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Abstract. Process mining starts from event data. The ordering of events is vital
for the discovery of process models. However, the timestamps of events may
be unreliable or imprecise. To further complicate matters, also causally unrelated
events may be ordered in time. The fact that one event is followed by another does
not imply that the former causes the latter. This paper explores the relationship
between time and order. Moreover, it describes an approach to preprocess event
data having timestamp-related problems. This approach avoids using accidental
or unreliable orders and timestamps, creates partial orders to capture uncertainty,
and allows for exploiting domain knowledge to (re)order events. Optionally, the
approach also generates interleavings to be able to use existing process mining
techniques that cannot handle partially ordered event data. The approach has been
implemented using ProM and can be applied to any event log.
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1 Introduction

Most process mining techniques require the events within a case to the totally ordered
[2]. For example, nearly all discovery techniques convert the event log into a multiset
of traces where each trace is a sequence of activities. To order the events within a
case, typically timestamps are used. However, the timestamps may be unreliable or
too coarse-grained. Consider, for example, a nurse taking a blood sample from a patient
at 16.55 but recording this into the hospital’s information system at 17.55 when her
shift ends (event e1). At 17.15, the patient’s insurance company approved the operation
and this was automatically recorded (event e2). The same patient also had an X-ray in
the evening, but only the date is recorded (event e3). In this example, the real ordering
of events was 〈e1, e2, e3〉, but in the event log they may appear as 〈e3, e2, e1〉. Event
e1 happened before e2 but was recorded one hour later. Event e3 was the last event,
but because only the date was recorded, it appeared to have happened at time 00.00.
Moreover, events e1 and e2 were fully unrelated, so why consider the temporal order?
The approval was triggered by a request submitted two days before. Healthcare data are
notorious for having data quality problems [10]. However, such issues can be found in
any domain [3,11,15].
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Fig. 1. We assume that events may have explicit order information (left) and have a timestamp
(right). However, the ordering is partial and the timestamps can be coarse-grained.

In this paper, we assume that events are partially ordered and have a timestamp
(see Fig. 1). This allows us to reason about the problems just mentioned. Given a set of
events E, we assume a strict partial order ≺o ⊆ E ×E. e1 ≺o e2 means that event e1 is
before event e2. πtime(e1) and πtime(e2) are the timestamps of both events. We assume
that events are recorded at a certain granularity, e.g., milliseconds, seconds, hours, days,
weeks, months, or years. Events may have more fine-grained timestamps, but we map
these onto the chosen level of granularity. For example, “19-05-2021:17.15.00” and “19-
05-2021:17.55” are both mapped onto “19-05-2021” when using days as a granularity.

As mentioned, next to timestamps at a selected granularity level, we also assume a
partial order on events. Such a partial order can also be more coarse-grained or more
fine-grained. One extreme is that the events are totally ordered, i.e., for any two events
e1 and e2: e1 ≺o e2 or e1 �o e2. Another extreme is that that no two events are ordered
(e1 ⊀o e2 or e1 �o e2). The latter case (events are unordered) is similar to assuming
that all events have the same coarse-grained timestamp (e.g., same year).

To better explain the problem, we consider the BPMN (Business Process Model
and Notation) model shown in Fig. 2 for handling requests for compensation within
an airline. Customers may request compensation for various reasons, e.g., a delayed
or canceled flight. The process starts by registering the request (reg). After this, three
checks need to be performed. The customer’s ticket and history are checked for all
cases, i.e., activities (ct) and (ch) need to be performed for all requests. There is a choice
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Fig. 2. A BPMN model having 4 partially-ordered runs and 2 × 2 × 3! = 24 sequential runs.
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Fig. 3. The four partially-ordered runs of the BPMN model in Fig. 2.

between a thorough examination (et) and a casual examination (ec). After this, a deci-
sion is made (dec) and the request is rejected (rej ) or some compensation is paid (pay).
Examples of sequential runs are 〈reg , et , ct , ch, dec, pay〉, 〈reg , ct , ec, ch, dec, rej 〉,
and 〈reg , ch, ct , et , dec, pay〉. In total there are 2 × 2 × 3! = 24 sequential runs. Note
that in each run there are three concurrent activities (ct , ch , and either et or ec). These
can be interleaved in 3! = 6 ways.

There are only 2 × 2 = 4 partially-ordered runs. These are depicted in Fig. 3.
Note that the four partially-ordered runs do not need to specify the ordering of con-
current activities. Consider the scenario with 10 concurrent activities; there is just one
partially-ordered run, but there are 10! = 3628800 sequential runs. Figure 3 helps to
understand why partial orders are considered in process mining and many other analy-
sis approaches.

Table 1. A fragment of an event log where the timestamps of events are problematic.

Event id Properties

Case id Activity Timestamp Resource Cost . . .

36533 9901 Register request 19-05-2021:11.02.55 Sarah 50 . . .

36534 9901 Check ticket 19-05-2021:13.02 John 25 . . .

36535 9902 Register request 19-05-2021:13.02 Sarah 50 . . .

36536 9902 Check history 20-05-2021:00.00.00 Pete 45 . . .

36537 9901 Check history 20-05-2021:00.00.00 Pete 45 . . .

36538 9901 Examine casually 20-05-2021:08.55.34 Mary 55 . . .

36539 9902 Check ticket 20-05-2021:09.11.21 John 25 . . .

36540 9902 Examine thoroughly 20-05-2021:10.55 Harry 55 . . .

36541 9901 Decide 21-05-2021 Angela 55 . . .

36542 9902 Decide 21-05-2021 Angela 75 . . .

36543 9902 Reject request 22-05-2021:14.12.45 Sarah 20 . . .

36544 9901 Pay compensation 22-05-2021:16.52.37 Sarah 150 . . .

. . . . . . . . . . . . . . . . . . . . .
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Table 1 shows a fragment of an event log corresponding to the BPMN model in
Fig. 2. Process discovery techniques aim to learn a process model based on such data.
If we assume the events to be sorted based on the identifier in the first column, then
case 9901 corresponds to sequential run 〈reg , ct , ch, ec, dec, pay〉 and case 9902 cor-
responds to sequential run 〈reg , ch, ct , et , dec, rej 〉. However, a closer inspection of
the timestamp column suggests that there several problems. Some events have a pre-
cision in seconds, others in minutes, or even days. There are also timestamps of the
form “20-05-2021:00.00.00” which suggests that times are sometimes rounded to days.
Moreover, we may know that some timestamps show the time of recording and not the
actual event. At the same time, we may know that the registration activity (reg) always
happens before the check activities.

When timestamps are unreliable or imprecise, like in Table 1, we cannot use them
as-is. One approach is to make the timestamps more coarse-grained (e.g., just con-
sider the day). This automatically leads to partially ordered traces. Moreover, there may
be explicit information that reveals explicit causal relations. For example, when the
concurrent activities do not share any information. We may know that ct , ch , ec, and
et use only data collected in ref , but that dec uses the outcomes of the three checks.
Such causal dependencies can be derived based on data-flow analysis or explicit domain
knowledge, e.g., a payment is always preceded by a decision. As Fig. 1 shows, partial
orders can be used to express either uncertainty or explicit causality (i.e., partial orders
have a dual interpretation).

Next to discussing the relationship between time and order, we present a concrete
preprocessing approach implemented in ProM (contained in the PartialOrderVisualizer
package that can be downloaded from promtools.org). The approach uses a time
aggregator and tiebreaker to create a partially-ordered event log. Moreover, it is possi-
ble to create a k-sequentialization of the partially-ordered event log to be able to apply
conventional approaches.

The remainder of this paper is organized as follows. Section 2 presents related work
and Sect. 3 provides a theoretical foundation to reason about the relationship between
time and order. Section 4 presents our preprocessing approach, followed by implemen-
tation details and an example (Sect. 5). Section 6 concludes the paper.

2 Related Work

For an overview of process mining techniques, we refer to [2]. See [5] for conformance
checking and [14] for large-scale applications in organizations such as BMW, Uber,
Siemens, EDP, ABB, Bosch, and Telekom.

Recently, many papers on data quality in process mining were published [3,11,15].
Earlier [2,10] already provided a framework for data quality issues and guidelines for
logging. Timestamp-related data quality problems are seen as one of the main road-
blocks in process mining.

Explicit uncertainty is considered in the work of Pegoraro et al. [12,13]. Event logs
are annotated with explicit uncertainty and this information is used when discover-
ing process models or checking conformance. For example, timestamps of events have
upper and lower bounds and conformance checking yields optimistic and pessimistic
bounds for the actual fitness.



May I Take Your Order? 103

Partial orders are a well-studied topic in modeling checking and concurrency theory.
Partially-ordered causal runs are part of the standard true-concurrency semantics of
Petri net [7]. See [4] for an example of a synthesis technique using partial orders as
input. There are a few process mining techniques that start from partial orders, e.g., the
conformance checking technique in [9] and the process discovery technique in [8].

In [1] techniques for partial order resolution are presented. These aim to convert a
strict weak ordering into a probability distribution over all corresponding total orders.
In [6] also the “same-timestamp problem” is addressed, again aiming at creating total
orders. It is impossible to list all partial-order-based approaches here. Moreover, the
goal of this paper is not to present new conformance checking or process discovery
techniques. Instead, we provide a framework to reason about the relation between order
and time, and the corresponding challenges.

In this paper, we focus on the preprocessing of event data while using standard pro-
cess mining techniques. The main contribution is a discussion on the interplay between
time and ordering and a concrete preprocessing tool implemented in ProM. Obviously,
our framework can be combined with existing partial-order-based techniques such as
[1,4,6,8,9].

3 On the Interplay Between Time and Order in Process Mining

In this section, we define event logs that may have both explicit ordering information
and timestamps (possibly rounded to hours, days, or weeks). We relate such event logs
to the simplified event logs typically used as input for process discovery.

3.1 Event Logs with Time and Order

We first define universes for events, attribute names, values, activities, timestamps, and
attribute name-value mappings. Attribute name-value mappings will be used to assign
at least a case, activity, and timestamp to each event.

Definition 1 (Universes). E is the universe of event identifiers. N is the universe of
attribute names with {case, act , time} ⊆ N , V is the universe of attribute values,
C ⊆ V is the universe of case identifiers, A ⊆ V is the universe of activity names,
T ⊆ V is the universe of totally-ordered timestamps, and M ⊆ N �→ V is the universe
of attribute name-value mappings such that for any m ∈ M: {case, act , time} ⊆
dom(m), m(case) ∈ C, m(act) ∈ A, and m(time) ∈ T . For any n ∈ N we write
m(n) = ⊥ if n �∈ dom(m).

The properties of an event are described by an attribute name-value mapping that
provides at least a case identifier, activity name, and timestamp. Moreover, events may
have an explicit order next to timestamp information.
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Definition 2 (Event Log). An event log L = (E, π,≺o) consists of a set of events
E ⊆ E , a mapping π ∈ E → M,1 and ≺o ⊆ E × E such that (E,≺o) is a strict
partial order (i.e., irreflexive, transitive, and asymmetric).2

Table 1 shows a fragment of a larger event log. Consider the first event in the
table: e = 36533, πcase(e) = 9901, πact(e) = register request , πtime(e) = 19-05-
2021:11.02.55, πresource(e) = Sarah , and πcost(e) = 50. Table 1 does not define an
explicit order. Possible interpretations are that ≺o = ∅ (no order) or a total order based
on the order in the table, i.e., e1 ≺o e2 if the row corresponding to e1 appears before
the row corresponding to e2. However, ≺o may also be based on domain knowledge or
data-flow analysis (events can only use a data value produced by an earlier event).

Definition 3 (Notations). Let L = (E, π,≺o) be an event log.

– A(L) = {πact(e) | e ∈ E} are the activities in L, C(L) = {πcase(e) | e ∈ E} are
the cases in L, and E�c= {e ∈ E | πcase(e) = c} are the events of case c ∈ C(L).

– ≺t= {(e1, e2) ∈ E × E | πtime(e1) < πtime(e2)} is the strict partial order based
on the timestamps,

– ≺ot =≺o ∪ ≺t is the union of the strict partial orders ≺o and ≺t.
– If two events e1, e2 ∈ E are unordered with respect to ≺o (i.e., e1 ⊀o e2 and

e1 �o e2), we write e1 ∼o e2. Similarly, e1 ∼t e2 ⇔ e1 ⊀t e2 ∧ e1 �t e2, and
e1 ∼ot e2 ⇔ e1 ⊀ot e2 ∧ e1 �ot e2.

It is easy to verify that also (E,≺t) is a strict partial order (i.e., irreflexive, transitive,
and asymmetric). ∼o, ∼t, and ∼ot are reflexive and symmetric by construction. Note
that e1 ∼t e2 if an only if πtime(e1) = πtime(e2).

3.2 Consistency

The relation ≺ot, which combines ≺o and ≺t, does not need to be a strict partial order.
For example, e1 happens before e2 according to ≺o, but e2 happens before e1 according
to ≺t. Because both ordering relations disagree, ≺ot is not asymmetric. Therefore, we
introduce the notion of consistency.

Definition 4 (Consistent). An event logL = (E, π,≺o) is consistent if for any e1, e2 ∈
E: e1 ≺o e2 implies πtime(e1) ≤ πtime(e2).

This can also be formulated as follows (using transposition): e1 ⊀o e2 or e1 �t e2,
for any e1, e2 ∈ E. Hence, it is impossible that e1 ≺o e2 and e1 �t e2 hold at the same
time. Since both orderings are not conflicting and ≺t is also a strict weak ordering, the
combination yields a strict partial order.

1 We use the shorthand πn(e) = π(e)(n). Note that πcase(e), πact(e), and πtime(e) denote the
case, activity, and timestamp of an event e ∈ E.

2 For any e, e1, e2, e3 ∈ E: e ⊀o e (irreflexivity), if e1 ≺o e2 and e2 ≺o e3, then e1 ≺o e3
(transitivity), and if e1 ≺o e2, then e2 ⊀o e1 (asymmetry).
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Fig. 4. Possible combinations of order and time relations between two events e1 and e2 assuming
that the event log is (a) consistent, (b) time-constrained (≺o ⊆ ≺t), (c) order-constrained (≺t ⊆
≺o), and (d) time-constrained and order-constrained (≺t =≺o).

Proposition 1 (Consistency Implies Strict Partial Ordering). Let L = (E, π,≺o) be
an event log. (E,≺t) is a strict weak ordering (i.e., a strict partial order with negative
transitivity3), and (E,≺ot) is a strict partial order if L is consistent.

Proof. (E,≺t) is irreflexive, transitive, and asymmetric by construction. Remains to
show that negative transitivity holds. Assume that e1 ⊀t e2 and e2 ⊀t e3, i.e.,
πtime(e1) ≥ πtime(e2) and πtime(e2) ≥ πtime(e3). Hence, πtime(e1) ≥ πtime(e3),
i.e., e1 ⊀t e3. Therefore, (E,≺t) is a strict weak ordering.

Next, assume that L is consistent. We show that (E,≺ot) is a strict partial order,
i.e., for any e, e1, e2, e3 ∈ E: e ⊀ot e (irreflexivity), if e1 ≺ot e2 and e2 ≺ot e3, then
e1 ≺ot e3 (transitivity), and if e1 ≺ot e2, then e2 ⊀ot e1 (asymmetry). Because ≺ot

=≺o ∪ ≺t, irreflexivity follows from e ⊀o e and e ⊀t e. Asymmetry follows directly
from consistency: It is impossible that both e1 ≺o e2 and e1 �t e2 hold, so no cycles
are introduced. Transitivity relies on the fact that that negative transitivity holds for ≺t.
One can use case distinction using the following four cases. (1) e1 ≺t e2 ∧ e2 ≺t

e3 ⇒ e1 ≺t e3 ⇒ e1 ≺ot e3. (2) e1 ≺o e2 ∧ e2 ≺o e3 ⇒ e1 ≺o e3 ⇒ e1 ≺ot e3. (3)
Assume e1 ≺t e2 ∧ e2 ≺o e3 ∧ e2 ⊀t e3. Using consistency, we know that e2 �t e3,
hence e2 ∼t e3. Since e1 ≺t e2 and e2 ∼t e3, also e1 ≺t e3. (If e1 ⊀t e3, then negative
transitivity implies e1 ⊀t e3 ∧ e3 ⊀t e2 ⇒ e1 ⊀t e2 leading to a contradiction.) Since
e1 ≺t e3, also e1 ≺ot e3. (4) Assume e1 ≺o e2 ∧ e2 ≺t e3 ∧ e1 ⊀t e2. Consistency
implies e1 �t e2, hence e1 ∼t e2. Since e1 ∼t e2 and e2 ≺t e3, also e1 ≺t e3 and
e1 ≺ot e3. Hence, in all four cases transitivity holds, thus completing the proof.

Both ≺o and ≺t order events. L is called time-constrained if ≺t is at least as strict
as ≺o, i.e., e1 ≺o e2 implies e1 ≺t e2. L is order-constrained if e1 ≺t e2 implies
e1 ≺o e2. Figure 4 illustrates these notions.

3.3 Simplified Event Logs

The basic process discovery techniques assume linear traces and only consider the activ-
ity names. Therefore, we connect the more involved event log notion L = (E, π,≺o)
(Definition 2) to simplified event logs and standard discovery techniques.

Definition 5 (Simplified Event Log, Process Model, and Discovery Technique). A
trace σ = 〈a1, a2, . . . , an〉 ∈ A∗ is a sequence of activities. S ∈ B(A∗) is a simplified

3 Recall that negative transitivity means that if e1 ⊀t e2 and e2 ⊀t e3, then e1 ⊀t e3. In a strict
weak ordering, incomparability is transitive, i.e., e1 ∼t e2 ∧ e2 ∼t e3 ⇒ e1 ∼t e3.
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event log, i.e., a multiset of traces. A process model M ⊆ A∗ is a set of traces. A
discovery function disc ∈ B(A∗) → P(A∗) maps an event log onto a process model.

We abstract from the process model notations (e.g., BPMN or Petri nets) and
focus on the modeled behavior. This allows us to define a model as a set of pos-
sible traces M ⊆ A∗. M = disc(S) is the process model discovered from
simplified event log S. A simplified event log is a multiset of traces, e.g., S =
[〈reg , ct , ch, ec, dec, pay〉3, 〈reg , ch, ct , et , dec, rej 〉2] contains five traces.

Definition 6 (Sequential Runs). Let L = (E, π,≺o) be a consistent event log. For any
case c ∈ C(L), σ = 〈a1, a2, . . . , an〉 ∈ A∗ is a sequential run of c if there is a bijection
f ∈ {1, 2, . . . n} → E�c such that ai = πact(f(i)) for any 1 ≤ i ≤ n and ei �ot ej
for any 1 ≤ i < j ≤ n. seqrL(c) ⊆ A∗ are all sequential runs of case c.

σ ∈ seqrL(c) is a trace where each activity refers to an event of case c in such a way
that there is a one-to-one correspondence between the elements of σ and E�c, and the
order does not contradict the combined ordering ≺ot. Given a partial order, there may
be many linearizations, i.e., total orders that are compatible. In a k-sequentialization of
L, we pick k linearizations for each case.

Definition 7 (k-Sequentialization of an Event Log). Let L = (E, π,≺o) be a consis-
tent event log. S = [σ1, σ2, . . . σn] ∈ B(A∗) is a k-sequentialization of L if (1) there is
function f ∈ {1, 2, . . . n} → L(C) such that σi ∈ seqrL(f(i)) for any 1 ≤ i ≤ n, and
(2) |{i ∈ {1, 2, . . . , n} | f(i) = c}| = k for any c ∈ C(L). seqlk(L) ⊆ B(A∗) are all
possible k-sequentializations of L.

Definition 7 shows how event log L can be converted into a simplified event log
S ∈ seqlk(L). Each case in L corresponds to k linearizations in S. We leave it open
how the linearizations are selected. This can be probabilistic or deterministic. (In our
implementation, all linearizations are sampled from seqrL(c) using equal probabilities).

4 What if Timestamps Are Imprecise?

As described in the introduction, timestamps may be imprecise or partially incorrect.
Therefore, we provide transformations of the event log, making time more coarse gran-
ular, e.g., all events on the same day have the same timestamp.

Definition 8 (Time Aggregator). ta ∈ T → T is a time aggregator if for any t1, t2 ∈
T such that t1 < t2: ta(t1) ≤ ta(t2).

For example, ta(19-05-2021:13.02) = ta(19-05-2021:17.55) = 19-05-2021:00.00 if
a time granularity of days is used, i.e., all timestamps on the same day are mapped onto
the same value. By making time more coarse-grained, more events become unordered.
These may still be ordered by ≺o, e.g., based on data-flow analysis. Next to ≺o, we may
use domain knowledge in the form of a so-called tiebreaker to optionally order events
having identical coarse-grained timestamps.
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Fig. 5. Overview of the functionality of the PartialOrderVisualizer package. The user can change
the time granularity and modify the tiebreaker using domain knowledge. Cases with the same
partial order are grouped into partial-order variants. These can be sorted and inspected. At any
point in time, it is possible to create a regular event log (using k-sequentialization).

Definition 9 (Tiebreaker). A tiebreaker ≺tb ⊆ A × A is a strict partial order used to
order activities having the same aggregated timestamp.

A tiebreaker adds causal dependencies between events that have the same coarse-
granular timestamps and belong to the same case. Using time aggregator ta and tie-
breaker ≺tb, we can create a new event log Lta,≺tb .

Definition 10 (Preprocessing). Let L = (E, π,≺o) be a consistent event log, ta ∈
T → T a time aggregator, and ≺tb ⊆ A × A a tiebreaker. Lta,≺tb = (E, π′,≺′

o)
is the event log after applying the time aggregator ta and tiebreaker ≺tb such that
π′
n(e) = πn(e) for any e ∈ E and n ∈ N \ {time}, π′

time(e) = ta(πtime(e)) for any
e ∈ E, and ≺′

o =≺o ∪{(e1, e2) ∈ E × E | πcase(e1) = πcase(e2) ∧ π′
time(e1) =

π′
time(e2) ∧ πact(e1) ≺tb πact(e2)}.

As long as the tiebreaker ≺tb does not contradict ≺o, ≺′
o is a partial order and

Lta,≺tb = (E, π′,≺′
o) is a consistent event log.

Hence, we can compute a k-sequentialization of Lta,≺tb and produce a simplified
event log SL,ta,≺tb ∈ seqlk(Lta,≺tb). As mentioned before, we leave it open how
sequential runs are selected. Using the simplified preprocessed event log, we can apply
any process discovery technique to obtain process model ML,ta,≺tb = disc(SL,ta,≺tb).

5 Implementation

The new ProM package PartialOrderVisualizer implements the approach described in
Sect. 4 and can be downloaded as part of ProM’s nightly builds (http://www.promtools.
org/doku.php?id=nightly). It has been implemented as a so-called “visualizer” and can
be selected by choosing Explore Partial Orders (Variants) in the pull-down menu. The
visualizer can be applied to any event log.

Figure 5 shows the main components of the PartialOrderVisualizer. Based on time
aggregator ta and tiebreaker ≺tb the partial orders are computed and visualized. Ini-
tially, ta is set to hours and ≺tb= ∅. The user can experiment with the time granularity
and add ordering constraints. One can inspect partial order variants and details of the
corresponding cases. Moreover, the user can create a k-sequentialization of Lta,≺tb .
The resulting event log can be analyzed using classical process mining techniques.

http://www.promtools.org/doku.php?id=nightly
http://www.promtools.org/doku.php?id=nightly
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Fig. 6. Data from a Purchase-to-Pay (P2P) process visualized using PartialOrderVisualizer. What
can be seen is that activities Create Purchase Order Item and Print and Send Purchase Order
often happen in the same hour.

Figure 6 shows the PartialOrderVisualizer for the event data of a Purchase-to-Pay
(P2P) process with 2,654 cases and 16,226 events. There are 685 trace variants in the
original event log. The view shown in Fig. 6 uses a time granularity of one hour lead-
ing to a similar number of partial-order variants (i.e., 710). However, one can clearly
see that some activities often happen within the same hour. It is possible to add order-
ing information to make these sequential (if desired). Note that seeing which activities
happen in the same period is valuable and provides new insights.

Figure 7 shows the PartialOrderVisualizer for the same event data, but now using a
time granularity of a week. One can see that more events become unordered, because
they happen in the same week. Using this view, we generated a new event log replicating
each partially-ordered case 10 times. As expected, this new event log has 26,540 cases
and 162,260 events. Interestingly, there are now 8,864 trace variants.

The PartialOrderVisualizer has been applied to a range of event logs, e.g., we have
used it to analyze the treatment of Covid-19 patients at Uniklinik RWTH Aachen. In
this Covid-19 dataset, only the dates are reliable. Naı̈vely using the ordering in the event
log or the recorded timestamps leads to incorrect conclusions.

For the Covid-19 dataset it takes just a few seconds. For a larger data sets like the
well-known road fines event log4, which has over 560.000 events and 150.000 cases, it
takes around 10 s (using for example the day, hour, minute, and second abstractions).

What is interesting is that in many applications the number of partially-ordered vari-
ants temporarily goes up when coarsening the time granularity. However, by definition,

4 Road Traffic Fine Management Process, 4TU.ResearchData, https://doi.org/10.4121/uuid:
270fd440-1057-4fb9-89a9-b699b47990f5.

https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
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Time granularity 
is now weeks

Create a new 
event log

Newly created 
event log

Fig. 7. Another view on the same P2P dataset now using a time granularity of a week. A new
event log was created using a k-sequentialization (with k = 10).

the number of partially-ordered variants is the smallest when all events are mapped onto
the same time period.

6 Conclusion

The contribution of this paper is twofold. On the one hand, we discussed the possi-
ble interplay between time and order using an event log definition where events have
timestamps and may be ordered by some partial order. Since (rounded) timestamps
provide a strict weak ordering, the combination is a partial order (provided that the
event log is consistent). On the order hand, we described a new way to preprocess
event logs using a time aggregator ta and a tiebreaker ≺tb. The time aggregator makes
the timestamps more coarse-grained to avoid accidental event ordering due to impre-
cise or partially incorrect timestamps. The tiebreaker can be used to order events that
have the same coarse-grained timestamp (e.g., date). The preprocessed event log can
be created and explored using the new PartialOrderVisualizer implemented in ProM.
Viewing the event log at different time scales provides novel insights and helps to coun-
teract data quality problems. Moreover, the PartialOrderVisualizer can also generate a
k-sequentialization of the partially-ordered event log. This allows for the application of
regular process mining techniques (e.g., discovery and conformance checking).

Although some process mining techniques have been developed for partially-
ordered event logs, we feel that more research is needed. Partial orders may be the
result of uncertainty or explicit causal information. These need to be treated differently.
We also plan to integrate frequent item-set mining into our approach. The fact that cer-
tain combinations of activities often happen in the same period can be used to create
event logs where high-level events refer to sets of low-level events.
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