
Cell-Type Heterogeneity in DNA
Methylation Studies: Statistical Methods
and Guidelines

4

Andrew E. Teschendorff

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 General Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 Estimating Cell-Type Fractions in Complex Tissues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1 Estimation of Cell-Type Fractions in Blood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.2 Estimation of Cell-Type Fractions in Saliva and Buccal Swabs . . . . . . . . . . . . . . . . . . 76
4.3.3 Estimation of Cell-Type Fractions in Solid Tissues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.4 Estimation of Cell-Type Fractions from cfDNAm in Serum . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Inferring Cell-Type-Specific Differential DNA Methylation (DMCTs) . . . . . . . . . . . . . . . . . . 79
4.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5.1 Identification of Smoking-Associated DMCTs in Buccal Swabs . . . . . . . . . . . . . . . . . 82
4.5.2 HAND2 Hypermethylation in Endometrial Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.5.3 An Endothelial-to-Mesenchymal (EndoMT) Transformation Signature in Lung

Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5.4 Myeloid and Lymphoid Specific Smoking-Associated DMCTs . . . . . . . . . . . . . . . . . . 85

4.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.7 Useful Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.8 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Abstract

Studies in epigenetic epidemiology have reported increasing numbers of epige-
netic biomarkers associated with a wide range of exposures and outcomes. Due to
cost and technical difficulties, these markers are usually derived from complex
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tissues that are composed of many different cell-types. This cell-type heterogene-
ity prevents the identification of cell-type specific epigenetic alterations, posing
significant challenges to the interpretation and understanding of these markers.
Consequently, there is a strong need to develop cost-effective computational
solutions to tackle the cell-type heterogeneity problem. Here, I discuss some
recently proposed cell-type deconvolution algorithms aimed at estimating cell-
type fractions and identifying cell-type specific differential DNA methylation
changes. I describe their successful application to epigenome studies. We also
discuss their main limitations, providing general guidelines for their successful
implementation and for correctly interpretating results derived from them.

Abbreviations

DMC differentially methylated cytosine
DMCT differentially methylated cell-type
DNAm DNA methylation
EWAS Epigenome-Wide Association Study
FDR False Discovery Rate
FPR False Positive Rate
LSR least squares regression
mQTL methylation quantitative trait loci
PR C2 Polycomb-Repressive-Complex-2
scRNA-Seq single-cell RNA-Seq
SE Sensitivity

4.1 Introduction

Over the last two decades, we have seen a rapid increase in the number of studies
reporting associations of epigenetic marks, in particular DNA methylation (DNAm),
with epidemiological and disease risk factors, as well as with disease itself [1–
10]. Many of these associations have been derived by measuring DNA methylation
in the tissue-of-origin, for example, in precursor cancer lesions [8, 11, 12], cancer-
tissue [13] or post-mortem brain [14, 15]). However, by far most associations have
been derived from easily accessible “surrogate” tissues like blood [1, 16], often
under the assumption that DNAm changes in such tissues can be informative of
disease or disease risk [17–20]. An ever-increasing number of epigenetic biomarker
studies are also measuring DNAm of cell-free DNA fragments (cfDNAm) in serum,
which offers great potential for noninvasive early detection of a wide range of
diseases, including type-1 diabetes, multiple sclerosis, ischemic brain damage,
pancreatitis, and cancer [21–26]. In most cases, however, the biological interpreta-
tion of the measured epigenetic alterations remains challenging [27]. One obvious
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reason for this is that, unlike gene or protein expression, an epigenetic change may
not necessarily be functional. As a concrete example, age-associated DNAm
alterations have been widely reported [6, 7, 28–31], yet a significant proportion of
these changes do not appear to be functional or may only act to stabilize gene
expression [32]. Another reason, which is still often overlooked, is cell-type hetero-
geneity [33]. This refers to the fact that most epigenome studies deriving biomarkers
or molecular classifications of disease, do so by measuring DNAm in a complex
tissue comprised of many different cell-types, each with its own characteristic
DNAm profile. This is true not only for tissues like lung, liver, or blood, but also
when measuring cfDNAm in serum, as most of the cfDNA derives from
lymphocytes [21, 26]. Thus, by only measuring an average DNAm profile over
many underlying cell-types, it is difficult to ascertain if DNAm changes associated
with an exposure or outcome of interest is the result of DNAm changes in individual
cell-types, and if so, in which cell-types, or whether the DNAm change is merely the
result of underlying changes in cell-type proportions (Fig. 4.1).

Is it important, from a biological, clinical, or epidemiological perspective, to
determine the source or nature of a DNAm change? In general, the answer to this
question is yes: knowing in which cell-type (or cell-types) a DNAm change may be
occurring in is critically important in order to understand how putative functional
consequences of the DNAm changes may affect cell-function and disease develop-
ment. For instance, in the context of asthma, an EWAS for immunoglobulin-E
concentrations in blood revealed associations that were later validated in isolated
eosinophils, highlighting molecular pathways in a relevant cell-type that mediate
allergic inflammation [34]. Another example is that of HAND2, a transcription
factor that mediates the tumor-suppressive effects of progesterone in the endome-
trium: here promoter hypermethylation and silencing of HAND2 is observed in
endometrial fibroblasts from precursor cancer lesions, which results in increased

DDDMMMCCCsss

DMCs driven
by changes
in tissue-

composition

DMCs not
driven

by changes in
tissue-

composition

CT1

CT2

CT3

Not altered

Not altered

Altered

Case/
Exposed

Control/
Unexposed

Complex
Tissue

Epigenome study

DNAm profiling

Fig. 4.1 Broad classes of DMCs. Epigenome studies performed in complex tissues (by definition
these are composed of many different cell-types) only measure an average DNAm profile, and thus
can only detect differentially methylated cytosines (DMCs) without knowledge of the underlying
sources driving these DNAm changes. DMCs may result from shifts in cell-type proportions
between cases and controls, or may result from DNAm changes in one or more cell-types (CT).
All types of DMCs may be informative of say diagnosis or prognosis, but detection of cell-type
specific DMCs is important to improve our understanding of the molecular pathways involved in
disease development
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FGF paracrine signaling with endometrial epithelial cells, sensitizing these to onco-
genic estrogen [35]. Another scenario where cell-type specificity may play an
important role is in the context of mQTLs, i.e., SNP-CpG pairs where the methyla-
tion of the CpG is associated with genotype, with recent studies indicating that up to
20–30% of mQTLs derived in blood may be cell-type specific [36, 37]. Such cell-
type-specific mQTLs could be informative of molecular pathways that contribute to
disease predisposition in a cell-type-specific manner. Another example is aging,
where the promoter of a given cell-specific transcription factor may become gradu-
ally hypermethylated with age, which could lead to irreversible silencing of the TF
and to a skewed or impaired differentiation [38]. The same DNAm change occurring
in a cell-type where the TF is already switched off, say by a repressive H3K27me3
mark, would not have a functional consequence.

One solution to the cell-type heterogeneity problem would be to perform the
epigenome study in purified cell-types, but this remains labor intensive, costly and
has mostly only been carried out in immune cells [36, 39–41], or to validate findings
at a few selected loci [34]. Another potential solution is to generate DNAm data at
the resolution of single cells [42–44]. However, this also remains costly, is unscal-
able to large numbers of individuals, and only generates very sparse data that cannot
be used for building DNAm reference profiles for individual cell-types
[44, 45]. Thus, there has been an ongoing attempt to address the cell-type heteroge-
neity problem computationally, by devising statistical algorithms (i) that can infer
cell-type fractions and DMCs [46–48], (ii) that can infer latent components of
variation and DMCs [49–51], and (iii) that can infer cell-type specific differential
DNAm, i.e., differentially methylated cell-types (DMCTs) [52, 53] [54, 55], all in
the context of epigenome studies performed in complex tissues.

The computational complexity posed by the cell-type heterogeneity problem can
be quite substantial: assuming a study is performed in whole blood (a tissue with
seven main blood cell subtypes: neutrophils, eosinophils, monocytes, natural-killer,
B-cells, CD4+, and CD8+ T-cells), and that one finds a DMC associated with a
factor of interest, there could be at least 27–1 ¼ 127 different combinatorial
differential methylation (DM) patterns among the seven cell-types that could give
rise to the observed DM at the whole tissue level. For instance, at one extreme, a
DMC could be present in all cell-types of the tissue, while at another, it may only be
present in one of the cell-types (Fig. 4.1). The above estimate does not even consider
the potential combinatorial possibilities in terms of the directionality of DNAm
change, which could involve increased (i.e., hyper) or decreased (i.e., hypo) methyl-
ation in different cell-types. Nor does the above estimate include scenarios where the
DMC is driven purely by a change in cell-type composition. A well-known example
of the latter is the increased myeloid to lymphocyte ratio that is observed in blood as
a function of age [7, 56], cancer [57] or Rheumatoid Arthritis (RA) [58]. Shifts in
cell-type composition are of course critically important in the context of cfDNAm in
serum, since it is these shifts (e.g., increased circulating tumor DNA burden) that are
informative of disease [26]. In other easily accessible tissues such as saliva or buccal
swabs, the number of cell-types will be even bigger than in blood, because these
tissues contain squamous epithelial cells besides immune cells [59–61]. The com-
plexity only increases even further when we start to consider solid tissues, which in
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addition to immune cells, may contain different types of epithelial, endothelial, and
fibroblast cells. The full repertoire of cell-types within human tissues and organs is
only now been elucidated thanks to major international efforts such as the Human
Cell Atlas [62, 63]. For instance, some studies have estimated over 50 different cell-
types in a tissue like lung [64, 65]. It should be noted though that given an observed
magnitude of DNAm change, that this may impose substantial constraints on the
allowed cell-type-specific DM patterns. For instance, if we observe a close to 100%
change in DNAm between cases and controls, then this can only be realized if the
change is happening unidirectionally in all the major cell-types of the issue. In
general, it should be clear that the complexity of calling cell-type-specific DM can
be at least 100-fold higher compared to calling DM [66].

Given this complexity, and given the inevitable limitations on the sample size of
epigenome studies, it is understandable that statistical algorithms alone may not be
able to fully address the above challenge. Nevertheless, as we shall see, statistical
and computational methodology can help towards partial solutions or to solving the
challenge in simpler scenarios, which can still be very informative and useful for
disease diagnosis and early detection, for hypothesis generation or for devising
validation experiments in purified cell-types. For instance, one way to simplify the
problem is to consider a small number of “coarse” or “representative” cell-types, or
only restrict to the main dominant cell-types within a tissue.

In the next sections, we shall describe some of the computational and statistical
methods that have been proposed to estimate cell-type fractions and to detect cell-
type-specific DNAm changes, as well as a number of applications where it has led to
important novel insights.

4.2 General Considerations

In that follows, we shall refer to a cell-type specific differentially methylated
cytosine as a differentially methylated cell-type, abbreviating this with “DMCT.”
Given a DNAm matrix defined over cytosines and samples, and given a factor of
interest (e.g., an exposure, disease-status), the inference of DMCTs generally pro-
ceeds in two steps:

1. First, we need to estimate the fractions for all cell-types in the tissue. Without
knowledge of the proportions of each cell-type in a given tissue, it is not possible
to infer in which cell-types putative DNAm changes are happening. Some cell-
types in a tissue may be present in such low numbers that their estimation is not
possible, and therefore in this step one aims to infer fractions for as many cell-
types so as to account for at least 95% of the tissue composition. This is because
the error-rate of estimating cell-type fractions generally is about 5% [48].

2. Second, the estimated cell-type fractions are used as covariates in a linear model
relating the observed DNAm profile of a cytosine to a factor/exposure of interest
and other covariates representing potential confounding factors (e.g., batch
effects). Importantly, the cell-type fractions enter the equations not only as
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ordinary covariates, but also as part of interaction terms with the factor/exposure
of interest. Later we shall explain why interaction terms capture DMCTs.

While in general, only these two steps are required, in practice, it is strongly
advised to include two intermediate analyses in order to better interpret the overall
results. Once we have estimated cell-type fractions, it is important to establish if these
cell-type fractions vary significantly in relation to our factor/exposure of interest.
Indeed, if tissue composition changes, then the underlying shifts in cellular proportions
could play an important causal role in disease development. A concrete example is the
infiltration of CD8+ T-cells in triple-negative breast cancer, which is a well-known
predictor of good outcome in this usually aggressive type of cancer [67]. Cell-type
compositional changes could potentially also be used for disease risk prediction or
diagnosis [21, 22, 68–70]. For instance, in the context of cfDNAm in serum, an
increased proportion of DNA fragments reflecting tissue-specific cell-death, as e.g., it
happens with pancreatic beta-cell death in type-1 diabetes or with exocrine cell-death
in pancreatic cancer, could be used for early detection or monitoring of therapy
response [26]. A shift in tissue composition can also reflect a systemic effect of
disease, as for instance, with the observed increased myeloid to lymphoid ratio in
the blood of cancer patients [57]. If such shifts occur before the conventional diagnosis
of disease, they could be used for early detection or for quantifying disease risk.

The other intermediate step one is advised to perform is the inference of differen-
tially methylated cytosines (DMCs). This is accomplished using the same linear
model as for DMCT inference, but without the inclusion of interaction terms. In this
model, cell-type fractions only enter as ordinary covariates alongside other potential
confounders, aim being to identify DMCs that are not driven by changes in cell-type
composition or by any of the other potential confounders. It is important to stress that
once we have identified such a DMC, that this does not tell us anything about which
cell-types the DNAm change is happening in, although there could be constraints on
this depending on the observed effect size, as mentioned earlier. We shall see one
concrete example of this later. Now we turn to the specific task of estimating cell-
type fractions in complex tissues.

4.3 Estimating Cell-Type Fractions in Complex Tissues

As mentioned earlier, this task is required before we can infer DMCTs. And the
reliability of the inference of DMCTs in a given study hinges on our ability to
accurately estimate the underlying cell-type fractions. Currently, the best way to
estimate cell-type fractions in a given sample for which a genome-wide DNAm
profile is available, is through the construction of a DNA methylation reference
matrix (DMRM) [71]: the columns of this matrix represent the cell-types within the
tissue, with the rows representing marker CpGs (or marker genes) whose DNAm
levels vary substantially between cell-types. Here we shall discuss three different
strategies that have been applied to build a DMRM (Fig. 4.2). The choice of strategy
largely depends on the tissue-type being considered, which is why the ensuing
discussion is structured based on tissue-type.
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4.3.1 Estimation of Cell-Type Fractions in Blood

We first consider the case of whole blood (WB), peripheral blood mononuclear cells
(PMBCs) and cord blood (CB), because for these tissues, it is possible to generate
genome-wide DNAm reference profiles for all major underlying cell-types. This can
be accomplished by the use of well-known markers for blood cell subtypes, whose
specificity is relatively high in order to be able to generate purified samples (e.g.,
CD19 for B-cells) through, e.g., FACS sorting. Thus, in the case of WB, it has been
possible to generate genome-wide DNAm profiles for all seven major cell subtypes,
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Fig. 4.2 Strategies to building a DNAm reference matrix. Depicted are three strategies to building
a DNAm reference matrix (DMRM). One approach (left branch) is based on FACS sorting cells and
subsequently generating genome-wide DNAm profiles for these purified cell populations. Subse-
quently, one identifies DMCs between these purified cell populations to build the DMRM. Another
strategy (middle) is to use existing DNAm profiles of relevant purified cell samples in the public
domain to build the DMRM, once again by identifying DMCs between these purified samples. This
strategy can be applied more broadly to solid tissues, but compromising cellular resolution. Another
strategy (right) is to leverage the high-resolution nature of a tissue-specific scRNA-Seq atlas to build
an mRNA expression reference matrix and to subsequently impute a corresponding tissue-specific
DMRM. The cellular resolution of this strategy is high (only limited by the cell-types the scRNA-
Seq assay can measure), but the quality of the imputation may not suffice to distinguish similar cell-
types
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which includes neutrophils, eosinophils, monocytes, B-cells, CD4+ T-cells, CD8+
T-cells, natural-killer cells, and B-cells [72]. PBMCs are generally devoid of
granulocytes which includes neutrophils, eosinophils, and basophils. For CB, a
tissue of increasing importance in epigenetic epidemiology [73–77], it has also
been possible to build tailored DNAm reference matrices [78, 79], as indeed it is
well recognized that both the composition and cell-type-specific DNAm profiles are
different to those of whole blood. In all these cases, once genome-wide DNAm
profiles for purified samples have been generated, it is then possible to build
corresponding DMRMs.

It is important to briefly describe how the DMRM should be constructed and
indeed why it is necessary to use this DMRM for estimating cell-type fractions. If we
have a genome-wide DNAm profile for a WB/PBMC/CB sample, represented by a

vector β
!
defined over a large number of CpGs (around 450k or 850k, depending on

the Illumina beadarray version), then it is sensible to express it as a linear mixture of
corresponding genome-wide DNAm profiles for the constituent cell-types, as in:

β
! ¼

XK

k¼1
f k β

!
k,

where k denotes the cell-type, K is the total number of different cell-types and fk is
the proportion/fraction of cells of type k in the mixture. These fractions are obviously
unknown, and we would like to infer them given the measured DNAm profile of the
mixture and that of the constituent cell-types. Mathematically, the inference of these
fractions is indeed possible, by formulating the above equation as a linear least
squares multivariate regression problem, with one key difference, however, which is
that the fractions must all be bounded between 0 and 1, and that their sum must add
to 1 (or to a number less than 1 since in practice we cannot possibly know or have
DNAm profiles for all underlying cell-types in a tissue). These additional constraints
on the regression problem turn the ordinary least squares regression (LSR) into a
constrained LSR or constrained projection (CP) problem, which can be solved using
techniques in quadratic programming (QP) [46]. While it might be tempting to solve
this CP problem using all available CpGs, this is not advisable because a large chunk
of the genome will not differ between blood cell subtypes. In other words, uninfor-
mative CpGs that show little variability between blood cell subtypes generally do not
contribute, and therefore it is sensible to exclude these from the inference as they are
not needed. Computationally, if the CP problem can be solved over a small number
of informative CpGs this will also speed up the estimation of cell-type fractions very
substantially, which is an important consideration. Thus, once the DNAm profiles
for the purified cell-types have been generated, the next step is to identify the
informative CpGs. There are several strategies to accomplish this [46, 48, 78, 79],
but in general, they involve a process of identifying cell-type specific DMCs, i.e.,
CpGs that are highly methylated (or unmethylated) in one cell-type, with corre-
spondingly low (or high) DNAm values in all other cell-types. Ideally, one desires a
reasonable number of cell-type specific DMCs for each cell-type, which ensures
robustness to potential “dropouts” in independent datasets where the fractions are to
be estimated. By dropout we here mean a probe that does not pass QC in the
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independent dataset and which therefore cannot be used in the inference procedure.
Ideally, one would also want to ensure equal or approximately equal numbers of cell-
type-specific markers for each cell-type, because can avoid biasing the inference to
those cell-types with more markers. And thirdly, one would ideally only include cell-
type-specific DMCs, where the difference in DNAm between the marker cell-type
and all others is as large as possible, i.e., typically over 0.7 in the beta value [0,1]
scale, i.e., at least a 70% methylation change. This number is motivated by the heavy
use of Illumina DNAm beadarray technologies, where the two main modes
(unmethylated and methylated peaks) are generally about 0.7 methylation units
apart, with a value of 1 being the theoretical maximum. In practice, all three
requirements above may not be met. For instance, for similar cell-types (e.g.,
CD4+ and CD8+ T-cells) it might be difficult to find many DMCs with over 70%
DNAm difference between them, and indeed accurately estimating the relative
fractions of highly similar cell-types still remains a challenge. Mathematically, the
quality of a DNAm reference matrix can be expressed in terms of its conditioning
number [79], which is an indicator of how robust the inference would be. Based on
extensive experience estimating cell-type fractions, we advise on the following
guidelines for selecting DMCs for a reference DNAm matrix. We note that these
guidelines are not unique to DNAm but apply equally well to other data types (e.g.,
RNA-Seq):

1. Perform DM analysis between one cell-type (the “marker” cell-type) against all
others (as one group) to identify DMCs using some sensible significance thresh-
old (e.g., FDR < 0.05).

2. For these DMCs, compare the mean DNAm level in the marker cell-type to the
highest (or lowest) mean DNAm level from among all other cell-types, to then
subselect DMCs that have an effect size (i.e., difference in mean DNAm) larger
than +/�0.7.

3. For each cell-type, rank these DMCs according to the absolute effect size and
select a given top number of these. We recommend about 50 for each cell-type, if
possible.

4. If in step-2 or step-3 there are not enough DMCs for a given cell-type, then the
corresponding effect size threshold could be relaxed (for instance, one could go as
low as +/�0.3 or +/�0.4), or alternatively, one may select a smaller number of
top-ranked DMCs in step-3. However, as mentioned, due to QC-issues in inde-
pendent data, we do not recommend that the final number of cell-type specific
DMCs per cell-type should be less than 10.

Once the cell-type-specific DMCs have been identified, the DMRM is then built
by taking the average or median DNAm of these CpGs in each cell-type separately.
We note that although theoretically, one should take the average, in practice, taking
the median is also justified as it may provide a more robust estimator. For K cell-
types, the DMRM would then ideally be a matrix with K*50 rows labeling the cell-
type-specific DMCs, and K columns labeling the cell-types. With this DMRM in
place, we would then estimate cell-type fractions by solving the following CP
problem:
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β
! ¼

XK

k¼1
f k β

! Rð Þ
k þ E! with

0 � f k � 1 and
XK

k¼1
f k � 1

DMRMs for blood and cord blood are available from various Bioconductor
R-packages, including minfi [80], EpiDISH [48] and FlowSorted.
CordBlood.450 K [81].

In the case of tissues like blood, it is also possible to obtain cell-type fractions
using magnetic flow cytometric techniques (e.g., MACS), which thus allows objec-
tive testing of the DNAm-based estimates. This assumes of course that the sample
taken for the DNAm-assay and the sample used to obtain MACS-based estimates are
taken at the same timepoint, as blood cell fractions are known to vary with time [82–
84]. In general, the agreement of estimated cell-type fractions obtained using a
DMRM with those derived with MACS is very good (Fig. 4.3).

4.3.2 Estimation of Cell-Type Fractions in Saliva and Buccal Swabs

Like blood, saliva and buccal tissue can be obtained fairly easily and cheaply,
allowing noninvasive measurement of DNA methylation in a tissue that contains
squamous epithelial cells in addition to immune cells [59–61]. The reason for

Fig. 4.3 Agreement between DNAm and flow cytometry-based cell fraction estimates in whole
blood. For each of the six major blood cell subtypes, a scatterplot of the flow cytometric cell-type
fraction estimate (y-axis) vs. the DNAm-based estimate (x-axis). The dashed lines represent the best
fit regression line. R2 and P-values are given. Dataset consists of 162 whole blood samples from
healthy individuals

76 A. E. Teschendorff



treating saliva and buccal swabs separately from blood and solid tissue-types is that
it is relatively straightforward to build DMRMs for these two tissue-types. Since
they contain immune cells, the same DNAm profiles of immune cell subtypes in
blood can be used for building the DMRM for saliva/buccal swabs. The only
additional requirement is to generate a DNAm reference profile for squamous
epithelial cells. However, since effectively most epithelial cells in saliva/buccal
swabs are squamous in origin, and there is therefore no need to distinguish different
epithelial cell-types from each other, a DNAm reference profile for any epithelial
cell-type may suffice. For instance, ENCODE [85] and the NIH Epigenomics
roadmap [86, 87] have generated genome-wide DNAm profiles for many different
normal epithelial cell lines and primary epithelial cells. By using different types of
epithelial samples one can thus hone in on the generic DNAm patterns of any
epithelial sample, including the squamous epithelial cells from the oral cavity.
Thus, for these tissues and given genome-wide DNAm profiles for epithelial and
immune cell subtypes, one can apply the same DMRM-construction strategy
outlined above, i.e., by first deriving cell-type-specific DMCs, from which the
DMRM is then built. Estimation of cell-type fractions then proceeds exactly as
described before for the case of blood.

A slight variation to the above procedure is obtained by recognizing that cell-
types within a tissue exhibit markedly different levels of similarity, depending on
their shared developmental trajectories. Thus, one expects substantially more DMCs
between epithelial and immune cells than between CD4+ and CD8+ T-cells. In
recognition of this, an algorithm called HEpiDISH (Hierarchical Epigenetic Dissec-
tion of Intra-Sample Heterogeneity) [59] uses a hierarchical 2-step strategy with two
DNAm reference matrices, one aimed at obtaining a total epithelial and total immune
cell fraction, and a second one to obtain fractions for all immune cell subtypes.
Because we will revisit HEpiDISH in the context of solid tissue-types, we refer
details to the next subsection.

4.3.3 Estimation of Cell-Type Fractions in Solid Tissues

The most challenging scenario is to estimate cell-type fractions in a solid tissue-type.
This is because the number of cell-types is obviously much higher than in blood
(there will be different kinds of fibroblasts, endothelial, and epithelial cell subtypes,
besides immune cells), but also because this number is still generally unknown and
generating DNAm profiles for even just a few of these cell-types is technically
challenging. This means that for most cell-types in a solid tissue, there are no
available DNAm reference profiles. This is despite efforts from the Epigenomics
Roadmap [86] to generate a number of these (e.g., kidney podocytes, breast
myoepithelial, breast luminal cells). Given these major challenges, how does one
then aim to estimate cell-type fractions in a solid tissue like breast or lung where the
number of cell-types will be substantially higher than 10 and for which reference
DNAm profiles may not be available for specific cell-types?

In principle, one may be tempted to apply reference-free cell-type deconvolution
algorithms [49, 50, 88], which aim to infer latent (i.e., hidden/unknown) sources of

4 Cell-Type Heterogeneity in DNA Methylation Studies: Statistical Methods. . . 77



variation in the data, some of which may correspond to variations in cell-type
fractions. However, reference-free algorithms cannot yield direct cell-type fraction
estimates and are therefore limited as far as DMCT inference is concerned, their
application being primarily to infer DMCs not driven by changes in cell-type
composition [49]. Given that biotechnology will eventually advance to a level that
makes single-cell DNA methylomics more reliable, affordable, and scalable, thus
allowing routine generation of DNAm reference matrices, it is sensible to focus on
reference-based approaches as we are doing here.

So far, two different reference-based strategies have been developed. One
approach is based on the HEpiDISH algorithm [59], mentioned earlier. This uses a
two DMRM strategy, whereby in the first step, the algorithm uses one DMRM to
estimate a total epithelial, a total fibroblast and a total immune cell fraction. While
solid tissues like lung or breast contain other cell-types (e.g., endothelial cells), the
lack of sufficient reference DNAm profiles for purified endothelial cells (to allow for
training and validation) means that these may be challenging to include. In the case
of breast, adipocytes form a major component in addition to epithelial, fibroblast,
and immune cells, and for adipocytes, reference DNAm profiles are available in the
public domain to allow construction and independent validation of a 4 cell-type
DNAm reference matrix, defined over a generic epithelial, fibroblast, fat, and
immune cell [59]. In the second optional step, HEpiDISH then estimates fractions
for the immune cell subtypes. This is accomplished with a second DMRM defined
over CpGs that discriminate the different immune cell subtypes from each other.
Importantly, for each of these CpGs, it is also required that their baseline DNAm
level, i.e., the level of DNAm seen across most of the immune cell subtypes, is
similar to that of the epithelial, fibroblast, and fat cells, to ensure that variations in
these other cell-type fractions would not bias the relative fractions of immune cell
subtypes [59]. Thus, this second DMRM is distinct from the one used when inferring
cell-type fractions in WB.

Another strategy is based on the EpiSCORE algorithm [89, 90]. EpiSCORE
leverages the high-resolution nature of a tissue-specific scRNA-Seq atlas to first
construct a mRNA expression reference matrix for all major cell-types in the tissue.
This assumes that the scRNA-Seq assay has captured the most important cell-types
in the tissue, which is not always the case: for instance, in the case of breast, fat cells
are abundant but they are large cells that are often missed by current scRNA-Seq
protocols [91]. Given the mRNA expression reference matrix, EpiSCORE then
imputes a corresponding DMRM, defined over the promoters of a subset of the
expression marker genes and the same number of cell-types. Of note, this imputation
only works for 20–30% of the marker genes in the expression reference matrix,
because for most marker genes there is no strong anti-correlative pattern between
promoter DNAm and gene expression. The smaller number of “imputable” marker
genes, for which there is such a strong anti-correlation, are identified using matched
RNA-Seq and whole-genome bisulfite sequencing (WGBS) data from resources like
the NIH Epigenomics Roadmap [86] and ENCODE [92, 93]. Unlike HEpiDISH,
EpiSCORE can then yield cell-type fractions for all cell-types in the tissue in one
step, by applying an analogous multivariate linear model as the one described earlier
for blood.
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4.3.4 Estimation of Cell-Type Fractions from cfDNAm in Serum

For completeness, we also describe briefly methods for estimating cell-type fractions
from cfDNAm in serum, framing this in the context of cancer where such methods
offer particular promise. Broadly speaking, the underlying strategy has been to build
analogs of DMRMs by identifying informative CpGs (i.e., DMCs) from comparisons
between DNAm measured in serum or blood from healthy individuals and DNAm
measured in solid cancer-types. Since the cfDNA in plasma from healthy individuals
stems predominantly from lymphocytes, such differential DNAm analyses naturally
adjust for the immune cell contamination that is inevitable present in solid cancers
[79, 94], thus identifying DNAm changes that are unique to the non-immune cells
(e.g., epithelial, fibroblast cells) present in cancer-tissue. An algorithm called Cancer
Locator [95] then builds a DMRM defined over a healthy and multiple cancer-type
states, subsequently applying this DMRM in a beta-mixture modeling maximum
likelihood framework to infer both tumor fraction and tumor-type. An important
element of this approach has been the explicit modeling of variance in addition to
the mean when building the DMRM [95]. Another strategy has been to perform
targeted bisulfite sequencing of informative regions in case/control cohorts, using
Machine Learning (ML) methods on a training set to build predictors of cancer-
type, which are subsequently validated in independent plasma samples
[21, 22]. Here, the ML method returns a probability measure that an individual has a
particular cancer-type, which can be interpreted roughly as a relative measure of the
corresponding tumor cell burden in the serum sample. Overall, these strategies have
shown that sensitive detection, i.e., with sensitivities and specificities close to 90% or
higher, is possible for a wide range of common tumor types (e.g., lung, liver,
esophageal cancer) [21, 95], in some cases even up to 4 years before conventional
diagnosis [22]. In this regard, it is worth noting that the cell-type specificity and meta-
stability of DNAm offer significant advantages over other molecular data types in
distinguishing the tissue-of-origin, as demonstrated by many studies (see e.g [96–
99].). However, challenges remain in that informative features are not yet selected
optimally. For instance, given that DNAm changes are widely altered and shared
between cancer-types [100, 101], or that they could reflect alterations in other cellular
compartments (e.g., fibroblasts or endothelial cells), it is plausible that these
confounders could limit performance when validating in independent cohorts. Thus,
cell-type deconvolution methods for solid tissues as described earlier should be the
ideal starting point in which to identify an optimal set of informative DMCs that are
unique to the cells of origin of each cancer-type.

4.4 Inferring Cell-Type-Specific Differential DNA Methylation
(DMCTs)

Once we have inferred the cell-type fractions, we are now in a position to infer
DMCTs. Here we shall describe one proposed DMCT-calling algorithm, the
CellDMC algorithm [52]. Another very similar algorithm that subsumes CellDMC
is TOAST [54]. Assuming for the time being that a CpG is altered in only one cell-

4 Cell-Type Heterogeneity in DNA Methylation Studies: Statistical Methods. . . 79



type of the tissue, CellDMC/TOAST is based on the intuitive notion that the
difference in DNAm between case/control status (for convenience we here assume
a binary factor of interest, but similar arguments apply to a factor of interest that is
continuously-valued, e.g., age or smoking exposure), would be bigger in those
samples where the altered cell-type is more abundant. At the other extreme, i.e., in
samples where the altered cell-type is only present in small numbers or not present at
all, the difference in DNAmwill correspondingly be much smaller. Extending this to
more general scenarios, it is therefore plausible that by studying the patterns of
DNAm change as a function of cell-type fractions, one can identify DMCTs (Fig. 3.4
to Fig. 4.4).

Statistically, the dependence of DNAm change with cell-type fractions can be
captured using linear interaction terms, in this case, interactions between the factor
of interest and cell-type fractions. From a modeling perspective, these interaction
terms also emerge naturally: for a given cytosine c in a sample s, the methylation
value βcs will be given by the formula:

βcs ¼
XK

k¼1
bf ksβcks,

where bf ks are the estimated cell-type fractions and where βcks denotes the DNAm
value in cell-type k in sample s. It is natural to assume that this value follows a linear
model in relation to the factor of interest (denoted here by y),

βcks ¼ αck þ γckys þ εcs,

which means that the expression above becomes

Fig. 4.4 Identification of DMCTs. (a) Overall strategy to infer DMCTs involves a step where we
infer cell-type fractions for each sample, followed by fitting a linear model with interaction terms
between phenotype and cell-type fractions to infer a map over CpGs and cell-types indicating which
CpGs are altered in which cell-types. (b–d) Three examples of CpGs that define DMCTs in one cell-
type (CT1) (b), all cell-types (CT1–3) (c) and two cell-types where the direction of DNAm change
is different (CT1–2) (d). The scatterplots display the adjusted DNAm beta value against the
corresponding cell-type fraction, with red datapoints indicating “cases,” blue datapoints indicating
“controls.” Hyper ¼ hypermethylated in cases, Hypo ¼ hypomethylated in cases
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βcs ¼
XK

k¼1
αckbf ks þXK

k¼1
γck bf ksys

� �
þ εcs,

where εcs is a Gaussian error term. The second term in brackets is the linear
interaction term between cell-type fraction and our factor of interest. If there are
covariates or confounders that affect DNAm independently of cell-type (e.g., batch
effects), and which we represent as Wq, it is easy to show that the above formula
becomes

βcs ¼
XK

k¼1
αckbf ks þXK

k¼1
γck bf ksys

� �
þ
XQ

q¼1
φcqWqs þ εcs

We note that here the cell-type fractions have already been estimated and that
their sum must add to 1, which means that implicit in the equation above, there is an
intercept term, and a linear term in y (without interactions). The regression
coefficients can be solved under a linear LSR, which returns t-statistics and
P-values for the interaction terms, i.e., for assessing if there are DMCTs or not. It
is important to note that the above model is a marginal conditional model, i.e., one
aims to determine if a CpG is altered in a given cell-type conditioned on all other
cell-types. This is to be contrasted with the marginal (unconditional) model for cell-
type k

βcs ¼
XK

k¼1
αckbf ks þ γck bf ksys

� �
þ
XQ

q¼1
φcqWqs þ εcs,

where we estimate an interaction between the factor and the given cell-type fraction,
ignoring

all other potential interaction terms. Incidentally, the model for inferring ordinary
DMCs, would be

βcs ¼
XK

k¼1
αckbf ks þ γcys þ

XQ

q¼1
φcqWqs þ εcs

Later we present a power calculation to indicate that the marginal conditional
model can display in certain scenarios limited sensitivity to detect DMCTs that occur
in all cell-types. Thus, our guideline is the following 2-step strategy:

1. First, we infer ordinary DMCs adjusting for cell-type fractions, i.e., by adding
cell-type fractions as covariates in the linear model. This ensures that DMCs are
not driven by changes in cell-type proportion, while also keeping high sensitivity
to detect most alterations, albeit without knowledge of which specific cell-types
are altered.

2. Second, we run the marginal conditional model to identify DMCTs. Any DMCs
called in step-2, which are not found to be DMCTs, most likely indicate CpGs
that are altered in all cell-types.
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4.5 Applications

We next describe a number of concrete examples where the CellDMC algorithm has
been applied to real epigenome datasets, not only validating the algorithm, but also
demonstrating how novel insights can be gained by inferring DMCTs as opposed to
just DMCs.

4.5.1 Identification of Smoking-Associated DMCTs in Buccal Swabs

A compelling way to validate the CellDMC algorithm is by performing an EWAS in
relation to smoking exposure in buccal swabs. To understand why, we first note that
buccal swabs contain on average about 50% immune cells and 50% squamous
epithelial cells [59], i.e., two main cell-types. Second, many smoking-EWAS
performed in blood have shown that there is a highly reproducible signature of
smoking-associated DNAm changes. For instance, a recent meta-analysis identified
a gold-standard set of 62 smoking-associated CpGs, the great majority of which
undergo hypomethylation in the blood of smokers [2]. This includes a well-known
CpG mapping to the repressor of the aryl-hydrocarbon receptor (AHRR). A more
recent study encompassing a much larger number of samples [102] further validated
these 62 smoking-DMCs, while also identifying a larger number of alterations. Thus,
it is reasonable to posit that in a smoking-EWAS performed in buccal swabs, that we
should be able to retrieve this 62 CpG smoking hypomethylation signature in the
immune cell compartment of the tissue. The result of applying CellDMC to an
EWAS of 790 buccal swabs [18] is shown in Fig. 4.5a, which demonstrates that
the algorithm indeed predicts most of the 62 CpGs to be hypomethylated in the
immune cells from smokers. Interestingly, the algorithm also predicts that these
alterations are not happening in the squamous epithelial compartment of buccal
swabs, suggesting that these DNAm alterations do not occur in the cells of origin of
smoking-related diseases like squamous cell carcinoma of the lung or head and neck.
Instead, it has been shown that the DMCTs occurring in the epithelial compartment
may be more relevant in mediating the risk of smoking in these cancer-types [18, 59,
103, 104].

4.5.2 HAND2 Hypermethylation in Endometrial Cancer

Another insightful application is to endometrial cancer. Endometrial tissue is com-
posed mainly of epithelial, fibroblast, and immune cells. As mentioned in an earlier
section, the promoter of HAND2, a transcription factor that mediates the tumor-
suppressive effects of progesterone, is hypermethylated in the endometrial
fibroblasts of precursor lesions, as well as in endometrial cancer itself, events that
are associated with silencing of HAND2 [35]. HAND2’s promoter also undergoes
hypermethylation in blood as a function of age [32]. Thus, application of CellDMC
to say the TCGA endometrial cancer study (403 cancers +46 normal-adjacent) [105]
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Smoking DMCTs predicted by CellDMC
in buccal swabs
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Fig. 4.5 Examples of DMCTs. (a) Scatterplot of t-statistics of association between smoking and
DNA methylation (~480,000 CpGs) in immune cells (y-axis,IC) vs. the corresponding statistics in
the epithelial cells (x-axis, Epi), as predicted by CellDMC in an EWAS of buccal swabs (n ¼ 790
samples). CpGs belonging to a known 62 CpG hypomethylation smoking signature are highlighted
in red. (b) Patterns of cell-type-specific differential DNAm for HAND2 (promoter & first exon
region) in endometrial cancer, as predicted by CellDMC. Boxplot on the lower right corner is the
differential DNAm pattern for whole tissue, i.e., averaged over all cell-types. (c) Distribution of
DMCTs in an application of CellDMC to lung squamous cell carcinoma (LSCC) (TCGA dataset).
Scatterplots at the bottom illustrate two DMCT examples: an epithelial and an endothelial-specific
hypermethylated CpG. N ¼ normal, C ¼ cancer. (d) Scatterplots summarizing results of the GSEA
of epithelial and endothelial-specific DMCTs. y-axis labels the statistical significance (�log10[P-
value]), x-axis labels the log2[OddsRatio]. P-value and OR computed from a Fisher-test
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should reveal that HAND2 is hypermethylated in fibroblasts and possibly also in the
immune cells present within the endometrial tissue, because the average age of the
403 endometrial cancers is higher than that of the 46 normal-adjacent normals.
Moreover, the average DNAm change between endometrial cancer and normal-
adjacent samples is relatively large at around 0.6, a strong indication that HAND2
undergoes promoter hypermethylation in all main cell-types, including the epithelial
compartment. Thus, it is not surprising that when applied to the TCGA dataset, at the
resolution of three cell-types (epithelial, fibroblast, and immune cell) and using the
corresponding DNAm reference matrix from HEpiDISH (see Fig. 4.2), that
CellDMC predicts HAND2 promoter hypermethylation in all three cell-types
(Fig. 4.5b). We note that in this instance, the marginal conditional model did have
the sensitivity to detect HAND2 as changing in all three cell-types, despite being a
scenario where an ordinary DMC-model is more appropriate. That the algorithm
correctly predicts a DNAm change in the fibroblasts is critical, as it is the silencing of
HAND2 in the fibroblasts that leads to an altered paracrine signaling with the
epithelial cells, sensitizing these to oncogenic estrogen [35].

4.5.3 An Endothelial-to-Mesenchymal (EndoMT) Transformation
Signature in Lung Cancer

An example of how novel insight can be gained through application of a tool like
CellDMC is illustrated in the case of lung squamous cell carcinoma (LSCC). Here,
the EpiSCORE algorithm (Fig. 4.2) was used to build a lung-specific DNAm
reference matrix defined over epithelial, fibroblast, endothelial, and immune cells.
While one could also consider different immune cell subtypes, we can refrain from
doing so if our focus is on alterations occurring in the other cell-types. By
simplifying the problem to four main cell-types also yields more power to detect
changes in specific cellular compartments. The distribution of inferred DMCTs is
displayed in Fig. 4.5c, together with a few examples, and a Gene Set Enrichment
Analysis (GSEA) on the DMCTs appearing in the specific cellular compartments,
which reveals patterns that are strongly consistent. For instance, the enrichment of
bivalent and PRC2 marked domains among epithelial-specific hypermethylated
DMCTs is a well-known universal cancer signature (Fig. 4.5d) [89]. Likewise, the
concomitant enrichment of SMAD2/SMAD3 binding targets among endothelial-
specific hypermethylated DMCTs, and of terms related to mesenchyme, migration
and invasion among endothelial-specific hypomethylated DMCTs, is noteworthy
given the role of SMAD2/SMAD3 in maintaining vascular integrity (Fig. 4.5d).
Therefore, CellDMC makes the prediction that the observed hypermethylation in
lung cancer endothelial cells is associated with disruption of SMAD2/SMAD3
binding, compromising vascular integrity and associated with an endothelial-to-
mesenchymal (EndoMT) transformation. Such an EndoMT has been reported previ-
ously [106–108], but as revealed by CellDMC, epigenetic alterations could be
critical in promoting such a transformation.
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4.5.4 Myeloid and Lymphoid Specific Smoking-Associated DMCTs

As a final example, we revisit the case of smoking in blood. As mentioned earlier,
smoking is associated with a highly reproducible DNAm signature in whole blood
[2, 102]. However, to date, no large-scale EWAS in specific blood cell subtypes has
been performed in relation to detecting smoking-associated DMCTs. Hence it is
unknown whether the observed smoking signature is present in myeloid, lymphoid,
or in both cell lineages together. Only smaller scale studies have converged on
identifying a small number of CpGs that appear to be altered specifically in myeloid
or lymphoid cells [109]. Specifically, Su et al. reported 7 CpGs that exhibit lineage-
specific smoking-associated DNAm changes, with 5 of these being specific to
myeloid cells, and 2 being specific to lymphocytes [109]. A recent study applied
CellDMC to a number of independent EWAS with smoking information (2 in whole
blood and 1 in buccal swabs), and at the resolution of 2 cell-types (myeloid and
lymphoid), revealing good consistency with Su et al. [110]. A meta-analysis over a
large number of EWAS in whole blood further revealed myeloid-specific
hypermethylation and hypomethylation signatures, with the latter being strongly
enriched for DNase Hypersensitive Sites (DHS) as defined in inflammatory
macrophages, and with the former one only being enriched for DHSs as defined in
acute myeloid leukemia (AML) [110]. In contrast, the same meta-analysis did not
reveal an extended lymphocyte-specific smoking signature, suggesting that smoking
imparts its effect on DNAm patterns in blood mostly via alterations in myeloid cells.
This is a significant observation given that smoking is a moderate risk factor for
AML but not for lymphocytic leukemias [111].

In summary, all the above examples illustrate successful applications of an
algorithm such as CellDMC in identifying cell-type-specific DMCs, in some cases
validating known DNAm signatures, and in other cases generating novel concrete
hypotheses for further exploration and testing.

4.6 Limitations

Despite the successful applications described above, it is important to also empha-
size the limitations associated with identifying DMCTs. We illustrate some of these
limitations in the context of a power simulation on realistic data, focusing on the last
example considered in the previous section, namely identifying smoking-associated
DM in two cell lineages of blood (myeloid vs. lymphoid) [110]. This is a scenario
where one cell-lineage (myeloid cells) accounts for most of the cells in the tissue
(i.e., approximately 60–70% of cells in whole blood derive from the myeloid
lineage), with variations in the myeloid fraction between individuals also accounting
for most of the variation in DNAm. Details of the actual simulation model can be
found in You et al. [110]. Very briefly, in this in-silico model, one simulates three
classes of DMCTs, and subsequently assesses the sensitivity or power of the
algorithm (in this case CellDMC) to detect these alterations. One class of DMCTs
is specific to the lymphoid lineage, another class is specific to the myeloid lineage,
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and the third class of DMCTs is present in both lineages, and therefore this class is
non-specific. The sensitivity to detect each category of DMCT in a whole blood
EWAS is shown in Fig. 4.6, for a range of different effect sizes and two different
sample sizes.

Thus, for appropriately powered studies detecting lymphoid or myeloid-specific
DMCTs is in general not a problem. For instance, for an epigenome study with
200 samples (100 cases and 100 controls), the sensitivity to detect myeloid-specific
DMCTs is around 80% for an effect size of 2, which roughly corresponds to about a
10–20% average absolute DNAm change in myeloid cells. The corresponding
sensitivity for lymphoid-specific DMCTs is just over 60%, i.e., lower than for
myeloid-specific DMCTs, owing to the lower proportion and variance of lymphoid
fractions in blood, but still reasonably high. For larger effect sizes, i.e., for average
DNAm differences larger than say +/� 0.3, sensitivities are higher than 80 or 90%
for both lineage-specific DMCTs. However, for non-specific DMCTs, the power
calculation indicates markedly reduced sensitivity to detect the change in the lym-
phoid compartment. Thus, larger sample sizes would be needed to detect
non-specific DMCTs as being non-specific. As far as the FPR and FDR are
concerned, these are generally quite low, with the corresponding specificity and
precision being close to 100% for all three classes of DMCTs (see You et al. [110]).

The above simple power calculation clearly illustrates the potential limitations
associated with inferring DMCTs in real epigenome studies. As one wishes to infer
DMCTs in the context of ever-increasing numbers of cell-types, one main limitation
is on the sensitivity to detect non-specific DMCTs, and thus great caution needs to be
exercised when interpreting the specificity of inferred DMCTs. Another major
limitation is the potentially low variance in the fraction displayed by a given cell-
type, as noted recently [112].

Fig. 4.6 Power calculation. Plots of the sensivity (y-axis) to detect each class of DMCT vs effect
size (x-axis), and for two different sample sizes (n ¼ 200 and n ¼ 600). We note that n is the total
sample size and number of cases and controls is assumed similar. The effect sizes are realistic and
corresponding to average DNAm changes in individual cell-types that range from 0.05 to just over
0.6. In the last plot, we display the sensitivity to detect the non-specific DMCTs in each lineage
separately
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4.7 Useful Software

Here we give a brief overview of some of the important software that has been
developed in the cell-type heterogeneity field. Most of this software is freely
available as R-code from the websites as specified in the publications. For estimating
cell-type fractions in whole blood or peripheral blood mononuclear cells, we can
recommend the minfi Bioconductor package [80] which uses Houseman’s
constrained projection algorithm [46] as well as the original DMRM for blood
used when validating the Houseman algorithm. Another option is the EpiDISH
Bioconductor package [48], which offers robust partial correlations (RPCs) and
Support Vector Regression as an alternative to constrained projection for estimating
cell-type fractions. For those unfamiliar with R, the EpiDISH package has an
associated webserver [113] and also incorporates its own DMRM for blood. Another
important option for blood is the IDOL algorithm [78] and associated DMRM
[114]. For cord blood, there are dedicated DMRMs available from the FlowSorted.
CordBlood.450 K Bioconductor R-package [81] and from [115, 129]. For saliva,
there is also a dedicated DMRM, and which has been specially designed for
epidemiological studies in children [116]. For saliva and buccal swabs, one can
also use a general three cell-type DNAm reference matrix defined for generic
epithelial, fibroblast, and immune cells [59, 117], and which is also available within
the EpiDISH package. For complex solid tissues, one can use the HEpiDISH
algorithm [59] and associated 2-layer DMRMs for estimating cell-type fractions
for epithelial, stromal, and all immune cell subtypes, and which is also part of the
EpiDISH package. Another option for inferring epithelial and stromal fractions in
complex tissues isMethylCIBERSORT [118]. The EpiSCORE algorithm can be used
to build DMRMs for tissue-types for which there is a matching scRNA-Seq atlas,
and DMRMs for lung and breast tissue have been provided [89]. An alternative
statistical strategy for estimating cell-type fractions called dtangle that improves
upon the constraint projection and the other frameworks has also been proposed
[119]. A method called MethylResolver has recently been proposed to evaluate the
quality of an inferred cell-type decomposition [120], which is an important step
missing from all other software. Algorithms for identifying cell-type-specific DNA
methylation changes include TOAST [54], CellDMC [52], HIRE [55], Omicwas
[121] and TCA [122]. Omicwas, which implements a non-linear ridge regression
framework is noteworthy for also dealing with the co-linearity problem in DMRMs
of high cellular resolution. Reference-free and semi-reference-free methods remain
useful for the purpose of identifying DMCs not confounded by cell-type heteroge-
neity [49–51, 123–125], but are generally speaking limited for the tasks of cell-type
fraction estimation and inference of cell-type-specific DNAm changes.
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4.8 Outlook

It is likely that over the next years, technologies for single-cell methylomics [126]
will improve to allow the construction of DNAm reference profiles for most cell-
types within a tissue. This would provide an alternative means to build a DMRM,
which is more tailored to the tissue of interest, thus overcoming some of the
limitations of existing strategies. However, in the foreseeable future, generating
single-cell methylomics for large numbers of tissues (and individuals) will remain
impractical. This means that for epigenome studies aiming to identify cell-type-
specific biomarkers, and which will require genome-wide profiling of many 100s to
1000s of individuals, it will still be necessary to use cell-type deconvolution
methods. Thus, single-cell methylomics may help towards the construction of
tissue-specific DMRMs, and this in turn may improve the inference of cell-type
fractions and DMCTs from large-scale epigenome studies.

Another important area of future development will be applications in
personalized epigenetic epidemiology and medicine. One key area that is likely to
grow even further is noninvasive detection of disease via measurement of cfDNAm
in plasma. Cell-type deconvolution methods as well as more conventional Machine
Learning methods need to be improved further, specially in relation to how informa-
tive features are selected. Currently, algorithms are also aimed at identifying
biomarkers (cell-type specific or not) that display average differences in DNAm
associated with an exposure or outcome. However, averaging over individuals also
obscures in which particular individuals a DNAm change is happening. In the
context of DMCTs, thus one would wish to infer in which cell-types and individual
a particular DNAm change is happening in. Thus, given a DNAm data matrix and
estimates of cell-type fractions, one would ideally want to infer an array of DNAm
values, defined over CpGs, cell-types, and individuals. Mathematically, this is
known as a tensor-object [37] and attempts to infer such a tensor in the context of
EWAS have been made [122], albeit not yet successfully so [127]. Of note, such
tensor-inference methods are also likely to overfit and to be computationally very
intensive if applied in a genome-wide context, as the number of parameters to
estimate is substantially higher.

An important biological question for the future is the relative fractions of
non-specific vs. specific DMCTs. This is likely to depend on the tissue as well as
phenotype. For instance, in the case of SNPs, the proportion of mQTLs that are
shared between blood cell-types is likely to be large (approx. 70–80%)
[36, 37]. Thus, in the case of DNAm variation associated with genetic variants,
this variation appears to be largely cell-type independent, which however still allows
for downstream functional effects to display cell-type specificity. In aging too, a
recent study has shown that most age-associated DNAm changes appear to be
independent of tissue and cell-type [128]. EWAS for body-mass index have also
revealed shared DNAm changes between blood and fat cells, but also differences
[3]. In the case of smoking in blood, there is evidence for both non-specific as well as
specific DMCTs, whereas in buccal swabs the effects appear to be much more cell-
type specific [18]. Other conditions such as type-1 diabetes [39], asthma [34],
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Rheumatoid Arthritis [41] or cancer [89] appear to be associated with larger numbers
of cell-type-specific DMCTs. Understanding why specific factors may affect DNAm
in a cell-type independent manner and why others do not will be an important
question for the epigenetics community that is also highly relevant for epigenetic
epidemiological studies.

To conclude, this chapter provides a brief overview of the key concepts and tools
needed to tackle the challenge posed by cell-type heterogeneity in the context of
DNA methylation studies. We recommend that future epigenetic epidemiological
studies make an attempt to tackle this challenge, using the software tools described
herein, mainly as hypothesis generation tools, to be followed up with functional
studies or validations in purified cell populations.
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