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Abstract In the common use of logic diagrams, the positive term is conveniently
located inside the circle while its negative counterpart is left outside. This practice,
already found in Euler’s original scheme, leads to trouble when one wishes to
express the non-existence of the outer region or to tackle logic problems involving
negative terms. In this chapter, we discuss various techniques introduced by Euler’s
followers to overcome this difficulty: some logicians modified the data of the
problem at hand, others amended the diagrams, and another group changed the mode
of representation. We also consider how modern diagrammatic systems represent
negation.

Keywords Negation · Euler diagram · Venn diagram · Syllogism

Mathematics Subject Classification: Primary 03A05; Secondary 01A55

1 Introduction

Euler diagrams are commonly used in logic. Although they are found in many earlier
sources [22], it is generally admitted that Euler popularized them in the second
volume of his Letters to a German Princess, first published in 1768 [17]. The idea
is rather simple: a circle stands for the extension of a term. For instance, Fig. 1
represents a term A. Then, the logical relations between the terms are represented
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Fig. 1 Term A

Fig. 2 All A are B

Fig. 3 Gergonne relations

by the topological relations between the circles. For instance, Fig. 2 represents
the proposition “All A are B.” Now, Euler introduced his diagrams to handle
syllogistic problems where only positive terms occur, and these diagrams hardly
lend themselves to the treatment of negative terms. Of course, each negative term
not-A is incidentally represented by the space that is outside the circle that stands for
A. But this indirect representation leads to difficulties when one attempts to tackle a
reasoning involving those negative terms.

Let us for instance observe the various ways in which two terms relate to each
other, as formulated by the French mathematician Joseph Gergonne in 1817 [46]. It
is known that for two terms x and y, there are 5 such relations, as shown in Fig. 3.

In each case, the outer region stands for the negation of all the terms in the
argument, i.e., here what is neither x nor y. We clearly see on the 5 diagrams (from
G1 to G5) that this outer region always exists. Hence, it is not possible, without
further amendments, to represent a proposition such as “Everything is x or y” which
asserts the absence of that outer region. The aim of this chapter is precisely to
discuss the solutions that were offered by Euler’s followers to express information
on negative terms with Eulerian diagrams. We will sketch some solutions based on
a transformation of the data, an amendment of the diagrams, and a modification of
the mode of representation. Before proceeding, it might be worth making a couple
of remarks.

First, we consider here only extensional interpretations of Euler diagrams. If we
were to consider intensions, as many early logicians did, the situation would be
different and (far) more complex [1, 42]. Indeed, suppose a circle stands for the
intension of a term A, as in Fig. 4. That means that the circle encloses the attributes
that are predicated to A rather than the individuals that form the extension of A.
It would then be incorrect to state that the outer region stands for not-A since the
intensions of A and not-A may well share some attributes. Hence, the reader needs
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Fig. 4 Intension of term A

Fig. 5 Term A

to keep in mind that we are hereafter concerned with the extensions of the terms
(commonly called classes in the considered historical period).

The second remark that needs to be made is that the difficulty of handling
negative terms is not proper to Euler diagrams. It is also found in many early
diagrammatic, and also algebraic, notations. For instance, if we were to consider
linear diagrams that enjoyed some popularity in Euler’s time [2], the problem would
remain. Let a segment line stand for a term A, as in Fig. 5. The negative term not-A
is indirectly represented by the infinite portions of the line that are beyond the two
ends of segment A. Hence, as observed earlier with Euler diagrams, it is not possible
to express the absence of the outer segment with traditional linear diagrams, without
further amendments.

2 Transformation of the Data

Before we discuss some diagrammatic innovations to handle negative terms, we first
consider in this section a strategy used by some logicians to tackle negative terms
when they occur without the need to amend Euler diagrams. Indeed, an obvious
solution consists in transforming the negative term into a positive one. For instance,
if we are given a problem where a negative term not-x occurs, we might simply treat
it as a positive term. For the purpose, it suffices to (mentally or really) replace not-x
by a positive term z during the solution of the problem.

It is easy to see how this solution allows us to represent the problematic
proposition “Everything is x or y” alluded to earlier. This proposition asserts that no
not-x is not-y. To represent it with Euler diagrams, it suffices to situate the negative
terms inside the circles and the positive terms outside. So, we simply draw two
disjoint circles standing for not-x and not-y, respectively, as in Fig. 6.

This trick allowed logicians to handle arguments with negative terms, and even
to find conclusions that followed from sets of premises that were previously held
to be unproductive (i.e., yielding no conclusion). This is particularly the case when
we face syllogistic forms that have two negative premises. Euler stated that from
such premises, one cannot draw a conclusion ([17], p. 360). However, subsequent
logicians challenged this rule. For instance, William S. Jevons argued that:

[i]t would be a mistake, however, to suppose that the mere occurrence of negative terms
in both premises of a syllogism renders them incapable of yielding a conclusion. The old
rule [ . . . ] is actually falsified in its bare and general statement. In this and many other
cases we can convert the propositions into affirmative ones which will yield a conclusion
by substitution without any difficulty. ([20]: 63)
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Fig. 6 Everything is x or y

Jevons states that a negative proposition can be transformed into a positive one.
For instance, if we are told that “Some x are not y,” we may convert it to “Some
x are not-y.” Here, we simply move the negation from the copula to the predicate.
Hence, we obtain an affirmative proposition “Some x are z” (where z= not-y). Later,
Lewis Carroll made a thorough use of this technique and systematically transformed
propositions of the form “Some x are-not y” into “Some x are not-y” [16]. Carroll
observed that logicians

have somehow acquired a perfectly morbid dread of negative Attributes, which makes them
shut their eyes, like frightened children, when they come across such terrible Propositions
as “All not-x are y”; and thus they exclude from their system many very useful forms of
Syllogisms. ([7], p. 172)

In order to understand the significance of this technique, as used by Jevons and
Carroll, let us consider the following problem, which we will hereafter call Carroll’s
problem ([7], p. 180). Suppose we were given two premises:

No x is m
Some m are not y

And we were asked what conclusion follows from them.
Carroll proposed this problem to compare various logic methods (including Euler

diagrams). Carroll himself introduced both symbolic and diagrammatic techniques
for logical reasoning [29, 31]. In his time, a multitude of notations were introduced,
and it was not rare to see logicians compare their methods by applying them to
similar problems [14]. In the following, we will also use Carroll’s problem to assess
the various methods discussed hereafter.

Since both premises in Carroll’s problem are negative, Euler would claim that
no conclusion would follow from this pair. A direct application of his diagrams
produces no conclusion. Indeed, these premises do not forbid any of the 5 Gergonne
relations between x and y. Given that no traditional proposition is satisfied in all
the cases, it follows that there is no conclusion to the problem. The introduction of
negative terms changes the picture.

Suppose we follow Jevons’ advice and transform the second premise “Some m
are not y” into “Some m are not-y,” and again into “Some x are z” (with z = not-y).
Now, the pair of premises becomes:

No x is m
Some m are z

It is now easy to handle it with traditional Euler diagrams. We first represent the
various possible combinations of the premises, as shown in Fig. 7.
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Fig. 7 ‘No x is m’ and ‘Some m are z’

Then, we eliminate the middle term m, by observing merely the relation between
x and y. Among traditional propositions, only one follows:

Some z are not x,

which can be transformed into the final conclusion of the syllogism:

Some not-x are not-y.

The substitution of a positive term for the negative one allowed us to find the
conclusion of Carroll’s problem. An advantage of this method over the subsequent
ones is that it can be worked out with traditional Euler diagrams, without further
amendments. The transformation is achieved on the expression of the problem,
rather than on the diagrams themselves. However, this method works merely when
a term is not expressed twice with opposite signs in the problem. For instance, if the
middle term m of a syllogism is affirmed in one premise and negated in the other,
it would be useless to substitute the negative occurrence not-m by a positive term z
since that would demand the replacement of the other occurrence m by a negative
term not-z. In the following, we consider other methods that do not suffer from this
shortcoming.

3 Amendment of the Diagrams

This second set of solutions proposes to introduce modifications to Euler diagrams
in such a way as to make them suitable for negative terms. An attempt in this
direction was made by John Neville Keynes. His idea consisted in enhancing Euler
diagrams so that they would depict the actual relations between terms and their
opposites, rather than positive terms alone ([21], p. 170–174). A step in this direction
was previously achieved in 1846 by Augustus De Morgan who introduced the
concept of Universes of discourse. Indeed, this innovation bounds the scope of our
assertions, and hence, defines negative terms not-x as the complement of term x as to
fulfill the universe ([13], p. 2). The universe of discourse is commonly represented
in modern textbooks with a rectangle around our Euler diagram with a finite space
standing for the outer region. This convention was known to Keynes’ predecessors,
notably Alexander Macfarlane ([23], p. 23; [24], p. 61).
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Fig. 8 Keynes relations

Keynes also restricted the universe in his diagrams. Then, he defined the various
relations that two given terms and their opposites may have to each other. For the
purpose, it suffices to consider each of the 5 Gergonne relations and subdivide it into
2 sub-relations: one in which the outer region is empty and one in which it is not.
We would then get 10 sub-relations. However, Keynes excluded 3 cases infringing
his assumption that all classes and their opposites must exist. Hence, he eventually
obtained 7 actual relations between terms x, y, not-x and not-y, as shown in Fig. 8
(in K7, x and y intersect and fill the universe).

These Keynes relations provide the tools needed for a more accurate treatment
of negative terms with Euler diagrams. For instance, they make it easy to represent
the proposition “No not-x is not-y” (and its equivalent form “Everything is x or
y”). This proposition is indeed depicted in the relations K5 and K7, depending
on whether x and y intersect or not. These relations also are used to solve logic
problems, involving negative terms without transforming the data. Let us consider
again Carroll’s problem where we are given the premises:

No x is m
Some m are not y

The first premise allows 2 Keynes relations between x, not-x, m, and not-m:

K4 and K5

The second premise permits 5 Keynes-relations between m, not-m, y, and not-y:

K2, K4, K5, K6, and K7

Then, a rather tedious process follows to merge the two premises and to identify
all the distinct combinations of the three terms x, m, y and their opposites. The
elimination of m (and its opposite) leaves 5 distinct relations between x, y and their
opposites:

K1, K2, K3, K4, and K6
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Fig. 9 Term A

Fig. 10 Term not-A

All these relations depict the conclusion of the syllogism:

Some not-x are not-y

An advantage of Keynes’s solution is that it represents the actual relations that
are known between the terms, similarly to Euler’s original practice. However, this
solution suffers from the complexity and the multiplicity of the figures, especially
when premises are merged, which increases the risk of misusing the diagrams.

Several other amendments of Euler diagrams were proposed by Charles S. Peirce
[37]. In the following, we consider specifically an innovation introduced in the
period 1896-1901 and that relates directly to the representation of negative terms.
Rather than enclosing the Universe, Peirce reworked the shape of the curves in such
a way as to convey the sign of the terms: positive terms are found of the concave
side of the curve and negative terms on the convex side [4, 35]. This convention
encompasses Euler’s common use where positive terms are found inside the circle
(which is the concave side). Hence, in Fig. 9, A is inside the curve and not-A outside
it. There is no necessity to use circles, however, and Peirce introduces shapes that
reverse the location of the terms. For instance, in Fig. 10, A is outside the curve
and not-A inside it. The label ‘A’ is marked on both diagrams and indicates the
differentia between the two spaces (inside vs. outside). Then, the shape of the curve
is considered in order to locate terms. This practice differs from Euler’s original
diagrams where the shape of the curve had no logical meaning [28].

Peirce’s innovation simplifies the representation of propositions involving nega-
tive terms. For instance, if we wish to represent the proposition “No not-A is not-B”
(i.e., “Everything is A or B”), we can use any of the equivalent figures (a), (b), and
(c) in Fig. 11. Neither has a space corresponding to Euler’s outer region not-A not-
B. In his treatment of syllogisms, Peirce favored forms (b) and (c) which transform
the exclusion into an inclusion: either not-A is included in B (form b) or not-B is
included in A (form c) [4].

Let us now consider again Carroll’s problem and attempt to solve it with Peirce’s
method. We are offered two premises:
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Fig. 11 Everything is A or B

Fig. 12 ‘No x is m’ and
‘Some m are not y’

No x is m
Some m are not y

There are various ways in which these premises can be separately drawn,
depending on the shapes of the curves. However, for the purpose of merging the
premises, it is crucial that the middle term m is represented with a similar shape
in both premises. For the purpose, we will use some strategic rules that were used
by Peirce to classify syllogisms into three groups [4]. The present problem belongs
to the second group: it has one universal and one particular premise. Hence, the
premises are better represented with a circle x inside a convex shape m and a circle
y that intersects with both x and m, as shown in Fig. 12. The existential import of
the second premise is indicated with a dot outside m and y.

The elimination of m (and its opposite) shows the conclusion of the syllogism:

Some not-x are not-y

Peirce’s method offers great flexibility for the representation of terms and their
opposites. This feature might be used with benefit for the treatment of logic
problems but may also turn into an inconvenience for the untrained eye. In its
principles of representation, it resembles earlier Eulerian methods in that it does
not devote space to a class whose existence is denied. However, unlike Euler and
Keynes, Peirce does not hold the existence of a space necessarily to entail the
existence of the class. If one wishes to express existence, one needs to mark a space
with a syntactic device, a dot for instance [34]. On this aspect, Peirce’s approach
rather resembles John Venn’s that we discuss in the next section.
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4 Modification of the Mode of Representation

Although each of the previous solutions by Jevons, Keynes, and Peirce had its
strengths and weaknesses, all remained truthful to Euler’s mode of representation:
relations between classes are represented directly by the relations of their figures
(an exception to this rule is Peirce’s representation of existence, alluded to earlier).
As such, all suffer to various extents from the shortcomings of this Eulerian mode
of representation. Indeed, Eulerian diagrams represent relations as they are known
and do not leave much room for uncertainty. Hence, new information may entail
an entire redrawing of the diagram. Also, solving problems with Eulerian diagrams
often require a multitude of diagrams and complex merging rules. Finally, Eulerian
diagrams may work well for simple problems such as syllogisms but become
impractical when the number of term increases. This was inconvenient for early
symbolic logicians, such as Venn, who work out complex problems that involved
several terms [33].

To overcome these shortcomings, Venn published in 1880 a new type of circle
diagrams which differ in their mode of representation from Euler’s [44]. Indeed,
Venn first makes his circles (or whatever shape they may have) intersect in such
a way as to form 2n distinct compartments standing for the combinations of the n
terms in the argument under consideration. For a syllogism, the 3-term diagram
shown in Fig. 13 suffices. For any number of terms, only one Venn diagram
is required. Then, Venn marks the compartments to indicate their states. For
instance, shading indicates emptiness. Venn was more hesitant about occupation
and introduced several conventions for the purpose [34]. Yet, the main idea was to
have a distinctive device (a cross for instance) to express existence.

Venn located a negative term outside the circle standing for a positive term, as
Euler and Keynes did. However, his modification of the mode of representation
makes him handle better than they did problems involving negative terms. Let us
consider again Carroll’s problem (which was solved by Venn himself in ([7], p.
182]). Two premises are offered:

No x is m
Some m are not y

We need a 3-term Venn diagram. The first premise asserts the emptiness of
compartment x m. Hence, all its subdivisions are shaded. The second premise asserts
the existence of compartment m not-y. Hence, at least one of its subdivisions exists.

Fig. 13 3-term Venn diagram
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Fig. 14 ‘No x is m’ and
‘Some m are not y’

Since subdivision x m not-y is known to be empty, it follows that subdivision not-x
m not-y exists, and thus is marked with a cross. We eventually obtain Fig. 14.

The elimination of m immediately shows that the outer region of the diagram is
not empty, which gives the conclusion of the syllogism:

Some not-x are not-y

Although Venn diagrams were not designed to specifically tackle negative terms,
his solution proves effective, simple, and unambiguous. However, this picture is
spoiled by Venn’s refusal to restrict the Universe of discourse arguing that its scope
was an extra-logical issue ([45], p. 250). This decision complicates the shading of
the outer region if one wishes to express the proposition “No not-x is not-y.” Venn
himself was confronted to this difficulty in one his examples and simply wrote that
he did “not troubled to shade the outside of this diagram” ([45], p. 352). Venn was
severely criticized on this ground by his contemporaries, notably Allan Marquand,
Macfarlane, and Carroll. These logicians amended Venn’s scheme and designed
rectangular diagrams with a closed Universe (although Carroll’s early familiarity
with Venn diagrams is not established [30]).

The appeal to rectangular figures reintroduces the issue of the size of comple-
mentary terms, i.e., x and not-x. Symbolic logicians tended to consider these terms
on the same footing, but this view was not necessarily reflected in their notations.
Venn warned that considerations of shape and size should not be contemplated in
the interpretation of his diagrams:

The compartments yielded by our diagrams must be regarded solely in the light of
being bounded by such and such contours, as lying inside or outside such and such
lines. We must abstract entirely from all consideration of their relative magnitude,
as we do for their actual shape, and trace no more connection between these facts
and the logical extension of the terms which they represent than we do between this
logical extension and the size and shape of the letter symbols, A and B and C ([45],
p. 527).

Naturally, if one wished to introduce quantitative considerations, circles hardly
do the job and rectangular shapes are to be favored as Venn himself conceded
([45], p. 526) (See [15]). Another advantage of rectilinear shapes is that they ease
the extension of diagrams by introducing additional curves while keeping regular
figures [32].

Post-Venn tabular diagrams generally attribute equal space for opposite terms x
and not-x, and as such reflect better than Venn did the formal symmetry between
opposites. Carroll specifically insisted on this symmetry and the importance of
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Fig. 15 2-term Carroll
diagram

Fig. 16 Macfarlane diagram

treating opposites on the same footing [12]. The construction of his diagrams,
where a square is divided by dichotomy, and their extension adequately reflect this
symmetry [27]. For 2-terms, he used a symmetrical biliteral diagram such as Fig.
15. Marquand used a similar figure, although the justification of its symmetry is
less enthusiastic: “The quantitative relation of the compartments being insignificant,
they may for convenience be represented as equal” ([26], p. 267). Macfarlane also
used symmetrical figures in his Logical Spectrum [25]. However, in an earlier
treatise, he used an asymmetrical 2-term diagram such as Fig. 16 ([23], p. 54).

5 On Negation in Modern Diagrammatic Systems

Modern diagrammatic systems in logic are, to a large extent, based on Venn’s
scheme, with some amendments due to Peirce for the representation of existential
statements and disjunctives [39]. Sun-Joo Shin played a decisive role in the
transmission of these conventions to modern systems, through her two systems
Venn-I and Venn-II published in 1994 [38]. Both systems, and most subsequent
ones, represent negative terms in the path of Euler and Venn: the space is divided into
two sub-spaces standing for complementary terms. The identification of the positive
and negative terms is conventional but is conveniently indicated by the labeling of
the spaces. Commonly, the positive term is inside the curve while the negative is
left outside. In this chapter, we discussed the representation of negative terms with
Euler diagrams and some other schemes. This subject should not be confused with
the representation of negation itself. The latter might be understood and represented
in a variety of forms, depending on its scope of application.

For instance, if we were to deny a proposition with Euler diagrams, it suffices to
avoid ascribing a space to the classes forbidden by the proposition. For instance, the
proposition “No x is y” is represented with two disjoint circles x and y, as in Fig. 17a,
where no space is ascribed to a class of objects that would be both x and y. In this
method, used by Euler and Keynes, only spaces known to exist are ascribed spaces.
Peirce also eliminated the space of classes that were forbidden but did not grant the
existence of those that were represented. As we saw, Venn had a different method
and introduced a syntactic device to deny the existence of a class. This is achieved by
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Fig. 17 No x is y

Fig. 18 A diagram and its negation

shading its corresponding compartment. For instance, the proposition “No x is y” is
represented by shading the intersection between x and y to express its emptiness, as
in Fig. 17b. Some of Venn’s successors, like Marquand and Macfarlane, adopted his
use of shadings. Others, such as Peirce and Carroll, designed different conventions,
such as the insertion of a “0” on a compartment to indicate its emptiness, as shown
in Fig. 17c. But shadings are dominant in modern systems such as Spider diagrams
[19].

So far, we considered simple negative propositions that denied the existence
of one or more classes and how this information was represented with Eulerian
diagrams. Recent systems of diagrams felt the need to express the denial of
complex expressions conveyed with Euler diagrams. Suppose that we are given the
diagrammatic expression shown in Fig. 18a. Its negation is shown in Fig. 18b (the
crosses indicate presence and the line connecting them disjunction).

Another method to represent the negation of that diagrammatic expression simply
consists in adding a vinculum above it, as shown in Fig. 18c, in a manner similar to
the practices of algebraic notations [41]. This strategy, used in Spider diagrams,
requires an unambiguous definition of the scope of the negation. This scope is
indicated here by the rectangle around the negated diagram. Early logicians, such
as Peirce [36] and Gottlob Frege [18], anticipated such solutions on their graphs
with greater success since their signs of negation incorporated a determination of
the scope, and hence, did not necessitate an additional sign [3].

We may evoke another type of negation found in modern diagrammatic systems
and that consists in expressing the absence of an individual. Except for few early
attempts, notably by Peirce [34], the representation of individuals (and constants)
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Fig. 19 ‘a is P’, “a is not P’, and ‘the absence of a’

on Euler diagrams is recent [8, 43]. Interestingly, Lopamudra Choudhury and Mihir
Chakraborty also introduced a representation for the absence of individuals [5, 8,
40]. Suppose we were given the singular proposition “a is P,” shown in Fig. 19a,
and are asked to represent its opposite “a is not P.” For the purpose, one may simply
insert a outside P, as shown in Fig. 19b, since its absence from P indicates its
presence in not-P. However, they would rather represent the absence of a directly
inside P, as shown in Fig. 19c, where ā stands for “the absence of a.”

This approach to the representation of the absence of individuals was apparently
inspired by Nyāya-thinkers of ancient Indian tradition which led Choudhury and
Chakraborty to consider an “absence” as a distinct ontological category that should
be treated like an individual. In this tradition, it was believed that in one’s cognition
absence of an individual is directly perceived in a locus just as one perceives the
presence of an individual in a locus. One does not generally infer the absence of
something somewhere by observing its presence somewhere else. For example,

The attendance register book of the students of a class is in one-to-one correspondence with
the set of students. The representation of the absence of a student ‘a’ is marked by a symbol
just as is done in case of the presence. We are not pointing at the aspect of administrative
convenience, but at the cognitive impact of this practice. No mark corresponding to some
student would bring to our mind the message ‘no information’. Thus in the register absence
of a student in class is shown by a mark (and not by his/her presence somewhere else) [11].

Figure 19c depicts the absence of the individual a in P directly as Fig. 19a depicts
the presence of a in P. Whereas in Fig. 19b, the information “a is absent in P”
is a kind of derivative from the information depicted in Fig. 19b. Moreover, the
cognitions of the absence of an individual a and the absence of another individual b
are different. Depiction of these absences by ā and b̄ leads one towards perceiving
this difference in a straightforward way [6]. Choudhury and Chakraborty also
propose two other interpretations of absence. In one interpretation, Fig. 19b and
Fig. 19c are not equivalent anymore, i.e., even if we can get Fig. 19c from Fig. 19b
the converse is not possible generally [5, 10, 11]. In the other interpretation, there is
no bounding rectangle, so there is no diagram corresponding to Fig. 19b [6, 9, 11].
In both of these cases, the notion “absence” becomes essential.
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Fig. 20 Summary of solutions for negative terms

6 Conclusion

We surveyed various techniques used in the golden age of logic diagrams to treat
negative terms. Figure 20 offers a summary of these solutions: (a) Euler (1768)
keeps the negative term outside the circle that stands for the positive one, (b) Jevons
[20] substitutes a positive term for the negative term and treats it accordingly, (c)
Keynes (1894) encloses the universe and, thus, restricts the outer region that stands
for the negative term, (d) Peirce (1896) reshapes the diagram to convey the sign of
the term, and (e) Venn [44] returns to Euler’s original plan but modifies the mode of
representation.

It is seen that Venn actually uses the same convention as Euler: the negative term
is outside the closed curve that stands for the positive term. The difference is that
Euler’s figure states the existence of both A and not-A while Venn’s does not. It
merely offers a framework on which marks will be inserted to indicate existence or
emptiness. Given its effectiveness, Venn in a sense makes the subsequent attempts
by Keynes and Peirce obsolete, on the condition that one accepts a change in
the mode of representation. But within the Eulerian mode, Keynes’ and Peirce’s
methods keep their advantages for the representation of negative terms and have
other merits that are beyond the scope of this chapter.
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