
Chapter 9
Some Properties of Convexity Structure
and Applications in b-Menger Spaces

Abderrahim Mbarki and Rachid Oubrahim

Abstract We discuss, in Menger spaces, the notion of convexity using the convex
structure introduced by Takahashi (Kodai Math Sem Rep 22:142–149, 1970), then
we develop some geometric and topological properties. Furthermore, we introduce
the notion of strong convex structure and we compare it with the Takahashi convex
structure. At the end, we prove the existence and uniqueness of a solution for a
Volterra type integral equation.

Keywords Takahashi convex structure · Probabilistic strong convex structure ·
Volterra type integral equation

9.1 Introduction and Preliminaries

In the paper [1] authors introduced the concept of probabilistic b-metric space
(b-Menger space), which the probabilistic b-metric mapping F is not necessar-
ily continuous, and which generalizes the concept of probabilistic metric space
(Menger space [8, 9]) and b-metric space. They discussed its topological and
geometrical properties and they showed the fixed point and common fixed point
property for nonlinear contractions in these spaces [5]. Furthermore, they defined
the notion of fully convex structure and established [4] in fully convex b-Menger
spaces the existence of common fixed point for nonexpansive mapping by using the
normal structure property. Also, they showed a fixed point theorem in b-Menger
spaces using B-contraction with cyclical conditions (See [2, 3] and [6]).
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Definition 9.1 ([1]) A b-Menger space is a quadruple (X, F, T , s) where X is a
nonempty set, F is a function from X × X into �+, T is a t-norm, s ≥ 1 is a real
number, and the following conditions are satisfied:

For all p, r, q ∈ X and x, y > 0,

1. Fpp = H ,
2. Fpr = H ⇒ p = r ,
3. Fpr = Frp ,
4. Fpr(s(x + y)) ≥ T (Fpq(x), Fqr (y)).

It should be noted that a Menger space is a b-Menger space with s = 1.

Definition 9.2 Let (X, F ) be a probabilistic semimetric space (i.e., (1), (2) and (3)

of Definition 9.1 are satisfied). For p in X and t > 0, the strong t-neighborhood of
p is the set

Np(t) = {q ∈ X : Fpq(t) > 1 − t}.

The strong neighborhood system at p is the collection

℘p = {Np(t) : t > 0}

and the strong neighborhood system for X is the union

℘ =
⋃

p∈X

℘p.

In probabilistic semimetric space, the convergence of sequence is defined as follow.

Definition 9.3 Let {xn} be a sequence in a probabilistic semimetric space (X, F ).
Then

1. The sequence {xn} is said to be convergent to x ∈ X, if for every ε > 0, there
exists a positive integer N(ε) such that Fxnx(ε) > 1 − ε whenever n ≥ N(ε).

2. The sequence {xn} is called a Cauchy sequence, if for every ε > 0 there exists a
positive integer N(ε) such that n, m ≥ N(ε) ⇒ Fxnxm(ε) > 1 − ε .

3. (X, F ) is said to be complete if every Cauchy sequence has a limit.

Schweizer and Sklar proved that if (X, F, T ) is a Menger space with T is
continuous, then the family � consisting of ∅ and all unions of elements of this
strong neighborhood system for X determines a Hausdorff topology for X (see [11]
and [10]).

Lemma 9.1 ([11]) Let (X, F, T ) be a Menger space with T is continuous, X be
endowed with the topology � and X × X with the corresponding product topology.
Then F is a uniformly continuous mapping from X × X into �+.

However, Mbarki et al. [1] showed that in b-Menger space (X, F, T , s), the
probabilistic b-metric F is not continuous in general even though T is continuous.
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Example 9.1 ([1]) Let X = N ∪ {∞}, 0 < a ≤ 1. Define Fa : X × X → �+ as
follow:

Fa
bc(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

H(t) if b = c,

H(t − 7) if b and c are odd and b �= c,

H(t − | a
b

− a
c
|) if b and c are even or bc = ∞,

H(t − 3) otherwise.

It easy to show that (X, F a, TM, 4) is a b-Menger space with TM is continuous. In
the sequel, we take a = 1. Consider the sequence xn = 2n, n ∈ N. Then F2n∞(t) =
H(t − 1

2n
). Therefore xn → ∞, but F2n1(t) = H(t − 3) �= H(t − 1) = F1∞(t).

Hence F is not continuous at ∞.

In this work we give two notions of structures convex, first one is the probabilistic
extension of the Takahashi convex structure defined in ordinary metric spaces,
second one is the strong convex structure more general than the probabilistic
Takahashi convex structure and we study a properties and relationship of the theory
of betweenness in Menger spaces using those convex structures. We finish this work
by showing the existence and uniqueness of a solution for a Volterra type integral
equation.

9.2 Probabilistic Takahashi Convex Structure

In 1970, Takahashi [12] introduced the concept of convexity in a metric space. We
give the probabilistic version of this convex structure.

Definition 9.4 Let (X, F, T ) be a Menger space, and let I be the closed unit
interval [0, 1]. A probabilistic Takahashi convex structure (PTCS) on X is a function
W : X × X × I → X which has the property that for every x, y ∈ X and λ ∈ I we
have

FzW(x, y, λ)(λs + (1 − λ)t) ≥ T (Fzx(s), Fzy(t))

for all z ∈ X, and s, t > 0. If (X, F, T ) is equipped with PTCS, we call X a
convex Menger space.

In the sequel of this section we suppose that ImF ⊂ D+.

Definition 9.5 Let W be a PTCS on a Menger space (X, F, T ). We say that W

is a strict PTCS if it has a property that whenever w ∈ X and there is (x, y, λ) ∈
X × X × (0, 1) for which

Fzw(2t) ≥ T (Fzx(
t

λ
), Fzy(

t

1 − λ
)) f or every z ∈ X
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then w = W(x, y, λ).

Proposition 9.1 Let W be a strict PTCS on the Menger space (X, F, T ). Then for
all x, y ∈ X and λ ∈ I we have

W(x, y, λ) = W(y, x, 1 − λ).

Proof The equality is true for λ = 0 and λ = 1. Let λ ∈ (0, 1), we have

FzW(y, x, 1−λ)(2t) ≥ T (Fzy(
t

1 − λ
), Fzx(

t

λ
))

= T (Fzx(
t

λ
), Fzy(

t

1 − λ
)),

for all z ∈ X.
By strictness we get

W(x, y, λ) = W(y, x, 1 − λ).


�
Theorem 9.1 Let W be a strict PTCS on the Menger space (X, F, TM) under the
t-norm TM . Then for every x, y ∈ X and α, β ∈ [0, 1

2 ), we have

W(W(x, y, α), y, β) = W(x, y, 2αβ).

Proof Let x, y ∈ X. The assertion is true for α = 0 or β = 0. Let α, β ∈ (0, 1
2 ).

For all z ∈ X we have

FzW(W(x, y, α), y, β)(2t) ≥ min

(
FzW(x, y, α)

(
t

β

)
, Fzy

(
t

1 − β

))

≥ min

(
min(Fzx

(
t

2βα

)
, Fzy

(
t

2β(1 − α)

)
,

Fzy

(
t

1 − β

))

= min

⎛

⎝Fzx

(
t

2βα

)
, min

(
Fzy

(
t

2β(1 − α)

)
,

Fzy

(
t

1 − β

))⎞

⎠

≥ min

(
Fzx

(
t

2βα

)
, Fzy

(
t

1 − 2βα

))
.
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Because of 1
2β(1−α)

≥ 1
1−2βα

and 1
1−β

≥ 1
1−2βα

, it holds

W(W(x, y, α), y, β) = W(x, y, 2αβ).


�
Definition 9.6 A convex Menger space (X, F, T ) with a probabilistic Takahashi
convex structure W will be called strictly convex if, for arbitraries x, y ∈ X and
λ ∈ (0, 1) the element W(x, y, λ) is the unique element which satisfies

Fxy(
t

λ
) = FW(x, y, λ)y(t), Fxy(

t

1 − λ
) = FW(x, y, λ)x(t),

for all t > 0.

Theorem 9.2 Let W be a strict PTCS on a strictly convex Menger space
(X, F, T ). Then for every x, y ∈ X with x �= y the mapping λ �→ W(x, y, λ) is
an injective from [0, 1

2 ) into X.

Proof Let α, β ∈ [0, 1
2 ) such that α �= β and assume, without loss of generality,

that α < β. Let x, y ∈ X such that x �= y. We have

FW(x, y, α)W(x, y, β)(t) = FW((W(x, y, β), y, α
2β

)W(x, y, β)(t)

= FW(x, y, β)y(
t

1 − α
2β

)

= Fxy(
t

β(1 − α
2β

)
)

for all t > 0.
Since x �= y, then Fxy �= H , hence there exists t0 > 0 such that Fxy(t0) < 1,

for t
β(1− α

2β )
< t0 we have FW(x, y, α)W(x, y, β)(t) < 1. So FW(x, y, α)W(x, y, β) �= H

and therefore W(x, y, α) �= W(x, y β). 
�
Theorem 9.3 Let W be a strict PTCS on a compact Menger space (X, F, T ).
Then for each λ ∈ (0, 1), Wλ : (x, y) �→ Wλ(x, y) = W(x, y, λ) is continuous as
a mapping from X × X into X.

Proof Given λ ∈ (0, 1) and let {(xn, yn)}∞n=1 be a sequence in X × X which
converges to (x, y) and let w be a cluster point of the sequence {W(xn, yn, λ)}∞n=1.
By using Theorems 2.2-2.5 of [7], select a subsequence {W(xnk , ynk , λ)}∞n=1 which
converges to w. Then for any z ∈ X, we have

FzW(xnk
, ynk

, λ)(2t) ≥ T (Fzxnk
(
t

λ
), Fzynk

(
t

1 − λ
)) f or k = 1, 2, . . . .
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Strictness and using the fact that the set of the points of discontinuity of F is
countable now guarantees that

w = W(x, y, λ).

It follows that W(x, y, λ) is the only cluster point of the sequence
{W(xn, yn, λ)}∞n=1. Therefore, in view of Theorem 2.4 of [7], {W(xn, yn, λ)}∞n=1

must converges to W(x, y, λ) which complete the proof. 
�

9.3 Probabilistic Strong Convex Structure

In this section, we give a relationship between W(W(x, y, s1), z, s2) and
W(W(x, z, t1), y , t2) for s1, s2, t1, t2 ∈ [0, 1].
Definition 9.7 Let (X, F, T ) be a Menger space, and let P = {(α, β, γ ) ∈
I × I × I : α + β + γ = 1}. A probabilistic strong convex structure (PSCS) on X

is a continuous function K : X × X × X × P → X with the property that for each
(x, y, z; (α, β, γ )) ∈ X ×X ×X ×P , K(x, y, z, (α, β, γ )) is the unique point
of X which satisfies

FwK(x, y, z, (α, β, γ ))(αs + βt + γ r) ≥ T (T (Fwx(s), Fwy(t)), Fwz(r)) (9.1)

for every w ∈ X and for all s, t, r > 0.

Remark 9.1 The uniqueness assumption in last definition guarantees that if p is a
permutation of {1, 2, 3}, then, for (x1, x2, x3, (α1, α2, α3)) ∈ X × X × X × P ,
we have

K(x1, x2, x3, (α1, α2, α3)) = K(xp(1), xp(2), xp(3), (αp(1), αp(2), αp(3))).

Proposition 9.2 Let (X, F, T ) be a strong convex Menger space with ImF ⊂
D+ and K its PSCS. Define WK : X × X × I → X by WK(x, y, λ) =
K(x, y, x, (λ, 1 − λ, 0)). Then WK is a PTCS on X.

Proof Let s, t > 0, x, y ∈ X and λ ∈ I . We have

FwWK(x, y, λ)(λs + (1 − λ)t) = FwK(x, y, x, (λ, 1−λ;0))(λs + (1 − λ)t)

≥ T (T (Fwx(s), Fwy(t)), Fwz(r)),

for all w ∈ X and r > 0.
Setting r → ∞ we get

FwWK (x, y, λ)(λs + (1 − λ)t) ≥ T (Fwx(s), Fwy(t)),
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for all w ∈ X.
Then WK is a PTCS on X. 
�

Theorem 9.4 For any three points x, y, z in a strong convex Menger space
(X, F, T ), if β ≤ 1

2 and α ∈ I. Then,

W(W(x, y, α), z, β) = K(x, y, z, (
4βα

3
,

4β(1 − α)

3
,

3 − 4β

3
)).

Proof Let β ≤ 1
2 , α ∈ I and x, y, z ∈ X. For all w ∈ X we have

FwW(W(x, y, α), z, β)(3t) ≥ T (FwW(x, y, α)(
3t

2β
), Fwz(

3t

2(1 − β)
))

≥ T (T (Fwx(
3t

4βα
), Fwy(

3t

4β(1 − α)
)), Fwz(

3t

2(1 − β)
))

≥ T (T (Fwx(
3t

4βα
), Fwy(

3t

4β(1 − α)
)), Fwz(

3t

3 − 4β
)),

because 3
2(1−β)

≥ 3
3−4β

.

Since 4βα
3 + 4β(1−α)

3 + 3−4β
3 = 1, then by uniqueness

W(W(x, y, α), z, β) = K(x, y, z, (
4βα

3
,

4β(1 − α)

3
,

3 − 4β

3
)).


�
Corollary 9.1 For any three points x, y, z in a strong convex Menger space
(X, F, T ), if 1

4 ≤ β ≤ 1
2 and α ≤ 4β−1

4β
, then

W(W(x, y, α), z, β) = W(W(x, z, βα[3 − 4β(1 − α)

4
]−1), y,

3 − 4β(1 − α)

4
).

Proof The conditions 1
4 ≤ β ≤ 1

2 and α ≤ 4β−1
4β

imply that 3−4β(1−α)
4 ≤ 1

2 and

γ = βα[ 3−4β(1−α)
4 ]−1 ∈ (0, 1). We apply the Theorem 9.4 we get

W(W(x, z, γ ), y,
3 − 4β(1 − α)

4
) = K(x, z, y, (

4βα

3
,

3 − 4β

3
,

4β(1 − α)

3
)),

and by permutation we obtain

W(W(x, y, α), z, β) = W(W(x, z, βα[3 − 4β(1 − α)

4
]−1), y,

3 − 4β(1−α)

4
).


�
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9.4 Application to An Integral Equation

As an application of the Theorem 4.1 in [1], we will consider the following Volterra
type integral equation:

x(t) = g(t) +
∫ t

0
	(t, α, x(α))dα, (9.2)

for all t ∈ [0, k], where k > 0.

Theorem 9.5 Let 	 ∈ C([0, k] × [0, k] × R, R) be an operator satisfying the
following conditions:

1. ‖	‖∞ = supt, α∈[0, k], x∈C([0, k], R)|	(t, α, x(α))| < ∞.
2. There exists L > 0 such that for all t, α ∈ [0, k] and x, y ∈ C([0, k],R) we

obtain

|	(t, α, f x(α)) − 	(t, α, fy(α))| ≤ L√
2
|x(α) − y(α)|,

where f : C([0, k], R) → C([0, k], R) is defined by

f x(t) = g(t) +
∫ t

0
	(t, α, f x(α))dα, g ∈ C([0, k], R).

Then the Volterra type integral equation (9.2) has a unique solution x∗ ∈
C([0, k], R).

Proof We define the mapping F : C([0, k], R) × C([0, k], R) → D+ by

Fxy(t) = H(t − max
t∈[0, k](|x(t) − y(t)|2e−2Lt)), t > 0, x, y ∈ C([0, k], R).

From Lemma 3.1 of [1], (C([0, k], R), F, TM, 2) is a complete b-Menger space
with coefficient s = 2. Therefore, for all x, y ∈ C([0, k], R), we get

Ff xfy(r)

= H(r − max
t∈[0, k](|f x(t) − fy(t)|2e−2Lt))

= H(r − max
t∈[0, k](|

∫ t

0
(	(t, α, f x(α)) − 	(t, α, f x(α)))dα|2e−2Lt))

= H(r − max
t∈[0, k](|

∫ t

0
(	(t, α, f x(α)) − 	(t, α, f x(α)))e−LαeL(α−t )dα|2))

≥ H(r − L2

2
max

t∈[0, k](|x(t) − y(t)|2e−2Lt) max
t∈[0, k](

∫ t

0
eL(α−t )dα)2)
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= H(r − 1

2
(1 − e−Lk)2 max

t∈[0, k](|x(t) − y(t)|2e−2Lt))

= H(r − c

2
max

t∈[0,k]
(|x(t) − y(t)|2e−2Lt ))

= H(
2r

c
− max

t∈[0,k](|x(t) − y(t)|2e−2Lt))

= Fxy(
2r

c
),

where c = (1 − e−Lk)2.
Therefore, in view of Theorem 4.1 in [1] with ϕ(r) = cr , c ∈ [0, 1], we deduce

that the operator f has a unique fixed point x∗ ∈ C([0, k], R), which is the unique
solution of the integral equation (9.2). 
�
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