
UAV for Precision Agriculture in Vineyards:
A Case Study in Calabria

Giuliana Bilotta and Ernesto Bernardo(B)

Department of Civil, Energy, Environment and Materials Engineering (DICEAM), University
Mediterranea of Reggio Calabria, Via Graziella, Feo di Vito, 89128 Reggio Calabria, Italy

ernesto.bernardo@unirc.it

Abstract. It is well known that nowadays remote sensing has a very crucial role in
agricultural applications using in particular spectral indices as analysis tools useful
to describe the temporal and spatial variability of crops, derived from processing
of satellite images, each with different resolutions on the ground, according to the
satellite of origin. It is also known that today such information can also be obtained
through the use of sensors mounted on UAV (Unmanned Aerial Vehicle). In the
present note we want to carry out a detailed analysis to define the condition of
vigor of a vineyard situated in the province of Reggio Calabria (Southern Italy),
comparingmultispectral satellite images (Sentinel-2) with those provided byUAV
platforms at low altitude, using as a parameter of effectiveness the relationship
between the NDVI (Normalized Difference Vegetation Index) and the vigor of
the crops. It is also proposed a GIS (Geographic Information System) for the
management of agricultural land in order to build a system that can provide alerts
in case interventions are needed depending on crop water stress.
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1 Introduction

1.1 Precision Agriculture

In recent years, Precision Agriculture (PA) has received significant attention in the agri-
cultural world. It enables automated management of portions of land on a “sub-apple”
scale by integrating information technology and agronomic practices [1].

With the intention of integrating the concepts of business management and pro-
cess automation, precision agriculture is a management strategy [2] that uses informa-
tion technology to collect data from multiple sources in order to use them in decisions
regarding field production activities [3].

Particularly interesting for this purpose is the crop monitoring that is based on obser-
vations carried out directly on crops in place in order to obtain data on phenological
stages, nutritional status [5], phytosanitary status [6], production expectations [4, 7],
production maps [8], etc. It is essential that this is automated given the large amount of
data to be collected and processed [9].
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The crop monitoring, in particular, uses remote sensing data and is based on the link
that exists between a series of parameters related to the leaf curtain [10] that can express
the vegetative-productive responses of plants and evaluate the variability as a function
of the different behavior of surfaces and bodies [11] to the phenomena of absorption or
reflection of light in the visible and infrared [12].

Since the ‘70s, thanks to satellite remote sensing, large agricultural areas have been
monitored for stock forecasting purposes [13], thus providing useful data for agriculture
itself. Remote sensing techniques are very useful in fact to assess the state of vegetative
health [14] thanks to the particular optical behavior of plants in the infrared radiation
band [15]. The expensive flights of airplanes equipped with special cameras were soon
supplanted by satellites that, continuously orbiting around the Earth, acquire data on the
electromagnetic emission of objects on the Earth’s surface, and therefore also of crops,
with their multispectral sensors if passive, radar if active. Passive sensors in particular,
however, have limitations in the necessarily diurnal acquisition and in the eventual cloud
cover that constitutes an important obstacle. Also, the level of detail achievable does not
allow certain types of analysis on small plots of land.

On the other hand, UAVs can be very useful by collecting more detailed georefer-
enced information with different types of sensors [16–19, 32].

In viticulture in particular, facing difficulties during production cycles by defining
an adequate crop management, the PA approach has the final goal of improving vineyard
yield and grape quality, while reducing all wastes, costs and decreasing environmental
impact [20].

A correct knowledge of the spatial variability between and within crops is a fun-
damental factor for winemakers to estimate yield and quality results. Data provided by
optical sensors in multispectral and hyperspectral imagery systems are exploited to cal-
culate a broad set of crop-related indices (such as, for example, the LAI - Leaf Area
Index [21]), of which the normalized difference vegetation index (NDVI) is one of the
most widely used because it is related to crop vigor and, therefore, to estimated quantity
and quality of field production.

MultiSpectral Instrument (MSI) of Sentinel 2 covers large areas and many satel-
lite programs (i.e., Landsat, Sentinel-1 and Sentinel-2) now freely supply datasets, so
promoting the exploitation of satellite imagery for many applications, agricultural too,
includingmultisensor andmultiresolution data fusion [22, 23]. Sentinel-2 from the Euro-
pean Space Agency (ESA) offers decameter resolution with six days revisiting time and
efficient resolution in analyzing crop variability and conditions. But if we consider crops
as orchards and vineyards (with discontinuities in layouts) remote sensing is more dif-
ficult. In fact, the existence of paths between yields and weedy vegetation within the
cultivated land can greatly influence the overall calculation of spectral indices, resulting
in a less accurate assessment of crop status. In order to overcome this criticality, new
approaches and algorithms have been developed that also use multispectral data from
UAVs [23, 24].

Low-altitude platforms, as UAVs with airborne sensors, by acquiring images with
high resolution, having also flexible flight planning, allow to differentiate pure canopy
pixels from other objects, even classifying details within canopies [25].
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Specifically, it is possible to successfully combine an unmanned rotary-wing plat-
form with a multispectral sensor in order to detect and monitor water-stressed areas of
orchards, vineyards and olive groves [26].

NDVI index calculated by processing images taken in the infrared, is a parameter
used in PA because it is directly related to the health of the vegetation, allowing to
discover problems such as nutrient deficiency, the presence of parasitic infections or
conditions of water stress. Early detection of such situations allows for targeted and
effective interventionwith cost savings and increased crop yield.Often infrared detection
allows problems to be detected before they are visible to the naked eye [27, 28].

Multispectral sensors used on UAVs can record at least three channels like a normal
camera but one of the channels is replaced by infrared. Although multispectral sensors
can acquire in more than four bands, and multispectral cameras can record more than the
3 channels here defined, in this application each image will consist of two visible colors
plus infrared [29, 30]. The NDVI index is thus calculated in a single image through a
variant of the standard formula. The processing is done automatically in the GIS we used
(QGis). The maps obtained after processing are false-color maps in which red represents
areas of maximum vitality and are called “Vigor Maps” [31, 33].

In this paper, we are presenting an in-depth analysis of vineyards by comparing
MultiSpectral Instrument (MSI) provided by a decameter resolution satellite and a low
altitude UAV platform. The effectiveness of MSI from Sentinel-2 and UAV airborne
sensors, with very high resolution, was evaluated considering the relationship between
crop vigor and NDVI. UAV data were compared with satellite images, by calculating
three NDVI indices to analyzing the contribution of the vineyard elements considering:
(i) whole agricultural area; (ii) only vine canopies; and (iii) only inter-row soil [5, 34,
35].

Obviously, the proposed methodology can be extended to other types of crops grown
in rows, where the crop canopies do not extend over the entire area or where the presence
of grass or bare soil is significant [6, 36, 37].

2 Materials and Methods

Our study analyzed a vineyard situated in Bova Superiore, a small municipality in the
province of Reggio Calabria (South Italy), locality Briga, covering an area of about 0.42
hectares. The cultivated territory is located in an area between latitudes [37.9855 and
37.9862’] and longitudes of [15.9142 and 15.917719’] and includes a series of parcels
cultivated as vineyards, the most representative of which have respectively an extension
of about 0.24 ha and 0.18 ha (Fig. 1).

The vineyard is located on a sloping land with a varied morphology, with an altitude
ranging from 600 to 800 m above sea level and an orientation mainly facing south.

The interaxis between rows is 2 m, between one row and another there is a space
of one meter while the width of the canopy of the row is about one meter. The planting
dates back to 2016.

For the irregular land morphology as elevation, and soil characteristics, the consid-
ered vineyard is presumably characterized by variations in vine vigorwithin and between
plots.
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Fig. 1. Study area: Bova Superiore in Calabria, Southern Italy.

For extending the study to different phenological vine phases, we conducted survey
campaigns (both satellite and drone) from May to September 2020. The vigor in fact
varies throughout the phenological cycle, and consequently we acquired the images in
four stages between flowering and ripening for considering various vegetative states
[38]. However, some meteorological trends (including below-average rainfall) caused
stress on crops by affecting the growth of plants [44].

Table 1. Characteristics of satellite Sentinel 2 imagery

Sentinel 2

No. channels 13

Spectral bands used B4 – Red 650–680 nm
B8 – NIR 770–810 nm

Ground sampling distance (GSD) per band 10 m

Ground dimension of the image 100 km × 100 km
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As satellite data were used Sentinel-2 Level 2A acquired onMay 24, July 28, August
27 and September 21 2020 at 09:40 UTC (in Fig. 2 you can see an example) and in the
Table 1 we report the image characteristics [39].

Fig. 2. Sentinel 2 false color image (RGB = bands 8, 4, 3) of a subset of the province of Reggio
Calabria including the study area.

Regarding instead the multispectral images acquired by drone, it is noted that it was
used the Parrot Bluegrass drone that integrates the multispectral sensor Parrot Sequoia,
suitable for use in agriculture can capture images of crops in both the visible spectrum,
both in the infrared. This system includes:

– A multispectral sensor recording crop images of crops in four spectral bands: Green
(500 nm Bandwidth 40 nm), Red (660 nm Bandwidth 40 nm), Red-edge (735 nm
Bandwidth 10 nm) and Near Infrared (790 nm Bandwidth 40 nm).

– An RGB camera (16 MP).
– An integrated 64 GB memory.
– A built-in brightness sensor (‘sunshine’ sensor) that records light situation and cali-
brates automatically the four multispectral sensors. The ’sunshine’ sensor integrates
an SD card slot to expand storage capacity.

– Sequoia also integrates GPS and IMU (Inertial Measurement Unit).

Table 2 shows UAV, sensor’s image and characteristics.

Table 2. Platforms and sensors used: parrot sequoia multispectral camera
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Figure 3 shows the parcels on the ground, with the superimposition of the
hyperspectral camera images.

In Fig. 3 (a) are shown in false colors (NIR channels, red and green) the limits of the
considered particles (marked by yellow polygons identified with “Area-A” and “Area-
B”), returned by UAV. In particular the UAV-based multispectral images were processed
with the Agisoft PhotoScan® software, processing imagery sequences of more than
1000 images acquired by a Parrot Sequoia® multispectral camera [40–42]. UAV flights
were conducted on May 6, June 27, August 10, and September 15 at different hours.

TheUAVroutewas designed tomaintain flight height about 30mabove the groundby
correctly defining waypoint sets. With this specification, the aerial GSD images measure
5 cm (Table 2).

Figure 3 shows the parcels on the ground, with the superimposition of the
multispectral camera images, reference system is WGS84.

Fig. 3. (a) Superimposition of the hyperspectral camera images on the surveyed parcels; mul-
tispectral imagery UAV-based, shown in false colours (Green, Red, NIR), of (b): “Area-A” and
“Area-B”. Reference system is WGS84. (Color figure online)

2.1 Data Processing

At this point we proceeded to comparing and analyzing the images obtained from the
UAV and satellite with respective spatial resolutions after selecting from the Sentinel
images the pixels fully enclosed in the limits of the 2 study areas considered “Area A”
and “Area B” (Fig. 3).

In this regard, a procedure has been implemented to automatically determine the
value of NDVI from satellite (NDVIsat), to achieve homogenization of Sentinel and
UAV data (through a downsampling of correlation between pixels s(i, j) from satellite
and P(i,j) from UAV), to calculate the NDVI from UAV (NDVIuav) and to calculate
both the NDVI for the leaf canopies of the vines (NDVIvin) and NDVI of inter-row area
(NDVIint).

In fact, important for evaluating the variability in the vineyard and therefore the vines
vigor is NDVI index, thus calculated for the pixels of the Sentinel image s(i,j) thanks to
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the spectral data) in RED and NIR bands:

NDVIsat(i, j) = nN (i, j) − nR(i, j)

nN (i, j) + nR(i, j)
(1)

A preliminary downsampling method of the high-resolution UAV images was done
to allow the comparison of the UAV-based MSI and the Satellite imaging. So we pro-
ceeded to sampling the UAVs, data (at higher resolution) for comparing them with the
corresponding satellite data, i.e. the set of UAV data D corresponding to P(i,j):

G(i, j) = {d(u, v) ∈ D|αs(i, j + 1) ≤ αd (u, v) < αs(i, j),
βs(i, j) ≤ βd (u, v) < βs(i + 1, j),∀u, v} (2)

Thus the satellite data s(i,j) andUAVdata P(i,j) show the same subset of the vineyard.
Three NDVIs were analyzed from the VHR 2data from themultispectral sensor mounted
on the UAV, then compared with the satellite data on:

(i) the entire cultivated area P(i,j):

NDVIuav(i, j) =
∑

u
∑

v
mN(u,v)−mR(u,v)
mN(u,v)+mR(u,v)

card P(i, j)
∀d(u, v) ∈ P(i, j) (3)

(ii) the pixels of the canopies:

NDVIvin(i, j) =
∑

u
∑

v
mN(u,v)−mR(u,v)
mN(u,v)+mR(u,v)

card P(i, j)
∀d(u, v) ∈ Pvin(i, j) (4)

(iii) the pixels of the inter-rows:

NDVI int(i, j) =
∑

u
∑

v
mN(u,v)−mR(u,v)
mN(u,v)+mR(u,v)

card P(i, j)
∀d(u, v) ∈ Pint(i, j) (5)

In Fig. 4, (a) shows the NDVIsat map obtained the full set of pixels selected from
Satellite imagery; (b) shows an NDVIuav map congruent (correctly aligned, at the same
spatial resolution) to those derived from satellite imagery (NDVIsat); (c) shows the
complete NDVIvin map; (d) shows the NDVIint map of the inter-row ground, derived by
processing the UAV images (Table 3).
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Fig. 4. Complete (a) NDVIsat map, with pixels fully included in “Area A” and “Area B”, derived
from satellite images S2, and (b) NDVIuav obtained from UAV images D2. (c) Vineyard NDVIvin
map from UAV images D2 obtained only on canopy pixels Pvin, (d) NDVIint map that consideres
inter-row ground Pint.

Table 3. Nomenclature.

Term Nomenclature

d(u, v) Pixel in row u and column v of D, raster matrix

D HIGH-resolution UAV multispectral image

P(i, j) UAV pixels d(u, v) depicting the area of satellite pixels s(i, j)

Pvin(i, j) UAV pixels d(u, v) showing only vines canopy

Pint(i, j) UAV pixels d(u, v) depicting only inter-row ground

NDVIsat(i, j) NDVI estimated using satellite images S

NDVIuav(i, j) Entire NDVI calculated on UAV pixels in P(i, j)

NDVIvin(i, j) NDVI calculated only on UAV pixels Pvin(i, j) that represent vines canopy

NDVI int(i, j) NDVI calculated only on UAV pixels Pint(i, j) showing inter-row ground

mN(i, j) Reflectance values in the NIR band of pixels d(u, v)

mR(i, j) DNs in the red band of pixels d(u, v)

nN(i, j) DNs in the NIR band of pixels s(i, j)

nR(i, j) DNs in the red band of pixels s(i, j)

s(i, j) Pixels of row i and column j inthe raster matrix S

(continued)
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Table 3. (continued)

Term Nomenclature

S Multispectral image 10 m resolution from Sentinel satellite

αd (u, v) Latitude coordinate (in WGS84) of pixel d(u, v) centre

αs (i, j) Latitude coordinate (in WGS84) of the upper left corner of pixel s(i, j)

βd (u, v) Longitude coordinate (in WGS84) of pixel d(u, v) centre

βs (i, j) Longitude coordinate (in WGS84) of the upper left corner of pixel s(i, j)

At this point, as in [5], we consider a particular study area of the vineyard of limited
dimensions about 10 m by 10 m (size about 1 pixel) calculating NDVIuav in false color
(Fig. 5a), NDVIuav in two classes canopy and inter-row (5b), NDVIvin value calculated
in the set Pvin (5c) and NDVIint calculated in the set Pint (5d).

Fig. 5. Study area with 10 m ×10 m vineyard selection: (a) Enhancement of subset P(8, 20) of
UAV map D2 in false colours (Green, Red and NIR); (b) pixels d(u, v) ⊂ P(8, 20) classified into
two classes: Pvin (green), vine canopies, and Pint (brown), inter-row ground; (c) NDVI values of
Pvin, vine canopies; (d) inter-row ground Pint. (Color figure online)

3 Results

At this point, having available theNDVI values, both fromUAVand satellite, we proceed
to interpolate (correlation) the various data obtained, related to the categories NDVIuav,
NDVIvin, NDVIint, in order to assess whether the response from the two methodologies
can be comparable [43]. For evaluating the comparison of satellite and UAV images
effectiveness in depicting and evaluating the vigor value variability estimated relative to
the vineyard, we calculated four NDVI maps over time:

• an NDVIsat map from satellite images;
• (i) an NDVIuav full map (spectral values from all the pixels showing both inter-row

ground and vine canopies);
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• (ii) an NDVIvin map of vine canopies;
• and (iii) an NDVIint map for paths between rows.

For comparing UAV-based images with satellite images (having 10 m GSD), UAV
images - high-resolution - were decampioned as previously indicated.

The matching between each pair of spatiotemporal maps was examined using pair
was examined with statistical comparison techniques, in particular Pearson’s correlation
coefficient, as measure of map similarity, after operating a normalization procedure
focusing differences of the map pair.

With a preliminary investigation we examined the robustness of the set of data
comparing NDVIsat map and NDVIuav full map, for the two Areas and four acquisition
campaigns as can be seen by way of example from the correlation for the pair of images
D1/S1, detailed for “Area A”, “Area B” (note Fig. 6a–c where the NDVIsat map values
(x axis) are correlated with:

– (a) the NDVIuav full map (y axis);
– (b) the NDVI values enhanced of NDVIvin map (y axis);
– (c) the leftover NDVI values of the NDVIint map (y-axis).

The values of the Pearson correlation coefficients obtained, referred to as RSat/UAV,
confirmed the consistency between the information obtained by the two platforms.

Table 4. Pearson correlation coefficient results of the NDVI map comparison procedure.

R sat/UAV R sat/vin R sat/int

Map pair D1/S1 D2/S2 D3/S3 D4/S4 D1/S1 D2/S2 D3/S3 D4/S4 D1/S1 D2/S2 D3/S3 D4/S4

Parcel A 0.58 0.68 0.61 0.58 0.33 0.31 0.40 0.45 0.58 0.66 0.59 0.52

Parcel B 0.59 0.66 0.64 0.62 0.42 0.40 0.42 0.42 0.63 0.66 0.54 0.61

Once the coherence of the chosen datasetwas verified, the information quality offered
by the two types ofNDVImaps onvineyard vegetative conditionwas tested by comparing
the NDVIsat and NDVIuav maps with the three-class field assessment of vigor performed
by experienced vigor operators (Fig. 6). Statistical techniques based on analysis of
variance did not show a significant difference between vigor groups.

The use of an imagewith a resolution of about 30 cmsuch as aWorldView-3, although
not comparable to the drone data as resolution, would still allow a better definition of
the vigor of the vines and, more generally, of the row crops.

WorldView-3 offers 31 cm ground sampling distance (GSD) for the panchromatic
band and 124 cm for the 8 multispectral bands. With imagery from the WorldView-3
satellite, a much more accurate vigor analysis could be accomplished by proceeding as
was done here with the UAV. In this case, since the inter-row areas are discriminable
(those, acquired by decametric satellite sensor, lead to a bad understanding of the actual
vigor of the vines), we could also provide a verification with Object Based Image Anal-
ysis (OBIA), operating firstly a segmentation of the canopies and inter-row areas, then
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Fig. 6. Vineyard site classification into three vigor classes on the basis of the observed evaluation
in field vigor. Classes “L”, “M”, and “H” related to low, medium, and high vigor.

proceeding separately to the classification of the vigor through the different NDVI found
in the extraction of the objects formed with OBIA (extracting objects directly from satel-
lite imagery is one of the strengths of OBIA,which is used in awide range of applications
[27]).

As a result of these analyses we realized a GIS (Fig. 7) for monitoring and manag-
ing agricultural land with Remote Sensing using, as input data, UAV images and Very
High Resolution (VHR) satellite imagery classified with OBIA. The GIS is useful for
agriculture in general and not only for vineyard management, and takes into account the
geomorphology of the land, climatic conditions (wind, rain etc.) andmoisture conditions
of the soil for the crops. This system can provide alerts in case interventions are needed
depending on crop water stress.

Fig. 7. GIS, VHR image: green=NDVI high; yellow=NDVImedium; red=NDVI low. (Color
figure online)

Our analysis of satellite imagery at decametric resolution revealed limitations in
providing information on the conditions of vineyards: indeed crop information can be
modified by inter-row soil which, as for row crops, could modify the assessment. In
fact, we found a strong correspondence between NDVIsat satellite map and NDVIint
map obtained from UAV images depicting just inter-row pixels (table on Pearson’s
correlation coefficients above 0.6 over 65% of the map pairs and never below 0.52). In
addition, we found a poor relationship among NDVIsat satellite map and NDVIvin map,
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that in UAV images considers only pixels of he vine canopies. More than 87% of the
Pearson Rsat/vin correlation coefficients were equal to or less than 0.42 (Table 4).

This analysis shows that, in the presence of crops in which paths and inter-row sur-
faces cover a significant part of cultivated land, as vineyards, we see that the information
by the satellite platforms with sensor of decameter spatial resolution is not sufficient to
correctly assess the condition of the crops and their variability. The inter-row area may
be bare soil, or covered by grass, by other crops for integrated pest control, according
to the crop choices made. Thus, vineyard vigor may not match that of the inter-row
areas, leading to biased assessments of vineyard vigor from decameter spatial resolu-
tion images. We verified the efficacy of NDVIvin and NDVIsat maps in identifying plant
vigor, in accordance with expert field assessment, using statistical techniques based on
analysis of variance method. The results show that, in crops where is inter-row ground,
the information acquired from satellite platforms at decametric resolution do not allow
to correctly assess the state and variability of the crops, which instead is possible and
accurate through the use of sensors from UAV [34, 35]. This additional verification con-
firmed the most important result of the analysis performed, demonstrating that, when
crops have inter-row areas covering a significant portion of the cultivated land, such
as vineyards, satellite-acquired radiometric information may have difficulty in correctly
assessing crop condition and variability. In these scenarios, to properly evaluate variation
inside and between vines, high-resolution images are needed.

4 Conclusions

Our article introduces an in-depth analysis with a comparing of multispectral vineyard
imagery acquired from satellite platforms as Sentinel-2 [36], at decameter resolution,
and ultra-high resolution, low altitude UAV platforms. We evaluated the effectiveness
of the specified satellite images and those from UAVs based on NDVI defining vineyard
vigor. A farmland located in Bova Superiore (Calabria, Southern Italy) was selected as
experimental site for the realization of four imaging campaigns scheduled according to
the main phenological stages of the grapevine.

The outcomes demonstrate that in vineyards the data captured by satellite systems at
decametric resolution are not adequate to correctly assess the condition and variability of
crops. In fact, on the basis of Sentinel-2 images, vineyard vigor could be in discordance
with inter-row zones obtaining an erroneous assessments of vineyard vigor. This was
demonstrated by an in-depth analysis of the contribute of the various components within
the cultivated land by determining three distinct NDVI indices from the high-resolution
UAV images, considering: (i) the entire cropland area; (ii) only the vine canopy; and (iii)
only the soil pixels between the rows. The satellite-based NDVI maps were shown to be
better. correlated to NDVI maps calculated from high-resolution UAV imagery relating
only to inter-row surfaces, whereas NDVI from UAV imagery relating only to pixels
representing vine canopies better describes vineyard vigor. The proposed approach can
be extended to other types of crops grown with substantial inter-row spaces.

The GIS realized for monitoring and managing agricultural land with Remote Sens-
ing with UAV images and VHR satellite imagery classified with OBIA is very useful for
agricultural management, producing also alerts in case of crop stress.
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