
Chapter 3
THB-Spline Approximations for Turbine
Blade Design with Local B-Spline
Approximations

Cesare Bracco, Carlotta Giannelli, David Großmann, Sofia Imperatore,
Dominik Mokriš, and Alessandra Sestini

Abstract We consider two-stage scattered data fitting with truncated hierarchical
B-splines (THB-splines) for the adaptive reconstruction of industrial models. The
first stage of the scheme is devoted to the computation of local least squares
variational spline approximations, exploiting a simple fairness functional to handle
data distributions with a locally varying density of points. Hierarchical spline quasi-
interpolation based on THB-splines is considered in the second stage of the method
to construct the adaptive spline surface approximating the whole scattered data set
and a suitable strategy to guide the adaptive refinement is introduced. A selection of
examples on geometric models representing components of aircraft turbine blades
highlights the performances of the scheme. The tests include a scattered data set
with voids and the adaptive reconstruction of a cylinder-like surface.

Keywords Scattered data · Quasi-interpolation · THB-splines · Smoothing
splines · Turbine blade design

3.1 Introduction

Scattered data fitting is nowadays of fundamental importance in a variety of fields,
ranging from geographic applications to medical imaging and geometric modeling.
The topic can be addressed in different approximation spaces, either by using spline
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spaces or radial basis functions. In particular, thanks to their low computational
cost and also to their better control of conditioning, schemes relying on local
approximations have received a lot of attention, being formulated either as partition
of unity interpolation or as two-stage approximation methods, see for example [4, 6–
8] and references therein.

In this work we are interested in two-stage surface reconstruction of industrial
models starting from scattered data obtained by optical scanning acquisitions. In
order to reduce the noise, the available data are always preprocessed because the
interest is in highly accurate reconstructions. Anyway, since the available data can
not be considered exact, interpolation is not required and a less costly approximation
scheme can be used to compute any local fitting. Furthermore, considering that
splines represented in B-spline form are the standard choice for industrial computer-
aided design applications (see e.g. [22]), we are interested in determining the
final approximation in a space spanned by suitable extensions of tensor-product
B-splines.

As well known, an approximating spline can be obtained by using different
approximation approaches and also operating in different kinds of spline spaces,
with the related schemes usually divided into two main classes. The first is the
class of global schemes which use simultaneously all the given information and thus
require the solution of a linear system whose size is (substantially) equal to the car-
dinality of the considered spline space. The second class collects all kinds of local
schemes which avoid the solution of a global linear system. Intermediate alternatives
are also possible, see e.g., [17], where spline spaces on triangulations are considered
together with a domain decomposition technique. Many local methods can be collo-
cated in the field of Quasi-Interpolation (QI) which is a fundamental methodology
in the context of spline approximation, see e.g. [18, 19] for an introduction. In some
cases, e.g. when dealing with scattered data, QI can require the solution of small lin-
ear systems whose size does not depend on the cardinality of the entire data set or on
the size of the global spline space. These local systems descend from the application
of local approximation schemes, each one considering a small number of data whose
associated parameter values belong to a modest portion of the parametric domain
intersecting the support of a compactly supported basis function. The computational
advantage of the QI approach is evident, since these local linear systems are of small
size and independent of each other. However, the development of an effective scat-
tered data fitting approach based on local methods is never trivial, since the quality
of the final spline approximation depends in this case not only on the considered
global spline space but also on the approximation power of the local scheme and on
the choice of the corresponding local data set. Here we are interested in considering
a method of this kind but having also the adaptivity feature, in particular relying on
a QI two stage methodology and working in adaptive spline spaces, since they allow
local refinement and generalize the standard tensor-product model. Since scattered
data can be characterized by a highly varying distribution, by also including voids, a
flexible and reliable approach which automatically (re-) constructs the geometric
model may strongly improve the efficiency of the overall scheme by suitably
adapting the solution to the shape and configuration of the given point clouds.
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In recent years the need for local refinement both in computer aided geometric
design and isogeometric analysis has motivated a lot of research on adaptive spline
spaces, leading to the introduction of several adaptive spline constructions, such as
spline spaces over T-meshes [9], T-splines [23], LR B-splines [10] and hierarchical
B-splines [16]. Spline spaces over T-meshes is the most straightforward approach:
given a T-mesh, that is a rectangular mesh allowing T-junctions (vertices with
valence 3), a space of functions which are polynomial over each cell can be easily
defined. While this is very natural, it has been shown that the dimension of the
corresponding space is stable (namely, it depends only on the topology of the
mesh and not on the geometry) only under certain conditions, see [20] and [3].
Consequently, an efficient construction of a global basis is, in general, still an open
question. T-splines [23] and LR B-splines [10] are both formally B-splines, but
defined on local knot vectors depending on the topology of the mesh, and therefore
allowing local refinement. They are very flexible, but their linear independence
is guaranteed only under certain conditions on the mesh (different for the two
types of spline), which any refinement algorithm must then preserve, see e.g. [1]
and [21]. The construction of hierarchical B-splines [16] is based on a multi-level
construction, where the refinement is obtained by replacing coarser elements with
finer ones in the mesh hierarchy. As a consequence, the corresponding basis is
composed of B-splines constructed on meshes of different levels. The multilevel
nature of these splines allows the design of efficient local refinement schemes
and their suitable integration into existing computer aided design software [15].
Moreover, the truncated version of hierarchical B-splines (THB-splines) [13] can be
used for an easy extension to hierarchical spline spaces of any QI scheme formulated
in a standard spline space [24, 25]. These features make THB-splines a natural
choice to solve our scattered data fitting problem and are then the solution here
considered.

The first proposal based on adaptive THB-spline fitting of scattered data for the
reconstruction of industrial models was introduced in [15], where a global adaptive
smoothed least-squares scheme was developed. Successively, in order to increase its
locality and reduce the computational cost, the same problem has been addressed
in different papers by combining a two-stage approach with hierarchical spline
approximations. The first contribution where this kind of schemes was used by some
of the authors was presented in [2] to deal with gridded data of Hermite type. In [4]
these kinds of approximants were extended for the first time to scattered data, by
using in the first stage of the scheme local polynomial least squares approximations
of variable degree. A preliminary application of this scheme to industrial data
reconstruction was given in [5], where its theoretical analysis was also presented.

In this paper a variant of the approach considered in [4, 5] is presented, to further
decrease the number of degrees of freedom necessary to reach a certain accuracy
and also to reduce the artifacts in the resulting surface. Since the local polynomials
used in [4, 5] need to be converted into B-spline form for being usable by the quasi-
interpolation approach considered in the second stage of scheme, we now work
directly in local spline spaces. In this way, the algorithm for the first stage of the
scheme is simplified. In order to avoid rank-deficiency problems by simultaneously
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controlling the smoothness of local approximants, a smoothing term is added to the
least squares objective function. To improve the stability of the proposed method
for general data configuration, we also inserted an automatic control on the choice
of the local data sets.

The structure of the paper is as follows. Section 3.2 presents the model
problem, while the first stage of the new scheme, devoted to the computation of
local smoothed least squares B-spline approximations, is described in Sect. 3.3.
Section 3.4 introduces the construction of the adaptive THB-spline surface approx-
imating the scattered data set. A selection of examples on geometric models
representing components of aircraft turbine blades is presented in Sect. 3.5, and
compared with the results obtained in [5]. The numerical experiments include a
new scattered data set with voids and the adaptive reconstruction of a surface closed
in one parametric direction.

3.2 The Problem

The industrial models here considered are components of aircraft turbine blades
which can be suitably represented in parametric form by using just one map, with
the possibility of being periodic in one parametric direction. The problem can be
mathematically described as follows. Let

F :=
{

fi ∈ R
3, i = 1, . . . , n

}

be a scattered set of distinct points in the 3D space which can be reasonably asso-

ciated by a one-to-one map to a set X :=
{

xi := (xi, yi) ∈ � ⊂ R
2, i = 1, . . . , n

}

of distinct parameter values belonging to a closed planar parametric domain �.

Since the choice of a suitable parametrization method for the definition of the set X,
which can naturally influence the quality of the final approximation, is not our focus,
in this paper we relate to classical parametrization methods based on a preliminary
triangulation of the scattered data set F, see e. g., [11, 12]. Consequently, both F

and X are considered input data for the approximation problem.
Focusing on two-stage spline approximation schemes, we can introduce the

general idea referring for simplicity to their formulation in a standard space V of
tensor product splines of bi-degree d = (d1, d2), where it is assumed di ≥ 1, i =
1, 2, in order to deal with at least continuous functions. With this kind of methods,
a quasi-interpolation operator Q is defined so that Q(F,X) = s, with s denoting a
vector function, possibly periodic in one parametric direction, with components in
the spline space V. Using a suitable spline basis B := {BJ }J∈� of V, such vector
spline s can be expressed as follows,

s(x) :=
∑
J∈�

λJ (FJ ,XJ )BJ (x) , x ∈ �, (3.1)
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where each coefficient vector λJ (FJ ,XJ ), J ∈ �, is computed in the first stage of
the scheme by using a certain local subset FJ ⊂ F of data and the corresponding
set of parameter values XJ ⊂ X, so that s(xi ) ≈ fi, i = 1, . . . , n.

When dealing with discrete data, measuring the accuracy of the spline approx-
imation with the maximum of the errors ||s(xi ) − fi||2 at each parameter site can
appear reasonable at the first sight. However, the quality of the approximant is also
strictly related to the lack of unwanted artifacts, a feature of fundamental importance
for industrial applications of any approximation scheme. In this context, it is then a
common practice to require the error under a prescribed tolerance only at a certain
percentage of sites in X.

3.3 First Stage: Local B-Spline Approximations

For computing each vector coefficient λJ , J ∈ �, necessary in (3.1) to define the
approximation s, we consider a local data subset FJ ⊂ F ,

FJ := {
fi : i ∈ IJ

}
with IJ := {i : xi ∈ X ∩ �J } ,

associated to the set

XJ := {xi : i ∈ IJ }

of parameter values in a local subdomain �J of � which has non empty intersection
with the support of the basis function BJ , namely �J ∩ supp(BJ ) �= ∅. By denoting
with BJ := {BI : I ∈ �J ⊂ �} the set of B-splines in B not vanishing in �J

(which necessarily includes BJ ), the value of λJ is defined as the vector coefficient
associated with BJ in a local spline approximation sJ ∈ SJ , with sJ : �J → R

3

and

SJ := span{BI , I ∈ �J }.

Concerning this local spline space, the following proposition is proved, since it
shows that SJ has reasonable approximation power and in particular that it includes
the restriction to �J of any linear polynomial,

Proposition The following space inclusion holds true

�2
d|�J ⊆ SJ := span{BI : I ∈ �J } ,

where �2
d|�J denotes the restriction to �J of the tensor product space of bivariate

polynomials of bi-degree d.

Proof Let cK be a cell of G such that cK ∩ �J �= ∅. Then the definition of
�J implies that cK ⊆ supp(BI ) ⇒ I ∈ �J . Thus we can say that span{BI :
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cK ⊆ supp(BI )} ⊆ SJ . Since span{BI : cK ⊆ supp(BI )} = �2
d|cK, the proof is

completed considering that cK is any cell of G with non vanishing intersection with
�J . �
The variational fitting method adopted to determine sJ in SJ consists in minimizing
the following objective function

∑
i∈IJ

‖sJ (xi ) − fi‖2
2 + μ E(sJ ) , (3.2)

where μ > 0 is a smoothing coefficient and E(sJ ) the thin-plate energy,

E(sJ ) :=
∫

�J
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dxdy .

As recalled in the Appendix, the assumption of a positive μ ensures that this local
approximation problem admits always a unique solution, provided that the sites
belonging to XJ are not collinear.

Since the scheme is locally applied, an automatic (data-dependent) selection
of the parameter μ could be considered. For example, the choice may take into
account the cardinality |XJ | of the local sample or the area of �J , which influence
the value of the first and of the second addend in (3.2), respectively. In view of
this influence however, we may observe that a constant value of μ implies that
the balancing between the fitting and the smoothing term in the objective function
usually increases when |XJ | or the area of �J increases, being this true in the second
case because second derivatives are involved in the smoothing term. Both these
behaviors seem reasonable and are confirmed by the quality of the results obtained
in our experiments, where a constant value for μ is suitably chosen.

Differently from [4, 5], in order to better avoid overfitting, a lower bound nmin
for the cardinality of XJ is now required, being nmin ≥ 3 the only additional input
parameter required by the algorithm, besides μ. To fulfill this condition, �J is
initialized as supp(BJ ) and enlarged until |XJ | ≥ nmin. Note that the refinement
strategy presented in Sect. 3.4 automatically guarantees that the inequality |XJ | ≥
nmin becomes fulfilled without requiring an excessive enlargement of the set �J ,
which would compromise the locality of the approximation. For this reason, it is
not necessary to set a maximum value for controlling the enlargement of the local
data set. Considering that the smaller nmin is, the higher is the obtainable level
of detail but also the probability of overfitting, in our experiments (which always
adopt d1 = d2 = d = 2, 3), a good low range for its selection has always been
d2 ≤ nmin ≤ (d + 1)2.

Summarizing, the computation of each λJ , J ∈ �, is done according to the
following algorithm.

Note that exploiting a regularized least square approximation and, as a con-
sequence, being able to directly employ the local spline space has significantly
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Algorithm 1 Local smoothing spline approximant
Inputs

• F ⊂ R
3: scattered data set;

• X ⊂ � ⊂ R
2: set of parameter values corresponding to the data in F ;

• G: uniform tensor-product mesh in � (possibly with auxiliary cells);
• V : tensor-product spline space of bi-degree d associated with G with B-spline basis B;
• J ∈ �: index of the considered basis function BJ ∈ B;
• μ: smoothing spline parameter (μ > 0);
• nmin: minimum required number of local data (3 ≤ nmin � |F |);
1. Initialization

a. initialize �J = supp(BJ );
b. initialize IJ = {i : xi ∈ X ∩ �J } , FJ = {

fi : i ∈ IJ

}
and XJ = {xi : i ∈ IJ };

2. while |FJ | < nmin

a. enlarge �J with the first ring of cells in G surrounding �J ;
b. update IJ = {i : xi ∈ X ∩ �J } , FJ = {

fi : i ∈ IJ

}
and XJ = {xi : i ∈ IJ };

3. if the sites in XJ are not collinear, then:

a. compute the local approximation sJ = ∑
I∈�J

c(J )
I BI minimizing the objective function in

(3.2) for the data FJ and XJ ;
b. set λJ = c(J )

J ;
else set λJ = 1

|FJ |
∑
I∈IJ

fI .

Output

• vector coefficient λJ .

simplified the algorithm originally proposed for the first stage in [4, 5], where a
variable-degree local polynomial approximation was considered. In particular, the
new scheme does not require the selection of a suitable degree for the computation
of any coefficient λJ and eliminates the conversion of the computed approximant
from the polynomial to the B-spline basis.

In the following section, after introducing the THB-spline basis, the operator Q

is easily extended to hierarchical spline spaces, by also introducing the automatic
refinement algorithm here considered. Note that this extension rule ensures that
the coefficient associated to a THB-spline basis function remains unchanged on a
refined hierarchical mesh if this function remains active on the updated hierarchical
configuration.
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3.4 Second Stage: THB-Spline Approximation

Let us consider a sequence V 0 ⊂ . . . ⊂ V M−1 of M spaces of tensor-product splines
of bi-degree d := (d1, d2), di ≥ 1, i = 1, 2, defined on the closed domain �, and

each one associated with the tensor-product grid G� and the basis B�
d :=

{
B�

J

}
J∈��

d

.

Let �0 ⊇ . . . ⊇ �M be a sequence of closed domains, with �0 := � and �M := ∅.
Each ��, for � = 1, . . . ,M −1 is the union of cells of the tensor-product grid G�−1.
Let GH be the hierarchical mesh defined by

GH := {Q ∈ G�, 0 ≤ � ≤ M − 1} with G� := {Q ∈ G� : Q ⊂ ��\��+1},

where each G� is called the set of active cells of level �. The hierarchical B-spline
(HB-spline) basis H(GH) with respect to the mesh GH is defined as

H(GH) := {B�
J : J ∈ A�, � = 0, . . . ,M − 1},

where

A� :=
{
J ∈ �� : supp(B�

J ) ⊆ �� ∧ supp(B�
J ) �⊆ ��+1

}
,

is the set of active multi-indices of level �, and supp(B�
J ) denotes the intersection

of the support of B�
J with �0. The corresponding hierarchical space is defined as

SH := span H(GH).
For any s ∈ V �, � = 0, . . . ,M − 2, let

s =
∑

J∈��+1

σ�+1
J B�+1

J

be its representation in terms of B-splines of the refined space V �+1. We define the
truncation of s with respect to level �+1 and its (cumulative) truncation with respect
to all finer levels as

trunc�+1(s) :=
∑

J∈��+1: supp(B�+1
J ) �⊆��+1

σ�+1
J B�+1

J ,

and

Trunc�+1(s) := truncM−1(truncM−2(. . . (trunc�+1(s)) . . .)),
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respectively. For convenience, we also define TruncM(s) := s for s ∈ V M−1. The
THB-spline basis T(GH) of the hierarchical space SH was introduced in [13] and
can be defined as

T(GH) :=
{
T �

J := Trunc�+1(B�
J ) : J ∈ A�, � = 0, . . . ,M − 1

}
.

The B-spline B�
J is called the mother B-spline of the truncated basis function T �

J .
We recall that THB-splines are linearly independent, non-negative, preserve the

coefficients of the underlying sequence of B-splines, and form a partition of unity
[13, 14]. Besides that, following the general approach introduced in [25], using such
basis we can easily construct the vector THB-spline approximation of the whole
scattered data set in terms of the hierarchical quasi-interpolant s = Q(F,X) as
follows,

s(x) :=
M−1∑
�=0

∑

I∈A�

λ�
I (FI ,XI )T

�
I (x), (3.3)

where each vector coefficient λ�
I is the one of the mother function B�

I and is obtained
by computing the local regularized B-spline approximation s�

I on the data set F�
I

associated to B�
I as described in Sect. 3.3.

In order to define an adaptive approximation scheme, the following algorithm is
used to iteratively construct the hierarchical mesh GH, the corresponding spline
space SH and the final approximating spline s. As any automatic refinement
strategy, the algorithm requires in input some parameters which drive the refinement
process. One of them is the error tolerance ε > 0 whose value has to be chosen not
only considering the accuracy desired for the reconstruction but also taking into
account the level of noise affecting the given points cloud (here assumed without
significant outliers). The percentage bound parameter η specifies the number of data
points for which the error is required to be within the given tolerance and a value
strictly less than 100% is suggested to reduce the influence of outliers with moderate
size on the approximation. Another required parameter is the maximum number of
levels Mmax which has to be chosen considering the maximal level of detail desired
for the reconstruction. The choice of the other input parameters, nloc, n1 and n2, is
discussed after the algorithm.

The refinement criterion has been motivated by the observation that, when the
parameter values corresponding to the local data set F�

I are concentrated in a small
part of the support of B�

I , the quality of the approximation may be affected. For
this reason, we consider a splitting of the two sides of supp(BM−1

J ) in n1 and n2

uniform segments, respectively, and subdivide the support of BM−1
J in the resulting

n1n2 subregions, where we then check the presence of at least �nloc/(n1n2)� data
points. To simplify the usage of the algorithm by default we set n1 = n2 = 1 but
different values can be chosen if suitable, see e.g. the data set with voids considered
in Example 3.3 of Sect. 3.5.
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Algorithm 2 Adaptive hierarchical spline fitting
Inputs

• F ⊂ R
3: scattered data set with n = |F |;

• X ⊂ � ⊂ R
2: set of parameter values corresponding to the data in F ;

• G0: initial uniform tensor-product mesh in � (possibly with auxiliary cells);
• V 0: tensor-product spline space of bi-degree d associated with G0;
• ε : error tolerance;
• η: percentage bound of data points for which the error is required to be within the tolerance ε

(default: η = 95%);
• Mmax : integer specifying the maximum number of levels;
• nloc: minimum number of local data required for refinement (3 ≤ nloc � |F |);
• n1 , n2: positive integers specifying the number of uniform horizontal or vertical splittings for

the support of a tensor-product B-spline (default: n1 = n2 = 1).

1. Initialization

a. set GH = G0and SH = V 0;
b. set the current number of level M = 1;
c. use Algorithm 1 to compute the coefficients of the hierarchical QI vector spline s ∈ SH

introduced (3.3).
d. evaluate the errors at the data sites xi ,∈ X, i = 1, . . . , n ,

e(xi ) := ‖s(xi ) − fi‖2, i = 1, . . . , n.

2. While |{i : e(xi ) > ε}|/n > η and M ≤ Mmax, repeat the following steps:

a. (marking) for each � = 0, . . . ,M − 1, mark the cells of level � in GH which are included
in the support of a B�

J , J ∈ A� such that:

• there exists at least one data site xi ∈ X ∩ supp(B�
J ) such that e(xi ) > ε;

• there are at least �nloc/(n1n2)� data sites in any of the n1n2 subrectangles which
uniformly split supp(B�

J ) (note that such splitting is just temporarily considered to check
whether this refinement requirement is satisfied);

b. (update the hierarchical mesh) update GH by dyadically refining (in the two parametric
directions) all the marked cells;

c. (update the number of levels) set M equal to the current number of levels;
d. (update the hierarchical space) update the THB-spline basis of SH and the sets A�, � =

0, . . . ,M − 1;
e. (spline update) use Algorithm 2 to compute the coefficients of the hierarchical QI spline

s defined in (3.3)—only coefficients associated with THB-splines having new mother B-
splines have to be computed;

f. (error update) evaluate the new errors e(xi ), i = 1, . . . , n at the data sites;

Outputs

• GH: hierarchical mesh;
• T(GH): THB-spline basis of SH;
• coefficients of the hierarchical spline s defined in (3.3).
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Concerning the parameter nloc, we may observe that the requirement nloc ≥ nmin
guarantees that the points needed to compute the coefficients associated with the
new functions in the first stage of the next iteration can be found not too far from
the support of the functions themselves. Indeed in the algorithm introduced in the
previous section, after a few enlargements, �J will surely include the support of
a refined function of the previous level intersecting supp(BJ ). As a consequence,
analogously to nmin, a high value of nloc contributes to the reduction of oscillations
deriving from overfitting, but this value should also be low enough to guarantee
that the refinement strategy can generate a hierarchical spline space with enough
degrees of freedom for satisfying the given tolerance ε. For this reason, some tuning
is necessary for a good selection of nloc.

The proposed adaptive approximation method also extends to the case, not
addressed in the previous works, of surfaces closed in one (or even two) parametric
directions. Note that the local nature of the considered approximation approach
makes the implementation especially easy, since coefficients associated with a THB
present at successive steps of the adaptive refinement procedure (even if possibly
further truncated) do not depend on such steps.

3.5 Examples

We present a selection of tests for the approximation of industrial data obtained by
an optical scanning process of four different aircraft engine parts. For each of these
surfaces, as a characterizing dimension, we report the length R of the diagonal
of the minimal axis-aligned bounding box associated to the given point cloud.
The parameter values are computed in all examples with standard parametrization
methods based on a triangulation of the scattered data sets, see e. g., [11, 12].
The bi-degree d is set equal to (2, 2) in the first considered example and always
equal to 3 in the other examples. The results highlight the effects of considering a
minimum number of local data points (also) in the first stage of method, as well as
the improvements obtained by introducing a regularized B-spline approximation for
each local fitting with respect to the scattered data fitting scheme considered in [5].
By combining these two changes, the two-stage approximation algorithm is more
stable and unwanted oscillations are further reduced.

Concerning the parameters in input to Algorithm 1, we have always set μ =
10−6, except for Example 3.2 where it was chosen even smaller. In order to try to
produce a very detailed reconstruction, a quite small value has been chosen for nmin,

always selecting it between d2 and (d +1)2. Concerning the parameter selection for
Algorithm 2, in all the presented experiments we have set the maximum number
of levels Mmax equal to 8, fixing the percentage bound parameter η equal to its
default value (η = 95%). The error tolerance ε has been always set to 5 · 10−5 m,
except for Example 3.2 where we used the about halved value chosen for the same
experiment in [5] (as a reference value, for each example consider the dimension
R characterizing the related point cloud). The integer parameters n1 and n2 also in
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input to Algorithm 2 have been always set to their unit default values, except for
Example 3.3 which required a different selection because of the voids present in the
considered data set. The only parameter which has required a finer tuning for the
reported experiments has been nloc which is anyway always assumed greater than
nmin.

Example 3.1 (Tensile) In this example, we consider THB-spline approximations to
reconstruct a part of a tensile from the set of 9281 scattered data shown in Fig. 3.1
(top) which has reference dimension R = 2.5 · 10−2 m. We compare the new local
scheme based on local B-spline approximations with the algorithm based on local
polynomial approximations of variable degree presented in [5], where this test was
originally considered. Note that for this example we have never dealt with local sets
of collinear points in our experiments.

As the first test, we ran both algorithms with the same setting considered in [5],
namely, by starting with a 4 × 4 tensor-product mesh with d = (2, 2), tolerance
ε = 5 · 10−5 m, percentage bound η equal to the default 95% and nloc = 20.
The algorithm with local polynomial approximations with the parameter choice
considered in [5] (σ = 108) led to an approximation with 2501 degrees of freedom,
96.25% of points below the tolerance and a maximum error of 1.22745·10−4 m. The
new scheme based on local B-spline approximations with nmin = 6 and μ = 10−6

generated a THB-spline surface with 1855 degrees of freedom that satisfies the
required tolerance in 98.88% of points with a maximum error of 8.06007 · 10−5

m. The number of levels used is M = 5, but all the cells of the first two levels are
refined.

As the second test, we ran both algorithms by starting with a 16×4 tensor-product
mesh with d = (2, 2), percentage η equal to the default, tolerance ε = 5 · 10−5

m, and nloc = 15. The algorithm with local polynomial approximations led to an
approximation with 5922 degrees of freedom, 98.18% of points below the tolerance
and a maximum error of 1.44222 · 10−4 m. The surface and the corresponding
hierarchical mesh are shown in Fig. 3.1 (center). This approximation clearly shows
strong oscillations on the boundary of the reconstructed surface, due to a lack of
available data points for the local fitting in correspondence of high refinement
levels. The scheme based on local B-spline approximations, with nmin = 7 and
μ = 10−6 produced a THB-spline surface with 1960 degrees of freedom that
satisfies the required tolerance in the 99.36% of the data points with a maximum
error of 8.10814 · 10−5 m. The surface, free of unwanted oscillations along the
boundary, and the corresponding hierarchical mesh are shown in Fig. 3.1 (bottom).
The number of levels used is M = 4, with all the cells of level 0 refined.

Example 3.2 (Blade) In this example, we test the second example considered in [5]
on the set of 27191 scattered data representing a scanned part of a blade shown in
Fig. 3.2 (top) whose reference dimension R is equal to 5·10−2 m. Again, to compare
the new local scheme with the algorithm based on local polynomial approximations
there considered, we ran both algorithms with the same setting of [5], namely, by
starting with a 4 × 4 tensor-product mesh with d = (3, 3), tolerance ε = 2 · 10−5

m, percentage bound η equal to the default 95% and nloc = 60. The algorithm
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Fig. 3.1 Example 3.1: scattered data set corresponding to a critical part of a tensile (top), the
reconstructed surfaces and the corresponding hierarchical meshes obtained with the algorithm
presented in [5] (center) and the new scheme (bottom)

with local polynomial approximations with the parameter choice considered in [5]
(σ = 108) led to an approximation with 12721 degrees of freedom, 97.06% of
points below the tolerance and a maximum error of 1.08043 · 10−4 m. The new
scheme based on local B-spline approximations with nmin = 6 and μ = 10−8

generated a THB-spline surface with 8314 degrees of freedom that satisfies the
required tolerance in 99.94% of points with a maximum error of 1.32976 · 10−4 m.
The surface and the corresponding hierarchical mesh are shown in Fig. 3.2 (bottom).
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Fig. 3.2 Example 3.2: scattered data set corresponding to a critical part of a blade (top), the
reconstructed surface and the corresponding hierarchical mesh obtained with the new scheme
(bottom)

The number of levels used with the new scheme is 7 (the first two are not visible in
the mesh because their cells are fully refined), one less than with the old approach.
Finally for completeness we precise that the local collinearity check in Algorithm 1
is active only for 5 coefficients.

Example 3.3 (Endwall) In this example we illustrate the behavior of the adaptive
algorithm on data sets with voids by considering the reconstruction of an endwall
part from the scattered data set of 43,869 points shown in Fig. 3.3 (top) (R = 5·10−1

m). The figure shows that in this case the data set represents a model with three
different holes, where no input data are available. The aim of this reconstruction is
to avoid artifacts due to lack of points and obtain a sufficiently regular surface (e.g.
by avoiding self-intersections), that can be post-processed with standard geometric
software tools to obtain a suitably trimmed model. Consequently, not only the
number of points in the local data sets is important to reach this aim, but also their



3 THB-Spline Approximations for Turbine Blade Design 77

Fig. 3.3 Example 3.3: scattered data set corresponding to a critical part of an endwall (top), the
reconstructed surface and the corresponding hierarchical mesh obtained with the new scheme
(bottom)

distribution. To properly address this issue, we consider a real density parameter
with value between 0 and 1 which determines whether the distribution of the points
in the local set is reliable or not for the fitting. The distribution of the local data
points is computed as the number of mesh cells of level � inside the support of B�

or its enlargement, which contain at least one point, over the total number of mesh
cells, either in the support of B� or its enlargement. If this ratio is below a density
threshold, then more data points are required and the function support is enlarged
for the computation of the local approximation in the first stage of the method. The
approximation is developed by starting from a 32 × 32 tensor-product mesh, with
d = (3, 3), nloc = 15, nmin = 11, μ = 10−6 and n1 = n2 = 2. A choice of
the density parameter δ equal to 0.3 permits to take care of the difficult distribution
of data points in the construction of the approximation. By considering a tolerance
ε = 5 · 10−5 m and a percentage bound η equal to the default 95%, the refinement
generated a THB-spline approximation with M = 3 and 11211 degrees of freedom,
98.70% of points below the threshold and a maximum error of 5.68999 · 10−4 m.
The surface and the corresponding hierarchical mesh are shown in Fig. 3.3 (bottom).
In this case there are 18 coefficients of the last level and 15 of the last but one (all
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Fig. 3.4 Example 3.4: scattered data set corresponding to a critical part of an airfoil (top), the
reconstructed surface and the corresponding hierarchical mesh obtained with the new scheme
(bottom)

associated with B-splines whose support intersects a void) such that the related XJ

is made up of all collinear points.

Example 3.4 (Airfoil) This example illustrates the behavior of the new adaptive
fitting algorithm with local B-spline approximations for surfaces closed in one
parametric direction. We test the scheme to reconstruct a blade airfoil from the
set of 19669 scattered data shown in Fig. 3.4 (top) (R = 10−1 m). We ran the
method by starting with a 32 × 4 tensor-product mesh with d = (3, 3), setting
η = 95% , ε = 5 · 10−5 m, and nloc = 30 in Algorithm 2 and using Algorithm 1
with nmin = 12 and μ = 10−6. The refinement strategy produced an approximation
with M = 3 and 1856 degrees of freedom distributed in the last two levels, that
satisfies the required tolerance in 95.06% of the data points with maximum error
1.87742 · 10−4 m (observe also that, as well as for Example 3.1, at the local stage
XJ is never made up of all collinear points). The surface and the corresponding
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hierarchical mesh are shown in Fig. 3.4 (bottom). By trying to force additional
refinement, some oscillations appear. In this case, they are consistent with the
data distribution since there are clusters of high density points, due to scan noise.
Consequently, they do not represent artifacts caused by regions with very low
density of data and cannot be prevented by exploiting the bound for cardinality
of the local data sample governed by nloc.
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Appendix

In this appendix we give the proof that, assuming d = (d1, d2) with di ≥ 1, i = 1, 2,

the local vector spline sJ defined in Sect. 3.3 exists and is unique, provided that the
sites in XJ are not collinear. First of all we observe that the objective function in
(3.2) can be split in the sum of three analogous objective functions, one for each
component s

(k)
J , k = 1, 2, 3, of sJ ,

∑
i∈IJ

‖sJ (xi ) − fi‖2
2 + μ E(sJ ) =

3∑
k=1

( ∑
i∈Ij

(
s
(k)
J (xi ) − (fi )k

)2 + μ ρ(s
(k)
J )

)
,

where

ρ
(
s
(k)
J

) :=
∫

�J

⎛
⎝∂2s

(k)
J

∂x2

⎞
⎠

2

+ 2

⎛
⎝∂2s

(k)
J

∂x∂y

⎞
⎠

2

+
⎛
⎝∂2s

(k)
J

∂y2

⎞
⎠

2

dxdy .

Thus the study can be developed in the scalar case and for brevity we remove the
subscript or superscript k ranging between 1 and 3. The analysis is developed in the
following theorem, where sJ : �J → R denotes the local spline in SJ associated
to the coefficient vector c ∈ R

�J , with �J := |�J | ,

sJ (x) =
∑

I∈�J

cIBI (x) .

Theorem Let the considered spline bi-degree d = (d1, d2) be such that di ≥ 1, i =
1, 2. When the points xi ∈ �J , i ∈ IJ are not collinear, there exists a unique local
spline sJ ∈ SJ minimizing the following objective function,

∑
i∈IJ

(
sJ (xi ) − fi

)2 + μ ρ(sJ ) , (3.4)
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where μ > 0. If such points in �J are collinear, then such minimizer does not exist
or is not unique.

Proof Let us observe that ρ(sJ ) = cT Mc , where M ∈ R
�J ×�J is such that

Mi,r :=
∫

�J

(
∂2BI

∂x2

)(
∂2BR

∂x2

)
+2

(
∂2BI

∂x∂y

) (
∂2BR

∂x∂y

)
+

(
∂2BI

∂y2

) (
∂2BR

∂y2

)
dxdy ,

where we are assuming that, in the adopted ordering of the B-spline basis elements
of SJ , BR and BI are the r–th and the i–th ones. On the other hand it is

∑
i∈IJ

(
sJ (xi ) − fi

)2 = ‖V c − F‖2
2 = cT AT Ac − 2FT Ac + FT F ,

where F ∈ R
|IJ | denotes the vector collecting all the fi, i ∈ IJ and A is the |IJ | ×

�J collocation matrix of the tensor-product B-spline basis generating SJ . Thus the
objective function in (3.4) can be written also as the following quadratic function,

cT (AT A + μM)c − 2FT Ac + FT F .

As well known a quadratic function admits a global unique minimizer if and only if
the symmetric matrix defining its homogeneous quadratic terms is positive definite
and in such case the minimizer is given by its unique stationary point. In our case
such matrix is AT A+μM and the stationary points are the solutions of the following
linear system of �J equations in as many unknowns,

(AT A + μM)c = AT F .

Now, for all positive μ the matrix AT A+μM is symmetric and positive semidefinite
since, for any vector ζ ∈ R

�J , ζ �= 0 it is ζ T AT Aζ ≥ 0 and ζ T Mζ ≥ 0,

the last inequality descending from the fact that ζ T Mζ = ρ(sζ ), where sζ (x) =∑
I∈�J

ζIBI (x) . Now if the points xi , i ∈ Ij are distributed in �J along a straight
line ax + by + c = 0, the proposition proved in Sect. 3.3 implies that it is possible
to find ζ ∈ R

�J , ζ �= 0 such that sζ (x) ≡ ax + by + c,∀x ∈ �J . This implies
that sζ (xi ) = 0 ,∀i ∈ IJ , that is the vector Aζ ∈ R

|IJ | vanishes. On the other
hand, clearly it is also 0 = ρ(sζ ) = ζT Mζ , since sζ |�J is a linear polynomial.
This proves that the symmetric positive semidefinite matrix (AT A + μM) is not
positive definite when all the xi , i ∈ IJ are collinear. This is the only possible
data distribution associated to a non positive definite matrix. Indeed if the points
xi , i ∈ IJ are not collinear, if ζ ∈ R

�J , ζ �= 0 is associated to a non vanishing
linear polynomial, it is ζ T Mζ = ρ(sζ ) = 0 but Aζ �= 0 and so ζ T AT Aζ > 0;
on the other hand if ζ ∈ R

�J , ζ �= 0 is not associated to a linear polynomial, then
ζ T Mζ = ρ(sζ ) > 0. �



3 THB-Spline Approximations for Turbine Blade Design 81

References

1. Beirão da Veiga, L., Buffa, A., Sangalli, G., Vazquez, R.: Analysis-suitable T-splines of
arbitrary degree: definition and properties.Math. Mod. Meth. Appl. Sci. 23, 1979–2003 (2013)

2. Bracco, C., Giannelli, C., Mazzia, F., Sestini, A.: Bivariate hierarchical Hermite spline quasi-
interpolation. BIT Numer. Math. 56, 1165–1188 (2016)

3. Bracco, C., Lyche, T., Manni, C., Roman, F., Speleers, H.: On the dimension of Tchebycheffian
spline spaces over planar T-meshes. Comput. Aided Geom. Des. 45, 151–173 (2016)

4. Bracco, C., Giannelli, C., Sestini, A.: Adaptive scattered data fitting by extension of local
approximations to hierarchical splines. Comput. Aided Geom. Des. 52–53, 90–105 (2017)

5. Bracco, C., Giannelli, C., Großmann, D., Sestini, A.: Adaptive fitting with THB-splines: error
analysis and industrial applications. Comput. Aided Geom. Des. 62, 239–252 (2018)

6. Cavoretto, R., De Rossi, A., Perracchione, E.: Optimal selection of local approximants in RBF-
PU interpolation. J. Sci. Comput. 74, 1–22 (2018)

7. Davydov, O., Schumaker, L.: Interpolation and scattered data fitting on manifolds using
projected Powell–Sabin splines. IMA J. Numer. Anal. 28, 785–805 (2008)

8. Davydov, O., Morandi, R., Sestini, A.: Local hybrid approximations for scattered data fitting
with bivariate splines. Comput. Aided Geom. Des. 23, 703–721 (2006)

9. Deng, J., Chen, F., Feng, Y.: Dimensions of spline spaces over T-meshes. J. Comput. Appl.
Math. 194, 267–283 (2006)

10. Dokken, T., Lyche, T., Pettersen, K.F.: Polynomial splines over locally refined box-partitions.
Comput. Aided Geom. Des. 30, 331–356 (2013)

11. Floater, M.S.: Parametrization and smooth approximation of surface triangulations. Comput.
Aided Geom. Des. 14, 231–250 (1997)

12. Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Dodgson
N.A., Floater M.S., Sabin M.A. (eds.) Advances in Multiresolution for Geometric Modelling.
Mathematics and Visualization, pp. 157–186. Springer, Berlin (2005)

13. Giannelli, C., Jüttler, B., Speleers, H.: THB-splines: the truncated basis for hierarchical splines.
Comput. Aided Geom. Des. 29, 485–498 (2012)

14. Giannelli, C., Jüttler, B., Speleers, H.: Strongly stable bases for adaptively refined multilevel
spline spaces. Adv. Comput. Math. 40, 459–490 (2014)

15. Kiss, G., Giannelli, C., Zore, U., Jüttler, B., Großmann, D., Barner, J.: Adaptive CAD model
(re-)construction with THB-splines. Graph. Models 76, 273–288 (2014)

16. Kraft, R.: Adaptive and linearly independent multilevel B-splines. In: Le Méhauté, A.,
Rabut, C., Schumaker, L.L. (eds.) Surface Fitting and Multiresolution Methods, pp. 209–218.
Vanderbilt University Press, Nashville (1997)

17. Lai, M.J., Schumaker, L.L.: A domain decomposition method for computing bivariate spline
fits of scattered data. SIAM J. Numer. Anal. 47, 911–928 (2009)

18. Lee, B.G., Lyche, T., Mørken, K.: Some examples of quasi–interpolants constructed from local
spline projectors. In: T. Lyche, L.L. Schumaker (eds.), Mathematical Methods for Curves and
Surfaces, Oslo 2000. pp. 243–252. Vanderbilt University Press (2001)

19. Lyche, T., Schumaker, L.L.: Local spline approximation methods. J. Approx. Theory 15, 294–
325 (1975)

20. Mourrain, B.: On the dimension of spline spaces on planar T-meshes. Math. Comput. 83, 847–
871 (2014)

21. Patrizi, F., Dokken, T.: Linear dependence of bivariate Minimal Support and Locally Refined
B-splines over LR-meshes. Comput. Aided Geom. Des. 77, 101803 (2020)

22. Prautzsch, H., Boehm, W., Paluszny, M.: Bézier and B-Spline Techniques. Springer, Berlin
(2002)



82 C. Bracco et. al.

23. Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and T-NURCCs. ACM Trans.
Graph. 22, 477–484 (2003)

24. Speleers, H.: Hierarchical spline spaces: quasi-interpolants and local approximation estimates.
Adv. Comput. Math. 43, 235–255 (2017)

25. Speleers, H., Manni, C.: Effortless quasi-interpolation in hierarchical spaces. Numer. Math.
132, 155–184 (2016)


	3 THB-Spline Approximations for Turbine Blade Design with Local B-Spline Approximations
	3.1 Introduction
	3.2 The Problem
	3.3 First Stage: Local B-Spline Approximations
	3.4 Second Stage: THB-Spline Approximation
	3.5 Examples
	Appendix
	References


