
Chapter 12
Numerical Methods Based on Spline
Quasi-Interpolating Operators for
Hammerstein Integral Equations

Domingo Barrera, Abdelmonaim Saou, and Mohamed Tahrichi

Abstract In this paper, we propose collocation type method, its iterated version
and Nyström method based on discrete spline quasi-interpolating operators to solve
Hammerstein integral equation. We present an error analysis of the approximate
solutions and we show that the iterated solution of collocation type exhibits a
superconvergence as in the case of the Galerkin method. Finally, we provide
numerical tests, that confirm the theoretical results.

Keywords Quasi-interpolants · Spline functions · Collocation method ·
Nyström method · Hammerstein integral equation

12.1 Introduction

The issue of integral equations is one of the most useful mathematical tools in pure
and applied mathematics. It has huge applications in many physical problems. Many
initial and boundary value problems associated with ordinary differential equations
(ODEs) and partial differential equations (PDEs) can be transformed into resolution
problems of some approximate integral equations (Ref. [16]).

In this paper we are interested in Hammerstein nonlinear integral equation given
by

u(x) = f (x) +
∫ b

a

k(x, t)ψ(t, u(t)) dt, x ∈ [a, b] (12.1)
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where f , k and ψ are continuous functions, with ψ nonlinear with respect to the
second variable and u is the function to be determined. This type of equations
appears in nonlinear physical phenomena such as electromagnetic fluid dynamics
and reformulation of boundary value problems with a nonlinear boundary condition,
see [7, 15]. Classical methods of solving (12.1) are projection methods. Within the
commonly used projection methods, there are Galerkin and collocation methods
based respectively on a series of orthogonal and interpolating projectors in finite
dimensional approximation spaces. Both methods have been studied by many
authors, see for example [6, 11, 14]. The idea of improving Galerkin and collocation
solutions by an iteration technique was introduced by Sloan [23]. Then several
authors applied this idea for different types of equations, see for example [8].
In [13], the authors introduced a new collocation-type method for the numerical
solution of (12.1) and its superconvergence properties were studied in [12]. In [4],
they used superconvergent Nyström and degenerate kernel methods to solve (12.1).
More recently, for smooth kernel or less smooth along the diagonal, the authors
in [5] introduced superconvergent product integration method to approximate
the solution of (12.1). For Hammerstein integral equation with singular kernel,
Gelerkin-type/modified Galerkin-type and Kantorovich methods are studied in [3].

Recently, many authors have been interested in using spline quasi-interpolating
operators for the approximation of solution of integral equations. In particular, in
[21] Fredholm integral equation is solved by using degenerate kernel methods based
on quasi-interpolating operators. A new quadrature rule based on integrating spline
quasi-interpolant is derived in [20] and used to solve Fredholm integral equation by
Nyström method. A modified Kulkarni’s method based on spline quasi-interpolating
operators is investigated in [1]. The authors in [9], used spline quasi-interpolants that
are projectors for the numerical solution of Fredholm integral equation by Galerkin,
Kantorovich, Sloan and Kulkarni’s schemes. The same operators are used in [10]
to solve Urysohn nonlinear integral equations by using collocation and Kulkarni’s
schemes.

In this paper we investigate collocation and Nyström type methods based on
spline quasi-interpolants that are not necessary projectors to solve Hammerstein
integral equation. Here is an outline of the paper. In Sects. 12.2 and 12.3 we recall
the definitions and main properties of the spline quasi-interpolants and a quadrature
formulas associated, and present their convergence properties. In Sect. 12.4 we
introduce the collocation and Nyström methods based in spline quasi-interpolants.
In Sect. 12.5 we give a general framework for the error analysis of the approximate
and the iterated solutions. Finally, in Sect. 12.6 we provide some numerical results,
illustrating the approximation properties of the proposed methods.

12.2 A Family of Discrete Spline Quasi-Interpolants

Let Xn := {xk, 0 ≤ k ≤ n} be the uniform partition of the interval I = [a, b] into
n equal subintervals, i.e. xk := a + kh, with h = (b − a)/n and 0 ≤ k ≤ n. We
consider the space Sd(I,Xn) of splines of degree d and class Cd−1 on this partition.
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Its canonical basis is formed by the n + d normalized B-splines {Bk, k ∈ J}, with
J := {1, 2, . . . , n + d}. The support of each Bk is the interval [xk−d−1, xk] if we
add multiple knots at the endpoints.

The discrete quasi-interpolants of degree d > 1 is a spline operator of the form

Qdf :=
∑
k∈J

μk(f )Bk, (12.2)

where the coefficients μk(f ) are linear combinations of values of f on either the
set Tn (for d even) or on the set Xn (for d odd), where

Tn := {t0 = x0, tk = 1

2

(
xk−1 + xk

)
, k = 1, . . . , n, tn+1 = b},

Xn := {xk, k = 0, . . . , n} .

Therefore, for d even, we set f (Tn) = {
fk = f (tk) , 0 ≤ k ≤ n + 1

}
, and for d

odd, we set f
(Xn

) = {
fk = f (xk) , 0 ≤ k ≤ n

}
. The coefficients μk(f ) for d +

1 ≤ k ≤ n, have the following form

μk(f ) :=
{∑d

i=0 αi+1,kfk−d+i+1, if d is even,∑d
i=1 αi,kfk−d+i−1, if d is odd,

where αik are calculated such that the quasi-interpolants Qd reproduce the space Pd

of all polynomials of total degree at most d , i.e.

Qdp = p, ∀p ∈ Pd .

The extremal coefficients μk(f ) for 1 ≤ k ≤ d and n + 1 ≤ k ≤ n + d have
particular expressions.

The quasi-interpolants Qd can be written under the following quasi Lagrange
form

Qdf =
nd∑
j=0

fjLj,

where nd := n + 1 if d is even, nd := n if d is odd and Lj are linear combinations
of finite number of B-splines Bj .

Since μk are continuous linear functionals, the operatorQd is uniformly bounded
on C([a, b]) and classical results in approximation theory provide that for any
subinterval Ik = [xk−1, xk], 1 ≤ k ≤ n and for any function f , we have

‖f − Qdf ‖∞,Ik ≤ (1 + ‖Qd‖)dist∞,Ik (f,Pd),
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where

dist∞,Ik (f,Pd) = inf
p∈Pd

‖f − p‖∞,Ik .

Therefore, if f ∈ Cd+1([a, b]), we get

‖f − Qdf ‖∞ ≤ C1h
d+1‖f (d+1)‖∞, (12.3)

for some constant C1 independent of h. As usual ‖f − p‖∞,Ik = maxx∈Ik |f (x) −
p(x)| and ‖f − p‖∞ = maxx∈[a,b] |f (x) − p(x)|.

In what follows, we give two examples of spline quasi-interpolants denoted by
Q2 and Q3.

• Q2 is the C1 quadratic spline quasi-interpolant exact on P2 and defined by (see
e.g. [17])

Q2f :=
n+2∑
k=1

μk(f )Bk, (12.4)

where the coefficient functionals μk(f ) are given by

μ1(f ) = f0, μ2(f ) = −1

3
f0 + 3

2
f1 − 1

3
f2,

μk(f ) = −1

8
fk−2 + 5

4
fk−1 − 1

8
fk, 3 ≤ k ≤ n, (12.5)

μn+1(f ) = −1

3
fn−1 + 3

2
fn − 1

3
fn+1, μn+2(f ) = fn+1.

In [17] the author has proved that the quasi-interpolant Q2 is uniformly bounded
and its infinity norm is given by

∥∥Q2
∥∥∞ = 305

207
≈ 1.4734.

• Q3 is the C2 cubic spline quasi-interpolant exact on P3 and defined by (see e.g.
[18])

Q3f :=
n+3∑
k=1

μk(f )Bk, (12.6)
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where the coefficient functionals μk(f ) are given by

μ1(f ) = f0, μ2(f ) = 1

18

(
7f0 + 18f1 − 9f2 + 2f3

)
,

μk(f ) = 1

6

( − fk−3 + 8fk−2 − fk−1
)
, 3 ≤ k ≤ n + 1, (12.7)

μn+2(f ) = 1

18

(
2fn−3 − 9fn−2 + 18fn−1 + 7fn

)
, μn+3(f ) = fn.

The infinity norm of the quasi-interpolantQ3 is uniformly bounded and it is given
by

∥∥Q3
∥∥∞ = 1.631.

In the case of even degree, the quasi-interpolant Qd present some interesting
properties. The first one concern superconvergence at some evaluation points. These
superconvergence points depends upon the degree d . The following theorem provide
them explicitly for the case of Q2.

Theorem 12.1 If f ∈ C4([a, b]), then

|Q2f (xi) − f (xi)| = O(h4), 0 ≤ i ≤ n, i �= 1, n − 1.

|Q2f (ti) − f (ti )| = O(h4), 0 ≤ i ≤ n + 1, i �= 1, 2, n − 1, n.
(12.8)

Proof Using the exact values of Bsplines on xi , ti and the definition of coefficient
functionals, we can show that e3(xi) = e3(ti) = 0 for all points included in (12.8),
where e3 represents the error of Q2 on the monomial x3. For the excluded points in
(12.8), these values are not zero. Next, following the same logical scheme as in the
proof of Lemma 4.1 in [9], we can get (12.8). 	


12.3 Quadrature Rules Based on Qd Defined on a Uniform
Partition

Let f be a continuous function on the interval [a, b], we consider the numerical
evaluation of the integral

I(f ) :=
∫ b

a

f (x)dx
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by quadrature rules based on Qd defined on a uniform partition. These rules are
defined by

IQd
(f ) :=

∫ b

a

Qdf (x)dx

=
{

h
∑n+1

j=0 ωjfj if d even

h
∑n

j=0 ωjfj if d odd

where ωj = 1

h

∫ b

a

Lj (x)dx and Lj are quasi-Lagrange functions associated with

Qd .
In particular, for d = 2 and d = 3 we obtain the following quadrature rules

IQ2
(f ) := h

n+1∑
j=0

ωjfj , et IQ3
(f ) := h

n∑
j=0

ωjfj .

Where the ωj weights are given explicitly in the following table.

j 0 1 2 3 4 . . . n − 4 n − 3 n − 2 n − 1 n n + 1

ωj (d = 2) 1
9

7
8

73
72 1 1 . . . 1 1 1 73

72
7
8

1
9

ωj (d = 3) 23
72

4
3

19
24

19
18 1 . . . 1 19

18
19
24

4
3

23
72 −

As Qd is exact on Pd , we deduce that the associated quadrature formulas IQd

are also exact on Pd . Therefore, the error EQd
(f ) := I(f ) − IQd

(f ) = O(hd+1).
However, in the case of an even degree d , this last error is more accurate. Indeed,
the following theorem holds true (for the proof see [2]).

Theorem 12.2 Let d be an even number and letQd be the quasi-interpolant defined
by (12.2). For any function f ∈ Cd+2([a, b]), we have

∫ b

a

(f (t) − Qdf (t))dt = O(hd+2). (12.9)

Moreover, for any weight function g ∈ W1,1 (i.e. ‖g′‖1 bounded), we have

∫ b

a

g(t)(f (t) − Qdf (t))dt = O(hd+2). (12.10)

Particular cases of the rule IQd
for d = 2 and d = 4 are studied in depth in

[19] and [20] respectively. The authors in these papers have provided explicit error
estimations and they have made comparisons with similar rules of interpolatory
type.
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12.4 Methods Based on Qd

Let us consider the Hammerstein integral equation (12.1) given in operator form as

u − Ku = f, (12.11)

where K in the Hammerstein integral operator defined on L∞[a, b] by

Ku(x) =
∫ b

a

k(x, t)ψ(t, u(t))dt.

Since the kernel k is assumed to be continuous, the operator K is compact from
L∞[a, b] to C[a, b]. In what follows, we propose two methods based on the quasi-
interpolant operator Qd to solve (12.11).

12.4.1 Collocation Type Method and Its Iterated Version

Recall that a spline quasi-interpolant of degree d is an operator defined on C[a, b]
by:

Qd : C[a, b] −→ Sd (I,Xn)

f −→ ∑n+d
j=1 μj(f )Bj .

We propose to approximate the integral operator K in (12.11) by Kc
n := QdK and

the second member f by Qdf . The approximate equation is then given by

uc
n − QdKuc

n = Qdf, (12.12)

where

QdKuc
n =

n+d∑
i=1

μi

(Kuc
n

)
Bi.

The approximate solution uc
n is a spline function, then we can write

uc
n =

n+d∑
i=1

αiBi .
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Replacing uc
n in Eq. (12.12), we obtain

n+d∑
i=1

αiBi −
n+d∑
i=1

μi

(
K( n+d∑

j=1

αjBj

))
Bi =

n+d∑
i=1

μi(f )Bi, (12.13)

since the family {Bi, 1 ≤ i ≤ n + d} is a basis of Sd (I,Xn), we can identify the
coefficients and we obtain the following nonlinear system:

αi − μi

(
K( n+d∑

j=1

αjBj

)) = μi(f ), i = 1, 2, . . . , n + d. (12.14)

Another interesting solution to consider is the following iterated one

ûc
n := K (

uc
n

) + f. (12.15)

Applying Qd on both sides, we find

Qd ûc
n = QdK

(
uc

n

) + Qdf = uc
n. (12.16)

Replacing in (12.15), we find that ûc
n satisfy the following equation

ûc
n = KQd ûc

n + f. (12.17)

We show later that the iterated solution ûc
n is more accurate than uc

n.

Remark 12.1 It is important to note the presence of integrals in system (12.14) and
also in the expression of iterated solution (12.15). When implementing the method
these integrals were calculated numerically using high accuracy quadrature rules,
like those defined on [22], to imitate exact integration .

12.4.2 Nyström Method

In the Nyström method the operator K in (12.11) is approximated by

KN
n u :=

nd∑
j=0

ωjk(., ξj )ψ(ξj , u(ξj )),

where ξj and ωj are respectively the nodes and the weights of the quadrature rule
IQd

based on Qd . More precisely, ξj are given by ti for d even and by xi for d odd.
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Hence, the corresponding approximate equation is given by

uN
n −

nd∑
j=0

ωjk(., ξj )ψ(ξj , uN
n (ξj )) = f. (12.18)

Taking this last equation at the points ξi , we get the following non linear system

uN
n (ξi) −

nd∑
j=0

ωjk(ξi, ξj )ψ(ξj , u
N
n (ξj )) = f (ξi) , 0 ≤ i ≤ nd. (12.19)

By solving this system, we obtain the approximate solution uN
n at points ξi . Over

all the domain, uN
n is given by the following interpolation formula

uN
n =

nd∑
j=0

ωjk(, ξj )ψ(ξj , u
N
n (ξj )) + f.

Remark 12.2 It should be noted that the Nyström method is completely discrete
because the system (12.19) does not contain integrals to be evaluated numerically.
Which makes this method one of the easiest methods to implement.

12.5 Error Analysis

Let u∗ be the unique solution of (12.1), and let a and b be real numbers such that

[min
x∈[a,b]u

∗(x), max
x∈[a,b]u

∗(x)] ⊂ [a, b].

Define � = [a, b]×[a, b]. We assume throughout this paper unless stated otherwise,
the following conditions on f , k and ψ:

(C.1) k ∈ C(
�

)
.

(C.2) f ∈ C([a, b]).
(C.3) ψ (t, x) is continuous in t ∈ [a, b] and Lipschitz continuous in x ∈ [a, b],

i.e., there exists a constant q1 > 0 such that

∣∣ψ (t, x1) − ψ (t, x2)
∣∣ ≤ q1 |x1 − x2| , for all x1, x2 ∈ [a, b].

(C.4) The partial derivative ψ(0,1) of ψ with respect to the second variable exists
and is Lipschitz continuous, i.e., there exists a constant q2 > 0 for which

∣∣∣ψ (t, x1)
(0,1) − ψ (t, x2)

(0,1)
∣∣∣ ≤ q2 |x1 − x2| , for all x1, x2 ∈ [a, b].
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Condition (C.4) implies that the operatorK is Fréchet-differentiable and that K′(u∗)
is Mq2-Lipschitz, where

K′(u∗)v(s) =
∫ b

a

k(s, t)
∂ψ

∂u

(
t, u∗(t)

)
v(t)dt,

and

M = sup
s∈[a,b]

∫ b

a

|k(s, t)|dt.

Furthermore, the operator K′(u∗) is compact.

12.5.1 Collocation and Nyström Solutions

It is easy to see that the operators Kc
n and KN

n are Fréchet differentiables and

(Kc
n)

′(u∗)v(s) =
n+d∑
i=1

μi

(
K′(u∗)v

)
Bi(s),

(KN
n )′(u∗)v(s) =

n+d∑
j=1

ωj k(s, ξj )
∂ψ

∂u
(ξj , u

∗(ξj ))v(ξj ).

Throughout the rest of this paper, we denote by L the operator K′(u∗) and by Ln

either the operator (Kc
n)

′(u∗) or the operator (KN
n )′(u∗).

The following lemmas state some properties needed to prove the existence and
the convergence of the approximate solutions. Their proofs are consequences of
conditions (C.1)–(C.4), the fact that Ln is linear operator and that Qd converges to
the identity operator pointwise.

Lemma 12.1 Assume that 1 is not an eigenvalue of L. Then for n large enough, 1
is not in the spectrum of Ln and (I − Ln)

−1 exists as a bounded linear operator,
i.e.,

∥∥∥(I − Ln)
−1

∥∥∥∞ ≤ C1,

for a suitable constant C1 independent of n.

Lemma 12.2 Assume that 1 is not an eigenvalue of L. Then for n large enough, Ln

is Lipschitz continuous on B(u∗, δ) for δ > 0.
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Put T u = Ku + f . Equation (12.11) becomes

u = T u, (12.20)

Generally, the previous equation is approximated by

un = Tnun, (12.21)

where Tn is a sequence of approximating operators. We quote the following theorem
from [24] which gives conditions on Tn to ensure the convergence of un to the exact
solution.

Theorem 12.3 Suppose that the Eq. (12.20) has a unique solution u∗ and the
following conditions are satisfied

(i) Tn is Fréchet-differentiable and (I − T ′
n

(
u∗))−1 exists and is uniformly

bounded.
(ii) For certain values of δ > 0 and 0 < q < 1, the inequalities

sup
‖u−u∗‖≤δ

∥∥∥∥
[
I − T ′

n

(
u∗)]−1 (

T ′
n(u) − T ′

n

(
u∗))∥∥∥∥∞

≤ q,

α :=
∥∥∥∥
[
I − T ′

n

(
u∗)]−1 (

Tnu
∗ − T u∗)∥∥∥∥∞

≤ δ(1 − q),

are valid.

Then the approximate equation (12.21) has a unique solution un in B(u∗, δ) such
that

α

1 + q
≤ ∥∥un − u∗∥∥∞ ≤ α

1 − q
. (12.22)

We now give our result about the existence and uniqueness of the approximate
solution for collocation and Nyström methods studied in this paper. Recall that for
collocation method, Tnu = Kc

nu+Qdf , and for Nyström method Tnu = KN
n u+f .

Theorem 12.4 Let u∗ be the unique solution of Eq. (12.20). Under the assumptions
(C.1)–(C.4), there exists a real number δ0 > 0 such that the approximate equation
(12.21) has a unique solution un in B(u∗, δ0) for a sufficiently large n. Moreover,
the error estimate (12.22) holds.

Proof We give the proof in the case of collocation method. The proof is similar
for Nyström case. From Theorem 12.3, it suffices to prove that (i) and (ii) are
satisfied. Lemma 12.1 ensures that (i) is valid for sufficiently large n say for all
(n > N1). Moreover from Lemma 12.2, for

∥∥u − u∗∥∥∞ ≤ δ and n > N1, we have
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∥∥∥T ′
n(u) − T ′

n

(
u∗)∥∥∥∞ ≤ mδ, where m is the Lipschitz constant of Ln. Hence

∥∥∥∥
[
I − T ′

n

(
u∗)]−1 (

T ′
n(u) − T ′

n

(
u∗))∥∥∥∥∞

≤
∥∥∥∥
[
I − T ′

n

(
u∗)]−1

∥∥∥∥∞

∥∥∥T ′
n(u) − T ′

n

(
u∗)∥∥∥∞

≤ mδ

∥∥∥∥
[
I − T ′

n

(
u∗)]−1

∥∥∥∥∞
.

Therefore,

sup
‖u−u∗‖≤δ

∥∥∥∥
[
I − T ′

n

(
u∗)]−1 (

T ′
n(u) − T ′

n

(
u∗))∥∥∥∥∞

≤ q,

with q = mδ

∥∥∥∥
(
I − T ′

n

(
u∗))−1

∥∥∥∥∞
. Here we take δ = δ0 so small that 0 < q < 1.

Now we have

∥∥T u∗ − Tnu
∗∥∥∞ =

∥∥∥(Ku∗ − QdKu∗) + (
f − Qdf

)∥∥∥∞

=
∥∥∥(

I − Qd

)Ku∗ + (
I − Qd

)
f

∥∥∥∞

=
∥∥∥(

I − Qd

)(Ku∗ + f
)∥∥∥∞

=
∥∥∥(

I − Qd

)
u∗

∥∥∥∞ −−−→
n→∞ 0,

i.e. there exists N2 such that for n > N2

α =
∥∥∥∥
[
I − T ′

n

(
u∗)]−1 (

T u∗ − Tnu
∗)∥∥∥∥ ≤ δ0(1 − q).

Consequently, the condition (ii) is also valid. Hence, for n > max{N1, N2}, using
Theorem 12.2, one can conclude that (12.21) has a unique solution in B(u∗, δ0) and
the inequalities (12.22) hold. 	

Using the results obtained in Theorem 12.4 and error estimates (12.3)–(12.10), we
give in the following theorem the error explicit estimates of the collocation and
Nyström methods based on quasi-interpolants Qd .

Theorem 12.5 Let un be a unique solution of the approximate equation (12.21) in
B(u∗, δ0) for a sufficiently large n. Assume that

(i) k ∈ C0,d+1
([a, b] × [a, b]),

(ii) ψ ∈ Cd+1
([a, b] × [a, b]),
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(iii) f ∈ Cd+1([a, b]).
Then

‖u∗ − un‖∞ = O(hd+1).

Moreover, if d is even and if

(i) k ∈ C0,d+2
([a, b] × [a, b]),

(ii) ψ ∈ Cd+2
([a, b] × [a, b]),

(iii) f ∈ Cd+2
([a, b]),

then, in the case of Nyström method it holds

‖u∗ − uN
n ‖∞ = O(hd+2).

Proof It is an immediate consequence of preceding result and estimates (12.3)–
(12.10). 	


12.5.2 Iterated Collocation Solution

Recall that the iterated solution satisfies the following equation:

ûc
n − KQd ûc

n = f. (12.23)

Define rn by

rn =
∥∥∥K (

u∗) − K (
uc

n

) − L
(
u∗ − uc

n

)∥∥∥∞∥∥u∗ − uc
n

∥∥∞
,

where L = K′ (u∗). From Theorem 12.4 and the definition of L, we conclude that

rn −−−→
n→∞ 0.

Moreover, it is possible to see that

rn ≤ ξ

2

∥∥u∗ − uc
n

∥∥∞ ,

where ξ is a positive constant. We also use the following notation

a =
∥∥∥(

I − L
)−1

∥∥∥∞ .
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The error estimate for the iterated solution is given in the following theorem.

Theorem 12.6 Let u∗ be a unique solution of Eq. (12.20). Assume that the assump-
tions (C.1)–(C.4) are satisfied. Then for a sufficiently large n, we have

∥∥u∗ − ûc
n

∥∥∞ ≤ ξ
∥∥u∗ − uc

n

∥∥2
∞ + a

∥∥∥L
(
I − Qd

)Ku∗
∥∥∥∞

+ a

∥∥∥L
(
I − Qd

)
L

(
u∗ − uc

n

)∥∥∥∞

Proof We have

(
I − L

)
(u∗ − ûc

n) = Ku∗ − Kuc
n − L

(
u∗ − uc

n

) + L
(
ûc

n − uc
n

)
= Ku∗ − Kuc

n − L
(
u∗ − uc

n

) + L
(
I − Qd

)Kuc
n

= Ku∗ − Kuc
n − L

(
u∗ − uc

n

)
− L

(
I − Qd

) (Ku∗ − Kuc
n − L

(
u∗ − uc

n

) )
+ L

(
I − Qd

) (Ku∗ − L
(
u∗ − uc

n

) )

=
(
I − L

(
I − Qd

) )(Ku∗ − Kuc
n − L

(
u∗ − uc

n

) )

+ L
(
I − Qd

)Ku∗

− L
(
I − Qd

)
L

(
u∗ − uc

n

)
.

Multiplying by
(
I − L

)−1, we find

u∗ − ûc
n =

(
I − (

I − L
)−1

LQd

)(Ku∗ − Kuc
n − L

(
u∗ − uc

n

) )

+ (
I − L

)−1
L

(
I − Qd

)Ku∗

− (
I − L

)−1
L

(
I − Qd

)
L

(
u∗ − uc

n

)
.

Therefore,

∥∥u∗ − ûc
n

∥∥∞ ≤ ξ̃ rn
∥∥u∗ − uc

n

∥∥∞ + a

∥∥∥L
(
I − Qd

)Ku∗
∥∥∥∞

+ a

∥∥∥L
(
I − Qd

)
L

(
u∗ − uc

n

)∥∥∥∞

Which completes the proof of the theorem. 	

Now, we show a preliminary result before stating the main theorem of this
subsection.
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Lemma 12.3 LetQd be a quasi-interpolant of even degree d defined on the uniform
partition of the interval [a, b] of meshlength h. Assume that f, g, k ∈ C[a, b] and
∂ψ

∂u
∈ Cd+2

([a, b] × [a, b]). Then we have
∥∥∥L

(
I − Qd

)
g

∥∥∥∞ = O(
hd+2).

Proof By definition of L we have:

(
L

(
I − Qd

)
g
)
(s) =

∫ b

a

k(s, t)
∂ψ

∂u

(
t, u∗(t)

) (
I − Qd

)
g(t)dt

=
∫ b

a

q(s, t)
(
I − Qd

)
g(t)dt.

where q(s, t) = k(s, t)
∂ψ

∂u

(
t, u∗(t)

)
.

This error corresponds to the error of the quadrature formula IQd
based on a quasi-

interpolant Qd with a certain weight function q(s, t), when from the Sect. 12.3, if d

is even, the order of convergence hd+2 is obtained. 	

Theorem 12.7 Assume that the assumptions of Theorem 12.6 are satisfied. Then
the iterated solution of the collocation type method based on quasi-interpolant Qd

of even degree d satisfies

∥∥u∗ − ûc
n

∥∥∞ = O(
hd+2).

Proof From Theorem 12.6, we have

∥∥u∗ − ûc
n

∥∥∞ ≤ ξ
∥∥u∗ − uc

n

∥∥2
∞ + a

∥∥∥L
(
I − Qd

)Ku∗
∥∥∥∞

+ a

∥∥∥L
(
I − Qd

)
L

(
u∗ − uc

n

)∥∥∥∞ .

On the one hand, using the error of the approximate solution and the previous
lemma, it holds

∥∥u∗ − uc
n

∥∥2
∞ = O(

h2d+2), (12.24)

∥∥∥L
(
I − Qd

)Ku∗
∥∥∥∞ = O(

hd+2). (12.25)

On the other hand, we have

∥∥∥L
(
I − Qd

)
L

(
u∗ − uc

n

)∥∥∥∞ ≤ ξ

∥∥∥(
I − Qd

)
L

∥∥∥∞
∥∥u∗ − uc

n

∥∥∞ .
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Furthermore, it is easy to see that

∥∥∥(
I − Qd

)
L

∥∥∥∞ = O(
hd+1).

Then
∥∥∥L

(
I − Qd

)
L

(
u∗ − uc

n

)∥∥∥∞ = O(
h2d+2). (12.26)

Using (12.24), (12.25) and (12.26), we deduce that

∥∥u∗ − ûc
n

∥∥∞ = O(
hd+2).

which completes the proof of theorem. 	

We recall that Q2 is superconvergent on the set of evaluation points Xn (from
Theorem 12.1). Therefore the following corollary holds.

Corollary 12.1 Let uc
n be collocation approximate solution obtained by using

the spline quasi-interpolant Q2. Then, we have the following superconvergence
properties

|u∗(xi) − uc
n(xi)| = O(h4), 0 ≤ i ≤ n, i �= 1, n − 1.

|u∗(ti ) − uc
n(ti)| = O(h4), 0 ≤ i ≤ n + 1, i �= 1, 2, n − 1, n.

(12.27)

Proof From the Eq. (12.16) and Theorem 12.1 we obtain

|u∗(ξi) − uc
n(ξi)| = |u∗(ξi) − Q2û

c
n(ξi)|

≤ |u∗(ξi) − ûc
n(ξi)| + |ûc

n(ξi) − Q2û
c
n(ξi)|

= O(h4),

where ξi are either xi or ti given in (12.27), hence the result. 	


12.6 Numerical Results

In this section, we consider three examples of Hammerstein integral equations to
illustrate the theory established in previous sections for collocation-type method,
its iterated solution and Nyström method. As quasi- interpolating operators we use
those given by (12.4) and (12.5) for the quadratic case, and by (12.6) and (12.7)
for the cubic case. Note that the different nonlinear systems were solved using a
Newton-Raphson algorithm.
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For successively doubled values of n, we compute the maximum absolute errors

Ec∞ := ‖u∗ − uc
n‖∞, Êc∞ := ‖u∗ − ûc

n‖∞, EN∞ := ‖u∗ − uN
n ‖∞,

and the maximum absolute error at the superconvergent points given by

ESc = max
i

|u∗(ξi) − uc
n(ξi)|.

where ξi are either xi or ti given in (12.27). Moreover, we present the corresponding
numerical convergence orders NCO, obtained by the logarithm to base 2 of the ratio
between two consecutive errors.

The following table gives the data of the three examples of equations considered.
For all theses examples, we note that [a, b] = [0, 1].

Kernel k Function ψ Second member f Exact solution u∗

Example 1 πx sin(πt)
t

1 + (u(t))2
sin

(π

2
x
)

− 2x ln(24 − 16
√

2) sin
(π

2
x
)

Example 2 x + 2 sin
(πt

4

)
−(

u(t)
)2 4(4 − √

2) + 3(2 + π)x

6π
+ cos

(π

4
x
)

cos
(π

4
x
)

Example 3 xt (u(t))3 exp(−2x) − 1

36

(
1 − 7

exp(6)

)
exp(−2x)

• Case of quadratic quasi-interpolants Q2
The obtained results are reported in Tables 12.1, 12.2 and 12.3, which confirm
the theoretical convergence orders predicted theoretically for each method.
Moreover, we notice that the approximate collocation solution is superconvergent
at xi and ti as stated in Corollary 12.1.

• Case of cubic quasi-interpolants Q3
The obtained results are reported in Tables 12.4, 12.5 and 12.6. In this case
the degree of the quasi-interpolant is odd and the theoretical results obtained
previously are well confirmed.

Table 12.1 Ec∞, ESc, Êc∞, EN∞ and corresponding NCO
Example 1

n Ec∞ NCO ESc NCO Êc∞ NCO EN∞ NCO
8 1.25(−04) – 2.53(−05) – 9.09(−06) – 5.83(−05) –

16 1.57(−05) 2.99 1.62(−06) 3.96 5.84(−07) 3.96 2.23(−06) 4.71

32 1.97(−06) 3.00 1.02(−07) 3.99 3.61(−08) 4.02 8.82(−08) 4.66

64 2.29(−07) 3.10 6.73(−09) 3.92 1.86(−09) 4.28 3.85(−09) 4.52

Theoretical value – 03 – 04 – 04 – 04
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Table 12.2 Ec∞, ESc, Êc∞, EN∞ and corresponding NCO
Example 2

n Ec∞ NCO ESc NCO Êc∞ NCO EN∞ NCO
8 1.08(−05) – 8.10(−06) – 6.71(−07) – 6.17(−06) –

16 1.37(−06) 2.97 1.06(−06) 2.94 4.36(−08) 3.95 4.08(−07) 3.92

32 1.74(−07) 2.98 1.35(−07) 2.97 2.65(−09) 4.04 2.61(−08) 3.97

64 2.01(−08) 3.10 1.69(−08) 3.00 1.62(−10) 4.03 1.64(−09) 3.98

Theoretical value − 03 − 04 − 04 − 04

Table 12.3 Ec∞, ESc, Êc∞, EN∞ and corresponding NCO
Example 3

n Ec∞ NCO ESc NCO Êc∞ NCO EN∞ NCO
8 2.18(−04) – 5.63(−05) – 1.83(−06) – 5.88(−05) –

16 2.96(−05) 2.88 4.49(−06) 3.65 2.33(−07) 2.98 5.12(−06) 3.52

32 3.88(−06) 2.93 4.83(−07) 3.22 2.16(−08) 3.43 3.77(−07) 3.76

64 4.63(−07) 3.07 5.68(−08) 3.09 1.15(−09) 4.23 2.56(−08) 3.88

Theoretical value − 03 − 04 − 04 − 04

Table 12.4 Ec∞, Êc∞, EN∞ and corresponding NCO
Example 1

n Ec∞ NCO Êc∞ NCO EN∞ NCO
8 7.07(−05) – 1.15(−05) – 6.40(−04) –

16 4.66(−06) 3.92 8.43(−07) 3.77 3.76(−05) 4.09

32 2.93(−07) 3.99 5.49(−08) 3.94 1.48(−06 4.66

64 1.85(−08) 3.98 3.60(−09) 3.93 5.58(−08) 4.73

Theoretical value − 04 − 04 − 04

Table 12.5 Ec∞, Êc∞, EN∞ and corresponding NCO
Example 2

n Ec∞ NCO Êc∞ NCO EN∞ NCO
8 4.38(−06) – 1.18(−06) – 2.91(−05) –

16 2.93(−07) 3.90 1.13(−07) 3.38 2.59(−06) 3.49

32 1.91(−08) 3.94 8.29(−09) 3.77 1.80(−07) 3.84

64 1.25(−09) 3.94 5.77(−10) 3.84 1.17(−08) 3.94

Theoretical value − 04 − 04 − 04

12.7 Conclusions

In this paper we have proposed the Nyström and collocation type methods based
on the quasi-interpolants Qd , and the iterated solution in order to numerically solve
the Hammerstein equation, and we also have studied their order of convergence.
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Table 12.6 Ec∞, Êc∞, EN∞ and corresponding NCO
Example 3

n Ec∞ NCO Êc∞ NCO EN∞ NCO
8 1.19(−04) – 5.98(−06) – 2.18(−05) –

16 8.68(−06) 3.76 5.41(−07) 3.46 1.55(−05) 0.49

32 5.81(−07) 3.90 3.77(−08) 3.84 1.85(−06) 3.07

64 3.78(−08) 3.94 2.52(−09) 3.90 1.54(−07) 3.58

Theoretical value − 04 − 04 − 04

Finally, we have presented some numerical examples, illustrating the approximation
properties of the proposed methods.
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