
Chapter 5
Richardson Extrapolation of Nyström
Method Associated with a Sextic Spline
Quasi-Interpolant

Chafik Allouch, Ikram Hamzaoui, and Driss Sbibih

Abstract In this paper, we analyse the Nyström method based on a sextic spline
quasi-interpolant for approximating the solution of a linear Fredholm integral
equation of the second kind. For a sufficiently smooth kernel the method is shown
to have convergence of order 8 and the Richardson extrapolation is used to further
improve this order to 9. Numerical examples are given to confirm the theoretical
estimates.

Keywords Spline quasi-interpolant · Fredholm integral equation · Nyström
method · Richardson extrapolation

5.1 Introduction

Consider the Fredholm integral equation defined on E = C [0, 1] by

u(s) −
∫ 1

0
κ(s, t)u(t)dt = f (s), 0 ≤ s ≤ 1, (5.1)

where κ is a smooth kernel, f ∈ E is a real-valued continuous function and u

denotes the unknown function. The Nyström method (see [5]) for solving (5.1)
consists in replacing the integral in (5.1) by a numerical formula and it has been
widely studied in the literature. A general framework for the method in the case of
interpolatory projection is presented in [1, 2]. In [6] the method using a quartic
spline quasi-interpolant is proposed. A superconvergent version of the Nyström
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method based on spline quasi-interpolants of degree d ≥ 2 is analysed in [7]. In
this paper we construct a quadrature formula based on integrating a sextic spline
quasi-interpolant and this formula is used for the numerical solution of the Fredholm
integral equation (5.1). We show that the convergence order of the approximate
solution to the exact solution is the same as that of the quadrature rule. We show
that the approximate solution of (5.1) has an asymptotic error expansion and one
step of the Richardson extrapolation further improves the order of convergence.

The paper is divided into five sections. In Sect. 5.2, we set the notation and
the sextic spline quasi-interpolantQn is constructed. In Sect. 5.3, we introduce the
quadrature rule based on Qn and we establish an expression of the error estimate.
In Sect. 5.4, the Nyström method for the approximate solution of (5.1) is analysed
and asymptotic series expansion for the proposed solution is obtained. Numerical
examples are given in Sect. 5.5.

5.2 Sextic Spline Quasi-Interpolant

5.2.1 B-splines

Definition 5.1 Let d ∈ N and let

x−d ≤ . . . ≤ x−1 ≤ 0 = x0 < . . . < xn = 1 ≤ xn+1 ≤ . . . ≤ xn+d

be an extended partition of the interval I = [0, 1]. The normalized B-spline of
degree d associated with the knots xi . . . , xi+d+1 is defined by

Bi,d (x) = (xi+d+1 − xi)[xi, . . . , xi+d+1](. − x)d+,

where [xi, . . . , xi+d+1](. − x)d+ is the divided difference of t −→ (t − x)d+ with
respect to the d + 2 points xi, . . . , xi+d+1.

By using the definition of the divided differences, we obtain

Bi,d (x) = [xi+1, . . . , xi+d+1](. − x)d+ − [xi, . . . , xi+d ](. − x)d+. (5.2)

Thus, from the above formula, we get

Bi,0(x) = (xi+1 − x)0+ − (xi − x)0+

which is the characteristic function on the interval [xi, xi+1[, i.e.

Bi,0(x) =
⎧⎨
⎩
1, if xi ≤ x < xi+1

0, otherwise.
(5.3)
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The B-splines of higher degree (d ≥ 1) can be evaluated by using the following
recursion formula (see [3, Chap.4]):

Bi,d (x) = wi,dBi,d−1 + (1 − wi+1,d)Bi+1,d−1, (5.4)

with

wi,d (x) =
{

x−xi

xi+d−xi
if xi < xi+d,

0 otherwise.

5.2.2 Construction of the Discrete Spline Quasi-Interpolant

Let Xn = {xk = k
n
, 0 ≤ k ≤ n} denote the uniform partition of the interval I onto

n equal subintervals Ik = [xk−1, xk], 1 ≤ k ≤ n with meshlength h = 1
n
. Let

S6(I,Xn) be the space of C 5 sextic splines on this partition. Its canonical basis is
formed by the n + 6 normalized B-splines {Bk ≡ Bk−7,6, k ∈ Jn} where Jn =
{1, . . . , n + 6}. The support of Bk is [xk−7, xk] if we add multiple knots at the
endpoints

x−6 = x−5 = . . . = x0 = 0 and xn = xn+1 = . . . = xn+6 = 1.

For 7 ≤ k ≤ n, we have Bk(x) = B̄( x
h

− k), where B̄ is the cardinal B-spline
associated with the knots {0, 1, 2, 3, 4, 5, 6, 7} and defined by

B̄(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
720x

6, 0 ≤ x ≤ 1,
− 7

720 + 7
120x − 7

48x
2 + 7

36x
3 − 7

48x
4 + 7

120x
5 − 1

120x
6, 1 ≤ x ≤ 2,

1337
720 − 133

24 x + 329
48 x2 − 161

36 x3 + 77
48x

4 − 7
24x

5 + 1
48x

6, 2 ≤ x ≤ 3,
− 12089

360 + 196
3 x − 1253

24 x2 + 196
9 x3 − 119

24 x4 + 7
12x

5 − 1
36x

6, 3 ≤ x ≤ 4,
59591
360 − 700

3 x + 3227
24 x2 − 364

9 x3 + 161
24 x4 − 7

12x
5 + 1

48x
6, 4 ≤ x ≤ 5,

− 208943
720 + 7525

24 x − 6671
48 x2 + 1169

36 x3 − 203
48 x4 + 7

24x
5 − 1

120x
6, 5 ≤ x ≤ 6,

1
720 (7 − x)6, 6 ≤ x ≤ 7,
0, elsewhere.

We recall (see [10, Theorem 4.21 & Remark 4.1]) the representation of monomials
using symmetric functions of the interior knots Nk = {xk−6, . . . , xk−1} in the
support of Bk , which are defined by σ0(Nk) = 1 and for 1 ≤ r ≤ 6:

σr(Nk) =
∑

1≤�1<···<�r≤6

xk−�1 . . . xk−�r .
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For 0 ≤ r ≤ 6, let mr(x) = xr . Then, we have

mr(x) =
∑
k∈Jn

(−1)6−r r!
6!D

6−rψk(0)Bk(x) =
∑
k∈Jn

θ
(r)
k Bk(x),

where

ψk(t) =
6∏

�=1

(xk−� − t).

Hence

θ
(r)
k =

(
6

r

)−1

σr(Nk), 0 ≤ r ≤ 6.

For r = 0, we have θ
(0)
k = 1, for all k ∈ Jn, since

∑
k∈Jn

Bk(x) = 1.

For r = 1, we have
(6
r

)−1 = 1
6 and σ1(Nk) = ∑

1≤�≤6
xk−� = xk−1 + . . . + xk−6.

Thus, we obtain the Greville abscissae:

θk = θ
(1)
k = 1

6

6∑
�=1

xk−�,

which are the coefficients of m1(x) = ∑
k∈Jn

θkBk(x).

The sextic discrete spline quasi-interpolant (abbr. dQI) used here (see [8]) is the
following spline operator

Qnf =
∑
k∈Jn

μk(f )Bk,

whose coefficients are linear combinations of discrete values of f on a set of data
points Tn = {tj , j ∈ �n} where �n = {j = 1, 2, . . . , n + 2}. The elements of Tn

are defined by

t1 = 0, tn+2 = 1, tj = xj−2 + xj−1

2
, 2 ≤ j ≤ n + 1.

The dQI is constructed to be exact on �6, where �6 is the space of polynomials of
degree at most 6, that meansQnmr = mr for 0 ≤ r ≤ 6 and therefore

μk(mr) = θ
(r)
k , k ∈ Jn, 0 ≤ r ≤ 6.
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For 7 ≤ k ≤ n, the functionalsμk use values of f in a neighbourhood of the support
of Bk , thus it is natural to express μk in the following way

μk(f ) =
7∑

i=1

αifk−i+2,

where fk = f (tk). This leads us to solve the system of linear equations

7∑
i=1

αi t
r
k−i+2 = θ

(r)
k , 0 ≤ r ≤ 6.

For 1 ≤ k ≤ 6 and n + 1 ≤ k ≤ n + 6 we write respectively

μk(f ) =
7∑

i=1

βi,kfi and μk(f ) =
7∑

i=1

γi,kfn−i+3, (5.5)

which is equivalent to the systems of linear equations

7∑
i=1

βi,kt
r
i = θ

(r)
k and

7∑
i=1

γi,kt
r
n−i+3 = θ

(r)
k , 0 ≤ r ≤ 6.

All these systems have Vandermonde determinants and since the (tj )j∈�n are
distinct, they have unique solutions, whence the existence and unicity of the dQI.
The functional coefficients are respectively defined by the following formulas:

μ1(f ) = f1,

μ2(f ) = 3887

10395
f1 + 231

256
f2 − 385

768
f3 + 231

640
f4 − 165

896
f5 + 385

6912
f6 − 21

2816
f7,

μ3(f ) = − 5689

22275
f1 + 27631

19200
f2 − 9151

34560
f3 + 1091

9600
f4 − 79

1920
f5 + 997

103680
f6 − 221

211200
f7,

μ4(f ) = − 20959

155925
f1 + 3089

9600
f2 + 5015

3456
f3 − 4811

4800
f4 + 3277

6720
f5 − 7381

51840
f6 + 1961

105600
f7,

μ5(f ) = 5821

31185
f1 − 1193

1920
f2 + 26737

17280
f3 + 1

320
f4 − 1217

6720
f5 + 4001

51840
f6 − 83

7040
f7,

μ6(f )= − 2159

31185
f1 + 2957

11520
f2 − 30451

34560
f3 + 13673

5760
f4 − 33727

40320
f5 + 17977

103680
f6− 2159

126720
f7,

μk(f ) = − 2159

138240
(fk+1 + fk−5) + 751

4608
(fk + fk−4) − 37003

46080
(fk−1 + fk−3) + 79879

34560
fk−2,

(7 ≤ k ≤ n)

and for n + 1 ≤ k ≤ n + 6, μk(f ) is given by the second formula in (5.5) with
γi,k = βi,k, 1 ≤ i ≤ 7. Since Qn reproduces �6 it is easy to show that for f ∈
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C 7[0, 1], we have

‖f − Qnf ‖∞ ≤ c1h
7‖f (7)‖∞, (5.6)

where c1 is a constant independent of n.

It is more convenient to write the quasi-interpolantQn under the quasi-Lagrange
form

Qnf =
∑
j∈�n

fjLj , (5.7)

where the quasi-Lagrange functions Lj are linear combinations of seven B-splines.
For example, using the value f1 are {μ1, μ2, μ3, μ4, μ5, μ6}, therefore we have

L1 = B1 + 3887

10395
B2 − 5689

22275
B3 − 20959

155925
B4 + 5821

31185
B5 − 2159

31185
B6.

For 8 ≤ k ≤ n − 5, we have

Lk = − 2159

13824
(Bk−1 + Bk+5) + 751

4608
(Bk + Bk+4) − 37003

46080
(Bk+1 + Bk+3) + 79879

34560
Bk+2.

This representation is used in Sects. 5.3 and 5.4 below.

5.3 Quadrature Formula Associated with Qn

By integrating Qnf in the quasi-Lagrange form (5.7) we obtain as in [9], the
following quadrature formula

∫ 1

0
f (x)dx = I (f ) 	 In(f ) =

∫ 1

0
Qnf (x)dx = h

∑
j∈�n

ωjfj ,

with weights ωj = 1
h

∫ 1
0 Lj (x)dx. Using the fact that

∫ 1
0 Bj(x) = xj−xj−7

7 , we get

In(f ) = h

n−5∑
j=8

fj + h

[
101

735
(f1 + fn+2) + 113221

138240
(f2 + fn+1) + 1035241

967680
(f3 + fn)

+ 464651

483840
(f4 + fn−1) + 3446899

3386880
(f5 + fn−2) + 962903

967680
(f6 + fn−3)

+ 193657

193536
(f7 + fn−4)

]
. (5.8)

Since Qn is exact on �6, and the weights and knots (tj )j∈�n are symmetric with
respect to the midpoint of I , we deduce that the quadrature rule (5.8) is exact on �7.
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Therefore, the error En(f ) = I (f ) − In(f ) is a O(h8), when f ∈ C 8[0, 1]. Now,
according to the Peano kernel theorem (see [4, Chap.3]), we have

En(f ) = 1

7!
∫ 1

0
K(t)f (8)(t)dt,

where K(t) is the Peano kernel defined by

K(t) =
∫ 1

0
(s − t)7+ds − h

∑
j∈�n

ωj (tj − t)7+.

Theorem 5.1 The Peano kernel K(t) is negative in the intervals J1 = [0, t0] and
J3 = [1 − t0, 1] and positive in J2 = [t0, 1 − t0] with t0 = τ0h and τ0 = 1.38135
(Fig. 5.1).

Proof Using

K(t) = 1

8
(1 − t)8 − h

∑
j∈�n

ωj (tj − t)7+,

we see immediately that K(0) = K(1) = 0. In fact, since for all j ∈ �n, (tj −
1)7+ = 0, we obtain K(1) = 0. On the other hand, K(0) = 0 is due to the fact
that the polynomial p(x) = x7, belongs to �7, hence it is exactly integrated by the
quadrature rule In and therefore

0.2 0.4 0.6 0.8 1.0
t

1. 10 10

2. 10 10

3. 10 10

4. 10 10

K t

Fig. 5.1 Graph of the Peano kernel with n = 16
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I (p) = 1

8
= h

∑
j∈�n

ωj t
7
j .

We need to study the sign of K(t) as it is done for the quartic case, (see [6]).
Now, setting t = τh, τ ∈ [0, n] and x = ξh, we obtain

1

h8
K(t) =

∫ n

0
(ξ − τ )7+dξ −

∑
j∈�n

ωj (τj − τ )7+,

where

τ1 = 0, τn+2 = n and τj = j − 3

2
for j = 2, . . . , n + 1.

We have also

∫ n

0
(ξ − τ )7+dξ =

∫ n

τ

(ξ − τ )7dξ =
[

(ξ − τ )8

8

]n

τ

= (n − τ )8

8
,

which gives

1

h8
K(t) = (n − τ )8

8
−

∑
j∈�n

ωj (τj − τ )7+ = p(τ).

Consequently, K(t) and p(τ) have the same sign. By using the symmetry of nodes
and weights, it is easy to verify that p(τ) = p(n − τ ). Then

p(τ) = τ 8

8
−

∑
j∈�n

ωj (τj − τ )7+.

Now let study the sign of p(τ) on [0, n]. Let pj ≡ p|[τj ,τj+1], j = 1, . . . , n+ 1.

• In the interval [τ1, τ2] = [0, 1
2 ] :

p1(τ ) = τ 7

8

(
τ − 808

735

)
≤ 0,

which admits τ = 0 as root on this interval.
• In the interval [τ2, τ3] = [ 12 , 3

2 ] :

p2(τ ) = p1(τ ) − 267

326

(
τ − 1

2

)7

,
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which admits τ0 = 1985
1437 = 1.38135 as root in the interval [τ2, τ3]. We can check

numerically that p(τ) ≤ 0 in [τ2, τ0] and p(τ) ≥ 0 in [τ0, τ3].
• In the interval [τ3, τ4] = [ 32 , 5

2 ] :

p3(τ ) = p2(τ ) − 996

931

(
τ − 3

2

)7

≥ 0,

which does not admits any roots in the interval [τ3, τ4].
• In the interval [τ4, τ5] = [ 52 , 7

2 ] :

p4(τ ) = p3(τ ) − 339

353

(
τ − 5

2

)7

≥ 0,

which does not admits any roots in the interval [τ4, τ5].
• In the interval [τ5, τ6] = [ 72 , 9

2 ] :

p5(τ ) = p4(τ ) − 402

395

(
τ − 7

2

)7

≥ 0,

which does not admits any roots in the interval [τ5, τ6].
• In the interval [τ6, τ7] = [ 92 , 11

2 ] :

p6(τ ) = p5(τ ) − 1411

1418

(
τ − 9

2

)7

≥ 0,

which does not admits any roots in the interval [τ6, τ7].
• In the interval [τ7, τ8] = [ 112 , 13

2 ] :

p7(τ ) = p6(τ ) − 1600

1599

(
τ − 11

2

)7

≥ 0,

which does not admits any roots in the interval [τ7, τ8].
• In the interval [τ8, τ9] = [ 132 , 15

2 ] :

p8(τ ) = p7(τ ) −
(

τ − 13

2

)7

≥ 0.

• In the interval [τi, τi+1], 8 ≤ i ≤ n − 5 it can be shown by induction that
pi(τ ) = pi−1(τ − 1).

• In the last seven intervals, since p(τ) = p(n − τ ), we get

pn+3−j (τ ) = pj (n − τ ), τ ∈ [τn+3−j , τn+4−j ], 1 ≤ j ≤ 7,
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which means that the behaviour of p is symmetrical of that one in the first seven
intervals. This completes the proof.


�
Using the above theorem, the following asymptotic error formula can be proved.

Proposition 5.1 For any function f ∈ C 8[0, 1], there exist a point τ ∈ [0, 1] such
that

En(f ) = I (f ) − In(f ) = c0h
8f (8)(τ ) + O(h9), (5.9)

where c0 = 1107467
3251404800 	 3.41 × 10−4.

Proof The proof is similar to the proof of Theorem 2 in [6]. 
�

5.4 The Nyström Method

By using the quadrature scheme (5.8) to approximate the integral in (5.1), we obtain
a new equation

un(s) − h
∑
j∈�n

ωj κ(s, tj )un(tj ) = f (s), s ∈ [0, 1], (5.10)

where the unknowns are {un(tj ), j ∈ �n} and they can be evaluated by solving the
following linear system of size n + 2

un(ti ) − h
∑
j∈�n

ωjκ(ti, tj )un(tj ) = f (ti), i ∈ �n. (5.11)

From (5.10), the approximate solution un(s) is completely determined by their
values at the nodes (ti)i∈�n . In fact,

un(s) = f (s) + h
∑
j∈�n

ωj k(s, tj )un(tj ), s ∈ [0, 1].

Now let K be the integral operator defined by

(K u)(s) =
∫ 1

0
κ(s, t)u(t)dt,

and let Kn be the following Nyström approximation

(Knu)(s) = h
∑
j∈�n

ωj κ(s, tj )u(tj ).
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The following theorem gives a complete information for analyzing the convergence
of the Nyström method.

Theorem 5.2 Let κ(s, t) be a continuous kernel for s, t ∈ [0, 1]. Assume that
the quadrature scheme (5.8) is convergent for all continuous functions on [0, 1].
Further, assume that the integral equation (5.1) is uniquely solvable for a given
f ∈ C [0, 1]. Then, for all sufficiently large n, say n ≥ N , the operators (I −Kn)

−1

exist and are uniformly bounded,

‖(I − Kn)
−1‖∞ ≤ 1 + ‖(I − K )−1‖∞‖Kn‖∞

1 − ‖(I − K )−1‖∞‖(K − Kn)Kn‖∞
≤ c, n ≥ N

with a suitable constant c < ∞. For the equations (I−K )u = f and (I−Kn)un =
f,

‖u − un‖∞ ≤ ‖(I − K )−1‖∞‖(K − Kn)u‖∞, (5.12)

≤ c‖(K − Kn)u‖∞, n ≥ N. (5.13)

Proof See Atkinson [1, Theorem 4.1.2]. 
�
Theorem 5.3 Let u be the exact solution of (5.1). Assume that κ(s, .)u(.) ∈
C 8[0, 1] for all s ∈ [0, 1]. Then, for a sufficiently large n,

‖u − un‖∞ = O(h8). (5.14)

Proof The estimation (5.13) shows that ‖u−un‖∞ and ‖(K −Kn)u‖∞ converges
to zero with the same speed. By (5.9), we have for s ∈ [0, 1] the asymptotic
integration error

(K u)(s) − (Knu)(s) = c0h
8

[
∂8

∂t8
κ(s, t)u(t)

]

t=τ

+ O(h9). (5.15)

Hence, from (5.13) and (5.15), the Nyström method converges with an order of
O(h8), provided κ(s, t)u(t) is eight times continuously differentiable with respect
to t , uniformly in s. 
�
An asymptotic series expansion for the Nyström solution un is obtained below.

Theorem 5.4 Under the assumption of Theorem 5.3, we have

un − u = c0[(I − K )−1W u]h8 + O(h9), (5.16)

with

(W u)(s) =
[

∂8

∂t8
κ(s, t)u(t)

]

t=τ

, s ∈ [0, 1].
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Proof Since

(I − Kn)(u − un) = (K − Kn)u,

we can write as in [1, Chap.4]

u − un = en + Rn,

where

en = (I − K )−1(K − Kn)u,

Rn = [(I − Kn)
−1 − (I − K )−1](K − Kn)u,

= (I − Kn)
−1(Kn − K )(I − K )−1(K − Kn)u.

Using the asymptotic expansion (5.15), we get

en = [(I − K )−1W u]c0h8 + O(h9)

and

(I − Kn)Rn = (Kn − K )en,

= −c0h
8

[
∂8

∂t8
κ(., t)en(t)

]

t=τ ′
n

+ O(h9),

= −c0h
16

[
∂8

∂t8
κ(., t)c(t)

]

t=τ ′
n

+ O(h9),

where c(t) = c0[(I − K )−1W u](t) and τn ∈ [0, 1]. Letting Sn be the solution of
equation

(I − Kn)Sn = −c0h
7

[
∂8

∂t8
κ(., t)c(t)

]

t=τ ′
n

,

we deduce that

Rn(t) = (Sn(t) − S(t))h9 + S(t)h9,

where S satisfies

(I − K )S = −c0h
7

[
∂8

∂t8
κ(., t)c(t)

]

t=τ ′
n

.
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Taking into account that S − Sn 	 en, we finally obtain

Rn(t) 	 S(t)h9.

This completes the proof. 
�
One step of Richardson extrapolation can be used to further improve the order of
convergence of un. Let u2n be the solution associated with a uniform partition of
[0, 1] with 2n intervals and norm h

2 . Define

uR
2n = 28u2n − un

28 − 1
.

Theorem 5.5 If κ(s, .)u(.) ∈ C 8[0, 1] for all s ∈ [0, 1], then, we have

‖u − uR
2n‖∞ = O(h9). (5.17)

Proof From Theorem 5.4 we obtain

u2n − u = c0[(I − K )−1W u]
(

h

2

)8

+ O(h9). (5.18)

The estimate (5.17) follows from (5.16) and (5.18). 
�

5.5 Numerical Results

Example 1 Consider the following linear Fredholm integral equation of the second
kind

u(s) −
∫ 1

0
s
1
2 t8u(t)dt = f (s), s ∈ [0, 1],

where the exact solution is u(s) = s and f is chosen accordingly. The errors

‖u − un‖∞ = O(hα) and ‖u − uR
2n‖∞ = O(hβ)

were approximated respectively by

max

{
|u(

i

100
) − un(

i

100
)|, i = 0, 1, . . . , 100

}
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and

max

{
|u(

i

100
) − uR

2n(
i

100
)|, i = 0, 1, . . . , 100

}
.

Using two successive values of n, the values of α and β are computed and are listed
in Table 5.1.

From the above table it can be seen that the computed orders of convergence
match well with the expected values.

Example 2 Consider the following Fredholm integral equation quoted from [6]

u(s) −
∫ 1

0
(s + 1)e−stu(t)dt = f (s), s ∈ [0, 1],

where f is chosen so that u(s) = cos(s). The results are given in Table 5.2.

We denote by u
Q
n and u

QB
n the approximated solutions given by Nyström method

based on the integration of a quartic spline quasi-interpolant and Nyström method
associated with the extrapolated quadrature formula IQB in [6] respectively. The
errors

‖u − uQ
n ‖∞ = O(hγ ) and ‖u − uQB

n ‖∞ = O(hδ)

which are listed in Table 5.3, are quoted from [6]. Note that the predicted values of
γ and δ are respectively, 6 and 7. The numerical algorithm was run on a PC with
Intel Core i5 1.60 GHz CPU, 8GB RAM, and the programs were compiled by using
Wolfram Mathematica.

Table 5.1 Nyström and
extrapolated Nyström
methods for example 1

n ‖u − un‖∞ α ‖u − uR
2n‖∞ β

16 1.11 × 10−8

32 5.31 × 10−11 7.71 9.69 × 10−12

64 2.27 × 10−13 7.87 1.89 × 10−14 9.00

128 9.22 × 10−16 7.94 3.69 × 10−17 9.00

256 3.67 × 10−18 7.97 7.22 × 10−20 9.00

512 1.45 × 10−20 8.00 1.42 × 10−22 8.99

Table 5.2 Nyström and
extrapolated Nyström
methods for example 2

n ‖u − un‖∞ α ‖u − uR
2n‖∞ β

16 1.05 × 10−12

32 4.97 × 10−15 7.72 1.21 × 10−18

64 2.11 × 10−17 7.88 2.34 × 10−21 9.01

128 8.57 × 10−20 7.94 4.55 × 10−24 9.01

256 3.41 × 10−22 7.97 8.86 × 10−27 9.00
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Table 5.3 Nyström method
based on IQ and IQB for
example

n ‖u − u
Q
n ‖∞ α ‖u − u

QB
n ‖∞ β

8 2.33 × 10−8 9.96 × 10−9

16 4.75 × 10−10 5.61 7.61 × 10−11 7.03

32 8.30 × 10−12 5.84 5.96 × 10−13 6.99

64 1.36 × 10−13 5.92 4.44 × 10−15 7.07

128 2.22 × 10−15 5.94 3.41 × 10−17 7.02

It can be seen from Tables 5.2 and 5.3 that the approximation uR
2n with n = 32 is

better than the approximation u
QB
n with n = 128.

5.6 Conclusion

The results, which are displayed in Table 5.1, show that a very high accuracy is
obtained even for a kernel which is only continuous with respect to the variable s.
On the other hand, we obtained significant performances in comparison with those
of the quadrature rules in [6] and this is due to the fact that the order of convergence
of the proposed method is higher. Note that the size of the corresponding linear
system is n + 2. It can be shown that to solve the present problem by a piecewise
polynomial interpolation scheme, a linear system of size at least 4n will need to be
solved to obtain accuracy of comparable order.
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