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Abstract. Smart spaces’ systems help users in their daily routines by
automating various tasks. It can however be frustrating for users if the
system does not evolve to support changes in their routines. To address
this issue, we present an approach that combines two state-of-the-art
approaches: MAtE, an end-user model-driven approach, and Cortado, an
incremental process mining approach. CortadoMAtE can automatically
detect changes in routines and allows the users to easily include the
changes in the system step by step, or to even adapt them further before
integrating them. In this way, continuous system evolution is addressed
enabling the system to stay up to date with user needs.

Keywords: Process mining · Incremental process discovery · Task
models · Smart spaces · Routine evolution

1 Introduction

Software evolution is necessary to ensure that software systems stay up to date
in supporting changing user needs. This is essential for smart spaces, where the
system continuously interacts with the home inhabitants.

We can mainly find two strategies for supporting system evolution in the
literature: 1) end-user approaches, also called user-in-the-loop, provide easy-to
use interfaces for the end-users to describe the necessary changes in the system;
while 2) user behaviour monitoring combined with data mining techniques can
automatically identify changes in user behaviour (via, e.g., process checking),
changes that can then be used to make the system evolve.

End-user approaches have the advantages that they allow the user to take
part in the design of the system; hence, the system typically fits them more
closely. Also, the users decide themselves when a change is needed. However,
it may be tedious for the users to have to identify and describe these changes
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themselves [13]. Monitoring methods, on the other hand, have the advantages
that they can automatically detect changes and provide them in a formalism
ready to be used to update the system. However, they usually need quite some
historical data on previous executed tasks to be able to identify changes, which
may sometimes do not really fit the user needs.

In [11,13], a user-in-the-loop approach, called MAtE, was presented to
address runtime requirements evolution. MAtE uses state-of-the-art executable
task models to support 1) the automation of user routines (i.e., set of tasks that
are routinely executed in the same way, also known as behaviour patterns) and
2) the evolution of the automated routines by allowing users to describe the
necessary changes using an end-user tool. Task models are used to describe rou-
tines at a high level of abstraction. At runtime, these models are interpreted to
execute the routines the users desire to have automated by their smart homes.
At any time during the execution of the system, the user can change the task
models and, thus, the system’s behavior, using the end-user tool.

In this paper, we propose to combine MAtE with Cortado [9], a state-of-the-
art incremental process discovery approach that automatically detects newly
observed behavior and allows to incrementally incorporate it. Using Cortado-
MAtE, the user has the option to step by step decide which new behaviour
should be incorporated into a task model. Once the changes are approved by the
user, the task models are modified accordingly to support the approved changes.

The rest of the paper is organized as follows. Section 2 presents MAtE and
Cortado. Section 3 describes how these approaches are integrated in order to
improve the support for user routine evolution. Section 4 presents a case study of
CortadoMAtE. Section 5 describes the related work and finally Sect. 6 concludes
the paper and introduces some lines for future work.

2 Background

This section describes MAtE and Cortado, the two approaches were this paper
is based on, as well as the corresponding modelling formalisms that the use.

2.1 MAtE: Executable Task Models

Executable task models [11,13] specify how a smart environment system can
support the routines of its users. Task models are based on Hierarchical Task
Analysis (HTA) [15], which are tree structures that refine high-level tasks into
executable ones. Using executable task models, every user routine is described as
a hierarchy of tasks. The root task represents the routine as a whole and is broken
down into subtasks, which can be composite (they are further broken down) or
executable (they are leaf tasks). Two types of refinements can be used to break
down a composite or root task: exclusive refinement and temporal refinement.
Exclusive refinement (represented by a solid line) decomposes a task into a set
of subtasks in such a way that exactly one subtask will be executed; while using
a Temporal refinement (represented by a dashed line) all the subtasks shall be
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CurrentTime=07:20
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Fig. 1. Example task model for a wake up routine

performed following the order that is graphically depicted by the arrows between
sibling tasks. Temporal constraints use Concurrent Task Trees (CTT) operators
[8]. For example, in Fig. 1, we use:

– (T1 � T2): task T2 is triggered when task T1 finishes.
– Task Independence (T1 | = | T2): T1 and T2 can be performed in any order.

The task refinement process terminates when every leaf task in the tree is
associated with a pervasive service (controlled by the smart environment sys-
tem), which is capable of executing the task. The execution of a routine is
context adaptive. Context can be described in a task model in the following
constructs:

– Activation condition: it is associated with the root task of each routine, and
indicates when the routine gets activated.

– Task precondition: it can be associated with a task to indicate that its exe-
cution depends on whether a situation holds. This condition is not expressed
graphically in order to keep the diagrams easy to read.

– Iterative task: it is executed repeatedly while the situation associated with
the task holds. Iterative tasks are graphically marked with an asterisk.

– Temporal constraints:
• T1 � [s] � T2: after the completion of T1, T2 is started as soon as

situation s holds.
• T1 t � T2: after the completion of T1, T2 is started as soon as the time

period t has elapsed.

Once the routines are specified by a system analyst, they can directly be
executed by MAtE. MAtE is an automation engine that builds on the services
provided for the smart environment to control the needed devices. We consider a
service as a mechanism that provides a coherent set of functionalities described
in terms of atomic operations (or methods). These operations allow the system
to control the devices of the environment in order to change it and/or sense it.
MAtE uses these services to perform the tasks of the routines specified in the task
models and to sense context changes. MAtE monitors the context and executes
the routines specified in the task model when their corresponding activation
condition holds. The execution of the routines is performed in a context-adaptive
way according to their specification and the current context. An end-user tool
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Fig. 2. Process tree modeling the control flow of the task model shown in Fig. 1

is also provided by MAtE to allow end-users to manually evolve the automated
routines as they please using the available services [13]. Using this tool, any
change that respects the task metamodel syntaxes can be performed to evolve
the supported routines. Thus, new behaviour can be created, or those that are
already specified can be modified or deleted. Finally, users can also execute the
smart environment services using a web User Interface (UI) [13].

2.2 Process Trees and Incremental Process Tree Discovery

Process models allow us to model the control-flow of activities performed within
the execution of a process. Process trees [9] are an important process model
formalism within the area of process mining [1]. Figure 2 shows an example of
process tree that represents the control-flow of the task model shown in Fig. 1.
Leaf nodes of a process tree represent activities, which can either be visible, e.g.,
“turn on bathroom heating”; or invisible, τ leaf nodes used to model certain
control-flow patterns. Inner nodes of a tree represent operators that specify the
control-flow relation among its subtrees. We distinguish four different operators:

Fig. 3. Overview of the incremental process discovery algorithm [9]. Figure from [10]
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1. Sequence (→): subtrees must be executed in the given order
2. Exclusive-choice (×): exactly one subtree must be executed
3. Loop (�): always consists of two subtrees. The first subtree (do-part) must be

executed, afterwards the second subtree (redo-part) is optionally executed. If
the second subtree is executed, the first subtree must be executed again.

4. Parallel (∧): subtrees can be executed in any order and also interleaved

Compared to task models, as most process modelling formalisms used in pro-
cess mining, process trees purely focus on the control-flow of activities, i.e., no
contextual information is present in process trees. In Fig. 1, for instance, the task
“turn on bathroom heating” is only executed if the temperature is low. However,
in the corresponding process tree (Fig. 2), the activity “turn on bathroom heat-
ing” is modelled as an optional activity, i.e., either “turn on bathroom heating”
or τ is executed.

Process discovery is an important sub-discipline in process mining [1] and
covers techniques to learn a process model from observed process behaviour.
Recently, an incremental process tree discovery approach, has been introduced [9]
and implemented in a software tool [10] called Cortado. A conceptual overview of
the approach is given in Fig. 3. Starting from an initial process tree M , Cortado
allows a user to incrementally extend/learn a process tree from observed process
behaviour. Cortado identifies, in an event log, the executed traces that are not
yet represented in the initial process tree. These traces are then shown ordered
by frequency to the user, who can select the traces that s/he wants the process
tree to also support. By incrementally selecting a trace σ′, which represents a
single execution of the process, the approach modifies the tree M into M ′ such
that the selected trace and the previously added traces are accepted by the

Fig. 4. Approach for continuous evolution of user automated routines
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altered process tree, i.e., visualised by σ′ ∈L(M ′) and σ1, σ2, σ3, . . . ∈L(M ′) in
Fig. 3. The tree M ′ is then used as an input in the next incremental execution.

In short, the incremental approach allows a user to gradually discover/learn
a process model from observed process behaviour. Moreover, a user can extend
an existing process model any time to represent new observed behaviour.

3 CortadoMAtE: Addressing Evolution

To support end-users keeping the automation of their routines updated according
to their needs, we integrate MAtE with Cortado (see Sect. 2). Figure 4 shows the
overall approach of CortadoMAtE. As explained, Cortado needs as input: a) an
(initial) process tree, and b) the new traces that are not yet supported by the
process tree (Traces for M in Fig. 4). In order to provide the necessary inputs,
MAtE and the web interface are extended to record the execution of routines
(i.e., traces) in the required format. The tasks executed for a routine by MAtE
are recorded with an associated case ID, which identifies the routine execution
to which the executed task belongs. The web interface additionally records the
tasks that the user executes via the web interface; these tasks do not have a
predefined case ID as they do not belong to any routine yet.

In addition, we need to transform the initial task models into process trees.
For this purpose, we define model to model (M2M) mappings as shown in Fig. 5.

Fig. 5. Main mappings between task models and process trees. Note that the dotted
tasks in the table can represent either a leaf or a composite task; also, M2M represents
the recursive application of mappings for that particular task.
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E.g., in the second and third row of the table, we see that the temporal con-
straints � and | = | in task models are mapped to → and ∧ respectively. As can
be seen, composite tasks (of task models) are directly translated into operators
in the process tree, i.e., the translation of a composite task corresponds to the
translation of its subtasks. As such, mappings are applied in a recursive manner.
Also note that context information is omitted in the mapping, as Cortado does
not yet support it (see Sect. 6). To enable the reverse mapping (from process
tree to task model), context information as well as names of composite tasks are
stored as labels in the corresponding process tree tasks or operators.

Taking into account these two inputs, CortadoMAtE detects changes on the
current routines using the incremental process tree discovery algorithm. For each
task model, we first extract the traces that belong to the execution of that model.
Since usually routines are time-bounded, we consider that tasks without case ID
belong to the trace that is closer in time. As explained in Sect. 2.2, the identified
changes are shown to the user in the form of traces. The user can then select
the traces that should also be supported. Once this is done, a new process tree
(New Suggested Process Tree M’ in Fig. 4) is obtained.

This process tree is then transformed back into a task model using the M2M
mappings. The user can then select to 1) accept the new routine or 2) modify
the suggested routine using the user-interface, which also allows the user to
contextualize it if s/he so prefers. The final task model will then replace the
old one. Since task models are interpreted at runtime, the system reflects the
changes from the next execution of the routine [11]. In short, CortadoMAtE is
a semi-automated evolution approach in which the user receives suggestions for
changes, but still has the control over the evolution supported by the underlying
incremental process discovery approach.

4 Case Study

This section presents a case study of the proposed approach. First, we introduce
the experimental setup. Subsequently, we discuss the results.

4.1 Experimental Setup

Figure 6 shows an overview of the experimental setup. The overall idea is to
demonstrate that our approach is able to incrementally discover a task model
that represents the new observed behaviour. Therefore, we start from a target

Fig. 6. Overview of the experimental setup
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Table 1. Excerpt of the simulated event data from the target task model (Fig. 2).
Table shows one execution of the waking up routine (i.e., a trace), and the start of a
next execution of the same routine.

Control-flow information Context information

Case-ID
Activity/

Task
Timestamp

Bathroom
temperature

User
presence

Outside
brightness

User
activity

Actor

100
turn on bath-
room heating

01-01-2000
07:20

low bedroom low awake system

100
illuminate
the room

01-01-2000
07:30

medium bedroom low awake system

100
request

weather info
01-01-2000

07:31
medium bedroom low awake system

100 -
01-01-2000

07:33
medium bathroom low awake user 1

100
make
coffee

01-01-2000
07:52

medium kitchen low awake system

100
play

the news
01-01-2000

07:52
medium kitchen low awake system

101
turn on bath-
room heating

01-02-2000
07:20

low bedroom low sleeping system

. . . . . . . . . . . . . . . . . . . . . . . .

task model that we would like to incrementally discover with our approach.
First, the target task model is simulated to obtain event data capturing the
different possible executions of the task model. Next, from the target task model,
we extract a simplified task model and transform it into a process tree (see
Sect. 3). This process tree serves as an initial model for the incremental process
discovery approach. Now, we apply incremental process tree discovery. Thereby,
we incrementally extend the simplified task model, which was transformed into
a process tree, by new process behaviour from the simulated event log. Finally,
we obtain an incrementally extended process tree. This process tree is converted
back into a task model and compared to the target task model.

As a target task model we use the one introduced in Fig. 1. First, we simulate
this target task model as stated in Fig. 6. Table 1 shows an excerpt of the event
data generated. Each row represents an event. Events with the same case-ID
belong to the same execution of the task model, e.g., events with case-id 100
represent the execution of the task model on 01-01-2000. Table 1 is divided into
control-flow information and context information. Next, we extract the traces
out of the event data, e.g., the case 100 describes the trace 〈turn on bathroom
heating, illuminate the room, request weather information, make coffee, play the
news〉. These traces are then incrementally fed into the incremental process tree
discovery approach. In total, we simulated the target task model 1,000 times,
i.e., we obtained 1,000 traces and a total amount of 7,028 events. Moreover, the
simulated event data contains 345 different trace-variants. Note that multiple
traces can describe the same sequence of executed tasks.

From the target task model (Fig. 1), we extract a simplified task model which
serves as an initial model. Figure 8a shows the simplified task model, and Fig. 7b
shows the corresponding process tree representation. Note that, for instance,
the activity illuminate the room that we observe in the generated event data
(Table 1) is not part of the initial task model (Fig. 8a).



Supporting Users in the Continuous Evolution of Automated Routines 399
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(b) Initial/simplified process tree

Fig. 7. Initial/simplified task model extracted from the target task model (Fig. 1) and
corresponding process tree representation

4.2 Results

This section presents the results of the conducted experiment. We show the dif-
ferent obtained process trees and added traces after each incremental execution
of the incremental discovery approach. Finally, we compare the resulting task
model with the target task model as visualized in Fig. 6.

Figure 8 shows the intermediate trees during the incremental execution.
Starting from the initial task model (Fig. 8a) that is converted into a process
tree (Fig. 7b), we add the trace 〈switch light on, request weather info, play the
news, make coffee〉, consider Fig. 8a, which is obtained from the simulated event
data, as partly shown in Table 1. After adding six traces to our initial model, we
obtain the process tree shown in Fig. 8d. This process tree describes the entire
event data that we obtained through simulation of the target task model. The
experimental results show that it is possible to extend an initially given task
model by new behavior such that the resulting model represents the intended
behavior.

5 State-of-the-Art in Smart Home System Evolution

There exist three types of approaches to smart space systems’ evolution: User-
in-the-loop, monitoring with data driven, and combined techniques.

User-in-the-loop Approaches. User-in-the-loop approaches provide easy-to-
use interfaces to allow less technically-fluent users to modify their habits [6].
For instance, Kolb et al. propose techniques for end-users to define and modify
process models using CTTs [5]. Similarly to MAtE, Koussaifi et al. [6] developed
a framework and tool based on model-driven engineering (MDE) to allow users
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to modify their smart home systems. They can accept or reject models of appli-
cations, automatically generated for accepted application proposals. The main
drawback of these approaches is that the users need to do the evolution process
themselves: they need to identify the changes and they need to introduce these
changes in the system using the provided tools.

Monitoring and Data-Driven. Monitoring and data-driven approaches use
data generated by the use of the system to detect changes in user routines.
Most monitoring-based models follow Machine-learning approaches, based on
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(a) Added trace 〈switch light on, request weather info, play the news, make coffee 〉
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(b) Added traces: 〈turn on bathroom heating, raise blinds, request weather info, make
coffee, play the news〉 and 〈turn on bathroom heating, play music, activate buzzer, ac-
tivate buzzer, switch light on, request weather info, request traffic info, play the news,
make coffee〉
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(c) Added trace 〈turn on bathroom heating, play music, activate buzzer, activate buzzer,
switch light on, request weather info, request traffic info, play the news, make coffee〉
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(d) Added trace 〈play music, play music, play music, raise blinds, request weather info,
request traffic info, play the news, make coffee〉

Fig. 8. Incrementally discovered trees starting from the initial one (Fig. 7b)
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mathematical and statistical formalisms to model the routines by detecting pat-
terns in the collected data. These approaches have been extensively analysed by
Leotta et al. [7]. E.g., MavHome and CASAS [3] use Hidden Markov Models to
represent user behaviour as patterns of series of states linked by transitions with
given probabilities. The models can be extended with new states to support new
user behaviour. Dabrowski et al. [4] use process discovery techniques to detect
deviations from the designed requirements. Main drawbacks of these techniques
include: 1) they require a great amount of training data (the cold-start problem),
hence it may take some time for the system to recognise a habit change, delaying
the support of the user’s habit by the system [14]; 2) The absence of knowledge
on users’ actual desires may lead to automating tasks that the user does not
wish to automate [13]; and 3) Only tasks that have already been performed, and
only in the way they have already been performed, can be learned [13].

Combined Approaches. Some authors propose to combine monitoring
approaches with so-called knowledge-driven approaches [2,16]. In these papers,
a knowledge base is first constituted to broadly describe the routines performed
by the user. A data-driven model is then learned, which better fits the actual
routines of the user. The resulting model is often better at recognizing activities
[2] Sukor et al. [16] notes that the “cold start” effect is mitigated. However, these
techniques are designed for activity recognition, not for smart home evolution.

6 Conclusion and Future Work

In this paper, we have presented CortadoMAtE, an approach that does not
only support the automation of routines in smart spaces, but also facilitates the
continuous evolution of the automated routines. CortadoMAtE tackles the prob-
lems of previous approaches, such as the cold-start problem. Moreover, although
CortadoMAtE suggests possible changes to the users, they always have control
over the routines that are finally automated; therefore, both users’ desires as
well as time and energy concerns are taken into account [13]. Task models can
be stored, so users can easily revert to previous versions of the system if they
are not satisfied with a newly implemented automation. In addition, using the
end-user interface provided by MAtE, it is possible to automate tasks regardless
of whether or not the users have performed them in the past, which is a big
advantage of CortadoMAtE over classical monitoring approaches. Finally, Cor-
tadoMAtE also requires less input from the user than typical user-in-the-loop
approaches, making the CortadoMAtE more user-friendly.

As future works, the automated discovery of the context of the model should
be addressed. Currently, the user manually contextualizes the models generated
by Cortado, but the incremental process mining algorithm does not integrate
context information yet. However, automating this step would 1) contribute to
further reducing the input required from the user and 2) potentially extract
unknown context patterns from the data. Context data are already collected by
the sensors present in the smart home and could be utilized. In addition, when
users are proposed a new task model, it could help them to be able to simulate its
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execution. This would help in their decision to accept or reject the new model,
and would also help them visualize the impact of manual modifications and
contextualization. This simulation could be supported by using CPN Tools [12].
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