Chapter 7 )
The Completely Discretized Problem of Shethie
the Dual Mixed Formulation for the Heat
Diffusion Equation in a Polygonal

Domain by the Crank-Nicolson Scheme

in Time

Reda Korikache and Luc Paquet

Abstract The purpose of this paper is to prove a priori error estimates for the
completely discretized problem of the dual mixed formulation for the heat diffusion
equation in a polygonal domain. We complete the discretization of the problem
(Farhloul et al., Functional Analysis and Evolution Equations. The Giinter Lumer
Volume, p. 240, Birkhéuser, Basel, 2007) in time by using the Crank-Nicolson
scheme and we show the existence, the stability and a priori error estimates for
the solution of the completely discretized problem.

Keywords Dual mixed finite element method - Heat diffusion equation -
Singularities - Grids refinements - A priori error estimates

2010 MSC: 35K05, 58J35

7.1 Introduction

The aim of this paper is to study the completely discretized problem of the
dual mixed formulation for the heat evolution equation in a polygonal domain
Q of R2. Let us note that we have dealt in [2] with the mixed dual semi-
discretized formulation in space. In this work, we will complete the discretization
of the problem in time by using the Crank-Nicolson scheme. For this completely
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discretized problem, we are going to demonstrate the existence and the uniqueness
of the solution. Then, we will show the stability of this scheme. Finally, we will
prove, under some conditions of meshing refinement in the reentrant corner of the
polygonal domain, a priori error estimates of order 1 in space, and 2 in time for
the solution of the completely discretized problem when using the Crank-Nicolson
implicit scheme.

7.2 The Model Problem

Let  be a bounded polygonal domain of R2. In particular the boundary of  : 92
=l = U;VZIF j for some N € N, where I'; is an open segment of a straight line of

the plane RZ, V j=1,2,...,N. Asitis well known, the geometric singularities
of the domain (the angles) induce in general singularities on the solution of the
Cauchy problem with Dirichlet boundary condition for the heat diffusion equation
(see for example the books of P. Grisvard [3, 4]). As shown in [4] and [3], we may
suppose without harming to the generality that 2 has only one nonconvex angle, in
other words one reentrant corner, and that its vertex is located at the origin. In the
following, we denote by w (w > ) the measure of that angle. For a fixed T > 0,
let us set Q := Q2x]0, T[ and let us denote by ¥ := I"x]0, T[ the lateral boundary
of the cylinder Q. We introduce the following weighted Sobolev space (see [3],
definition 8.4.1.1 and lemma 8.4.1.2 p. 388):

H>“(Q) ={ve H(Q); r*DPv e L*(Q), VB e N? : || = 2},

which is a Hilbert space for the norm

2 2 1/2
Il = (VT g+ 103402

where the semi-norm |.|2 4, is defined by

12
2
haa=| X [renff |

1B1=2

r denotes the distance to the origin of R?. Let us recall that:
H'(Q) = {v e H'(Q); v/pe = 0).

Let us consider the Cauchy problem for the heat diffusion equation in €2 up to time
T: given the right-hand side f € L> (0, T; LZ(Q)> and the initial condition g €
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HY(Q), findu € H' (0, T LZ(Q)) N L0, T: H'(Q)) weak solution of:

ur(x,t) — Au(x,t) = f(x,t)in Q,
u(x,t) =0on %, (7.1)
u(x,0) =gkx), forx € Q.
We have seen in Proposition 3 of [2], that Problem (7.1) admits a unique solution:
ue HY0, T; L*() N L*(0, T; H>*(Q)) N L*(0, T; H'(Q)),

witha € |1- 7.1/

In the following, we will consider the additional unknown heat flux p :=
Vu (rigorously speaking, the heat flux density vector is the opposite [10]). We
have proved in [2, Theorem 4] that the couple (p, u) € L?(0, T; H(div, Q)) x
HY(0, T; L*(Q)) is the unique solution of the dual mixed formulation:

Jop®).qdx + [qu(t) divqdx =0, Vq e H(div, Q), forae.r e,
Jov divp()dx = — [o(f(t) —u, (1)) vdx, Yve L*(Q), forae.t eI,

u0) =g e H(Q).
(7.2)

7.3 The Completely Discretized Problem

Let us consider a family of triangulations (77)x~0 on 2. For a triangle K belonging

to the triangulation 77, let us denote by Ak the diameter of K and by px the

interior diameter of K, i.e. the diameter of the largest of disc included in K. As in

Theorem 8.4.1.6 p. 392 of [3], we suppose that the family of triangulations (77)r>0

has the property that Il(ngiyg Zl’i is bounded by a positive constant independent of
€

the parameter /; in that case, one says usually that the family of triangulations is
regular (see for example [1] (17.1) p. 131). In accordance with the tradition (see [1]
remark 17.1 p. 131) the same letter 4 may have also another significance: it may
denote instead: & =: maxy g hg. The true significance of / is always clear from
the context.
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For the discretization in space, let us recall that we are using the approximant
spaces:

Xp:={an€ Hdiv; Q; VK € T : qu/k € RTo(K) },
My, = { v, € Lz(Q);VK €Tn, vk € Py (K) ]s

where RTy(K) := Py(K)? @ Py(K) (g ) denotes the real vector space of dimension
three of the so called Raviart-Thomas vectorfields of degree O on the triangle K
(RTy(K) is denoted D1(K) in [7, p. 550]), and Py (K) is the real vector space
of dimension one of the constant functions on the triangle K. For the complete
discretized problem, we use the time subdivision of the interval [0, T] into N sub-
intervals [t,,_l, tn] (N >2),suchthat: 0 = fp < --- <t, <--- <ty =T.
At =ty — t,—1 denotes the fixed time step. Let us denote by uj, the approximation
of the temperature at time #, = nAt in M}, For the approximation of ‘3’; at the time
t,, we use the following formula:

(up — MZ_I)

oull =
“h At

7.4 The Crank-Nicolson Scheme

Before giving the complete discretized mixed formulation for the heat diffusion
equation by the Crank-Nicolson scheme, we will first define new variables. We set,

-1 n n—1
. th + th—1 nfé N ph" + phn nfé N uy +Mh
tn—é = ) . = ) ,andu, ° = ) . (7.3)

Let us consider the following problem:
_1 _1
prhn 2 dx + [ uZ 2 divq, dx =0, VYq, € Xp,, Vn > 1,
1
Jovn divpy dx =~ [o(f (1, 1) — duj) vn dx, Vop € My, Yn = 1,

u2 , given.

(7.4)

1 1
Let us note that in (7.4) appear phn 2, uZ *,uj and uzfl. Thus, we can choose

_1
as unknowns phn 2 and uz for n > 1. Another alternative is to consider that the
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unknowns are the ph" forn > 0 and uz forn > 1. ug denotes the initial condition
that is known and pho is exceptionally defined by the equation:

/ pl.qn dx +/ u) divqy dx =0, Yqu € X (7.5)
Q Q

This last choice of unknowns presents the following advantages:

* Traditional unknowns.
e Symmetry of “p” and “u” in the problem.

Proposition 7.1 Problem (7.4) admits one and only one solution (p;', u})neIN -

Proof Let us start by demonstrating the unicity. Therefore, let us show that if
(p;, uy) € X x My, verifies :

1 1
fgphn 2.qn d)f—l—fguz 2 divqy, dx =0, VYq, € X, Yn>1

Jo vn divphn_zdx = [q Ou} vy dx, Vv, € My, Vn > 1 and u2 =0,
(1.6)

1
then (p,’, u};) = 0. By taking q;, = phn % in the first equation of (7.6) and v;, =

1
uz 2 in the second equation of (7.6), we obtain:

J.

On the other hand we have:

_1 2 _1
p, ° dx+/Qauz u, > dx=0. (1.7)

_1 1 _ _ 1 2
oujy uZ 2 = AL (uz — uy 1) (uz + uj, 1) = A (uﬁ) , (7.8)

on the condition of having already demonstrated that uz_l = 0. So let us take
n = 1 in (7.8) and since u2 = 0 (initial condition), consequently u}l = 0, and

1
p,” = 0 by Eq. (7.7) the second term in the left-hand side of Eq. (7.7) being also a

priori non-negative due to [6].
1

According to (7.5), u2 = 0 implies that pho = 0. Knowing already that p,> = 0,
it follows that p;' = 0. Thus p;> = 0 and u = 0 by (7.7) and (7.8) with n = 2 and
so on for every n > 1.

For the existence, it is well known by the Riesz Representation Theorem applied
to Eq. (7.5) that pho exists (see Remark 1.5.2 [5, p. 31]). According to the system
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(7.4) with n = 1, and with the aim of constructing phl and u},, ug and ph0 being
known, we have

Jop)tan dx + [qu) diva, dx = [opL.qn dx + [qul) diva, dx, Yq, € Xp,
Jovndivpldx — 2 [qub vy dx = — [quadivpdx — 2, [oud vy dx

—ZfQ f (tl/z) vy dx, Yo, € My,.
(7.9)

Let ®;: X, x My —> X} x M, , be the application defined by:
(phl,u,ll> — <qh —> / phl.qh dx+/ ”/11 divqy dx,
Q Q

2
vy —> / Uh divphldx — / u}, vy dx) .
Q At Jo

Let us prove that it is an isomorphism. Since @, is linear of X} x My, in its dual, and
since the two spaces X x M), and X ;, x M }’, have the same dimension, it suffices to

show that @, is injective to prouve its bijectivity. Let (phl, ”;11) such that:

/ p .qu dx +/ up divg, dx =0, Yqi, € X, (7.10)
Q Q
2
/ v divphldx — / u,ll v, dx =0, Yu, € My,. (7.11)
Q At Jo
In (7.10), let us take q;, = ph1 and v, = u}, in (7.11), it follows that :

12 2 1 2
/‘ph‘ dx + /‘uh‘ dx = 0. (7.12)
Q At Jq

We obtain ph1 = 0 and ”;11 = 0. It follows from that the injectivity and thus the

bijectivity of ®;. So it suffices to apply CID;1 to the couple of linear forms defined
by the two members of the right hand side of the system of Egs. (7.9). In a similar

way, we construct (phz, u%) by considering the system (7.4), with n = 2 and so
on. ]

7.4.1 Stability

Now we will give the stability result of the Crank-Nicolson scheme.
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Theorem 7.1 Suppose At < ; There exists a constant ¢ > 0 independent of h
such that:

Hm]y Hz o S Hu%Hi A thOHz ot i At Hf(t"ﬁ)Hz o (7.13)
’ ’ S n=1 :
and
ot ], = [0, 0+ B, sl .18

Proof For the proof of (7.13), we use in particular the discrete inequality of
Gronwall [6, p. VI-9], with:

on = luiloq + A oo

my=2
ml:--~=mN_1=2At
c =2, +arfog], ,+2ar 2 [ra,pl,
= t t t
“h 0,Q+ Py o,s2+ Y= | S —5) 0.Q

For the complete demonstration of (7.13) see the proof of Theorem 1.5.15 [5, pp.
52-54]. For the proof of (7.14), see the proof of Proposition 1.5.16 [5, p. 55]. |

7.4.2 Error Estimates on the Temperature and on the Heat
Flux Density Vector

In order to demonstrate the results related to the error estimate, proceeding similarly
as in the semi-discrete case [2], we decompose the error: u(#,) — uj, into the sum of
u(ty) — ip(ty) and iy (t,) — uj, where (p;, (), iip (1)) € X x My, is the solution
of the “elliptic projection problem” at time #, : find (py, (t,), tt5(tn)) € Xn X M
solution of,

fQ Py (t).qn dx + fQ up(ty) divqy, dx =0, Vqu € Xp,
(7.15)
fQ vy div py (t)dx = —fQ(f(t,,) —us(ty)) vp dx, Yo, € M.
The elliptic problem (7.15) being true for n and n — 1, making the sum, we obtain:

fQ f’h(tn)'f‘g)h(tn—l).qh dx +fgz ﬂh(l‘n)Jth(l‘n—l) divqh dx = 0’ th e Xha

vah div f)h(tn)'f‘g)h(tn—l)dx — _ ‘/'Q(f(tn)'f‘g(tn—l) _“t(tn)'f‘;t(tn—l)) v dx, VUhEMh.
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We may rewrite the Crank-Nicolson scheme, with u2 , given by:
_1 1
JoPy Z.andx+ [qu, > dive,dx =0, Yqu € X;,Vn > 1
. on—) .
fQ v divp, ‘*dx = _fQ(f(tn—é) — ou}) vy dx, Vv, € My, Vn > 1

Letus set0; :=uj, —iip(ty) and €' := p;' — P;,(#y). Then, by subtraction we obtain
the following system:

1

n n—1 O 4om— .
o &h +2‘=‘h qndx + [g h+2h divg, dx =0, Vqj € Xp,

n n—1
Joondiv ¥ Sr T dx
— _fQ(f(tnfé) _ f(tn)+2f(fn—l) _ (auz _ Mr(l‘n)JF;t(l‘n—l))) vpdx. Vv, € My,
(7.16)

Proposition 7.2 Assume f, )/ € H'(0,T; L*(Q)) and Ag + f(0) € H'(Q) as
well as A (Ag + f(0)) + 4 (0) € H' (Q) . Then

ue € L2(0, T; L*()).

Proof Let w € H' (0, T; L?>(Q)) N L*(0, T; L>(R)) be the solution of the heat
diffusion equation

: Wty = aw@) + 41 @), Vi e[0. 7]
w(0) = A (Ag + £() + 4 (0).

Setv(r) = [y w(s) ds+Ag+£(0), (1) = w(t) and v(0) = Ag+£(0) € H'(Q).

By integrating the equation ‘Z'f (s) = Aw(s) + ”Z‘zf (s), Vs € [0, T] from O to ¢,
we obtain:

df df

w(r) —w(0) = A (v(r) — Ag — f(0)) + dt () — It 0)

df af df
P

o dv
e ) — A (Ag+ £(0))— s 0) = Av(t)— A (Ag + £(0))+ s (1) —
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Then, by simplifying the 2 members we obtain that v is the solution of the following
Cauchy problem:

HOEFNIOE A
v(0) = Ag + f(0) € H(Q).

According to the proof of Proposition 8 in [2], we have v = fl’; Thus f;g = Z'Ir) =
w e H'(0, T; L?()). And consequently u;;; € L>(0, T; L>(2)). O

Theorem 7.2 Under the hypotheses of Proposition 7.2, there exists a constant ¢ >
0 independent of h and of k such that:

In
H”Z — ﬁh(t")no,sz < ch (”u()”HZ,a(Q) +/0 Hu[(s)” H2o (@) ds) +2A1% x

tn In
(/O ||um(s)HO’st+/0 ||f,,(s)HO’st). (7.17)

0}’:71 H and
Hw” || . For this, let’s take v, = 6} + 9,’11_1 in the second equation of the system
(7.16) and q;, = eh” + sh”_l in the first. We have:

/ ‘eh” + ehnfl
Q 2

Proof The first step of this demonstration is to bound ||6}! || in terms of ‘

‘ 2
2

B (auz i) +2ut(tn1)>> < (op+o) ax

dx = / (f(tn_%) _ f(tn) + f(tnfl) (7.18)
Q

And as we have :

n_ u(tn) + us(tn—1)

us(tn) + e (tn—1)
ouy, )

= 89/? +u(ty) — u(ty—1) — )
=00 + (R, — I) du(ty) + du(ty)

_ us(ty) + e (tn—1)
2 b
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where, with analogy to the book of Vidar Thomée [8], “Rj()” denotes here the
component in M}, of the couple of X; x M} “elliptic projection of” (cf definition 6
of [2]). Thus,

us(tn) + ur(ty—1) + f) + fta—1) _

ou —
“h 2 2

VAUREY)

= 96} + Ry — D) dut) + (du(t) = et 1))+, )

_ut(tn) + us(ty—1) + f) + fta-1) .

N 5 f, 1) (7.19)

= 90" + (Ry — 1) du(ty) + (8u(tn) - u,(tn_é)>
1
+a [t = ) ) +ut,o0) |

because Au(t) + f(¢t) = u,(¢t), forevery t > 0.
Let us set " := &} + &) + @}, with:

o 1= (R — 1) du(ty),

&+ = (outt) = ut, 1)),

- 1

w3 =A |:u(tné) 5 (ue(t) + u(tn1))} .

Then, it follows from (7.19) and (7.18), that,

2
‘eh" + eh”_l‘
/ dx = _/(39;; +a" (9;; +9;;*1) dx. (7.20)
Q 2 Q

Thus, we obtain:

or+op7"| .

[ oo (e + i) ax < = e+ ey + 1]
Q

2
AR
/Qae);; (9,7 +9,’;—1) dx = o , (7.21)




7 The Heat Diffusion Equation: The Dual Mixed Method and the Crank-. . . 153

we deduce that :

HQnHZ On—l 2 < At 1 n n—1 2 H~n” or en—l
rlo.e ||7h oo = o llEn e 0,Q+ @ o || + O e/’
(7.22)
And so, a fortiori we get
o’ = o] < ar & o 0! 7.23
i P = Jer [ < ot [ log (le oo + ], ) @29
Thus,
-1 ~
leiloq =< &)+ 21 1@ o0 (7.24)
so that it suffices to bound @". Let us start with &. By definition we have
A 8]y = At [ou) —u, ) ‘m
ty) —u(ty—
— At u(ty) — u(ty 1)—u[(t_1)
At "2 0.0
= ) = wt) = At -
Using Taylor’s formula, we get
At Ar? 1 [ )
ultn) =ty )+ i, )+, D+ | =9 () ds.
-
Hence, at the time t,,_, we have
At Ar? 1 [ )
M(ln—l):’/l(ln_%)— > '/lt(fn_é)-i- 3 Mzt(fn_é)'l‘z i (tn—1 — $) U (s)ds.
1
"2
(7.25)

Let us consider the difference of these two above equalities, we obtain

ultn) —u(tn—1) — At ur(t, 1)

1 In 2 1 Ih—1 2
= / (tn — 8) usr(s)ds — / (th—1 — ) Uz (s)ds.
2 [ 2 [

) )
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It follows that

|t =ty = Attt 1)

e

1 [ ) 1 [l )

< f (tn — 0% st ) o 5 + f 2 (tnr = ) s (9) | g 5
2 o1 ’ 2 s, ’

_ -1
2

IA

At [ At? [l
o [ lunlogds+ %y [ o) g ds
t n

1
)

N2
=% | )l g ds.
8 h—1 '

Thus we have demonstrated that

At?

A 4o = o

In
f luere ()] . ds. (7.26)
In—1

Now, let us try to bound H&g ||0 - The Taylor formula gives:

! ty) = ! t At t L [# d
zu(n)— 2”(,1_5)"‘ 4 ut("_%)+2 i l(n_s)utt(s) S,
)

-1

Vit = Lue =2 wa )+/ (tn — $)itss(s)d
21/[ n,1—2u n_; 4”[ "_é 2t n S)u(s)as.

11*2
By summing these two above equalities we obtain:
1 1 In In—1
u(t, 1) — (”(tn) + M(l‘n—l))Z - (tn — S)ug(s)ds — (tn—1 — S)uy(s)ds.
2 2 2J 2J
Vl*z 11*2

So, by applying the Laplace operator A, we obtain

1
A [u(tn_é) - (u(tn) + ”(tnl)):|

0,2

1 ty 1 L1
f (tn — ) || Autgs(5) | . s + f * iy = s |Aun(s) [ ds
2 tn 1 ’ 2 In '

— -1
2

A In
1) g g ds
4 Ih—1 ’
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Consequently,

~ Ar? [
At Hw3 Ho,Q = 4 / HAutt(S) ”O,Q ds. (7.27)
In—-1

We still have to bound || cT)'l' H 0. Let us recall that

u(ty) —u(ty—1)

&= (Ry — 1) dulty) = (Ry — ) N

Thus, by using Proposition 12 in [2, p. 252], there exists a constant ¢ > 0
independent of 4 such that:

At H51 ||0’Q <ch Hu(l‘n) — M(tn—l)“HZ,ot(Q)

In
/ u;(s)ds
th—1

=ch

H22(Q)
Consequently

In

At @} ||0’Q <ch / 1||u,(s) | e 45 (7.28)

n

According to the inequality (7.24), we have that:

L el e A

=3 R (o W

5+ 1 o)

<o, 02

7 oat]
0,2

IA

3

n
GOH + At Ha’
H o, Z; 0,0
i=

recalling that 92 = u2 —up(0) = 0. By using inequalities (7.26), (7.27) and (7.28),
we get

~ AD? [
At }ngOQ = ( 8) / Hum(s)”()’g ds, (7.29)
-1
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_n (A1) [n
8t &g =} [ 12w o0 as (730
th—1
In
ot [@gq = ch [ J6) |y o @31)
-1

Consequently recalling that &" = @] + @} + @3, we obtain

tll
1631 = 1 =t o = e [ 1065 sy s+

0]

In In
(Ar)? (/ |s2(s) [ ds +/ lAur ()] ds) .
fo to

And since Auyu(s) = j:z Au(s) = uui(s) — fi(s), we can replace Auy(s) by
Uy () — fi:(s) in the above inequality.
Finally, we get the following inequality:

In
=m0l = o ([ 0l )

tn n
2A7% (/O ””m(s) Ho,gzds +/0 ” ﬁf(s)||0,9ds> '

O

Theorem 7.3 Let {71} be a regular family of triangulations on 2, satisfying the
properties (i) and (ii) of Proposition 9 of [2, p. 250]. Under the hypotheses of

Proposition 7.2, and for a € |1 — g, 1|, there exists a constant ¢ > 0 independent

of h such that for every n > 1, we have

Jut) = uillo g

In
<ch <|u<rn>|Hl(Q) U)oy + / |1 ()] oy ds)
0

n In
+2 (An)? (/0 ||Mm(s) ”OQ ds +/0 ” ftt(s)”()ﬂ ds) . (7.32)

Proof 1t suffices to apply the triangular inequality:

) = uillo g = utt) = @n@ g g + lan ) = wifo -
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By the inequality (7.17) and the inequality 5.6 of Proposition 9 in [2], we obtain the
result. m|

Similarly to the bound obtained in the implicit case, and in order to demonstrate
the error estimate on ph", we need an analogous result to Proposition 1-5-10 of [5,
p. 42], but for here " := & + &) + @}.

Proposition 7.3 Let us suppose that f € HI(O, T; Lz(Q)) and Ag + f(0) €
HY(Q). Then,

e 1> < 1@")?,  with e == p;/* — Pp(tn). (7.33)

Proof Let us consider the Crank-Nicolson scheme for the mixed method, written in
the following form:

prhn‘qh dx ~|—fQ MZ divg, dx =0, Vq, € Xj, Vn>1
n n—1
Jovn divP R dx = = [o(F(t, 1) = du}) vy dx, Yoy € My, Y = 1.

(7.34)

By subtracting member by member from the first equation of (7.34), the first
equation defining the elliptic projection:

/Qf’h(tn).qh dx +/Qﬁh(tn) divq, dx =0, Vq; € Xp,
we obtain,
/ e.qy dx +/ o) divq, dx =0, Yq; € X, (7.35)
Q Q

where €' := p;! — p,(t;) and 6} := u} — i1, (t,). Equation (7.35) being true for
n and n — 1, by making the difference member by member and by dividing by the
time step, we obtain:

/ oe;'.qp dx —I—/ 00, divq, dx =0, Vq, € Xp. (7.36)
Q Q
Taking q, = ¢, + eh"_l in Eq. (7.36), we obtain:

2 —1|? . _
leillo.q = o], = —ar /de (e +ey7") a6p dx. (7.37)
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By the equalities (7.16) and (7.19), it follows that:

n n—1
/Uh div En T En dx =/ (89;7%-5") vy dx,
Q 2 Q

Yv, € Mj,. In particular, if we choose v, = 1k, for any K € 77}, we obtain

el +e n—1 ~ _
div " R b= pp (ae;; ~|—a)") = 90! + PY3" (7.38)
n_pgn—1
since 807 = """ " € Mj,. From (7.37) and (7.38), follows that
ler|2 o - He"—luz = —24¢ | o0; 2—2At/ PO 96) dx (7.39)
h10,Q h 0.9 h o h h
< A1 HP%" N Hae” TN Hae" 2 (7.40)
= = oo hllo,q k '
< Ar]|@" ;- (7.41)

By dividing both sides of the above inequality (7.41) by the time step Az, we obtain:
dlle 11> < N1&™ 1. 0

Corollary 7.1 Under the hypotheses of Proposition 7.2, there exists a constant ¢ >
0 independent of h and At such that:

In
e 2 < ch? fo 1015 |22y s

tn In
+e(an? (/O Jueee )] ds~|—/0 | Au(s) g g ds>. (7.42)

Proof By inequality (7.31), we have:

. tj
At Ha{ HOQ < ch /;,-1 ) | o 5. (7.43)
Thus:
j=n 2 h2 j=n t 2
Atz Hw{ H < CAt Z (/t 1 H u; (s) HHM(Q) ds)
j=1 j=1 \71i-

IA

j=n tj 5
chzzl / N [ @
j=17""

Iy
= n? /m | i (s) Hiz,a(m ds . (7.44)
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By (7.29), wehave Ar & | < A7 [V Juni()] o ds.

It follows from a similar calculus using the inequality of Cauchy-Schwartz:
j=n 2 th 5
Ay @] = eart / e (o)])2 , ds. (7.45)
j=1 & ’
And also for (7.30), we obtain:
j:n N2 Iy 2
ary-|@] < cAt4/ | Aun)]? o ds. (7.46)
j=1 fo

Now, by using Proposition 7.3, we get

Joi | - [e2] < o]

2 2 2
Jeif]" = e < a2
(7.47)
D T M
h h = :
It follows that by summing up these inequalities, by (7.5) and u2 =up(0):
=
lef > < ary” Haf H . (7.48)
j=1
Since &" = & + @), + @}, it follows that
= = =
lef 1> <3A1Y Ha{ H +3A0) Hag H +3A0) Ha; H . (7.49)
j=1 j=1 j=1
From inequalities (7.46), (7.45) and (7.44) the assertion follows. |

In conclusion, we get the following result:

Theorem 7.4 Under the hypotheses of Proposition 7.2, let {T},} be a regular family
of triangulations on 2, satisfying the properties (i) and (ii) of Proposition 9 of [2,
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p. 250]. For a € ]1 -7, 1[, there exists a constant ¢ > 0 independent of h such

that for every n > 1, we have
Ip@) —py ”o,Q

S (1000 ey + el 2020 ) )

tn In
+2 (At)2 \//0 ||Mttt(S)H(2)’st + \//0 HA””(S)Hé,QdS

Proof By the triangular inequality:

|pt2) — py ”o,Q < [p) - ﬁh(t")||0,9 + By () — 0y ”0,9’

I — lah(t")”o,g + ||€hn||0,9 :
By Farhloul et al. [2, (5.5) p. 250]:

[pn) = B[ o S P () e (g)-

From this estimate and the preceding corollary, the result follows. O

7.5 Conclusion

In this paper we have demonstrated that the completely discretized problem of
the mixed formulation for the heat equation using the Crank-Nicolson scheme for
time discretization admits one and only one solution. By refining the meshings
according to Raugel’s rules near the reentrant corners [9], we have established
optimal order of convergence for this completely discretized dual mixed method
for the heat diffusion equation in a polygonal domain. And this by using for the
spatial discretization, Raviart-Thomas vectorfields of degree O for the heat flux
density vector, locally constant functions for the scalar field of temperatures, and
the Crank-Nicolson scheme for the discretization in time.
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