
Chapter 1
Mapped Polynomials and Discontinuous
Kernels for Runge and Gibbs Phenomena

Stefano De Marchi

Abstract In this paper, we present recent solutions to the problem of approximating
functions by polynomials for reducing in a substantial manner two well-known
phenomena: Runge and Gibbs. The main idea is to avoid resampling the function
or data and relies on the mapped polynomials or “fake” nodes approach. This
technique turns out to be effective for stability by reducing the Runge effect and
also in the presence of discontinuities by almost cancelling the Gibbs phenomenon.
The technique is very general and can be applied to any approximant of the
underlying function to be reconstructed: polynomials, rational functions or any
other basis. A “natural” application is then quadrature, that we started recently to
investigate and we propose here some results. In the case of jumps or discontinuities,
where the Gibbs phenomenon appears, we propose a different approach inspired by
approximating functions by kernels, in particular Radial Basis Functions (RBF).
We use the so called Variably Scaled Discontinuous Kernels (VSDK) as an
extension of the Variably Scaled Kernels (VSK) firstly introduced in Bozzini et
al. (IMA J Numer Anal 35:199–219, 2015). VSDK show to be a very flexible tool
suitable to substantially reducing the Gibbs phenomenon in reconstructing functions
with jumps. As an interesting application we apply VSDK in Magnetic Particle
Imaging which is a recent non-invasive tomographic technique that detects super-
paramagnetic nanoparticle tracers and finds applications in diagnostic imaging and
material science. In fact, the image generated by the MPI scanners are usually
discontinuous and sampled at scattered data points, making the reconstruction
problem affected by the Gibbs phenomenon. We show that VSDK are well suited in
MPI image reconstruction also for identifying image discontinuities.
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1.1 Introduction

Univariate approximation of functions and data is a well studied topic since the
antiquity (Babylon and Greece), with many different developments by the Arabs
and Persians in pre and late medieval period. The scientific revolution in astronomy,
mainly due to Copernicus, Kepler and Galileo was the starting point for the
investigations done later on by Newton, who gave strong impetus to the further
advancement of mathematics, including what is now called “classical” interpolation
theory (interested people on these historical aspects may read the nice survey by E.
Meijering [50]).

Interpolation is essentially a way of estimating a given function f : [a, b] ⊂
R → R known only at a finite set Xn = {xi, i = 0, . . . , n} of n+1 (distinct) points,
called interpolation points The corresponding set of values is denoted by Yn =
{yi = f (xi), i = 0, . . . , n}. Then, we are looking for a polynomial p ∈ Pn, with
Pn the linear space of polynomials of degree less and equal than n. The space Pn has
finite dimension n + 1 and spanned by the monomial basis M = {1, x, x2, . . . , xn}.
Therefore, every p ∈ Pn is written as

p(x) =
n∑

j=0

ajx
j . (1.1)

The coefficients ai are determined by solving the linear system p(xi) = yi, i =
0, . . . , n. Introducing the Vandermonde matrix Vij = (x

j

i ), the coefficient vector
a = (a0, . . . , an)

t and the vector y = (y0, . . . , yn)
t , the linear system can

compactly be written as

V a = y . (1.2)

As well-known, the solution of the system is guaranteed if the points are distinct,
making V invertible [21, §2]. Moreover, the interpolating polynomial (1.1) can be
expressed at any point x ∈ [a, b] by the discrete inner product p = 〈a, x〉.

Instead of the monomial basis, we can use the cardinal basis of elementary
Lagrange polynomials. That is L = {�i, i = 0, . . . , n} where li(x) =∏

j=0,j �=i

x − xj

xi − xj

or, alternatively by the ratio

�i(x) = det Vi(x)

det V
(1.3)

where, Vi(x) is the Vandermonde matrix in which we have substituted the i-th
column with the vector x = (1, x, x2, . . . , xn)T . The formula (1.3) is essentially
the Cramer’s rule applied to the system

V � = x



1 Mapped Polynomials and Discontinuous Kernels for Runge and Gibbs Phenomena 5

showing immediately the main property of the elementary Lagrange polynomials:
they form a set of cardinal polynomial functions, that is �i(xj ) = δij . Using
the Lagrange basis the interpolant becomes p = 〈l, y〉. Therefore, by unicity of
interpolation we get

〈a, x〉 = 〈y, �〉 .

Hence, in the Lagrange basis � the vector of coefficients a is at once y, so that in
(1.2) V is substituted by the identity matrix I of order n + 1.

There is another interesting formula that we can used to express the interpolant
p. As pointed out in [20, §3 Prob. 14], the interpolant at every point x can be written
in determinantal form as follows

p(x) = C · det

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 x · · · xn

−− − − − −
y0

y1 V
...

yn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1.4)

This expresses the interpolant as the determinant of an (n + 2) × (n + 2) matrix,
obtained by bordering the Vandermonde matrix with two vectors y, xT and the
scalar 0. The constant C appearing is (1.4) is a normalizing factor for expressing the
interpolant in Lagrange form, that is C = −1/ det(V ).

This formula can be specialized for any set of linear independent functions, say
{g0, . . . , gn} (cf. [20, §3, Prob. 15]) and in particular for the Lagrange basis L

obtaining

p(x) = − det

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 �0(x) �1(x) · · · �n(x)

−− − − − −
y0

y1 I
...

yn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1.5)

with I the identity matrix of order n + 1.
Historically, but also nowadays in different frameworks and applications, the

simplest way to take distinct samples xi , is to consider equally spaced points (assum-
ing for simplicity x0 = a and xn = b). Two well-known phenomena are related to
this choice of the interpolation points. The first one is the Runge phenomenon: when
using polynomial interpolation with polynomials of high degree, the polynomial
shows high oscillations at the edges of the interval. It was discovered by Carl
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Runge when exploring the behavior of errors when using polynomial interpolation
to approximate also analytic functions (cf. [56]). It is related to the stability of the
interpolation process via the Lebesgue constant

�n := max
x∈[a,b]

n∑

i=0

|li(x)| (1.6)

by means of the inequality

‖f − p‖∞ ≤ (1 + �n)‖f − p∗‖∞ (1.7)

where p∗ represents the polynomial of best uniform approximation, that is p∗ :=
infp∈Pn

‖f − p‖∞, which uniquely exists. About the growth of the Lebesgue
constant and its relevant properties we invite the readers to refer to the great survey
by L. Brutman [19]. Here we simply recall the fundamental fact that �n, which
depends only on the choice of the node set X, grows exponentially (with n) when
the interpolation points are equally spaced. Therefore it will be fundamental to look
for a different choice than the equal distribution. As well-known, this is what do the
Chebyshev points in [a, b] or the zeros of orthogonal polynomials with respect to
the interval [a, b] and a given weight function (cf. e.g. [17, 19, 21]).

The second phenomenon and related to the Runge phenomenon is the Gibbs
phenomenon, which tells us the peculiar manner in which the Fourier series
of a piecewise continuously differentiable periodic function behaves at a jump
discontinuity. This effect was originally discovered by Henry Wilbraham (1848) and
successively rediscovered by J. Willard Gibbs (1899) (see [42]). The phenomenon
observed that the n-th partial sum of the Fourier series has large oscillations near
the jump, which might increase the maximum of the partial sum above that of the
function itself. The overshoot does not die out as n increases, but approaches a finite
limit. The Gibbs phenomenon is the cause of unpleasant artifacts in signal and image
processing in presence of discontinuities.

The Gibbs phenomenon is also a well-known issue in higher dimensions and for
other basis systems like wavelets or splines (cf. e.g. [44] for a general overview)
and also in barycentric rational approximation [51]. Further, it appears also in
the context of Radial Basis Function (RBF) interpolation [36] and in subdivision
schemes (cf. [2, 3]). To soften the effects of this artifact, additional smoothing filters
are usually applied to the interpolant. For radial basis function methods, one can for
instance use linear RBFs in regions around discontinuities [25, 45]. Furthermore,
post-processing techniques, such as Gegenbauer reconstruction procedure [40] or
digital total variation [57], are available. This technique can be also applied in the
non-polynomial setting by means of discontinuous kernels.

This survey paper consists of 6 main sections and various subsections as follows.
In Sect. 1.2 we introduce our main idea for mitigating the Runge and Gibbs effects
based on the mapped-basis approach or its equivalent form that we have termed
“fake-nodes”. In the successive Sect. 1.3 we present the algorithms for choosing a
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suitable map in the two instances studied in the paper. In Sect. 1.4 we show that the
technique can be applied also using rational approximation instead of polynomial,
while in Sect. 1.5 we discuss the application to quadrature. We continue then with
Sect. 1.6 in which, for treating the Gibbs phenomenon we use a non-polynomial
approach based on discontinuous kernels, in particular the so-called VSDK. Finally
in Sect. 1.7 we discuss the application of these VSDK to the Magnetic Particle
Imaging, a new quantitative imaging method for medical applications. We conclude
with Sect. 1.8 by summarizing the main ideas and highlighting some further
developments.

1.2 Mitigating the Runge and Gibbs Phenomena

Let [a, b] ⊂ R be an interval, X the set of distinct nodes (also called data sites) and
f : � −→ R a given function sampled at the nodes with Fn = {fi = f (xi)}i=0,...,n.

We now introduce a method that changes the interpolation problem (1.2) without
resampling the function f . The idea rely on the so-called mapped basis approach
where the map is used to mitigate the oscillations in the Runge and Gibbs
phenomena. The idea of mapped polynomials is not new. Indeed, such kinds of
methods have been used in the context of spectral schemes for PDEs.

For examples of well-known maps refer to e.g. [1, 41, 49]. However, for our
purposes, that are devoted especially to applications when resampling cannot be
performed, we consider a generic map S : [a, b] −→ R. We investigate the
conditions which this map S should satisfy in Sect. 1.2.1.

Let x̂ ∈ Ŝ := S([a, b]) we can compute the polynomial Pg : Ŝ −→
R interpolating the function values Fn at the “fake” nodes SX = {S(xi) =
x̂i}i=0,...,n ⊂ Ŝ defined by

Pg(x̂) =
n∑

i=0

ci x̂i ,

for some smooth function g : Ŝ −→ R such that

g|SX = f|Xn.

Hence, for x ∈ [a, b] we are interested in studying the function

RS
f (x) := Pg(S(x)) =

n∑

i=0

ci S(x)i . (1.8)

The function RS
f in (1.8) can be considered as an interpolating function at the

original set of nodes Xn and data values Fn, which is a linear combination of the
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basis functions Sn := {S(x)i, i = 0, . . . , n}. As far as we know, a similar approach
has been mentioned in [5], without being later worked out.

The analysis of this interpolation process can be performed in the following
equivalent ways.

• The mapped bases approach on [a, b]: interpolate f on the set Xn via RS
f in the

function space Sn.
• The “fake” nodes approach on Ŝ: we interpolate g on the set SX via Pg in the

polynomial space �n.

1.2.1 The Mapped Bases Approach

The first question to answer is: how arbitrary is the choice of the map S?

Definition 1.1 We term S admissible if the resulting interpolation process admits
a unique solution, that is the Vandermonde-like matrix V S := V (S0, . . . , Sn), is
invertible.

Since the new point set in the mapped space is SX, then

det(V S) =
∏

0≤i<j≤n

(Sj − Si) �= 0.

A consequence of this observation is the following proposition.

Proposition 1.1 The map S is admissible if and only if for any 0 ≤ i, j ≤ n, i �= j

we have Si �= Sj . In other words, S is injective in [a, b].
In fact, det(V S) �= 0 if and only if Sj − Si �= 0.

Remark 1.1 We point out that we can easily write

det(V S) = σ(S,X)det(V ),

where V is the classical Vandermonde matrix and

σ(S,X) :=
∏

0≤i<j≤n

Sj − Si

xj − xi

.

This fact presents some similarities with the so-called generalized Vandermonde
determinants that can be factored as the classical Vandermonde determinant and a
Schur function, as outlined for instance in the paper [22].
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We can associate to the interpolant RS
f also its Lagrange form

RS
f (x) =

n∑

i=0

fi�
S
i (x),

with, in analogy with (1.3),

�S
i (x) := det(V S

i (x))

det(V S)
=

∏

0≤j≤n
j �=i

S(x) − Sj

Si − Sj

, (1.9)

where V S
i (x) = Vi(S(x)).

Consequently, we can consider the S-Lebesgue constant �S
n associated to the

mapped Lagrange basis LS = {�S
0 , . . . , �S

n} and to the interpolation operator LS
n :

ϒ −→ Sn with (ϒ, ‖·‖�) be a normed function space, which contains only real-
valued functions on � = [a, b]. Then, �S

n is the operator norm of LS
n with respect

to ‖·‖�, that is

�S
n = sup

v∈ϒ
v �=0

‖Ls
n(v)‖�

‖v‖�

,

and hence we can provide the sup-norm error estimator as follows:

‖f − RS
f ‖�≤ (1 + �s

n(�))ES,	
n (f ),

where E
S,	
n (f ) is the best polynomial approximation error in the sup-norm [53,

Theorem I.1, p. 1].
We have just seen that �i and �S

i are defined as in (1.3) and (1.9), respectively.
The next Proposition proposes a rough upper bound for the S-Lebesgue constant,
useful for understanding the asymptotic behaviour of the error.

Proposition 1.2 For all x ∈ [a.b], x �= xj , we have

�S
i (x) = βi(x)

αi︸ ︷︷ ︸
γi (x)

�i(x), (1.10)

with αi :=
∏

0≤j≤n
j �=i

Si − Sj

xi − xj

, βi(x) :=
∏

0≤j≤n
j �=i

S(x) − Sj

x − xj

.
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Proof By construction �S
i (xj ) = �i(xj ) = δi,j . Then, let x �= xj , from (1.3) and

(1.9) we have that

�S
i (x)

�i(x)
= det(V S

i (x))det(V )

det(Vi(x))det(V s)
= det(V S

i (x))

σ (S,X)det(Vi(x))
:= γi(x).

We can also write

�S
i (x) =

∏

0≤j≤n
j �=i

S(x) − Sj

Si − Sj

=
∏

0≤j≤n
j �=i

x − xj

xi − xj

· xi − xj

x − xj

· S(x) − Sj

Si − Sj

,

=
∏

0≤j≤n
j �=i

x − xj

xi − xj

∏

0≤j≤n
j �=i

S(x) − Sj

x − xj

∏

0≤j≤n
j �=i

xi − xj

Si − Sj

.

By defining

αi :=
∏

0≤j≤n
j �=i

Si − Sj

xi − xj

, βi(x) :=
∏

0≤j≤n
j �=i

S(x) − Sj

x − xj

,

we get formula (1.10) as claimed. �
As a consequence, we can bound �S

n from above by �n unless a constant C(S, n)

depending on the map S and n.

Theorem 1.1 Letting

L = max
0≤i≤n

max
x∈[a,b],i �=j

∣∣∣∣∣
S(x) − Sj

x − xj

∣∣∣∣∣, D = min
0≤i≤n

min
j �=i

∣∣∣∣
Si − Sj

xi − xj

∣∣∣∣,

then

�S
n ≤ C(S, n)�n, (1.11)

where C = (L/D)n with �n the classical Lebesgue constant in (1.6).

Proof Using Proposition 1.2

|�S
i (x)| =

∣∣∣∣
βi(x)

αi

∣∣∣∣ |�i(x)|.
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An upper bound for |βi | is

|βi(x)| =
∏

0≤j≤n
j �=i

∣∣∣∣
S(x) − Sj

x − xj

∣∣∣∣ ≤
∏

0≤j≤n
j �=i

Li,

where

Li = max
x∈[a,b],i �=j

∣∣∣∣∣
S(x) − Sj

x − xj

∣∣∣∣∣.

Thus,

|βi(x)| ≤ Ln
i .

A lower bound for |αi | is

|αi | =
∏

0≤j≤n
j �=i

∣∣∣∣
Si − Sj

xi − xj

∣∣∣∣ ≥
∏

0≤j≤n
j �=i

Di = Dn
i ,

where

Di := min
j �=i

∣∣∣∣∣
Si − Sj

xi − xj

∣∣∣∣∣.

We then have

|�s
i (x)| ≤

(
Li

Di

)n

|�i(x)|.

Therefore, letting L := maxi �=j Li , D := mini Di and considering the sum of the
Lagrange polynomials, we obtain

�s
n ≤

(
L

D

)n

�n.

We conclude by setting C(S, n) = (L/D)n. �
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1.2.2 The “Fake” Nodes Approach

The construction of the interpolating function RS
f is equivalent to building a

polynomial interpolant at the “fake” nodes, as defined in (1.8). Therefore, in what
follows we concisely analyze the parallelism with the polynomial interpolation
problem in Ŝ.

If �i is the i-th Lagrange polynomial related to the set SX , then for x̂ ∈ Ŝ, we
have

�i(x̂) =
∏

0≤j≤n
j �=i

x̂ − S(xj )

S(xi) − S(xj )
,

and the Lebesgue constant is given by

�n(S(�)) = max
x̂∈S(�)

n∑

i=0

|�i(x̂)|. (1.12)

For x ∈ �, we observe that

�i(x̂) = �i(S(x)) =
∏

0≤j≤n
j �=i

S(x) − S(xj )

S(xi) − S(xj )
= �s

i (x).

As a consequence, we obtain

�S
n(�) = �n(S(�)),

and

‖f − RS
f ‖�= ‖g − Pn,g‖S(�),

which in particular implies that

‖f − RS
f ‖�≤ (1 + �n(S(�)))E	

n(g).

Since we can suppose without loss of generality that g is a regular function, for
an appropriate choice of the map S, and hence of the nodes SX, we might improve
the results with respect to classical polynomial approximation in [a, b]. The main
difficulties are in finding a good map. In the next section we thus propose two
receipts for computing suitable maps that, as numerically shown later, enable us
to naturally mitigate both Runge and Gibbs phenomena.
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1.3 Choosing the Map S: Two Algorithms

In this Section, we describe how, given an ordered set of interpolation nodes Xn =
{xi ∈ [a, b] | x0 = a, xn = b, xi < xi+1}, we can effectively construct suitable
maps S. We present two different ways of constructing the map S and in doing so
we deal with the Runge and Gibbs phenomenon, respectively.

Treating the Runge Phenomenon In order to prevent the appearance of the Runge
phenomenon, we construct a map S such that the resulting set of “fake” nodes SX

guarantees a stable interpolation process. The natural way is mapping Xn to the set
of ordered Chebyshev-Lobatto (CL) nodes Cn = {c0, . . . , cn} on [a, b].

Indeed, as well-known the Lebesgue constant of the CL nodes grows logarithmi-
cally with respect to n [19]. The map S on [a, b] that does this transformation, for
any x ∈ [a, b], is the piecewise interpolant as obtained by the following algorithm
that we term S-Runge.

Algorithm 1
Input: Xn.

1. Define the set of CL nodes Cn.
2. For x ∈ [xi , xi+1], i = 0, . . . , n − 1, set β1,i = ci+1−ci

xi+1−xi
, β2,i = ci so that S(x) = β1,i (x −

xi) + β2,i .

Outputs: the vectors β1,β2 of the coefficients that define S.

Since the CL nodes are distinct, the map is admissible by construction. For
instance, if Xn = {xk = a + k · (b − a)/n, k = 0, . . . , n} is the ordered set of
n + 1 equispaced nodes in [a, b], it can be analytically mapped to Cn by using the
map

S(x) = a − b

2
cos

(
π

x − a

b − a

)
+ a + b

2
. (1.13)

This algorithm, is robust and does not require any additional hypothesis on Xn

and it could work for scattered data or on random, nearly equispaced or well-
spaced interpolation nodes (for the definition of well-spaced we refer to [15]). These
algorithms are also quoted in Wikipedia at [61].

Treating the Gibbs Phenomenon Let us suppose that the underlying function f

presents jump discontinuities, whose positions and magnitudes are encoded in the
set

Dm := {(ξi, di)|ξi ∈ (a, b), ξi < ξi+1, i = 0, . . . ,m, and di := |f (ξ+
i )−f (ξ−

i )|}.
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We assume to know the discontinuities and the related jumps. Such assumption
is not restrictive. Indeed for the one dimensional case, but also in higher dimensions,
algorithms for detecting the discontinuity points are available, see for instance the
references [4, 54].

Near a discontinuity, the interpolant is forced to strongly vary making the
Gibbs phenomenon more evident. The usual approach is to put more points nearby
the jumps or use a so-called filter in order to get more accurate solution than
rough Fourier expansions (cf e.g. [25]) or acceleration techniques of the Fourier
expansions based on the ε-algorithm (see e.g. [6]).

Our strategy is very simple: we sufficiently increase the gap between the node
right before and the one right after the discontinuity, so allowing the interpolant to
become smoother. To accomplish this, we introduce a shifting parameter k > 0.

The next algorithm, that we call S-Gibbs implements this idea.

Algorithm 2
Inputs: Dm and k.

1. Letting Ai =
i∑

j=0

kdj , i = 0, . . . , m.

2. Define S as

S(x) =
{

x, for x ∈ [a, ξ0[,
x + Ai, for x ∈ [ξi , ξi+1[, 0 ≤ i < m, or x ∈ [ξm, b].

Outputs: the values Ai .

As experimentally observed the choice of k is not critical. It suffices that in the
mapped space the so-constructed function g has no steep gradients and this can be
obtained by taking k � 1. Since the resulting “fake” nodes SX are distinct, the so
constructed map is admissible.

1.3.1 Numerical Tests

We show via the algorithms described in the previous Sect. 1.3 that we are able to
substantially reduce the oscillating effects due to Runge and Gibbs phenomena. Our
“fake” nodes approach is compared with the resampling at Chebyshev nodes. We
note, that in many applications we unfortunately dispose of the data at equispaced
samples. It is the reason why our approach becomes relevant for the underlying idea:
mapping without resampling.

We consider the interval [−5, 5] and both equispaced and randomly distributed
interpolation nodes. Moreover, we evaluate the interpolants on a set of equispaced



1 Mapped Polynomials and Discontinuous Kernels for Runge and Gibbs Phenomena 15

points � = {x̄i , i = 0, . . . , 330} and compute the Relative Maximum Absolute
Error (RMAE)

RMAE = max
i=0,...,m

|Rs
n,f (x̄i) − f (x̄i)|

|f (x̄i)| . (1.14)

The experiments have been carried out in PYTHON 3.6 using Numpy 1.15; see [30].

1.3.1.1 Application to Runge Phenomenon

For this test we consider the function f1(x) = 1
e−3x+1

sampled at equispaced
interpolation nodes En. We then compare f1 evaluated at � with respect to

i. the interpolating polynomial at equispaced points En, i.e. the original data
set and function values;

ii. the interpolating polynomial at CL nodes Cn and resampled function
values f1(Cn), i.e. we resample the function;

iii. the approximant built upon a polynomial interpolant at the fake nodes
S(En) corresponding to the CL, Cn obtained by the map (1.13), and
function values f1(En).

In Fig. 1.1, we show different reconstructions of f1 for a fixed number of nodes.
In Fig. 1.2 we show the RMAE for the function f1 varying the number of nodes
while in Fig. 1.3 we plot the Lebesgue functions related to the proposed methods.
As pointed out in the theoretical analysis, the behavior of the “fake” nodes in terms
of Lebesgue constant is analogous to that of the classical polynomial interpolation
at CL points.

Fig. 1.1 Interpolation with 13 points of the function f1 on [−5, 5] using equispaced (left), CL
(center) and “fake” nodes (right). The nodes are represented by stars, the original and reconstructed
functions are plotted with continuous red and dotted blue lines, respectively
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Fig. 1.2 The RMAE for the function f1 varying the number of nodes. The results with equispaced,
CL and fake nodes are represented by black circles, blue stars and red dots, respectively

Fig. 1.3 Lebesgue functions of equispaced (left), CL (center) and fake CL (right) nodes

For more experiments and details the reader can refer to [27].

1.3.1.2 Applications to Gibbs Phenomenon

For the test, we consider the function with jump discontinuities at the origin

f2(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

−x2

40
+ 1, x < 0,

x + 4

x + 6
, x ≥ 0,

As done in the previous Sect. 1.3.1.1, we compare the interpolant in the three
different situations indicated in the gray box.

In Fig. 1.4 we display the results obtained using 20 interpolation points. We
observe that the Gibbs phenomenon affects the reconstruction obtained via resam-
pling on CL nodes, while it is well mitigated if using the fake nodes. In Fig. 1.5,
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Fig. 1.4 Interpolation with 20 points of the function f2 on [−5, 5], using equispaced (left), CL
nodes (center) and the discontinuous map (right). The nodes are represented by stars, the original
and reconstructed functions are plotted with continuous red and dotted blue lines, respectively

Fig. 1.5 The RMAE for the function f2 varying the number of nodes. The results with equispaced,
CL and fake nodes are represented by black circles, blue stars and red dots, respectively

we provide the RMAE behavior of these methods. The results are quite impressive,
meaning that we are able to effectively reduce the Gibbs phenomenon by the S-
Gibbs map of Algorithm 2.

Remarks In the presence of discontinuities, it is interesting noticing the
behaviour of the elementary Lagrange functions under the mapping approach.
In Fig. 1.6 we show this effect for the cubic case when there is no jump
and jump, with and without scaling. What is interesting to see is that the
cardinal functions become discontinuous in the presence of a discontinuities
or jumps. This is the idea that we will develop in Sect. 1.6, about the use of
discontinuous kernels when treating discontinuous functions.
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Fig. 1.6 Left-right, up-down: the original cardinals on 4 nodes, the cardinals around ξ = 0, A = 1
the cardinals around ξ = 0.2, A = 1,the cardinals around ξ = 0.2, A = 5

1.4 Application to Rational Approximation

We can extend the mapped bases or “fake” nodes approach to the barycentric ratio-
nal interpolation. In particular we concentrate to the family of Floater-Hormann
(FH) rational approximants [35] combined with AAA-algorithm. We consider the
family of FH interpolants because they have shown good approximation properties
for smooth functions, in particular using equidistant nodes (cf. [14]). The idea comes
from the fact that our previous construction is a general purpose machinery, a kind
of “black-box”. Indeed, given a basis B for the approximation space, we can apply
the S-map approach getting a new basis, say B̃ = S ◦ B. Considering that we are
not resampling the values of the reconstructed function remains unchanged.

In [51], the AAA-algorithm has been discussed. This is a greedy algorithm to
compute a barycentric rational approximant that is named by the authors Adaptive
Antoulas–Anderson algorithm, reminding the names of the authors. This algorithm
leads to impressively well-conditioned bases, which can be used in different fields,
such as in computing conformal maps, or in rational minimax approximations (see
e.g. [10]).

Unfortunately, both FH rational interpolants and those obtained by the AAA-
algorithm, suffer of the Gibbs phenomenon when the underlying function presents
jump discontinuities. For this reason we try to apply the S-Gibbs algorithm to
mitigate or even better to reduce, this unpleasant effect.



1 Mapped Polynomials and Discontinuous Kernels for Runge and Gibbs Phenomena 19

We start by presenting a short overview of barycentric polynomial approximation
and the FH family of rational approximants. Then we recall the main ideas about
the AAA-algorithm and present the application of the S-Gibbs to both.

The numerical tests below will show an accurate interpolation of discontinuous
functions.

1.4.1 Barycentric Polynomial Interpolation

As before let Xn := {xi : i = 0, . . . , n} the set of n + 1 distinct nodes in I =
[a, b] ⊂ R, increasingly ordered and let f : I −→ R be known at the sample
points. Again we set Fn := {fi = f (xi) : i = 0, . . . , n}.

It is well-known (see e.g. [7–9]) that it is possible to write the unique interpolat-
ing polynomial Pn;f of degree at most n of f at Xn for any x ∈ I in the second
barycentric form

Pn;f (x) =

n∑

i=0

λi

x − xi

fi

n∑

i=0

λi

x − xi

, (1.15)

where λi =
∏

j �=i

1

xi − xj

are called weights and this formula is one of the most stable

way of evaluating Pn;f (see [43]). If the weights λi are changed to other nonzero
weights, say wi , then the corresponding barycentric rational function

Rn;f (x) =

n∑

i=0

wi

x − xi

fi

n∑

i=0

wi

x − xi

(1.16)

still satisfies the interpolation conditions Rn;f (xi) = fi, i = 0, . . . , n.

1.4.2 Floater-Hormann Rational Interpolation

Let n ∈ N, d ∈ {0, . . . , n}. Let pi , i = 0, . . . , n − d denote the unique polynomial
interpolant of degree at most d interpolating the d + 1 points (xk, fk), k =
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i, . . . , i+d. The Floater-Hormann rational interpolant is

Rn,d;f (x) =

n−d∑

i=0

λi(x)pi(x)

n−d∑

i=0

λi(x)

, where λi(x) = (−1)i

(x − xi) · · · (x − xi+d)
,

which interpolates f at the set of nodes Xn. It has been proved in [35] that Rn,d;f
has no real poles and that it reduces to the unique interpolating polynomial of degree
at most n when d = n.

One can derive the barycentric form of this family of interpolants as well. Indeed,
with considering the sets Ji = {k ∈ {0, 1, . . . , n − d} : i − d ≤ k ≤ i}, one has

Rn,d;f (x) =

n∑

i=0

wi

x − xi

fi

n∑

i=0

wi

x − xi

, where wi = (−1)i−d
∑

k∈Ji

j+d∏

j=k
j �=i

1

|xi − xj | .

1.4.3 The AAA Algorithm

Let us consider a set of points XN with a large value of N (which represents the
discretization of our domain) and a function f : I −→ R. The AAA-algorithm
(cf. [51]) is a greedy technique that at the step m ≥ 0 considers the set X(m) =
XN \ {x0, . . . , xm} and constructs the interpolant

Rm;f (x) =

m∑

i=0

wi

x − xi

fi

m∑

j=0

wj

x − xj

= n(x)

d(x)
,

by solving the discrete least squares problem for the weight vector w =
(w0, . . . , wm)

min ‖f d − nX(m)‖ ‖w‖2 = 1,

where ‖·X(m)‖ is the discrete 2-norm over X(m). The next data site is xm+1 ∈ X(m)

that makes the residual |f (x) − n(x)/d(x)| maximum with respect to x ∈ X(m).
This choice confirms the greedy nature of the process.
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1.4.4 Mapped Bases in Barycentric Rational Interpolation

Using the ideas of mapped based approach in [27], we apply it to the Floater-
Hormann interpolants and to its approximants produced via the AAA algorithm.

First, since the interpolant Rn;f defined in (1.16) can be written using the cardinal
basis, that is Rn;f (x) = ∑n

j=0 fj bj (x), where

bj (x) =
wj

x − xj

∑n
i=0

wi

x − xi

is the j -th basis function, in the same spirit, we can write RS
n;f in the mapped

cardinal basis form RS
n;f (x) = ∑n

i=0 fib
S
i (x), where bS

j (x) =
wj

S(x)−S(xj )
∑n

i=0
wi

S(x)−S(xi)

is

the j -th mapped basis function.
Using the S mapping approach, a more stable interpolant may arise. Indeed, the

following result provides an upper bound for the S-Lebesgue constant that shows
this improved stability.

Theorem 1.2 Let �n(Xn) = max
x∈I

n∑

j=0

|bj (x)| and �S
n(Xn) := max

x∈I

n∑

j=0

|bS
j (x)| be

the classical and the S-Lebesgue constants, respectively. We have

�S
n(Xn) ≤ C�n(Xn),

where C = maxk Mk

mink mk

with

Mk = max
x∈I

n∏

l=0
l �=k

∣∣∣∣
S(x) − S(xl)

x − xl

∣∣∣∣ , mk = min
x∈I

n∏

l=0
l �=k

∣∣∣∣
S(x) − S(xl)

x − xl

∣∣∣∣ .

Proof As done in the polynomial case, we should bound each basis function bS
j in

terms of bj for all x ∈ I . For details see [10]. �
Equivalently to the above mapped basis instance, we may construct the inter-

polant RS
n;f via the “fake” nodes approach just following the same ideas developed

in Sect. 1.4.
Let R̃n;g be the barycentric rational interpolant as in (1.16) that interpolates, at

the set of “fake “nodes S(Xn), where the function g : S(I) −→ R interpolates the
values Fn

g|S(Xn)
= f|Xn

.
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Observe that RS
n;f (x) = R̃n;g(S(x)) for every x ∈ I . Hence, we may also build

RS
n;f ] upon a standard barycentric interpolation process, thereby providing a more

intuitive interpretation of the method.
As we already observed, the choice of the mapping S is crucial for the accuracy

interpolation process. Here, we confine our attention to the case in which f presents
jump discontinuities and by using the S-Gibbs Algorithm (SGA), presented above,
we construct an effective mapping S.

1.4.5 A Numerical Example

In I = [−5, 5] we consider the discontinuous functions

f1(x) =

⎧
⎪⎪⎨

⎪⎪⎩

e
1

x.2+1 , −5 ≤ x < −3
sin(3x), −3 ≤ x < 2

− x3

30 + 2, 2 ≤ x ≤ 5.

f2(x) =

⎧
⎪⎪⎨

⎪⎪⎩

cos(− sin(x/2)), −5 ≤ x < −2.5
tan(x/2), −2.5 ≤ x < 2

log(e− 1
x−5.1 ), 2 ≤ x ≤ 5.

We test the “fake” nodes approach with the S-Gibbs Algorithm in the framework of
FH interpolants and the AAA algorithm for approximation. We fix k = 10 in the S-
Gibbs. As observed in [27], also in this setting the choice of the shifting parameter
is non-critical as long as it is taken “sufficiently large”. We evaluate the constructed
interpolants on a set of 5000 equispaced evaluation points � = {x̄i = −5 + i

1000 :
i = 0, . . . , 5000} and compute the Relative Maximum Absolute Error RMAE as
defined in (1.14, both for Rn;f and RS

n;f .

1.4.5.1 The FH Interpolants

Here, we take various sets of equispaced nodes Xn = {−5 + 5i
n

: i = 0, . . . , n},
varying the size of n. The results of the RMSE interpolation errors are displayed
in Figs. 1.7 and 1.8, by doubling the number of the nodes for n = 40 up to 2560.
We simply observe that the proposed reconstruction via the “fake” nodes approach
outperforms the standard technique.

1.4.5.2 The AAA Algorithm

As the starting set for the AAA algorithm, we consider 10,000 nodes randomly
uniformly distributed in I , which we denote by Xrand .

Looking at Table 1.1, we observe that using the AAA algorithm with starting set
S(Xrand) (indicated in the Table as AAAS), that is, constructing the approximants
via the fake nodes approach, does not suffer from the effects of the Gibbs
phenomenon. For both approximants we fix the maximum degree to 20 and to 40
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Fig. 1.7 RMSE interpolation error for f1. Left with d = 1, right with d = 4. In blue, the standard
interpolant Rn,d . In red, the proposed interpolant Rs
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Fig. 1.8 RMSE interpolation error for f2. Left with d = 1, right with d = 4. In blue, the standard
interpolant Rn,d . In red, the proposed interpolant Rs

n,d

Table 1.1 RMAE for AAA
and AAAs approximants

f mmax AAA AAAs

f1 20 5.8E+1 1.6E−4

40 1.4E−1 2.5E−9

f2 20 4.4E+1 7.4E−8

40 8.0E−1 3.0E−12

(by default 100 in the algorithm) getting rational approximants of type (20, 20) and
(40, 40), respectively.

Remarks This extension of the “fake” nodes approach to barycentric rational
approximation, in particular to the family of FH interpolants, and its approxi-
mations by the AAA algorithm for the treatment of the Gibbs phenomenon via
the S-Gibbs algorithm, shows that the proposed reconstructions outperform
their classical versions, by erasing distortions and oscillations.
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1.5 Application to Quadrature

We now drive our attention towards the use of mapped bases as an alternative to
standard quadrature rules as started to discuss in the ongoing paper [29].

Given f : I = [a, b] → R, we are interested in approximating

I(f ) :=
∫

I

f (x) dx,

via quadrature formulae of interpolation type. To this aim we take a set of distinct
(quadrature) nodes Xn = {xi, i = 0, . . . , n} by assuming x0 = a, xn = b and
n ≥ 1.

The classical quadrature of interpolation type substitutes f by its interpolant
Pn,f (·) = ∑n

i=0 ai bi(·), with bi the i-th basis element of the polynomial space
Pn (note that the most simple basis one can consider is the monomials one, that is
bi = xk) so that

I(f ) ≈ In(f ) := 〈w,f 〉 . (1.17)

The vector f contains the function values fk = f (xk) while the vector of the
weights w = (w0, . . . , wn)

ᵀ is computed by solving the moments’ system

V ᵀ w = m (1.18)

where V is the Vandermonde matrix so that Vi,j = bi(xj ), the vector m =
(m0, . . . ,mn)

ᵀ consists of the moments mk = I(bk), k = 0, . . . , n.

Remark The quadrature (1.17) is a scalar product that can be computed
as the determinant of formula (1.5) substituting the elementary Lagrange
polynomials with the weights and changing sing

〈w,f 〉 = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −w0 −w1 · · · −wn

−− − − − −
f0

f1 I
...

fn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1.19)
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1.5.1 Quadrature via “Fake” Nodes

In the mapped bases approach [27] instead of Pn;f we consider the mapped
interpolant PS

n;f . It comes then “natural” to construct the quadrature formulae in
the mapped basis, that is

I(f ) ≈ IS
n(f ) := 〈wS,f 〉 .

The weights wS = (wS
0 , . . . , wS

n)ᵀ are computed by solving the mapped-based
system

(V S)ᵀ wS = mS ,

with mS the vector of S-mapped moments. For instance, taking the monomial basis,
the i-th S-moment is mS

i = I(S(x)i).
Equivalently, for x ∈ I , the interpolant PS

n;f can be seen as a standard polynomial

interpolant Pn;g on the mapped set of nodes S(I) = Î . Moreover, if the map S is at
least C1 in I , letting t = S(x), for x ∈ I , we get

Ŝ(t) := dS−1(t)

dt
= 1

S′(S−1(t))
. (1.20)

Thus,

I(P S
n;f , I ) = I(Pn;gŜ, Î ) . (1.21)

It then follows

Proposition 1.3 wS
i = I(li Ŝ, Î ).

Proof Considering the Lagrange basis of the polynomial interpolant so that

Pn;g(S(x)) =
n∑

i=0

f (xi)li (S(x)) =
n∑

i=0

f (xi)
∏

0≤j≤n
j �=i

S(x) − S(xj )

S(xi) − S(xj )
,

and taken into account (1.20) we conclude �
The following then can be easily proven.

Proposition 1.4 Let S be such that g is at least Cn+1(Î ). Then,

ES
n (f ) = En(g) = g(n+1)(S(ξ))

(n + 1)! I(ωn+1Ŝ, Î ), ξ ∈ I

with ωn+1(t) = ∏n
i=0(t − ti).
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Proof Indeed

ES
n (f ) = I((g − Pn;g)Ŝ, Î ) = g(n+1)(S(ξ))

(n + 1)! I(ωn+1Ŝ, Ĩ ) ,

as claimed. �

Remark We observe that if S is such that g is a polynomial of degree n, then
the quadrature has exactness n.

We now focus on the computation of the weights for the two maps introduced
above for S-Gibbs and S-Runge, respectively.

First, we recall that considering h(x) = 1/
√

1 − x2, the Chebyshev weight
function and Cn the CL nodes on J = [−1, 1]

I(f h, J ) ≈
n∑

i=0

f (ci)w
c
i (1.22)

where wc
i = π

zin
with

zi =
{

2 i = 0, n

1 otherwise

We are ready to prove the following.

Theorem 1.3 Let Xn be the set of n + 1 equispaced points of I = [a, b] and
consider the S-Runge map

S(x) = − cos

(
x − a

b − a
π

)
. (1.23)

Then,

wS
k =

{
h
2 , for k ∈ {0, n},
h, for k = 1, . . . , n − 1.

Proof Let us now take on I = [a, b] the set of equispaced nodes Xn and the S-map
(1.23). Thus, S(Xn) = Cn and letting t = S(x) then li(S(x)) = li(t), i = 0, . . . , n,
where li(t) is the Lagrange basis at the CL nodes of J = [−1, 1]. Therefore, by
using (1.20) and (1.21)

dx = Ŝ(t) dt = h(t)
b − a

π
dt,
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we have

wS
i = (b − a)

π
I(li h, J ).

Finally, by observing that the quadrature rule (1.22) is exact for polynomials of
degree n, we get

wS
i = (b − a)

π

n∑

j=0

li(cj )w
c
j = (b − a)

π

n∑

j=0

δi,j

π

zjn
= b − a

zin
.

This concludes the proof. �

Remarks

1. This result turns out to be quite surprising but interesting: the weights of
the “fake” nodes quadrature, coincide with those of the trapezoidal rule
and up to the constant π

b−a
with those for the weighted quadrature based

on the CL nodes in [−1, 1].
2. In the case of composite quadrature rules, the weights for the “fake” nodes

approach can be computed by applying the S-map on each subinterval.

1.5.1.1 Examples

We apply the “new” quadrature approach to the following test functions: a discon-
tinuous one and a Runge-type one

f1(x) =
{

sin(x), for x ≤ 0,

log(x4 + 4) + 7, for x > 0,
and f2(x) = 1

4x2 + 1
.

We compute their integrals over the interval I = [−2, 2]. In Fig. 1.9 the absolute
error between the true value of the integral and its approximation is displayed.
As approximants we compare the standard approach on a equispaced points, the
classical quadrature on Chebyshev-Lobatto nodes and the integral computed with
the “fake” nodes approach: we use the S-Gibbs and S-Runge for f1 and f2,
respectively. We consider polynomials with degrees n = 2k with k = 1, . . . , 20.
We observe that the “fake” nodes quadrature outperforms the computation of the
integral on equispaced nodes while still competitive with the classical Gaussian
quadrature based on CL nodes.

The experiments have been carried out in PYTHON 3.7 using NUMPY 1.15. The
Python codes are available at https://github.com/pog87/FakeQuadrature.

https://github.com/pog87/FakeQuadrature
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Fig. 1.9 Left: approximation of the integral over I of function f1 and f2, left and right respectively

1.6 Discontinuous Kernels

Interpolation by kernels, mainly by radial kernels known as Radial Basis Functions
(RBF), are suitable tools for high-dimensional scattered data problems, solution
of PDES, machine learning, image registration. For an overview of the topic we
refer the reader to the monographs [34, 60] and references therein. Our interest is
now confined to the approximation of data with discontinuities. Indeed, based on
recent studies on Variably Scaled Kernels (VSKs) [18, 55] and their discontinuous
extension [26], we use discontinuous kernel functions that reflect discontinuities
in the data as a basis. These basis functions, referred to as Variably Scaled
Discontinuous Kernels (VSDKs), enable us naturally to interpolate functions with
given discontinuities.

1.6.1 A Brief Introduction to RBF Approximation

We start by introducing some basic notation and results about RBF interpolation.
Let XN = {xi , i = 1, . . . , N} be a set of distinct data points (data sites or

nodes) arbitrarily distributed on a domain � ⊆ R
d and let FN = {fi = f (xi ), i =

1, . . . , N} be an associated set of data values (measurements or function values)
obtained by sampling some (unknown) function f : � −→ R at the nodes xi .
We can reconstruct f by interpolation, that is by finding a function P : � −→ R

satisfying the interpolation conditions

P(xi ) = fi, i = 1, . . . , N. (1.24)
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This problem (1.24) has unique solution provided P ∈ span{�ε(·, xi ), xi ∈ X},
where �ε : �×� −→ R is a strictly positive definite and symmetric kernel. Notice
that � depends on the so-called shape parameter ε > 0 which allows to change the
shape of �, making it flatter (or wider) as ε → 0+ or spiky and so more localized
as ε → +∞. This has important consequences in error analysis and stability of
interpolation by RBF (cf. e.g. [58]).

The resulting kernel-based interpolant, denoted by Pε,XN
, can be written as

Pε,XN
(x) =

N∑

k=1

ck�ε(x, xk), x ∈ �. (1.25)

The interpolation problem (1.24) in matrix form becomes Aε ∈ R
N×N with

(Aε)ik = �ε(xi , xk), i, k = 1, . . . , N . Then, letting f = (f1, . . . , fN )ᵀ the vector
of data values, we can find the coefficients c = (c1, . . . , cN )ᵀ by solving the linear
system Aεc = f . Since we consider strictly positive definite and symmetric kernels,
the existence and uniqueness of the solution of the linear system is ensured. More
precisely, the class of strictly positive definite and symmetric radial kernels �ε can
be defined as follows.

Definition 1.2 �ε is called radial kernel if there exists a continuous function ϕε :
[0,+∞) −→ R, depending on the shape parameter ε > 0, such that

�ε(x, y) = ϕε(‖x − y‖2), (1.26)

for all x, y ∈ �.

Remark The notation (1.26) provides the “dimension-blindness” property of
RBF. Hence, once we know the function ϕ and compose it with the Euclidean
norm, we get a radial kernel.

In Table 1.2 we collect some of the most popular basis functions ϕ which are
strictly positive definite. The Gaussian, Inverse Multiquadrics and Matérn (M0)
are globally supported, while the Wendland (W2) and Buhmann (B2) are locally
supported.

To �ε we can associate a real pre-Hilbert space H�ε(�)

H�ε(�) = span{�ε(·, x), x ∈ �},

with �ε as reproducing kernel. This space will be then equipped with the bilinear
form (·, ·)H�ε (�). Then we define the associate native space N�ε(�) of �ε as the
completion of H�ε(�) with respect to the norm || · ||H�ε (�), that is ||f ||H�ε(�) =
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Table 1.2 Examples of strictly positive definite radial kernels depending on the shape parameter
ε. The truncated power function is denoted by (·)+. W2 and B2 are compactly supported radial
basis functions

Kernel ϕ(r)

Gaussian C∞ (GA) e−ε2r2

Inverse Multiquadrics C∞ (IM) (1 + r2/ε2)−1/2

Matérn C0 (M0) e−εr

Wendland C2 (W2) (1 − εr)4+ (4εr + 1)

Buhmann C2 (B2) 2r4 log r − 7/2r4 + 16/3r3 − 2r2 + 1/6

||f ||N�ε (�) for all f ∈ H�ε(�). For more details, as already quotes, see the
monographs [34, 60]).

The accuracy of the interpolation process can be expressed, for instance, in terms
of the power function. The power function is a positive function given as the ratio
of two determinants (cf. [23])

P�ε,XN
(x) :=

√
det(Aε(YN+1))

det(Aε(XN))
. (1.27)

where Aε(XN) is the interpolation matrix related to the set of nodes XN and the
kernel �ε and Aε(YN+1) the matrix associated to the set YN+1 := {x}∪XN, x ∈�.

The following pointwise error bound holds.

Theorem 1.4 Let �ε ∈ C(�×�) be a strictly positive definite kernel and XN ⊆ �

a set of N distinct points. For all f ∈ N�ε(�) we have

|f (x) − Pε,XN
(x) | ≤ P�ε,XN

(x) ‖f ‖N�ε (�), x ∈ �.

Remarks We observe that this Theorem bounds the error in terms of the
power function which depends on the kernel and the data points but is
independent on the function values.

This theorem is a special instance of [60, Theorem 11.3, p. 182] where the
fill-distance

hXN ,�
:= sup

x∈�

min
xk∈XN

‖x − xk‖ ,

is used instead of the power function.
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1.6.2 From RBF to VSK Interpolation

The choice of the shape parameter ε is a crucial computational issue in RBF
interpolation leading to instability effects without a clever choice of it. This is
usually done by analyzing the behaviour of some kind of errors (like the Root
Mean Square Error) versus the conditioning of the interpolation matrix (cf. e.g.
[37, 52]) and so many techniques has been developed in order to overcome such
problems. Many of these techniques allow to choose the best shape parameter based
on a “trade-off” between conditioning and efficiency. There are approaches based
on the choice of well-conditioned bases, like in the RBF-QR method for Gaussians
[38] or in the more general setting discussed in [24].

In the seminal paper[18] the authors introduced the so called Variably Scaled
Kernels (or VSKs) where the classical tuning strategy of finding the optimal shape
parameter, is substituted by the choice of a scale function which plays the role of a
density function. More precisely [18, Def. 2.1]

Definition 1.3 Letting I ⊆ (0,+∞) and �ε a positive definite radial kernel on
�×I depending on the shape parameter ε > 0. Given a scale function ψ : � −→ I,
a Variably Scaled Kernel �ψ on � is

�ψ(x, y) := �1((x, ψ(x)), (y, ψ(y))), (1.28)

for x, y ∈ �.

Defining then the map �(x) = (x, ψ(x)) on �, the interpolant on the set of
nodes �(XN) := {(xk, ψ(xk)), xk ∈ XN } with fixed shape parameter ε = 1 (or
any other constant value c) takes the form

P1,�(XN )(�(x)) =
N∑

k=1

ck�1(�(x),�(xk)), (1.29)

with x ∈ �, xk ∈ XN .
By analogy with the interpolant in (1.25), the vector of coefficients c =

(c1, . . . , cN )ᵀ is determined by solving the linear system Aψc = f , where f is the
vector of data values and (Aψ)ik = �ψ(xi , xk) is strictly positive definite because
of the strictly positiveness of �ψ .

Once we have the interpolant P1,�(XN ) on � × I, we can project back on � the
points (x, ψ(x)) ∈ �×I. In this way, we obtain the so-called VSK interpolant Vψ

on �. Indeed, by using (1.28), we get

Vψ(x) :=
N∑

k=1

ck�ψ(x, xk) =
N∑

k=1

ck�1(�(x),�(xk)) = P1,�(XN )(�(x)).

(1.30)
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The error and stability analysis of this varying scale process on � coincides with the
analysis of a fixed scale kernel on �×I (for details and analysis of these continuous
scale functions see [18]).

1.6.3 Variably Scaled Discontinuous Kernels (VSDK)

To understand the construction of a VSDK let start from the one dimensional case.
Let � = (a, b) ⊂ R be an open interval, ξ ∈ � and the discontinuous function
f : � −→ R

f (x) :=
{

f1(x), a < x < ξ,

f2(x), ξ ≤ x < b,

where f1, f2 are real valued smooth functions for which exist finite the limits
lim

x→a+ f1(x), lim
x→b− f2(x) and f2(ξ) �= lim

x→ξ
f1(x) .

If we approximate f on some set of nodes, say X ⊂ �, the presence of a jump
will result in unpleasant oscillations due to the Gibbs phenomenon. The idea is then
to approximate f at X by interpolants of the form (1.30) with the main issue of
considering discontinuous scale functions in the interpolation process. The strategy
is that of approximating a function having jumps by using a scale function that has
jumps discontinuities at the same positions of the considered function.

To this aim, take α, β ∈ R, α �= β, S = {
α, β

}
and the scale function ψ :

� −→ S

ψ(x) :=
{

α, x < ξ,

β, x ≥ ξ.

which is piecewise constant, having a discontinuity exactly at ξ as the function f .
Then we consider �ε a positive definite radial kernel on � × S, possibly

depending on a shape parameter ε > 0 or alternatively a VSK �ψ on � as in
(1.28). For the sake of simplicity we start by taking the function ϕ1 related to the
kernel �1 that is

ϕ1(‖�(x) − �(y)‖2) = ϕ1(‖(x,ψ(x)) − (y,ψ(y))‖2) =

= ϕ1

(√
(x − y)2 + (ψ(x) − ψ(y))2

)
,

so that

ϕ1(‖�(x) − �(y)‖2) =
{

ϕ1(|x − y|), x, y < ξ or x, y ≥ ξ,

ϕ1(‖(x, α) − (y, β)‖2), x < ξ ≤ y or y < ξ ≤ x,
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noticing that ϕ1(‖(x, α) − (y, β)‖2) = ϕ1(‖(x, β) − (y, α)‖2).

Then, consider the set XN = {xk, k = 1, . . . , N} of points of � and the
interpolantVψ : � −→ R which is a linear combination of discontinuous functions
�ψ(·, xk) having a jump at ξ .

• if a < xk < ξ

�ψ(x, xk) =
{

ϕ1(|x − xk|), x < ξ,

ϕ1(‖(x, α) − (xk, β)‖2), x ≥ ξ,

• if ξ ≤ xk < b

�ψ(x, xk) =
{

ϕ1(|x − xk|), x ≥ ξ,

ϕ1(‖(x, α) − (xk, β)‖2), x < ξ.

By this construction we can give the following definition that extends the idea
when we have more than one jump.

Definition 1.4 Let � = (a, b) ⊂ R be an open interval, S = {α, β} with α, β ∈
R>0, α �= β and let D = {ξj , j = 1, . . . , �} ⊂ � be a set of distinct points with
ξj < ξj+1 for every j . Let ψ : � −→ S the scale function defined as

ψ(x) :=
{

α, x ∈ (a, ξ1) or x ∈ [ξj , ξj+1), where j is even,

β, x ∈ [ξj , ξj+1), where j is odd,

and

ψ(x)|[ξ�,b) :=
{

α, � is even,

β, � is odd.

The kernel �ψ is then called a Variably Scaled Discontinuous Kernel on �.

For the analysis of the VSDKs introduced in Definition 1.4 we cannot rely
on some important and well-known results of RBF interpolation due to the
discontinuous nature of these kernels. Therefore we may proceed as follows.

Let � and D be as in Definition 1.4 and n ∈ N. We define ψn : � −→ I ⊆
(0,+∞) as

ψn(x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α, x ∈ (a, ξ1 − 1/n) or x ∈ [ξj + 1/n, ξj+1 − 1/n) j is even,

β, x ∈ [ξj + 1/n, ξj+1 − 1/n) j is odd,

γ1(x), x ∈ [ξj − 1/n, ξj + 1/n) j is odd,

γ2(x), x ∈ [ξj − 1/n, ξj + 1/n) j is even,

(1.31)
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ψn(x)|[ξ�+1/n,b) :=
{

α, � is even,

β, � is odd,

where γ1, γ2 are continuous, strictly monotonic functions so that

lim
x→ξj+1+1/n

γ1(x) = γ2(ξj − 1/n) = β, lim
x→ξj+1+1/n

γ2(x) = γ1(ξj − 1/n) = α.

From Definition 1.4, it is straightforward to verify that ∀x ∈ � the following
pointwise convergence result holds

lim
n→∞ ψn(x) = ψ(x).

We point out that for every fixed n ∈ N the kernel �ψn is a continuous VSK, hence it
satisfies the error bound of Theorem 1.4. For VSDKs instead we have the following
results whose proofs can be found in the paper [26].

Theorem 1.5 For every x, y ∈ �, we have

lim
n→∞ �ψn(x, y) = �ψ(x, y),

where �ψ is the kernel considered in Definition 1.4.

Corollary 1.1 Let H�ψn
(�) = span{�ψn(·, x), x ∈ �} be equipped with

the bilinear form (·, ·)H�ψn
(�) and let N�ψn

(�) be the related native space.

Then, taking the limit of the basis functions, we obtain the space H�ψ (�) =
span{�ψ(·, x), x ∈ �} equipped with the bilinear form (·, ·)H�ψ

(�) and the related

native space N�ψ (�).

We get an immediate consequence for the interpolant Vψ too.

Corollary 1.2 Let �, S and D be as in Definition 1.4. Let f : � −→ R

be a discontinuous function whose step discontinuities are located at the points
belonging to D. Moreover, let ψn and ψ be as in Theorem 1.5. Then, considering
the interpolation problem with nodes XN = {xk, k = 1, . . . , N} on �, we have

lim
n→∞Vψn(x) = Vψ(x),

for every x ∈ �.

To provide error bounds in terms of the power function, we should first define
the equivalent power function for a VSDK �ψ on a set of nodes XN . From (1.27),
we immediately have

P�ψ,X(x) =
√

det(Aψ(YN+1))

det(Aψ(XN))
.
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From Theorem 1.5 and Corollary 1.1, we may define the power function for a
discontinuous kernel as

P�ψ,XN
(x) = lim

n→∞ P�ψn ,XN
(x) , ∀x ∈ �.

Finally, we can state the error bound for interpolation via VSDKs.

Theorem 1.6 Let �ψ be a VSDK on � = (a, b) ⊂ R, and XN ⊆ � consisting of
N distinct points. For all f ∈ N�ψ (�) we have

|f (x) − Vψ(x)| ≤ P�ψ,XN
(x)‖f ‖N�ψ

(�), x ∈ �.

Proof For all n ∈ N and x ∈ �, since the VSK �ψn is continuous, from
Theorem 1.4, we get

|f (x) − Vψn(x)| ≤ P�ψn ,X(x)‖f ‖N�ψn
(�).

Then, taking the limit n → ∞ and recalling the results of this subsection, the thesis
follows. �

1.6.4 VSDKs: Multidimensional Case

VSDKs rely upon the classical RBF bases, therefore as noticed are “dimension-
blind” which make them a suitable and flexible tool to approximate data in any
dimension. However, in higher dimensions, the geometry is more complex, so we
must pay attention in defining the scale function ψ on a bounded domain � ⊂ R

d .
We consider the following setting.

(i) The bounded set � ⊂ R
d is the union of n pairwise disjoint sets �i and P� =

{�1, . . . , �n} forms a partition of �.
(ii) The subsets �i satisfy an interior cone condition and have a Lipschitz

boundary.
(iii) Let α1, . . . , αn ∈ R and � = {α1, . . . , αn}. The function ψ : � → � is

constant on the subsets �i , i.e., ψ(x) = αi for all x ∈ �i . In particular, ψ is
piecewise constant on � and discontinuities appear only at the boundaries of
the subsets �i . We further assume that αi �= αj if �i and �j are neighboring
sets.

A suitable scale function ψ for interpolating f via VSDKs on � ⊂ R
d can be

defined as follows.
Let � ⊂ R

d satisfies the assumptions (i)–(iii) above. We define the scale function
ψ : � −→ S as

ψ|�i
:= αi . (1.32)
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Definition 1.5 Given the scale function (1.32) the kernel �ψ defined by (1.28) is a
Variably Scaled Discontinuous Kernel on �.

Remarks In Definition 1.5 we choose a scale function which emulates the
properties of the one-dimensional function of Definition 1.4. The difference
is that the multidimensional ψ could be discontinuous not just at the same
points as f , but also on other nodes. That is all the jumps of f lye along
(d − 1)-dimensional manifolds γ1, . . . , γp which verify

γi ⊆
n⋃

i=1

∂�i \ ∂�, ∀i = 1, . . . , p.

More precisely, if we are able to choose P� so that

p⋃

i=1

γi =
n⋃

i=1

∂�i \ ∂�,

then f and ψ have the same discontinuities. Otherwise, if

p⋃

i=1

γi ⊂
n⋃

i=1

∂�i \ ∂�,

then ψ is discontinuous along
⋃n

i=1 ∂�i \ (
∂� ∪ ⋃p

i=1 γi

)
, while f is not.

The theoretical analysis in the multidimensional case is done along the same path
of the one-dimensional setting. The idea is to consider continuous scale functions
ψn : � −→ I ⊆ (0,+∞) such that ∀x ∈ � the limits hold

lim
n→∞ ψn(x) = ψ(x),

and

lim
n→∞Vψn(x) = Vψ(x).

We omit this extension and all the corresponding considerations which are
similar to those discussed above for the one-dimensional setting, while we state
directly the error bound.
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Theorem 1.7 Let �ψ be a VSDK as in Definition 1.5. Suppose that XN = {xi , i =
1, . . . , N} ⊆ � have distinct points. For all f ∈ N�ψ (�) we have

|f (x) − Vψ(x)| ≤ P�ψ,XN
(x)‖f ‖N�ψ

(�), x ∈ �.

Proof Just refer to Theorem 1.6 and considerations made above. �
For the characterization of the native spaces for the VSDKs (if the discontinuities

are known) and Sobolev-type error estimates, based on the fill-distance, of the
respective interpolation scheme the reader must refer to the very recent paper [28].

1.7 Application to MPI

As we already observed, interpolation is an essential tool in medical imaging.
It is required for example in geometric alignment or registration of images, to
improve the quality of images on display devices, or to reconstruct the image from
a compressed amount of data. In Computerized Tomography (CT) and Magnetic
Resonance Imaging (MRI), which are examples of medical inverse problems,
interpolation is used in the reconstruction step in order to fit the discrete Radon
data into the back projection step. Similarly in SPECT for regridding the projection
data in order to improve the reconstruction quality while reducing the acquisition
computational cost [59]. In Magnetic Particle Imaging (MPI), the number of
calibration measurements can be reduced by using interpolation methods, as well
(see the important paper [46]).

In the early 2000s, B. Gleich and J. Weizenecker [39], invented at Philips
Research in Hamburg a new quantitative imaging method called Magnetic Particle
Imaging (MPI). In this imaging technology, a tracer consisting of superparamagnetic
iron oxide nanoparticles is injected and then detected through the superimposition
of different magnetic fields. In common MPI scanners, the acquisition of the signal
is performed following a generated field free point (FFP) along a chosen sampling
trajectory. The determination of the particle distribution given the measured voltages
in the receive coils is an ill-posed inverse problem that can be solved only with
proper regularization techniques [47].

Commonly used trajectories in MPI are Lissajous curves [48], which are
parametric space-filling curves of the square Q2 = [−1, 1]2. More precisely,
by using the same notations in [31–33], let n = (n1, n2) ∈ N

2 be a vector
of relatively prime integers and ε ∈ {1, 2}, the two-dimensional Lissajous curve
γ n
ε : [0, 2π] → Q2 is defined as

γ n
ε (t) := (cos(n2t), cos(n1t − (ε − 1)π/(2n2))) .
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Fig. 1.10 Left: The degenerate curve γ
(5,6)
1 . Right: the non-degenerate curve γ

(5,6)
2

The curve γ n
ε is called degenerate if ε = 1, and non-degenerate if ε = 2. The

Padua points of degree n are a degenerate Lissajous curve which have generating
curve γPad(t) = (− cos((n + 1)t),− cos(nt)), t ∈ [0, π] (see also [11, 16]).
The set of Lissajous node points associated to the curve γ n

ε is given by

LSn
ε :=

{
γ n
ε ( πk

εn1n2
) : k = 0, . . . , 2εn1n2 − 1

}
. (1.33)

We define also the index set �2n :=
{
(i, j) ∈ N

2
0 : (i/2n1) + (j/2n2) < 1

}
∪

{(0, 2n2)} which give the cardinality of the set, that is

#LSn
ε = (εn1 + 1)(εn2 + 1) − (ε − 1)

2
.

To reduce the amount of calibration measurements, it is shown in [46] that the
reconstruction can be restricted to particular sampling points along the Lissajous
curves, i.e., the Lissajous nodes LS(n)

2 introduced in (1.33). Furthermore, by using
a polynomial interpolation method on the Lissajous nodes the entire density of the
magnetic particles can then be restored (cf. [33]). As noticed, these sampling nodes
and the corresponding polynomial interpolation are an extension of the theory of the
Padua points (see [11, 16] and also https://en.wikipedia.org/wiki/Padua_points).

If the original particle density has sharp edges, the polynomial reconstruction
scheme on the Lissajous nodes is affected by the Gibbs phenomenon. As shown
in [25], post-processing filters can be used to reduce oscillations for polynomial
reconstruction in MPI. In the following, we demonstrate that the usage of the VSDK
interpolation method in combination with the presented edge estimator effectively
avoids ringing artifacts in MPI and provides reconstructions with sharpened edges.

https://en.wikipedia.org/wiki/Padua_points
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Fig. 1.11 Comparison of different interpolation methods in MPI. The reconstructed data on the
Lissajous nodes LS(33,32)

2 (left) is first interpolated using the polynomial scheme derived in [33]
(middle left). Using a mask constructed upon a threshold strategy described in [28] (middle right)
the second interpolation is performed by the VSDK scheme (right)

1.7.1 An Example

As a test data set, we consider MPI measurements conducted in [46] on a phantom
consisting of three tubes filled with Resovist, a contrast agent consisting of
superparamagnetic iron oxide. By the proceeding described in [46] we then obtain
a reconstruction of the particle density on the Lissajous nodes LS(33,32)

2 (due to
the scanner available, as described in [46] ). This reduced reconstruction on the
Lissajous nodes is illustrated in Fig. 1.11 (left). A computed polynomial interpolant
of this data is shown in Fig. 1.11 (middle, left). In this polynomial interpolant some
ringing artifacts are visible The scaling function ψ for the VSDK scheme is then
obtained by using the classification Algorithm [28] with a Gaussian function for the
kernel machine. The resulting scaling function is visualized in Fig. 1.11 (middle,
right). Using the C0-Matérn (M0) kernel (see Table 1.2) for the VSDK interpolation,
the final interpolant for the given MPI data is shown in in Fig. 1.11 (right).

1.8 Conclusion and Further Works

We have investigated the application of the polynomial mapped bases approach
without resampling for reducing the Runge and Gibbs phenomena. The approach
shows to be a kind of black-box that can be applied in many other frameworks.
We indeed have applied it to barycentric rational approximation and quadrature.
We have also studied the use of VSDK, a new family of variable scaled kernels,
particularly effective in the presence of discontinuity in our data. A particular
applications of VSDK is the image reconstruction from data coming from MPI
scanners acquisitions.

Concerning the work in progress and the future works

• In the 2d case, we have results on discontinuous functions on the square, using
polynomial approximation at the Padua points or tensor product meshes. In
Fig. 1.12 we show the results of the interpolation of a discontinuous function
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Fig. 1.12 Left: interpolation with Padua points of degree 60 of a function with a circular jump.
Right: the same by mapping circularly the PD points, and using least-squares “fake-Padua”

along a disk of the square [−1, 1]2, where the reconstruction has been done
by interpolation on the Padua points of degree 60 on the left. On the right
we show the same reconstruction where the points that do not fall inside the
disk are mapped with a circular mapping. The mapping strategy indeed reduce
the Gibbs oscillations, but outside the disk we cannot interpolate, we instead
approximate by least-squares, because of the “fake Padua” points that are not
anymore unisolvent.

• Again in 2d but also in 3d we can extract the so called Approximate Fekete Points
of Discrete Leja sequences (cf. [12]) on various domains (disk, sphere, polygons,
spherical caps, lunes and other domains). These points are numerically computed
by numerical linear algebra methods and extracted from the so called weakly
admissible meshes (WAM). For details about WAMs, refer to fundamental paper
[13]

Finally we are working in improving the error analysis and finding more precise
bounds for the Lebesgue constant(s). Among the applications of this approach we
are interested to image registration in nuclear medicine and the reconstruction of
periodic signals.
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