Chapter 5 )
Richardson Extrapolation of Nystrom Shethie
Method Associated with a Sextic Spline
Quasi-Interpolant

Chafik Allouch, Ikram Hamzaoui, and Driss Sbibih

Abstract In this paper, we analyse the Nystrom method based on a sextic spline
quasi-interpolant for approximating the solution of a linear Fredholm integral
equation of the second kind. For a sufficiently smooth kernel the method is shown
to have convergence of order 8 and the Richardson extrapolation is used to further
improve this order to 9. Numerical examples are given to confirm the theoretical
estimates.
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5.1 Introduction

Consider the Fredholm integral equation defined on E = %[0, 1] by

1
u(s) —/ k(s,Hu@®)dt = f(s), 0<s <1, 6.1
0

where « is a smooth kernel, f € E is a real-valued continuous function and u
denotes the unknown function. The Nystrom method (see [5]) for solving (5.1)
consists in replacing the integral in (5.1) by a numerical formula and it has been
widely studied in the literature. A general framework for the method in the case of
interpolatory projection is presented in [1, 2]. In [6] the method using a quartic
spline quasi-interpolant is proposed. A superconvergent version of the Nystrom
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method based on spline quasi-interpolants of degree d > 2 is analysed in [7]. In
this paper we construct a quadrature formula based on integrating a sextic spline
quasi-interpolant and this formula is used for the numerical solution of the Fredholm
integral equation (5.1). We show that the convergence order of the approximate
solution to the exact solution is the same as that of the quadrature rule. We show
that the approximate solution of (5.1) has an asymptotic error expansion and one
step of the Richardson extrapolation further improves the order of convergence.

The paper is divided into five sections. In Sect. 5.2, we set the notation and
the sextic spline quasi-interpolant 2, is constructed. In Sect. 5.3, we introduce the
quadrature rule based on 2, and we establish an expression of the error estimate.
In Sect. 5.4, the Nystrom method for the approximate solution of (5.1) is analysed
and asymptotic series expansion for the proposed solution is obtained. Numerical
examples are given in Sect. 5.5.

5.2 Sextic Spline Quasi-Interpolant

5.2.1 B-splines

Definition 5.1 Letd € N and let
X g <..<x1<0=xp<...<xp=1<xp41<...<Xntd

be an extended partition of the interval / = [0, 1]. The normalized B-spline of
degree d associated with the knots x; . . ., x; 1441 is defined by

Big(x) = (Kigar1 — X)X, -+ Xipar1 1 — )9,

where [x;, ..., Xi4a+11(. — x)4 is the divided difference of t —> (¢ — x)¢ with
respect to the d + 2 points x;, . .., Xj4d+1-

By using the definition of the divided differences, we obtain
Bia(x¥) = [Xit1, - Xira 116 = 04 = [xiy o xiga] (= 004 (5.2)
Thus, from the above formula, we get
) — (v 0 . 0
Bio(x) = (xi+1 —x)1 — (i —x)3

which is the characteristic function on the interval [x;, x;+1[, i.e.

1, if x < i
Bioty={ > 1 M= (53)
0, otherwise.
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The B-splines of higher degree (d > 1) can be evaluated by using the following
recursion formula (see [3, Chap.4]):

Bi q(x) = wiaBia—1 + (1 — Wit1,4)Bit1,d-1, 5
with
Wi g(x) = x,-:iix,- if x; .<x,-+d,
0 otherwise.

5.2.2 Construction of the Discrete Spline Quasi-Interpolant

Let X, = {x; = ﬁ , 0 < k < n} denote the uniform partition of the interval / onto
n equal subintervals Iy = [xx—1,xx], 1 < k < n with meshlength h = rll Let
Se(I,X,) be the space of € sextic splines on this partition. Its canonical basis is
formed by the n 4 6 normalized B-splines {By = Bi—76, k € J,} where J,
{1,...,n + 6}. The support of By is [xx—7, xx] if we add multiple knots at the
endpoints

X 6=x-5=...=x0=0 and x, =xy41=...=Xpy6=1.

For 7 < k < n, we have Bi(x) = B(z — k), where B is the cardinal B-spline
associated with the knots {0, 1, 2, 3,4, 5, 6, 7} and defined by

7%0956, 0<x<l.
! ! 4 51 .6
1_31%0 +1%%Ox 38 + 161x a 45737)6 + 1270x 1120x ; 1 <x<2,
730 x+ x2 3_|_ 4 Jix +48x6 2<x<3
By — 12289 1196, 123,27, 196,33 1194 zx - 316x6 iorod
52291 700 4 3227 2 364x% I 161 A 172x5 n 418"6» hexzs
7208943 | 7525 6671 2, 1169 3 203 4 2 6

70 T g X~ X5+ 300X 4 X +24x — hox8. 5 <x <6,
7207 = 0°, 6<x<T.
’ elsewhere.

0 1sewh

We recall (see [10, Theorem 4.21 & Remark 4.1]) the representation of monomials
using symmetric functions of the interior knots Ny = {xx_g,...,xk—1} in the
support of By, which are defined by o¢(N;) = 1 andfor 1 <r < 6:

or(Ng) = Z Xk—y + + » Xk—L, -

1<ly<-<l,<6
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For0 <r < 6,letm,(x) = x". Then, we have

|
me(0) = Y (=D DI YO Bix) = Y 6 Bu(x).

kelJ, ke

where

6
Y () = [ [Gx—e — 1)

=1

Hence
6_1
9”—() or(NY), 0<r<6
k= r r\NVk), =r=bo.

For r = 0, we have 9,50) =1, forallk € Jy, since Y Bi(x)=1.

ke,
Forr =1, we have (?)71 =ando1(Ny) = Y Xk—¢ = Xp—1 + ... + Xi—6.
Thus, we obtain the Greville abscissae: 1=t=6
m_ 1y
Oe=0," = 6 ;m{—z,

which are the coefficients of mj(x) = Y 6 Br(x).
kelJ,
The sextic discrete spline quasi-interpolant (abbr. dQI) used here (see [8]) is the

following spline operator

Duf = m(f)Br,

kelJ,

whose coefficients are linear combinations of discrete values of f on a set of data
points T, = {t;, j € 'y} where I', = {j = 1,2, ..., n + 2}. The elements of T,
are defined by

_Xj2t X

Hnh=0, t=1, tj = ) , 2<j<n+1.

The dQI is constructed to be exact on I1g, where I is the space of polynomials of
degree at most 6, that means 2,m, = m, for 0 < r < 6 and therefore

pem) =6, kel, 0<r<é.
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For 7 < k < n, the functionals p, use values of f in a neighbourhood of the support
of By, thus it is natural to express (i in the following way

7
() =Y i feeiva,
i=1

where f; = f(#). This leads us to solve the system of linear equations

Za,tk =6, 0<r<eé.

Forl <k <6andn+ 1 <k < n + 6 we write respectively

7

7
we() = Binfi and () =Y ik fa-i+s, (5.5)

i=1 i=1

which is equivalent to the systems of linear equations

Zﬁ,kt =6 and Zy,ktn w3 =00, o0<r<e.

All these systems have Vandermonde determinants and since the (¢;);er, are
distinct, they have unique solutions, whence the existence and unicity of the dQI.
The functional coefficients are respectively defined by the following formulas:

ni(f) = f1,
3887 231 385 231 165 385 21
m2UD = 10395 1 25672 7 768 T 6407 T 89675 T 601276 T 281677
5689 27631 9151 1091 79 997 21
W) == 5007511 T 192002 ™ 34560 > T 9600 T 192075 T 1036807 T 2112007
_ 20959 3089 5015 . 4811 . 3277 . 7381 . 1961
#a() == 15500511 T 06002 T 3456 T 4800 T 6720 ~ 518407 T 10560077
5821 1193 26737 1 1217 4001 83
#s(UD = 5118571 7 19202 T 172807 T 3207 T 67205 T 518407 T 704077
_ 2159 2957 . 30451 13673 33727 17977 2159
mo()== 311851 115202 7 34560 T 5760 * T 4032075 T 103680f6_126720f7’
N=- 2 it ot Pt fe =B it e+
HI&T D=7 138040 K T Tk=3) T y0g R T Jk=t) ™ y0g0 AT T K= T 34560 Tk
(7T<k=n)
and forn + 1 < k < n + 6, ui(f) is given by the second formula in (5.5) with

<
vik = Bik, 1 < i < 7. Since 2, reproduces Il it is easy to show that for f €
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%10, 1], we have

If = 2uflloo <tk 1f P loo, (5.6)

where ¢ is a constant independent of .
It is more convenient to write the quasi-interpolant 2,, under the quasi-Lagrange

form

Duf =) fiL), (5.7)

JETH

where the quasi-Lagrange functions L ; are linear combinations of seven B-splines.
For example, using the value fi are {1, 12, 13, a4, U5, e}, therefore we have

Loy 38T 5689 20959 - 5821 2159
T 039577 T 2227570 T 155925 T 31185 0 31185 O
For8 <k <n —5, we have
Lo SS9 TS BTO03 L TRT
k= 13824 k—1 k+5 4608 k k+4 46080 k+1 k+3 34560 k+2-

This representation is used in Sects. 5.3 and 5.4 below.

5.3 Quadrature Formula Associated with 2,

By integrating 2, f in the quasi-Lagrange form (5.7) we obtain as in [9], the
following quadrature formula

1 1
/O F@dx = 1(f) = Li(f) = /O Duf@)dx=hY . w;f;.

J€ln

with weights w; = }l fol L j(x)dx. Using the fact that fol Bj(x) = Xj_;’q, we get

n—>5
101 113221 1035241
In(f)=hij+h[ (fi + fas2) + (f2 + fur1) + (fs + fu)
= 735 138240 967680
464651 3446899 962903
+ 483840 (fa+ fu-1) + 1386880 (fs + fu-2) + 067630 (fo + fa—=3)
193657
193536 7t fn—4)] : (5:8)

Since 2, is exact on Ilg, and the weights and knots (¢ j)jer, are symmetric with
respect to the midpoint of 7, we deduce that the quadrature rule (5.8) is exact on IT5.
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Therefore, the error E,(f) = I(f) — I,(f) is a @(h®), when f € €®[0, 1]. Now,
according to the Peano kernel theorem (see [4, Chap.3]), we have

1 1
En(f)=, fo K@ f®@ar,

where K (¢) is the Peano kernel defined by

! 7 7

K (1) =/ (s—0hds—h Z w;(t; — 0.
0 jely

Theorem 5.1 The Peano kernel K (t) is negative in the intervals Jy = [0, to] and
J3 = [1 — 19, 1] and positive in Jo = [tg, 1 — to] with to = 10h and 19 = 1.38135
(Fig. 5.1).
Proof Using

1 8 7

K@) = (=0 _h,; wj(t; =0},

we see immediately that K(0) = K (1) = 0. In fact, since for all j € I'y, (¢; —
1)Zr = 0, we obtain K (1) = 0. On the other hand, K(0) = 0 is due to the fact
that the polynomial p(x) = x”, belongs to IT7, hence it is exactly integrated by the
quadrature rule /,, and therefore

K[1]
4.x10710 |-

3.x10710 -
2.x10710 -

1.x 10710 |-

e Ny
0.2 0.4 0.6 0.8 1.0

Fig. 5.1 Graph of the Peano kernel withn = 16
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1 7
Ip) = =h Y wt]
J€ETH

We need to study the sign of K (¢) as it is done for the quartic case, (see [6]).
Now, setting t = th, t € [0, n] and x = £h, we obtain

1 n
th(¢)=/0 (E—t)ldé—j; vz — 1)1,

where
.3 .
11=0, 71,42=n and rj=J—2 for j=2,...,n+1.

We have also

n n _\8 n _ 8
0 T 8 . 8

which gives
1 (n—r1)8 ;
wKO=""" =% 0 -0} =p@.
J€ETH
Consequently, K (¢) and p(t) have the same sign. By using the symmetry of nodes
and weights, it is easy to verify that p(r) = p(n — 7). Then
8 7
p(t) = g Z wj(tj — ).
J€ETH
Now let study the sign of p(t) on [0, n]. Let p; = p|[rj’rj+1], j=1,...,n+1.

e In the interval [71, T3] = [O, ;] :

© 7 808 _
= T — .
p1 8 735) =

which admits T = 0 as root on this interval.
¢ Inthe interval [12, T3] = [é, %] :

3 267 1’
p2(®) = pi(T) — <f - 2) ;
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which admits 7y = %Zgg = 1.38135 as root in the interval [12, t3]. We can check

numerically that p(t) < 0in [12, T9] and p(tr) > 0 in [19, T3].
In the interval [t3, 4] = [;, g] :

@) = pat®) 99 ( 37>o
P3 = P2 931 ) i V)

which does not admits any roots in the interval [13, 74].
In the interval [t4, 75] = [g, ;] :

339 5\’
pa(t) = p3(7) — 153 (T - 2) >0,

which does not admits any roots in the interval [t4, 75].
In the interval [ts, 76] = [;, g] :

@) = pa(®) 402 . 77>O
Ps5 = P4 395 ) = VY,

which does not admits any roots in the interval [15, 76].

In the interval [tg, 7] = [g, 121] :

@ @ 1411 97>0
T) = T) — T —
po ps 1418 2) =7

which does not admits any roots in the interval [7g, 77].

In the interval [t7, T3] = [121, 123] :

1600 11\’
= — — >
p1(T) = pe(T) 1599 (r ) ) >0,

which does not admits any roots in the interval [t7, 73].

In the interval [tg, 9] = [123, 125] :

13\’
ps(f)=p7(t)—<f— 2) > 0.

In the interval [7;, 7j+1], 8 < i < n — 5 it can be shown by induction that
pi(7) = pi-1(z — 1).
In the last seven intervals, since p(t) = p(n — 1), we get

Pnt3—j(T) = pj(n —1), T E€[thi3—j, uta—jl, 1=j =7,
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which means that the behaviour of p is symmetrical of that one in the first seven
intervals. This completes the proof.
0

Using the above theorem, the following asymptotic error formula can be proved.

Proposition 5.1 For any function f € €8[0, 1), there exist a point T € [0, 1] such
that

En(f) = 1(f) — Li(f) = coh® f® (v) + 0, (5.9)

_ 1107467 —4
where co = 3251404800 = 3.41 x 1077,

Proof The proof is similar to the proof of Theorem 2 in [6]. O

5.4 The Nystrom Method

By using the quadrature scheme (5.8) to approximate the integral in (5.1), we obtain
a new equation

uy,(s) —h Z wjk (s, tuy(tj) = f(s), se[0,1], (5.10)

Jjely

where the unknowns are {u,(¢;), j € I';} and they can be evaluated by solving the
following linear system of size n + 2

uy(ti) —h Z wjk(ti, tju,(t;)) = ft), 1€l (5.11)

J€ln

From (5.10), the approximate solution u,(s) is completely determined by their
values at the nodes (f;);er, . In fact,

Un(s) = f(s)+h Y wjk(s, tpun(ty), s €0, 11.

Jjely
Now let J# be the integral operator defined by
1
(A u)(s) = / K (s, Du(r)dt,
0
and let .%;, be the following Nystrém approximation

() (s) =h Y wj(s, tput)).

J€ETH
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The following theorem gives a complete information for analyzing the convergence
of the Nystrom method.

Theorem 5.2 Let k(s,t) be a continuous kernel for s,t € [0, 1]. Assume that
the quadrature scheme (5.8) is convergent for all continuous functions on [0, 1].
Further, assume that the integral equation (5.1) is uniquely solvable for a given
f € €10, 11. Then, for all sufficiently large n, say n > N, the operators (I — )"
exist and are uniformly bounded,

_ -1
L+ = 2) ool Hnlloo 0> N

1= ) oo < =0
IlC ) oo =y I — ) Kl

with a suitable constant ¢ < 00. For the equations (I — ¢ Yu = f and (I —Jy)u, =

f

lu = tnlloo < 1T = ) Mool (= H)tll o, (5.12)
<cl(H = Hulloo, n=N. (5.13)
Proof See Atkinson [1, Theorem 4.1.2]. O

Theorem 5.3 Let u be the exact solution of (5.1). Assume that k(s, )u(.) €
€810, 1] for all s € [0, 1]. Then, for a sufficiently large n,

lu — uplloo = OH®). (5.14)

Proof The estimation (5.13) shows that ||u — u,||eo and || (2 — J;)u| s converges
to zero with the same speed. By (5.9), we have for s e [0, 1] the asymptotic
integration error

8

d
(Hu)(s) = (Hpu)(s) = coh® [atg

K (s, t)u(t)] + O0(h). (5.15)

=t

Hence, from (5.13) and (5.15), the Nystrom method converges with an order of
O'(h3), provided « (s, 1)u(r) is eight times continuously differentiable with respect
to ¢, uniformly in s. m]

An asymptotic series expansion for the Nystrom solution u,, is obtained below.

Theorem 5.4 Under the assumption of Theorem 5.3, we have
un —u = col(I — ) " Wulh® + o), (5.16)

with

8

Hu)(s) = |:aat81c(s, t)u(t)]t_ , se0,1].
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Proof Since
(I = ) —up) = (X — Hp)u,
we can write as in [1, Chap.4]
U—ip=en+ Ry,
where
en = —H) (A — Hu,
Ry = =)™ = U =) (A — o,
= (I — )~ (S — IO — )N (H — S
Using the asymptotic expansion (5.15), we get
en = [ = )" W uleoh® + O (h)
and

(I = KRy = (S — A )en,

8
= —coh® [aatf%"(" t)en(t):| + O0(h),
t=1,

p——s
1=t}

8
= —coh'® [aatfﬁ'((" t)c(t)] + Oh?),

where ¢(t) = co[(I — #)""#ul(t) and 1, € [0, 1]. Letting S, be the solution of
equation

8
(I — ) Sy = —coh [ aatgx(-, t)c(n] ,

—/
t=1}

we deduce that
Ru(t) = (Su(t) — SR + S(t)h’,

where S satisfies

8
(I —#)S = —coh’ [;SK(., t)c(t):|

p——
t=1,
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Taking into account that S — S, ~ ¢,, we finally obtain
N 9
R,(t) = S(t)h”.

This completes the proof. O

One step of Richardson extrapolation can be used to further improve the order of
convergence of u,. Let uy, be the solution associated with a uniform partition of
[0, 1] with 2#n intervals and norm g Define

8
R 2°un, — uy

YT s
Theorem 5.5 If (s, Ju(.) € ‘58[0, 1] forall s € [0, 1], then, we have
lu = u3,lloc = OK). (5.17)
Proof From Theorem 5.4 we obtain
un —u = col(I — )" Wul <Z>8 + O(h). (5.18)

The estimate (5.17) follows from (5.16) and (5.18). |

5.5 Numerical Results

Example 1 Consider the following linear Fredholm integral equation of the second
kind

1
u(s)—/ s28u(n)dt = f(s), s el0,1],
0

where the exact solution is u#(s) = s and f is chosen accordingly. The errors
It —unlloc = Oh*) and |lu —uj, oo = O(hF)

were approximated respectively by

i i
- ,i=0,1,...,100
maX{Iu(wO) un o)l }
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and

R(

i .
max{lu(loo) —uR (), i=0,1,..., 100}.

i
100
Using two successive values of n, the values of « and B are computed and are listed
in Table 5.1.

From the above table it can be seen that the computed orders of convergence
match well with the expected values.

Example 2 Consider the following Fredholm integral equation quoted from [6]

1
u(s) —/ (s + DeSu(t)dt = f(s), sel[0,1],
0

where f is chosen so that u(s) = cos(s). The results are given in Table 5.2.

We denote by u nQ and u nQ B the approximated solutions given by Nystrom method
based on the integration of a quartic spline quasi-interpolant and Nystrém method
associated with the extrapolated quadrature formula Igp in [6] respectively. The
errors

lu —ullle = OhY) and |u — ul2®|c = Oh°)

which are listed in Table 5.3, are quoted from [6]. Note that the predicted values of
y and § are respectively, 6 and 7. The numerical algorithm was run on a PC with
Intel Core i5 1.60 GHz CPU, 8GB RAM, and the programs were compiled by using
Wolfram Mathematica.

Table 5.1 Nystrom and
extrapolated Nystrom
methods for example 1

n lu —tnlloo @ lu—ufllo B

16 1.11 x 10~8

32 531x107'"" 771 9.69 x 10712

64 227x10713 7.87 1.89x107* 9.00
128 9.22x 10710 794 3.69x10°'7 9.00
256 3.67x 1071 797 722x10720 9.00
512 1.45x 10720 8.00 1.42x10722 8.99

Table 5.2 Nystrom and
extrapolated Nystrom
methods for example 2

n lu —uplloo o lu—ufllo B
16 1.05x 10712

32 497 %1075 772 121 x 10718

64 2.11x10717 7.88 234x10721 901
128 857 x 10720 794 4.55x1072* 9.01
256 3.41x 10722 797 8.86 x 10727 9.00
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Table 5.3 Nystrom method
based on I and /g for
example

noolu—ulle o Ju—uffls B
8 233 x10°8 9.96 x 10~

16 475x1071% 561 7.61x 1071 7.03
32 830x 10712 584 596 x 10713 6.99
64 136x10713 592 444 %107 7.07
128 222x 107 594 341 x10717 7.02

It can be seen from Tables 5.2 and 5.3 that the approximation ufn withn =32 1is
better than the approximation u nQ B with n = 128.

5.6 Conclusion

The results, which are displayed in Table 5.1, show that a very high accuracy is
obtained even for a kernel which is only continuous with respect to the variable s.
On the other hand, we obtained significant performances in comparison with those
of the quadrature rules in [6] and this is due to the fact that the order of convergence
of the proposed method is higher. Note that the size of the corresponding linear
system is n + 2. It can be shown that to solve the present problem by a piecewise
polynomial interpolation scheme, a linear system of size at least 4n will need to be
solved to obtain accuracy of comparable order.
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