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Abstract

The Developmental Origins of Health and Disease (DOHaD) hypothesis posits
that the prenatal and early postnatal environments shape the future probability of
physical and mental well-being and risk of disease. A wealth of epidemiologic
data document associations among maternal and infant nutrition, stress, and other
exposures, and risk of chronic disease in later life including cardiovascular
disease, hypertension, type 2 diabetes mellitus, obesity, neuropsychiatric
disorders, and cancer. Extensive data from animal models support the biological
plausibility of the DOHaD hypothesis. While the mechanisms underlying these
observations remain unresolved, the DOHaD model assumes developmental
plasticity, which allows adaptive regulation of embryonic, fetal, and infant
development in response to nutritional and environmental perturbations. Estab-
lishment of epigenetic regulation during embryonic, fetal, and early postnatal life
coincides with vulnerable ontogenic periods and provides a potential mechanism
for long-lasting responses to transient environmental stimuli. In this chapter, we
review recent progress in the epigenetic epidemiology of DOHaD and describe
emerging approaches aimed at elucidating causal links between early environ-
ment, induced epigenetic alterations, and human disease.

Abbreviations

BMI body mass index
CoRSIV correlated region of systemic interindividual (epigenetic) variation
CpG cytosine-guanine dinucleotide
DMR differentially methylated region
DOHaD Developmental Origins of Health and Disease
EWAS epigenome-wide association study
GWAS genome-wide association study
HM450 Illumina human methylation 450 microarray
IAP intracisternal A particle
IGF2 insulin-like growth factor 2
IUGR intrauterine growth retardation
PACE Pregnancy and Childhood Epigenetics consortium
SIV systemic interindividual (epigenetic) variation
SPLS-DA sparse partial least squares discriminate analysis
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6.1 The Developmental Origins of Health and Disease

The search for the origins of chronic disease has shifted the focus toward the earliest
phases of the life course. While classic epidemiology has targeted lifestyle patterns
of adults at various ages, in recent decades the importance of early life for determin-
ing lifelong health has been increasingly recognized. Following the seminal work of
Rose [1], Forsdahl [2], and Barker [3, 4], the period from conception to birth and the
first few years of life are considered critical in influencing disease susceptibility
throughout life. This shift in thinking and research gave birth to the “Developmental
Origins of Health and Disease” (DOHaD) hypothesis.

Epidemiologic studies support the hypothesis that chronic diseases have their
roots in early life. Barker’s work linked low birthweight to a number of cardiovas-
cular diseases (including ischemic heart disease), hypertension, cholesterol levels,
stroke, and impaired glucose tolerance [4–8]. His findings have been confirmed by
other groups in different populations [9–11]. Data from the Dutch Famine in 1944/
45, when food rations dropped below 1000 kcal/day for six months, suggest an
increased risk of obesity among offspring of mothers exposed to the famine during
the first and second trimester [12], glucose intolerance if exposure peaked during late
gestation [13], and schizophrenia if conception occurred during the famine
[14]. Other maternal characteristics such as maternal weight and malnutrition also
increase the risk of coronary heart disease in the offspring [15].

However, there is trouble at both ends of the birthweight spectrum. Like low
birthweight, high birthweight is also associated with adult obesity [16]. Similarly,
women are more likely to become obese in adulthood if their mother was obese prior
to pregnancy and/or had very high or very low gestational weight gain [17]. Further-
more, gestational diabetes (associated with fetal macrosomia) increases the risk of
childhood and adult obesity in the offspring [18]. High birthweight is also associated
with an elevated risk of several cancers. Numerous epidemiologic studies support
the association between high birthweight and increased risk of premenopausal breast
cancer [19, 20]. In addition, high birthweight has been linked to childhood leukemia
[21], childhood brain tumors [22], and testicular cancer [23].

6.2 DOHaD Mechanisms

The fetal origins hypothesis suggests that perturbations at a critical period of
development induce persistent alterations with potentially lifelong consequences.
These epidemiologic observations led Hales and Barker to suggest the “thrifty
phenotype” hypothesis, which proposes that poor fetal nutrition and growth lead
to metabolic reprogramming of glycemic metabolism [24]. This adaptive develop-
mental plasticity allows the fetus to adjust to and survive adverse environments.
According to this model, a limited supply of transplacental nutrients compels the
fetus to channel nutrients to the most vital organs, namely brain and heart, at the
expense of other organs, which may remain underdeveloped and compromised in
growth and function [25]. Moreover, permanent insulin resistance may be induced
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during development and reduce basal metabolic requirements; this permits survival
under suboptimal prenatal and predicted postnatal conditions [26]. Indeed, environ-
mental perturbations may have a long-lasting impact at times of greatest plasticity
during growth and development, while decreasing plasticity with increasing age
allows less adaptation.

The potential benefits of such so-called predictive adaptive responses depend on
the accuracy of the prediction; the cost of inaccurate predictions is high [26]. If
developmental conditions that induce intrauterine growth retardation are followed
by a resource-rich postnatal environment, high plasma glucose levels will coincide
with insulin resistance, greatly increasing the risk for metabolic disease in later life
[26]. This “mismatch” between predicted and actual postnatal environment may
explain profound long-lasting implications for chronic disease among individuals
prenatally exposed to the Dutch Hunger Winter, which lasted only nine months and
was followed by normal nutritional availability [27]. Individual variation in sensi-
tivity to mismatch and consequent disease susceptibility is likely due to a variety of
factors including genetic variation and the degree of developmental plasticity [25].

6.3 Potential Critical Periods for Developmental Epigenetics

The biologic mechanisms underlying the long-term persistence of DOHaD phenom-
ena are not well understood. Developmental plasticity allows a specific genotype to
create alternative phenotypes depending on embryonic, intrauterine, and early post-
natal conditions, which may induce lasting changes in chronic disease susceptibility.
Among the various potential biologic mechanisms underlying developmental plas-
ticity [28], environmental influences on developmental epigenetics are receiving
increasing attention [29]. Epigenetics describes the study of mitotically heritable
alterations in gene expression potential that are not mediated by DNA sequence
alterations [30]. Essentially, epigenetic regulation involves a repertoire of cell-
autonomous molecular modifications that govern selective access to the genetic
information; because these are mitotically heritable, they are perpetuated in
differentiated tissues. The specific molecular mechanisms that function interactively
to heritably regulate chromatin conformation include DNA methylation (which
occurs predominantly at cytosines within cytosine-guanine dinucleotides, i.e., CpG
sites), various modifications of the histone proteins that package DNA in the
nucleus, and autoregulatory DNA binding proteins [31]. The ontogenic periods
during which these mechanisms undergo establishment and maturation suggest
potential critical periods of environmental sensitivity (Fig. 6.1).

Many studies of epigenetics in DOHaD have focused on genomically imprinted
genes. Genomic imprinting is the epigenetic silencing of either the maternal or
paternal allele of specific genes by DNA methylation, leading to parent-of-origin-
specific expression. Loss of imprinting results in the aberrant biallelic expression of
an imprinted gene. Loss of imprinting of fetal growth genes, in particular that
encoding insulin-like growth factor 2 (IGF2), has been associated with childhood
disorders such as Beckwith–Wiedemann syndrome [32, 33], Silver–Russell
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syndrome [34], and Wilms’ tumor [35, 36], as well as with adult-onset diseases
[37, 38]. In humans, approximately 100 imprinted genes have been identified. Since
most imprinted genes play a role in intrauterine and early life growth, they have long
been proposed as good candidates to translate early nutritional and environmental
influences into fetal development [29]. Whether epigenetic regulation at imprinted
genes is particularly susceptible to early developmental influences remains unre-
solved [39, 40].

Importantly, the epigenome is established at crucial developmental time points
that coincide with vulnerable periods of adaptive plasticity. In the mouse model,
each generation undergoes two waves of epigenomic reprogramming. As part of
gametogenesis during mid-gestation development, primordial germ cells differenti-
ate into oocyte and sperm [41], assuming distinct epigenomic profiles markedly
different from those of somatic tissues. Then, after fertilization, the non-imprinted
gene regions in the zygotic genome undergo another round of epigenetic
reprogramming that restores totipotency. Genome-wide de novo methylation in the
preimplantation embryo [42–45] permits cell fate commitment of the first cell
lineages (discussed in more detail in Chap. 5). These dramatic waves of epigenetic
reprogramming make mid-gestation and early embryonic development likely critical
periods during which nutritional, environmental, and metabolic factors may affect
the developmental establishment of epigenetic regulation in the gametes and somatic
tissues, respectively.

As a first step toward understanding the role of epigenetic mechanisms in
DOHaD, defining the window of susceptibility is crucial. In the mouse, for example,
de novo methylation occurs at different times for imprinted and non-imprinted genes
and in the developing female and male germline [43] (discussed in more detail in
Chap. 5). The DNA methylation signature of non-imprinted genes may be most
amenable to environmental stimuli just prior to implantation, when the totipotent
blastocyst, largely stripped of genomic methylation, undergoes lineage-specific

Stochastic
Variation

Environmental
Influences

Age

Genetic & 
Epigenetic 
Inheritance

Fig. 6.1 Sources of interindividual variation in the epigenome. Environmental influences on the
epigenome are likely most important during establishment of the epigenetic marks in prenatal and
early postnatal development. [Reprinted with permission from R. A. Waterland and K. B. Michels:
Annu Rev Nutr 27:363–388, 2007 [31]]
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remethylation during cellular differentiation. Nutritional and metabolic factors
affecting the blastocyst during the early part of the first trimester therefore have
great potential to augment or impair the introduction of cytosine methylation. The
timing of remethylation of imprinted genes is less clear. By extrapolation from the
mouse model, cytosine methylation of the differentially methylated regions (DMRs)
of one of the two parental chromosomes is established at different time points for
different imprinted genes [46–48]. In the mouse, maternal imprints are established at
some point between oocyte development and ovulation [48], and paternal imprints
are completed by the time spermatocytes enter meiosis [49]. Whether the establish-
ment of imprinting marks is similar in humans remains to be established.

Periconceptional environmental stressors may yield downstream epigenetic
effects in multiple tissues if induced epimutations are maintained during subsequent
differentiation; perturbations during late gestation, on the other hand, are more likely
to induce cell type-specific epigenetic changes [31]. Further, epigenetic development
is not limited to prenatal life; for example, the early postnatal period appears to be a
critical period for establishment of DNA methylation in the brain [50].

We have previously proposed two mechanisms to explain environmental
influences on the developmental establishment of DNA methylation [31]. First, an
imbalance in dietary methyl donors and/or activity of DNA methyltransferases may
induce hyper- or hypomethylation. While most transposable elements in the mam-
malian genome are silenced by CpG methylation [51, 52], some are metastable and
can also affect expression of neighboring genes [53]. Such metastable epialleles
show large interindividual differences in DNA methylation and gene regulation—
even among isogenic individuals—and appear particularly labile in response to
environmental stimuli during developmental establishment of the epigenome.

Second, nutritional or environmental stimuli may alter transcriptional activity
during periods of de novo DNA methylation, which may permanently alter epige-
netic regulation and corresponding phenotypes. Genes actively transcribed during de
novo methylation are protected from methylation and remain hypomethylated
[54]. Interference with active transcription renders these promoters susceptible to
de novo hypermethylation and alters their function [55].

The placenta’s critical role in nutrient transfer from mother to fetus makes it
particularly vulnerable to adverse intrauterine conditions. Whereas induced epige-
netic changes in the soma persist to influence later phenotype, maternal nutrition
may also induce epigenetic changes in the placenta, affecting nutrient transport and
fetal growth [25]. Imprinted genes are highly expressed in the placenta, which may
make them vulnerable to variation in maternal nutrition [56, 57].

6.4 First Clues from the Agouti Mouse

Seminal experiments in the agouti viable yellow (Avy) mouse model support the idea
that maternal nutrition can induce developmental programming via epigenetic
mechanisms [58]. The agouti gene codes for yellow pigment in fur. Transposition
of an IAP retrotransposon upstream of agouti resulted in the Avymetastable epiallele.
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DNA methylation of the retrotransposon exhibits spontaneous interindividual varia-
tion, controlling expression of the agouti gene and therefore the coat color of the
animal. Moreover, supplementation of mouse dams during pregnancy with the
dietary methyl donors and cofactors folic acid, vitamin B12, betaine, and choline
shifts the coat color distribution of the offspring from yellow to brown [29, 59]. This
was shown to occur by induced hypermethylation at the Avy locus [58] systemically
and permanently reducing expression of agouti.

Similarly, supplementation of the dams with the phytoestrogen genistein results
in an analogous coat color shift also mediated through Avy hypermethylation
[60]. Maternal methyl donor supplementation studies in another murine metastable
epiallele model, the axin fused mouse, corroborated the findings in the Avy model
[61], indicating that epigenetic regulation at metastable epialleles is generally sus-
ceptible to early environmental influences. Putative metastable epialleles are now
being identified in humans [62]; as in the mouse models, these human loci show
dramatic and systemic interindividual epigenetic variation that is influenced by
maternal nutrition around the time of conception [63].

6.5 Epigenetic Epidemiology of DOHaD

Over the past two decades, numerous epidemiologic studies have been performed to
explore the role of epigenetics in DOHaD. Within the epigenetic toolbox, DNA
methylation is the most likely candidate to explain DOHaD observations due to its
relative stability over time; furthermore, it is easiest to study due to its persistence
within stored samples. Within the framework of DOHaD, epigenetic studies have
addressed either the link between perinatal exposures and DNA methylation at
various timepoints throughout life or the link between DNA methylation in early
life and later health outcomes [64]. Studies exploring DNA methylation as a media-
tor connecting early life exposures and later life disease have been sparse [64]. In the
following, we highlight some of the studies of particular interest.

Associations between prenatal and early life exposures and DNA methylation are
being extensively examined by the Pregnancy and Childhood Epigenetics (PACE)
consortium [65] as well as other groups. The best-established association is between
maternal smoking during pregnancy and DNA methylation in the offspring cord
blood, with a consistent change across most studies found in a CpG in the AHRR
gene [66]. Four other CpGs that were changed in cord blood also showed changes in
the placenta in a subset of these cohorts that had also collected placenta tissue
[67]. In another PACE meta-analysis including 9340 mother–newborn dyads, both
very high and very low maternal pre-pregnancy body mass index were linked to
several small DNA methylation differences (<0.2% per BMI unit) in cord blood
[68]. Interestingly, maternal alcohol consumption was not found to be associated
with offspring cord blood methylation [69]. The PACE consortium and other cohorts
have also linked preeclampsia and gestational diabetes to cord blood and placental
DNA methylation [70–73].
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Maternal self-reported high folic acid supplementation (defined as an average
1200 μg/day or more) was associated with 2.4% lower methylation at the H19
differentially methylated region (DMR) in umbilical cord blood leukocytes if
initiated before pregnancy and 3.7% less methylation at that locus if initiated during
pregnancy, compared to mothers not reporting supplementation; no difference was
found for the IGF2 DMR0 [74]. A study from the Netherlands reported 4% higher
methylation at one CpG of IGF2 DMR0 in the blood of 17-month-old children
whose mothers reported taking 400 μg folic acid during pregnancy compared to
those whose mothers took no folic acid supplements; however, IGF2 expression
levels were not examined [75]. Maternal plasma folate levels during pregnancy were
associated with DNA methylation in the cord blood of 1988 newborns [76].

In addition to smoking and folic acid supplementation, studies have linked other
intrauterine exposures to DNA methylation in adulthood. Data on survivors of the
Dutch Famine suggest that, compared to their unexposed siblings, individuals
prenatally exposed to famine had somewhat lower DNA methylation at IGF2 six
decades later [77]. In this study of 60 same-sex sibling pairs, the authors examined
five CpGs in the IGF2 DMR0 and found, on average, 2.7% lower methylation
among individuals exposed to famine in utero. Whether this small difference in
methylation has any functional consequence remains unclear, in particular since the
authors did not examine IGF2 expression levels. Methylation differences of even
smaller magnitude were observed for some other genes including IL10, GNASAS,
INSIGF, LEP, and MEG3 [78]. The association between an epigenetic difference
assessed in adulthood and a prenatal exposure does not allow causal inference about
the induction of that change by the prenatal factor, unless the change is already
present directly after the exposure period [28, 31]. Of course, collecting appropriate
samples in humans to test such causal pathways is logistically challenging.

Studies on DNA methylation in cord blood or placenta have considered several
aspects of weight. A number of studies linked DNA methylation with birthweight
with varying results [79–82]; in any event, changes observed did not persist to
adulthood. The PACE meta-analyses of EWAS including 8825 neonates from
24 birth cohorts found birthweight associated with DNA methylation in neonatal
blood at 914 sites, with a difference in birthweight ranging from �183 to +178
grams per 10% increase in methylation levels [83]. Some studies specifically
explored the epigenetic profile of newborns with low birthweight or intrauterine
growth retardation (IUGR). Einstein and colleagues compared cord blood samples
from five IUGR and five normal pregnancies and identified methylation differences
at a restricted number of loci [84]. A few small studies identified differences in
methylation or expression of selected imprinted genes in the placenta and cord blood
of IUGR or low birthweight compared to normal-weight infants [85–88] and in
selected non-imprinted genes [89–91]. Conversely, high birthweight has been
associated with increased promoter methylation of the glucocorticoid receptor
gene in human placenta [84–88, 92]. Overall, differences in methylation in these
studies were small, and it remains unclear whether DNA methylation changes are a
cause or consequence of aberrant birthweight. Studies on childhood weight
suggested an association between changes in newborn methylation of the RXRA
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gene and the promoter or the long noncoding RNA ANRIL with childhood adiposity
[93, 94]. CpG methylation of 68 CpGs in five candidate genes was assessed in
umbilical cord tissue from healthy neonates in two prospective cohorts [93]; DNA
methylation of one CpG was consistently associated with adiposity at the age of 9 in
both cohorts.

In another childhood obesity study applying an array-based genome-scale screen
to neonatal blood screening cards, although no statistically significant site emerged
comparing the lowest and the highest BMI quartile at age 5, 13 CpG sites showed
a > 5% difference in in DNA methylation levels [95]. All 13 were located in close
proximity to the nc886 gene. This gene, which encodes a small non-coding RNA,
shows polymorphic imprinting in neonatal blood which appears to be modifiable by
maternal age and nutrition status during pregnancy [40]. Methylation of the differ-
entially methylated region nc886 may operate as a mediator between maternal
characteristics and childhood outcomes, although a study demonstrating this link
directly remains to be conducted.

Few studies have directly evaluated DNA methylation as a mediator between
perinatal exposures and subsequent health outcomes. Cardenas et al. examined
whether DNA methylation changes may mediate the association between intrauter-
ine exposure to mercury and lower cognitive performance in childhood [96]. In
newborn cord blood of 321 children, they found prenatal mercury levels were
associated with lower DNA methylation at the paraoxonase 1 gene, which predicted
lower regional cognitive test scores during early childhood. DNA methylation levels
at this site, however, were attenuated in blood samples collected in mid-childhood,
arguing against direct mediation.

Recently, focus has shifted to studies at the interface between epigenetics and the
microbiome to explain DOHaD effect persistence [97]. Similar to epigenetic marks,
the gut microbiome is established at birth, but remains malleable to a certain extent
by lifestyle factors. The gut microbiome can influence DNA methylation and the
activity of DNA methyltransferases and histone deacetylases, although the direction
of this crosstalk is not always clear [98–101]. Bacterial metabolites, in particular
short chain fatty acids, can function as HDAC inhibitors [102] and correlate with
DNA methylation [103].

In summary, epigenetic mechanisms are likely candidates to explain at least some
DOHaD phenomena. Nevertheless, despite a recent proliferation of studies in this
area, it remains unclear whether the mostly small differences in DNA methylation at
birth associated with intrauterine exposures have functional relevance and are
maintained into adulthood. Whether the embryonic, intrauterine, and early postnatal
environments affect adult disease susceptibility in humans via induced epigenetic
alterations remains to be established. Although challenging, longitudinal cohorts
assessing links between the periconceptional, pregnancy, and infant environment
with adult health and disease status (including measurements of DNA methylation
and potentially the gut microbiome at birth and throughout life) are needed to shed
more light on these questions. Due to both their malleability by early nutrition and
other lifestyle factors, and their noted long-term stability once established, DNA
methylation and the gut microbiome hold promise for life-course prevention efforts.
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6.6 Challenges for Epigenetic Epidemiology in DOHaD

In 2003 the International HapMap Project set out to identify common sequence
variants in the human genome [104]. This “toolbox” enabled large-scale studies to
test for associations between these variants and human diseases and phenotypes,
heralding the dawn of the genome-wide association study (GWAS) era. In the past
two decades, GWASs have identified an impressive and growing number of disease
risk-associated genetic variants. Despite this success, however, the majority of
individual variance in disease risk remains unexplained, contributing to increased
interest in the idea that epigenetic variation could influence the etiology of disease
[105–108] and leading to the development of so-called epigenome-wide association
studies (EWAS) [109].

But the epigeneticists skipped a crucial step: no “epiHapMap” project was
conducted. Rather, the overwhelming majority of the hundreds of “EWAS” studies
in the literature employ DNA methylation arrays produced by Illumina (most
notably the HM450 and more recently the EPIC850 array). Inexplicably, interindi-
vidual variation in DNA methylation was never considered in the design of the
Illumina arrays [110, 111]. In fact, most of the probes on these arrays show negligi-
ble interindividual variation [112, 113]. A study evaluating the HM450 array in
blood, using 256 technical replicates from 130 participants, showed that fewer than
half of the CpG sites demonstrated greater interindividual variation than the variation
due to technical errors [114]. Another study showed that the power of EWASs could
be improved by focusing on the minority of CpG sites with substantial interindivid-
ual variation in DNA methylation [115]. A more recent study reported that in
peripheral blood DNA, the greatest source of variation at most HM450 probes is
intra-individual variability (most likely from variation in leukocyte composition)
rather than interindividual variation [116]. The upgrade from the HM450 to the EPIC
array in 2016 has not substantially improved the situation. Between HM450 and
EPIC arrays, about 55% of the CpG sites show a correlation <0.20, due to low
interindividual variability [117]. A recent study that used the EPIC array to examine
test-retest reproducibility of peripheral blood DNA methylation of the same women
over a one-year period [113] found extremely poor performance (average intraclass
correlation coefficient of 0.22), and attributed this to the fact that “99.9% of CpG
sites (covered by the array) in the non-sex chromosomes had similar methylation
profiles between individuals.” These data underscore the unfortunate fact that, over
the last decade, over 1000 studies attempting to associate individual epigenetic
variation with risk of disease have focused on genomic regions in which DNA
methylation is largely invariant.

Another major factor overlooked by the HM450 and EPIC platforms is the cell
type specificity of DNA methylation. Generally, we cannot “epigenotype” an indi-
vidual using peripheral tissues such as blood; epigenetic variation detected in the
blood may not be relevant for a disease involving the brain, for example. Reverse
causality is another major confounding factor for epigenetic epidemiological studies.
Even if the tissue of interest is obtained [118, 119], the disease process itself can
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cause epigenetic differences, making it difficult to infer causality. Based on these
observations, the designs of HM450 and EPIC arrays are far from ideal.

6.7 The Field Needs to Focus on Systemic Interindividual
Epigenetic Variation

A logical approach to overcome these challenges is to focus on genomic regions
displaying systemic interindividual variation (SIV) in DNA methylation [62, 120,
121]. A recent study, which could be viewed as a “mini-epiHapMap” project,
conducted the largest screening of SIV regions in the human genome [122]. A
computational algorithm was developed to analyze deep whole-genome bisulfite-
sequencing data on tissues representing all three embryonic germ layers (thyroid,
heart, and brain) from each of ten donors from the NIH Genotype-Tissue Expression
project [123]. The authors identified 9926 correlated regions of systemic interindi-
vidual variation (CoRSIVs). Each CoRSIV is statistically significant (P < 0.05),
includes at least 5 CpGs, and exhibits an interindividual methylation range of at least
20%. The multiple-tissue interindividual screening approach to identify SIV is
similar to that previously used to identify candidate metastable epialleles [62, 120,
124], but unlike metastable epialleles, CoRSIVs are defined without regard to
potential genetic influences on their interindividual variation.

Although only <1% of HM450 or EPIC probes are within CoRSIVs, these
regions are often associated with a wide range of diseases. For example, the SIV
region encompassing nc886 (also known as VTRNA2–1) is a confirmed metastable
epiallele; DNA methylation at this locus is influenced by maternal nutrition during
periconceptional development [120]. More recently, evidence has emerged
demonstrating this region is influenced by maternal alcohol use prior to pregnancy
[40]. Additional studies found that methylation in this region is associated with risk
of cancer [124, 125], type 2 diabetes [126], and preterm birth [127]. As mentioned
above, a prospective study in infants found that nc886 methylation in peripheral
blood at birth predicts BMI at the age of 5 [95]. Consistent with the DOHaD
hypothesis, hypermethylation at the DUSP22 promoter (another CoRSIV) shows
an association between in utero famine exposure and schizophrenia [128]. Methyla-
tion at a CoRSIV located in the promotor of the PM20D1 gene has been linked with
Alzheimer’s disease [129]. More studies have found associations between CoRSIV
gene methylation and Parkinson’s disease [130], autism [131, 132], major depres-
sion and suicide [133], rheumatoid arthritis [134], multiple sclerosis [135], and
obesity [136]. Methylation in SIV regions near the OR2L13 promoter and gene
body of CYP2E1 [124] is associated with maternal gestational diabetes mellitus
[71]. Hence, despite their under-representation on the Illumina arrays, CoRSIVs are
often among top hits in HM450 and EPIC profiling studies screening for associations
with disease and associated phenotypes, indicating immense potential for these
regions to contribute to disease prediction, diagnosis, and prognosis. From a
DOHaD perspective, a focus on CoRSIVs is particularly warranted, given their
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well-documented plasticity to periconceptional environment [28, 62, 63, 121, 122,
137].

In addition to a focus on CoRSIVs, we believe the field will benefit from
development of novel analytical approaches. Most studies of DNA methylation
and disease have utilized univariate regression methodologies and focused on
detecting associations rather than making predictions [138, 139]. It is increasingly
recognized, however, that individual CpG sites do not provide as much information
as coordinated interactions among multiple CpGs. Multivariate approaches can
harness crucial synergistic biological effects [140], motivating increased interest in
using machine learning to analyze DNA methylation. Target-capture approaches to
study DNA methylation across the entire set of known CoRSIVs are under develop-
ment. Meanwhile, there are many publicly available HM450 and EPIC datasets, in
which ~10% of known CoRSIVs are covered by at least one probe. A recent study
[141] took advantage of a publicly available HM450 data set on peripheral blood of
schizophrenia (SZ) cases and controls [142] to develop a CoRSIV-focused machine
learning classifier based on sparse partial least squares discriminant analysis (SPLS-
DA). The model calculated an epigenetic risk score which was able to identify SZ
cases with 80% positive predictive value, far surpassing the performance of an
analogous SPLS-DA classifier based on polygenic risk score. Additional analyses
indicated that these associations were not due to reverse causality, as might be
caused by the tendency for SZ patients to smoke heavily and/or take psychotropic
medications. Together these findings indicate that the systemic interindividual
variants distinguishing SZ cases from controls were present prior to diagnosis;
prospective studies will be required to confirm this. Nonetheless, this study provides
compelling evidence that a focus on SIV, combined with sophisticated machine
learning approaches, may ultimately enable blood-based disease risk prediction for a
wide range of complex human diseases, with obvious implications for DOHaD.

6.8 Outlook

An epigenetic basis for DOHaD involves two steps: (1) early environmental
influences during critical ontogenic periods can induce lasting epigenetic changes,
and (2) these individual epigenetic differences must influence risk of disease later
in life. There is now extensive evidence supporting the first step. Particularly in
the context of human metastable epialleles and CoRSIVs, it is clear that
periconceptional environment affects establishment of DNA methylation states
that persist for years [62, 120, 122, 124]. The focus now must be on the second
step of the pathway, i.e., establishing causal links between individual epigenetic
variation and risk of disease. Despite the “failed start” due to the problems with the
Illumina platforms, we believe that an increasing focus on CoRSIVs heralds great
potential in the field of epigenetic epidemiology. The systemic nature of interindi-
vidual epigenetic variation means that CoRSIVs are essentially epigenetic
polymorphisms, facilitating the use of DNA samples from blood, saliva, or buccal
cells in large-scale epigenetic epidemiologic studies. Development of commercial
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platforms focused on CoRSIVs, coupled with the establishment of prospective
longitudinal cohorts, will allow epigenetic epidemiologists to probe causal links
between early environment, DNA methylation, and disease.

6.9 Conclusions

The concept of DOHaD arose from epidemiologic studies. Developmental plasticity
implies that fetal development adapts to transient nutritional and environmental
experiences, resulting in lasting changes in chronic disease susceptibility. While
our understanding of the underlying mechanisms is rudimentary, alterations in
epigenetic regulation are likely contributors. Although CoRSIVs provide a
promising avenue for future DOHaD-centered epigenetic studies, we emphasize
that epigenetics is only one of several potential mechanisms explaining develop-
mental plasticity. A better understanding of the mechanisms underlying DOHaD
should someday make it possible to reduce individual risk of disease by both
preventive strategies targeted to early life and corrective approaches designed to
normalize malleable cellular and molecular mechanisms set askew by adverse early
exposures.
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