms of B are true and no atom of C is true by any other rules in the program.

A rule (2) is proper disjunctive, if k > 1, normal, if k = 1, and a constraint
if k = 0. A rule (2) is a fact, if k > 0, n = 0, and m = 0 and then ← is typically
omitted. A normal (logic) program (NLP) consists of normal rules only whereas
a disjunctive (logic) program (DLP) allows for any number of head atoms in its
rules. Additionally, a program is called positive if m = 0 for all of its rules (2).

2.1 Minimal and Stable Models

Turning our attention to semantics, let At(P) denote the signature of a program
P , i.e., A ∪ B ∪ C ⊆ At(P) for every rule A ← B,not C of P .4 The semantics of
a positive DLP P is determined as follows. An interpretation I of P is simply
any subset of At(P) considered to be true under I. A (positive) rule A ← B of
P is satisfied in an interpretation I ⊆ At(P) of P , if B ⊆ I implies A ∩ I �= ∅. A
model of P is an interpretation M ⊆ At(P) satisfying all rules of P . A model M
of P is a (subset) minimal model of P if there is no other model M ′ of P such
that M ′ ⊂ M . The set of minimal models of P is denoted by MM(P).

By the definitions above, a positive DLP may have no minimal models (P1 =
{a. ← a.}), a unique minimal model (P2 = {a ← a.}), or several minimal models
(P3 = {a | b.}). A widely agreed semantics of NLPs and DLPs is given by their
stable models [15,16] based on the Gelfond-Lifschitz reduct of a logic program
P with respect to a model candidate M . The reduced program is

PM = {(A ← B) | (A ← B,not C) ∈ P , A �= ∅, B ⊆ M , and C ∩ M = ∅}. (3)

Definition 1 (Gelfond and Lifschitz [15,16]). A model M of a program P
is stable if and only if M ∈ MM(PM).

We let SM(P) denote the set of stable models of P . It should be noted that
Definition 1 covers constraints (2) with k = 0 by the requirement that M is a
model of P , i.e., for every rule A ← B,not C of P , B ⊆ M and C ∩ M = ∅
imply A ∩ M �= ∅, thus treating default negation in rule bodies classically.

2.2 Stable-Unstable Semantics

The original definition of stable-unstable semantics adds one subprogram as an
oracle to the main program. To cater for more flexible use cases, we formulate
a generalized definition with any fixed number n ≥ 0 of oracles. While there is
no real reason to restrict the main program P , it is assumed that oracles Pi are
effectively NLPs containing no rule a ← B,not C such that a ∈ At(P). Thus
oracles may not define any concepts for the main program, they simply receive
some facts as input, relating to the stable models of the main program.
4 Typically, At(P) is selected to be minimal in this respect, i.e., it only contains atoms

that actually appear in P . But larger sets might be used, e.g., if P resulted from
rewriting and certain atoms were removed, but the semantics of P is unaffected.

Implementing Stable-Unstable Semantics 139

Definition 2. A model M of a program P is stable-unstable with respect to
oracle programs P1 , . . . , Pn if and only if M ∈ SM(P) and for every oracle Pi

with 1 ≤ i ≤ n, SM(Pi ∪ {a. | a ∈ M ∩ At(Pi)}) = ∅.
Note that if there is an (input) atom a ∈ At(P) ∩ At(Pi) such that a �∈ M ,

then a will remain false by default in the context of the oracle Pi whose rules
may not have a as the head. Moreover, when n = 0, we obtain the standard
stable semantics (cf. Definition 1) as a special case of Definition 2.

3 Modularity

In this section, we adopt the Gaifman-Shapiro-style module architecture of DLPs
from [24]. The respective modularity properties of stable models enable the mod-
ular (de)composition of DLPs. Programs are encapsulated as follows.

Definition 3. A program module Π is a quadruple 〈P, I,O,H〉 where

1. P is a logic program,
2. I, O, and H are pairwise disjoint sets of input, output, and hidden atoms;
3. At(P) ⊆ At(Π) = I ∪ O ∪ H; and
4. if A �= ∅ for some rule A ← B,not C of P , then A ∩ (O ∪ H) �= ∅.

The program interface of a module Π splits the signature At(Π) in three
disjoint parts that serve the following purposes. The visible part Atv(Π) =
I ∪ O of At(Π) can be accessed by other modules to supply input for Π or
to utilize its output. The input signature I and the output signature O of Π
are also denoted by Ati(Π) and Ato(Π), respectively. The hidden atoms in the
difference Ath(Π) = At(Π)\Atv(Π) = H can be used to formalize some internal
(auxiliary) concepts of Π. The fourth requirement of Definition 3 ensures that
every rule with a non-empty head must mention at least one non-input atom
from O ∪ H. This is a particular relaxation for disjunctive rules—note that the
head of a normal rule cannot be an input atom by this requirement, but the
heads of disjunctive rules may refer to input atoms as well. Thus, every rule in
a module Π must contribute to the definition of at least one atom in O ∪ H.

Example 1. Consider a module Π having only one rule a | b ← not c such that
I = {b, c}, O = {a}, and H = ∅. Therefore, the overall signature At(Π) =
{a, b, c}. The requirements of Definition 3 are met. The fourth one is satisfied
because the head a | b mentions the output atom a besides the input atom b. �

A module Π corresponds to a conventional logic program when Ati(Π) =
∅ = Ath(Π) and then the semantics of the module Π = 〈P, ∅, O, ∅〉 is given
by SM(P) ⊆ 2Ato(Π) = 2O directly. Hidden atoms become only relevant, when
we compare programs or modules with each other, e.g., using the notion of
visible equivalence [17]. Then, the idea is that each stable model M is reduced
to M\H = M ∩ (I ∪ O), i.e., hidden atoms are neglected in comparisons but
they do not affect stability by any means. However, to cover input atoms, the
definition of stable models must be generalized, e.g., according to [24].

140 T. Janhunen

Definition 4. Given a program module Π = 〈P, I,O,H〉, the reduct of P with
respect to a set M ⊆ At(Π) and the input signature I, denoted by PM,I , contains
a positive disjunctive rule (A\I) ← (B\I) if and only if there is a rule A ←
B,not C of P such that A �= ∅, A ∩ I ∩ M = ∅, B ∩ I ⊆ M , and M ∩ C = ∅.

In analogy to (3), the reduct PM,I evaluates all negative literals in rule bodies
of P and, in addition, all input atoms appearing elsewhere in P . Intuitively, if the
satisfaction of a rule A ← B,not C under M depends on the remaining atoms
in the rule, the respective reduced rule (A\I) ← (B\I) is included in PM,I .
The head A\I of any such rule is necessarily non-empty when A �= ∅ by Item 4
in Definition 3 and PM,I is guaranteed to possess (minimal) classical models.
Potential constraints of P with A = ∅ are covered in analogy to Definition 1.

Definition 5. A model M ⊆ At(Π) of a program module Π = 〈P, I,O,H〉, is
stable if and only if M\I ∈ MM(PM,I).

As for programs, we let SM(Π) denote the set of stable models of Π.

Example 2. The module Π from Example 1 has four stable models in total, i.e.,
SM(Π) equals to {{a}, {b}, {c}, {b, c}}. To verify that M = {a} is indeed stable,
we note that PM,I = {a.} with a minimal model {a} and {a}\{b, c} = {a}. �

Inputs to modules can also be taken into account by other means: an input
M ∩ I defined by an interpretation M ⊆ At(Π) could be added to Π as a set
of facts [25]. The other option is to amend modules with input generators [31]
that can be used to capture stable models of modules using Definition 1 and the
standard reduct (3). Unfortunately, stable models of program modules do not
provide a fully compositional semantics for logic programs: taking simple unions
of modules does not guarantee that the stable models of the union could be
obtained as straightforward combinations of the stable models for the modules
involved. Towards this goal, two modules Π1 and Π2 are eligible for composition
only if their output signatures are disjoint and they respect each other’s hidden
atoms, i.e., Ath(Π1) ∩ At(Π2) = ∅ and Ath(Π2) ∩ At(Π1) = ∅.

Definition 6 (Composition [24]). The composition of logic program modules
Π1 = 〈P1, I1, O1,H1〉 and Π2 = 〈P2, I2, O2,H2〉, denoted by Π1 ⊕ Π2, is

〈P1 ∪ P2, (I1\O2) ∪ (I2\O1), O1 ∪ O2,H1 ∪ H2〉 (4)

if O1 ∩ O2 = ∅ and Π1 and Π2 respect each other’s hidden atoms.
As demonstrated in [24], the conditions of Definition 6 do not yet imply

the desired relationship of stable models in general. The conditions can be suit-
ably tightened using the positive dependency graph of the composition Π1 ⊕Π2.
Generally speaking, the positive dependency graph DG+(Π) associated with a
program module Π = 〈P, I,O,H〉 is the pair 〈O ∪ H,≤〉 where b ≤ a holds for
any atoms a and b of O∪H if there is a rule A ← B,not C of P such that a ∈ A
and b ∈ B. A strongly connected component (SCC) S of DG+(P) is a maximal set

Implementing Stable-Unstable Semantics 141

S ⊆ At(P) such that b ≤∗ a holds for every a, b ∈ S, i.e., all atoms of S depend
positively on each other. If the composition Π1 ⊕ Π2 is defined, the members
of the composition are mutually dependent if and only if DG+(Π1 ⊕ Π2) has an
SCC S such that S∩Ato(Π1) �= ∅ and S∩Ato(Π2) �= ∅, i.e., the SCC in question
is effectively shared by Π1 and Π2. Then, following [24], the join Π1 � Π2 of Π1

and Π2 is defined as Π1 ⊕ Π2, provided Π1 ⊕ Π2 is defined and Π1 and Π2 are
mutually independent. The key observation from the viewpoint of compositional
semantics is that stable models do not tolerate positive recursion across module
boundaries. Thus, independence leads to a natural relationship5 between the sets
of stable models SM(Π1 � Π2), SM(Π1), and SM(Π2) as detailed below.

Theorem 1 (Module Theorem [24]). If Π1 and Π2 are program modules
such that Π1 � Π2 is defined, then SM(Π1 � Π2) = SM(Π1) �� SM(Π2).

In Theorem 1, the operation �� denotes a natural join of compatible stable
models, i.e., M1∪M2 belongs to SM(Π1) �� SM(Π2) if and only if M1 ∈ SM(Π1),
M2 ∈ SM(Π1), and M1 ∩ Atv(Π2) = M2 ∩ Atv(Π1). Theorem 1 is easily gener-
alized for finite joins of modules: if Π1 � · · · � Πn =

⊔n
i=1 Πi is defined, then

SM(
⊔n

i=1 Πi) = ��n
i=1SM(Πi). (5)

Example 3. Let us consider modules Π1 = 〈{a ← not b.}, {b}, {a}, ∅〉, Π2 =
〈{b ← not c.}, {c}, {b}, ∅〉, and Π3 = 〈{c ← not a.}, {a}, {c}, ∅〉. The respective
sets of stable models are SM(Π1) = {{a}, {b}}, SM(Π2) = {{b}, {c}}, and
SM(Π3) = {{c}, {a}}. The joins between the three modules are well-defined,
since the output signatures are disjoint, no atoms are hidden, and no positive
recursion is involved. Thus, we obtain by Theorem 1 that

SM(Π1 � Π2) = SM(Π1) �� SM(Π2) = {{a}, {b}} �� {{b}, {c}} = {{a, c}, {b}}

where the compatibility of stable models depends on Ati(Π1) = {b} = Ato(Π2).
When incorporating SM(Π3) = {{a}, {c}}, we observe no models compatible
with the ones listed above, i.e., SM(

⊔3
i=1 Πi) = ��3

i=1SM(Πi) = ∅. �

Finally, it is worth noting that oracles Pi, as detailed in Definition 2, can
be viewed as modules Πi = 〈Pi, Ii, ∅,Hi〉 that can be composed/joined with
the main module Π = 〈P, ∅, O, ∅〉. By hiding all non-input atoms in the oracle
modules, they cannot interfere with the atoms of Π in any well-defined composi-
tions. However, since the visible parts M ∩ Ii of stable models M ∈ SM(Πi) are
essentially witnesses for rejecting particular stable models of the main module,
the relationship behind stable-unstable semantics cannot be expressed with ��

directly. This goes back to insisting on instability (cf. Theorem 4 in Sect. 6).

5 The respective property of propositional formulas φ1 and φ2 is formalized by CM(φ1∧
φ2) = CM(φ1) �� CM(φ2) where CM(φ) ⊆ 2At(φ) gives the classical models of φ.

142 T. Janhunen

4 Translating NLPs into SAT

In the forthcoming translations, we need to express normal logic programs as
sets of propositional clauses as an intermediary step. The goal of this section is
to recollect some results in this respect. A clause is an expression of the form

a1 ∨ . . . ∨ am ∨ ¬b1 ∨ . . . ∨ ¬bn (6)

where a1 , . . . , am and b1 , . . . , bn are (propositional) atoms. Given a set of clauses
S, we write At(S) for the signature of S in analogy to the signature of a logic
program (cf. Sect. 2). In the same way, an interpretation I for S is any subset of
At(S) so that an atom a ∈ At(S) is considered true if a ∈ I and false, otherwise.
A clause C of form (6) is satisfied by I, denoted by I |= C, if and only if some
ai ∈ I or some bj �∈ I. An interpretation M ⊆ At(S) is a (classical) model of S,
denoted by M |= S, if and only if M |= C for every clause C of S. Then, let
CM(S) = {M ⊆ At(S) | M |= S}. The signature At(S) can be partitioned into
Ati(S), Ato(S), and Ath(S), if we wish to treat S as a module 〈S, I,O,H〉 [19]
in analogy to Sect. 3, keeping the semantics CM(S) intact.

Due to the greater expressive power of NLPs—relating to both default nega-
tion and recursive definitions—the translations from NLPs to SAT incur at least
some blow-up. If no auxiliary atoms are introduced, the translation based on
loop formulas [28,29] is deemed worst-case exponential [26]. However, if new
atoms are allowed, polynomial transformations become feasible, e.g., quadratic
[27] and even sub-quadratic [17]. We adopt loop formulas for a brief illustration
but exploit the most compact translation in the actual implementation. But,
in contrast with [29], we use bd as a new name for a rule body B,not C. This
amounts to a Tseitin transformation [33] of rule bodies. These new atoms enable
a linear translation for the first part of the translation (Items 1 and 2 below)
that captures Clark’s completion [7] for the program. The last item is based on
loops L ⊆ At(P) which are strongly connected in the same way as SCCs but not
necessarily maximal as sets. Thus, an SCC S may induce several loops.

Definition 7 ([29]). Given an NLP P , the translation TrSAT(P) contains for
every a ∈ At(P) and the defining rules a ← Bi,not Ci of a in P with 1 ≤ i ≤ k,

1. clauses a ∨ ¬bd1 , . . . , a ∨ ¬bdk and a clause ¬a ∨ bd1 ∨ . . . ∨ bdk,
2. for each body indexed by 1 ≤ i ≤ k, a clause bdi ∨ ¬B ∨ C,6

clauses {¬bdi ∨ b | b ∈ Bi}, and clauses {¬bdi ∨ ¬c | c ∈ Ci};
and for every loop ∅ ⊂ L ⊆ At(P) and the related externally supporting rules
a ← Bi,not Ci of P with a head a ∈ L, positive body Bi ∩ L = ∅, and 1 ≤ i ≤ k,

3. clauses {bd1 ∨ . . . ∨ bdk ∨ ¬a | a ∈ L}.
Intuitively, the clauses of the first item express a ↔ bd1 ∨ . . . ∨ bdk for each

atom a while the second item establishes equivalences bdi ↔ Bi ∧ ¬Ci for each

6 A set of literals is understood disjunctively as part of a disjunction.

Implementing Stable-Unstable Semantics 143

rule body indexed by 1 ≤ i ≤ k. If k = 1 for an atom a, then we can forget
about bd1 and encode a ↔ Bi∧¬Ci directly with the respective clauses. Last, the
clauses in the third item essentially express a loop formula ¬bd1 ∧ . . . ∧¬bdk →
¬L falsifying all atoms of the loop L in case they lack external support altogether.

Theorem 2 ([29]). Let P be an NLP and TrSAT(P) its translation into SAT.

1. If M ∈ SM(P), then N |= TrSAT(P) for a unique truth assignment N = M ∪
{bd | (a ← B,not C) ∈ P , B ⊆ M , C ∩ M = ∅, and bd names (B,not C)}.

2. If N |= TrSAT(P), then M = N ∩ At(P) ∈ SM(P).

The translation is also applicable to modules Π = 〈P, I,O,H〉 by neglecting
input atoms having no defining rules in program P . The resulting SAT-module
〈TrSAT(P), I, O,H ′〉 extends H to H ′ with new names bd introduced by TrSAT(·).
Example 4 Consider a program module Π = 〈P, {c}, {a, b}, ∅〉 based on:

a ← b,not c. b ← a. a ← c.

The module has two stable models {} and {a, b, c}. The translation into SAT is:

a ∨ ¬bd1, a ∨ ¬bd2, ¬a ∨ bd1 ∨ bd2, [a ↔ bd1 ∨ bd2]
bd1 ∨ ¬b ∨ c, ¬bd1 ∨ b, ¬bd1 ∨ ¬c, [bd1 ↔ b ∧ ¬c]

bd2 ∨ ¬c, ¬bd2 ∨ c, [bd2 ↔ c]
b ∨ ¬a, ¬b ∨ a, [b ↔ a]

bd2 ∨ ¬a, bd2 ∨ ¬b. [¬bd2 → ¬a ∧ ¬b]

Since c is an input atom, it is only treated as a condition in rule bodies. The
only non-trivial loop of Π is {a, b} that gives rise to the last two clauses of the
translation. The resulting SAT-module 〈TrSAT(P), {c}, {a, b}, {bd1, bd2}〉 has two
satisfying assignments {} and {a, b, c, bd2} that capture the stable models of Π.
It is important to note that the last two clauses exclude the truth assignment
{a, b, bd1} which would suggest an extra (incorrect) stable model {a, b} for Π. �

5 Saturation

Saturation was introduced in [9] when showing that the main decision problems
related to DLPs are complete on the second level of PH. It offers a central prim-
itive for changing the mode of reasoning from unsatisfiability to the existence
of a stable model. Typically, saturation is used as an integral part of the main
program, but the goal of this section is to extract respective subprograms as inde-
pendent program modules with input interfaces. Therefore, it is assumed below
that a SAT-module 〈S, I,O,H〉 is provided as input. Given an interpretation
N ⊆ Ati(S), we write S|N for a partial evaluation of S obtained by (i) removing
C ∈ S if N |= l for some literal l ∈ C and (ii) removing from C ∈ S any literal
l ∈ C such that N �|= l. The translation aims to capture truth assignments N
over the set of input atoms I that render S|N inconsistent.

144 T. Janhunen

Definition 8. Given a SAT-module 〈S, I,O,H〉 encapsulating a set of clauses
S, the saturation translation TrUNSAT(S) contains

1. for every clause (6), a positive disjunctive rule u | a1 | . . . | am ← b1 , . . . , bn;
2. for every atom a ∈ Ath(S) ∪ Ato(S), the saturating rule a ← u; and
3. the rule u ← not u

where u �∈ At(S) is a new atom. Moreover, we set Ati(TrUNSAT(S)) = Ati(S),
Ato(TrUNSAT(S)) = ∅, Ath(TrUNSAT(S)) = Ato(S) ∪ Ath(S).

All atoms except input atoms are hidden in TrUNSAT(S) because their values
are uninteresting (all true) under any stable model of the translation. The intu-
itive idea of TrUNSAT(S) is that if S|N is satisfiable for an input interpretation
N ⊆ Ati(S), then the positive rules in TrUNSAT(S) have a ⊆-minimal (classical)
model M extending N with u �∈ M . Then, the rule u ← not u prevents stability.

Example 5. Consider the following set S of clauses:

a ∨ b, ¬a ∨ b, ¬a ∨ ¬b.

Assuming that b is the only input atom of S, we observe that S|∅ = {a,¬a} is
unsatisfiable while S|{b} = {¬a} is satisfiable. The translation TrUNSAT(S):

u | a | b. u | b ← a. u ← a, b.
a ← u. u ← not u.

where b is treated as an input atom. The translation has a stable model {a, u}
indicating that S|∅ is unsatisfiable. Note how this stable model would be excluded
if b ← u were added in the translation. However, if b is added as a fact, there is
no way to derive a nor u being false by default. Then, the translation augmented
by the fact b has no stable models, indicating that S|{b} is satisfiable. �

Theorem 3. Given a SAT-module 〈S, I,O,H〉 and its translation as a program
module Π = 〈P, I, ∅, O ∪ H〉 with P = TrUNSAT(S):

1. If S|N is unsatisfiable for an input interpretation N ⊆ I, then N ∪ O ∪ H ∪
{u} ∈ SM(Π).

2. If M ∈ SM(Π) and N = M ∩ I, then M = N ∪ O ∪ H ∪ {u} and S|N is
unsatisfiable.

Proof. (1) Let S|N be unsatisfiable for some N ⊆ I and let M = N ∪O∪H∪{u}.
To show M ∈ SM(TrUNSAT(S)), we should establish that M\I ∈ MM(PM,I).

(i) Since u ∈ M , the rule u ← not u does not contribute to the reduct,
but a ← u is included for every a ∈ O ∪ H. The rule is satisfied by M\I =
O ∪ H ∪ {u}. Moreover, the reduct contains u | (A\I) ← (B\I) for every clause
A ∨ ¬B ∈ S such that A ∩ N = ∅ and B ∩ I ⊆ N , i.e., A ∨ ¬B ∈ S|N . This rule
is trivially satisfied by M\I containing u. Thus M\I |= PM,I . (ii) Suppose that
M ′ |= PM,I for some M ′ ⊂ M\I. If u �∈ M ′, then M ′ |= S|N , a contradiction.

Implementing Stable-Unstable Semantics 145

Thus u ∈ M ′ and since a ← u is in PM,I for every a ∈ O ∪H and M ′ |= a ← u,
it follows that M ′ = M\I, a contradiction. Thus, M\I ∈ MM(PM,I).

(2) Let M ∈ SM(Π) and N = M ∩ I. Due to u ← not u in P , u ∈ M is
necessarily the case. Since a ← u is contained in PM,I for every a ∈ O ∪ H and
M |= PM,I it follows that O∪H ⊆ M and M = N ∪O∪H ∪{u}. Calculating as
above, the reduct contains u | (A\I) ← (B\I) for every A∨¬B ∈ S|N . Assuming
that S|N is satisfiable, gives us M ′ |= S|N such that u �∈ M ′. It follows that
M ′ ⊂ M and M ′ |= PM,I , a contradiction. Thus S|N is unsatisfiable. ��

6 Capturing Stable-Unstable Semantics

The goal of this section is to define a translation TrST-UNST(Π,Π1 , . . . , Πn) that
captures the stable-unstable semantics of a main program module Π combined
with oracle modules Π1 , . . . , Πn. The translation exploits the preceding trans-
lations devised in Sects. 4 and 5 as well as modularity properties from Sect. 3.
Therefore, we formulate the result for modules with proper interface definitions.

Definition 9. Given a main program module Π = 〈P, I,O,H〉 and oracle mod-
ules Π1 , . . . , Πn encapsulating NLPs P1 , . . . , Pn, the stable-unstable translation

TrST-UNST(Π,Π1 , . . . , Πn) = Π �
n⊔

i=1

TrUNSAT(TrSAT(Πi)). (7)

Due to pairwise input-output relationships there are no mutual positive
dependencies between the translation TrUNSAT(TrSAT(Πi)) of each oracle mod-
ule Πi and the main module Π. The same can be stated about the translations
of any pair of oracles Πi and Πj with i < j, because only input atoms are made
visible and we may assume without loss of generality that Ath(Πi)∩Ath(Πj) = ∅,
since hidden atoms can always be renamed apart. Moreover, the new atoms (u)
introduced by the translation TrUNSAT(·) can be assumed distinct for the oracles
Π1 , . . . , Πn, say atoms u1 , . . . , un. Thus the joins in (7) are well-formed and the
resulting signatures of the translation Π ′ = TrST-UNST(Π,Π1 , . . . , Πn) are

1. Ati(Π ′) = Ati(Π),
2. Ato(Π ′) = Ato(Π), and
3. Ath(Π ′) = Ath(Π) ∪ (

⋃n
i=0 At(TrUNSAT(TrSAT(Πi)))\Ati(Πi)).

Theorem 4. For a main program module Π, the NLP oracle program modules
Π1 , . . . , Πn of Π, and their stable-unstable translation:

1. If TrST-UNST(Π,Π1 , . . . , Πn) has a stable model N , then M = N ∩ At(Π) is
stable-unstable model of Π with respect to oracles Π1 , . . . , Πn.

2. If Π has a stable-unstable model M with respect to oracles Π1 , . . . , Πn, then
TrST-UNST(Π,Π1 , . . . , Πn) has a stable model N such that M = N ∩ At(Π).

146 T. Janhunen

Proof. Since the joins in Definition 9 are well-formed, we may apply Theorem 1:

SM(TrST-UNST(Π,Π1 , . . . , Πn)) =
SM(Π) �� (��n

i=1SM(TrUNSAT(TrSAT(Πi)))).(8)

For brevity, let Π ′ stand for the entire translation TrST-UNST(Π,Π1 , . . . , Πn)
and Π ′

i for the translation TrUNSAT(TrSAT(Πi)) of each oracle Πi with 1 ≤ i ≤ n.
By the model correspondence (8) established above, N is a stable model of

Π ′ if and only if M = N ∩ At(Π) ∈ SM(Π) and Ni = N ∩ At(Π ′
i) ∈ SM(Π ′

i)
for each 1 ≤ i ≤ n. By Theorem 3, this holds if and only if M ∈ SM(Π)
and TrSAT(Πi)|Mi

is unsatisfiable for each 1 ≤ i ≤ n and the respective input
Mi = Ni ∩ Ati(Πi). By Theorem 2, this is equivalent to M ∈ SM(Π) and each
oracle Πi with 1 ≤ i ≤ n having no stable models given the input Mi, i.e., M is
a stable-unstable model of Π with respect to Π1 , . . . , Πn. ��

Definition 9 and Theorem 4 characterize our method for computing stable-
unstable models in the propositional case. Therefore, let us discuss how non-
ground programs fit into this scenario. Given a set of non-ground rules P , we
write Gnd(P) for the resulting ground program produced by a grounder such
as Gringo in the Clingo system. Since Gnd(P) depends on the grounder, we
leave its exact definition open and assume that the semantics of a non-ground
program P is determined by SM(Gnd(P)) where Gnd(P) is understood as a
propositional program. The signature of Gnd(P) is also determined during the
grounding phase, based on directives supplied by the programmer. Thus, for a
non-ground main program P and each non-ground oracle Pi with 1 ≤ i ≤ n,
we effectively obtain the ground module Π = 〈Gnd(P), I, O,H〉 and the ground
oracle modules Πi = 〈Gnd(Pi), Ii, ∅,Hi〉 where 1 ≤ i ≤ n. Then, stable-unstable
models can be computed using the translation TrST-UNST(Π,Π1 , . . . , Πn) in (7).

7 Implementation and Practical Modeling

In what follows, we describe how our method for computing stable-unstable
semantics can be realized in practice using tools available in the ASPTOOLS
collection and Clasp as the the back-end solver. Finally, we illustrate practical
modeling in terms of an application problem that is challenging to formalize if
the goal is to represent the entire problem as a single DLP in Sect. 7.1. The
performance of Clingo on the resulting stable-unstable encoding of the problem
is screened in Sect. 7.2. Reflecting Definition 9, our implementation involves the
following three steps for the ground modules Π and Π1 , . . . , Πn:

1. translating each oracle module Πi into SAT, i.e., the SAT module TrSAT(Πi),
2. translating each TrSAT(Πi) into a DLP module TrUNSAT(TrSAT(Πi)), and
3. linking the parts of the translation (7) together.

Implementing Stable-Unstable Semantics 147

Translating Oracles into SAT. The translation of oracles is based on translators
in the lp2sat family. These translators implement the more compact transfor-
mation described in [17], the one described in Sect. 4 is compatible up to forming
the completion of the program. In addition, we deploy other tools in order to
extend the applicability of our approach somewhat beyond the class of NLPs.
In general, it is recommended to use a tool pipeline similar to those used in
the latest ASP competitions. Brief descriptions of the tools follow. (i) Remove
invisible facts produced by the grounder using lpstrip. (ii) Make the symbol
table of the program contiguous with lpcat as described below. (iii) Unwind
head-cycle-free (HCF) disjunctions by shifting [8] as implemented by lpshift.
(iv) Translate away aggregates [32] using lp2normal2 [5]. (v) Instrument SCCs
with additional rules that guarantee the acyclicity of support within components
[12] by calling lp2acyc. (vi) Produce the respective CNF using lp2sat and its
command-line option -b for a translation in line with [17].

Saturation Transformation. The compiler for the saturation transformation,
called unsat2lp, is available in the ASPTOOLS collection [21]. The input of
the compiler consists of a DIMACS file extended by the definitions of symbols in
comments. The translators described in the preceding step produce these defini-
tions automatically and they are crucial information for the linking phase. The
compiler unsat2lp is directly based on Definition 8. The output is a DLP in
the smodels format [18], supported by Clingo for backward compatibility.

Linking. Definition 6 provides the specification for a link editor called lpcat
[20]. Given ground program modules Π1 , . . . , Πn as input, assuming that the
join Π1 � . . . � Πn is defined, the tool can be used to safely compute their com-
position. In the output, every atom will have a unique number (i.e., index in the
atom table) and atoms are numbered from 1 to n where n gives the number of
atoms in the program. The stable models of the resulting ground program are
then governed by (5) and they can be computed by invoking Clasp. Other dis-
junctive solvers can be potentially used, if the final ground program is translated
back into symbolic form (e.g., using the program listing tool lplist from the
ASPTOOLS collection) and parsed again.

7.1 Practical Modeling

Having described the steps of translation involved in our implementation, let us
introduce one concrete encoding to demonstrate the use of tools in practice. In
the sequel, we use the problem point of no return [2] for illustration. The problem
was specifically designed to reside on the second level of PH and it requires the
representation of an oracle which is non-trivial to encode via saturation directly,
due to interlinked reachability and satisfiability conditions. Below we recall the
problem, but by using clauses rather than formulas as labels for a digraph.

Definition 10 (Point of No Return). Given a digraph G = 〈N,A〉 where
A ⊆ N2, a start node s ∈ N , and a labeling function cl(·) that maps each arc
〈n1, n2〉 ∈ A to a clause cl(n1, n2), a point of no return is a node n ∈ N so that

148 T. Janhunen

Listing 1. Point of no return: a minimal instance

% Assign clauses to arcs % Arcs

lit(1,2,a). lit(1,2,b). % 1 == a|b ==> 2

lit(2,3,n(a)). lit(2,3,n(b)). % 2 == -a|-b ==> 3

lit(3,4,a). lit(3,4,n(b)). % 3 == a|-b ==> 4

lit(3,1,n(a)). lit(3,1,c). % 3 == -a|c ==> 1

lit(4,1,n(a)). lit(4,1,b). % 4 == -a|b ==> 1

Listing 2. Point of no return: domain declarations

% Identify atoms and literals

literal(L) :- lit(_,_,L).

negative(n(A)) :- literal(n(A)).

atom(L) :- literal(L), not negative(L).

% Determine arcs , nodes , and the start node

arc(X,Y) :- lit(X,Y,_).

node(X) :- arc(X,_). node(Y) :- arc(_,Y).

start(N) :- node(N), N2 >= N: node(N2).

1. there is a directed path s = n1, n2, ..., nk = n in G,
2. the set of clauses S(s, n) = {cl(n1, n2) , . . . , cl(nk−1, nk)} is satisfiable, and
3. there is no directed return path n = m1,m2, ...,ml = s in G such that the set

of clauses S(s, n) ∪ {cl(m1,m2) , . . . , cl(ml−1,ml)} is satisfiable.

Our ASP encoding of this problem is given as four Clingo code snippets: (i)
an example of a problem instance, (ii) some joint domain definitions, (iii) the
main program, and (iv) the oracle. In Listing 1, we describe a minimal problem
instance using a predicate lit/3 which associates for an arc 〈n1, n2〉 one literal
l involved in the labeling clause cl(n1, n2) at a time. The function symbol n/1
is used to express negative literals. Assuming that 1 is the start node, then the
node 4 is a point of no return: the set of clauses {a∨b,¬a∨¬b, a∨¬b} is satisfiable
while adding the final clause ¬a ∨ b will make it necessarily unsatisfiable. The
other nodes are not points of no return due to the short-cutting arc from 3 to
1 enforcing the clause ¬a ∨ c. The rules in Listing 2 define some joint domains
involved in the problem. The names of predicates literal/1, atom/1, arc/2,
and node/1 should be self-explanatory in this respect. Moreover, the predicate
start/1 picks the smallest node as the start node for the whole input graph.

The main program, as given by Listing 3, deploys choice rules [32] with
bounds on cardinality for the sake of conciseness. The path/2 predicate captures
the path from the start node to a node acting as a candidate point of no return
and eventually pointed out by predicate ponr/1. The recursive selection of the
path is guided by the predicate reach/1 formalizing reachability from the start
node along the path. Finally, predicate true/1 chooses a subset of atoms to be

Implementing Stable-Unstable Semantics 149

Listing 3. Point of no return: main program

% Choose path and the point of no return

{ path(X,Y): arc(X,Y), not start(Y) } = 1 :- start(X).

{ path(X,Y): arc(X,Y), not start(Y) } <= 1 :- reach(X).

% The point of no return is the final node reached

reach(Y) :- path(X,Y).

ponr(X) :- reach(X), not path(X,Y): arc(X,Y).

:- not ponr(X): node(X).

% Check satisfiability along the chosen path

{ true(A) } :- atom(A).

true(n(A)) :- negative(n(A)), not true(A).

:- arc(X,Y), path(X,Y), not true(L): lit(X,Y,L).

true and the satisfaction of the clauses along the chosen path is enforced by the
constraint in the end. The encoding for the required oracle is quite similar as can
be seen from Listing 4. At first, the input predicates are declared using choice
rules. Only them are made visible for translators. The choice of return path is
analogous but formalized backwards from the start node toward the anticipated
point of no return. The predicate reach/1 can be reused here since it will not
be visible to the main program. The final satisfiability check is quite the same
except that the clauses along both chosen paths ought to be satisfied. Assuming
that the portions of code from Listings 1–4 are stored in files literals.lp,
graph.lp, main.lp, and oracle.lp, respectively, we may invoke the following
shell commands to solve the problem with Gringo and Clasp:

$ gringo --output smodels literals.lp graph.lp main.lp > main.sm
$ gringo --output smodels literals.lp graph.lp oracle.lp \

| lp2normal2 | lp2acyc | lp2sat -b | unsat2lp > oracle.sm
$ lpcat main.sm oracle.sm | clasp

For backward compatibility, we use Gringo’s option --output smodels.
Notice how the instance and domain declarations are used when grounding the
main program and the oracle in separation. Finally, they are linked together
with lpcat and fed as input for Clasp which accepts Smodels format as such.

7.2 Performance Analysis

To get an idea of the performance of our approach to implementing stable-
unstable semantics, we carried out some preliminary experiments using the
encodings from Listings 1–4. We used Gringo (v. 5.2.2) as the grounder and
Clasp (v. 3.3.4) as the solver. All runs were executed on an Intel(R) Core i7-
8750H CPU with a 2.20 GHz clock rate under Linux operating system.

150 T. Janhunen

Listing 4. Point of no return: oracle

% Input

{ path(X,Y) } :- arc(X,Y), not start(Y).

{ ponr(X) } :- node(X), not start(X).

#show path /2.

#show ponr /1.

% Choose return path

{ return(X,Y): arc(X,Y), not start(X) } = 1 :- reach(Y).

:- return(X,Y), path(X,Y).

% Check that the point of no return is reached

reach(X) :- start(X).

reach(X) :- return(X,Y), not ponr(X).

:- ponr(X), not return(X,Y): arc(X,Y).

% Check satisfiability along both paths

{ true(A) } :- atom(A).

true(n(A)) :- negative(n(A)), not true(A).

:- arc(X,Y), path(X,Y), not true(L): lit(X,Y,L).

:- arc(X,Y), return(X,Y), not true(L): lit(X,Y,L).

Since the existence of Hamiltonian paths in planar graphs has been previously
investigated, we decided to generate such graphs using the planar tool from the
ASPTOOLS collection. The tool outputs a random planar graph with a given
number of nodes. The graphs are directed and symmetric, i.e., arcs are provided
in both directions. First, we check the performance of Clasp on unsatisfiable
instances obtained from planar graphs with n = 9 . . . 18 nodes and roughly from
40 to 85 arcs. By mapping arcs to a fixed atom a, all paths are consistent and
no points of no return are feasible. The runtimes vary from 0.70 s to 16 000 s and
the growth is clearly exponential in n that we verified using a logarithmic plot.

Based on the preliminary screening, we pick n = 15, for which a runtime
of 390 s is initially obtained, for further study. Next, we map the arcs of the
planar graphs to random literals based on v different atoms. Both the atom
and its polarity are selected uniformly. As a result, arcs labeled with opposite
literals become mutually exclusive. On the one hand, this is a significant source
of complexity (see [22] for an analogous restriction) but, on the other hand,
makes points of no return existent. When the number of atoms v is increased, the
resulting instances are expected to become more demanding. To see the effect, we
generate ten instances for each v = 1 . . . 40. The runtime behavior is illustrated
by the graph in Fig. 1 (left). The number of unsatisfiable instances starts to
grow from v = 31, i.e., roughly 45% of the number of arcs when n = 15, and
therefore, runtimes approach and settle around 400 s as observed for unsatisfiable
instances earlier. Next, we select v = n as the criterion for our final experiment
and let n vary from 5 to 40 nodes. The runtimes are illustrated by the graph

Implementing Stable-Unstable Semantics 151

in Fig. 1 (right). By the logarithmic scale, runtimes tend to grow exponentially
in n. The resulting instances are mostly satisfiable except for small values for n
when finding a (satisfiable) path may become an obstacle (cf. Definition 10).

 1

 10

 100

 5 10 15 20 25 30 35 40

Average Runtime in Seconds

Clasp

 0.1

 1

 10

 100

 5 10 15 20 25 30 35 40

Average Runtime in Seconds

Clasp

Fig. 1. Point of no return: runtime scaling for instances based on planar graphs

8 Discussion and Conclusion

In this work, we propose an alternative way to implement stable-unstable seman-
tics of (normal) logic programs. In contrast with related approaches based on
meta-programming [10,13] and translations toward QBFs [2,11], we encode ora-
cles as stand-alone (effectively normal) programs, ground and translate them
separately, and finally link them with the ground main program for solving.
This makes our approach highly modular and enables the separation of con-
cerns in case of multiple oracles, thus generalizing stable-unstable semantics in
the first place. We anticipate that the saturation step is less error-prone when
outsourced for a translator, relieving the programmer from a potentially intri-
cate task and enabling the testing of oracles in separation. Moreover, in contrast
with [1,11] our approach counts on implicit quantification as put forth in orig-
inal stable-unstable semantics. When modeling with stable-unstable semantics,
we essentially seek solutions to problems whose particular subproblems have no
solutions. Finally, our preliminary performance analysis suggests that computing
points of no return will provide a challenging benchmark for answer set solvers.

As regards future work, we note that it is possible to change the transla-
tion TrSAT(P) from NLPs to SAT very easily, e.g., for improving performance.
Although our approach enables more comprehensive modeling based on stable-
unstable semantics, we still call for native implementations that support stable-
unstable semantics directly rather than through the stable semantics of DLPs.
Such implementations are expected to mimic the design of GnT [23] with inter-
acting solvers, but use conflict-driven nogood learning (CDNL) [14] instead of
traditional branch-and-bound search. Moreover, if solvers are integrated with
each other recursively, following the original idea of combined programs from [3],
the levels beyond the second one in polynomial hierarchy can also be covered.

152 T. Janhunen

Acknowledgments. The author wishes to thank the anonymous referees for com-
ments and suggestions for improvement. The author has been partially supported by
the Academy of Finland projects ETAIROS (327352) and AI-ROT (335718).

References

1. Amendola, G., Ricca, F., Truszczynski, M.: Beyond NP: quantifying over answer
sets. Theory Pract. Log. Program. 19(5–6), 705–721 (2019)

2. Bogaerts, B., Janhunen, T., Tasharrofi, S.: Declarative solver development: case
studies. In: KR 2016, pp. 74–83. AAAI Press (2016)

3. Bogaerts, B., Janhunen, T., Tasharrofi, S.: Stable-unstable semantics: beyond NP
with normal logic programs. Theory Pract. Log. Program. 16(5–6), 570–586 (2016)

4. Bomanson, J., Gebser, M., Janhunen, T.: Improving the normalization of weight
rules in answer set programs. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS
(LNAI), vol. 8761, pp. 166–180. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11558-0 12

5. Bomanson, J., Janhunen, T., Niemelä, I.: Applying visible strong equivalence in
answer-set program transformations. ACM Trans. Comput. Log. 21(4), 33:1–33:41
(2020)

6. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

7. Clark, K.: Negation as failure. In: Logic and Data Bases, pp. 293–322. Plenum
Press (1978)

8. Dix, J., Gottlob, G., Marek, V.W.: Reducing disjunctive to non-disjunctive seman-
tics by shift-operations. Fundam. Informaticae 28(1–2), 87–100 (1996)

9. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming:
propositional case. Ann. Math. Artif. Intell. 15(3–4), 289–323 (1995). https://doi.
org/10.1007/BF01536399

10. Eiter, T., Polleres, A.: Towards automated integration of guess and check programs
in answer set programming: a meta-interpreter and applications. Theory Pract.
Log. Program. 6(1–2), 23–60 (2006)

11. Fandinno, J., Laferrière, F., Romero, J., Schaub, T., Son, T.C.: Planning with
incomplete information in quantified answer set programming. Theory Pract. Log.
Program. 21(5), 663–679 (2021)

12. Gebser, M., Janhunen, T., Rintanen, J.: Answer set programming as SAT modulo
acyclicity. In: Proceedings of ECAI 2014, pp. 351–356. IOS Press (2014)

13. Gebser, M., Kaminski, R., Schaub, T.: Complex optimization in answer set pro-
gramming. Theory Pract. Log. Program. 11(4–5), 821–839 (2011)

14. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from
theory to practice. Artif. Intell. 187, 52–89 (2012)

15. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of ICLP, pp. 1070–1080. MIT Press (1988)

16. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3/4), 365–386 (1991). https://doi.org/10.1007/
BF03037169

17. Janhunen, T.: Some (in)translatability results for normal logic programs and
propositional theories. J. Appl. Non Class. Log. 16(1–2), 35–86 (2006)

https://doi.org/10.1007/978-3-319-11558-0_12
https://doi.org/10.1007/978-3-319-11558-0_12
https://doi.org/10.1007/BF01536399
https://doi.org/10.1007/BF01536399
https://doi.org/10.1007/BF03037169
https://doi.org/10.1007/BF03037169

Implementing Stable-Unstable Semantics 153

18. Janhunen, T.: Intermediate languages of ASP systems and tools. In: Proceedings
of SEA 2007, The 1st International Workshop on Software Engineering for Answer
Set Programming, pp. 12–25. University of Bath, Department of Computer Science,
Report CSBU-2007-05 (2007)

19. Janhunen, T.: Modular equivalence in general. In: Proceedings of ECAI 2008, pp.
75–79 (2008)

20. Janhunen, T.: Modular construction of ground logic programs using lpcat. In:
The 3rd International Workshop on Logic and Search (LaSh 2010) (2010)

21. Janhunen, T.: Cross-translating answer set programs using the ASPTOOLS collec-
tion. Künstliche Intell. 32(2–3), 183–184 (2018). https://doi.org/10.1007/s13218-
018-0529-9

22. Janhunen, T., Niemelä, I.: The answer set programming paradigm. AI Mag. 37(3),
13–24 (2016)

23. Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.: Unfolding partiality
and disjunctions in stable model semantics. ACM Trans. Comput. Log. 7(1), 1–37
(2006)

24. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of dis-
junctive stable models. J. Artif. Intell. Res. 35, 813–857 (2009)

25. Lierler, Y., Truszczynski, M.: On abstract modular inference systems and solvers.
Artif. Intell. 236, 65–89 (2016)

26. Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Trans.
Comput. Log. 7(2), 261–268 (2006)

27. Lin, F., Zhao, J.: On tight logic programs and yet another translation from normal
logic programs to propositional logic. In: Proceedings of IJCAI 2003, pp. 853–858
(2003)

28. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT
solvers. In: Proceedings of AAAI 2002, pp. 112–118 (2002)

29. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT
solvers. Artif. Intell. 157(1–2), 115–137 (2004)

30. Marek, V., Truszczyński, M.: Autoepistemic logic. J. ACM 38(3), 588–619 (1991)
31. Oikarinen, E., Janhunen, T.: A translation-based approach to the verification of

modular equivalence. J. Log. Comput. 19(4), 591–613 (2009)
32. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model

semantics. Artif. Intell. 138(1–2), 181–234 (2002)
33. Tseitin, G.: On the complexity of derivation in the propositional calculus. Zapiski

Nauchnykh Seminarov LOMI 8, 234–259 (1968)

https://doi.org/10.1007/s13218-018-0529-9
https://doi.org/10.1007/s13218-018-0529-9

Smart Devices and Large Scale Reasoning
via ASP: Tools and Applications

Kristian Reale1,2(B) , Francesco Calimeri1,2 , Nicola Leone1 ,
and Francesco Ricca1

1 Department of Mathematics and Computer Science,
University of Calabria, Rende, Italy

{reale,calimeri,leone,ricca}@mat.unical.it
2 DLVSystem L.T.D., Via della Resistenza 19/C, Rende, Italy

{reale,calimeri}@dlvsystem.com

Abstract. In the last few years, we have been witnessing the spread of
computing devices getting smaller and smaller (e.g., Smartphones, Smart
Devices, Raspberry, etc.), and the production and availability of data get-
ting bigger and bigger. In this work we introduce DLV Large Scale (DLV-
LS), a framework based on Answer Set Programming (ASP) for perform-
ing declarative-based reasoning tasks over data-intensive applications,
possibly on Smart Devices. The framework encompasses DLV Mobile
Edition (DLV-ME), an ASP based solver for Android systems and Rasp-
berry devices, and DLV Enterprise Edition (DLV-EE), an ASP-based
platform, accessible by REST interfaces, for large-scale reasoning over
Big Data, classical relational database systems, and NoSQL databases.
DLV-LS enables Smart Devices to both locally perform reasoning over
data generated by their own sensors and properly interact with DLV-
EE when more computational power is needed for harder tasks, possibly
over bigger centralized data. We present also a real-world application of
DLV-LS; the use case consists of a tourist navigator that calculates the
best routes and optimizes a tour of a tourist under custom-defined time
constraints.

Keywords: Answer set programming · Large scale reasoning · Smart
devices

1 Introduction

Answer Set Programming (ASP) [9,10,21] is an expressive [15] logic program-
ming paradigm proposed in the area of non-monotonic reasoning that allows
one to specify a complex computational problem in a fully declarative fash-
ion. With ASP, a problem is encoded into a rule-based logic program whose
intended models, called answer sets, correspond one-to-one to solutions; solu-
tions can be actually computed by using ASP solvers, often called ASP sys-
tems [5,12,20,24]. The intrinsic declarative nature of ASP, coupled with its

This paper is partially supported by the DLVSystem organization.

c© Springer Nature Switzerland AG 2022
J. Cheney and S. Perri (Eds.): PADL 2022, LNCS 13165, pp. 154–161, 2022.
https://doi.org/10.1007/978-3-030-94479-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94479-7_10&domain=pdf
http://orcid.org/0000-0002-5988-2429
http://orcid.org/0000-0002-0866-0834
http://orcid.org/0000-0002-9742-1252
http://orcid.org/0000-0001-8218-3178
https://doi.org/10.1007/978-3-030-94479-7_10

Smart Devices and Large Scale Reasoning via ASP: Tools and Applications 155

high expressive power fostered the development of supporting systems within
the scientific community over the years; in turn, the availability of robust and
reliable systems encouraged the development of a significant number of appli-
cations, both in academia and in industry, in several contexts and scenarios
(e.g., Artificial Intelligence, Information Integration, Knowledge Management,
Healthcare, Workforce Management, Diagnosis, Workflows, Optimization, and
more) [2–4,8,14,17,18,25,28]. With the growth of the use of ASP in industry,
also effective development tools have been introduced, capable of supporting pro-
grammers, knowledge engineers and organizations in managing complex projects
in real-world domains [11,13,19,22,27]. Nevertheless, practical applications sce-
narios have been constantly evolving; in the latest years, we observed the avail-
ability of computing devices that are getting smaller and smaller along with the
production and availability of heterogeneous data that are getting bigger and
bigger.

In this paper, we present a novel advanced platform for the development
of ASP-based applications in scalable data-intensive and mobile architectures,
called DLV Large Scale (DLV-LS). The platform heavily relies on DLV [5,24],
one of the most widespread ASP systems in industry, that has been engineered
by the DLVSystem company and extended to obtain both an Enterprise server
version of DLV, called DLV Enterprise Edition (DLV-EE), and a (light) version
for mobile devices, called DLV Mobile Edition (DLV-ME). For the DLV-EE sys-
tem, the existing functionalities of DLV were extended in order to optimize the
evaluation techniques of ASP programs in a data-intensive environment and,
moreover, the system was made capable to inter-operate with both relational
DBMS and NoSQL technologies. DLV-EE provides also a service interface, based
to the REST philosophy, allowing client environments (classic programs and/or
Mobile Apps) to interact with DLV-EE. On the other hand, DLV-ME is a system
for devices with low computational power and compatible with “mobile” tech-
nologies (Android based Smartphones and Raspberry). In such a way, Smart
Devices are enabled to perform local reasoning over, for example, data provided
by their own sensors, and, for more complex reasoning tasks requiring also a
large amount of data that are generally available to clouds (think for example to
Social Network data), the devices can delegate the reasoning to the DLV-EE by
exploiting the REST services interface. The resulting DLV-LS system was also
equipped by an Integrated Development Environment (IDE) consisting on the
extension of the most comprehensive IDE for ASP called ASPIDE [19], a system
that supports the entire life-cycle of ASP development, from program editing
to application deployment, combining a cutting-edge editing tool with a collec-
tion of user-friendly graphical tools for program composition, debugging, testing,
profiling, DBMS access, solver execution configuration and output-handling. Our
extension of ASPIDE allows programmers to easy develop ASP solutions for both
DLV-ME and DLV-EE systems.

In the following, we first introduce DLV-LS, by illustrating the System Archi-
tecture and providing the reader with a brief overview of the IDE; then, we
present a practical use case application, that consists of a tourist navigator that

156 K. Reale et al.

computes the best routes and optimizes a tour of a tourist under custom-defined
time constraints; eventually, we draw our conclusions.

2 The DLV-LS System

DLV-LS consists of different modules that work together for making the develop-
ment of effective ASP based data-intensive solutions possible; in such scenarios,
where different features need to be accessed and integrated, Integrated Develop-
ment Environment (IDE) for DLV-LS is crucial. In this Section we describe the
System Architecture of both DLV-LS and the corresponding IDE.

Architecture Description. The DLV-LS system consists of two components. The
first component, named DLV-ME, is the mobile version of DLV that works on
Android and Raspberry systems (Smart Devices). The second component, named
DLV-EE, emerges from the integration of different versions of DLV exploiting
all most recent and advanced features, and, moreover, interact with Big Data
systems and external database systems (both relational and NoSQL).

The DLV-ME systems for Android and Raspberry can natively execute logic
programs as long as the input is small and the complexity of the logic programs
is not high. In particular, since the basic ASP language is able to express all
problems belonging to the complexity classes Σp

2 and Πp
2 , it is important to

check which complexity (at most) the ASP programs should have in order to be
executed to the devices. In such a way, to decide if a given reasoning task can
be carried out on a smart device, we performed some experimental analysis in
order to empirically set a “threshold”; in particular, we selected a set of ASP
programs solving well-known problems belonging to the complexity classes P and
NP, and we executed them on the smart devices by gradually increasing both
the complexity of the programs and the input size. As a consequence, when the
system needs to take advantage of greater computing power, DLV-EE Framework
can be invoked using the REST services made available by the introduction of a
REST Endpoint. In such a way, besides DLV-ME systems, also any other system
that wants to use DLV-EE can do it my making REST invocations.

The Fig. 1a illustrates the DLV-LS architecture. In particular, on the top
of the Figure we have DLV-ME for Android and Raspberry devices. They can,
for example, read input data from their device sensors and execute a local ASP
program for “stand alone” reasoning: consider for example the case of an Android
ASP based navigator which can recalculate a path locally, or a Raspberry placed
on a road that can make local reasoning for traffic control. In the case where the
complexity of the local ASP program is too high or the input data is too big,
the system can interact with DLV-EE by exploiting the REST interface in order
to delegate more complex reasoning tasks. On the bottom of the Figure we have
the architecture of DLV-EE. In particular, the Engine component is composed
by following modules:

– a module for performing distributed reasoning over Big Data systems; in par-
ticular, DLV performs reasoning tasks using the Apache Hadoop system [6];

Smart Devices and Large Scale Reasoning via ASP: Tools and Applications 157

(a) Architecture of DLV-LS (b) Integrated Development
Environments for DLV-LS.

Fig. 1. DLV-LS architecture and the integrated development environments for DLV-
LS.

note that, in order to exploit the system, DLV uses the Hadoop middleware
Apache Hive [7] that allows for managing Hadoop datasets using SQL, facil-
itating, in such a way, the mapping with datasets and ASP predicates;

– a module for performing reasoning tasks on Relational Database systems;
– a module for performing reasoning tasks on NoSQL database systems, using,

in our case, the Elasticsearch [16] and MongoDB [26] systems.

Integrated Development Environments for DLV-LS. In order to develop DLV-
LS based solutions, our idea consisted of making a synergy of multiple Inte-
grated Development Environments (IDEs) suitably adapted for our purpose (see
Fig. 1b).

In particular, for the development of DLV-ME based solutions for Android,
we implemented a synergy between the ASPIDE environment (for the defini-
tion of logic programs) [19] and the Android Studio environment [23] (for the
development of software solutions based on Android). On the other hand, for the
development of DLV-ME based solutions for Raspberry, we implemented a syn-
ergy between the Eclipse environment (for implementing Raspberry solutions)
and the ASPIDE environment (for the definition of ASP programs).

Finally, for the development of solutions that directly exploit DLV-EE, on
the one hand it is possible to develop software tools that make use of DLV-EE by
accessing the REST services directly, on the another we extended the ASPIDE
environment in order to exploit the REST services for developing ASP programs
that make use of DLV-EE.

3 A Use Case Application of DLV-LS

DLVNavigator is a web service that can automatically generate scheduled tourist
itineraries. In particular, the system provides the user with a planned itinerary
with information regarding the location and the visiting time of the points of

158 K. Reale et al.

interest (POIs). A POI, in our case, is a tourist place like a historic square, a
museum, a monument and so on. Itineraries are free of loops and dead ends,
ensuring compliance with the preferences and time constraints of the user, while
paying attention not to place POIs in time slots in which they are not available
to the public. In order to generate a fully customized itinerary, which results
as close as possible to the users’s desiderata, some profiling functionalities have
been implemented, so that users can express their preferences regarding the type
of POIs they intend to visit, taking advantage of a level of preference to be 0
to 10 for each category of point of interest. Registration (and authentication)
functions have been made available to the user in order to associate itineraries
and profiles to a specific user account. The web service can be easily accessible
from multiple clients (browsers and smartphones included) exploiting a RESTful
architecture that exposes APIs capable of providing all the services described
above.

Finally, an Android App was created for allowing the user to exploit the
services in order to generate scheduled tourist itineraries. For the generation
of scheduled tourist itinerary (we call it a tour), a proper ASP program has
been implemented to be executed by exploiting DLV-EE. The ASP program is
composed by two layers; we report next some details. The first layer basically
consists of the following rules:

1. n(1..14).

2. n_category(C,N) :- category(C), #count{ID: poi(ID,_,_,_,_,_,_,

C,_,_)} = N.

3. {n_chosen_category(C, N) : n(N), N <= X, n_category(C, X)} = 1

:- category(C).

4. node(ID,C,DT) :- start(ID), poi(ID,_,_,_,_,DT,_,C,_,_).

5. node(ID,C,DT) :- poi(ID,_,_,_,_,DT,_,C,_,P),

n_chosen_category(C,N).

6. :~ category(CODE), #count{ID: node(ID,CODE,_)} = X,

partition(CODE,Y), X < Y, Z = Y - X. [Z@2]

7. :~ poi(ID,_,_,_,_,DT,_,C,_,P), node(ID,C,DT). [P@1]

The facts in Rule 1 specify how many POIs a user can visit in a tour, at
most. Rule 2 defines the extension of predicate n category, collecting the number
of existing POIs for each category. Choice Rule 3 guesses, for each category,
a number of POIs to visit that does not exceed a given maximum (specified
by Rule 1). Predicate node is the output predicate that collects the candidate
POIs of the final tour. A starting POI is specified in input and will be part of
the tour (see Rule 4); subsequent POIs will be chosen by considering the same
choosen category (see Rule 5). The first Weak Constraint (Rule 6) ensures that
the chosen nodes respects, as much as possible, the user preference summarized
by predicate partition, where the first attribute represents a category and the
second attribute is a preference value containing the number of nodes that a user
would like to visit for that category. In such a way, the Weak Constraint states
that the number of nodes of the tour, preferably, should match the value of the
partition. The second Weak Constraint (Rule 7), specify to minimize, with lower
priority, the cost for visiting the POIs.

Smart Devices and Large Scale Reasoning via ASP: Tools and Applications 159

The second layer consists of following ASP rules:

1. slot(X,IN,OUT) :- start(X), node(X,_,DT), poi(X,IN,_,_,

,,_,_,_,_), OUT=IN+DT, budget(B), OUT<B.

2. slot(Y,IN,OUT) :- slot(X,_,OUTP), inPath(X,Y,TT,_),

node(Y,_,DT), budget(B), IN=OUTP+TT, OUT=IN+DT, OUT<B.

The answers sets of this program represent the final tour for the user via
predicate slot. The attributes of the predicate represent, respectively, the place
(node) to visit, the entry time and the exit time. Rule 1 states that, for a given
node of the candidate POIs, get the entry time and the exit time of the place
being careful to not exceed the temporal budget of the user. Rule 2 is a recursive
rule that builds the tour by considering subsequent entry/exit time and the
available time budget. The predicate inPath of the rule is determined using a
variant of the well known Hamiltonian Path problem ASP encoding [1], that, in
our case, is used to minimize the distance between single locations.

We briefly describe next the usage of the Android app that exploits, using
REST invocations, DLVNavigator for the generation of a tour for the specific
user; some screenshots that ease the presentation of the mobile app can be
found at https://www.mat.unical.it/ricca/aspide/dlvls. The main section of the
app consists of a Map with the current user position; the user can easily edit
her preferences and setting her degree of interest for each available POI. Upon
the request for a new tour, the user is asked to choose time duration, budget and
mode (on foot, by car). DLVNavigator is invoked in order to plan the tour, and
the result is displayed: the list of suggested POIs with estimated duration, check-
in/out times and estimated cost is reported. The user can reject the proposal
and ask for a new one; once she is satisfied, she can start the tour: the app
will then show the Map displaying the individual POIs featured by the accepted
tour and the current position of the user. When the user physically reaches a
POI, a countdown is started reporting the remaining suggested allotted time
for the current place, along with the remaining time to finish the entire tour.
Textual pieces of information can be displayed, namely: distance from the user,
minimum stop time, maximum and recommended stop and check-in/check-out
times recorded by the movements on the map. If the stop at a POI lasts longer
than expected, the system proposes a rescheduling of the tour taking into account
the remaining time and user preferences.

4 Conclusion

In this paper we presented DLV-LS, an ASP-based Framework for performing
declarative-based reasoning tasks over data-intensive applications. The Frame-
work exploits DLV-ME for local reasoning over Smart Devices, and DLV-EE for
more complex reasoning tasks over Big Data, classical relational database sys-
tems, and NoSQL databases. Moreover, an Integrated Development Environment
for DLV-LS was proposed thus equipping the Framework with an Environment

https://www.mat.unical.it/ricca/aspide/dlvls

160 K. Reale et al.

for developing ASP-based data-intensive applications. The entire system can be
downloaded from https://www.mat.unical.it/ricca/aspide/dlvls.

The use case herein reported is just a simple (yet real) application of our
Framework; more complex usages can be defined thanks to the possibility of
performing reasoning tasks over smart devices, that are generally connected
to internet: in such a way, distributed reasoning can also be implemented, for
instance in the Smart Cities context. Just as example, a traffic-control applica-
tion relying on a series of Raspberries is currently under consideration.

As far as future work is concerned, we plan to extend both the DLV-LS system
and the IDE, to deal with more data sources, both relational and NoSQL, and
to further improve performance in data-intensive contexts.

Acknowledgments. This work has been partially supported by : (i) POR CAL-
ABRIA FESR-FSE 2014–2020, project “DLV Large Scale: un sistema per appli-
cazioni di Intelligenza Artificiale in architecture data-intensive e mobile”, CUP
J28C17000220006; (ii) PRIN PE6, Title: “Declarative Reasoning over Streams”, funded
by the Ital-ian Ministero dell’Universit‘a, dell’Istruzione e della Ricerca (MIUR),
CUP:H24I17000080001; (iii) PON-MISE MAP4ID, Title: “Multipurpose Analytics
Platform 4 IndustrialData”, funded by the Italian Ministero dello Sviluppo Economico
(MISE), CUP: B21B19000650008; (iv) PON-MISE S2BDW, Title: “Smarter Solution
in the Big Data World”, funded by the Italian Ministero dello Sviluppo Economico
(MISE), CUP: B28I17000250008.

References

1. HPP DLV encoding. https://asparagus.cs.uni-potsdam.de/encoding/show/id/
3491

2. Abels, D., Jordi, J., Ostrowski, M., Schaub, T., Toletti, A., Wanko, P.: Train
scheduling with hybrid answer set programming. CoRR abs/2003.08598 (2020).
https://arxiv.org/abs/2003.08598

3. Abseher, M., Gebser, M., Musliu, N., Schaub, T., Woltran, S.: Shift design with
answer set programming. Fundam. Inf. 147, 1–25 (2016)

4. Adrian, W.T., et al.: The ASP system DLV: advancements and applications. KI -
Künstl. Intell. 32, 177–179 (2018). https://doi.org/10.1007/s13218-018-0533-0

5. Alviano, M., Calimeri, F., Dodaro, C., Fuscà, D., Leone, N., Perri, S., Ricca, F.,
Veltri, P., Zangari, J.: The asp system dlv2. In: Balduccini, M., Janhunen, T.
(eds.) Logic Program. Nonmonotonic Reason., pp. 215–221. Springer International
Publishing, Cham (2017)

6. Apache Software Foundation: Hadoop. https://hadoop.apache.org
7. Apache Software Foundation: Hive. https://hive.apache.org
8. Bobda, C., Yonga, F., Gebser, M., Ishebabi, H., Schaub, T.: High-level synthesis of

on-chip multiprocessor architectures based on answer set programming. J. Parall.
Distrib. Comput. 117, 161–179 (2018)

9. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

10. Calimeri, F., et al.: Asp-core-2 input language format. Theor. Practice Logic Pro-
gram. 20(2), 294–309 (2020). https://doi.org/10.1017/S1471068419000450

https://www.mat.unical.it/ricca/aspide/dlvls
https://asparagus.cs.uni-potsdam.de/encoding/show/id/3491
https://asparagus.cs.uni-potsdam.de/encoding/show/id/3491
https://arxiv.org/abs/2003.08598
https://doi.org/10.1007/s13218-018-0533-0
https://hadoop.apache.org
https://hive.apache.org
https://doi.org/10.1017/S1471068419000450

Smart Devices and Large Scale Reasoning via ASP: Tools and Applications 161

11. Calimeri, F., Fuscà, D., Germano, S., Perri, S., Zangari, J.: Fostering the Use of
Declarative Formalisms for Real-World Applications: The EmbASP Framework.
New Generation Computing 37(1), 29–65 (2018). https://doi.org/10.1007/s00354-
018-0046-2

12. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: Design and results of the fifth
answer set programming competition. Artif. Intell. 231, 151–181 (2016)

13. Calimeri, F., Germano, S., Palermiti, E., Reale, K., Ricca, F.: Developing ASP pro-
grams with ASPIDE and L oIDE. KI - Künstl. Intell. 1, 185–186 (2018). https://
doi.org/10.1007/s13218-018-0534-z

14. De Bortoli, M., Steinbauer, G., Fabricius, F., Selmair, M., Reip, M., Gebser, M.:
Towards asp-based scheduling for industrial transport vehicles. In: Joint Austrian
Computer Vision and Robotics Workshop, pp. 34–41 (2020)

15. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Trans. Database
Syst. 22(3), 364–418 (1997)

16. Elastic: Elasticsearch. https://www.elastic.co/elasticsearch/
17. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI

Mag. 37(3), 53–68 (2016)
18. Falkner, A.A., Friedrich, G., Schekotihin, K., Taupe, R., Teppan, E.C.: Industrial

applications of answer set programming. KI - Künstl. Intell. 32, 165–176 (2018)
19. Febbraro, O., Reale, K., Ricca, F.: Aspide: Integrated development environment for

answer set programming. In: Delgrande, J.P., Faber, W. (eds.) Logic Programming
and Nonmonotonic Reasoning, pp. 317–330. Springer, Berlin Heidelberg, Berlin,
Heidelberg (2011)

20. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with
clingo. CoRR abs/1705.09811 http://arxiv.org/abs/1705.09811 (2017)

21. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 365–385 (1991), http://www.cs.utexas.
edu/users/ai-lab?gel91b

22. Germano, S., Calimeri, F., Palermiti, E.: Loide: a web-based IDE for logic pro-
gramming - preliminary technical report. CoRR abs/1709.05341 http://arxiv.org/
abs/1709.05341 (2017)

23. Google, JetBrains: Android studio, https://developer.android.com/studio
24. Leone, N., et al.: The dlv system for knowledge representation and reasoning. ACM

Trans. Comput. Logic 7(3), 499–562 (2006). https://doi.org/10.1145/1149114.
1149117

25. Leone, N., Ricca, F.: Answer set programming: a tour from the basics to advanced
development tools and industrial applications. In: Faber, W., Paschke, A. (eds.)
Reasoning Web 2015. LNCS, vol. 9203, pp. 308–326. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21768-0 10

26. MongoDB: Mongodb. https://www.mongodb.com
27. Oetsch, J., Pührer, J., Tompits, H.: The sealion has landed: an IDE for answer-

set programming–preliminary report. CoRR abs/1109.3989 http://arxiv.org/abs/
1109.3989 (2011)

28. Ricca, F., et al.: Team-building with answer set programming in the Gioia-Tauro
seaport. Comput. Res. Reposit - CORR 12(3), 361–381 (2011). https://doi.org/
10.1017/S147106841100007X

https://doi.org/10.1007/s00354-018-0046-2
https://doi.org/10.1007/s00354-018-0046-2
https://doi.org/10.1007/s13218-018-0534-z
https://doi.org/10.1007/s13218-018-0534-z
https://www.elastic.co/elasticsearch/
http://arxiv.org/abs/1705.09811
http://www.cs.utexas.edu/users/ai-lab?gel91b
http://www.cs.utexas.edu/users/ai-lab?gel91b
http://arxiv.org/abs/1709.05341
http://arxiv.org/abs/1709.05341
https://developer.android.com/studio
https://doi.org/10.1145/1149114.1149117
https://doi.org/10.1145/1149114.1149117
https://doi.org/10.1007/978-3-319-21768-0_10
https://www.mongodb.com
http://arxiv.org/abs/1109.3989
http://arxiv.org/abs/1109.3989
https://doi.org/10.1017/S147106841100007X
https://doi.org/10.1017/S147106841100007X

Declarative Solutions

Decomposition-Based Job-Shop
Scheduling with Constrained Clustering

Mohammed M. S. El-Kholany1,3 , Konstantin Schekotihin1 ,
and Martin Gebser1,2(B)

1 Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria
{mohammed.el-kholany,konstantin.schekotihin,martin.gebser}@aau.at

2 Technische Universität Graz, Graz, Austria
3 Cairo University, Cairo, Egypt

Abstract. Scheduling is a crucial problem appearing in various domains,
such as manufacturing, transportation, or healthcare, where the goal is
to schedule given operations on available resources such that the oper-
ations are completed as soon as possible. Unfortunately, most schedul-
ing problems cannot be solved efficiently, so that research on suitable
approximation methods is of primary importance. This work introduces a
novel approximation approach based on problem decomposition with data
mining methodologies. We propose a constrained clustering algorithm to
group operations into clusters, corresponding to time windows in which
the operations must be scheduled. The decomposition process consists of
two main phases. First, features are extracted, either from the problem
itself or from solutions obtained by heuristic methods, to predict the exe-
cution sequence of operations on each resource. The second phase deploys
our constrained clustering algorithm to assign each operation into a time
window. We then schedule the operations by time windows using Answer
Set Programming. Evaluation results show that our proposed approach
outperforms other heuristic schedulers in most cases, where incorporat-
ing features like Remaining Processing Time, Machine Load, and Earliest
Starting Time significantly improves the solution quality.

Keywords: Job-shop Scheduling Problem · Constrained clustering ·
Time windows · Answer Set Programming

1 Introduction

Scheduling is one of the most crucial problems in various industrial, transporta-
tion, or healthcare applications [10,12,24,30,32,34,43]. Such applications result
in different scheduling problem definitions, with the Job-shop Scheduling Prob-
lem (JSP) [38] being one if not the most well-known variant. In JSP, operations of

This work was partially funded by KWF project 28472, cms electronics GmbH, Fun-
derMax GmbH, Hirsch Armbänder GmbH, incubed IT GmbH, Infineon Technolo-
gies Austria AG, Isovolta AG, Kostwein Holding GmbH, and Privatstiftung Kärntner
Sparkasse.

c© Springer Nature Switzerland AG 2022
J. Cheney and S. Perri (Eds.): PADL 2022, LNCS 13165, pp. 165–180, 2022.
https://doi.org/10.1007/978-3-030-94479-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94479-7_11&domain=pdf
http://orcid.org/0000-0002-1088-2081
http://orcid.org/0000-0002-0286-0958
http://orcid.org/0000-0002-8010-4752
https://doi.org/10.1007/978-3-030-94479-7_11

166 M. M. S. El-Kholany et al.

given jobs must be scheduled on available machines in an optimal way wrt. some
predefined criteria. The latter include, for instance, minimization of makespan,
i.e., the latest completion time of any job, or tardiness, i.e., the sum of delays
over all jobs completed after their deadlines.

However, JSP is an NP-hard combinatorial optimization problem [20,37] for
which no efficient algorithms are known. Therefore, searching for an optimal
solution with state-of-the-art solvers for Answer Set Programming (ASP), Mixed
Integer Programming, or Constraint Programming [3,11,16,28] often takes too
much computation time, even for seemingly small instances. Practical applica-
tions instead necessitate solving JSP instances of large scale with thousands of
operations [46]. As a result, much research work focuses on efficient methods for
finding high-quality approximations of optimal schedules, including dispatch-
ing rules and other heuristic approaches [8] as well as stochastic optimization
techniques [9,41]. The main issue of these approaches is that they require man-
ual parametrization for a particular scheduling problem, which is tedious and
error-prone. For instance, adapting heuristic methods might involve the devel-
opment of new dispatching rules or specific combinations of existing ones. Simi-
larly, merely utilizing default parameters for stochastic techniques might lead to
mediocre schedules. In view of these challenges, recent research interest lies on
the automatic parametrization of approximation methods using machine learn-
ing methodologies [7].

In this work, we introduce a method based on clustering to automatically
decompose a JSP instance into several time windows that are small enough for
optimization by an ASP solver. General clustering algorithms are unsupervised
learning methods that partition a given set of objects into disjoint clusters, where
each cluster comprises close objects wrt. some distance measure. In scheduling
settings, however, clusters must satisfy additional constraints implied by the
precedence relation between operations of a job. Standard constrained cluster-
ing algorithms are not readily applicable to scheduling scenarios either, as they
are limited to disjointness constraints specifying objects that must not appear
together in a cluster [14,42,45]. Therefore, our clustering method implements a
novel type of constraints that (i) prevent the assignment of an operation to a
cluster if its preceding operation is not yet assigned to the same or a previous
cluster and (ii) ensure balancing between clusters according to the target number
of operations per cluster. Further contributions of our work can be summarized
as follows:

– Since a typical JSP instance describing jobs, their operations, and available
machines does not provide sufficient information by itself for finding some
promising decomposition by a clustering algorithm, we incorporate heuristic
approaches like First-In-First-Out and Machine Load to extract features from
their solutions.

– We implement the proposed constrained clustering algorithm and combine
it with the forward selection of features, which is an automatic method for
identifying a subset of features allowing the clustering method to compute
decompositions resulting in best-quality schedules.

Decomposition-Based Job-Shop Scheduling with Constrained Clustering 167

– The evaluation of our approach on Taillard’s and Demirkol’s benchmark
instances [13,38] shows that it significantly outperforms baseline heuristic
methods and pure ASP optimization wrt. the makespan optimization crite-
rion within a short solving time limit of 10 min.

The rest of this paper is organized as follows. Section 2 introduces JSP along
with a running example. In Sect. 3, we describe the feature extraction, including
heuristic methods to obtain corresponding reference solutions. Section 4 presents
our proposed constrained clustering algorithm. In Sect. 5, we empirically evaluate
our approach and compare it to baseline heuristic methods as well as pure ASP
optimization. Section 6 then surveys related work, followed by conclusions and
future work in Sect. 7.

2 Job-Shop Scheduling Problem

The Job-shop Scheduling Problem (JSP) is one of the most well-known schedul-
ing problems [4,27,38]. A JSP instance comprises a set J = {J1, J2, . . . , Jn} of
jobs and a set M = {M1,M2, . . . ,Mm} of machines. Each job Ji consists of a
sequence (Oi,1, Oi,2, . . . , Oi,m) of operations that must be processed in the given
order. Each machine Mi executes one operation per job with a predefined, fixed
processing time. Once the execution of an operation is started, it cannot be inter-
rupted, and each machine can perform at most one operation at a time. The main
objective of JSP solving algorithms is to find a schedule that minimizes optimiza-
tion criteria, where we focus on the makespan, i.e., the latest completion time of
any job.

Let us illustrate the problem on the small JSP instance specified in Table 1,
which provides parameters for 3 jobs and 3 machines. The rows list operations
along with their respective machines and processing times, e.g., the third oper-
ation of the first job, O1,3, takes 5 time units for execution by machine 1. The min-
imum makespan happens to be 20, which matches the sum 9 + 6 + 5 of processing
times for the operations O1,1, O2,2, and O3,3 executed by machine 2. While there
are plenty, i.e., 234, optimal schedules with makespan 20, they agree on the exe-
cution orders (O3,1, O1,3, O2,3) and (O1,1, O2,2, O3,3) of operations processed by
machine 1 or 2, respectively. The two feasible execution orders for machine 3 are
(O2,1, O3,2, O1,2) and (O2,1, O1,2, O3,2). In both cases, the earliest eligible starting
times for the operations O1,1, O1,2, and O1,3 of job J1 are 0, 9, and 12, as well as
0, 9, and 17 for O2,1, O2,2, and O2,3 belonging to the job J2. Regarding the oper-
ations of J3, the earliest starting time for O3,1 is 0, O3,3 can only be started at
time 15 because its machine 1 is occupied before, while either 4 or 12 is the earliest
eligible starting time for O3,2, depending on whether it is processed directly after
completing O3,1 (and O2,1 on its machine 3) or waits for the completion of O1,2 on
machine 3. The latter option lets machine 3 idle unnecessarily and may seem less
attractive, yet it does not stretch the resulting makespan beyond time 20.

Since JSP is NP-hard [20,37] and no efficient solving algorithms are known,
even state-of-the-art optimization methods can often not find (near-)optimal solu-
tions in reasonable time, already for instances with a seemingly small number of

168 M. M. S. El-Kholany et al.

Table 1. A sample JSP instance.

Operation Machine Processing time

O1,1 2 9

O1,2 3 3

O1,3 1 5

O2,1 3 4

O2,2 2 6

O2,3 1 2

O3,1 1 4

O3,2 3 3

O3,3 2 5

Table 2. Possible decomposition.

Operation Time Window

O1,1 1

O1,2 1

O2,1 1

O2,2 1

O3,1 1

O1,3 2

O2,3 2

O3,2 2

O3,3 2

operations. As the number of operations in real-life applications can easily reach
tens of thousands [46], approximation methods have attracted particular research
interest. One such approach is decomposition into easier to optimize parts, which
can be solved separately and whose partial solutions are eventually combined into
a joint schedule for the entire problem instance. While various decomposition
strategies have been proposed in the literature [31,36,40,44], none of them can
provide solution quality guarantees or strictly dominates over heterogeneous JSP
instances.

For our example in Table 1, there are 9 operations and 3 machines. Assume
that we aim to split the operations into two parts to be scheduled separately such
that the precedence between operations belonging to the same job is preserved.
That is, we should not assign a successor operation to an earlier Time Window
(TW) than its predecessor. Table 2 shows one feasible decomposition that we may
like to generate. The operations {O1,1, O1,2, O2,1, O2,2, O3,1} are here assigned to
TW 1, and the remaining operations to TW 2. Given this decomposition, a multi-
shot optimization approach, as offered by ASP [21], can first optimize a schedule
(wrt. the makespan) for the operations in TW 1, and then extend the first part
by additionally scheduling the operations in TW 2 in an optimal way. However,
considering that the operation O3,2 belongs to TW 2 and should be executed later
than O1,2 of TW 1, the decomposition is incompatible with the execution order
(O2,1, O3,2, O1,2) for machine 3 and thus discards optimal schedules.

In this work, we introduce and deploy a constrained clustering algorithm
to decompose JSP instances into time windows, where we extract some features
from the problem itself and others from solutions obtained by heuristic methods.
The features we consider for the decomposition process are explained in detail
in the next section.

3 Feature Extraction

The application of machine learning methods to scheduling problems requires a
careful selection of data describing the hidden dependencies between operations

Decomposition-Based Job-Shop Scheduling with Constrained Clustering 169

Table 3. Features extracted from the sample problem instance in Table 1.

Operation RPT EST ML ST FIFO WT FIFO

O1,1 17 0 20 0 0

O1,2 8 9 3 9 0

O1,3 5 12 5 12 0

O2,1 12 0 10 0 0

O2,2 8 4 11 9 5

O2,3 2 10 7 17 2

O3,1 12 0 11 0 0

O3,2 8 4 6 4 0

O3,3 5 7 5 15 8

of different jobs [23,29]. Clustering methods, which we intend to apply in our
approach, are not an exception to this. That is, a clustering method requires an
informative set of features characterizing the jobs, their operations, and machines
of a problem instance to identify patterns resulting in a beneficial decomposition
of the operations into time windows.

Methods suggested in the literature [2,22,23,26,29,35] characterize instances
of scheduling problems based on the following features: priority, processing time,
remaining processing time, machine load, and sequence position. Most of these
approaches convert the quantitative feature values into qualitative attributes in
order to obtain generic dispatching rules that remain applicable to instances of
different size. In this work, we propose a method that can be applied to feature
values directly and does not require any problem-specific transformations. How-
ever, our clustering method for JSP instance decomposition requires all features
to have numerical values, which permit the calculation of distance measures for
estimating (dis)similarities between operations.

In detail, we consider the following features of jobs, operations, and machines:

Operation (OP) is the ordinal value for the position of an operation in its job.
Processing Time (PT) is the time for executing an operation on its machine.

This feature is part of a JSP instance, such as the sample instance specified
in Table 1.

Remaining Processing Time (RPT) provides the total processing time for
pending operations until the completion of a job. For example, Table 3 lists
RPT values for operations of the sample instance in Table 1. The job J1
consists of 3 operations with a total processing time of 17, which matches RPT
for the first operation O1,1. The RPT for O1,2 is obtained by subtracting the
processing time of O1,1, i.e., 17− 9 = 8, and it corresponds to the processing
time 5 for the last job O1,3.

Time Length of a Job (TLJ) is the total processing time for operations of
a job, which coincides with the RPT value of the job’s first operation and is
more coarse-grained than the operation-specific RPT feature.

170 M. M. S. El-Kholany et al.

Earliest Starting Time (EST) represents the earliest possible time for execut-
ing an operation, given by the total processing time for the predecessor oper-
ations in its job. For the first operation of each job, the EST value defaults
to 0.

Machine Load (ML) is a property describing how much time it takes to exe-
cute the operations assigned to a machine. Initially, ML corresponds to the
total processing time for all operations to be executed by a machine. Then the
assumption is that the operations are processed in increasing order of their
EST values, and ML is thus reduced by the processing times of preceeding
operations. For example, the EST for the operations O2,1, O3,2, and O1,2

assigned to machine 3 is 0, 4, or 9, respectively. Proceeding in this execution
order, ML is the total processing time 10 for O2,1, reduced by the processing
time of O2,1 to 10 − 4 = 6 for O3,2, and then we obtain the execution time 3
for the last operation O1,2.

Starting Time (ST) is a family of features providing the starting times of
operations obtained by scheduling them with heuristic greedy search methods.
In our work, we consider Earliest Starting Time (ST EST), First-In-First-Out
(ST FIFO), and Most Total Work Remaining (ST MTWR) as heuristics for
the greedy operation allocation; see [25] for an overview of such techniques.
At each step, a simple greedy algorithm [16] selects some pending operation
whose machine is available according to the heuristic and schedules it. In the
case of ST FIFO , the algorithm selects an operation waiting longest for its
machine to become available. For example, the first operations O1,1, O2,1, and
O3,1 are all scheduled at time 0 (on different machines), then O2,2 waits from
time 4 for its machine 2 to get available, while O3,2 is started on machine 3 at
time 4, so that O3,3 also waits for machine 2 from time 7. When the machine 2
is at time 9 ready to start another operation, the ST FIFO heuristic thus
selects the operation O2,2, which waits for longer, to be executed next. With
the ST EST and ST MTWR heuristics, the selection of the next operation is
based on smaller EST or greater RPT values, respectively, which in view of
the attributes in Table 3 also leads to the result that O2,2 is processed before
O3,3.

Waiting Time (WT) is also a family of features, where variants denoted by
WT EST , WT FIFO , and WT MTWR rely on schedules obtained with the
corresponding ST heuristic, i.e., ST EST , ST FIFO , or ST MTWR. Given a
schedule computed by the greedy algorithm, the waiting time of an operation
is determined by the difference between its starting time and the time of
completing the predecessor operation, or simply the starting time for the first
operation of each job. For instance, the starting times with ST FIFO listed
in Table 3 yield the waiting times given in the WT FIFO column. In fact,
O2,2 waits for 5 time units for its machine 2 to get available, its processing
time is included in the waiting time 8 of O3,3, and O2,3 also needs to wait 2
time units for the completion of O1,3 before its execution by machine 1.

Decomposition-Based Job-Shop Scheduling with Constrained Clustering 171

We extract all of the features described above from a given JSP instance and
can thus use them as inputs to our decomposition method presented in the next
section.

4 Constrained Clustering Algorithm

Our approximation approach comprises two main phases: (i) first, we decompose
a problem instance into a sequence of sub-problems, called time windows, and (ii)
second, the time windows are solved one after another, where optimized solutions
for preceding time windows are taken as input for solving the next. As a result,
the solution obtained for the last time window provides a complete schedule
for the given JSP instance. The computational efficiency of this approach and
the quality of obtained schedules rely on the decomposition performed in the
first phase [44,46]. Our approach incorporates a novel constrained clustering
method for the favorable decomposition of JSP instances based on features of
their comprised operations. Each cluster represents a time window, i.e., a subset
of operations to be scheduled in one go of an iterative solving algorithm.

Clustering algorithms are unsupervised learning methods whose goal is to
partition a set of data objects into (disjoint) clusters such that each cluster
gathers objects of high similarity. Such similarity is determined by some measure,
e.g., Euclidean distance, based on features of each object, like the features of
operations described in the previous section. However, the direct application of
common clustering algorithms, such as K-Means [17], to scheduling problems is
impractical since the partitioning does not take the sequence of operations in
a job into account. For instance, a clustering algorithm may put O1,1 and O1,3

into the same and O1,2 into another cluster. As a result, the sequence of time
windows becomes inconsistent, and no compatible schedule exists.

We thus propose a constrained clustering algorithm that preserves sequences
of operations by considering their order in the assignment to clusters. That
is, the predecessors of an operation to be put into the nth cluster must be
assigned within the clusters 1, . . . , n. Also considering that our approach involves
cluster-wise combinatorial optimization, the generation of large clusters risks
to deteriorate the solving performance significantly. In the extreme case, all
operations could be put into a single cluster representing the entire problem
instance. Hence, in addition to the similarity of operations, our decomposition
method also aims at balancing the number of operations per cluster.

Algorithm 1 provides a pseudocode description of our constrained clustering
algorithm. Similar to K-Means, we assume that the algorithm gets the target
number of clusters into which the operations shall be partitioned as input. The
cluster capacity, used for balancing the operations per cluster, is then obtained
by dividing the total number of operations by the number of clusters. Moreover,
the clustering algorithm takes care of generating one initial centroid per cluster,
given by randomly selected operations that are compatible with the precedence
relation. For example, when each job consists of 15 operations and the target
number of clusters is 3, the first centroid will be an operation at the first to

172 M. M. S. El-Kholany et al.

Algorithm 1. Constrained Clustering Algorithm
Input: operations, num clusters

cluster capacity ←
⌈

|operations|
num clusters

⌉

Generate num clusters many centroids
for n = 1 to num clusters do

clusters[n] ← ∅
current capacity ← cluster capacity
while 0 < current capacity do

Calculate distance between data objects and nth centroid � Using Euclidean
distance

Oi,j ← Nearest data object from operations
repeat

current capacity ← current capacity − 1
operations ← operations \ {Oi,j}
clusters[n] ← clusters[n] ∪ {Oi,j} � Assigning operation Oi,j to nth TW
j ← j − 1

until Oi,j /∈ operations � Satisfying the precedence constraint
Update the nth centroid

end while
end for

fifth place of its job, the second an operation from place six to ten, and the
third an operation at the eleventh or later place. In order to populate each
cluster, the algorithm inspects features to determine the Euclidean distance of
each yet unassigned operation to the centroid of the current cluster and assigns
the nearest operation to the cluster. To also preserve the precedence between
operations, we additionally include any yet unassigned predecessor operations
in the current cluster, and then update its centroid with the features of newly
assigned operations. Whenever the cluster capacity is reached, the algorithm
proceeds to the next cluster, and this decomposition process continues until all
operations are assigned to clusters.

In order to identify the most promising features for distance calculation
among those introduced in the previous section, we suggest the following forward
selection principle: start with a small set of features, perform decomposition by
Algorithm 1, and iteratively solve JSP instances. Then, we evaluate the possible
extensions by one more feature, compare the quality of resulting schedules, and
pick the best set of features. This process continues until either (i) all features
are selected, or (ii) any extension by another feature leads to solutions of lower
quality.

5 Evaluation Results

We use randomly generated JSP instances with 50 jobs, 15 machines, and
50 × 15 = 750 operations, part of which are known to be challenging for
greedy and stochastic optimization techniques, from Taillard’s and Demirkol’s

Decomposition-Based Job-Shop Scheduling with Constrained Clustering 173

benchmark suites [13,38] for the empirical evaluation of our approach.1 For each
instance, we extracted the 12 features described in Sect. 3. In order to assess
their impact on the clustering and, consequently, the quality of schedules, we
make fix use of the features ST FIFO , ST MTWR, and ST EST , which provide
the starting times of operations obtained by heuristic greedy search methods,
as these three features promised to be informative in preliminary experiments.
In contrast to that, considering the position of operations in jobs (OP), pro-
cessing times (PT), and jobs’ time length (TLJ) turned out to be counterpro-
ductive in our preliminary investigation, so that we disregard such features in
the following. The six leftover features, i.e., remaining processing time (RPT),
earliest starting time (EST), machine load (ML) as well as the waiting times
WT FIFO , WT MTWR, and WT EST based on schedules computed by corre-
sponding greedy algorithms, are added and combined to feature sets as follows:

F1→ { ST FIFO, ST MTWR, ST EST }
F2→ { ST FIFO, ST MTWR, ST EST , RPT }
F3→ { ST FIFO, ST MTWR, ST EST , EST }
F4→ { ST FIFO, ST MTWR, ST EST , ML }
F5→ { ST FIFO, ST MTWR, ST EST , RPT, EST }
F6→ { ST FIFO, ST MTWR, ST EST , RPT, ML }
F7→ { ST FIFO, ST MTWR, ST EST , EST, ML }
F8→ { ST FIFO, ST MTWR, ST EST , RPT, EST, ML }
F9→ { ST FIFO, ST MTWR, ST EST , WT FIFO, WT MTWR, WT EST }
F10 → { ST FIFO, ST MTWR, ST EST , WT FIFO, WT MTWR, WT EST , RPT }
F11 → { ST FIFO, ST MTWR, ST EST , WT FIFO, WT MTWR, WT EST , EST }
F12 → { ST FIFO, ST MTWR, ST EST , WT FIFO, WT MTWR, WT EST , ML }
F13 → { ST FIFO, ST MTWR, ST EST , WT FIFO, WT MTWR, WT EST , RPT, EST }
F14 → { ST FIFO, ST MTWR, ST EST , WT FIFO, WT MTWR, WT EST , RPT, ML }
F15 → { ST FIFO, ST MTWR, ST EST , WT FIFO, WT MTWR, WT EST , EST, ML }
F16 → { ST FIFO, ST MTWR, ST EST , WT FIFO, WT MTWR, WT EST , RPT, EST, ML }

We utilized the above feature sets for partitioning the operations of JSP
instances into 3 clusters or time windows, respectively, and then ran the multi-
shot optimization approach introduced in [16] for 10 min in total, i.e., 200 s per
time window, on an Intel R© CoreTM i7-8650U CPU Dell Latitude 5590 machine
under Windows 10. The resulting quality of schedules in terms of the achieved
makespan for each instance is reported in Table 4 and Table 5, where the first
four rows include the greedy FIFO and MTWR search methods supplied by the
environment in [39] as well as single-shot and multi-shot pure ASP optimization,
the latter taking earliest starting times instead of clustering for the decompo-
sition into 3 time windows, for reference. Regarding these reference methods,
FIFO and MTWR are more or less on par, with a slight advantage of FIFO on
Taillard’s instances and an edge for MTWR on Demirkol’s instances, indicated
by the average makespans given in the last column of each table. While combina-
torial optimization by neither single- nor multi-shot ASP solving is able to keep
step within the time limit and leads to greater averages over all instances, the
multi-shot pure ASP optimization approach turns out to be comparably robust
on half of the instances from Demirkol’s benchmark suite, which points out the
critical impact of instance patterns.

1 The benchmarks and our implementation are available at: https://github.com/
Sa3doun13/PADL-2022.

https://github.com/Sa3doun13/PADL-2022
https://github.com/Sa3doun13/PADL-2022

174 M. M. S. El-Kholany et al.

Table 4. Solution quality comparison for different feature sets (Taillard’s instances).

Approach TA51 TA52 TA53 TA54 TA55 TA56 TA57 TA58 TA59 TA60 AVG

FIFO 3549 3339 3160 3218 3291 3325 3654 3299 3344 3129 3331

MTWR 3364 3304 3168 3494 3237 3287 3633 3591 3394 3257 3373

Single-shot 3632 3615 3481 3462 3552 3610 3778 3718 3613 3550 3601

Multi-shot 3506 3773 3478 3497 3482 3605 3753 3731 3398 3247 3547

F1 3506 3277 3382 3414 3308 3353 3605 3352 3453 3483 3413

F2 3362 3318 3585 3425 3441 3380 3573 3412 3416 3315 3423

F3 3324 3330 3347 3425 3424 3548 3601 3370 3301 3617 3429

F4 3360 3286 3543 3503 3319 3270 3583 3509 3339 3563 3428

F5 3346 3243 3517 3397 3355 3383 3650 3707 3508 3591 3470

F6 3294 3275 3250 3265 3386 3366 3480 3324 3430 3327 3340

F7 3328 3226 3338 3353 3301 3564 3592 3496 3352 3399 3395

F8 3330 3273 3277 3492 3375 3469 3760 3410 3485 3573 3444

F9 3588 3397 3251 3563 3498 3229 3621 3517 3258 3374 3430

F10 3588 3373 3522 3443 3385 3306 3543 3716 3381 3526 3475

F11 3568 3533 3373 3386 3530 3362 3608 3644 3402 3637 3504

F12 3514 3256 3585 3352 3365 3344 3670 3611 3145 3425 3427

F13 3682 3494 3143 3270 3309 3332 3632 3471 3250 3676 3426

F14 3624 3505 3427 3236 3370 3338 3749 3437 3253 3659 3460

F15 3554 3373 3524 3232 3385 3483 3573 3365 3284 3767 3454

F16 3509 3184 3380 3289 3218 3389 3480 3481 3290 3569 3379

Virtual Best 3294 3184 3143 3232 3218 3229 3480 3324 3145 3315 3256

Table 5. Solution quality comparison for different feature sets (Demirkol’s instances).

Approach DE31 DE32 DE33 DE34 DE35 DE71 DE72 DE73 DE74 DE75 AVG

FIFO 6817 6318 6029 6395 6409 9678 10349 9617 9847 9479 8094

MTWR 7155 6042 6819 6570 6881 7764 8407 8411 8321 7893 7426

Single-shot 10370 10214 10064 10682 10203 6848 28369 32954 35325 6992 16202

Multi-shot 10318 9522 9785 10775 10398 6492 6935 7202 7128 6243 8480

F1 8488 8325 7831 8356 8088 8593 7188 7826 6611 7662 7897

F2 8440 8298 7663 8479 7986 6994 7606 7209 6627 7069 7637

F3 8234 8401 8037 8444 7780 6590 7785 7302 6690 7051 7631

F4 7991 8589 7996 8471 8207 8091 7834 6972 6708 6859 7771

F5 8164 8103 7835 8482 7802 6807 8357 7328 6774 7192 7684

F6 7709 8265 7795 8475 7678 6611 6708 7030 6569 6867 7371

F7 8268 8553 7892 8359 8032 7603 6855 7223 6609 7200 7659

F8 8873 8879 8201 9126 7982 6843 7971 7106 7545 6970 7950

F9 8500 8185 8533 8772 8535 6726 6518 7130 6592 7262 7675

F10 8322 8119 8433 8910 8233 6868 6764 7183 6267 7459 7656

F11 8617 8383 8614 8755 7969 7587 6512 6762 6505 7376 7708

F12 8400 8124 8043 8185 8799 7849 6618 6876 6397 7746 7704

F13 8916 8343 8441 8331 8153 7464 6757 6994 6434 6961 7679

F14 8392 7937 7943 8375 8049 7310 7703 6827 6126 6893 7555

F15 8412 8210 8117 8563 9068 7853 6968 6909 6350 7011 7746

F16 8184 8150 8295 8721 8003 6997 7156 6991 6355 6584 7544

Virtual Best 7709 7937 7663 8185 7678 6590 6512 6762 6126 6584 7175

Decomposition-Based Job-Shop Scheduling with Constrained Clustering 175

Among our feature sets for clustering, in preparation of multi-shot optimiza-
tion by ASP, we do not identify any clear winner dominating over all instances.
However, the feature sets F2, F6, F11, F12, F13, F14, and F16 yield sig-
nificant makespan improvements relative to the other alternatives on partic-
ular instances. This means that considering the features RPT, EST, ML, or
WT FIFO , WT MTWR, and WT EST in addition to starting times ST FIFO ,
ST MTWR, and ST EST by greedy algorithms is beneficial, while the particu-
lar combination of features achieving best schedules varies. Moreover, our clus-
tering method for JSP instance decomposition outperforms (multi-shot) pure
ASP optimization, and specific feature sets are ahead of the greedy FIFO and
MTWR algorithms on seven out of ten Taillard’s instances as well as half of
Demirkol’s instances, as indicated by the virtual best clustering results in the
last row of Table 4 and Table 5. Notably, the feature set F6 leads to the shortest
average makespans for our cluster-wise JSP solving approach on both kinds of
instances, comes close to FIFO on Taillard’s and is most robust on Demirkol’s
instances, but the virtual best clustering results still improve significantly. We
thus conclude that the instance decomposition by clustering can empower itera-
tive combinatorial optimization to find better schedules than greedy algorithms
in a short amount of time, where alternative feature sets deserve attention and
trying several of them in parallel seems advisable.

6 Related Work

Data mining approaches [23] have been extensively proposed and applied to
generate dispatching rules [8] for scheduling problems. Unlike combinatorial and
stochastic optimization methods, dispatching rules do not take complete sched-
ules into account, but address the prioritization of operations for making local
allocation decisions by greedy scheduling algorithms. In addition to Earliest
Starting Time (EST), First-In-First-Out (FIFO), and Most Total Work Remain-
ing (MTWR), which we also use for obtaining starting times as features, common
dispatching rules include Last-In-First-Out (LIFO) and policies incorporating
Job Length (JL) in terms of the number of operations as well as further features
like those described in Sect. 3: Operation Position (OP), Processing Time (PT),
Remaining Processing Time (RPT), Time Length of a Job (TLJ), and Machine
Load (ML). While dispatching rules enable an efficient operation allocation, even
under real-time conditions, the quality of their decisions heavily depends on the
problem instances under consideration, where data mining techniques come in to
improve over tedious and ad hoc manual tuning.

The approach of [26] incorporates data mining methods, using OP, PT, RPT,
and ML as features, for generating dispatching rules that approximate opera-
tion priorities found in schedules optimized by means of a genetic algorithm.
On randomly generated test instances of comparably small size, i.e., 36 oper-
ations per instance, the generated dispatching rules were shown to outperform
greedy search with shortest PT as a rigid criterion for making allocation deci-
sions. Genetic algorithms are also utilized in [22] to obtain promising solutions

176 M. M. S. El-Kholany et al.

for JSP instances and extract features to consider for the construction of dis-
patching rules. The specifically generated three-tiered policy comprises shortest
PT, smallest JL, and longest RPT as dispatching criteria in the order of sig-
nificance. Note that such a composite dispatching rule needs to reconstructed
from scratch when new features or problem instances are analyzed, while our
constrained clustering method can readily be applied to different instance or
feature sets, respectively.

Beyond static scheduling, dynamic JSP [19] deals with events, such as the
release of new jobs or sudden machine breakdowns, along with rescheduling or
updating dispatching rules, respectively. In analogy to the static setting, the pro-
cessing approach of [35] applies tabu search to training instances and generates
allocation policies approximating the optimized complete schedules based on fea-
tures like EST, PT, and RPT of operations. Applied in the dynamic JSP setting,
the dispatching rules obtained by means of data mining were shown to yield bet-
ter or comparable performance to rigid allocation strategies from the literature.
A rescheduling approach combining Variable Neighborhood Search (VNS) with
K-Means clustering is presented in [2], where clusters are updated to reconfigure
the VNS on each event. The performance of this combined rescheduling strategy
in the dynamic JSP setting turned out to be better than pure VNS and greedy
algorithms with the FIFO, LIFO, or shortest PT allocation policy.

The integration of dispatching rules generated with data mining techniques
into stochastic optimization in [29] works by running a greedy algorithm called
“assignment procedure” to obtain promising JSP solutions and mine dispatching
rules approximating them. But instead of relying on the dispatching rules alone
for computing optimized schedules or performing efficient operation allocation
on new instances, the high-quality draft solutions from greedy search with the
dispatching rules are taken as inputs to population-based stochastic optimiza-
tion. This metaheuristic optimization was shown to yield improved outcomes
when launched with schedules generated by means of suitable dispatching rules
rather than with a randomly generated initial population.

Similarities of our cluster-wise JSP solving approach to the discussed meth-
ods include that we apply (fixed) dispatching rules to extract the starting times
of operations in corresponding schedules as instance features. Notably, the con-
strained clustering algorithm in Sect. 4 can readily be applied to arbitrary fea-
ture sets for decomposing the operations of JSP instances into balanced time
windows, i.e., our clustering method does not presuppose tuning to specific
instance or feature sets under consideration. The iterative combinatorial opti-
mization by time windows can be viewed as a trade-off between efficient dis-
patching rules, aiming to optimize local allocation decisions by prioritizing oper-
ations, and the stochastic or combinatorial optimization of complete schedules
for problem instances. While instance size and complexity can make the search
for optimal solutions with state-of-the-art solvers for ASP, Mixed Integer Pro-
gramming, or Constraint Programming prohibitive [11,46], successful applica-
tion areas in scheduling include, e.g., industrial printing [5], team-building [33],

Decomposition-Based Job-Shop Scheduling with Constrained Clustering 177

shift design [1], course timetabling [6], lab resource allocation [18], and medical
treatment planning [15].

7 Conclusions

Data mining and machine learning are of wide interest in scientific, business,
and further fields. Our work investigates data mining and clustering methods
to optimize solutions for the Job-shop Scheduling Problem within short solving
times. The idea is to associate clusters of operations with time windows subject
to iterative combinatorial optimization, eventually leading to a complete sched-
ule. In contrast to usual clustering tasks, however, the time windows need to take
the sequence of operations in a job into account, and the number of operations
per cluster should also be balanced for partitioning a given problem instance
into time windows of roughly similar solving complexity. We have thus devised
a novel constrained clustering method that takes both concerns into account for
gathering operations with similar feature values in a consistent and balanced
way. Our experiments show that the decomposition into time windows obtained
by clustering usually leads to significantly improved outcomes of multi-shot ASP
solving in comparison to taking earliest starting times as simple (and consistent)
partitioning criterion. While no single feature set for clustering turns out to be
strictly more successful than greedy search with FIFO or MTWR allocation pol-
icy, schedules of comparable or better quality can be found with some feature set
in the given solving time for most instances. Moreover, the iterative combinato-
rial optimization by time windows helps to increase the robustness of schedules
obtained for different kinds of instances.

While search for optimal solutions is beyond reach due to the size and
complexity of practical scheduling applications, reliably computing high-quality
approximations is an important subject of future work. This includes automatic
methods for deciding about the features to consider for partitioning operations
into clusters, i.e., determining whether an eligible feature is informative or noisy,
respectively. As we can hardly expect that even moderately sized time windows
can be solved to optimality in a short amount of time or eventual optimiza-
tion criteria values be accurately predicted from solutions for sub-problems, it
can still be worthwhile to incorporate measures allowing for corrections of par-
titioning decisions, which could consist of overlapping time windows to enable
revisions or dynamically relaunching the clustering algorithm wrt. computed
partial schedules. Instead of obtaining features by greedy search methods only,
we may also take the outcomes of one or several multi-shot optimization runs
into account as features for another clustering and solving round until a fixpoint
without further improvement is reached. That is, there are various opportunities
to extend our approach in the future, where going beyond the classical Job-shop
Scheduling Problem, e.g., by considering flexible resource allocations or partially
ordered operations, can also be of interest for practical application scenarios.

178 M. M. S. El-Kholany et al.

References

1. Abseher, M., Gebser, M., Musliu, N., Schaub, T., Woltran, S.: Shift design with
answer set programming. Fundam. Inform. 147(1), 1–25 (2016)

2. Adibi, M., Shahrabi, J.: A clustering-based modified variable neighborhood search
algorithm for a dynamic job shop scheduling problem. Int. J. Adv. Manuf. Technol.
70(9–12), 1955–1961 (2014)

3. Al-Ashhab, M., Munshi, S., Oreijah, M., Ghulman, H.: Job shop scheduling using
mixed integer programming. Int. J. Mod. Eng. Res. 7(3), 2:23–2:29 (2017)

4. Baker, K.: Introduction to Sequencing and Scheduling. John Wiley & Sons, New
York (1974)

5. Balduccini, M.: Industrial-size scheduling with ASP+CP. In: Proceedings of the
Eleventh International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’11), pp. 284–296. Springer-Verlag (2011). https://doi.org/10.
1007/978-3-642-20895-9

6. Banbara, M., Inoue, K., Kaufmann, B., Okimoto, T., Schaub, T., Soh, T., Tamura,
N., Wanko, P.: teaspoon: solving the curriculum-based course timetabling problems
with answer set programming. Ann. Oper. Res. 275(1), 3–37 (2019)

7. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimiza-
tion: a methodological tour d’horizon. Eur. J. Oper. Res. 290(2), 405–421 (2021)

8. Blackstone, J., Phillips, D., Hogg, G.: A state-of-the-art survey of dispatching rules
for manufacturing job shop operations. Int. J. Prod. Res. 20(1), 27–45 (1982)

9. Çalis, B., Bulkan, S.: A research survey: review of AI solution strategies of job
shop scheduling problem. J. Intell. Manuf. 26(5), 961–973 (2015)

10. Chaudhry, I., Khan, A.: A research survey: review of flexible job shop scheduling
techniques. Int. Trans. Oper. Res. 23(3), 551–591 (2016)

11. Da Col, G., Teppan, E.C.: Industrial size job shop scheduling tackled by present
day CP solvers. In: Schiex, T., de Givry, S. (eds.) CP 2019. LNCS, vol. 11802, pp.
144–160. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30048-7 9

12. Demirbilek, M., Branke, J., Strauss, A.: Dynamically accepting and scheduling
patients for home healthcare. Health Care Manag. Sci. 22(1), 140–155 (2019)

13. Demirkol, E., Mehta, S., Uzsoy, R.: Benchmarks for shop scheduling problems. Eur.
J. Oper. Res. 109(1), 137–141 (1998)

14. Ding, H., Xu, J.: A unified framework for clustering constrained data without
locality property. Algorithmica 82(4), 808–852 (2020)

15. Dodaro, C., Galatà, G., Grioni, A., Maratea, M., Mochi, M., Porro, I.: An
ASP-based solution to the chemotherapy treatment scheduling problem. The-
ory Pract. Logic Program. First View 1–17 (2021). https://doi.org/10.1017/
S1471068421000363

16. El-Kholany, M., Gebser, M.: Job shop scheduling with multi-shot ASP. In: Proceed-
ings of the Fourth Workshop on Trends and Applications of Answer Set Program-
ming (TAASP2020) (2020). http://www.kr.tuwien.ac.at/events/taasp20/papers/
TAASP 2020 paper 4.pdf

17. Forgy, E.: Cluster analysis of multivariate data: efficiency versus interpretability
of classifications. Biometrics 21, 768–769 (1965)

18. Francescutto, G., Schekotihin, K., El-Kholany, M.: Solving a multi-resource partial-
ordering flexible variant of the job-shop scheduling problem with hybrid ASP.
In: Proceedings of the Seventeenth European Conference on Logics in Artificial
Intelligence (JELIA 2021), pp. 313–328. Springer-Verlag (2021)

https://doi.org/10.1007/978-3-642-20895-9
https://doi.org/10.1007/978-3-642-20895-9
https://doi.org/10.1007/978-3-030-30048-7_9
https://doi.org/10.1017/S1471068421000363
https://doi.org/10.1017/S1471068421000363
http://www.kr.tuwien.ac.at/events/taasp20/papers/TAASP_2020_paper_4.pdf
http://www.kr.tuwien.ac.at/events/taasp20/papers/TAASP_2020_paper_4.pdf

Decomposition-Based Job-Shop Scheduling with Constrained Clustering 179

19. French, S.: Sequencing and Scheduling: An Introduction to the Mathematics of the
Job-shop. John Wiley & Sons, New York (1982)

20. Garey, M., Johnson, D., Sethi, R.: The complexity of Flowshop and Jobshop
scheduling. Math. Oper. Res. 1(2), 117–129 (1976)

21. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with
clingo. Theory Pract. Logic Program. 19(1), 27–82 (2019)

22. Harrath, Y., Chebel-Morello, B., Zerhouni, N.: A genetic algorithm and data min-
ing based meta-heuristic for job shop scheduling problem. In: Proceedings of the
IEEE International Conference on Systems, Man and Cybernetics (SMC 2002).
IEEE (2002)

23. Ismail, R., Othman, Z., Bakar, A.: A production schedule generator framework for
pattern sequential mining. In: Proceedings of the Seventh International Conference
on Computing and Convergence Technology (ICCCT 2012), pp. 784–788. IEEE
(2012)

24. Janakbhai, N., Saurin, M., Patel, M.: Blockchain-based intelligent transportation
system with priority scheduling. In: Data Science and Intelligent Applications, pp.
311–317. Springer-Verlag, Singapore (2021). https://doi.org/10.1007/978-981-15-
4474-3

25. Jones, A., Rabelo, L., Sharawi, A.: Survey of job shop scheduling techniques.
National Institute of Standards and Technology Encyclopedia of Electrical and
Electronics Engineering (1998). https://tsapps.nist.gov/publication/get pdf.cfm?
pub id=821200

26. Koonce, D., Tsai, S.: Using data mining to find patterns in genetic algorithm
solutions to a job shop schedule. Comput. Ind. Eng. 38(3), 361–374 (2000)

27. Lenstra, J., Rinnooy Kan, A.: Computational complexity of discrete optimization
problems. Ann. Discrete Math. 4, 121–140 (1979)

28. Meng, L., Zhang, C., Ren, Y., Zhang, B., Lv, C.: Mixed-integer linear programming
and constraint programming formulations for solving distributed flexible job shop
scheduling problem. Comput. Ind. Eng. 142, Article 106347 (2020)

29. Nasiri, M., Salesi, S., Rahbari, A., Meydani, N., Abdollai, M.: A data mining
approach for population-based methods to solve the JSSP. Soft Comput. 23(21),
11107–11122 (2019)

30. Nouiri, M., Bekrar, A., Jemai, A., Niar, S., Ammari, A.: An effective and dis-
tributed particle swarm optimization algorithm for flexible job-shop scheduling
problem. J. Intell. Manuf. 29(3), 603–615 (2018)

31. Ovacik, I., Uzsoy, R.: Decomposition Methods for Complex Factory Scheduling
Problems. Kluwer Academic Publishers, Boston (1997). https://doi.org/10.1007/
978-1-4615-6329-7

32. Pezzella, F., Morganti, G., Ciaschetti, G.: A genetic algorithm for the flexible job-
shop scheduling problem. Comput. Oper. Res. 35(10), 3202–3212 (2008)

33. Ricca, F., et al.: Team-building with answer set programming in the Gioia-Tauro
seaport. Theory Pract. Logic Program. 12(3), 361–381 (2012)

34. Schoenfelder, J., Bretthauer, K., Wright, D., Coe, E.: Nurse scheduling with quick-
response methods: Improving hospital performance, nurse workload, and patient
experience. Eur. J. Oper. Res. 283(1), 390–403 (2020)

35. Shahzad, A., Mebarki, N.: Discovering dispatching rules for job shop scheduling
problem through data mining. In: Proceedings of the Eighth International
Conference of Modeling and Simulation (MOSIM 2010) (2010). https://www.
academia.edu/3068769/DISCOVERING DISPATCHING RULES FOR JOB
SHOP SCHEDULING PROBLEM THROUGH DATA MINING

https://doi.org/10.1007/978-981-15-4474-3
https://doi.org/10.1007/978-981-15-4474-3
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=821200
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=821200
https://doi.org/10.1007/978-1-4615-6329-7
https://doi.org/10.1007/978-1-4615-6329-7
https://www.academia.edu/3068769/DISCOVERING_DISPATCHING_RULES_FOR_JOB_SHOP_SCHEDULING_PROBLEM_THROUGH_DATA_MINING
https://www.academia.edu/3068769/DISCOVERING_DISPATCHING_RULES_FOR_JOB_SHOP_SCHEDULING_PROBLEM_THROUGH_DATA_MINING
https://www.academia.edu/3068769/DISCOVERING_DISPATCHING_RULES_FOR_JOB_SHOP_SCHEDULING_PROBLEM_THROUGH_DATA_MINING

180 M. M. S. El-Kholany et al.

36. Singer, M.: Decomposition methods for large job shops. Comput. Oper. Res. 28(3),
193–207 (2001)

37. Sotskov, Y., Shakhlevich, N.: NP-hardness of shop-scheduling problems with three
jobs. Discrete Appl. Math. 59(3), 237–266 (1995)

38. Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2),
278–285 (1993)

39. Tassel, P., Gebser, M., Schekotihin, K.: A reinforcement learning environment for
job-shop scheduling. In: Proceedings of the ICAPS 2021 Workshop on Planning
and Reinforcement Learning (PRL 2021) (2021). https://prl-theworkshop.github.
io/prl2021/papers/PRL2021 paper 9.pdf

40. Uzsoy, R., Wang, C.: Performance of decomposition procedures for job shop
scheduling problems with bottleneck machines. Int. J. Prod. Res. 38(6), 1271–1286
(2000)

41. Vaessens, R., Aarts, E., Lenstra, J.: Job shop scheduling by local search. INFORMS
J. Comput. 8(3), 302–317 (1996)

42. Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S.: Constrained k-means clustering
with background knowledge. In: Proceedings of the Eighteenth International Con-
ference on Machine Learning (ICML 2001), pp. 577–584. Morgan Kaufmann, San
Francisco (2001)

43. Wang, H.: Routing and scheduling for a last-mile transportation system. Transp.
Sci. 53(1), 131–147 (2019)

44. Zhai, Y., Liu, C., Chu, W., Guo, R., Liu, C.: A decomposition heuristics based
on multi-bottleneck machines for large-scale job shop scheduling problems. J. Ind.
Eng. Manag. 7(5), 1397–1414 (2014)

45. Zhang, H., Basu, S., Davidson, I.: A framework for deep constrained clustering -
algorithms and advances. In: Brefeld, U., et al. (eds.) ECML PKDD 2019. LNCS
(LNAI), vol. 11906, pp. 57–72. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-46150-8 4

46. Zhang, R., Wu, C.: A hybrid approach to large-scale job shop scheduling. Appl.
Intell. 32(1), 47–59 (2010)

https://prl-theworkshop.github.io/prl2021/papers/PRL2021_paper_9.pdf
https://prl-theworkshop.github.io/prl2021/papers/PRL2021_paper_9.pdf
https://doi.org/10.1007/978-3-030-46150-8_4
https://doi.org/10.1007/978-3-030-46150-8_4

Modeling and Verification of Real-Time
Systems with the Event Calculus

and s(CASP)

Sarat Chandra Varanasi1(B), Joaqúın Arias2, Elmer Salazar1, Fang Li1,
Kinjal Basu1, and Gopal Gupta1

1 The University of Texas at Dallas, Richardson, USA
{sxv153030,ees101020,fang.li,kinjal.basu,gupta}@utdallas.edu

2 CETINIA, Universidad Rey Juan Carlos, Madrid, Spain
joaquin.arias@urjc.es

Abstract. Modeling a cyber-physical system’s requirement specifica-
tions makes it possible to verify its properties w.r.t. the expected behav-
ior. Standard modeling approaches based on automata theory model
these systems at the system architecture level, as they have to explicitly
encode the notion of states and define explicit transitions between these
states. Event Calculus encoding using Answer Set Programming (ASP)
allows for elegant and succinct modeling of these dynamic systems at the
requirements specification level, thanks to the near-zero semantics gap
between the system’s requirement specifications and the Event Calculus
encoding. In this work we propose a framework that uses the EARS nota-
tion to describe the system requirements, and an Event Calculus reasoner
based on s(CASP), a goal-directed Constraint Answer Set Programming
reasoner over the rationals/reals, to directly model these requirements.
We evaluate our proposal by (i) modeling the well-known Train-Gate-
Controller system, a railroad crossing problem, using the EARS notation
and Event Calculus, (ii) translating the specifications into s(CASP), and
(iii) checking safety and liveness of the system.

1 Introduction

Cyber-physical systems are ever increasing in their prominence in our day-to-day
lives. Much research has been published towards modeling and verifying prop-
erties of these systems. Primarily, timed-automata approaches have been stud-
ied and used on industrial scale applications [1,7]. Timed-automata approaches
require an explicit notion of state and transitions between states using clock vari-
ables [2]. Timed automata have also been modeled as constraint logic programs,
where there is little semantic gap between the logic programs and the intended
cyber-physical system that is modeled [10]. Techniques based on co-inductive con-
straint logic programming (Co-CLP) have also been applied in verifying properties
of timed-automata [16,17]. The Co-CLP techniques to study timed systems cul-
minated in the development of Goal-directed Answer Set Programming [6]. More
recently, the well-known Event Calculus (EC) formalism has been used [4] along
c© Springer Nature Switzerland AG 2022
J. Cheney and S. Perri (Eds.): PADL 2022, LNCS 13165, pp. 181–190, 2022.
https://doi.org/10.1007/978-3-030-94479-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94479-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-94479-7_12

182 S. C. Varanasi et al.

with powerful reasoning supported in Answer Set Programming. Additionally, the
work of Arias et al. [3] extends prior work on Co-CLP to support natural reasoning
over hybrid systems, in the language of Event Calculus. Theirs is the first work to
use the s(CASP) system to model Event Calculus along with abductive reasoning
supported in Answer Set Programming. The s(CASP) system has also been used
in knowledge-based methods that analyze faulty requirements in simple avionics
software systems modeled with a single automata [11]. In this paper we model
more complex cyber physical systems that involve multiple automata (for exam-
ple, the well-known Train-Gate-Controller system) in Event Calculus. We start
with the requirements specification written succinctly and concisely in the EARS
notation [14] and model them directly in the Event Calculus. We use the Event
Calculus encoding in Answer Set Programming along with real-time constraints
that can be directly run on the s(CASP) system. Thus, the entire system can be
modeled in s(CASP). Simulation runs can be executed and safety and liveness of
the system automatically checked, with prior knowledge of the physical properties
such as train speed, system response time, and the rate at which the gate rotates.

The Event Calculus encoding in s(CASP) is obtained directly from the
requirements specification written in EARS [14]. The main advantage of this
approach is that design decisions do not “creep” into the encoding. This is
in contrast to automata theoretic approaches (such as those based on timed
automata) where some design decisions have to be made in order to obtain the
timed automata encoding (for example, decisions regarding how to split the sys-
tem into subsystems for each of which an automaton will be designed; what states
and transitions these automata will have, etc.). Thus, verification performed at
the level of timed automata verifies the requirements as rendered in the design
realized in the automata, rather than at the level of requirements specification
itself. In our approach, verification of safety and liveness is performed at the
level of requirements specification. Thus, we can ensure that requirements are
consistent and robust and permit a design that satisfies safety and liveness.

The methods developed in this paper allow us generate simulation runs of the
system as well as check the correctness of its requirements specification. These
experiments allow the user to refine/correct the system requirement specifications.
Errors in specifications are a major source of flaws in software implementations.
The later a defect is discovered in requirements specification, the costlier it is to
fix. Thus, the ability to faithfully model requirements specification of a system can
lead to significant benefits. The main contribution of the paper is the following:

– We show how requirements specification for a cyber-physical system can be
directly modeled in the Event Calculus using ASP. This Event Calculus cod-
ing of requirement specifications can then be directly executed in s(CASP).
The encoding can be used for generating simulation runs and for verification,
for example, of safety and liveness properties.

– Use of the Event Calculus, ASP, and s(CASP) for modeling real-time systems
has been limited to very simple examples. We present the encoding of a
complex system, namely, the canonical Train-Gate-Controller system that
has been widely discussed in the literature [2].

Modeling Realtime Systems with s(CASP) 183

Ubiquitous: always active. The <system name> shall <system response>

State Driven: active as long as the specific state remains true.
WHILE <precondition(s)>, the <system name> shall <system response>

Event Driven: specify how a system must respond when a triggering event occurs.
WHEN <trigger>, the <system name> shall <system response>

Unwanted Behavior: specify the required system response to undesired situations.
IF <trigger>, THEN the <system name> shall <system response>

Complex Behavior: specify requirements for richer system behaviour.
WHILE <precondition(s)>, WHEN <trigger>,

the <system name> shall <system response>

Fig. 1. Generic EARS syntax

2 Background

2.1 Easy Approach to Requirement Syntax (EARS)

The Easy Approach to Requirement Syntax (EARS) [13,14] is a pragmatic
approach to specifying requirements for cyber-physical systems based on using
five structured templates and keywords popular in the avionics industry. Key-
words ‘WHEN’, ‘WHILE’ and ‘IF’-‘THEN’ are used in these templates and
play a major role (see Fig. 1). Studies have shown the use of EARS to reduce
requirements errors while improving requirement quality and readability [14]. For
cyber-physical real-time systems, response times are important, hence formally
budgeting the allocation of time throughout the levels of function & tempo-
ral decomposition are primary concerns. An example requirement specification
in EARS style is given: WHEN the train position reaches 10 feet, the
Train-gate-Controller SHALL trigger gate closure within 1 s.

System response and trigger are typically time constrained events. In Sect. 3
we explain how requirement specifications written in EARS can be directly mod-
eled in Event Calculus.

2.2 Basic Event Calculus (BEC)

Event Calculus (presented at length elsewhere [15]) is a formalism for reasoning
about events and change, of which there are several axiomatizations. In this
paper we use the Basic Event Calculus (BEC) formulated by [18]. There are
three fundamental, mutually related, concepts in EC: events, fluents, and time
points. An event is an action or incident that may occur in the world: for instance,
a person dropping a glass is an event. A fluent is a time-varying property of the
world, such as the altitude of a glass. A time point is an instant in time. Events
may happen at a time point; fluents have a truth value at any time point or over
an interval, and their truth values are subject to change, upon the occurrence
of an event. In addition, fluents may by associated with (continuous) physical
quantities that change over time. For example, rolling a ball on the floor can be

184 S. C. Varanasi et al.

described by two fluents: one fluent that states that the ball itself is rolling, while
another fluent captures movement of the ball in some metric unit, changing at
a certain rate, over time. The event of setting the ball to roll initiates rolling
and also determines the change in position from a starting point. Likewise, the
event of stopping the ball terminates rolling of the ball and the ball is now
stationary in its last position. An EC description consists of a domain narrative
and a universal theory. The domain narrative consists of the causal laws of the
domain, the known events, and the fluent properties, and the universal theory is
a conjunction of EC axioms that encode, for example, the commonsense laws of
inertia. In Sect. 3 we show how EC descriptions can be translated and evaluated
using an EC-reasoner implemented using s(CASP) [5].

2.3 Goal-Directed Answer Set Programming

Our framework relies on Answer Set Programming (ASP) [9] to encode system
requirements. In particular, we use the goal-directed s(CASP) [3] system. The
top-down query-driven execution strategy of s(CASP) has three major advan-
tages w.r.t. traditional ASP system: (a) it does not require to ground the pro-
grams; (b) its execution starts with a query and the evaluation only explores the
parts of the knowledge base relevant to the query. Hence relying on a strategy
not based on grounding, makes s(CASP) scalable for cyber physical domains
using dense real-valued time. Additionally, s(CASP) can output the justification
tree for issued queries and provide an easily visualizable HTML version of the
same tree. The predicates used in the modelling can be mapped to their intended
English language meanings to make the justifications more readable. These jus-
tifications make it possible to understand the behavior of the cyber-physical
system, when its properties hold and when they do not hold.

In Sect. 4 we show that the safety and liveness properties of a CPS can be
checked using s(CASP) queries. The direct mapping of EC Axioms in [5] is
possible due to s(CASP) capability to support continuous time. To the best of
our knowledge, s(CASP) is the only logic programming system that encodes EC
with dense time. This is to be distinguished from grounding-based ASP solvers
that can only reason over discretized time [12].

3 Modeling and Verifying Cyber Physical Systems in EC

The Train-Gate-Controller (TGC) is a cyber-physical system commonly used to
study modeling and verification of properties of such systems [10]. The system
consists of a set of sensors and actuators that automatically open and close
a railway gate upon detecting the arrival or departure of a train. The system
should signal gate closure in a timely fashion.

Let us consider the specifications of the Train-Gate-Controller system
described in [2]:1 The train signals its approach and exit . Events in and
1 We have made some minor (and inconsequential) changes to the Train-Gate-
Controller system to simplify the illustration.

Modeling Realtime Systems with s(CASP) 185

out signal the entry and exit of the train from the gate area. The train should
signal approach at least 2min before entering gate area. This forces the mini-
mum delay between approach and in to be 2min. The maximum delay between
approach and exit is 5min. We make the train’s approach more tangible by
considering actual movement of the train on a track. We set markers for the entry
point and exit point of the gate area. When the trains position hits these points,
then correspondingly, the train has entered or exited the gate area. Therefore,
the minimum 2 min delay is ignored. Further, we consider if the gate is even-
tually closed, ignoring the 5 min delay. We assume that the train changes its
position uniformly at a rate of 10 units per second. The gate area is at position
10. Once the train reaches the gate area, we consider the train being in the
gate area. Initially, the gate is open and is inclined vertically at an angle of zero
degrees. The system should signal the closing of the gate before the train is in
the gate area. The gate also uniformly changes its angle of inclination when it
is in motion. When the gate angle becomes 90◦, the gate is closed and inclined
horizontally.

3.1 Train-Gate-Controller in EARS

In this section we translate the TGC requirements into EARS notation.

R1 WHEN the train reaches a position of 10 units, the system shall signal
the train to be in the gate area

R2 WHEN the train reaches a position of 5 units, the system shall signal
lowering of the gate

R3 WHEN the gate angle reaches vertical angle of 90◦ from below, the system
shall signal gate closure

R4 WHEN the gate angle reaches a vertical angle of 0◦ from above, the system
shall signal the gate to be open

R5 WHEN the train starts leaving the gate area, the system shall signal
raising of the gate

R6 WHEN the train reaches a position of 20 units, the system shall signal
the train to be exiting the gate area

R7 The system shall ensure the gate is closed when the train is passing through
the gate area

R8 The Gate shall be open after train has exited the gate area

3.2 Train-Gate-Requirements in EC Using s(CASP)

We first identify the fluents (sensor triggered) and events (actuator triggered).
For clarity in the code below, fluent & event names have been made more descrip-
tive (e.g., in has been renamed train in).

fluent(passing). % Train is passing through the gate area

fluent(leaving). % Train is leaving form the gate area

fluent(position(X)). % Train is at some position X

186 S. C. Varanasi et al.

fluent(gate_angle(A)). % Gate is vertically inclined with an angle A

fluent(opened). % The gate is completely opened

fluent(closed). % The gate is completely closed

fluent(lowering). % The gate is being lowered

fluent(rising). % The gate is being raised

event(train_in). % The train enters the gate area

event(signal_lower). % The system signals gate lowered

event(signal_raise). % The system signals gate raised

event(gate_close). % The gate closes

event(gate_open). % The gate opens

event(train_exit). % The train exits the gate area

The causal effects of the events in the system follow straightforwardly:

initiates(train_in,passing,T).

initiates(signal_lower,lowering,T).

initiates(gate_close,closed,T).

initiates(train_exit,leaving,T).

initiates(raise,rising,T).

initiates(gate_open,opened,T).

terminates(signal_lower,opened,T).

terminates(gate_close,lowering,T).

terminates(train_exit,passing,T).

terminates(signal_raise,closed,T).

terminates(gate_open,rising,T).

Next, train_speed(S), angle_lower_rate(L), angle_rise_rate(R) denote,
respectively, that the speed of the train is S, the rate at which the gate lowers
is L and rises is R. We now describe the conditions under which various events
happen. The motion of the train itself is modeled as a trajectory. Similarly, the
change in inclination of the gate angle is also modeled as a trajectory, depending
upon whether event(signal_lower) or event(signal_raise) happen. If the
gate is lowering (rising), then the gate inclination steadily decreases (increases)2.

trajectory(started, T1, position(X), T2) :-
train_speed(S), T2 #> T1, X #= (T2 - T1) * S.

1 gate_angle_lower(A, T2) :-
2 happens(signal_lower,T),
3 angle_lower_rate(L),
4 T2 #> T,
5 A #= (T2-T1)*L.

6 gate_angle_rise(A, T2):-
7 happens(signal_raise,T),
8 angle_rise_rate(R),
9 T2 #> T,

10 A #= 90 - (T2-T1)*R.

The events mentioned previously happen when the fluents cross a certain
threshold. For example, we consider train to be in the gate area when it has
reached a position value = 10. Similarly, the system signals lower gate when
the train position crosses value = 5. All transitions in the train position, gate
angle are resolved at a sampling window of 0.1 time unit. That is, the system

2 We treat gate_angle_lower and gate_angle_rise as derived fluents. They can also
be modeled as trajectories.

Modeling Realtime Systems with s(CASP) 187

can detect changes in continuous quantities at a temporal precision of 0.1 time
unit. This is a reasonable assumption to make the system behave realistically.
If we used a temporal precision of 0, then the system can detect instantaneous
changes in continuous values, which is impossible in a real-world system. We
use the infimum on the 0.1 s interval, to signify the precise instance when the
transition of train position or gate angle crosses a threshold. Note that any
arbitrarily small (positive) value can be chosen for this temporal precision.

1 happens(train_in, T) :-
2 holdsAt(position(X1),T1),
3 holdsAt(position(X2),T2),
4 X1 #< 10, X2 #>= 10,
5 sampling_window(W),
6 T2 #< T1 + W, T2 #> T1,
7 infimum(T2, T).
8 happens(signal_lower, T) :-
9 holdsAt(position(X1),T1),

10 holdsAt(position(X2),T2),
11 X1 #< 5, X2 #>= 5,
12 sampling_window(W),
13 T2 #< T1 + W, T2 #> T1,
14 infimum(T2, T).
15 happens(gate_close, T) :-
16 gate_angle_lower(A1,T1),
17 gate_angle_lower(A2,T2),
18 A1 #< 90, A2 #>= 90,
19 sampling_window(W),
20 T2 #< T1 + W, T2 #> T1,
21 infimum(T2, T).

22 happens(gate_open, T) :-
23 gate_angle_rise(A1,T1),
24 gate_angle_rise(A2,T2),
25 A1 #> 0, A2 #=< 0,
26 sampling_window(W),
27 T2 #< T1 + W, T2 #> T1,
28 infimum(T2, T).
29 happens(signal_raise, T) :-
30 holdsAt(passing,T1),
31 holdsAt(leaving,T2),
32 sampling_window(W),
33 T2 #< T1 + W, T2 #> T1,
34 infimum(T2, T).
35 happens(train_exit, T) :-
36 holdsAt(position(X1),T1),
37 holdsAt(position(X2),T2),
38 X1 #< 20, X2 #>= 20,
39 sampling_window(W),
40 T2 #< T1 + W, T2 #> T1,
41 infimum(T2, T).

With the above modeling, we query s(CASP) to check various properties
relative to the train speed and gate angle rotations. We can also ask whether
system is safe, i.e., if when the train is passing through the gate area the gate
is open (or rising): ?- holdsAt(passing, T), holdsAt(open, T). Similarly,
we can check liveness, i.e., if the gate eventually becomes open after becoming
closed: ?- holdsAt(closed, T1) holdsAt(open, T2), T2 #> T1

Note that, we consider only a single train crossing the gate area. The system
is modeled in a way that there is a single track and the train follows the set
trajectory when approaching the gate area. As we describe in Sect. 4, if the gate
lowers too slowly, it will still be lowering when the train has crossed the gate
area. Such scenarios are easily detected in our modeling.

4 Checking Safety and Liveness of Train-Gate-Controller

We present several scenarios using the TGC to reason about the train and the
controller behavior and check whether the system satisfies desired properties.

188 S. C. Varanasi et al.

Note that, requirements R7 and R8 from EARS spec are safety and liveness
checks, respectively.

– Scenario A: (i) train speed is 1 unit per second, (ii) gate angle lower rate is
30 degrees per second and, (iii) gate angle rise rate is 40 degrees per second:
• The query, ?- happens(train_in,T) produces binding T = 11, i.e., the

train enters the gate area at time 11.
• The query, ?- happens(train_exit,T) produces the binding T = 21,

i.e., the train exits the gate area at time 21.
• The query ?- holdsAt(passing,T) yields the binding T #> 11 and
T #=< 21, i.e., it represents the interval (11, 21].

– Scenario B: (i) train speed is 1 unit per second, (ii) gate angle lower rate is
10 degrees per second and, (iii) gate angle rise rate is 40 degrees per second.

– Scenario C: (i) train speed is 1 unit per second, (ii) gate angle lower rate is 30
degrees per second and, (iii) gate angle rise rate is 10 degrees per second.

4.1 Safety and Liveness Queries

Let us check what happens when the train passes through the gate area, we can
check the safety of the system. Thus, we define what it means for the system to
be unsafe: the system is in an unsafe state if the gate is either open, lowering,
or rising when the train is passing through the gate area:

1 unsafe :- holdsAt(passing, T), holdsAt(rising, T).
2 unsafe :- holdsAt(passing, T), holdsAt(opened, T).
3 unsafe :- holdsAt(passing, T), holdsAt(lowering, T).

For the scenario A, the query ?- unsafe yields no models, therefore, the
system is safe w.r.t. the assumed parameters. However, for the scenario B, the
query ?- unsafe produces a model, meaning that the system is unsafe. Similar
to safety, we can check liveness of the system, i.e., if the gate after being closed
at the time of train passing it becomes opened before a threshold Th.

live :- holdsAt(passing,T), holdsAt(closed,T), threshold(Th),
holdsAt(opened,T1), T1 #> T, T1 #< T + Th.

In scenario C, the gate will not be open within 30 s, so if we set the liveness
threshold to 30 s, the query ?- live yields no models.

Table 1 lists the running times, in seconds, for the above queries to the
different scenarios under s(CASP). Running times to check requirements 1
through 6 of TGC are also listed. They are straightforwardly translated into
s(CASP) queries. The evaluation is run on a Quad code Intel(R) Core(TM)
i7-10510U CPU @ 1.80 GHz with 8-GB RAM. In general, running the dis-
cretized versions on the CLINGO ASP system [8] takes a long time at
the grounding stage itself due to the huge size of the grounded program.
We ran the EC encodings of TGC based on F2LP/Clingo [12]. They pro-
duce no results at our timeout value of 40 min. The EC modelling for TGC
can be found using this link: https://github.com/sarat-chandra-varanasi/event-
calculus-scasp/blob/main/train example/trajectory/trajectory.lp

https://github.com/sarat-chandra-varanasi/event-calculus-scasp/blob/main/train_example/trajectory/trajectory.lp
https://github.com/sarat-chandra-varanasi/event-calculus-scasp/blob/main/train_example/trajectory/trajectory.lp

Modeling Realtime Systems with s(CASP) 189

Table 1. Run-time (s) comparison of TGC with 3 scenarios under s(CASP).

Scenario A Scenario B Scenario C

Answer Time Answer Time Answer Time

?- holdsAt(passing, T). (11, 21] 0.241 (11, 21] 0.304 (11, 21] 0.241

?- unsafe. × 2.082 � 1.834 × 2.156

?- live. � 0.641 � 0.607 × 1.972

?- req1. � 0.245 � 0.231 � 0.275

?- req2. � 0.230 � 0.240 � 0.245

?- req3. � 0.259 � 0.265 � 0.245

?- req4. � 0.461 � 0.385 � 0.441

?- req5. � 0.265 � 0.300 � 0.289

?- req6. � 0.240 � 0.258 � 0.249

5 Conclusion and Future Work

We have shown the ease of modeling cyber-physical systems in EC/s(CASP)
and verification of their safety and liveness properties. We intend to apply our
techniques to the Generalized Railroad crossing problem and industrial examples
handled by UPPAAL system [7]. Also, given the EC/s(CASP) description of a
cyber-physical system, one should be able to automatically derive the timed-
automata implementing the system. For instance, given the railroad crossing
system requirements specification, we should be able to synthesize the timed-
automata for the various sub-systems, thereby opening doors to generating an
implementation directly from requirement specifications that satisfies safety and
liveness constraints. This would be a step towards “correct by design” app-
roach to constructing software. In fact, one could go a step further and gener-
ate the EC/s(CASP) code directly from requirements specifications written in
EARS for cyber-physical systems, and then generate an implementation from
that EC/s(CASP) encoding. We leave these explorations for future work.

Acknowledgement. We are grateful to Brendan Hall, Jan Fiedor, and Kevin Driscoll
of Honeywell Aerospace for discussions. Authors gratefully acknowledge support from
NSF grants IIS 1718945, IIS 1910131, IIP 1916206, from Amazon Corp and US DoD,
and MICINN projects RTI2018-095390-B-C33 InEDGEMobility (MCIU/AEI/FEDER,
UE). Views expressed are authors’ own and not of the funding agencies. We also dedicate
this work to the memory of first author’s father, Late Prof. Sitaramaiah Varanasi, who
was passionate about Number Theory and ever so curious about Theoretical Computer
Science.

References

1. Alur, R.: Principles of Cyber-Physical Systems. MIT Press, Cambridge (2015)
2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),

183–235 (1994)

190 S. C. Varanasi et al.

3. Arias, J., Carro, M., Salazar, E., Marple, K., Gupta, G.: Constraint answer set
programming without grounding. In: Theory and Practice of Logic Programming,
vol. 18, no. 3–4, pp. 337–354 (2018). https://doi.org/10.1017/S1471068418000285

4. Arias, J., Chen, Z., Carro, M., Gupta, G.: Modeling and reasoning in event calculus
using goal-directed constraint answer set programming. In: Gabbrielli, M. (ed.)
LOPSTR 2019. LNCS, vol. 12042, pp. 139–155. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45260-5 9

5. Arias, J., Carro, M., Chen, Z., Gupta, G.: Modeling and reasoning in event calculus
using goal-directed constraint answer set programming. In: Theory and Practice of
Logic Programming, pp. 1–30 (2021). https://doi.org/10.1017/S1471068421000156

6. Bansal, A.: Towards next generation logic programming systems. Ph.D. thesis,
Department of Computer Science, University of Texas at Dallas (2007)

7. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 7

8. Gebser, M., et al.: Potassco: the Potsdam answer set solving collection. AI Com-
mun. 24(2), 107–124 (2011). https://doi.org/10.3233/AIC-2011-0491

9. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming.
In: 5th International Conference on Logic Programming, pp. 1070–1080 (1988).
http://www.cse.unsw.edu.au/∼cs4415/2010/resources/stable.pdf

10. Gupta, G., Pontelli, E.: A constraint-based approach for specification and verifi-
cation of real-time systems. In: Proceedings Real-Time Systems Symposium, pp.
230–239. IEEE (1997)

11. Hall, B., et al.: Knowledge-assisted reasoning of model-augmented system require-
ments with event calculus and goal-directed answer set programming. In: Hojjat,
H., Kafle, B. (eds.) Proceedings of the 8th Workshop on Horn Clauses for Verifi-
cation and Synthesis, Virtual, Volume 344 of EPTCS, 28 March 2021, pp. 79–90
(2021). https://doi.org/10.4204/EPTCS.344.6

12. Lee, J., Palla, R.: System f2lp – computing answer sets of first-order formulas. In:
Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS (LNAI), vol. 5753, pp.
515–521. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04238-
6 51

13. Mavin, A., Wilkinson, P.: Big EARS (the return of “easy approach to require-
ments engineering”). In: 2010 18th IEEE International Requirements Engineering
Conference, pp. 277–282. IEEE (2010). https://doi.org/10.1109/RE.2010.39

14. Mavin, A., et al.: Easy approach to requirements syntax (EARS). In: 2009 17th
IEEE International Requirements Engineering Conference, pp. 317–322. IEEE
(2009). https://doi.org/10.1109/RE.2009.9

15. Mueller, E.T.: Commonsense Reasoning: An Event Calculus Based Approach. Mor-
gan Kaufmann, Waltham (2014)

16. Saeedloei, N., Gupta, G.: A logic-based modeling and verification of CPS. SIGBED
Rev. 8(2), 31–34 (2011). https://doi.org/10.1145/2000367.2000374

17. Saeedloei, N., Gupta, G.: Timed definite clause ω-grammars. In: Hermenegildo,
M.V., Schaub, T. (eds.) Technical Communications of the 26th International Con-
ference on Logic Programming, ICLP 2010, Volume 7 of LIPIcs, Edinburgh, Scot-
land, UK, 16–19 July 2010, pp. 212–221 (2010)

18. Shanahan, M.: The event calculus explained. In: Wooldridge, M.J., Veloso, M.
(eds.) Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 409–430. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48317-9 17

https://doi.org/10.1017/S1471068418000285
https://doi.org/10.1007/978-3-030-45260-5_9
https://doi.org/10.1007/978-3-030-45260-5_9
https://doi.org/10.1017/S1471068421000156
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.3233/AIC-2011-0491
http://www.cse.unsw.edu.au/~cs4415/2010/resources/stable.pdf
https://doi.org/10.4204/EPTCS.344.6
https://doi.org/10.1007/978-3-642-04238-6_51
https://doi.org/10.1007/978-3-642-04238-6_51
https://doi.org/10.1109/RE.2010.39
https://doi.org/10.1109/RE.2009.9
https://doi.org/10.1145/2000367.2000374
https://doi.org/10.1007/3-540-48317-9_17

Parallel Declarative Solutions
of Sequencing Problems Using
Multi-valued Decision Diagrams

and GPUs

Fabio Tardivo(B) and Enrico Pontelli

Department of Computer Science, New Mexico State University,
Las Cruces, NM 88003, USA

{ftardivo,epontell}@nmsu.com

Abstract. The resolution of combinatorial optimization problems, espe-
cially in the area concerned with the sequencing of tasks (i.e., referred to
as sequencing problems), is an important challenge. This domain covers
a wide breadth of applications, e.g., expressed as scheduling or routing
problems. Such problems can often be optimally solved using Constraint
Programming techniques; nevertheless, if a “good” solution is needed in
a short amount of time, Constraint Programming techniques may not be
feasible.

This paper explores the opportunities that the transitional semantics
of Multi-valued Decision Diagrams (MDDs) offers in terms of modeling
and efficiency. The paper explores the combination of MDDs with Large
Neighborhood Search (LNS), as an effective local search strategy. The
paper also demonstrates the use of GPU-based parallelism to enhance
efficiency in the exploration of the search space. The paper describes
the integration of these techniques within a solver, focused on a time-
bounded search for high-quality solutions. The solver is evaluated on sev-
eral classes of benchmarks, with positive outcomes in terms of time and
solution quality compared to state-of-the-art constraint-based solvers.

Keywords: Multi-valued Decision Diagram · GPGPU · Local search

1 Introduction

In this work, we focus on solving a class of hard combinatorial problems named
sequencing problems. They require determining the best order for performing
a set of tasks and are common in routing and scheduling applications. These
problems are often solved using Constraint Programming (CP) techniques, but
in applications where a solution is needed in (almost) real-time, or the problem
changes frequently, faster approaches are needed.

This work proposes and implements a fast method to find good quality solu-
tions for sequencing problems. It makes use of the powerful transitional semantic
of Multi-valued Decision Diagrams (MDDs), the exploration capabilities of Large
c© Springer Nature Switzerland AG 2022
J. Cheney and S. Perri (Eds.): PADL 2022, LNCS 13165, pp. 191–207, 2022.
https://doi.org/10.1007/978-3-030-94479-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94479-7_13&domain=pdf
https://doi.org/10.1007/978-3-030-94479-7_13

192 F. Tardivo and E. Pontelli

Neighborhood Search (LNS), and the parallelism offered by the Graphics Process
Units (GPU). The contributions of this paper are the following:

• An original approach that makes use of MDDs to repair the partially
destroyed solutions in an LNS. Unlike traditional approaches that make use of
problem-specific heuristics or generic Constraint Programming, our method
is a generic heuristic algorithm.

• The design and implementation of a solver that performs parallel LNS on
both CPU and GPU. On the contrary to traditional parallel implementations
of LNS, which exploit only the CPU or only the GPU, our solver makes them
cooperate for complementary aspects of the search process.

The rest of the paper is organized as follows. Section 2 gives an introduction
to the techniques integrated into this work, namely Multi-valued Decision Dia-
grams, Large Neighborhood Search, and General-Purpose computing on Graph-
ics Processing Units (GPGPU). Section 3 describes how sequencing problems
can be easily modeled, how the search is performed, and how the implementa-
tion works. Section 4 details the benchmarks we made and analyzes the results.
Section 5 concludes the paper.

2 Background

A sequencing problem of n tasks can be modeled as a Constraint Optimiza-
tion Problem (COP) with n variables x1, . . . , xn. Each variable xi has domain
{0, . . . , n − 1} and represents the position of the i-th task in a possible execu-
tions sequence. Such variables are commonly subject to a number of constraints,
including an allDifferent constraint, to ensure a distinct assignment of items in
the sequencing, and a number of precedence constraints of the form xi < xj .
The problem includes a cost function c : {0, . . . , n − 1}n → R. A solution to the
COP consists of an assignment of values to the variables x1 = v1, . . . , xn = vn

that satisfies all the constraints and minimizes the value of c(v1, . . . , vn). Meta-
heuristics, such as the Large Neighborhood Search, are proven methods to deal
with sequencing problems [12] and Multi-valued Decision Diagrams have recently
emerged as a promising technique to solve such problems [8].

2.1 Multi-valued Decision Diagrams

Binary Decision Diagrams (BDD) are compact representations of boolean func-
tions [1,21]. They gained popularity as a formalism for canonical representations
in the context of verification of logic designs [6]. Not long ago, a generalization
of BDD, called Multi-valued Decision Diagrams (MDDs) found applications in
constraint programming as an effective filtering [2] and propagation [17] tech-
nique. MDDs have been applied to obtain bounds in optimization problems [5]
and in general branch-and-bound algorithms for discrete optimization [4].

MDDs are extensions of BDDs to multiple values. They can be used to com-
pactly represent the solutions of Constraint Satisfaction Problems (CSP). Let
P = (X,D,C) be a CSP such that:

Solutions of Sequencing Problems Using MDDs and GPUs 193

x1 x2 x3 x4

1 2 0 3
2 0 1 3
2 1 0 3
3 0 1 2
3 0 2 1
3 1 0 2

(a) (b)

Fig. 1. Solutions of P represented as table and MDD

X = {x1, x2, x3, x4}
D = {{0, 1, 2, 3}, . . . , {0, 1, 2, 3}}
C = {allDifferent(x1, x2, x3, x4), x1 > x3, x2 < x4}

Its solutions (see Fig. 1a) can be encoded in an MDD with respect to a given
variable ordering. For the order x1, x2, x3, x4 the MDD is illustrated in Fig. 1b.
In the Direct Acyclic Graph (DAG) behind an MDD, we have a root node r
and a terminal node t; an edge represents a feasible value for the corresponding
variable and a path from the root r to a node v represents a partial solution. A
partial solution is an assignments x1 = v1, . . . , xi = vi such that there are values
vi+1, . . . , vn that make x1 = v1, . . . , xi = vi, xi+1 = vi+1, . . . , xn = vn a solution.
It follows that every path from r to the terminal node t represents a solution
and each solution is represented by a path from r to t.

An MDD can be described as a Labeled Transition System (LTS) defined by
the triple (S,Λ,→) where S is a set of states, Λ is a set of labels, and → is a
subset of S × Λ × S. A transition from state s to state s′ with label � is written
s

�→ s′. Let P = (X,D,C) a CSP and M the MDD encoding its solutions for a
fixed variable order x1, . . . , xn, then the LTS corresponding to M is such that:

1. The set of states S is partitioned in n + 1 layers. The first layer L0 contains
a single root state sr without predecessors, and the last layer Ln+1 contains
a single terminal state st without successors.

2. The labels set Λ is defined as the union of the values in the domains
⋃

Di∈D Di.
3. The transition relation → connects only states of adjacent layers Li, Li+1

with labels in the domain of xi+1.
4. For i > 0, a state s ∈ Li is a non-empty set of partial solutions. Such partial

solutions have form x1 = �1, . . . , xi = �i and are defined by the sequences of
i transitions sr

�1→ · · · �i→ s.

194 F. Tardivo and E. Pontelli

5. For i > 0, the states in Li partition the partial solutions of length i by a
equivalence relation ∼ defined as follow. Let p be the partial solution x1 =
v1, . . . , xi = vi and p′ be the partial solution x1 = v′

1, . . . , xi = v′
i, then

p ∼ p′ iff for every solution x1 = v1, . . . , xi = vi, xi+1 = vi+1, . . . , xn = vn,
the assignment x1 = v′

1, . . . , xi = v′
i, xi+1 = vi+1, . . . , xn = vn is a solution

and for every solution x1 = v′
1, . . . , xi = vi,

′ xi+1 = vi+1, . . . , xn = vn, the
assignment x1 = v1, . . . , xi = vi, xi+1 = vi+1, . . . , xn = vn is a solution.

6. A transition s
v→ s′ from Li to Li+1 means that at least one of the partial solu-

tions of s can be extended with the assignment xi+1 = v and such extended
partial solutions are contained in s′. Point 5. entails that s′ is unique, since the
contrary means that a partial solutions of length i + 1 is present in multiple
states of Li+1. This allows us to express the transition relation as a function
t : S × Λ → S ∪ {s∅}. Given a pair state-value (s, v), t returns the state
s′ of extended partial solutions, if present, and the dummy state s∅ without
outgoing edges otherwise.

The abstraction given by an LTS enables the top-down construction of an
MDD illustrated in Algorithm 1. The algorithm is provided with the vari-
ables’ domains D, the root state sr and the transition function t. The output
is an MDD M in the form of a DAG. The construction begins initializing L0

with the root state and proceeds iteratively building the next layer Li using the
function t. In line 7 is calculated a candidate state s′ from a state s ∈ Li−1 and
a value v ∈ Di. Line 8 checks if s′ is a dummy state and in such a case the
iteration is terminated. If s′ is a proper state, line 9 verify its presence in Li

Input: Variables domains D = {D1, D2, . . . }, root state sr, transition function t
Output: An MDD M = (V,E)

1 M = ({sr}, ∅)
2 L0 = {sr}
3 for i = 1 to |D| do
4 Li = ∅
5 foreach s ∈ Li−1 do
6 foreach v ∈ Di do
7 s′ = t(s, v)
8 if s′ �= s∅ then
9 if s′ /∈ Li then

10 Li = Li ∪ {s′}
11 M.V = M.V ∪ {s′}
12 end
13 M.E = M.E ∪ (s, v, s′)
14 end

15 end

16 end

17 end
18 return M

Algorithm 1: Top-down algorithm to construct an MDD

Solutions of Sequencing Problems Using MDDs and GPUs 195

x1 x2 x3 x4 Cost

3 0 2 1 1203
3 1 0 2 2013
3 0 1 2 2103
2 1 0 3 3012
1 2 0 3 3021
2 0 1 3 3102

(a) (b) (c)

Fig. 2. Solutions cost, relaxed MDD, and restricted MDD for P ′

(line 9) and in the negative case s′ is added to Li. The iteration terminate with
the creation of the transaction (s, v, s′) at line 13.

The creation of states that contain only partial solutions is crucial for the
algorithm. Hooker et al. [18] analyze the relationship between Decision Diagrams
and Dynamic Programming (DP), demonstrating that if a problem is solvable
by a DP model, it is possible to define a transition function that does not lead
to infeasible states.

The DAG underlying an MDD can grow exponentially in the number of the
variables and quickly become too expensive to process. This problem can be
contained by limiting the width of the graph [4]. When a layer Li grows too
large, it can be reduced by:

Relaxation This approach heuristically chooses some states Si ⊂ Li and merges
them in a single state sm. For every state s′ ∈ Si, each incoming transition
(s, v, s′) is replaced with a transition ending to new state (s, v, sm). Similarly,
each outgoing transition (s′, v, s) is replaced with a transition starting from
the new state (sm, v, s). It follows that there will be some new paths from sr

to st and such paths are not solutions.
Restriction This approach heuristically chooses some states Si ⊂ Li and deletes

them. For every state s′ ∈ Si, each incoming transition (s, v, s′) is deleted,
and each outgoing (s′, v, s) is deleted too. It follows that there will be fewer
paths from sr to st and so fewer solutions.

The usefulness of relaxed and restricted MDDs is more clear in the context
of optimization problems. Let P ′ the constraint optimization problem derived
from P and the cost function c(·) that maps a partial solution p to an integer as
follows:

c(p) = p[1] + p[2] · 10 + p[3] · 100 + p[4] · 1000

where p[i] = xi when xi is assigned and 0 otherwise (see Fig. 2a). A relaxed
MDD for P ′ of width 2 is illustrated in Fig. 2b. It is built by merging the states

196 F. Tardivo and E. Pontelli

s ∈ Li whose cost is not minimal. The path from sr to st of minimal cost is
2, 0, 1, 1 and despite it not being a solution, its cost of 1102 is still meaningful
as a lower bound of the optimal solution. A restricted MDD for P ′ of width 2
is illustrated in Fig. 2c. It is built by discarding all the states s ∈ Li except the
two with the smaller cost. The path from sr to st of minimal cost is 1, 2, 0, 3,
and its cost of 3021 is meaningful as an upper bound of the optimal solution.

2.2 Large Neighborhood Search

Metaheuristics are high-level problem-independent strategies to develop heuristic
optimization algorithms [33]. They are used to find good-quality solutions to
complicated problems or large instances where the computational time of exact
methods is prohibitive. The field of metaheuristics includes a broad range of
proposals, such as early methods like simulated annealing [19], tabu search [13],
genetic algorithm [14], and more recently ant colony optimization [10], variable
neighborhood search [24], and large neighborhood search [32].

In this work, we are particularly concerned with Large Neighborhood Search
(LNS), which has become one of the most successful paradigms for solving var-
ious routing and scheduling problems [12]. LNS gradually transforms a given
initial solution, by repeatedly destroying and repairing some of its parts (see
Algorithm 2). The destroy method d(·) usually contains some randomness, so
that different parts are destroyed each time. The repair method r(·) must bal-
ance the quality of the repaired solutions and the repairing time, so it is usually
based on some heuristics. The solutions that are obtained by destroying and
repairing a solution s are referred to as the neighborhood of s. The advantage of
LNS is that the neighborhoods can be large, possibly exponential on the size of
the destroyed parts, thus enabling broad navigation of the solution space.

Input: Initial solution si
Output: Better solution sb

1 sb = si
2 sc = si
3 while stopping criterion is not met do
4 st = r(d(sc))
5 if accept(st, sc) then
6 sc = st
7 end
8 if cost(st) < cost(sb) then
9 sb = st

10 end

11 end
12 return sb

Algorithm 2: Large neighborhood search algorithm

Solutions of Sequencing Problems Using MDDs and GPUs 197

Fig. 3. GPU architecture

2.3 GPGPU with CUDA

General-Purpose computing on Graphics Processing Units (GPGPU) is the use
of a Graphics Processing Unit (GPU) to speed up computations traditionally
handled by the Central Processing Unit (CPU). In 2007, NVIDIA introduced the
Compute Unified Device Architecture (CUDA), a general-purpose programming
library and APIs that allow programmers to ignore the underlying graphical
concepts in favor of more high-performance computing concepts [25]. CUDA has
been successfully used to accelerate computations in a variety of fields, such as
physics, bioinformatics, and machine learning [26].

The advantages of GPU come from its architecture. While the CPU is opti-
mized to execute a small number of threads with relatively low latency, the GPU
is optimized to run thousands of them in parallel and achieve better performance
despite the lower speed of the GPU computing units (i.e., high throughput). The
architecture of a GPU (Fig. 3) includes a main memory (DRAM), an L2 cache,
and an array of Streaming Multiprocessors (SM). Each SM contains a small
amount of fast memory, used as L1 cache or scratchpad memory (the Shared
memory), and several CUDA Cores. The CUDA cores in one SM are in charge
of executing groups (referred to as blocks) of threads using a Single Instruction-
Multiple Data model. In case of control flow divergence among the threads within
a block, their execution is serialized.

Designing a CUDA program in blocks of threads guides the programmer in
the parallelization process. The problem has to be divided into coarse subprob-
lems that can be solved independently by blocks of threads, and each subproblem
into finer pieces solvable by the threads within a block.

2.4 Related Works

The literature has explored a number of approaches to parallelize LNS and its
variants. The common idea among all these proposals is the use of parallelism
to concurrently explore different neighborhoods. The work in [28] explores the
combination of LNS with a portfolio method. The portfolio contains different
cost functions, each one with an associated weight. A cost function is selected at
each iteration, with a probability proportional to its weight, and used in different

198 F. Tardivo and E. Pontelli

neighborhoods by multiple threads. The quality of the solutions is then used to
update the weights. The proposal by Ropke [30] explores a generic framework
for Adaptive Large Neighborhood Search [31]. Such variation of LNS consists of
using a pool of destroy and repair methods that are heuristically chosen based
on past success. The implementation uses different threads to explore different
neighborhoods, once the destroy and repair methods are defined. The work in
[16] presents a distributed LNS implementation that uses the Message Passing
Interface (MPI) to parallelize the exploration among a cluster of nodes. The com-
putation is managed by a master node that initially receives a heuristic solution
from each worker node. The master node iteratively selects the best solution
received, broadcasts it to the workers, and updates the best solution when nec-
essary. The workers repeatedly receive a solution, perform an LNS, and return
the solution to the master. The proposal by Campeotto et al. [7] makes use of a
GPU to parallelize LNS. The initial solution is found by performing parallel con-
straint propagation on GPU. After that, the GPU is used to parallelize the LNS.
Another approach to parallelize LNS using GPUs is presented in [3]. The initial
solution is obtained using the GPU to run several instances of a greedy algo-
rithm, each with different parameters. After that, the GPU is used to parallelize
the ALNS.

3 Design and Implementation

3.1 Overview

The overall idea of this work is to use the transitional semantic of MDDs to
improve the efficacy of classical LNS. A partially destroyed solution is repaired
using a restricted MDD of width w. During its construction, we keep the w states
of each layer that contains the partial solutions with better costs. Finally, we
consider the solution with the best cost as the repaired solution.

This approach has two benefits compared to traditional backtracking for
repairing. First, it enables a heuristic cost-driven navigation of the search space,
where the more promising regions are explored early. Second, it can be effec-
tively parallelized and efficiently implemented on GPUs since each transition is
independent of the others.

To obtain an efficient and general system, we relax some definitions presented
in Sect. 2. First, we allow the presence of multiple copies of the same state in the
layers (Algorithm 1 line 9). This is because the time required for the presence
check may overcome the benefits of having more solutions encoded in a restricted
MDD. The resulting structure is a tree, instead of a DAG, with the property
that a state contains only one partial solution. By including it in the state
representation, we do not need to traverse the MDD to find the best solution
since it is stored in one of the states of the last layer. This allows us to perform
the entire construction in a very small amount of memory that fits in the fast
Shared memory of the GPU. The second change that we made is about the
transition function; we allow t to return states made of an assignment that is
not a partial solution. This translates into greater flexibility, where t can range

Solutions of Sequencing Problems Using MDDs and GPUs 199

(a) (b)

Fig. 4. Calculation of the third layer on CPU and on GPU

from a simple function that just describes if and how to create a state given a
state and a value, to a complex function that creates a state only if it contains
a partial solution.

We implement our ideas in a generic solver that can be easily made problem-
specific providing:

• Problem representation,
• State representation,
• Transition function.

Once these elements are integrated, the solver accepts as input instances of the
problem in standard JSON format. After the instance is read, the search for an
initial solution begins. Such search greedily explores the complete MDD of the
problem using the CPU for a fixed amount of time, and the best solution found
becomes the initial solution for the LNS. The LNS explores multiple neighbor-
hoods in parallel using both the CPU and the GPU to find better solutions.
When the allotted time has been exhausted, the best solution found to that
point is returned.

3.2 LNS Parallelization

Effective metaheuristics are designed to balance two opposite components: inten-
sification and diversification. Intensification focuses the search on the region of
the search space surrounding the current best solution. Its purpose is to find
better solutions that are similar to the current one. Diversification spreads the
search on unexplored regions of the search space. Its purpose is to find better
solutions that are genuinely different from the current one.

The proposed solver distributes components of intensification and diversifi-
cation as best suited to the specific features of the CPU and GPU architectures.
The CPU provides higher speed and access to large cache memory; these features
can be used to support the creation of wide MDDs, that consider many values for
each variable (i.e., diversification). On the other hand, a GPU supports massive
parallelism coupled with access to fast (but relatively small) on-chip memory;
these features can be used to build narrow MDDs, with few values for each
variable (i.e., intensification).

Both CPU and GPU use a top-down algorithm to build the MDDs. It differs
from Algorithm 1 only in the fact that we keep a bounded number of states per

200 F. Tardivo and E. Pontelli

Fig. 5. Usage of offload buffer

layer since we are building restricted MDDs. In order to select states, we use
a heuristic based on the cost of the partial solution in such states, discarding
the states with higher costs. States with the same cost are randomly shuffled
to improve diversification. The CPU applies a simple form of parallelism, where
multiple MDDs are built at the same time, each of them in a sequential way. In
detail, each MDD is created by a thread that calculates the states of the next
layer one by one (Fig. 4a). The GPU applies a more complex form of parallelism,
where multiple MDDs are built at the same time, each of them in a parallel way.
Each MDD is created by a block of threads, where the states of the next layer
are concurrently calculated by the block’s threads (Fig. 4b).

The construction of the restricted MDDs is managed by two offload buffers,
one for the CPU and one for the GPU. An offload buffer is defined as a quadruple
o = (r, n, c, t), where r is an array containing the root states, n is an array of
neighborhoods descriptions, c is an array used to store the children of the root
states, and t is an array dedicated to storing the terminal states. During the
computation, each thread/block of the CPU/GPU uses a state from r to build
a restricted MDD according to the corresponding neighborhood, saving in c the
children of the root and in t the terminal state (see Fig. 5). Because we relaxed
some conditions of Sect. 2, there is no guarantee that a terminal state exists or
it is unique. In the first case, we save in t a dummy state s∅, in the second case
we save the state with the best solution.

The initial solution is found by the CPU using a greedy algorithm. It uses a
priority queue Q that sorts states by the cost of their partial solutions, and it is
initialized with the root state of the complete MDD of the problem. The algo-
rithm uses Q to fill the CPU offload buffer r array, and without considering any
neighborhood, calculates c and t. Then, the states in c are pushed into Q while the
states in t are compared with the current best solution. We observed that spending
too much time on this loop rarely gives better solutions and subtracts time to the
LNS. On the other side, investing too little time leads to initial solutions of sensi-
bly lower quality that the LNS has difficulty improving. We empirically determined
that stopping the initial search after 10 s is a valid compromise.

Solutions of Sequencing Problems Using MDDs and GPUs 201

Once the initial search is complete, the LNS starts on both CPU and GPU.
It randomly generates the neighborhood descriptions in n using the current best
solution. After that, it fills the offload buffers’ r arrays with the root state of the
problem and builds the MDDs. Finally, the states in t are compared with the
current best solution. The algorithm stops when a set timeout is reached.

3.3 Implementation Details

The solver (called LNS-MDD) is written in CUDA C++ and designed to be
a generic framework that is made problem-specific using templates [34]. Once
compiled with the problem representation, state representation, and transition
function, LNS-MDD can solve instances of that problem without further adjust-
ments to the data structures or algorithms.

The state representation adopted is based on triples s = (p, c, a). In such
a triple, p encodes the partial solution of the state, c is the cost of the partial
solution, and a is the set of admissible values for extending the partial solution.
The transition function takes advantage of this representation and works as
follows. Given a state s and a value v, the function first checks whether v ∈ a; if
that is the case, the function creates a new state s′ from s, by extending p with
v, removing v from a, and updating c, a according to the problem definition.
Otherwise, t returns a default dummy state s∅.

A neighborhood is described by a pair of lists n = (c, v) such that v stores the
values of the current solution, and c indicates whatever a variable has to be fixed
to the corresponding value in v. The list c is randomly generated depending on a
probability threshold 0 ≤ lns= ≤ 1: a random number 0 ≤ r ≤ 1 is generated for
each variable, if r ≤ lns= then the variable has to be fixed to the corresponding
value in v, otherwise it is free to take any value.

From the GPU perspective, there are two important observations. First,
because the layer Li+1 depends only on Li, it is possible to build a restricted
MDD in a bounded amount of memory. This allows us to calculate the entire
restricted MDD on the fast Shared memory instead of using the high latency
DRAM [35]. The second observation is that each state of Li+1 is calculated using
the same transition function t. This is important because different threads can
calculate different states with minimal serialization.

The amount of parallelism and other aspects of the algorithm can be tuned to
better exploit the available hardware. The following list contains all the param-
eters that can be changed:

wc The width of the MDDs built on the CPU.
mc The number of MDDs built in parallel on the CPU.
wg The width of the MDDs built on the GPU.
mg The number of MDDs built in parallel on the GPU.
lns= The probability threshold used to generate the LNS neighborhoods.

We observed that a good tuning strategy is to start with wc = 500, mg = 8,
wg = 3, mg = 2500 and adjust such values so that each LNS iteration takes
about 1 s on both CPU and GPU.

202 F. Tardivo and E. Pontelli

4 Results and Analysis

We evaluate our solver in a five-way comparison on three benchmarks drawn
from the literature. We compare:

CPU-Only MDD-LNS configured to use only the CPU for the LNS.
CPU-GPU MDD-LNS configured to use both CPU and GPU for the LNS.
Gecode A state-of-the-art constraint solver [11].
Gecode-LNS A Gecode-based implementation of LNS [9].
Yuck A state-of-the-art local-search constraint solver based on simulated anneal-

ing [22].

This selection of systems allows us to contrast the proposed design with and
without the use of a GPU, and against an efficient constraint solver, another
solver using LNS, and a solver using a different local-search technique.

The benchmarks that we use are:

Sequential Ordering Problem (SOP) Let G a weighted directed graph,
vs, ve two of its nodes, and C a set of precedence constraints among nodes.
The sequential ordering problem consists of finding the shorter Hamiltonian
path from vs to ve that satisfies all the precedence constraints in C. The
dataset is from the TSPLib [29] and is a selection of the 9 open instances,
all synthetic, with up to 380 nodes. For Gecode, Gecode-LNS, and Yuck, we
create a MiniZinc model based on the all different global constraint.

Open-Shop Scheduling Problem (OSSP) Let M1, . . . , Mm machines and
J1, . . . , Jn jobs where each job consists of m independent operations. An oper-
ation Oij of the job Jj is processed on machine Mi for an amount of time pij .
Each job is processed by one machine at a time, and each machine process only
one job at a time. The open-shop scheduling problem consists of finding a start
time sij for each operation such that the makespan max1≤i≤m,1≤j≤n(sij+pij)
is minimum. The dataset is from the literature [15] and is a selection of the
10 bigger instances, all synthetic, with 10 jobs and 10 machines. For Gecode,
Gecode-LNS and Yuck, we used the model present in the MiniZinc Benchmark
Suite [23].

Cable Tree Wiring Problem (CTWP) Consider m electric boards with a
total of b couples of plugs that have to be connected with cables by a robot.
Because the presence of a cable can prevent the connection of other plugs,
there are precedences among plugs connections. Such precedences can lead to
situations where the first plug of the pair is connected but the second can not
be immediately connected because other plugs have to be connected first. The
resuming from such interruption is not perfect and there is a chance to fail.
The cable tree wiring problem consists of finding a plugs connection order
that minimizes the failure chance [20]. The dataset is from the authors of the
problem and is a selection of 10 hard instances, 5 real and 5 synthetic, with
up to 100 cables. For Gecode, Gecode-LNS and Yuck, we used the MiniZinc
model provided by the authors of the problem.

Solutions of Sequencing Problems Using MDDs and GPUs 203

These benchmarks give us an insight of how our approach performs on three
classes of problems: routing problems with precedence constraints, scheduling
problems with big search space, and scheduling problems with disjunctive con-
straints.

The comparison focuses on hard instances and small timeouts to simulate
the cases in which a solution is required in real-time [27]. The benchmarks are
performed by running the solvers with 60 s timeout. We solved each instance 10
times and considered the average results.

The CPU-Only configuration is wc = 1000, mc = 16, while the CPU-GPU
version includes wg = 5, mg = 10000. Gecode, Gecode-LNS, and Yuck are con-
figured to use 16 threads. The solvers CPU-Only, CPU-GPU, and Gecode-LNS
randomly generate their neighborhoods in such a way that each variable has 70%
chance to be fixed to the corresponding value in the current solution. Empirical
tests directed us to configure Gecode-LNS and Yuck to stop the exploration of a
neighborhood after visiting 10000 nodes of the search tree. A smaller value leads
to failure in finding an initial solution or prevents exploring the neighborhoods
enough to find better solutions. A bigger value leads to exploring fewer neigh-
borhoods within the timeout and often makes the exploration uselessly looks for
betters solutions. We disabled the Yuck’s pre-solver since it often prevents the
solver to find a solution within the timeout.

The system used in the benchmarks has an Intel Core i7-10700K CPU with
8 cores/16 threads at 3.8 GHz, 32 GB of DDR4 RAM at 3200 MHz, and an
NVIDIA GeForce RTX 3080 GPU with 8704 CUDA cores at 1.7 GHz and 10
GB of GDDR6X RAM. The system runs Ubuntu 20.10 with Linux kernel 5.8,
NVIDIA drivers 465.19, and CUDA 11.3. The versions of the solvers are Gecode
6.3.0 and Yuck 20200923.

4.1 Results

We present the results of the benchmarks in Tables 1, 2, and 3 using three met-
rics. The first is the best solutions average cost, the second is the best solutions
average search time and the third is the optimality gap. This last metric is the
ratio between the best solutions average cost and the best know solution cost.
The smallest gap of each instance is highlighted using a bold font. If a solver is
not able to find a solution within the time limit, then the relative metrics will
be omitted.

4.2 Analysis

In the SOP benchmark, the configuration CPU-Only shows promising perfor-
mance with good solutions for all the instances. Such results are improved in
terms of cost and\or search time when also the GPU is used. Both Gecode
and Gecode-LNS found solutions of cost sensibly higher than MDD-LNS, and
both were not able to provide a solution within the timeout for rbg378a, the
bigger instance in the benchmark. The Gecode-LNS implementation was able
to provide a solution for kro124p.4 on the contrary of Gecode. This is because

204 F. Tardivo and E. Pontelli

Table 1. Benchmark results for the Sequential Ordering Problem

Instance CPU-Only CPU-GPU Gecode Gecode-LNS Yuck

Value Time Gap Value Time Gap Value Time Gap Value Time Gap Value Time Gap

ft70.2 43527 33 1.08 42979 27 1.06 57289 59 1.42 59658 58 1.48 48659 32 1.2

kro124p.1 43176 48 1.1 42767 29 1.08 193677 45 4.91 200941 54 5.1 55170 31 1.4

kro124p.2 47263 52 1.14 46132 36 1.12 183261 55 4.43 199014 44 4.81 62974 28 1.52

kro124p.3 59946 56 1.21 58621 31 1.18 178937 50 3.61 197042 41 3.98 74738 29 1.51

kro124p.4 91427 30 1.2 89898 30 1.18 185794 43 2.44 110738 19 1.46

prob.100 2080 9 1.79 2011 21 1.73 24085 39 20.71 26224 52 22.55 4145 29 3.56

rbg378a 3744 53 1.33 3722 57 1.32 7150 18 2.54

ry48p.2 18652 31 1.12 18301 21 1.1 44638 32 2.68 44377 28 2.66 18326 33 1.1

ry48p.3 21909 32 1.1 21525 20 1.08 46613 55 2.34 47122 26 2.37 22043 39 1.11

Table 2. Benchmark results for the open-shop scheduling problem

Instance CPU-Only CPU-GPU Gecode Gecode-LNS Yuck

Value Time Gap Value Time Gap Value Time Gap Value Time Gap Value Time Gap

gp10-01 1227 43 1.12 1169 32 1.07 1160 60 1.06 1126 46 1.03 5833 56 5.34

gp10-02 1231 40 1.12 1198 22 1.09 1142 58 1.04 1130 20 1.03 5827 56 5.31

gp10-03 1290 42 1.19 1221 34 1.13 1141 53 1.06 1106 32 1.02 5775 56 5.34

gp10-04 1229 31 1.14 1199 28 1.11 1139 2 1.06 1092 11 1.01 5552 58 5.16

gp10-05 1252 49 1.17 1203 31 1.12 1108 2 1.03 1101 33 1.03 5666 55 5.29

gp10-06 1319 21 1.23 1211 31 1.13 1187 10 1.11 1107 41 1.03 5214 52 4.87

gp10-07 1308 33 1.21 1273 35 1.18 1123 58 1.04 1101 20 1.02 5159 52 4.78

gp10-08 1320 3 1.21 1254 19 1.15 1137 1 1.04 1098 10 1 5767 59 5.28

gp10-09 1294 32 1.16 1208 26 1.09 1131 6 1.02 1129 28 1.02 5715 59 5.14

gp10-10 1348 44 1.23 1302 34 1.19 1153 48 1.06 1106 41 1.01 5301 52 4.85

Table 3. Benchmark results for the cable tree wiring problem

InstanceCPU-Only CPU-GPU Gecode Gecode-LNS Yuck

Value TimeGapValue TimeGap Value TimeGapValue TimeGapValue TimeGap

A033 5365579 15 1.04 5211220 19 1.0119173142 2 3.721564833749 3.04

A060 43507543 20 1.08 43110402 19 1.074842892610 1.2 4891803339 1.21

A066 367173030 32 1.08357849770 41 1.05

A069 522718858 28 1.08513712849 36 1.06

A073 324979620 14 1.44322602988 49 1.43

R192 15338688 8 1.23 15113612 13 1.224990047341 4.025079951328 4.095070567755 4.08

R193 10507396 10 1.55 10168835 19 1.5 4767207150 7.034462039058 6.584091090840 6.03

R194 19739047 3 0.82 19736504 11 0.826935042849 2.9 6865077740 2.877088787655 2.96

R195 23121710 20 0.82 22854223 18 0.8163064236 6 2.256384701136 2.276748334750 2.4

R196 18685476 3 1.27 18685476 6 1.276436674843 4.386370411935 4.336847568853 4.66

Gecode-LNS restarts the search process also for the search of an initial solution,
and doing so, it does not get stuck in an unpromising part of the search tree.
Finally, Yuck provided solutions such costs are from slightly to sensibly higher
than MDD-LNS.

In the OSSP benchmark, Gecode provides excellent solutions, improved
to almost optimal in the Gecode-LNS implementation. Such results can be

Solutions of Sequencing Problems Using MDDs and GPUs 205

explained by the optimized model that the solvers use. Such a model contains
a strong formulation based on several global constraints coupled with a specific
search heuristic. The resulting search process is very effective and can rapidly
find high-quality solutions. The generic approach adopted by MDD-LNS pro-
vided good solutions of quality comparable to the solutions provided in the other
benchmarks. Finally, Yuck provided solutions with costs about 5 times bigger
than the solutions provided by the other solvers. Despite it is using the same
model of Gecode and Gecode-LNS, the search effectiveness is largely affected by
the local search heuristic used in place of the specialized one.

In the CTWP benchmark, the configuration CPU-Only shows excellent per-
formance with good solutions for all the instances. Such results are improved
in terms of cost when also the GPU is used. Moreover, MDD-LNS was able to
find better solutions than the know best solutions for the real instances R194,
R195. Both Gecode and Gecode-LNS found solutions of cost sensibly higher than
MDD-LNS, and both were not able to provide a solution within the timeout for
A66, A69, A73, the bigger instances in the benchmark. Finally, Yuck provides
solutions comparable with Gecode\Gecode-LNS for the real instances, but it did
not give solutions for the artificial instances.

5 Conclusions and Future Work

Inspired by the parallelization opportunities opened by the transitional semantic
of Multi-valued Decision Diagrams, we presented the design of a solver that uses
CPU and GPU to solve sequencing problems by Large Neighborhood Search. We
designed it to be a general framework that can be easily made problem-specific.

We tested our implementation on three different benchmarks using random
neighborhoods and focusing on small timeouts to simulate the cases in which a
solution is required in real-time. The experiments confirmed that the synergetic
work of CPU and GPU improves the already good results of the CPU only. On
the contrary to the other solvers, our approach was able to provide a solution for
all the instances within the timeout. Such solutions are consistently good among
the benchmarks and, on average, just 15% more costly than the best known
solutions. For a couple of instances, our approach returned solutions even better
than the best know solutions.

There are many ways to extend and improve this work, such as to further
parallelize the search using a cluster of CPU\GPU, make use of problem-specific
neighborhoods, etc. The one that has our attention is to integrate a learning
mechanism. Two possibilities in such direction are the integration with Monte
Carlo Tree Search and the integration with Reinforcement Learning.

206 F. Tardivo and E. Pontelli

References

1. Akers, S.: Binary decision diagrams. IEEE Trans. Comput. C-27 (1978). https://
doi.org/10.1109/tc.1978.1675141

2. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based
on multivalued decision diagrams. In: Principles and Practice of Constraint Pro-
gramming – CP 2007. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-
74970-7 11

3. Bach, L., Hasle, G., Schulz, C.: Adaptive large neighborhood search on the graph-
ics processing unit. Eur. J. Oper. Res. 275 (2019). https://doi.org/10.1016/j.ejor.
2018.11.035

4. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Discrete optimization
with decision diagrams. INFORMS J. Comput. 28(2016). https://doi.org/10.1287/
ijoc.2015.0648

5. Bergman, D., Ciré, A.A., van Hoeve, W.-J., Hooker, J.N.: Optimization bounds
from binary decision diagrams. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656,
pp. 903–907. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-
7 64

6. Bryant, R.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. C-35 (1986). https://doi.org/10.1109/tc.1986.1676819

7. Campeotto, F., Dovier, A., Fioretto, F., Pontelli, E.: A GPU implementation of
large neighborhood search for solving constraint optimization problems. In: ECAI
(2014). https://doi.org/10.3233/978-1-61499-419-0-189

8. Cire, A.A., van Hoeve, W.J.: Multivalued decision diagrams for sequencing prob-
lems. Oper. Res. 61 (2013). https://doi.org/10.1287/opre.2013.1221

9. Dekker, J.J., de la Banda, M.G., Schutt, A., Stuckey, P.J., Tack, G.: Solver-
independent large neighbourhood search. In: Hooker, J. (ed.) CP 2018. LNCS,
vol. 11008, pp. 81–98. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
98334-9 6

10. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of
cooperating agents. IEEE Trans. Syst. Man Cyber. Part B (Cybernetics) 26 (1996).
https://doi.org/10.1109/3477.484436

11. Gecode team: Gecode, https://www.gecode.org
12. Gendreau, M., Potvin, J.-Y. (eds.): Handbook of Metaheuristics. ISORMS, vol.

272. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91086-4
13. Glover, F.: Future paths for integer programming and links to artificial intelligence.

Comput. Oper. Res. 13 (1986). https://doi.org/10.1016/0305-0548(86)90048-1
14. Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning.

Choice Reviews Online 27 (1989). https://doi.org/10.5860/choice.27-0936
15. Guéret, C., Prins, C.: A new lower bound for the open-shop problem. Ann. Oper.

Res. 92 (1999). https://doi.org/10.1023/A:1018930613891
16. Hifi, M., Negre, S., Saadi, T., Saleh, S., Wu, L.: A parallel large neighborhood

search-based heuristic for the disjunctively constrained knapsack problem. In:
2014 IEEE International Parallel & Distributed Processing Symposium Workshops
(2014). https://doi.org/10.1109/ipdpsw.2014.173

17. Hoda, S., van Hoeve, W.-J., Hooker, J.N.: A systematic approach to MDD-based
constraint programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 266–
280. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15396-9 23

18. Hooker, J.N.: Decision diagrams and dynamic programming. In: Gomes, C., Sell-
mann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 94–110. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38171-3 7

https://doi.org/10.1109/tc.1978.1675141
https://doi.org/10.1109/tc.1978.1675141
https://doi.org/10.1007/978-3-540-74970-7_11
https://doi.org/10.1007/978-3-540-74970-7_11
https://doi.org/10.1016/j.ejor.2018.11.035
https://doi.org/10.1016/j.ejor.2018.11.035
https://doi.org/10.1287/ijoc.2015.0648
https://doi.org/10.1287/ijoc.2015.0648
https://doi.org/10.1007/978-3-319-10428-7_64
https://doi.org/10.1007/978-3-319-10428-7_64
https://doi.org/10.1109/tc.1986.1676819
https://doi.org/10.3233/978-1-61499-419-0-189
https://doi.org/10.1287/opre.2013.1221
https://doi.org/10.1007/978-3-319-98334-9_6
https://doi.org/10.1007/978-3-319-98334-9_6
https://doi.org/10.1109/3477.484436
https://www.gecode.org
https://doi.org/10.1007/978-3-319-91086-4
https://doi.org/10.1016/0305-0548(86)90048-1
https://doi.org/10.5860/choice.27-0936
https://doi.org/10.1023/A:1018930613891
https://doi.org/10.1109/ipdpsw.2014.173
https://doi.org/10.1007/978-3-642-15396-9_23
https://doi.org/10.1007/978-3-642-38171-3_7

Solutions of Sequencing Problems Using MDDs and GPUs 207

19. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220 (1983). https://doi.org/10.1126/science.220.4598.671

20. Koehler, J., et al.: Cable tree wiring - benchmarking solvers on a real-world schedul-
ing problem with a variety of precedence constraints. Constraints 26, 56–106
(2021). https://doi.org/10.1007/s10601-021-09321-w

21. Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell
Syst. Tech.l J. 38 (1959). https://doi.org/10.1002/j.1538-7305.1959.tb01585.x

22. Marte, M.: Yuck. https://github.com/informarte/yuck
23. MiniZinc Team: The minizinc benchmark suite. https://github.com/MiniZinc/

minizinc-benchmarks
24. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res.

24 (1997). https://doi.org/10.1016/s0305-0548(97)00031-2
25. Nvidia Team: CUDA toolkit documentation. https://docs.nvidia.com/cuda/cuda-

c-programming-guide, (Accessed on 04/22/2021)
26. Nvidia Team: GPU accelerated applications. https://www.nvidia.com/en-us/gpu-

accelerated-applications. Accessed 22 Apr 2021
27. O’Neil, R.J., Hoffman, K.: Decision diagrams for solving traveling salesman prob-

lems with pickup and delivery in real time. Oper. Res. Lett. 47 (2019). https://
doi.org/10.1016/j.orl.2019.03.008

28. Perron, L., Shaw, P., Sa, I.: Parallel Large Neighborhood Search. Tech. rep, ILOG
SA (2003)

29. Reinelt, G.: Traveling salesman problem library. http://comopt.ifi.uni-heidelberg.
de/software/TSPLIB95/index.html

30. Røpke, S.: PALNS - a software framework for parallel large neighborhood search.
In: Metaheuristic International Conference (2009)

31. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transp. Sci. 40 (2006). https://
doi.org/10.1287/trsc.1050.0135

32. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp.
417–431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2 30

33. Sörensen, K., Glover, F.W.: Metaheuristics. In: Encyclopedia of Operations
Research and Management Science. Springer, Boston (2013). https://doi.org/10.
1007/978-1-4419-1153-7 1167

34. Tardivo, F.: MDD-lns, https://github.com/95A31/MDD-LNS
35. Wong, H., Papadopoulou, M.M., Sadooghi-Alvandi, M., Moshovos, A.: Demysti-

fying GPU microarchitecture through microbenchmarking. In: 2010 IEEE Inter-
national Symposium on Performance Analysis of Systems & Software (ISPASS)
(2010). https://doi.org/10.1109/ispass.2010.5452013

https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1007/s10601-021-09321-w
https://doi.org/10.1002/j.1538-7305.1959.tb01585.x
https://github.com/informarte/yuck
https://github.com/MiniZinc/minizinc-benchmarks
https://github.com/MiniZinc/minizinc-benchmarks
https://doi.org/10.1016/s0305-0548(97)00031-2
https://docs.nvidia.com/cuda/cuda-c-programming-guide
https://docs.nvidia.com/cuda/cuda-c-programming-guide
https://www.nvidia.com/en-us/gpu-accelerated-applications
https://www.nvidia.com/en-us/gpu-accelerated-applications
https://doi.org/10.1016/j.orl.2019.03.008
https://doi.org/10.1016/j.orl.2019.03.008
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/index.html
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/index.html
https://doi.org/10.1287/trsc.1050.0135
https://doi.org/10.1287/trsc.1050.0135
https://doi.org/10.1007/3-540-49481-2_30
https://doi.org/10.1007/978-1-4419-1153-7_1167
https://doi.org/10.1007/978-1-4419-1153-7_1167
https://github.com/95A31/MDD-LNS
https://doi.org/10.1109/ispass.2010.5452013

Green Application Placement
in the Cloud-IoT Continuum

Stefano Forti(B) and Antonio Brogi

Department of Computer Science, University of Pisa, Pisa, Italy
{stefano.forti,antonio.brogi}@di.unipi.it

Abstract. Green software engineering aims at reducing the environ-
mental impact due to developing, deploying, and managing software
systems. Meanwhile, Cloud-IoT paradigms can contribute to improving
energy and carbon efficiency of application deployments by (i) reducing
the amount of data and the distance they must travel across the network,
(ii) by exploiting idle edge devices to support application deployment. In
this article, we propose a declarative methodology and its Prolog proto-
type for determining placements of application services onto Cloud-IoT
infrastructures so as to optimise energy and carbon efficiency, also con-
sidering different infrastructure power sources and operational costs. The
proposal is assessed over a motivating example.

1 Introduction

The energy demand from Information and Communications Technology (ICT)
could possibly reach 14% of the total worldwide footprint by 2040 [3]. As climate
scientists agree on the urgency of reducing the human impact on the environ-
ment, green software engineering is getting increasing attention as a possible way
to contain ICT energy usage and carbon emissions, through achieving a more sus-
tainable software life-cycle [8]. While much work has focussed on embedding sus-
tainability principles in software design phases, less work has proposed method-
ologies and tools to improve and assess software lifecycle sustainability [21], i.e.
from application testing to deployment and runtime management. Meanwhile,
Cloud-IoT computing paradigms – e.g. Fog, Edge computing [7] – have been pro-
posed to improve on the Quality of Service (QoS) of emerging latency-sensitive
and bandwidth-hungry applications. As highlighted by some authors [18,23],
those paradigms can also represent greener alternatives to the Cloud paradigm
as they can exploit pervasive and possibly idle computational devices closer to
the IoT, thus improving on energy efficiency of those idle resources and reducing
unnecessary data transfer from/to the Cloud.

To achieve the above sustainability goals, it is crucial to place application
services so to meet all their requirements and by determining the best trade-off
between the operation costs of their deployment and the expected energy con-
sumption and carbon emissions, which very much depend on the characteristics
of the target deployment nodes (i.e. energy profile, power sources, power usage
effectiveness). While the problem of placing application services onto Cloud-IoT
c© Springer Nature Switzerland AG 2022
J. Cheney and S. Perri (Eds.): PADL 2022, LNCS 13165, pp. 208–217, 2022.
https://doi.org/10.1007/978-3-030-94479-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94479-7_14&domain=pdf
http://orcid.org/0000-0002-4159-8761
http://orcid.org/0000-0003-2048-2468
https://doi.org/10.1007/978-3-030-94479-7_14

Green Application Placement in the Cloud-IoT Continuum 209

infrastructure to meet their software, hardware, IoT and network requirements
has been extensively studied [5,19], the problem of determining energy- and
carbon-aware placements was only marginally addressed until very recently [1].

In this article, based on our previous work [10,11], we illustrate a declara-
tive programming solution to the problem of determining energy- and carbon-
aware application placements in Cloud-IoT settings, also capable of estimating
operational deployment costs. The methodology of [10,11] permits determin-
ing eligible application placements that meet software, hardware, IoT, latency
and bandwidth requirements. We extend it so as to estimate deployment costs,
energy consumption and carbon emissions of eligible application placements, by
relying on data disclosed on the available Cloud-IoT nodes. Being declarative,
our approach is easy to understand and extend, e.g. by employing alternative
formulas to estimate all of the above. A Prolog open-source prototype, GFogBrain,
is assessed over a motivating example based on lifelike data.

The rest of this article is organised as follows. Section 2 describes the model
and methodology of GFogBrain, while showcasing its functioning over a lifelike
motivating example. Section 3 briefly discusses some closely related work, and
Sect. 4 concludes by pointing to some directions for future work.

2 GFogBrain in Action

In this section, we illustrate GFogBrain’s prototype and methodology by means of
a lifelike motivating example from smart environments [4]. GFogBrain extends our
previous work in the field of context- and QoS-aware placements of Cloud-IoT
applications, to also determine energy- and carbon-aware placements. Particu-
larly, we extend the model prototype of [10] to consider all necessary ingredients
to estimate energy consumption and carbon emissions of running applications,
and operational costs (i.e. due to leasing computational resources to keep appli-
cation services up and running).

Our goal is to support application operators, enabling them to informedly
identify placements that can reduce energy consumption and carbon emissions,
while assessing the impact that being greener could have on the operational costs
of their deployments. In the next paragraphs, we detail our declarative appli-
cation and infrastructure model and the declarative programming methodology
implemented by GFogBrain to achieve such a goal.

Applications Requirements – As in [10], application A made of services S1

. . . Sk is declared as

application(A, [S1, ..., Sk]).

The software, hardware1 and IoT requirements of service S are declared as

service(S, SoftwareReqs, HardwareReqs, IoTReqs).

1 For the sake of simplicity, we represent hardware units as integers as in [10].

210 S. Forti and A. Brogi

Finally, interactions between services S1 and S2 with associated maximum end-
to-end latency and minimum bandwidth requirements are declared as

s2s(S1, S2, MaxLatency, MinBandwidth).

Example 1. The application of Fig. 1 consists of two interacting services – Lights
Driver and ML Optimiser – for optimising ambient lighting in a museum based on
processing real-time video footage. The Lights Driver requires 2 GB and Ubuntu
to run, and to reach out a video-camera and a lights hub. Similarly, ML Optimiser
requires 16 GB of RAM and the availability of Ubuntu, MySQL and Python on
the deployment node, which must also be equipped with a GPU for processing
streamed data. Finally, the interaction from the Lights Driver to the ML Optimiser
requires at least 16 Mbps of available bandwidth and tolerates at most 20 ms
latency. On the other hand, the interaction from the ML Optimiser to the Lights
Driver needs only 0.5 Mbps, with a latency lower than 50 ms. Such an application
can be simply declared as in Fig. 2. ��

Fig. 1. Example application.

application(lightsApp, [mlOptimiser, lightsDriver]).
service(mlOptimiser, [mySQL, python, ubuntu], 16, [gpu]).
service(lightsDriver, [ubuntu], 2, [videocamera, lightshub]).
s2s(mlOptimiser, lightsDriver, 50, 0.5).
s2s(lightsDriver, mlOptimiser, 20, 16).

Fig. 2. Example application declaration.

Infrastructure Capabilities – Complementarily to application service require-
ments, Cloud-IoT nodes can be declared along with their software, free hardware
and IoT capabilities, and with the unit hourly cost for leasing hardware resources:

node(NodeId, SoftwareCapabilities, FreeHW, IoTCapabilities).
cost(NodeId, UnitHWCostPerHour).

Similarly, end-to-end links between nodes N1 and N2 are declared, along with
their FeaturedLatency and FeaturedBandwidth, as in

Green Application Placement in the Cloud-IoT Continuum 211

link(N1, N2, FeaturedLatency, FeaturedBandwidth).

The power usage effectiveness (PUE) associated to a node is the ratio between
the overall energy needed for keeping the node working and the energy that the
node uses for actual computation. For instance, a PUE of 1.5 indicates that for
every 1 kWh spent in computation, another 0.5 kWh is needed for non-IT tasks
(e.g. cooling, lighting, network) that keep the server working. Typical values of
the PUE range between 1.2 and 1.9. Extending the model of [10], we assume
that node operators can disclose information about the total hardware (free and
in use) at each node and the associated PUE as in

totHW(N, TotalHardware). pue(N, PUE).

Node operators can then specify the energy consumption profile of each node
via predicates like

energyProfile(N, Load, EnergyConsumption) :- ...

where EnergyConsumption is obtained in kWh as a, possibly non-linear, function of
the current percentage Load at node N. Existing processors show a baseline energy
consumption even when they are idle, which increases as the node workload
increases [20].

Last, the percentages of the energy mix of each node can be specified as in

energySourceMix(N, [(P1,Source1), ..., (PK,SourceK)]).

where PJ is the percentage of electricity that node N receives from SourceJ.
We finally assume that average CO2 emissions for each source are declared

in a public knowledge base of facts like emissions(Source, Mu), where Mu are the
emissions in kgCO2/kWh for Source, e.g. as those reported in Table 1.

Note that, when energy-related information is not disclosed, GFogBrain easily
allows to employ default data or data taken from public audits such as [14].

Table 1. CO2 emissions per power source [17].

Power source Emissions [kgCO2/kWh]

Gas 0.610

Coal 1.100

On shore wind 0.0097

Off shore wind 0.0165

Solar 0.05

212 S. Forti and A. Brogi

Example 2. Consider the Cloud-IoT infrastructure of Fig. 3 to deploy the appli-
cation of Example 1. Figure 4 epitomises the declaration of the capabilities and
energy information of all three nodes. Due to space limitations, we only show
the declaration of the link between Private Cloud and Access Point.

Note that, for instance, node Private Cloud currently features 128 free hard-
ware units (out of the 150 totally available), each offered for 0.0016 cents per
hour, and that its energy consumption in kWh is given by a function φ(L) of the
current workload L such that φ(w) = 0.1 kWh + 0.01 · log(L) with L ∈ [0, 100].
Besides, Private Cloud is powered by an energy mix coming for 30% from a solar
plant and for 70% from a coal plant, as declared by energySourceMix/2. Last, the
PUE of Private Cloud is 1.9. ��

Fig. 3. Example Cloud-IoT infrastructure.

Fig. 4. Example infrastructure declaration.

Energy-, Carbon- and Cost-Aware Placements – Figure 5 shows2 how
the GFogBrain prototype determines energy- and carbon-aware application place-
2 Due to space limitations, we only show the main predicates of GFogBrain. Full code

is open-sourced at https://github.com/di-unipi-socc/fogbrainx/tree/main/green.

https://github.com/di-unipi-socc/fogbrainx/tree/main/green

Green Application Placement in the Cloud-IoT Continuum 213

ments in Cloud-IoT settings. Predicate placements/2 (lines 1–3) determines all
Placements that satisfy software, hardware, IoT and network QoS requirements
of the application by means of gFogBrain/4, along with the associated hourly
deployment Cost, energy consumption E and carbon emissions C (line 2). The
obtained placements are sorted by increasing estimated carbon footprint, cost,
and energy consumption, considered in this order of priority3 (line 3).

Predicate gFogBrain/4 (lines 4–6) exploits the placement/2 (line 5) and the
allocatedResources/2 (line 6) predicates of [10] (see Appendix A) to determine
a placement that satisfies software, hardware, IoT and network QoS require-
ments of a given application, and the associated hardware and bandwidth in
use, respectively. Then, Energy consumption and Carbon emissions associated to
the placement are computed via the footprint/4 predicate (lines 6, 7–11).

Based on the deployment nodes used by P (line 8), the predicate footprint/4

computes hardware- (line 9) and network-related (line 10) energy consumption
and carbon emissions and sums them, respectively (line 11). GFogBrain employs
an extended version of the model from Kelly et al. [17] to associate an estimate
of energy consumption to a piece of computation running on a given node. The
overall energy Es consumed by service s at node n is computed as

Es = En · PUEn [kWh] (1)

where En is the energy consumption (in kWh) of running s on n excluding non-
IT tasks, and PUEn is the PUE of n. As aforementioned, En is a (non-linear)
function of the current node load. For each node N involved in placement P,
hardwareFootprint/4 (line 9, 12–17) exploits hardwareEnergy/4 (line 14, 18–23)
to first retrieve the node load OldL before placing the services in placement P,
and the associated energy consumption OldE (line 20). Then, it retrieves the
node load NewL after placing the services as per P (line 21), and computes the
associated energy consumption NewE (line 22). The difference between NewE and
OldE, multiplied by the PUE of N, estimates the Energy consumption of P on node
N as per Eq. (1) (line 23).

Based on this, GFogBrain also estimates the associated carbon emissions. To
this end, extending [17], we consider the case in which multiple energy sources
are combined at node n – each with an associated mix percentage p1, . . . , pk
such that

∑
i pi = 1 – producing μ1, . . . , μk emissions, respectively. Predicate

hardwareEmissions/3 (line 15, 24–27) recursively scans the energy mix declared
for node N and computes carbon emissions as

Is = Es ·
∑

i

piμi [kgCO2] (2)

Finally, following the approach of [20], networkFootprint/3 (lines 10, 28–31)
estimates the carbon emissions to transmit traffic flows allocated by P. Transmit-
ting 1 MB of data over the Internet requires around 0.00008 kWh (kWhPerMB/1)
3 By suitably rearranging output tuples, it is possible to prioritise differently among

the estimated metrics. For instance, the order (Cost,E,C,P) at line 2 would give
priority to cost over energy consumption and carbon emissions.

214 S. Forti and A. Brogi

[15] and the average global carbon intensity (averageGCI/1) of electricity is of
475 gCO2/kWh [16]. Then, the network energy consumption EN and carbon
emissions IN for transmitting M MB for one hour can be estimated as

EN = 450 · 0.00008 · M [kWh] and IN = 0.475 · EN [kgCO2] (3)

also considering that 1 Mbit/s = 450 MB/h. Equations (3) are computed at lines
30 and 31 of the code of Fig. 5, respectively.

Fig. 5. Main predicates of GFogBrain.

Green Application Placement in the Cloud-IoT Continuum 215

Example 3. By querying placements(lightsApp,Placements) over the inputs of
Examples 1 and 2, we obtain the two eligible placements for application Light-
sApp listed in Table 2, along with their estimated hourly carbon emissions, energy
consumption, and cost. Based on those and on business considerations, appli-
cation operators can then informedly decide whether to enact P1 or P2. While
P1 saves more than 9% CO2 emissions compared to P2, and consumes 5% less
energy, it incurs in an 11% cost increase (i.e. +0.004 e/h � +3 e/month). It
is also possible to exploit GFogBrain to perform what-if analyses and to possibly
evaluate greener infrastructure operators, thus improving on target metrics. ��

Table 2. Example placement results.

Id Placement Emissions Cost Energy Cons.

P1 on(lightsDriver, edgenode),
on(mlOptimiser, privateCloud)

0.29 kgCO2 0.0356 e/h 0.60 kWh

P2 on(lightsDriver, accesspoint),
on(mlOptimiser, privateCloud)

0.32 kgCO2 0.0316 e/h 0.63 kWh

3 Related Work

Much work targeted the problem of placing multi-service applications in Cloud-
IoT computing scenarios, e.g. as surveyed in [5,19]. Only some works featured
some aspects of energy-awareness but did not consider carbon footprint or relied
on simple linear models for energy consumption (e.g. [2,18,24,26]). To the best
of our knowledge, [1] is the first work including carbon emissions in the trade-
off analyses to determine optimal Cloud-IoT application placements, via mixed
integer linear programming. A limitation of [1] resides in the fact that it only
considers linear energy consumption for infrastructure nodes. On the contrary,
energy consumption is usually a non-linear function of a computational node
load [20,25]. Last, [1] does not consider the possibility to estimate energy con-
sumption based on combined sources, does not account for operational costs
estimates, and requires full knowledge of the physical network topology and
employed routing algorithms, which is not always available in real scenarios.

Focussing on declarative approaches, Casadei et al. [9,22] devised a declara-
tive approach to service coordination based on aggregate computing, managing
opportunistic resources via a hybrid centralised/decentralised solution by rely-
ing on a self-organising peer-to-peer architecture to handle churn and mobility.
We have exploited logic programming to assess the security and trust levels
of application placements [13], and to determine them [10,11] also in Osmotic
computing settings [12]. Finally, we very recently proposed a fully decentralised
solution to write and enforce QoS-aware application management policies writ-
ten in Prolog [6]. None of those declarative solutions, however, considers energy
consumption nor carbon emissions, as GFogBrain does.

216 S. Forti and A. Brogi

4 Concluding Remarks

In this article, we have presented a declarative methodology and its prototype,
GFogBrain, to determine eligible multiservice application placements and to esti-
mate their carbon emissions, energy consumption and operational costs. The
prototype determining application placements that satisfy all software, hard-
ware, IoT, and network QoS constraints, and to informedly decide on the best
trade-off placement considering its estimated impact on the environment and its
deployment operational costs, which oftentimes represent contrasting objectives.

Future work includes extending GFogBrain with continuous reasoning (as
in [10]) and assessing it via simulation or over testbeds, also employing different
formulas to estimate energy consumption and carbon emissions (e.g. considering
deployment duration and workload). Last, we intend to enable placing services
in different flavours, as in Osmotic computing [12], to better meet set targets.

References

1. Aldossary, M., Alharbi, H.A.: Towards a green approach for minimizing carbon
emissions in fog-cloud architecture. IEEE Access 9, 131720–131732 (2021)

2. Barcelo, M., Correa, A., Llorca, J., Tulino, A.M., Vicario, J.L., Morell, A.: IoT-
cloud service optimization in next generation smart environments. IEEE J. Select.
Areas Commun. 34(12), 4077–4090 (2016)

3. Belkhir, L., Elmeligi, A.: Assessing ICT global emissions footprint: trends to 2040
& recommendations. J. Clean. Prod. 177, 448–463 (2018)

4. Bisicchia, G., Forti, S., Brogi, A.: Declarative goal mediation in smart environ-
ments. In: 2021 IEEE International Conference on Smart Computing (SMART-
COMP), pp. 389–391 (2021). https://doi.org/10.1109/SMARTCOMP52413.2021.
00079

5. Brogi, A., Forti, S., Guerrero, C., Lera, I.: How to place your apps in the fog - state
of the art and open challenges. Softw. Pract. Exp. 50(5), 719–740 (2020). https://
doi.org/10.1002/spe.2766

6. Brogi, A., Forti, S., Guerrero, C., Lera, I.: Towards declarative decentralised appli-
cation management in the fog. In: ISSRE Workshops, pp. 223–230 (2020). https://
doi.org/10.1109/ISSREW51248.2020.00077

7. Brogi, A., Forti, S., Ibrahim, A., Rinaldi, L.: Bonsai in the fog: an active learning
lab with fog computing. In: 2018 Third International Conference on Fog and Mobile
Edge Computing (FMEC), pp. 79–86. IEEE (2018)

8. Calero, C., Piattini, M.: Green in software engineering, vol. 3. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-08581-4

9. Casadei, R., Viroli, M.: Coordinating computation at the edge: a decentralized,
self-organizing, spatial approach. In: FMEC 2019, pp. 60–67 (2019). https://doi.
org/10.1109/FMEC.2019.8795355

10. Forti, S., Bisicchia, G., Brogi, A.: Declarative Continuous Reasoning in the Cloud-
IoT Continuum. J. Logic Comput. 19 (2021, in press)

https://doi.org/10.1109/SMARTCOMP52413.2021.00079
https://doi.org/10.1109/SMARTCOMP52413.2021.00079
https://doi.org/10.1002/spe.2766
https://doi.org/10.1002/spe.2766
https://doi.org/10.1109/ISSREW51248.2020.00077
https://doi.org/10.1109/ISSREW51248.2020.00077
https://doi.org/10.1007/978-3-319-08581-4
https://doi.org/10.1109/FMEC.2019.8795355
https://doi.org/10.1109/FMEC.2019.8795355

Green Application Placement in the Cloud-IoT Continuum 217

11. Forti, S., Brogi, A.: Continuous reasoning for managing next-gen distributed appli-
cations. In: Ricca, F., et al. (eds.) Proceedings 36th International Conference on
Logic Programming (Technical Communications), ICLP Technical Communica-
tions 2020, (Technical Communications) UNICAL, Rende (CS), Italy, 18–24th
September 2020. EPTCS, vol. 325, pp. 164–177 (2020). https://doi.org/10.4204/
EPTCS.325.22, https://doi.org/10.4204/EPTCS.325.22

12. Forti, S., Brogi, A.: Declarative osmotic application placement. In: Polyvyanyy, A.,
Rinderle-Ma, S. (eds.) Proceedings of the Advanced Information Systems Engineer-
ing Workshops - CAiSE 2021 International Workshops, Melbourne, VIC, Australia,
June 28 –July 2, 2021, Lecture Notes in Business Information Processing, vol. 423,
pp. 177–190. Springer (2021). https://doi.org/10.1007/978-3-030-79022-6 15

13. Forti, S., Ferrari, G.L., Brogi, A.: Secure cloud-edge deployments, with trust. Fut.
Gener. Comput. Syst. 102, 775–788 (2020). https://doi.org/10.1016/j.future.2019.
08.020

14. Greenpeace: Clicking green. who is winning the race to build a green internet?
(2017)

15. IEA: The carbon footprint of streaming video: fact-checking the headlines.
https://www.iea.org/commentaries/the-carbon-footprint-of-streaming-video-
fact-checking-the-headlines

16. IEA: Global energy & co2 status report 2019. https://www.iea.org/reports/global-
energy-co2-status-report-2019/

17. Kelly, C., Mangina, E., Ruzelli, A.: Putting a Co2 figure on a piece of computation.
In: 11th International Conference on Electrical Power Quality and Utilisation, pp.
1–7 (2011). https://doi.org/10.1109/EPQU.2011.6128960

18. Kopras, B., Idzikowski, F., Chen, W.C., Wang, T.J., Chou, C.T., Bogucka, H.:
Latency-aware virtual network embedding using clusters for green fog computing.
In: 2020 IEEE Globecom Workshops (GC Wkshps, pp. 1–7. IEEE (2020)

19. Mahmud, R., Ramamohanarao, K., Buyya, R.: Application management in fog
computing environments: a taxonomy, review and future directions. ACM Comput.
Surv. 53(4), 1–43(2020)

20. Microsoft: The principles of sustainable software engineering. https://docs.
microsoft.com/en-us/learn/modules/sustainable-software-engineering-overview/

21. Mourão, B.C., Karita, L., do Carmo Machado, I.: Green and sustainable soft-
ware engineering - a systematic mapping study. In: SBQS: Proceedings of the 17th
Brazilian Symposium on Software Quality, ACM (2018)

22. Pianini, D., Casadei, R., Viroli, M., Natali, A.: Partitioned integration and coor-
dination via the self-organising coordination regions pattern. Fut. Gener. Comput.
Syst. 114, 44–68 (2021). https://doi.org/10.1016/j.future.2020.07.032

23. Sarkar, S., Misra, S.: Theoretical modelling of fog computing: a green computing
paradigm to support IPT applications. IET Netw. 5(2), 23–29 (2016)

24. Souza, V.B., Masip-Bruin, X., Maŕın-Tordera, E., Ramı́rez, W., Sánchez, S.:
Towards distributed service allocation in fog-to-cloud (f2c) scenarios. In: 2016 IEEE
Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2016)

25. Xiao, Y., Zhang, Y., Kaku, I., Kang, R., Pan, X.: Electric vehicle routing prob-
lem: A systematic review and a new comprehensive model with nonlinear energy
recharging and consumption. Renew. Sustain. Energy Rev. 151, 111567 (2021)

26. Yu, Y., Bu, X., Yang, K., Wu, Z., Han, Z.: Green large-scale fog computing resource
allocation using joint benders decomposition, Dinkelbach algorithm, ADMM, and
branch-and-bound. IEEE Internet of Things J. 6(3), 4106–4117 (2018)

https://doi.org/10.4204/EPTCS.325.22
https://doi.org/10.4204/EPTCS.325.22
https://doi.org/10.4204/EPTCS.325.22
https://doi.org/10.1007/978-3-030-79022-6_15
https://doi.org/10.1016/j.future.2019.08.020
https://doi.org/10.1016/j.future.2019.08.020
https://www.iea.org/commentaries/the-carbon-footprint-of-streaming-video-fact-checking-the-headlines
https://www.iea.org/commentaries/the-carbon-footprint-of-streaming-video-fact-checking-the-headlines
https://www.iea.org/reports/global-energy-co2-status-report-2019/
https://www.iea.org/reports/global-energy-co2-status-report-2019/
https://doi.org/10.1109/EPQU.2011.6128960
https://docs.microsoft.com/en-us/learn/modules/sustainable-software-engineering-overview/
https://docs.microsoft.com/en-us/learn/modules/sustainable-software-engineering-overview/
https://doi.org/10.1016/j.future.2020.07.032

Author Index

Arias, Joaquín 117, 181
Arici, Ali Can 24

Balduccini, Marcello 3
Basu, Kinjal 181
Bellusci, Pierpaolo 15
Bistarelli, Stefano 101
Brogi, Antonio 208
Burghardt, Tobias 59

Calimeri, Francesco 154
Carro, Manuel 117
Chrpa, Lukáš 42

El-Kholany, Mohammed M. S. 165
Erdem, Esra 24
Evans, Riley 79

Faber, Wolfgang 42
Forti, Stefano 208
Frohlich, Samantha 79

Gebser, Martin 165
Grust, Torsten 59
Gupta, Gopal 117, 181

Hirn, Denis 59

Janhunen, Tomi 135

Leone, Nicola 154
Li, Fang 181

Mazzotta, Giuseppe 15
Meo, Maria Chiara 101
Morak, Michael 42

Ozen, Idil Helin 24

Patoglu, Volkan 24
Pontelli, Enrico 191

Reale, Kristian 154
Ricca, Francesco 15, 154

Sabuncu, Orkunt 24
Salazar, Elmer 181
Schekotihin, Konstantin 165

Tajelipirbazari, Nima 24
Tardivo, Fabio 191
Taticchi, Carlo 101

Varanasi, Sarat Chandra 181

Wang, Meng 79

Yildirimoglu, Cagri Uluc 24

	 Preface
	 Organization
	Abstracts of Invited Talks
	 People, Ideas, and the Path Ahead
	 Declarative Programming and Education
	 Contents

	Invited Talk
	People, Ideas, and the Path Ahead
	1 Introduction
	2 KR Methodology and Practical Applications
	3 Hybrid Declarative Languages for Practical Applications
	4 Intelligent Agents as Thought Partners
	5 Conclusion
	References

	Answer Set Programming
	Modelling the Outlier Detection Problem in ASP(Q)
	1 Introduction
	2 Preliminaries
	3 Outlier Detection
	4 ASP(Q) Encoding
	5 Experiments
	6 Conclusion
	References

	Multi-agent Pick and Delivery with Capacities: Action Planning Vs Path Finding
	1 Introduction
	2 Related Work
	3 MAPDC-P: Solving MAPDC with a Planning Approach
	3.1 MAPDC as a Planning Problem
	3.2 Solving MAPDC-P Using Multi-shot ASP

	4 MAPDC-G: Solving MAPDC with a Path Finding Approach
	4.1 MAPDC as a Graph Problem
	4.2 Solving MAPDC-G Using Multi-shot ASP

	5 Experimental Evaluations
	6 Conclusions
	References

	Determining Action Reversibility in STRIPS Using Answer Set Programming with Quantifiers
	1 Introduction
	2 Background
	3 Reversibility of Actions
	4 ASP(Q) Encodings of Reversibility
	4.1 the plasp Format
	4.2 a Uniform Reversibility Encoding Using ASP(Q)
	4.3 A Non-uniform Reversibility Encoding Using ASP(Q)

	5 Experiments
	6 Conclusions
	References

	Functional Programming
	Functional Programming on Top of SQL Engines
	1 Recursive SQL UDFs: From 1000s of Plans to One Plan
	2 Treating SQL UDFs Like Functions (Not Queries)
	2.1 Transition from SQL to FP
	2.2 From Recursion Towards Iteration: CPS and Defunctionalization
	2.3 Trampolined Style: Single Loop Replaces Mutual Recursion

	3 An Iterative SQL-Based Interpreter for Recursive UDFs
	3.1 Memoizing the Results of Recursive Calls
	3.2 Optimizations: Slimmer/Shorter Working and Union Tables

	4 Experiments: Functional Programming on Top of PostgreSQL
	5 More Related Work
	6 Wrap-Up
	References

	CircuitFlow: A Domain Specific Language for Dataflow Programming
	1 Introduction
	2 CircuitFlow Language
	2.1 DataStores
	2.2 Circuit Type
	2.3 Circuit Constructors
	2.4 CircuitFlow in Action
	2.5 mapC Operator

	3 CircuitFlow Under the Hood
	3.1 Circuit API
	3.2 Network Typeclass
	3.3 The Basic Network Representation
	3.4 Translation to a BasicNetwork

	4 Benchmarks
	5 Discussion and Related Work
	6 Conclusion
	References

	Languages, Methods and Tools
	Timed Concurrent Language for Argumentation: An Interleaving Approach
	1 Introduction
	2 Background
	3 Syntax and Semantics
	4 Modelling a Dialogue
	5 tcla Simulator
	6 Related Work
	7 Conclusion
	References

	Towards Dynamic Consistency Checking in Goal-Directed Predicate Answer Set Programming
	1 Introduction
	2 Background: S(CASP)
	2.1 Execution Procedure of s(CASP)
	2.2 Unsafe Variables and Uninterpreted Function Symbols
	2.3 s(CASP) as a Conservative Extension of ASP
	2.4 The s(CASP) Interpreter

	3 Dynamic Consistency Checking in s(CASP)
	3.1 Motivation
	3.2 Outline of the DCC Approach
	3.3 Implementation of DCC in s(CASP)

	4 Evaluation
	5 Conclusions
	References

	Implementing Stable-Unstable Semantics with ASPTOOLS and Clingo
	1 Introduction
	2 Preliminaries
	2.1 Minimal and Stable Models
	2.2 Stable-Unstable Semantics

	3 Modularity
	4 Translating NLPs into SAT
	5 Saturation
	6 Capturing Stable-Unstable Semantics
	7 Implementation and Practical Modeling
	7.1 Practical Modeling
	7.2 Performance Analysis

	8 Discussion and Conclusion
	References

	Smart Devices and Large Scale Reasoning via ASP: Tools and Applications
	1 Introduction
	2 The DLV-LS System
	3 A Use Case Application of DLV-LS
	4 Conclusion
	References

	Declarative Solutions
	Decomposition-Based Job-Shop Scheduling with Constrained Clustering
	1 Introduction
	2 Job-Shop Scheduling Problem
	3 Feature Extraction
	4 Constrained Clustering Algorithm
	5 Evaluation Results
	6 Related Work
	7 Conclusions
	References

	Modeling and Verification of Real-Time Systems with the Event Calculus and s(CASP)
	1 Introduction
	2 Background
	2.1 Easy Approach to Requirement Syntax (EARS)
	2.2 Basic Event Calculus (BEC)
	2.3 Goal-Directed Answer Set Programming

	3 Modeling and Verifying Cyber Physical Systems in EC
	3.1 Train-Gate-Controller in EARS
	3.2 Train-Gate-Requirements in EC Using s(CASP)

	4 Checking Safety and Liveness of Train-Gate-Controller
	4.1 Safety and Liveness Queries

	5 Conclusion and Future Work
	References

	Parallel Declarative Solutions of Sequencing Problems Using Multi-valued Decision Diagrams and GPUs
	1 Introduction
	2 Background
	2.1 Multi-valued Decision Diagrams
	2.2 Large Neighborhood Search
	2.3 GPGPU with CUDA
	2.4 Related Works

	3 Design and Implementation
	3.1 Overview
	3.2 LNS Parallelization
	3.3 Implementation Details

	4 Results and Analysis
	4.1 Results
	4.2 Analysis

	5 Conclusions and Future Work
	References

	Green Application Placement in the Cloud-IoT Continuum
	1 Introduction
	2 GFogBrain in Action
	3 Related Work
	4 Concluding Remarks
	References

	Author Index

