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Abstract. A current trend in predictive business process monitoring is to con-
struct predictive models using deep neural networks (DNNs), especially long
short-term memory neural networks, convolutional neural networks, or multi-
layer perceptron neural networks. While these DNN types typically require data
defined on the Euclidean space (e.g., grids), graph neural networks (GNNs), a
relatively new type of DNNs, can compute data defined on the non-Euclidean
space (e.g., graphs). Because GNNs can directly compute graph-oriented data
inputs, generally structured into nodes and edges, they can explicitly model
event relationships. This paper investigates gated graph sequence neural net-
works (GGNNs) for the next activity prediction. First results with two real-life
event logs show that GGNNs can outperform traditional DNNs regarding predic-
tive quality, especially if nodes of an input graph are assumed as events, and the
graph’s adjacency matrix only describes event relationships of a process instance
prefix.

Keywords: Predictive business process monitoring · Graph neural networks ·
Deep learning · Machine learning

1 Introduction

The highly volatile and uncertain digital economy increases the pressure on organi-
zations to proactively manage their business processes [16]. Consequently, predictive
business process monitoring (PBPM) is gaining momentum in business process man-
agement (BPM) [2]. It provides a set of techniques to predict properties of operational
business processes such as future process behavior (e.g., next activities) or process
outcomes (e.g., a process performance indicator). Predictions from these techniques
enable process stakeholders to make decisions that can improve the efficiency of oper-
ational business processes. However, this assumes correct predictions, which cannot
yet be fully achieved by existing PBPM techniques, especially in real business pro-
cesses [11,18,24].

Most recent PBPM techniques construct predictive models from historical event
log data using machine learning (ML) algorithms. An ML algorithm automatically dis-
covers structures (i.e., patterns) in data and captures those within a predictive model
[1]. In the context of ML, deep learning (DL) has “turned out to be very good at dis-
covering the intricate structures in high-dimensional data and is therefore applicable
to many domains” [7, p. 436]. This also applies to PBPM, where DL, especially deep
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neural networks (DNNs), have shown to outperform techniques relying on traditional
ML algorithms (e.g., regulated probabilistic automata [12] or extreme gradient boost-
ing [23]).

A current trend in PBPM is to use DNNs such as long short-term memory neural
networks (LSTM-NNs), convolutional neural networks (CNNs), or multi-layer percep-
tron neural networks (MLP-NNs) [17]. However, these DNN types typically require
data defined on the Euclidean space (e.g., grids) for model training and application [25].
Therefore, a business process instance is represented by a feature vector or matrix, and
features of these structures describe event relationships. Consequently, DNNs of cur-
rent PBPM techniques are not explicitly aware of event relationships, i.e., they do not
explicitly model them. Naturally, this makes it difficult for current DNN-based PBPM
techniques to increase the predictive quality further because important information (i.e.,
domain knowledge) of process instances may not be considered. Consequently, they
cannot identify some crucial intricate structures in the process data.

A relatively new group of DNNs are graph neural networks (GNNs) [19] that can
compute data defined on the non-Euclidean space (e.g., graphs) directly [25]. Here,
the structure of input graphs can be matched directly onto the topology of the GNNs,
and direct inferences can be made between the network nodes and nodes of the input
graphs. In PBPM, first works [10,15,20,22] have proven GNNs to be useful because
the control-flow of process instances can intuitively be represented as graphs, and rela-
tionships between process activities can explicitly be modeled. However, these works
present either an approach designed for the process outcome prediction or apply graph
convolutional neural networks (GCNs) [5] for the next activity prediction. GCNs belong
to another type of GNNs computing input graphs from a spatial perspective.

This paper investigates gated graph sequence neural networks (GGNNs) [9,19] for
the next activity prediction. This type of GNNs is designed for sequential graphs and
integrates a gated recurrent unit (GRU) [3] that explicitly considers the temporal aspect
of sequences. Since the high expressiveness of GGNNs allows us to represent the input
graphs in different ways, we investigate three forms of representing these.

The remainder of this paper is structured as follows: Sect. 2 presents preliminar-
ies and related work on PBPM techniques using GNNs and reveals the research gap
of investigating GGNNs for the next activity prediction. Section 3 describes the three
investigated representation forms of input graphs and presents the developed GGNN
architecture. While Sect. 5 discusses the results and limitations of this paper, Sect. 6
concludes it with a summary and points out future research.

2 Background

2.1 Preliminaries

PBPM techniques receive as input event logs. An event log is structured into traces, and
in turn, a trace is structured into events.

Definition 1 (Event, Trace, Event Log). An event is a tuple e = (c,a, t,d1, . . . ,dn),
where c is the process instance or case id, a is the activity, t is the timestamp, and
dn is the nth context feature assigned to the event e. A trace is a non-empty sequence
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σ = 〈e1, . . . ,e|σ |〉 of events such that ∀i, j ∈ {1, . . . , |σ |} ei.c = e j.c, with i > j, where
. denotes the process instance id c of the event ei or e j. A trace referring to a process
instance can also be represented as a sequence of vectors 〈x1, . . . ,x|σ |〉, where x ∈ R

m

is a vector with size m. A vector can store all event information or a part of it (e.g.,
information belonging to the event’s activity and its nth context feature). An event log
L is a set of traces {σ1, . . . ,σ|L |}.

The next activities are predicted based on prefixes of a trace. Labels are the next activi-
ties and represent the learning target.

Definition 2 (Prefix, Label). A prefix is a non-empty sub-sequence of a trace σ =
〈x1, . . . ,xk, . . . ,x|σ |〉 with a length k. It is defined as f (k)pre(σ) = 〈x1, . . . ,xk〉, with 0 <
k < |σ |. For instance, possible prefixes for σ1 = 〈x1,x2,x3〉 are 〈x1〉 or 〈x1,x2〉. A label
is an annotation for a prefix (i.e., the next activity) of a trace σ = 〈x1, . . . ,xk, . . . ,x|σ |〉
with a length k. It is defined as f (k)l (σ) = ak+1, with 0 < k < |σ |, where ak+1 includes
features describing the activity of the next event xk+1. For instance, possible labels for
σ1 = 〈x1,x2,x3〉 are a2 or a3 only storing information of the next events’ activities.1

2.2 Related Work

GNNs have been used in four PBPM works so far. Philipp et al. [15] developed DNNs
with two graph convolutional [5] layers for predicting real-valued process outcomes
based on finished process instances. The graph layers receive an adjacency matrix that
captures activity relationships of the entire event log. A graph node is assumed as an
activity. It is described by a feature representing the sum of how often the activity was
performed.

Harl et al. [10] developed DNNs with a gated graph [9] layer for binary process
outcome prediction based on finished process instances. The authors constructed an
adjacency matrix per process instance that captures the activity relationships of the
respective process instance’s activities. Even though they considered a node as an activ-
ity, such as Philipp et al. [15], they described it by the one-hot encoding of the activity
and model edges between nodes to describe their relation type. Finally, they extracted
relevance values per node from softmax attention to explain the GNN models’ predic-
tions. Stierle et al. [20] presented an extension of Harl et al. [10]’s approach. They
aggregated the relevance values across graphs to create a process model in which each
activity is colored depending on its aggregated relevance value.

Venugopal et al. [22] developed DNNs with two graph convolutional layers [5] for
the next activity and next timestamp prediction based on process instance prefixes. Like
Philipp et al. [15], they constructed adjacency matrices based on the entire event log.
Additionally, they investigated different approaches to normalize the matrices’ values.
A node is assumed as an activity and described by temporal features constructed from
the control-flow data of the event logs.

Against this background, we are the first to investigate the use of GGNNs for the
next activity prediction that can learn sequence representations from graph data.

1 Note: The functions fpre(·) and fl(·) can be applied to process instances σ with a log-oriented
or vector-oriented representation.
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3 Gated Graph Sequence NNs for Next Activity Prediction

3.1 Three Representation Forms of Process Instance Graphs

GNNs, such as GGNNs, require inputs with a graph-oriented representation. Therefore,
we transform prefixes created from process instances of the event log L into process
instance graphs. However, before we present the three investigated representation forms
of process instance graphs, we define the terms graph, node, and edge.

Definition 3 (Graph, Node, Edge). A graph g is a two-element tuple (V,E), where V is
the set of nodes and E is the set of edges. A node v ∈ V is represented by a single value,
and a set of node features can be assigned to it. An edge e̊ is a tuple (v,v′) ∈ V ×V , and
a set of edge features can be assigned to it.

GGNNs, as used here, cannot directly compute forward and backward propagation
based on (raw) graphs. Therefore, we transform graphs into instance graphs.

Definition 4 (Instance Graph, AdjacencyMatrix, NodeMatrix, and EdgeMatrix).
An instance graph ψ is a three-element tuple (A,V, and E). A is an adjacency matrix
storing which nodes of the graph are connected by an edge and lies in R

|V |×|V |, where
|V | is the number of nodes of the graph. V is a node matrix storing features that describe
the graph’s nodes and lies in R

|V |×q, where q is the number of node features. E is an
edge matrix storing features that describe the edges of the graph and lies in R

|V |×p,
where p refers to the number of edge features, i.e., the source node, the target node, and
features describing the edge.2

A process instance graph is an instance graph that represents a prefix of a process
instance or an entire process instance. Because nodes and edges of a process instance
graph can be interpreted in different ways, there are different forms of how a process
instance graph can represent a prefix or an entire process instance. In this paper, we
investigate three conceptually different representation forms of process instance graphs.
The first representation form (RF1) assumes a node as an event, and the edges are
prefix-based. The second representation form (RF2) assumes a node as an activity, and
the edges are prefix-based. The third representation form (RF3) assumes a node as an
activity, and edges are event-log-based. In the following, we present the three represen-

tation forms based on the exemplary prefix f (4)pre(σ1)3:

f (4)pre(σ1) = 〈(1,A,2021-01-01T00:10:00,Le),
(1,B,2021-01-02T00:10:00,Hu),
(1,B,2021-01-03T00:10:00,Hu),
(1,C,2021-01-04T00:10:00,Le)〉.

(1)

2 Note: E can also be described as a third-order tensor E, that lies in R
|V |×|V |×p. In this case, E’s

three dimensions refer to the source node, target node, and edge features.
3 Note: In Eq. (1), the last element per event is a context feature indicating to the employee who

performed the event’s activity.
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RF1 - A Node is an Event and Edges are Prefix-Based: The first representation form
of a process instance graph assumes (time-ordered) events of a prefix as graph nodes
and considers edges between the prefix’s events. The process instance graph ψRF1

ε for

the prefix f (4)pre(σ1) = ε is shown in Eq. (2).4

ψRF1
ε =

⎛
⎜⎜⎝

⎡
⎢⎢⎣

0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

A 0.0 0.0 0.42 5.0 Le
B 1.0 1.0 0.42 6.0 Hu
B 1.0 2.0 0.42 7.0 Hu
C 1.0 3.0 0.42 1.0 Le

⎤
⎥⎥⎦ ,

⎡
⎣

1 2 Forward
2 3 Repeat
3 4 Forward

⎤
⎦

⎞
⎟⎟⎠ (2)

The first matrix of the process instance graph ψRF1
ε is the adjacency matrix.5 It

stores the connection between events. For example, the first vector [0.0,1.0,0.0,0.0]
indicates that an edge goes from the first event to the second event of the prefix. The
second matrix is the node matrix. It stores all information for a node. In this matrix,
the first feature is the activity, the next four are temporal features calculated based on
the events’ timestamps, and the last feature is the resource feature. We add the four
temporal features to the node features proposed by Tax et al. [21]; that are, (1) the
time since the previous event in the process instance, (2) the time since the process
instance started, (3) the time since midnight, and (4) the day of the week for the event.
Additionally, we transform the values of the first three temporal features from seconds
into days to allow smooth learning of the internal model parameters; otherwise, values
of these features can be very high, and therefore, negatively affect the learning of the
internal model parameters. The third matrix is the edge matrix. It stores the id of the
source event, the id of the target node, and the type of edge defined by the source and
target node. Regarding edge types, we differ between (1) Repeat (activity of a target
event is equal to an activity of a source event), (2) Backward (activity of a target event
has been observed in a previous event of the current prefix), and (3) Forward (activity
of a target event has not been observed in previous events of the current prefix).

RF2 - A Node is an Activity and Edges are Prefix-Based: The second representation
form of a process instance graph assumes activities of a prefix as graph nodes and
considers edges between the performed activities of the prefix. The process instance

graph ψRF2
ε for the prefix f (4)pre(σ1) is shown in Eq. (3).

ψRF2
ε =

⎛
⎝

⎡
⎣

0.0 1.0 0.0
0.0 1.0 1.0
0.0 0.0 0.0

⎤
⎦ ,

⎡
⎣

A 1.0 0.0 0.0 0.42 5.0 Le
B 2.0 1.0 1.0 0.42 6.0 Hu
C 1.0 1.0 3.0 0.42 1.0 Le

⎤
⎦ ,

⎡
⎣

A B Forward
B B Repeat
B C Forward

⎤
⎦

⎞
⎠ (3)

Like in ψRF1
ε , the first matrix of the process instance graph ψRF2

ε is the adjacency
matrix. In contrast to ψRF1

ε , recurring activities cannot be marked because a single node

4 Note: For better readability, we show the raw values of the categorical features (i.e., activ-
ity, resource, and edge type) for the three representation forms and not the features’ one-hot
encoded values.

5 Note: We normalize the adjacency matrix for each prefix of each representation form by A ←
D−1/2AD−1/2.
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represents an activity. Consequently, this adjacency matrix is smaller than the adjacency
matrix of ψRF1

ε . Further, as Philipp et al. [15] suggested, we store the number of how
often an activity has been performed in the second column of this representation form’s
node matrix. The other features are equal to the first representation form. However,
since activities are nodes and can be performed more than once in a sequence, we follow
the work of Venugopal et al. [22] and only store the feature values of an activity’s last
occurrence. The edge matrix stores the source activity, the target activity, and the edge
type. Concerning edges, we differ again between the types (1) Repeat, (2) Backward,
and (3) Forward.

RF3 - A Node is an Activity and Edges are Event-Log-Based: The third representa-
tion form of a process instance graph assumes activities as graph nodes and considers
edges between activities of the entire event log’s process instances. The process instance

graph ψRF3
ε for the prefix f (4)pre(σ1) is shown in Eq. (4).

ψRF3
ε =

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

594.0 515.0 0.0 355.0 0.0 0.0
4.0 960.0 209.0 803.0 0.0 0.0
0.0 1.0 922.0 751.0 0.0 8.0
0.0 0.0 0.0 0.0 0.0 0.0

515.0 0.0 0.0 235.0 7.0 0.0
2.0 0.0 33.0 57.0 32 0.0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎣

A . . . Le
B . . . Hu
C . . . Le

⎤
⎦ ,

⎡
⎣

A B Forward
B B Repeat
B C Forward

⎤
⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

(4)

The first matrix is the adjacency matrix, representing the edges between activities of
the entire event log. To determine the edges, we create a directly-follows graph (DFG)
in its native variant, counting the number of directly follows occurrences in all process
instances of the event log. In contrast to the previous two representation forms, the adja-
cency matrix is not prefix-based but event-log-based. Therefore, each process instance
graph has assigned the same adjacency matrix, representing the DFG created based on
the entire event log. The node and edge matrix are equally constructed like in the second
representation form.

3.2 Learning Gated Graph Sequence Neural Network Models

A GGNN model’s architecture can be structured into two phases, a message-passing
and a readout phase [4] (see Fig. 1).

 Activation = tanh
 Number layers = 4
 Aggregate = sum

 Gated Graph

 Channels = 100

 Global Attention

 Activation = softmax
 Units = n. acts.

 Dense Probability
Distribution

Process
Instance Graph Message-Passing Phase Readout Phase

 Units = 300
 Dropout = 0.5 

 Dense

 Units = 200
 Dropout = 0.5 

 Dense

 Units = 100
 Dropout = 0.5 

 Dense

Fig. 1. Architecture of the gated graph sequence neural network model.

The message-passing phase receives as input a set of process instance graphs {(A1,
V1, E1), (A...,V...,E...), (An,Vn,En)}, where n is the number of process instance



36 S. Weinzierl

graphs. This phase is realized by a gated graph layer, calculating abstract node rep-

resentations h(t+1)
v for each node v of a process instance graph in two steps. First, it

calculates for each node v messages m(t+1)
v , expressing interactions between nodes,

through the message function f (t)msg(·), as shown in Eq. (5).

m(t+1)
v = ∑

v′∈ fnbr(v)
f (t)msg(h

(t)
v ,h(t)v′ ,e(v,v′)) = ∑

v′∈ fnbr(v)
Ae(v,v′)h

(t)
v′ . (5)

In Eq. (5), the function fnbr(·) returns for a node v its neighboring nodes v′. For
each node v, the interactions to neighboring nodes are aggregated by calculating the

sum of them. Consequently, the messages for each node v are m(t+1)
v . Second, this

phase calculates the new node representation h(t+1)
v based on the messages m(t+1)

v and

the previous node representation h(t)v by applying the node update function fgru(·), as
shown in Eq. (6).

h(t+1)
v = fgru(h

(t)
v ,m(t+1)

v ). (6)

In Eq. (6), the function fgru(·) is a GRU [3], with a tanh activation. The number of
(sub-)layers within the gated graph layer is four and refers to the number of iterations
with the GRU. The number of GRU iterations and the number of time steps (i.e., the
sequence length) determine the number of updates. In each update, the node represen-
tations for each node of a process instance graph are updated roughly simultaneously.

The readout phase receives as input the final node representations h(T )v from the
message-passing phase. It maps these to a probability distribution vector ô through the
readout function frea(·), as shown in Eq. (7). The vector ô stores the probabilities of
the next activities for a process instance graph. The readout function frea(·) is realized
by a global attention layer [9], followed by four dense layers. The first three dense
layers include 300, 200, and 100 neurons, and the tanh activation function is applied. A
dropout with a ratio of 0.5 is applied to the outgoing connections of these layers to avoid
overfitting. The last dense layer’s number of units refers to the number of activities, and
a softmax activation function is applied to calculate the vector ô.

ô= frea({h(T )v |v ∈ G}). (7)

We update the internal parameters of the GGNN models batch-wise and over 100
epochs. Per epoch, the process instance graphs are partitioned into batches, including
32 process instance graphs. For each process instance graph of a batch, the categorical
cross-entropy (loss function) calculates the loss between its probability distribution ô
and the assigned ground label y. Subsequently, the cost function calculates the average
of the loss function outputs over the batch’s process instance graphs. Then, the gra-
dient descent algorithm ADAM calculates the derivation of the cost function’s output
and updates the internal parameters of the model. After completing the last epoch, the
internal model parameters are adjusted.
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4 Evaluation

4.1 Event Logs

In our evaluation, we used the following two real-life event logs (see Table 1 for the
event logs’ characteristics):

bpi2012w6 originates from a Dutch Financial Institute. It includes three sub-
processes: A (states of application), O (states of the offer belonging to the application),
and W (states of work items belonging to the application). We only considered the
sub-process W because work items are preformed by humans. As a context feature, we
included the resource feature for the evaluation.

sepsis7 stores sepsis cases. One case represents patient-related activities in a hospi-
tal. For instance, receiving treatments or taking measurements. We included the context
feature org group for the evaluation.

Table 1. Characteristics of event logs used.

Event log # Instances # Inst. variants # Events # Act. # Events per Inst.* # Context attr.’s values

bpi2012w 9,658 2,263 72,413 6 [1, 74, 7] 60

sepsis 1,050 846 15,214 16 [3, 185, 14] 26
*[min, max, mean]

4.2 Procedure

Event Logs: We only considered traces of the event logs with a size greater than two,
and we created prefixes from the event log’s traces with a minimum size of two for
model training and application. This is necessary because prefixes with a smaller size
do not provide sufficient data for predicting the next activities [21]. Further, we added
an artificial End event after each trace. This is a typical pre-processing step in the next
activity prediction because most event logs do not include such an event, and we also
want to predict the end of traces [17].

Validation Strategy: We performed a stratified ten-fold cross-validation with random
shuffling to keep the bias and variance of the models low [6]. We used the last 20% of
each training set as the validation set. We applied early stopping to the validation set
after ten epochs to avoid overfitting. For a fair comparison, we performed this validation
strategy for the GGNN and the baseline models.

MLMetrics: We calculated ML metrics in two ways. First, we calculated the weighted
Precision, Recall, and F1-Score per iteration of the ten-fold cross-validation for both
event logs. Then, we calculated the average and the standard deviation over the ten
values per metric. A definition of these ML metrics can be found in other PBPM works,
such as Mehdiyev et al. [12]. Second, we calculated the averaged Recall and Precision
over the ten folds of the cross-validation prefix-wise for the bpi2012w event log. We

6 https://data.4tu.nl/articles/dataset/BPI Challenge 2012/12689204/1.
7 https://data.4tu.nl/articles/dataset/Sepsis Cases - Event Log/12707639.

https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204/1
https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639
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start the range of prefixes with size two, increment the prefix sizes by step size one, and
end the range with size 15. This prefix range allows us to assess how well the DNN
models perform in the course of process instances.

Baselines: We benchmarked the GNN models with an LSTM-NN, an MLP-NN, and a
CNN model. For the baselines, we describe an event of a prefix by a one-hot encoded
activity, four temporal features (see Sect. 3.1), and a one-hot encoded resource value.
The LSTM-NN model included one hidden LSTM layer with an internal cell element
size of 100. We applied a dropout with a ratio of 0.3 to this layer’s inputs to avoid over-
fitting. The last layer of the LSTM-NN model and the other baselines is equal to the
GGNN models’ final layer, calculating a probability distribution over the next activities.
The multi-layer perceptron neural network (MLP-NN) included three hidden dense lay-
ers with 100 neurons. After each hidden layer, a dropout with a ratio of 0.5 is applied to
the layer’s outgoing connections to avoid overfitting. The convolutional neural network
(CNN) included six hidden layers. The first five layers were one-dimensional convo-
lutional layers with max pooling. For each convolutional layer, we set the number of
filters to 128, the kernel size to 10, the padding to same, the strides to 1, and the acti-
vation function to relu. The last hidden layer was a dense layer with 100 neurons and a
relu activation. Like for the GGNN models, we applied ADAM with standard values and
categorical cross-entropy loss to optimize the baseline models’ internal parameters.

4.3 Results

GGNNRF1 achieves the highest Precision, Recall, and F1-Score for both event logs (see
Table 2). For the bpi2012w event log, GGNNRF2 outperforms GGNNRF3 and all base-
lines regarding each metric, except the Precision of MLP-NN. GGNNRF3 also achieves
a higher Recall, and F1-Score than the baselines for bpi2012w, and its Precision is lower
than for MLP-NN. For the sepsis event log, GGNNRF2 has a higher Precision than
GGNNRF3. While GGNNRF2 outperforms GGNNRF3, MLP-NN, and CNN regarding
Recall, it achieves a higher F1-Score than CNN and GGNNRF3. For sepsis, GGNNRF3

achieves the lowest predictive quality regarding all metrics.
Looking at the Precision and Recall values (see Fig. 2), GGNNRF1 has the high-

est values for most of the prefix sizes. In contrast, Precision and Recall values for
GGNNRF2 and GGNNRF3 are only higher than the baselines for certain prefix sizes.

5 Discussion

Findings: We derived two main findings from our results. First, RF1, where each event
is represented as a graph node, works better for GGNNs than the other two represen-
tation forms, assuming activities as graph nodes (see Table 2 and Fig. 2). This effect
can be attributed to the fact that RF1 stores all event information, even in the case of
recurrent activities in process instances. Second, GGNNs with all representation forms
perform better than the baselines for bpi2012w as for sepsis (see Table 2). We suppose
that GGNNs can better learn from process instance graphs with a homogeneous struc-
ture than with a diffuse structure. Consequently, GGNNs, as used in this paper, may
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Table 2. Predictive quality of the GGNN and baseline models (average over ten folds).

Event log DL model Precision (w) Recall (w) F1-Score (w)

bpi2012w GGNNRF1 0.7941 (±0.0056) 0.7834 (±0.0046) 0.7817 (±0.0048)

GGNNRF2 0.7742 (±0.0044) 0.7768 (±0.0030) 0.7646 (±0.0044)

GGNNRF3 0.7724 (±0.0110) 0.7724 (±0.0050) 0.7572 (±0.0063)

LST M-NN 0.7610 (±0.0065) 0.7707 (±0.0052) 0.7559 (±0.0066)

MLP-NN 0.7763 (±0.0076) 0.7649 (±0.0091) 0.7553 (±0.0164)

CNN 0.7496 (±0.0043) 0.7579 (±0.0058) 0.7505 (±0.0035)

sepsis GGNNRF1 0.6141 (±0.0113) 0.6192 (±0.0099) 0.6050 (±0.0100)

GGNNRF2 0.5851 (±0.0193) 0.5956 (±0.0134) 0.5816 (±0.0130)

GGNNRF3 0.4614 (±0.0305) 0.5018 (±0.0154) 0.4591 (±0.0273)

LST M-NN 0.6101 (±0.0105) 0.6137 (±0.0068) 0.6040 (±0.0072)

MLP-NN 0.5892 (±0.0134) 0.5913 (±0.0088) 0.5819 (±0.0088)

CNN 0.5881 (±0.0094) 0.5864 (±0.0082) 0.5800 (±0.0071)

Fig. 2. Precision and Recall of the GGNN and Baseline models per prefix size for bpi2012w
(Average over Ten Folds).

perform insufficiently for the sepsis event log because it includes a higher number of
different activities and a lower instance per variant ratio than the bpi2012w event log.

The Problem of Recurrence with GNNs: While RF1 assumes a node as event, RF2
and RF3 consider a node as activity. Naturally, an activity can be performed more than
once within a process instance. However, a node is typically described by a static feature
vector, and it does not exist an individual feature vector for each repetition of an activity.
To address this problem, we follow the suggestion by Venugopal et al. [22] and only
store the node features of the last occurrence of an activity. To address this problem,
a sliding window approach may help to exploit more of the historical information of a
node that represents an activity. For example, with a window of size three, information
on the last three activity occurrences can be stored in a node vector. Another approach
to address this problem can be creating an embedding vector per feature and calculating
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the average over the vectors of the same feature. For example, such embedding vectors
can be created using word2vec [13].

Limitations: Even though the results are promising, our work has two limitations.
First, we selected standard values for most hyper-parameters of the DNN models.
We suppose that the DNN model’s predictive quality can be further improved if their
hyper-parameters are selected for each event log by performing a hyper-parameter
search method such as tree-structured parzen estimators. Second, the third represen-
tation form’s adjacency matrix reflects a DFG created based on the entire event log.
Since a DFG is also created based on prefixes from the test set, information from the
test set is used in the training phase of these models. However, we decided to create
the DFGs based on the entire event log to avoid a representation bias between a DFG
created based on the training set and prefixes from the test set. A promising approach
to address this bias can be trace alignment [8].

6 Conclusion

This paper investigated GGNNs for the prediction of the next activities in operational
business processes. Motivated by the high expressiveness of GGNNs, we explored three
conceptually different representation forms of process instance graphs. Our results show
that the first representation form, assuming events as nodes and using a prefix-based
adjacency matrix, works best, and GGNNs with this representation form achieve a
higher Precision, Recall, and F1-Score than the baselines for both event logs used.

In future research, we plan to develop new GNN architectures for PBPM, such as
spatial, temporal GCNs, combining graph convolutions with LSTM cells or GRUs, or
graph-based transformer networks. It would also be interesting to investigate unsuper-
vised graph-based approaches, such as graph2vec [14], to learn expressive represen-
tations of event log data that can be used as input for subsequent models, addressing
a specific prediction task like the next activity prediction. Another avenue for future
research is to investigate different discovery algorithms for process model creation.
Since the created process models can be used as the underlying structure for process
instance graphs, DL-based PBPM techniques can be developed that are process-aware
[11]. Finally, we interpreted the next activity prediction as a graph-based classification
task in this paper. However, since GNNs can also be designed for node-based or edge-
based classification tasks, researchers can poof whether and how these classification
approaches can be applied in BPM.
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