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Preface

This exercise metabolism collection provides a very comprehensive examination of
the metabolic processes taking place during exercise.

It starts with a historical perspective and overview of exercise metabolism and
then considers the underlying thermodynamic and bioenergetic principles underpin-
ning metabolism during exercise. The chapters then outline anaerobic metabolism
and separate chapters on muscle glycogen and blood glucose metabolism, muscle
and adipose tissue fat metabolism and protein metabolism. There is also discussion
on various tissues in addition to skeletal muscle, such as liver, heart and brain
metabolism during exercise. In addition, the book includes chapters on other per-
spectives such as the effects of exercise training, age, sex, fatigue and the circadian
rhythm on metabolism during exercise.

The focus was very much on metabolism during exercise rather than the effects of
exercise on metabolism. Many of the chapters include more than one lead investi-
gator to facilitate a balanced appraisal of the topic. The authors focussed on humans
but included animal data to inform the human data. Although an attempt was made to
avoid overlap, some topics may have been covered to some extent in more than one
chapter.

Melbourne, VIC, Australia Glenn McConell
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Chapter 1
A Brief History of Exercise Metabolism

Andrew R. Coggan and David L. Costill

Abstract The source of energy utilized during physical activity has been of intense
scientific interest for at least two centuries. This chapter briefly describes how (and
why) each of the three major macronutrients—i.e., protein, carbohydrate, and fat—
has alternately had their moments in the sun. Specifically, although until the 1860s
protein was considered to be the only fuel used during exercise, first carbohydrate,
then fat, and then again carbohydrate held sway from the 1860s until World War II,
from World War II until the late 1960s, and from the late 1960s to ca. 1990,
respectively. It is now widely recognized, however, that contracting muscle relies
upon a mixture of carbohydrate, fat, and even a small amount of protein to provide
its energy needs, with the relative importance of each varying with the exercise
intensity and duration, the characteristics (e.g., nutritional state, physical fitness) of
the individual, etc. Thus, although substrate metabolism during exercise is now
understood in greater detail than ever before, the overall picture has come full circle
to that described by Zuntz at the start of the twentieth century.

Keywords Scientific history · Physical activity · Substrate oxidation · Muscle
energetics · Macronutrient metabolism

1.1 Introduction

Precisely how skeletal muscle obtains the energy needed to support contractile
activity, i.e., physical exercise, has been of keen interest for at least 150 years.
This chapter briefly traces the historical development of our modern understanding
of the answer to this question, focusing primarily upon macronutrient metabolism,
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i.e., the utilization of protein, carbohydrate, and fat (lipids) during exercise in
humans. For a more detailed discussion of this and related issues, readers are referred
to a previous review (Coggan 2014).

1.2 Exercise Metabolism, Late Eighteenth Century
to the 1860s: Protein Reigns Supreme

Early perspectives on substrate metabolism during exercise arose in parallel with
broader developments in science and especially biochemistry. In particular, the
recognition of proteins as a distinct class of chemicals by de Fourcroy (1789),
their careful study in the early 1800s by luminaries such as Mulder (1838), and
their ultimate naming by Berzelius in 1838 (Harold 1951) initially led to the
hypothesis that muscle obtained its energy primarily from consumption of its own
substance. This was an extension of the common belief among chemists and
physiologists of the time, such as Voit or von Haller, that “flesh becomes flesh”
(Bischoff and Voit 1860; Holmes 1963). Leibig in particular asserted that protein
was the only true nutrient and that carbohydrates and fats were combusted only to
prevent excess O2 from entering the body during ventilation, one major purpose of
which was simply to cool the “metabolic furnace” (von Liebig 1842; Carpenter
2003). In 1862, however, Smith (1862) demonstrated that laboring for 8 h/d on a
treadwheel did not increase the 24 h urea excretion of four British prisoners, thus
seemingly ruling out protein as a major source of energy for muscular work. These
findings were confirmed shortly thereafter by Fick and Wislicenus (1866), who
measured their own urea excretion during and after a day-long mountain hike during
which they consumed only protein-free snacks and beverages (including some beer
and wine). They ascended nearly 2000 m during the climb, but the amount of protein
that was oxidized could have provided only about half of the energy required by the
vertical work that they performed, even if their muscles were 100% efficient. This
led Fick and Wislicenus (1866) to conclude that “the burning of protein cannot be
the only source of muscular power.” Similarly, upon reviewing these and other
results (e.g., von Pettenkofer and Voit 1866), Fick’s brother-in-law, Edward
Frankland, concluded that:

Like every other part of the body the muscles are constantly being renewed; but this renewal
is not perceptibly more rapid during great muscular activity than during comparative
quiescence. After the supply of sufficient albuminized matter [protein] in the food to provide
for the necessary renewal of the tissues, the best materials for the production, both of internal
and external work, are non-nitrogenous material. . . . (Frankland 1866)

Thus, almost as quickly as it began, the reign of protein (whose name is derived from
the Greek word πρω�τειoς (proteios), meaning “primary” or “of the first rank”) as a
major, much less the only, source of energy during exercise was over.

2 A. R. Coggan and D. L. Costill



1.3 Exercise Metabolism, 1860s to World War II:
Carbohydrate Is King

Even as protein was enjoying its brief time in power, other events were transpiring
that would eventually see carbohydrate anointed—mistakenly, as it turns out—as its
successor as the singular substrate fueling exercise. Major findings leading to this
conclusion included the following observations:

1. Lactate levels were higher in the non-paralyzed vs. the paralyzed muscles of
hunted stags (Berzelius and Berzelius 1806–1808).

2. Contractile activity resulted in an increase in water-soluble and a decrease in
alcohol-soluble substances in the muscle, apparently as a result of lactate forma-
tion via degradation of glycogen (von Helmoltz 1845).

3. Muscle contractions were accompanied by tissue acidification, again presumably
as a result of glycogenolysis to form lactate plus protons (du Bois-Reymond
1859; Heidenhain 1864).

4. Direct demonstration that electrically stimulated contractions resulted in a
decrease in muscle glycogen content (Weiss 1871).

As discussed by Zuntz (1911), these observations led to the erroneous belief that
the energy required to support muscle contractions was derived entirely from
carbohydrate. Major proponents of this theory, which persisted in various forms
until almost the middle of the twentieth century, included Chauveau himself and,
subsequently, Archibald Vivian (A.V.) Hill.

Chauveau based his belief in part on measurement of the respiratory exchange
ratio (RER; i.e., whole-body CO2 production divided by whole-body O2 uptake)
during strenuous exercise lasting about an hour, which revealed a value close to
unity, commensurate with oxidation of strictly carbohydrates (Chauveau 1896). He
therefore proposed that fat could only contribute to the energy needs of contracting
muscle if it were first converted to carbohydrate in the liver, a process that he
estimated would increase the overall energy cost of exercise by approximately 30%.

In contrast to Chauveau, Hill’s perspective was primarily based on biochemical
and biophysical studies of isolated amphibian muscle, including his mentor
Fletchers’ definitive demonstration of lactate production during electrical stimula-
tion (Fletcher and Hopkins 1907) and his own measurements of the effects of O2

availability on the heat released during and after such evoked contractions (Hill
1910, 1913, 1914). These studies, for which Hill eventually shared the Nobel Prize
in Physiology or Medicine with Meyerhof in 1922, demonstrated that although a
fixed amount of heat was always liberated during the contractile activity, the
presence of O2 led to additional heat being released afterward. Hill interpreted
these results to mean that lactate formation was directly responsible for force
production by the muscle, with oxidative resynthesis of glycogen occurring during
recovery.

Regardless of the somewhat different basis for their reasoning, the adamancy of
Chauveau and Hill that carbohydrate was the only fuel used by muscle during

1 A Brief History of Exercise Metabolism 3



exercise held considerable sway for decades. This was so even though other data
available at the time, including Zuntz’s own measurements of RER in exercising
horses (Zuntz 1898) and humans (Zuntz and Schumberg 1901), indicated that fat
could also be oxidized. As discussed previously (Coggan 2014), the refusal of
Chauveau and Hill to accept this conclusion may have stemmed in part from the
inability to consistently demonstrate utilization of lipids by the muscle. For example,
Leathes (1906) did not find any changes in the total fat content of amphibian muscle
following electrical stimulation. In contrast, Lafon (1913) found that electrical
stimulation to fatigue decreased the total muscle fat content in two rabbits. Lafon
also found a net uptake of fat by muscle at rest and especially during exercise in one
horse and two donkeys, but not in three dogs. As emphasized by Zierler (1976),
these variable results were probably due to (1) the relatively crude biochemical
methods available at the time and (2) the simultaneous uptake of fatty acids by
muscle and release by adipose tissue (as recognized by Lafon: “. . .variations could
be due to the possibility that blood, at the same time in which it loses fat to muscle,
replenishes [it] from reserves”). Indeed, uncertainty about the precise source and
nature of the lipids oxidized by exercising muscle persisted until almost the end of
the twentieth century, as will be discussed.

As a result of Chauveau’s and Hill’s stature as scientists, studies of exercise
metabolism in the early 1900s were largely devoted to testing their hypotheses,
especially Chauveau’s. Often, this entailed manipulating an individual’s diet in an
attempt to alter bodily carbohydrate stores and then determining the effect of such an
intervention on RER and efficiency during exercise (e.g., Heinemann 1901; Frentzel
and Reach 1901; Benedict and Cathcart 1913; Krogh and Lindhard 1920; Marsh and
Murlin 1928). Benedict and Cathcart (1913), for example, used this approach to test
Chauveau’s ideas, relying primarily on a professional cyclist as their subject.
However, despite inducing a marked shift in substrate utilization, as evidenced by
a decrease in RER of 0.10–0.15 units, Benedict and Cathcart were unable to
demonstrate any significant decrease in thermodynamic efficiency. Krogh and
Lindhard (1920), though, were mistrustful of these data, because Benedict and
Cathcart used a mouthpiece and nose clip to collect expired air, which can lead to
errors due to hypo- or hyperventilation. They therefore built and carefully validated a
respiration chamber large enough to enclose a cycle ergometer, and essentially
repeated Benedict and Cathcart’s experiments. Unlike this prior study, Krogh and
Lindhard found that subjects were 10–11% less efficient during exercise when
oxidizing purely fat versus purely carbohydrate. Similarly, using a young boxing
instructor as their subject, Marsh and Murlin (1928) found a 11–12% difference in
efficiency after at least 3 days of a high-fat diet.

The results of Krogh and Lindhard, Marsh and Murlin, and previously also
Frentzel and Reach (working in Zuntz’s lab), were therefore all remarkably consis-
tent in demonstrating a roughly 10% difference in efficiency depending upon the
substrate being oxidized, which was clearly less than the 30% difference predicted
by Chauveau or even the slightly lower figure calculated by Zuntz. However, Krogh
and Lindhard did not consider such data to be definitive, stating that they were
“. . .not convinced of the validity of any of these summary methods of calculating the
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waste of energy incidental to the conversion of fat into sugar. . . .”Marsh and Murlin,
on the other hand, were somewhat more confident, concluding that “we cannot
account for the lower efficiency [based] on Chauveau’s theory.” In contrast, Hill
interpreted these results to “. . .suggest[s] strongly that the primary breakdown is of
carbohydrate, and that fat is used only in a secondary manner, e.g., to restore the
carbohydrate which has disappeared. . .” (Hill 1924). Thus, the question of whether
muscle could use fat directly during exercise remained unsettled for some time.

Carbohydrate’s grip on the battlefield as the sole substrate utilized by the
contracting muscle only really began to loosen after further biochemical advances
in the late 1920s and early 1930s led to what Hill himself described as a “revolution
in muscle physiology” (Hill 1932). These breakthroughs, which have been reviewed
in greater detail by Maruyama (1991), included:

1. The contemporaneous discovery of “phosphagen” and its identification as phos-
phocreatine (PCr) by Eggleton and Eggleton (1927) and Fiske and SubbaRow
(1927), respectively.

2. Establishment of PCr’s high heat of hydrolysis by Meyerhof and Suranyi (1927).
3. Subsequent near-simultaneous and independent discovery of “pyrophosphate” by

Lohman (1929) and “adenosine triphosphonic ester” by Fiske and SubbaRow
(1929), which were almost immediately recognized to be the same compound.
Originally called “adenylpyrophosphate” in Meyerhof’s lab where Lohman
worked, this was changed to adenosine triphosphate (ATP) by Barrenscheen
and Filz (1932).

4. The recognition by Lohman (1934)
that ATP served as the immediate source of energy during muscle contractions,
with the ATP utilized being rapidly resynthesized via the hydrolysis of PCr.

Combined with the demonstration by Lundsgaard (1930a, b, 1931, 1932) that
blocking glycolysis and hence lactate production using iodoacetic acid did not
prevent frog muscle from contracting, these findings finally put to rest the Hill and
Meyerhof “lactic acid” theory of muscle contraction.1

1Even so, Hill seemed to stubbornly cling to his and Meyerhof’s original beliefs, first proposing in
1933 that the “lactacid” portion of post-exercise O2 consumption was due to the resynthesis of
glycogen from lactate Margaria et al. (1933) and then in 1950 emphasizing that direct proof of ATP
hydrolysis during contractions was still lacking:

In the lactic acid era the evidence that the formation of lactic acid was the cause and provided
the energy for contraction seemed pretty good. In the phosphagen era a similar attribution to
phosphagen appeared even better justified. Now, in the adenosinetriphosphate era lactic acid
and phosphagen have been relegated to recovery and ATP takes their place. Those of us who
have lived through two revolutions are wondering whether and when the third is coming.
(Hill 1950)

Hill’s famous “challenge to biochemists” was only finally met in 1962, when Cain and Davies
(1962) were able to demonstrate small but significant and reciprocal changes in ATP and adenosine
diphosphate (ADP) in contracting frog muscle by inhibiting creatine kinase using 1-fluoro-2,4-
dinitrobenzene.
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Thus, in the years leading up to World War II, it gradually became accepted that
along with carbohydrates, fats could also be used for fuel during exercise. However,
it was still thought that this could only occur via some indirect pathway (Lundsgaard
1938; Steinhaus 1941; Gemmill 1942). For example, Lundsgaard wrote that “it is
probable that the high-molecular fatty acids are not attacked, or not readily attacked
oxidatively in the muscles.” Instead, Lundsgaard hypothesized that fatty acids were
converted into ketone bodies by the liver, which were then utilized by the muscle. In
support of this hypothesis, Blixenkrone-Møller observed avid uptake of
ß-hydroxybutyrate by resting and especially contracting perfused cat hindquarters
(Blixenkrone-Møller 1938). Drury and coworkers also found significant ketone body
extraction by muscle in various species, including humans (Barnes and Drury 1937),
and shortly thereafter reported that exercise had a temporary ketone-lowering effect
in both rats and humans (Drury et al. 1941). Similar results were obtained in guinea
pigs and humans by Neufeld and Ross (1943). Ketone bodies therefore shared the
arena with carbohydrates for approximately 15–20 years, until they were displaced
by non-esterified fatty acids as described below.

1.4 Exercise Metabolism, World War II to the Late 1960s:
Lipids Have Their Heyday

As described previously (Coggan 2014), research into exercise metabolism slowed
during and immediately after the Second World War, due to (1) the negative impact
of the conflict on the lives of important scientists and (2) a shift in emphasis in
exercise physiology research toward more pragmatic studies of heat and altitude
acclimation, fitness testing, ergogenic aids, etc. However, metabolic research then
began to accelerate again in the 1950s, on the heels of major advances in biochem-
istry, driven in part by the availability of 14C-labeled tracers in the new nuclear age
(Krebs 1964). Such advancements soon led to the realization that long-chain fatty
acids, not ketone bodies, were the plasma lipid substrate normally utilized by resting
and contracting skeletal muscle. Specifically, in 1958, Fritz and colleagues used
14C-labeled palmitate to demonstrate that electrical stimulation resulted in a dou-
bling in the rate of fatty acid oxidation by isolated rat skeletal muscle (Fritz et al.
1958). Shortly thereafter, Friedberg, Estes, and coworkers reported that exercise
increased the rate of clearance of a bolus of 14C-labeled palmitate from plasma in
humans (Friedberg et al. 1960, 1963). Friedberg and Estes also used 14C-labeled
palmitate to quantify the rate of 14CO2 production across the human forearm and
found that it increased during contractions (Friedberg and Estes 1961). This study
therefore provided the first direct evidence that exercise increases the rate of fatty
acid utilization by the human skeletal muscle. Subsequent experiments using con-
tinuous infusion of various 14C-labeled fatty acids essentially confirmed this con-
clusion and firmly established the importance of plasma-borne fatty acids as an
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energy substrate during exercise (Carlson and Pernow 1961; Havel et al. 1963, 1964,
1967; Issekutz Jr et al. 1965).

This muscling aside of ketone bodies by fatty acids finally broke carbohydrate’s
iron-like grip as “the” source of energy during exercise. In fact, the see-saw nature of
the battle between carbohydrate and fat actually seemed to swing too far the other
way, with at least some scientists of the era apparently believing that the latter was
equally the dominant metabolic fuel, writing that “free fatty acids are the major
circulating metabolites burned by working muscle in the postabsorptive state”
(Havel et al. 1963), “fatty acid oxidation is considered the primary if not the sole
energy source in exercising men” (Rowell et al. 1965), and “muscular work,
performed aerobically in the post-absorptive state, depends mainly on utilization
of fat” (Jones and Havel 1967).2 Glycogen was relegated to a role as an emergency
substrate used only during high-intensity “anaerobic” exercise, whereas the contri-
bution from plasma glucose as an energy source during any form of exercise was
considered to be relatively unimportant (e.g., “glucose uptake from the blood
[is] negligible” (Bergström and Hultman 1966b), “the rates of turnover and oxida-
tion of plasma glucose play only a minor role in exercise metabolism” (Paul and
Issekutz Jr 1967), “the amount of glucose extracted [. . .] does not amount to more
than 5-6% of all energy production of the skeletal muscles at submaximal or
maximal work levels” (Keul et al. 1967)).

1.5 Exercise Metabolism, Late 1960s to ca. 1990:
Carbohydrates Mount a Comeback

Just when it seemed that fatty acids had prevailed in the struggle for supremacy as
the most important fuel during exercise, carbohydrates launched a counterattack.
This was largely the result of the resurrection of Duchenne’s percutaneous needle
muscle biopsy technique (Charrière and Duchenne 1865)3 by Bergström and
Hultman (1966a). Application of this “new” method quickly revealed that the
glycogen content of the v. lateralis declined significantly even during low intensity
exercise (i.e., 30 min of supine cycling at 50 W) (Bergström and Hultman 1966b).
Even greater utilization of glycogen was observed during more prolonged or intense
cycling (Ahlborg et al. 1967; Bergström et al. 1971), Nordic skiing (Bergström et al.

2Although studies using 14C-labeled fatty acids highlighted their own importance as an energy
source during exercise, they also resurrected the long-standing question of the role played by tissue
(muscle) lipid stores. Specifically, oxidation of plasma fatty acids was generally found to account
for only about half of the total amount of fat oxidized during exercise, as determined via indirect
calorimetry (e.g., Havel et al. 1967). However, similar to earlier studies (Leathes 1904, Lafon
1913), attempts in the 1950s and 1960s to directly demonstrate utilization of muscle lipids during
contractions were met with mixed success (Volk et al. 1952; George and Naik 1958; Neptune et al.
1960; Masoro et al. 1966; Carlson 1967).
3For a full history of the method, see Waclawik and Lanska (2019).
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1973) or distance running (Costill et al. 1971, 1973). Perhaps most importantly, it
was shown that an individual’s time to fatigue during moderate-intensity exercise
was highly correlated with their initial muscle glycogen level, as manipulated using
variations in activity and diet (Bergström et al. 1967). These and other studies
therefore cemented the importance of muscle glycogen as an energy source during
exercise, especially at higher intensities typical of many athletic competitions.

During this same period, a number of studies also showed that contrary to
previous suggestions, plasma glucose could also be an important source of energy
during exercise. Using the arteriovenous balance approach, for example, Ahlborg
et al. (1974) found that during prolonged, low-intensity cycling glucose uptake by
the legs could account for 30–40% of total energy expenditure. Even though muscle
glycogen utilization increases at higher exercise intensities, plasma glucose was
found to account for a similar fraction of overall energy production during exercise
at 60–70% of VO2max (Wahren et al. 1971; Martin et al. 1978). Comparable results
were subsequently obtained using other methods, i.e., isotopic tracer infusion or the
glucose clamp technique (see Coggan 1991 for review). It was also demonstrated
that fatigue during prolonged, moderate-intensity exercise was often the result of
both muscle glycogen depletion and hypoglycemia, and not just glycogen depletion
alone (Coyle et al. 1986; Coggan and Coyle 1987), thus aiding carbohydrate’s
revival as a key substrate.

This reemergence of carbohydrates forced lipids to surrender their position as the
chief, if not only, metabolic fuel during exercise. Nonetheless, they retained a
position of importance, especially during lower-intensity, more prolonged exercise.
Indeed, the period from the 1960s to approximately 1990 was marked by an
increasingly sophisticated understanding of the overall pattern of substrate utiliza-
tion during exercise. For example, it was during this period that it was finally
accepted that along with plasma-borne fatty acids, intramuscular triglycerides
could also be an important source of energy during exercise (Watt et al. 2002).
Notably, this was not the result of any single study, but rather was simply due to the
accumulation of evidence over the previous 100 years. This deeper appreciation of
the nuanced nature of substrate choice by contracting muscle was aided along the
way by the development and application of newer, less invasive methods than
muscle biopsy or arteriovenous balance sampling, such as stable isotopic tracer
techniques (see Coggan 1999a, b for review) and 31P, 1H, and 13C magnetic
resonance spectroscopy, used to assess high-energy phosphate, muscle triglyceride,
and muscle and liver glycogen metabolism, respectively (see Kemp and Radda 1994
for review).

The period from the 1960s to ca. 1990 was also marked by an explosion of
research into the biochemical responses and adaptations to exercise at the cellular
level. Spearheaded by work from the laboratory of John Holloszy (Hagberg et al.
2019), such studies demonstrated how muscle mitochondrial respiratory capacity
plays a key role in determining the rates of muscle and liver glycogen utilization
during exercise (Fitts et al. 1975). Research using rats by Holloszy and coworkers
(Holloszy 1967; Holloszy et al. 1970; Molé and Holloszy 1971; Baldwin et al. 1972)
and others such as Pette (reviewed by Pette and Vrbová 2017) and using humans by
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Varnauskas et al. (1970), Morgan et al. (1971), Gollnick et al. (1972, 1973), etc. also
revealed the remarkable adaptability of skeletal muscle in response to changes in
demand imposed by voluntary or involuntary (i.e., electrically stimulated) contrac-
tile activity. These findings paved the way for subsequent more in-depth studies of
the molecular underpinnings of the metabolic responses to acute and chronic exer-
cise in the 1990s and beyond, as discussed previously (Coffey and Hawley 2007;
Röckl et al. 2008; Hawley et al. 2015).

1.6 Exercise Metabolism, ca. 1990 to Present: Détente
Prevails

Approaching the end of the twentieth century, the overall pattern of substrate
utilization during exercise, at least in young, healthy male subjects, had been well
described. Thus, after this point, research into exercise metabolism became increas-
ingly focused on additional factors that might modify this pattern, as previously
noted (Coggan 2014). Although space precludes a detailed discussion of the impact
of such “special circumstances” on the utilization of various fuels, a brief discussion
of some of them is provided below. For additional details, readers are again referred
to previous reviews (e.g., Holloszy and Coyle 1984, Coggan and Williams 1995,
Coggan 1996, 1999a, b, Tarnopolsky and Ruby 2001, Mittendorfer and Klein 2001,
Devries 2016, etc.).

1.6.1 Endurance Training

It was widely recognized in the early years of the twentieth century that trained
athletes are less dependent than untrained individuals on carbohydrate metabolism
during exercise, as evidenced by their lower RER and blood lactate levels. However,
it was generally assumed that this was due to an athlete’s muscles being less
“anaerobic,” or more vaguely ascribed to their greater “skill,” with the only formal
study of this adaptation being a longitudinal training of three men conducted by
McNelly (1936). The previously described boom in exercise/metabolic research in
the 1960s and thereafter, however, brought renewed attention to this question. Key
human experiments during this period included the first cross-sectional (Hermansen
et al. 1967; Evans et al. 1979) and longitudinal (Saltin et al. 1976; Karlsson et al.
1974) studies demonstrating that training reduces the rate of muscle glycogen
utilization during exercise. Subsequently, it was also shown that training reduces
utilization of plasma glucose as well (Coggan et al. 1990; Mendenhall et al. 1994),
with this lesser demand associated with slower rates of hepatic glycogenolysis and
gluconeogenesis (Coggan et al. 1995a). Conversely, the rate of intramuscular tri-
glyceride utilization was shown to be increased (Hurley et al. 1986). All of these
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adaptations were found to be evident not only at the same absolute exercise intensity
but even at the same relative intensity, i.e., the same percentage of VO2max (Coggan
et al. 1995b, 2000). On the other hand, utilization of plasma free fatty acids, which
was initially thought to not only compensate for the slower rate of carbohydrate
utilization but also to at least partially cause it via the glucose-fatty acid cycle
(Holloszy 1973), was found to actually be lower during exercise at the same absolute
intensity after training (Martin 3rd et al. 1993). This is due to a slower rate of
sympathetically mediated adipose tissue lipolysis in the trained state, as training
increases not only the maximal capacity of muscle to oxidize fatty acids but also the
maximal capacity for inward transport as well (Talanian et al. 2010). Consequently,
during exercise at the same relative intensity, when activation of the sympathetic
nervous system is comparable, utilization of plasma free fatty acids is higher in the
trained state (Coggan et al. 2000).

1.6.2 Aging

Measurement of RER and blood lactate levels in older vs. younger subjects during
incremental exercise provided the first evidence that aging results in an increase in
carbohydrate utilization and a decrease in fat utilization during exercise (Robinson
1938; Durnin and Mikulicic 1956; Åstrand 1958). It was only many years later,
however, that this issue was studied in any great detail. Specifically, using stable
isotopic tracers, Sial et al. (1996) determined the rates of whole-body glucose and
free fatty acid turnover while also measuring the overall rates of carbohydrate and fat
oxidation via indirect calorimetry in older and younger men and women exercising
at both the same absolute and the same relative intensity. At the same absolute
intensity, carbohydrate oxidation was higher in older subjects, with this difference
being apparently due to a higher rate of muscle glycogen utilization (as glucose
kinetics were similar). Conversely, the overall rate of fat oxidation was lower,
despite a higher turnover and especially a higher concentration of free fatty acids
in the older subjects. Differences in relative rates of substrate oxidation were
minimized during exercise at the same relative intensity, but free fatty acid concen-
trations were still higher in older subjects, due to their much lower rate of free fatty
acid clearance. These age-related changes in substrate metabolism are undoubtedly
the result of a complex interaction of a host of factors, including decreases in
VO2max with aging, which confounds the basis on which subjects of varying fitness
have conventionally been compared. Another important factor, however, is
age-related changes in the skeletal muscle itself, especially a decline in mitochon-
drial content and hence in respiratory capacity (Coggan et al. 1992), which results in
a greater disturbance in muscle energetics during contractile activity, even when
accounting for the age-related decrease in muscle mass (Coggan et al. 1993).
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1.6.3 Sex

Due to societal norms that discouraged mass participation of women in physical
activity and sports, possible sex-related differences in substrate metabolism during
exercise were the last battlefront to be confronted. In 1979, however, Costill and
colleagues studied male and female distance runners matched for both training
volume and VO2max and found no difference in RER during submaximal exercise
(Costill et al. 1979). Similar results were obtained by Powers et al. (1980) and
Helgerud et al. (1990), whereas Froberg and Pedersen (1984) and Blatchford et al.
(1985) found RER to be lower in women. The first in-depth study, however, was
performed by Tarnopolsky et al. (1990), who used indirect calorimetry and the
muscle biopsy technique to compare substrate metabolism in men and women
matched for training and volume and VO2max while also controlling for menstrual
status and diet. Supporting a sex-related difference in substrate preference, they
found both RER and muscle glycogen utilization to be lower in the women.
Although follow-up studies from the same group as well as others have yielded
somewhat mixed results (Phillips et al. 1993; Tarnopolsky et al. 1995, 1997), the
bulk of the evidence indicates that women do rely somewhat more on fat as fuel
during exercise. As with the effects of aging, multiple mechanisms almost certainly
contribute to this subtle difference, including sex-related differences in gonadal and
catecholamine hormone levels, type II muscle fiber volume, muscle glycolytic/
glycogenolytic enzyme activities, etc. (Coggan 1999a, b).

1.6.4 Obesity and Type 2 Diabetes

Also reflecting societal trends, a number of relatively recent studies have determined
the effects of obesity or diabetes on substrate metabolism, primarily at rest but also in
response to exercise. As reviewed by Houmard (2008), these studies have demon-
strated that although the overall rate of fatty acid uptake by muscle is increased, the
capacity to oxidize such fatty acids is actually reduced. This leads to intramuscular
accumulation of lipid metabolites (triglycerides, ceramides, diacylglycerol, etc.) that
are thought to play a leading role in the muscle insulin resistance in such disease
states. Interestingly, this reduced capacity to oxidize fatty acids is not reversed by
weight loss (Thyfault et al. 2004), suggesting that genetics may play a significant
role in its etiology.

1 A Brief History of Exercise Metabolism 11



1.7 Summary

During the last 150 years, tremendous advances have been made in understanding
the pattern of substrate metabolism during exercise. The picture that has emerged is
that of muscle as a metabolic omnivore, capable of utilizing carbohydrates, fats, and
even to some extent protein to fulfill its energy needs, with the precise mixture of
substrates being oxidized depending upon the exercise intensity and duration and the
individual’s diet, fitness, age, sex, etc. Future studies will undoubtedly provide even
greater detail and lead to an even deeper mechanistic basis for these findings.
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Chapter 2
Overview of Exercise Metabolism

Mark Hargreaves

Abstract The supply of ATP is critical for ongoing skeletal muscle contractile
activity during exercise. The metabolic pathways in muscle that ensure continual
ATP supply are PCr degradation, glycolysis, and the oxidative metabolism of CHO
(muscle glycogen and blood glucose) and fat (muscle triglyceride and plasma fatty
acids). The relative contributions of these metabolic pathways are primarily deter-
mined by exercise intensity and duration but also influenced by training status,
preceding diet, sex, and age. Various interventions designed to enhance sporting
performance target the availability and utilization of metabolic substrates. In addi-
tion, metabolic perturbations and metabolic communication during exercise play key
roles in the acute and adaptive responses to exercise.

Keywords ATP · Phosphocreatine · Carbohydrate · Fat · Metabolism

During exercise, the maintenance of adenosine triphosphate (ATP) levels is critical
for maintaining sarcolemmal excitability, sarcoplasmic calcium (Ca2+) release and
uptake, and myofibrillar force production, thereby ensuring ongoing contractile
activity. Fatigue during varying types of exercise is often associated with metabolic
substrate (PCr (phosphocreatine), muscle glycogen, blood glucose) depletion and/or
accumulation of by-products of metabolism (ADP, Pi, H+, ROS (reactive oxygen
species), heat). Various interventions designed to enhance exercise performance are
targeted at metabolism (see Hargreaves and Spriet 2020 for review).

Since the intramuscular stores of ATP are relatively small (~5 mmol.kg�1 wet
muscle), other metabolic pathways must be activated to sustain rates of ATP
utilization that may vary from 0.4 mmol.kg�1.s�1 during exercise at 200 W
(~75% maximal oxygen uptake, VO2 max) to 3.7 mmol.kg�1.s�1 at 900 W
(~300% VO2 max). These metabolic pathways are summarized in Fig. 2.1.

Phosphocreatine (PCr) serves as an immediate buffer for muscle [ATP] and is
broken down rapidly during all-out, high-intensity exercise. The breakdown of
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glucosyl units, derived from muscle glycogen and blood glucose, in glycolysis
results in the production of pyruvate that is then converted to either lactate or acetyl
CoA, depending on the balance between glycolysis and oxidative metabolism
(Spriet et al. 2000). PCr degradation and glycolysis produce ATP via substrate-
level phosphorylation that can occur in the absence of oxygen; hence, they are often
described as the “anaerobic” energy system (see Chap. 4). The carbohydrate (CHO)
fuel sources, muscle glycogen, and blood glucose, along with fatty acids derived
from muscle and adipose triglyceride stores, produce ATP through a combination of
substrate-level and oxidative phosphorylation in the tricarboxylic acid cycle and
electron transport chain (see Chap. 3). This is critically dependent on mitochondrial
oxygen availability (“aerobic” energy system), which in turn is determined by the
respiratory and cardiovascular systems that facilitate the convective and diffusive
transport of oxygen to contracting skeletal muscle during exercise (Hawley et al.
2014). The power (rate of ATP generation) is greater for the anaerobic system
(PCr > glycolysis) than the aerobic system (CHO > fat), while the order is opposite
for capacity (total amount of ATP generated), with that of the aerobic system (fat >
CHO) being higher than that of the anaerobic system (glycolysis > PCr).

During high-intensity exercise of short duration (<1 min), ATP is primarily
derived from PCr hydrolysis and glycolysis (Fig. 2.2; Medbø and Tabata 1993;
Parolin et al. 1999), with muscle glycogen the dominant CHO source. They are also
crucial for ATP generation during the transition from rest to steady-state exercise
due to the lag in oxidative phosphorylation (Hughson et al. 2001); however, once
exercise extends beyond ~1 min, oxidative phosphorylation is the primary pathway
for ATP generation (Medbø and Tabata 1989). Anaerobic metabolism during exer-
cise will be discussed in more detail in Chap. 4.

During exercise lasting from several minutes to hours, the oxidative metabolism
of CHO and fat provides the vast majority of ATP for contracting skeletal muscle.
Although amino acids from protein can be oxidized by the skeletal muscle during
exercise (Rennie et al. 1981), their contribution to overall energy metabolism is
small, except perhaps under conditions of reduced availability of other substrates
such as muscle glycogen (Howarth et al. 2010). Of greater significance are the

Fig. 2.1 Overview of
metabolic pathways within
skeletal muscle responsible
for ATP generation during
exercise. Abbreviations:
ATP adenosine
triphosphate; ADP
adenosine diphosphate; CO2

carbon dioxide; LAC lactate;
PCr phosphocreatine.
Original figure with
permission from author
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post-exercise increases in synthesis rates of myofibrillar, mitochondrial, and other
proteins that underpin the adaptive responses to various modes of exercise training,
including increased skeletal muscle mass, mitochondrial volume, and buffering
capacity (Wilkinson et al. 2008; Chap. 9).

The intra- and extramuscular sources of CHO and fat are summarized in
Fig. 2.1—muscle glycogen and blood glucose (derived from liver glycogenolysis
and gluconeogenesis and the gut when CHO is ingested) and fatty acids from
intramuscular (IMTG) and adipose triglyceride stores. The primary determinants
of the relative contributions of CHO and fat to oxidative metabolism during exercise
are exercise intensity and duration (Figs. 2.3 and 2.4; Romijn et al. 1993; van Loon
et al. 2001; Watt et al. 2002). Other factors influencing exercise metabolism include

Fig. 2.2 Relative
contributions of PCr,
glycolysis, and oxidative
phosphorylation to ATP
generation during 30s of
maximal exercise. From
Parolin et al. (1999) with
permission from the
American Physiological
Society

Fig. 2.3 Relative
contributions of CHO and
fat fuel sources to energy
turnover during exercise of
increasing intensity. From
Romijn et al. (1993) with
permission from the
American Physiological
Society
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training status (Chap. 10), substrate availability as influenced by preceding diet, age
(Chap. 14), sex (Chap. 15), and environmental factors (Febbraio 2000; Murray
2016).

Carbohydrate oxidation, notably from muscle glycogen, dominates at higher
exercise intensities, while maximal fat oxidation occurs at ~60–65% VO2 max
(Romijn et al. 1993; van Loon et al. 2001). The reduction in fat oxidation at higher
exercise intensities is due to both lower plasma fatty acid availability and intramus-
cular factors that limit mitochondrial fatty acid uptake and oxidation (Romijn et al.
1993). Given the dominance of CHO use during exercise at the intensities commonly
observed in competitive athletic events (Hawley and Leckey 2015), the relatively
finite endogenous CHO reserves, and the observation that fatigue is often associated
with muscle glycogen depletion and hypoglycemia (see Chap. 18), there has been
considerable interest in the use of CHOs as ergogenic aids in sports (Cermak and van
Loon 2013). Ingestion of CHO during prolonged strenuous exercise maintains blood
glucose levels, muscle glucose uptake and oxidation, and the ability to sustain
exercise intensities above ~70% VO2 max for longer periods (Angus et al. 2002;
Coggan and Coyle 1987, 1988; Coyle et al. 1983). That said, while CHO ingestion
delays fatigue, it does not prevent it, suggesting factors other than CHO availability
contribute to fatigue, although it is also possible that muscle glycogen levels become
depleted at intramuscular locations critical for the processes involved in excitation-
contraction coupling (Ørtenblad et al. 2013).

The utilization of muscle glycogen (Chap. 5) and fatty acids derived from IMTG
(Chap. 8) is highest during the early part of prolonged exercise and declines
progressively, with concomitant increases in blood glucose and fatty acid uptake
and oxidation by the contracting skeletal muscle (van Loon et al. 2005; Watt et al.

Fig. 2.4 Relative
contributions of CHO and
fat fuel sources to energy
turnover during prolonged
cycling exercise at~68%
VO2 max in trained men.
“Other CHO” (mainly
muscle glycogen) oxidation
estimated as the difference
between total CHO
oxidation assessed from
indirect calorimetry and
tracer-determined glucose
uptake. From Angus et al.
(2002) with permission from
the American Physiological
Society
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2002). The increase in muscle glucose uptake (Chap. 6) is accompanied by an
increase in liver glucose output from both glycogenolysis and gluconeogenesis
(Chap. 11; Ahlborg et al. 1974; Wasserman 2009). During prolonged strenuous
exercise, liver glucose output falls below muscle glucose uptake resulting in hypo-
glycemia which ultimately limits both muscle and cerebral glucose uptake. The
maintenance of blood glucose levels by CHO ingestion results in improved endur-
ance exercise performance (Coyle et al. 1983; Coggan and Coyle 1987). Increased
adipose tissue lipolysis during exercise results in a progressive increase in plasma
fatty acid levels (Chap. 7; Horowitz and Klein 2000, supporting greater muscle fatty
acid uptake and oxidation (Chap. 8; Turcotte 2000; Watt et al. 2002). Inhibition of
adipose tissue lipolysis reduces muscle fatty acid uptake and results in greater
reliance on muscle glycogen and IMTG, with no effect on muscle glucose uptake
(van Loon et al. 2005). There has been some debate on IMTG utilization during
exercise (Chap. 8; Kiens 2006), but it does appear to be an important substrate for
contracting skeletal muscle (Stellingwerff et al. 2007). Despite activation of oxida-
tive metabolism, there is production of lactate and its accumulation within muscle
and blood during exercise (Spriet et al. 2000). Although for many years lactate was
considered simply a by-product of metabolism, it is now recognized as an important
substrate for oxidation, gluconeogenesis, and muscle glycogenesis and as a signal-
ling molecule mediating inter-organ communication and exercise adaptations
(Brooks 2020).

The regulation of metabolism during exercise involves the interplay of various
local and systemic factors, as exemplified by the so-called dual control of muscle
glycogenolysis by contractions and epinephrine (Richter et al. 1982). Exercise-
induced changes in substrate, hormone, and electrolyte levels, whole body and
local blood flows, and body temperature are all implicated in some way in the
regulation of metabolism during exercise (Hawley et al. 2014). The effectiveness
of metabolic regulation during exercise is demonstrated by the observation that ATP
concentrations in contracting skeletal muscle are maintained at or close to resting
levels, except perhaps at fatigue during maximal, sprint (Greenhaff et al. 1994) and
prolonged, endurance exercise (Sahlin et al. 1990). Alterations in the intramuscular
concentrations of Ca2+, ADP, AMP, Pi, PCr, and glycogen, together with changes in
cyclic AMP, nitric oxide (NO), ROS, and muscle tension and temperature, have both
direct effects on metabolic pathways via allosteric and covalent regulation of the
activities of key enzymes and translocation of substrate transporters such as GLUT4
and FAT CD36 and indirect effects via activation of various kinases and signalling
pathways. Most attention in the skeletal muscle has focused on those responsive to
changes in Ca2+ and energy status (Chen et al. 2000; Rose and Hargreaves 2003;
Stephens et al. 2002; Wojtaszewski et al. 2000; Yu et al. 2003). It is teleologically
appealing that AMP-activated protein kinase (AMPK), a sensor of muscle energy
charge and glycogen levels, is implicated in the regulation of muscle metabolism
during exercise, but this appears not to be the case (McConell 2020). Rather, AMPK
may be more important in mediating post-exercise metabolism and insulin sensitiv-
ity and muscle adaptations to exercise such as increased mitochondrial biogenesis
and GLUT4 expression (Flores-Opazo et al. 2020). In addition to effects on muscle
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function and metabolism during exercise, changes in sarcoplasmic Ca2+ levels also
mediate key adaptive responses to exercise (Chin 2010).

It is likely that there are complex spatial, temporal, and redundant interactions
between multiple signalling pathways in skeletal muscle during exercise. Indeed, a
recent study employing phosphoproteomic analyses of human skeletal muscle sam-
ples before and after intense exercise identified >1000 phosphosites on >550 pro-
teins, many of currently unknown functional relevance (Hoffman et al. 2015).
Subsequent in vitro studies in myoblasts demonstrated that the simultaneous admin-
istration of Ca2+ and β-adrenergic agonists recapitulated much of the exercise
phosphoproteomic signature, emphasizing again the potential importance of “dual
control” (Needham et al. 2019). Alterations in muscle high energy phosphate (ATP,
PCr) levels have been implicated in muscle adaptive responses to exercise (Ren et al.
1993; Yaspelkis et al. 1999), as have variations in muscle glycogen availability
(Hawley et al. 2018), potentially via activation of AMPK and other signalling
pathways. There has been considerable interest in the molecular regulation of the
adaptive responses to acute and chronic exercise, with a focus on transcriptional and
translational regulation and the roles of phosphorylation, methylation, and acetyla-
tion of key enzymes and transcriptional regulators (Egan and Zierath 2013; McGee
and Hargreaves 2019). An emerging and future area of interest is the potential
interaction between exercise metabolism and these molecular responses mediating
muscle adaptation (Seaborne and Sharples 2020). Finally, over the last two decades,
the important role of metabolic communication and inter-organ cross talk in medi-
ating the acute responses and chronic adaptations to exercise has been recognized
(Murphy et al. 2020).

In summary, the supply of ATP is critical for ongoing skeletal muscle contractile
activity during exercise. The metabolic pathways in muscle that ensure this are PCr
degradation, glycolysis, and the oxidative metabolism of CHO and fat. The relative
contributions of these pathways are primarily determined by exercise intensity and
duration but also influenced by training status, preceding diet, sex, and age. In
addition, metabolic perturbations and metabolic communication during exercise
play key roles in the acute and chronic responses to exercise. The subsequent
chapters in this volume provide more detailed summaries of our contemporary
understanding of exercise metabolism.
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Chapter 3
Exercise: Thermodynamic and Bioenergetic
Principles

Jens Frey Halling, Anders Gudiksen, Henriette Pilegaard,
and P. Darrell Neufer

Abstract The ATP energy charge needed to generate and sustain life is derived
from the degradation of organic substrates with higher free energy to products with
lower free energy. This difference in free energy is most efficiently harnessed by the
mitochondrial oxidative phosphorylation (OXPHOS) system, which uses the com-
plete oxidation of products to drive a series of thermodynamically based energy
transformation steps to maximize the synthesis of ATP energy charge. Physical
activity can dramatically increase the rate at which this ATP free energy charge is
dissipated and therefore must be met by an equivalent increase in ATP production
rate to sustain the activity. OXPHOS efficiency is obviously important to physical
performance. As presented in this review, the efficiency of the OXPHOS system can
be influenced by many factors that either optimize or at least partially decouple one
or more energy transformation steps. Although much remains to be learned regard-
ing how such processes are regulated, it is clear that modulating OXPHOS efficiency
can have profound implications for exercise performance as well as overall health.

Keywords Mitochondria · Oxidative phosphorylation · Bioenergetic efficiency ·
Exercise performance

“Jens Frey Halling” and “Anders Gudiksen” are co-first authors. “Henriette Pilegaard” and
“P. Darrell Neufer” are co-corresponding authors.

J. F. Halling · A. Gudiksen · H. Pilegaard (*)
Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen,
Copenhagen, Denmark
e-mail: hpilegaard@bio.ku.dk

P. D. Neufer (*)
East Carolina Diabetes & Obesity Institute, Departments of Physiology, Biochemistry &
Molecular Biology, and Kinesiology, East Carolina University, North Carolina, USA
e-mail: NEUFERP@ecu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. McConell (ed.), Exercise Metabolism, Physiology in Health and Disease,
https://doi.org/10.1007/978-3-030-94305-9_3

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94305-9_3&domain=pdf
mailto:hpilegaard@bio.ku.dk
mailto:NEUFERP@ecu.edu
https://doi.org/10.1007/978-3-030-94305-9_3#DOI


3.1 Introduction

Why should someone interested in exercise physiology care about thermodynamics
and mitochondrial bioenergetics? The answer should be obvious—the transition
from rest to high-intensity aerobic exercise imposes an energetic demand on the
skeletal muscle that is unique compared with almost all other tissues. ATP is known
as the energy currency of the cell, and yet the concentration of ATP rarely changes in
the muscle except under the most intense, exhaustive exercise conditions. This
ability to hold ATP concentrations steady reflects the remarkable ability of an energy
transfer system that is exquisitely poised to match ATP production to rates of ATP
utilization. The bioenergetics behind ensuring that the energy currency of the cell
remains constant is based on the thermodynamic principles that govern transforma-
tions among all forms of energy in engineering as well as the physical and biological
sciences. The goal of this chapter is to provide an overview of those thermodynamic
and bioenergetic principles that are foundational to life, and by extension to energy
metabolism during exercise, followed by consideration of various mechanisms by
which mitochondrial bioenergetics may be regulated to affect metabolic efficiency
and therefore exercise performance.

3.2 Thermodynamic Principles

Living cells and organisms must constantly perform chemical and physical work to
sustain life, to grow, and to reproduce. These functions are dependent on the ability
to harness and transform energy, which must follow the laws of thermodynamics.

The first law is the principle of conservation of energy and states that for any
chemical or physical process, the total amount of energy within the universe remains
constant; energy can be transformed among different forms (i.e., thermal, kinetic,
chemical, electrical, etc.), but can be neither created nor destroyed. The second law
of thermodynamics is the principle of irreversibility and states that for any natural
process, the entropy (i.e., the degree of disorder or randomness) of the universe
increases. When first encountered, the first two laws of thermodynamics seemingly
present a conundrum: if the total amount of energy within the universe is constant
and continuously becoming more disordered, then how is it possible that biological
energy transformations are able to drive the assembly of molecules into highly
organized living systems?

To understand how life itself does not violate the second law of thermodynamics
requires defining “universe” in the context of biological systems and surroundings.
The term “universe” can apply to any chemical or physical process within a
biological system, be it a living organism, a cell, or a single reaction, and the
surroundings in which that process is occurring. The celestial universe—the matter,
energy, and even time in all of space—is an isolated system, that is, a system in
which no exchange of energy (i.e., heat) or material can occur with the surroundings.
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Conceptually, it is easier to think of an isolated system as a perfectly insulated box
containing molecules of an ideal gas (Fig. 3.1a). With no exchange of energy or
material, and an unrestricted degree of randomness, the energy within a simple
isolated system is a function of the internal temperature as reflected by the Brownian
motion of the gas particles, as long as the temperature is greater than absolute zero.

A closed system on the other hand is one in which heat, but no material, can
exchange with the surroundings. Closed systems are helpful to conceptually illus-
trate how different parameters affect the energy within a system and its surroundings.
Imagine a box (i.e., the system) that can exchange heat with the surroundings with
one interior side divider that can be moved inward and fixed to condense the space
occupied by the gas molecules (Fig. 3.1b). The change in available energy, known as
Gibbs free energy (ΔG), of the gas molecules as a result of instantaneously con-
densing the size of the box is given by:

ΔG ¼ ΔH� TΔS

where ΔH is the change in enthalpy (i.e., total heat content of a system), T is the
absolute temperature, and ΔS is the change in entropy. Condensing the gas

Fig. 3.1 Schematic diagram illustrating the principles of the first and second laws of thermody-
namics. Refer to text for details
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molecules initially raises the thermal energy within the system (i.e., +ΔH), but that
heat is lost as the system re-equilibrates with the surroundings. ΔS is negative
relative to the original state given the gas molecules occupy a smaller space and
are therefore less random. Assuming T is unchanged due to the size of the surround-
ings relative to the system, the net change in ΔG relative to its original state is
positive due to the loss of entropy. In other words, a net input of energy is required to
condense the space occupied by the gas molecules. A caveat to this example is that
the potential energy associated with the loss of entropy is available only if the divider
is at least partially permeable to the gas molecules; otherwise, the gas molecules
have no option to fill the voided space. If the divider is permeable, the gas molecules
will spontaneously redistribute throughout the system, representing a negative ΔG
due to the gain in entropy.

What would the scenario be if the divider is not fixed but capable of sliding within
the box with some level of friction (Fig. 3.1c)? When the divider is moved from right
to left condensing the space available to the gas molecules, a portion of the +ΔG
created within the system can be used to perform work on the divider—to move it
back to the right. If heat is added to the system from the surroundings, then the
divider can be moved forward and/or a greater amount of friction overcome
(Fig. 3.1d). This is another example of the first law of thermodynamics; the increase
in internal energy of a system is equal to the energy added minus the amount lost as a
result of work done by the system.

The point of this didactic exercise is to recognize that cells and organisms depend
on and utilize the laws of thermodynamics to harness energy from food and
transform it into the energy necessary to generate and sustain life (i.e., the energy
for work ¼ energy from food—energy lost to system). A simple example is an ion
gradient across a membrane, which represents chemical and electrical potential
energy based on ΔS. When coupled to another process (e.g., ATP synthesis), that
potential energy can then be utilized to drive an otherwise unfavorable process.
Living cells and organisms are open systems, meaning that they exchange both
material and energy with their surroundings. How then can a process that represents
more order, like the growth of cells, be possible without violating the second law of
thermodynamics; i.e., the combined entropy of a system and its surroundings must
increase during all chemical physical processes? The answer lies in the question; the
entropy increase does not need to occur within the system itself. The order produced
by the growth of cells is more than compensated for by the disorder imparted on the
surroundings. In other words, living cells and organisms create and sustain internal
order by taking free energy harnessed from nutrients or the sun, and returning to their
surroundings a greater amount of energy as heat and entropy. A perfect example is
physical exercise, which requires the uptake of complex carbon molecules and
oxygen from the environment into the actively contracting muscle, seemingly
creating more order within the system. However, the release of heat and carbon
dioxide molecules to the environment results in a net increase in entropy. Thus, the
energy in the complex carbon molecules is dissipated more efficiently by the system
(i.e., the contracting muscle) to perform work (Fig. 3.2). There are numerous
examples in nature where the dissipation of energy itself drives the formation of a
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more orderly system to dispel energy more effectively (e.g., the formation of
hurricanes/cyclones to dissipate the difference in heat energy between the hot sea
surface and cold tropopause). This has led to the intriguing idea that evolution favors
order out of disorder to achieve a greater efficiency of energy dissipation (Koch and
Britton 2018; Prigogine 1978; Yun et al. 2006). Compared with inanimate objects,
living systems are the embodiment of that principle.

3.3 Nonequilibrium Thermodynamics: Using Natural
Forces to Establish Displacement from Equilibrium

From the previous section, the obvious question arises as to what natural source of
energy can serve as a driving force sufficient to create and sustain the displacement
from equilibrium that constitutes life for cells and organisms? For plants and some
organisms, sunlight serves this function by powering the conversion of CO2 and
H2O into O2 and chemical energy via photosynthesis. For all other living organisms,
the reduction of O2 serves this function, albeit in a less direct way than sunlight. The
oxygen atom is the second most electronegative element in the universe (fluorine is
the most electronegative) due to two unpaired electrons in its outer orbital. The drive
to acquire electrons extends to the oxygen molecule; in fact, the reduction of O2 to
H2O has one of the highest standard reduction potentials (Eo0) in nature (+816 mV).
Put simply, O2 is an extremely powerful molecular electron magnet.

But is the reduction potential of O2 sufficient to power the energy transformations
necessary for life? Consider the catabolism of glucose through glycolysis, the
pyruvate dehydrogenase complex and the citric acid cycle, which produces six
molecules of CO2, ten molecules of NADH, two molecules of FADH2, and two
molecules of ATP. The NAD+/NADH and FAD/FADH2 redox couples have stan-
dard reduction potentials of �320 mV and � 220 mV, respectively. Given the

Fig. 3.2 The uptake of glucose and diffusion of oxygen into muscles during exercise are processes
that reduce the entropy of the muscle, when viewed as a closed system, which is seemingly in
conflict with the second law of thermodynamics. However, during muscular work, the metabolism
of nutrients and the release of heat to the surrounding environment cause a net increase in entropy.
Thus, when viewed as an open dissipative system, muscular work during exercise serves to increase
the entropy of the universe
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extremely high Eo0 of O2, the metabolism of glucose could easily be completed by
O2 converting NADH and FADH2 back to their oxidized forms (NAD+, FAD) with
two molecules of H2O as the final reaction product. This would complete the
chemistry but fail to capitalize on the >1 volt of free energy (ΔGredox) that is present
between the two electron carrier redox couples and the O2/H2O redox couple.

The key to metabolism, and perhaps life itself, is how that electrical potential
energy is harnessed, transformed, and repurposed by the mitochondrial electron
transport system (ETS). With redox pull by oxygen established as the driving
force (i.e., analogous to gravity pulling water over a waterfall), electrons are
drawn through a series of redox couples embedded within the multiprotein com-
plexes that comprise the ETS. Beginning with oxygen (Eo0 ¼ ~816 mV) drawing
electrons from cytochrome a3 (E

o0 ¼ ~600 mV) in complex IV, each redox couple
draws electrons from the redox couple with a lower Eo0 just upstream, continuing
through cytochrome c, complex III, the coenzyme Q pool, and complex I to NADH.
Electrons are also drawn into the Q pool from other redox proteins, including
succinate dehydrogenase (complex II), the electron transfer flavoprotein, mitochon-
drial glycerol-3-phosphate dehydrogenase, as well as other dehydrogenases. It is
useful to keep in mind that the flow of electrons, as in any electrical current, will be
wide open as long as both the electron source and acceptor are available and no
regulators are present, emphasizing that O2 imposes a powerful and constant draw on
electrons.

DispersingΔGredox in smaller increments however does not accomplish anything.
Three additional and quite remarkable features of nature contribute to the initial
energy transformation. First, the entire ETS is embedded within the inner membrane
of the mitochondria. Second, electron flux through complexes I, III, and IV is
directly tied to proton translocation (i.e., pumping) from the inner to outer surface
of the inner mitochondrial membrane, which generates an electrical (ΔΨm; mem-
brane potential) and chemical (H+ concentration) gradient across the membrane
collectively known as the proton motive force (pmf). The biophysical mechanism
(s) by which electron flux is coupled to proton translocation is still unknown, but it is
clear that the three largest changes in Eo0 between specific redox couples occur in
complexes I, III, and IV, implying that the free energy released at each of these steps
is used to power proton translocation. Again, it is difficult to understate how much
energy ΔGpmf represents at the molecular level. ΔΨm is typically�170 to �200 mV
in a resting cell, but when factoring in the high specific capacitance of lipid bilayers
(ability to separate charge), the specific charge is estimated to be in excess of
300,000 V/cm (Nicholls and Ferguson 2013; Sperelakis 2021), which, at the molec-
ular level, is approximately the energy contained in a lightning bolt. The third critical
feature is that for each of the three complexes, electron flux and proton pumping are
co-dependent—one cannot occur without the other. The fourth feature is an exten-
sion of the third—the buildup of ΔGpmf on the outer surface of the inner membrane
represents a backpressure, or brake, on the proton pumps and thus electron flux
through the ETS.

The net effect is that the natural potential energy in ΔGredox is partially
transformed to a different form of potential energy, ΔGpmf (analogous to
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Fig. 3.1c). Importantly, the ETS is converted from a wide-open circuit to one that is
limited by ΔGpmf. In fact, by default, the system appears set to use ΔGredox to drive
ΔGpmf until the backpressure on the pumps (i.e.,ΔGpmf) completely counterbalances
the driving force of the pumps (i.e., ΔGredox), at which point electron flux, proton
pumping, and oxygen consumption would theoretically cease. Practically however,
mitochondria never achieve such a “static head” because protons continuously
conduct or “leak” at low rates back into the mitochondrial matrix, mediated primar-
ily by membrane-bound proteins (Divakaruni and Brand 2011). ΔGpmf is therefore
less than maximum—i.e., the brake on the ETS is not fully engaged—and as such,
electron flux and O2 consumption proceed at a rate set by the basal rate of proton
conductance. From an engineering perspective, the loss of some of the free energy
associated withΔGpmf may seem unnecessarily wasteful. However, in the absence of
basal proton conductance, the redox couples within the ETS are maximally reduced
(i.e., oxidation potential is maximal) which will dramatically accelerate electron
transfer directly to oxygen to form the highly reactive superoxide free radical
(Murphy 2009). The basal proton conductance rate characteristic of mitochondria
appears, in fact, to be sufficient to lower ΔGpmf just enough to minimize superoxide
production (Korshunov et al. 1997).

With the stage set, mitochondria are poised to complete a second energy trans-
formation by using ΔGpmf to drive ATP synthesis. It is important to recognize that
the natural equilibrium of the ATP hydrolysis reaction under standard conditions
heavily favors the products of the reaction with an apparent equilibrium constant of
105 M. In cells, however, the mitochondrialΔGpmf is sufficient to drive displacement
of the reaction a full ten orders of magnitude away from equilibrium (i.e., to a mass
action ratio of 10�5 M) (Davies et al. 1982). Thus, the electrochemical free energy of
ΔGpmf is transformed to a chemical free energy of ATP hydrolysis (i.e.,ΔGATP). The
extent to which ΔGpmf can drive this displacement is not infinite but, similar to the
backpressure of ΔGpmf on ΔGredox, is defined by how far the reaction can be
displaced before the free energy of ATP hydrolysis (i.e., ΔGATP) counterbalances
ΔGpmf. At that point, the backpressure of ΔGATP is fully applied (i.e., second brake
applied), ATP synthesis stops, and the energy charge is fully established. Concep-
tually, it is useful to think of ATP synthase as a reversible ATP hydrolyzing proton
pump, meaning that in the absence of a membrane potential, the enzyme is an
ATPase that pumps protons. The direction of proton movement through ATP
synthase is thus a function of the balance between ΔGpmf and ΔGATP.

ΔGATP is the source of free energy, the energetic “currency,” for the rest of the
cell. By coupling to the hydrolysis of ATP, hundreds if not thousands of reactions
and processes (e.g., ion gradients, biosynthetic reactions, the cross-bridge cycling of
actin/myosin, etc.) are displaced away from their default equilibrium state, with the
extent of displacement being a direct function of the magnitude of ΔGATP available.
It should be apparent that once all non-equilibrium thermodynamic states are
established and held—that is, once the cell has been brought to life by ΔGATP—

the subsequent rate of ATP utilization for the entire life of the cell is determined by
the energy required to maintain or reestablish (if/when partially dissipated) those
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thermodynamic displacements from equilibrium. In other words, the rate of ATP
production is governed by and continuously adjusting to the rate of ATP utilization.

3.4 How Are Bioenergetic Systems Engaged by Exercise?

Heavy exercise can increase the utilization rate of ATP in skeletal muscle of well-
trained cyclists by 50- to 100-fold, equivalent to ~1.5–3.0 μmol ATP � g�1 muscle �
s�1. ATP concentration in muscle is only ~5 μmol � g�1 muscle, sufficient to last
only a few seconds. Even during submaximal cycling exercise (75% VO2 max) that
can be sustained for>1 hour at an ATP utilization rate ~ 0.4 μmol ATP � g�1 muscle
� s�1, ATP concentration is sufficient to last only ~15 s (Hargreaves and Spriet 2020;
Meyer and Wiseman 2012). Despite this limited supply, muscle ATP concentration
does not decline during exercise except under the heaviest workloads at or near
exhaustion. It should be apparent from the preceding section that this remarkable
capacity to maintain energy charge reflects the massive free energy pent up in the
OXPHOS system (i.e., the interplay between ΔGredox, ΔGΔΨ, and ΔGATP). Analo-
gous to the controlled release of energy by a dam, the OXPHOS system is poised to
respond instantly to an increase in ATP utilization rate over a wide range. This is
exactly what is observed experimentally in isolated mitochondria and permeabilized
fiber bundles; the addition of ADP (modeling an increase in ATP utilization) elicits a
nearly instantaneous proportional steady-state increase in proton conductance,
which is mediated (sequentially) through the ATP synthase, decrease in ΔΨ,
increase in electron flux and oxygen consumption rate, increase in reducing equiv-
alent oxidation rate, and therefore an increase in substrate oxidation rate.

In vivo however, the time required for muscle cells to reach a new steady-state
rate of oxygen consumption when transitioning from one workload to another is not
instantaneous but can require 60–120 seconds or more. This is due to the complexity
of cells and the spatial challenge of coupling sites of ATP utilization to sites of ATP
production. Total mitochondrial volume comprises only between 3 and 12% of
cellular volume in skeletal muscle cells (depending on fiber type and imaging
technique) (Dahl et al. 2015; Morgan et al. 1971; Palade 1952). Moreover, the
diffusion rates of adenine nucleotides, particularly ADP, are orders of magnitude
lower than required to support high rates of ATP turnover in muscle fibers
(Kammermeier 1987; Yoshizaki et al. 1990). To overcome this problem, nature
evolved to employ high-energy but inert phosphagen compounds, such as phospho-
creatine (PCr), to serve in an energy transfer system. Creatine kinase (CK) catalyzes
the reversible reaction PCr2� + MgADP� + H+ $ MgATP2� + Cr and thus can
either utilize PCr to generate ATP or store energy from ATP-producing sites. Key
features of the system include the large cytosolic pool of total creatine
(~45 μmol�g�1), the buildup of PCr within the pool (2:1 PCr:Cr) driven by OXPHOS
ATP, the presence of specific CK isoforms localized to both sites of ATP utilization
(i.e., myofibrillar, sarcoplasmic reticulum, sarcolemmal membrane) and ATP pro-
duction (i.e., mitochondria and cytosol via glycolysis), and the high standard

34 J. F. Halling et al.



equilibrium (~150; i.e., heavily favoring ATP) (Golding et al. 1995) and rate
constants (approximately tenfold greater than ATP synthase) of CK. As put forward
by Wallimann et al. (Wallimann et al. 1992), the creatine shuttle system functions
not only as a temporal buffer in localized microcompartments of ATPase activity but
critically as a spatial energy transfer circuit that connects sites of ATP utilization to
subcellular sites of ATP production. Consequently, any stepwise increase in steady-
state ATPase activity will have the net effect of instantly decreasing PCr concentra-
tions within the local microenvironment, which is then effectively transmitted
through the cytosolic PCr/CK pool increasing ADP concentration at the mitochon-
dria (via CKmito) and thus ATP production, the energy from which is transmitted
back through the same circuit to the site of ATPase activity. The net effect is a
simultaneous decrease in [PCr] and increase in oxygen consumption rate over an
equal but opposite exponential time course until a new steady-state energy transfer
balance through the shuttle is reached (Fig. 3.3).

Maintaining ΔGATP over a wide range of ATP utilization rates is essential to
preserving life for the cell—to keep exercise from inducing energetic suicide. In fact,
during progressive exercise to exhaustion in humans, muscle ΔGATP only decreases
from ~64 to 50 kJ � mole�1 (Jeneson and Bruggeman 2004). If ΔGATP declined by
an additional 2 kJ � mole�1, sufficient free energy would not be available for the
sarcoplasmic reticulum Ca2+ ATPase to re-sequester calcium against the remaining
concentration gradient, or for the Na+/K+-ATPase pump to reestablish the Na+ and

Fig. 3.3 The creatine kinase (CK)/phosphocreatine (PCr) shuttle system serves to increase the
speed of energy transfer throughout the cell. Mitochondrial CK (mCK) is located in the mitochon-
drial intermembrane space and uses the ATP/ADP gradient to catalyze the phosphorylation of
creatine (Cr) into PCr. Several different cellular compartments, such as the sarcoplasmic reticulum,
the sarcolemmal Na+/K+ pump, and the sarcomeres, contain local CK isoforms that catalyze the
reconversion of PCr to ATP to fuel ATPase activity at specific cellular compartments based on
energetic demand. The net speed of energy transfer between sites of utilization and production is
facilitated by flux through the cytosolic CK circuit and the higher diffusion coefficient of PCr
compared with ATP
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K+ gradients across the plasma membrane (Chen et al. 1998; Meyer and Wiseman
2012).

3.5 Factors Affecting Mitochondrial Bioenergetic Efficiency

Given the tremendous amount of free energy transferring from ΔGredox to ΔGΔΨ and
ΔGΔΨ to ΔGATP, it is not hard to imagine the importance of OXPHOS efficiency to
physical performance capacity. In a sense however, optimizing OXPHOS efficiency
is also in the eye of the beholder—advantageous to the endurance athlete to
maximize performance, but disadvantageous to the obese individual trying to lose
weight. Thermodynamic efficiency is defined as the ratio between the output and
input powers of two coupled reactions, with power defined as the product of the flux
and force for each reaction. Thus, conceptually, efficiency may be impacted or
regulated at any of the energy transfer steps, i.e., H+ pumping relative to electron
transfer within each of the individual complexes (Di and Venditti 2001) or ATP
production relative to H+ translocation by ATP synthase. Net efficiency across the
entire OXPHOS system can also be influenced by factors that decouple energy
transfer between reactions or within the system overall (i.e., electron leak,
non-ATP synthase-mediated proton conductance, proton “slipping,” etc.), which in
turn may be triggered by allosteric and/or structural changes within protein com-
plexes, supercomplexes, and/or inner membrane phospholipids. This section will
discuss factors that can influence mitochondrial bioenergetic efficiency, both in the
context of exercise physiology where mitochondrial efficiency may have a huge
impact on the economy of work and in relation to chronic energy overload (Fig. 3.4).

3.6 ROS Production as a Determinant of Bioenergetic
Efficiency

ROS production from electron leak represents an uncoupling of electron transfer
from proton translocation and thus a decrease in the conversion efficiency between
ΔGredox andΔGΔΨ. Mitochondria are known to produce and emit ROS, although the
most generous estimates from the earliest studies of mitochondrial ROS production
suggest that only 2–5% of the total oxygen consumption can be reduced to super-
oxide (Boveris and Chance 1973; Loschen et al. 1974). Later studies have suggested
that the maximal fraction of oxygen consumption that can be used to form ROS in
muscle mitochondria is 0.15% (St-Pierre et al. 2002).

It has often been proposed that mitochondria are a major source of ROS during
exercise (Di and Venditti 2001; Kanter 1994; Malin and Braun 2016; Scheele et al.
2009; Urso and Clarkson 2003). This widespread assumption seems to have arisen
from the fact that it was shown in the 1980s that contracting skeletal muscle
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produces ROS (Davies et al. 1982; Jackson et al. 1985)—a finding that came
relatively shortly after the discovery that mitochondria are important sources of
ROS (Boveris and Chance 1973). However, if mitochondrial ROS production was
proportional to the increased oxygen consumption during exercise, then mitochon-
drial ROS production should increase 50–100-fold during conditions resembling
maximal aerobic contractions (i.e., maximal ADP-stimulated respiration). On the
contrary, when mimicking the substrate and pH conditions observed in the skeletal
muscle during mild and intense aerobic exercise, the rate of mitochondrial H2O2

production drops by 15–20% compared with “resting” conditions, despite a three- to
tenfold increase in oxygen consumption during simulated “exercise” (Goncalves
et al. 2015). Therefore, the apparent reduction in mitochondrial ROS production
during exercise can be considered a mechanism to increase mitochondrial efficiency,
albeit this can likely only explain a minor portion of the four- to fivefold increase in
mitochondrial efficiency that occurs when going from submaximal to maximal
ADP-stimulated respiration (Lark et al. 2016).

Non-mitochondrial sources of ROS have been shown to contribute substantially
more than mitochondria to exercise-induced ROS production (Powers and Jackson

Fig. 3.4 Factors affecting mitochondrial efficiency during exercise. At rest and/or at times of
nutritional overload, the high mitochondrial ATP concentration inhibits proton reentry through the
ATP synthase. This increases mitochondrial membrane potential (ΔΨM) and creates a backpressure
on the electron transport system resulting in higher proton leak, higher ROS production, and lower
bioenergetic efficiency. During exercise, the high demand for ATP removes the brakes on proton
conductance and electron flow, which automatically maximizes bioenergetic efficiency. Factors
such as mitochondrial network structure, membrane phospholipid composition, and supercomplex
formation may influence mitochondrial efficiency both at rest and during exercise
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2008), which could theoretically contribute to reduce bioenergetic efficiency at the
whole-body level by “stealing” oxygen that would otherwise be available for ATP
production. However, the studies showing increased non-mitochondrial ROS pro-
duction during exercise have primarily employed indirect and qualitative ROS
measurements, such as difluorofluorescein (Sakellariou et al. 2013) and
dichlorofluorescein fluorescence (Henriquez-Olguin et al. 2019). To our knowledge,
no studies have succeeded in quantifying the molar amounts of oxygen that is used
for ROS production during exercise. Therefore, improved methods for quantifying
non-mitochondrial exercise-induced ROS will be necessary to determine the degree
to which this contributes to altering metabolic efficiency.

3.7 Protein-Mediated Proton Leak

3.7.1 Uncoupling Proteins (UCPs)

The main physiological mechanism of regulating mitochondrial efficiency is thought
to be proton leak through transporters in the inner mitochondrial membrane. Thus, a
number of proteins in the solute carrier (SLC)25 family have been identified as
“uncoupling proteins”meaning that they can mediate the leakage of protons from the
intermembrane space to the matrix and thereby uncouple the proton motive force
from ATP production. Most prominent is perhaps uncoupling protein 1 (UCP1), or
SLC25A7, which mediates the thermogenic function of brown adipose in rodents
(for a review, see Nicholls & Rial, (Nicholls and Rial 1999)). In that regard, it would
be shameful to miss the opportunity to mention that UCP1 was discovered by Gillian
Heaton and colleagues (Heaton et al. 1978). However, although UCP1 is vital for the
ability of mice to tolerate cold exposure without prior acclimation (Enerback et al.
1997), adult humans have very limited brown adipose depots (Leitner et al., PNAS,
2017). Humans are also generally not exposed to prolonged cold in daily life,
suggesting that UCP1 may be of minor relevance in modern human physiology.
On the other hand, it has been proposed that exercise training may cause a “brow-
ning” of white adipose tissue. This has fueled an ongoing hypothesis that exercise-
induced stress mediates a UCP1-dependent “browning” of white adipose, which
may lower metabolic efficiency at the whole-body level (Aldiss et al. 2018).

Adipose tissue only consumes 5–10% of the basal metabolic rate in humans
(Nookaew et al. 2013), whereas 40–50% is consumed in the skeletal muscle, which
does not express UCP1 (Zurlo et al. 1990). Therefore, mechanisms other than UCP1-
mediated uncoupling likely contribute to the regulation of bioenergetic efficiency at
the whole-body level. Skeletal muscle cells express the UCP1 homologs UCP2
(SLC25A8) and UCP3 (SLC25A9), which share ~60% sequence similarity with
UCP1, and can catalyze proton leak when activated by peroxidation products and/or
fatty acids (Brand and Esteves 2005). However, mice lacking UCP2 or UCP3 show
very little phenotypic alterations, including having normal cold tolerance (Vidal-
Puig et al. 2000; Zhang et al. 2001). Thus, the exact physiological functions of UCP2
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and UCP3, including their role in regulating mitochondrial efficiency, are not clear.
Interestingly, genetic association studies have shown effects of polymorphisms in
the UCP2 gene on metabolic functions, including a higher exercise efficiency in
bearers of an Ala/Val55 substitution (Buemann et al. 2001), indicating that
uncoupling proteins in skeletal muscle may play a role in regulating mitochondrial
efficiency during exercise.

3.7.2 ANT1

The adenine nucleotide transporter (ANT)1, or SLC25A4, exchanges cytosolic ADP
for mitochondrial ATP across the inner mitochondrial membrane. In addition, it has
been shown that the basal proton leak of muscle mitochondria is chiefly mediated by
ANT1 (Brand et al. 2005). This was recently substantiated by electrophysiology
studies showing that proton transport is an inherent function of ANT1 (Bertholet
et al. 2019). The proton flux through ANT1 is partly inhibited by ADP/ATP
exchange (Bertholet et al. 2019), suggesting that ANT1 can function in two distinct
modes: Either to lower mitochondrial efficiency by leaking protons or to increase
efficiency by exchanging ATP for ADP. Therefore, changes in mitochondrial effi-
ciency during increased ATP demand, such as during exercise, may be regulated at
the level of ANT1. Interestingly, UCP- and ANT1-mediated mitochondrial proton
leak is strongly activated by the lipid peroxidation product 4-hydroxynonenal and by
fatty acids (Echtay et al. 2003; Klingenberg and Winkler 1985). Aerobic exercise
can change the muscle levels of both 4-HNE (Parker et al. 2016) and fatty acids
(Havel et al. 1967), raising the possibility that these metabolites may influence
mitochondrial efficiency during exercise although this remains to be addressed. In
addition, ANT1 has been shown to be acetylated in vivo in the human skeletal
muscle, which was predicted through molecular dynamics modeling to regulate ADP
affinity (Mielke et al. 2014; Perry et al. 2012). However, it remains to be addressed
whether posttranslational modifications contribute to regulating ADP/ATP-
exchange during exercise.

3.7.3 Other SLC25 Family Proteins

Several other members of the SLC25 family of mitochondrial carriers can potentially
contribute to altering mitochondrial efficiency during exercise. For example, the
mitochondrial phosphate carrier (PIC), or SLC25A3, imports phosphate in symport
with protons, and both SLC25A12 and SLC25A22 cotransport glutamate and pro-
tons (Ruprecht and Kunji 2020). However, their potential relevance in regulating
mitochondrial efficiency during exercise and in response to exercise training is still
unknown.
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3.8 Posttranslational Regulation of Mitochondrial Function

Although a number of proteins have been found to contribute to proton leak in the
skeletal muscle, it is not fully understood how exercise regulates these proteins
acutely. ANT1 and UCP3 mRNA levels have been shown to increase in the skeletal
muscle with exercise training ((Sparks et al. 2016; Tsuboyama-Kasaoka et al. 1998)
as a part of the general mitochondrial biogenic signal in response to exercise.
However, it is not known whether posttranslational modifications of mitochondrial
proteins are involved in the four- to fivefold increase in mitochondrial efficiency that
occurs when going from submaximal to maximal ADP-stimulated respiration (Lark
et al. 2016).

Hundreds of phospho-sites have been identified in rodent and human mitochon-
dria (Bak et al. 2013; Zhao et al. 2014), suggesting that protein phosphorylation is a
posttranslational mechanism for regulating mitochondrial function. The A-kinase
anchor protein 1 (AKAP1) has been identified as a mitochondrial target of the 5’
AMP-activated protein kinase (AMPK), which is strongly stimulated by exercise
(Hoffman et al. 2015). Specifically, it has been shown that AKAP1 mitochondrial
localization and AMPK-mediated AKAP1 Ser-103 phosphorylation were enriched
after acute exercise and that AKAP1 Ser-103 silencing strongly reduced mitochon-
drial oxidative function (Hoffman et al. 2015).

Other posttranslational mechanisms include mitochondrial protein acetylation,
which has been shown to be altered in rat strains bred for high vs. low running
capacity (Overmyer et al. 2015). In addition, mitochondrial proteins have been
shown to be deacetylated in rat skeletal muscle in response to an acute running
bout, which was suggested to facilitate more efficient oxidation of fatty acids and
branched-chain amino acids during exercise (Overmyer et al. 2015). Exercise-
induced deacetylation of mitochondrial proteins may be mediated by the mitochon-
drial deacetylase sirtuin 3, which has been shown to increase in response to con-
tractile activity in rat skeletal muscle (Gurd et al. 2012) and to deacetylate the ATP
synthase in mouse skeletal muscle during exercise (Vassilopoulos et al. 2014). While
these studies provide circumstantial evidence of regulation of mitochondrial function
by acetylation, more recent studies have been unable to confirm a direct impact of
acetylation on respiratory function in either skeletal muscle or heart (Davidson et al.
2020; Williams et al. 2020; Bertholet et al. 2019; Divakaruni and Brand 2011).

3.9 The Mitochondrial Network

Mitochondrial network structure is a factor with potential crucial impact on the
efficiency of oxidative phosphorylation in skeletal muscle. Experiments using three-
dimensional focused ion beam scanning electron microscopy revealed four different
mitochondrial network morphologies in mitochondria-rich muscle fibers (Glancy
et al. 2015). Moreover, the observations suggested that the mitochondrial reticulum
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allowed efficient membrane potential conductance through the muscle fiber with
generation of the proton motive force in mitochondrial pools near capillaries and use
of the proton motive force to produce ATP in mitochondrial pools near ATPases.
The authors suggest that such a mechanism of electrical conduction is important for
skeletal muscle energy distribution enabling the support of an immediate increase in
energy demand throughout the muscle fiber during (intense) muscle contractions
(Glancy et al. 2015).

Mitochondrial morphology has been shown to be muscle fiber type specific with
oxidative fibers characterized by (more) elongated and interconnected mitochondria
(Glancy et al. 2015), while glycolytic fibers have punctuate mitochondria (Mishra
et al. 2015). Four weeks of exercise training resulted in parallel (myosin heavy chain,
MHC) fiber type switching and development of an elongated mitochondrial mor-
phology in mouse muscle indicating that mitochondrial structure can respond to the
metabolic activity of the individual fiber. In addition, incubation of glycolytic
muscle ex vivo in oxidative media (acetoacetate) increased oxygen consumption,
mitochondrial membrane potential, and induced development of interconnected,
highly tubular mitochondria (Mishra et al. 2015). In accordance, lifelong exercise
training has been shown to prevent, and 7 weeks of exercise training at old age has
been shown to reverse, an age associated fragmentation of the mitochondrial net-
work in mouse skeletal muscle (Halling et al. 2019; Halling et al. 2017). Moreover,
the changes in mitochondrial network structure with age and exercise training at old
age were associated with changes in maximal and submaximal mitochondrial respi-
ration in permeabilized mouse muscle fibers measured ex vivo (Halling et al. 2019),
supporting a functional importance of the mitochondrial morphology. Together, this
indicates a highly dynamic regulation of mitochondrial structure in skeletal muscle
linked to the metabolic activity of the muscle.

The mitochondrial network in skeletal muscle is dynamically regulated by fission
and fusion processes. This involves dynamin-related protein (DRP)1 and fission
protein (FIS)1 as regulators of fission and mitofusin (MFN)1, MFN2, and optic
atrophy (OPA)1 as regulators of fusion (Malka et al. 2005). The importance of these
factors for mitochondrial network structure is evident by an observed mitochondrial
fragmentation both with tissue-specific knockout of MFN2 (Sebastian et al. 2012)
and overexpression of FIS1 and DRP1 (Romanello et al. 2010). Moreover, exercise
training has been reported to increase the protein content of both fusion and fission
proteins in human skeletal muscle (Konopka et al. 2014; Perry et al. 2010)
suggesting an enhanced fusion and fission capacity in skeletal muscle with exercise
training. On the other hand, an exercise training-induced prevention of an
age-associated mitochondrial fragmentation in mouse skeletal muscle seemed to
involve reduction in fission proteins rather than an increase in fusion proteins
(Halling et al. 2017). In addition, using an in vivo approach, fusion was shown to
be a highly dynamic process with higher rates in oxidative fibers than glycolytic
fibers (Mishra et al. 2015). In addition, because the OMM also exclusively features
the anchored proteins mediating fusion and fission processes as well as inter-
organelle tethering, vis-à-vis contact site formation (Detmer and Chan 2007;
Koshiba et al. 2004; Scorrano et al. 2019), it allows coupling of responsive
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morphological membrane restructuring to meet the requirements of a given meta-
bolic state. Together this provides evidence that fusion and fission are important in
determining mitochondrial morphology and that regulation of fusion and fission
therefore may influence the efficiency of membrane potential conductance in muscle
fibers. However, the functional significance of mitochondrial ultrastructure
reconfiguration remains elusive and warrants further exploration.

3.10 The Inner Mitochondrial Membrane (IMM)

The IMM is subdivided into the inner boundary membrane, containing essential
translocases, and the cristae of the mitochondrial matrix lumen harboring the
OXPHOS complexes. The inner membrane architecture has been found to be
administered by OPA1 as well as a large multi-protein complex, the mitochondrial
contact site and cristae organizing system (MICOS), bridging between proteins of
both the IMM and OMM (Friedman et al. 2015; Jans et al. 2013; Pfanner et al. 2014),
along with OPA1 also playing an essential role in cristae shape and biogenesis
(Hu et al. 2020). This complex appears essential as deletion of one of its subunits,
Mic19, leads to fragmentation of cristae and consequently reduction in both basal
and uncoupled respiration in HeLa cells (Friedman et al. 2015). The cristae them-
selves form lamellar invaginations protruding from the IMM in which almost all
OXPHOS complexes and ATP synthases are embedded (Frey and Mannella 2000;
Gilkerson et al. 2003), establishing the cristae as the primary bioenergetic membrane
of the mitochondrion. The spatial organization of the OXPHOS complexes is vital,
and the cristae curvature evidently determines placement of the complexes in
relation to each other. Cryoelectron tomography data support the theory that com-
plexes are distributed, in an overlapping fashion, along the edge of the matrix facing
cristae wall on both sides of the curved cristae tips (Davies et al. 2011; Wilkens et al.
2013). However, complex II seems to be mainly located at the base in connection to
the inner membrane boundary, and dimerization/oligomerization of the ATP
synthases occurs exclusively at the curved tip of the cristae (Wilkens et al. 2013).

It is likely that exercise training-induced changes in individual mitochondrial
efficiency incorporate increased cristae formation, but due to technical limitations,
very little research has so far been done in mammalian models. In support of this
notion though, a previous study using TEM reported that cristae density was
elevated (surface area to volume ratio) in human muscle fibers from endurance
athletes (Nielsen et al. 2017). This indicates a propensity toward more efficient use
of mitochondrial lumen space in order to meet increased requirements for energy
production.
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3.11 Mitochondrial Phospholipids

IMM phospholipid composition and regulation is an often overlooked aspect when
characterizing mitochondrial function. Of interest, phosphatidylethanolamine (PE),
constituting between 30 and 40% of the IMM, has been shown to increase in skeletal
muscle with exercise training in mice, and inducible muscle-specific overexpression
of the PE synthase, PSD, in mice increased O2 consumption and ATP production
rates without increments in mitochondrial mass (Heden et al. 2019). Another key
phospholipid almost entirely unique to and comprising roughly 15–20% of the IMM
phospholipid pool is cardiolipin (CL), which has been found to have distinct
properties. CL influences cristae shape and formation as well as the anchoring and
activity of mitochondrial proteins (Heden et al. 2016; Paradies et al. 2014;
Pennington et al. 2017), and diminished CL content can therefore easily be thought
to compromise the structure-function relationship.

Both mitochondrial carriers, such as ANT and ETS complexes, have been shown
to have several CL binding sites that can increase intrinsic protein activity
(Klingenberg 2009; Musatov and Sedlak 2017; Nury et al. 2005). Hence, removal
of bound CLs in detergent-solubilized complex III and IV caused an almost com-
plete halt in enzymatic activity, while re-association resulted in full restoration of
activity, underlining CL as essential for bioenergetic function (Musatov and Sedlak
2017). With this in mind, and the observation that the exercise-inducible transcrip-
tional co-activators, PGC-1αβ, seem to regulate CL expression (Lai et al. 2014), it is
conceivable that exercise may well be exerting influence on intrinsic mitochondrial
capacity through induction of this axis, which would be interesting to explore further
in future studies.

3.12 Supercomplex Formation

The ongoing theory, indicated by a number of studies, is that ETS complexes can
rearrange and assemble in complexes of a higher order, commonly referred to as
supercomplexes (SC), or respirasomes, depending on constellation (Dudkina et al.
2005; Schagger and Pfeiffer 2000). Different constellations between the complexes,
even incorporating ANT, have been proposed (Genova and Lenaz 2014; Gu et al.
2016; Mileykovskaya and Dowhan 2009), and a likely outcome of such ETS
assembly would be increased electron transfer and favorable lessening of ROS
generation. Of notion, Complex II seems to be void of SC association (Gu et al.
2016; Schagger and Pfeiffer 2000), but given its spatial isolation from other com-
plexes at the base of the cristae/IMM boundary, this would make reasonable sense.
Interestingly, CL seems to be explicitly required for both stable association and
function of these supercomplexes (Claypool 2009; Gu et al. 2016; Mileykovskaya
and Dowhan 2014) reiterating the indispensable nature of this phospholipid for
upholding optimal mitochondrial function. In support, downregulation of Taffazzin,
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an acyltransferase involved in maturation of CL, in human lymphoblastomas has
been shown to cause SC dissociation (Gu et al. 2016; McKenzie et al. 2006).
Supercomplex formation is inherently difficult to study as it is likely that assembly
and disassembly occur within seconds in vivo. Thus, capturing these dynamics in
live cell setups with improved microscopy approaches is a task for future studies. In
addition, the role of mitochondrial phospholipid composition and supercomplex
assembly in the bioenergetic efficiency during exercise has not been elucidated.

3.13 The Redox Circuit

Another mechanism for adjusting energy expenditure and bioenergetic efficiency
involves energy consuming redox circuits (Fisher-Wellman et al. 2015; Smith et al.
2020). Periods of energy surplus have been shown to increase the NADH/NAD+
ratio resulting in an increased mitochondrial membrane potential and an associated
elevated mitochondrial H2O2 emission at several sites in the electron transport
system (ETS) (Divakaruni and Brand 2011; Korshunov et al. 1997; Quinlan et al.
2013).

Studies using isolated mitochondria and permeabilized mouse muscle fibers have
demonstrated that increases in H2O2 production at several sites in the mitochondria
are linked to matrix redox buffering circuits. Hence, H2O2 produced by the pyruvate
dehydrogenase complex (PDC), beta-oxidation, and sites in the ETS sites was shown
to be reduced to H2O by use of the substrates thioredoxin and GSH, which are
reduced back using NADPH as electron source generating NADP+ (Fisher-Wellman
et al. 2015; Smith et al. 2020). The principal source of NADPH in the mitochondrial
matrix is nicotinamide nucleotide transhydrogenase (NNT), which is located in the
inner mitochondrial membrane and uses the mitochondrial membrane potential to
drive the reduction of NADP+ from NADH to NADPH (Fisher-Wellman et al. 2015;
Smith et al. 2020). This means that the higher the H2O2 production in the mitochon-
dria, the higher the NNT activity and the higher the energy expenditure. The
observations that C57BL/6 J mice, which lack NNT, had lower energy expenditure
and higher mitochondrial H2O2 emission than C57BL/6 N mice (Fisher-Wellman
et al. 2015; Smith et al. 2020) emphasizes the potential impact of this relationship.

Taken together, this suggests that energy balance is detected in the mitochondria
by changes in redox state with concomitant adjustments through H2O2 production
and NNT-linked redox buffering leading to compensatory changes in energy expen-
diture and reestablishment of mitochondrial redox homeostasis. This has been
suggested to be a mechanism protecting against excessive reduction of proteins
and by increasing energy expenditure protection against weight gain during periods
of energy surplus (Fisher-Wellman et al. 2015; Smith et al. 2020). However, the
impact of this and other redox-buffering mechanisms on bioenergetic efficiency
during exercise has not been explored.

44 J. F. Halling et al.



3.14 Conclusion

The ability of animals to precisely match energy production rate to energy utilization
rate over a wide range of workloads is one of the remarkable features of nature.
Mitochondria take advantage of the natural molecular properties of oxygen and the
principles of non-equilibrium thermodynamics to create a bioenergetic system that is
exquisitely responsive to the energy needs of cells. Considering how cells, organs,
and whole systems respond to the energetic challenges of exercise in the context of
bioenergetics is critical to guiding proper experimental design and data interpreta-
tion. As presented in this review, many factors can potentially affect mitochondrial
bioenergetic efficiency, which in turn can have profound implications for exercise
performance as well as overall health.
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Chapter 4
Anaerobic Metabolism During Exercise

Lawrence L. Spriet

Abstract A constant supply of adenosine triphosphate (ATP) is essential for func-
tion in all cells and especially so in skeletal muscle cells to power the contractions
needed to enable the many forms of movement required in our daily lives and for
exercise and sporting events. The muscle stores of ATP are small, and metabolic
pathways must maintain the required rates of ATP resynthesis when the demand for
ATP is high. Oxidative (“aerobic”) phosphorylation uses reducing equivalents from
the metabolism of carbohydrate and fat to produce ATP and is the default energy
system in skeletal muscle. Substrate-level phosphorylation or “anaerobic metabo-
lism” also plays a very important role in supplementing or buffering ATP production
when aerobic ATP production cannot meet the needs of an activity. These situations
include the transitions from rest to exercise and from one power output to a higher
one, exercise that demands ATP provision rates above what can be provided
aerobically, and in situations of suboptimal oxygen supply. Anaerobic energy is
provided from phosphocreatine and muscle glycogen breakdown (anaerobic glycol-
ysis). These systems can provide energy very quickly and at very high rates but are
limited to short periods of time during high intensity exercise due to substrate
depletion and increasing muscle acidosis. In most exercise and sporting situations,
energy provision is maintained by contributions from both the aerobic and anaerobic
sources to ensure that ATP resynthesis closely matches the exercise ATP demand.
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4.1 Introduction

The ability to move in our environment is important for daily functioning and
survival. Skeletal muscles receive signals from the nervous system and contract
with the necessary force, frequency, and sequence to permit the many forms of
movement required in our daily lives. The energy that powers these movements is
adenosine triphosphate (ATP) and is provided by a number of metabolic pathways
that ultimately combine inorganic phosphate (Pi) and adenosine diphosphate (ADP)
to provide a steady source of newly generated ATP (Table 4.1). The requirement for
ATP during movement or exercise can vary from the low demands of slow move-
ments to the extremely high demands of ballistic and sprint-like movements. Aero-
bic metabolism is the predominant or default source of ATP generation in most
movement and exercise situations. It is defined as the energy that is produced in the
mitochondria of cells using oxygen (O2), ADP, and Pi, and reducing equivalents
from food in a process called oxidative phosphorylation (Table 4.1). As powerful as
this form of ATP production is in skeletal muscles, it is limited in terms of the rate at
which it can be activated at the onset of exercise and also by the maximal rate of ATP
production that can be provided.

Anaerobic ATP generation plays an important role in providing ATP in situations
where the aerobic system cannot provide all the energy needed for specific move-
ments. Anaerobic ATP provision is defined as the ability of metabolic pathways to
generate ATP without the immediate use of O2, and these processes are termed
substrate phosphorylation. Anaerobic energy is provided from phosphocreatine and
muscle glycogen breakdown (anaerobic glycolysis) (Fig. 4.1). Anaerobic ATP is
generally needed in the following situations: (1) the transition from rest to exercise in
the so-called aerobic domain (power outputs that elicit 100% maximal O2 uptake
(VO2max) or less), where it may take 60–90 s for the aerobic system to fully activate

Table 4.1 Energy producing pathways in skeletal muscle

ATP utilization
ATP + H2O ! ADP + Pi + H+ + energy

ATP resynthesis
Substrate phosporylation

PCr + ADP + H+ $ ATP + creatine

Glycogen + 3ADP + 2Pi ! 2 lactate + 2H+ + 3ATP

2ADP $ ATP + AMP

Oxidative phosphorylation

Glucose + 6O2 + 36 � 38ADP ! 6CO2 + 6H2O + 36 ‐ 8ATP
Palmitate + 23O2 + 136 ‐ 8ADP ! 16CO2 + 16H2O + 136 ‐ 8ATP

ADP adenosine diphosphate, ATP adenosine triphosphate, AMP adenosine monophosphate, Pi
inorganic phosphate, PCr phosphocreatine
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and provide the needed ATP; (2) the transition from one power output to a higher
power output where again there is a lag in the response of the aerobic system to
respond to the new higher demand for ATP; (3) situations where the demand for
ATP is greater than the maximal rate of aerobic ATP provision, such as exercise at
power outputs above those required to elicit 100% VO2max and during ballistic and
sprint movements where the power output may be several fold higher than the
VO2max power output; and (4) situations where the delivery of O2 is compromised
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Fig. 4.1 A schematic of the anaerobic energy producing pathways in skeletal muscle. Key
metabolic pathways in contracting skeletal muscle during exercise and the major sites of regulation.
PM plasma membrane; O2 oxygen; GLUT1, 4 glucose transport proteins 1 and 4; HK hexokinase;
PFK phosphofructokinase; ATP adenosine triphosphate; NAD and NADH unreduced and reduced
nicotinamide adenine dinucleotide; LDH lactate dehydrogenase; Pi inorganic phosphate; G-6-P
glucose 6-phosphate; G-1-P glucose 1-phosphate; ADP adenosine diphosphate; Cr creatine; PCr
phosphocreatine; CK creatine kinase; mCK matrix, mitochondrial matrix; mitochondrial creatine
kinase; mt OM and mt IM outer and inner mitochondrial membranes; MCT monocarboxylase
transporter; ANT adenine transport protein; PDH pyruvate dehydrogenase; TCA tricarboxylic
acid; ETC electron transport chain; H+ hydrogen ion; CO2 carbon dioxide; H2O water; Fo-Fi
ATPase catalytic portion (Fi) and a proton channel (Fo) ATPase
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or less than optimal and limits aerobic ATP production, including exercising at
altitude with a lower barometric pressure and swimming where optimal breathing
may be limited.

The purpose of this chapter is to examine the importance of anaerobic metabolism
in skeletal muscle during exercise with an emphasis on information derived from
adult humans. The reader may be interested in several previous review articles on
this topic (Hermansen 1969; Gollnick and Hermansen 1973; Saltin 1990; Spriet
1992, 2006) and related topics (Sahlin, 2014; Hargreaves and Spriet 2020).

4.2 Aerobic and Anaerobic Metabolism Work Together

The production of anaerobic ATP occurs through the conversion of phosphate from
phosphocreatine (PCr) to ADP in a single metabolic reaction with very high activity
and at two sites in the glycolytic pathway where substrate phosphorylation produces
ATP and where lactate is an end product (Fig. 4.1). These sites of ATP production
are in the cytoplasm of the cell and close to the sites where ATP is consumed by the
actin-myosin, calcium (Ca2+), and sodium (Na+)-potassium (K+) ATPases.

The most common misconception when discussing skeletal muscle aerobic and
anaerobic metabolism with students is the belief that they work in isolation—when
exercising at a steady-state power output where aerobic metabolism produces most
of the energy, anaerobic metabolism is not being used, and when sprinting all of the
energy production is anaerobic. This is not the case as the signals related to ATP use
in the muscle during exercise activate all the metabolic pathways in proportion for
the need for ATP and ultimately determine how active each pathway will be. This
belief may stem from the fact that when a person is riding a cycle ergometer at a very
constant power output in the laboratory and O2 uptake is measured after 60–90 s
when a “steady state” is reached, the energy required is provided by aerobic
metabolism. However, riding a bicycle in the real world will not be as “steady
state” like, and the rider will need to speed up now and then, climb a grade, etc., and
anaerobic energy will help provide the extra energy needed for these transitions and
increases in power output.

An example at the other end of the spectrum is an all-out 30 s sprint like the
classic “Wingate test.” Large increases in ADP, adenosine monophosphate (AMP),
Pi, and Ca2+ in the cell as well as increases in epinephrine in the blood activate all the
major pathways in the muscle once exercise commences. The pathways associated
with aerobic ATP production are maximally stimulated but take some time for this
source of ATP to be significant, and therefore anaerobic ATP must provide the
majority of the energy early on. Measurements have shown that on average a person
will reach ~75% VO2max by 30 s, and some people reach VO2max at this time
(Kowalchuk et al. 1988). However, even when VO2max is reached, not enough
aerobic ATP is being generated, and some contribution from anaerobic energy is still
needed. In terms of total energy provided during a 30 s all-out sprint, ~70–80% is
provided by anaerobic sources and only ~20–30% by aerobic sources (Jacobs et al.
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1982, 1983; Parolin et al. 1999). However, during the 25–30 s time period, aerobic
metabolism provides ~50% of the total energy (Parolin et al. 1999).

4.3 Brief History of Anaerobic Metabolism Investigations

The study of muscle metabolism began following the discovery of O2 in the late
eighteenth century and the subsequent development of methods to measure the
amount and nature of substances taken up and given off by the body (see Asmussen
1971). The French scientist Lavoisier is generally believed to be the first “work or
exercise scientist” as he and his colleagues performed experiments on plants and
animals and had human subjects do light exercise while measuring an increase in the
use of “vital air” (O2) compared to the resting condition.

Over the course of the nineteenth century, much work focused on attempts to
determine the nature of the foodstuffs responsible for the energy utilized at rest and
during exercise (Asmussen 1971). Zuntz and colleagues in 1894 believed that work
was performed through the combustion of both fat and carbohydrate (CHO) fuels,
while Chavreau and collaborators in 1896 argued that CHO was the sole source of
fuel for muscular contractions. Both groups based their postulations on estimations
of the respiratory exchange ratios as direct measurements of the complete combus-
tion of CHO and fat resulted in carbon dioxide (CO2) produced/O2 consumed ratios
of 1.0 and 0.7, respectively (Asmussen 1971). A few years later in the early twentieth
century, the classic work of Fletcher and Hopkins (1907) using direct metabolic
measurements in amphibian muscles was published. They demonstrated that lactic
acid existed in surviving resting muscle and that lactic acid was produced in
contracting muscle. They also reported that (1) an insufficient O2 level in resting
or contracting muscle increased lactic acid production, (2) administering O2 caused
the lactic acid to disappear, (3) muscle fatigue was greatest in the presence of lactic
acid and least in its absence, and lastly, (4) CHO in the form of muscle glycogen was
the proposed precursor of muscle lactic acid formation.

Later in the twentieth century, the study of muscle physiology and metabolism
was dominated by Otto Meyerhoff and AV Hill who shared the 1922 Nobel prize for
their work with frog muscles (Asmussen 1971). Meyerhoff integrated his chemical
findings with the thermodynamic and mechanical findings of the time and formu-
lated a hypothesis explaining the physiology of muscular contractions (Sacks and
Sacks 1933). Hill combined his myothermic findings with the biochemical findings
of others and published his explanation of muscular exertion (Hill and Lupton 1923;
Hill et al. 1924). Their combined work led to the “Hill-Meyerhoff theory of muscular
metabolism” which appeared to explain most of the mechanical and metabolic
changes produced by muscular contractions. Essentially, the primary event in
contracting muscle was the anaerobic breakdown of glycogen to lactic acid. During
exercise, CO2 was driven off, heat release was proportional to the lactic acid
production, hydrogen ion (H+) concentration of the muscle increased, and O2 was
consumed to oxidize lactic acid during exercise and in the recovery period after
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exercise. So, while the researchers were aware that O2 was used in the combustion of
foodstuffs to supply the energy required for body functions, they felt that it was not
used in the primary breakdown processes for contraction, only in the recovery
processes (Hill and Lupton 1923).

Over the following years, evidence accumulated to suggest that the Hill-
Meyerhoff theory was incorrect and too simplistic. Central to these arguments was
the discovery of the presence of phosphate compounds in muscle by two indepen-
dent groups of investigators that published their results in the same year. Eggleton
and Eggleton (1927) improved the methods for extracting and measuring Pi and
organic phosphate compounds in muscle, and their experiments demonstrated that
contractions producing rapid muscular fatigue decreased organic phosphate and
increased Pi levels. Working with heart, skeletal, and smooth muscle suggested
that phosphagen levels correlated with the muscle’s ability to respond to sudden
demands for violent activity. Fiske and Subbarow (1927) also improved methods for
measuring phosphate compounds and reported that fatiguing contractions in frog
muscle decreased organic phosphates, with total depletion occurring when muscle
blood flow was occluded. The compound in question was a derivative of creatine and
labelled creatine phosphate (CP). Following contractions this compound was
quickly resynthesized in the presence of O2. In 1930, Lundsgaard, working in
Meyerhoff’s laboratory, poisoned the glycolytic pathway with iodoacetic acid and
showed that the muscles were still able to perform a series of anaerobic contractions
with no lactic acid formation and that the development of mechanical tension was
proportional to the breakdown of CP to creatine (Cr) and Pi (Sacks and Sacks 1933).
It was consequently suggested that PCr was the immediate source of energy for
muscular contractions and that lactic acid production served to resynthesize CP
stores.

However, at about the same time, Lohmann’s group in 1929 (Bessman and
Geiger 1981) and Fiske and Subbarow, also in Fiske and Subbarow 1929, both
discovered the presence of another high-energy phosphate compound in muscle,
ATP. In 1934, Lohmann reported that PCr breakdown only occurred when ADP was
present to accept the phosphate from CP, producing ATP and Cr (Bessman and
Geiger 1981). These results suggested that CP was used to replenish ATP levels
which then transferred energy directly to the contractile mechanism, although an
earlier study reported no decrease in ATP levels with electrical stimulation of
muscles resulting in tetani (Sacks and Sacks 1933). A few years later, Engelhardt
and Ljubimowa (1939) also reported that myosin, a contractile constituent of muscle
fibrils, possessed an ATPase enzyme which hydrolyzed ATP to ADP and Pi
(Asmussen 1971).

Finally, 1962, Cain and Davies conclusively established that ATP was the
immediate source of energy for muscle contractions by chemically inhibiting the
breakdown of CP and demonstrating a decreased ATP content following a single
contraction. This finding brought into focus the realization that both CP and anaer-
obic glycolysis could replenish the ATP that was being used during intense muscular
contractions and that the rates of ATP provision from CP degradation and glycolytic
activity were very high during intense muscular contractions. And of course, if the
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exercise lasted some seconds, ATP produced in the mitochondria would begin to
contribute significantly to the resynthesis of ATP.

Margaria et al. (1964, 1969) examined repeated bouts of heavy exercise lasting
10–15 s and believed that only PCr (more commonly used than CP) or the “alactic”
component of anaerobic metabolism was involved in these short exercise bouts.
They reported no lactate accumulation in the blood as long as recovery periods were
sufficient to allow the replenishment of PCr stores. However, with the reintroduction
of the muscle needle biopsy technique for sampling human skeletal muscle and the
refinement of analytical techniques to measure muscle high energy phosphates, more
precise information was subsequently provided (Bergstrom and Hultman 1967;
Hultman et al. 1967). Muscle biopsy studies in the 1970s, 1980s, and early 1990s
from several independent laboratories demonstrated the simultaneous breakdown of
PCr and production of lactate during intense exercise of ~30 s in males on a cycle
ergometer (Karlsson and Saltin 1970; Jacobs et al. 1983; Jones et al. 1985;
McCartney et al. 1986; Withers et al. 1991; Gaitanos et al. 1993) and sprinting on
a treadmill (Cheetham et al. 1986). Jacobs et al. (1982) also reported similar results
for females during 30 s of all-out cycling.

4.4 Regulation of Anaerobic Energy Provision During
High-Intensity, Short-Term Exercise

The store of ATP in skeletal muscle is low and would be used in a few seconds
during high-intensity exercise if no resynthesis of ATP occurred. However, the
[ATP] in skeletal muscle is well defended. While this may not be surprising during
aerobic exercise, it has been reported from several laboratories that ATP levels
decreased by only ~20–30% during one or more bouts of volitional sprint exercise
(Karlsson and Saltin 1970; Bogdanis et al. 1996; Hargreaves et al. 1998; Jones et al.
1985; Spriet et al. 1989). This suggests that the high rate of ATP resynthesis from
anaerobic energy sources defends the muscle [ATP]. An interesting experiment with
the aim of exhausting the capacity of the anaerobic energy provision systems and
potentially driving [ATP] lower bypassed the central nervous system and electrically
stimulated the vastus lateralis muscles of male volunteers (Spriet et al. 1987a). Blood
flow to the legs was also occluded, and the leg muscles were maximally stimulated
for 100 s with biopsies taken before and at 25 s intervals during the stimulation.
Remarkably, while the [ATP] decreased at each sampling time point, it only
decreased to 57% of the resting level at 100 s. It appeared that once the ability to
provide anaerobic energy was exhausted, by-products of the high glycolytic activity
(e.g., H+) inhibited the contractile events in the muscle before the entire ATP store
was used (Spriet et al. 1987b). Interestingly, in other animals such as fish, the entire
ATP store was used during intense sprinting, presumably in an attempt to survive a
predator (Pearson et al. 1990). These animals then hide and rest for many hours
while their ATP stores are replenished. In summary, ATP levels are reasonably well

4 Anaerobic Metabolism During Exercise 57



maintained in human skeletal muscle even during very intense exercise requiring
maximal rates of anaerobic energy provision.

Direct measures of muscle PCr and lactate in whole muscle before and after sprint
exercise bouts (~250% VO2 max) revealed significant decreases in PCr and
increases in lactate (Parolin et al. 1999; Howlett et al. 1998; Gaitanos et al. 1993;
Medbø and Tabata, 1993) (Figs. 4.2 and 4.3). Similar results were obtained when
examining the response of single fibers to sprint exercise. At rest, type I fibers had
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Fig. 4.2 Lactate accumulation and phosphocreatine use in human skeletal muscle during 10 min of
exercise at 35, 65, and 90% VO2max and 30 s at ~250% VO2 max (Reproduced from Howlett et al.
1998 and Parolin et al. 1999)
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10% less PCr and 20% less muscle glycogen than type II fibers (Greenhaff et al.
1994). When subjects were asked to sprint for 30 s on a treadmill, PCr was largely
depleted in both fiber types, but type I fibers contributed 20% less ATP from PCr
than type II fibers and ~ 40% less ATP from anaerobic glycolysis (Greenhaff et al.
1994).

PCr is a remarkable fuel source as only one metabolic reaction is required to
provide ATP (Table 4.1). The enzyme that catalyzes this reaction (creatine phos-
phokinase, CPK) is in high abundance and only regulated by the concentration of its
substrates and products—a so-called near-equilibrium enzyme. As soon as contrac-
tions begin and ATP is degraded and the ADP concentration increases, this reaction
will move from left to right, and ATP is regenerated in a few msec (Table 4.1). Direct
muscle measurements have shown that 60–75% of the PCr store can be used in
6–15 s of all-out sprinting (Gaitanos et al. 1993; Parolin et al. 1999).

At the same time, cellular Ca2+ (and to some extent epinephrine from outside the
cell) activates phosphorylase kinase to move glycogen phosphorylase from its less
active “b” form to the more active “a” form (covalent regulation) (Chasiotis et al.
1982). Increases in ADP and AMP also activate phosphorylase a directly (allosteric
regulation) to degrade glycogen and combine with Pi to produce glucose
1-phosphate, glucose 6-phosphate (G-6-P), and fructose 6-phosphate (F-6-P) in the
glycolytic pathway (Ren and Hultman 1989). Phosphorylase is considered a “non-
equilibrium enzyme” as it is controlled by external factors and not just substrates and
products. This combination of covalent and allosteric regulation explains how the
flux through phosphorylase can increase from very low rates at rest to very high rates
during sprint exercise in only a few msec (Fig. 4.1). The increases in the allosteric
regulators ADP, AMP, and Pi (which are by-products of ATP breakdown) and the
accumulating substrate F-6-P also activate the regulatory enzyme phosphofructoki-
nase, and flux through the reactions of the glycolytic pathway continues with a net

Fig. 4.3 Contribution of phosphocreatine (PCr), anaerobic glycolysis, and oxidative phosphory-
lation to energy (ATP) provision in human skeletal muscle during the first 30 s all-out sprint at
~250% VO2 max (A) and the third sprint (B) with 4 min rest between the first, second, and third
sprints (Reproduced from Parolin et al. 1999)
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production of 3 ATP and lactate formation for each glucose moiety stored as muscle
glycogen (Table 4.1). Large amounts of lactate are produced in the reaction cata-
lyzed by lactate dehydrogenase which also regenerates NAD for use higher up in the
glycolytic pathway to help maintain the high flux and ATP production in the
pathway (Spriet et al. 2000) (Fig. 4.1). Even though there are more reactions
involved in producing ATP in the glycolytic pathway, compared to PCr, the pro-
duction of ATP through anaerobic glycolysis is also activated over a msec time
course! Lactate accumulation has been measured in the muscle after a 1 s contraction
(Hultman and Sjoholm 1983), and the contribution of anaerobic energy from PCr
and anaerobic glycolysis is essentially equivalent after 6–10 s of intense exercise
(Figs. 4.3 and 4.4) (Gaitanos et al. 1993; Parolin et al. 1999). When intense exercise
is sustained and the demand for ATP is great, a small amount of energy can be also
produced in the near-equilibrium myokinase reaction where 2 ADP generate ATP
and AMP (Table 4.1), but the contribution from this source is quantitatively small.

The capacity of the PCr energy store is a function of its resting content
(~75 mmol/kg dm) and as mentioned can be mostly used up in 10–15 s of all out
exercise. The capacity of the anaerobic glycolytic system is about threefold higher
(~225 mmol/kg dm) over exercise lasting about 2 min and is limited not by glycogen
substrate but by the increasing acidity (Bangsbo et al. 1990; Medbø and Tabata,
1993). The increases in ATP utilization, glycolysis, and strong ion fluxes during
sprint exercise result in metabolic acidosis (Kowalchuk et al. 1988; Spriet et al.
1989). The decline in power output during single and repeated bouts of maximal
exercise is associated with PCr depletion and the accumulation of metabolic
by-products (H+, ADP, AMP, Pi, K+) that decrease the excitation-contraction cou-
pling processes within skeletal muscle (Casey et al. 1996; Hargreaves et al. 1998;
Medbø and Tabata, 1993; Kowalchuk et al. 1988; Spriet et al. 1989). The above
information was generated during all-out sprints where the power output in the initial

Sprint # 1 – 6 s

Anaerobic ATP provision

Glycolysis 39.4 mmol.kg/dm
PCr 44.3 mmol.kg/dm
ATP 5.6  mmol.kg/dm
Total 89.3 mmol.kg/dm

Glycolysis PCr ATP

49.6%

44.1%

6.3%

CHO

PCr

Fig. 4.4 Anaerobic energy provision from phosphocreatine (PCr), anaerobic glycolysis (CHO),
and the ATP store in human skeletal muscle during one all-out 6 s cycle sprint (Reproduced from
Gaitanos et al. 1993)
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5–10 s was ~1000 W and decreased to ~400–500 W by 30 s. Sprinting efforts at
lower power outputs and for short periods of time (2–5 s) require lower rates of
anaerobic energy provision. Shorter sprints are common in stop-and-go sports,
although there will be many sprints in an entire training session or game (Krustrup
et al. 2006; Vigh-Larsen et al. 2020).

Another important aspect of high-intensity short-term energy production relates
to the ability to rapidly resynthesize PCr when the exercise intensity falls to low
levels or the athlete rests. This is common in stop-and-go sports where short sprints
are interspersed with rest periods where continued aerobic ATP production fuels the
regeneration of PCr, such that the store can be recovered to 65–90% of resting levels
in 60–120 s (Harris et al. 1976; Sahlin et al. 1979; Hultman et al. 1967; Bogdanis
et al. 1995). This is extremely important for the ability to repeatedly sprint in stop-
and-go or intermittent sports as the recovery of the glycolytic system from prolonged
sprinting (20–120 s) and the associated muscle acidity takes minutes, not seconds,
and can limit performance (Gaitanos et al. 1993; Parolin et al. 1999). The ability to
buffer the produced acid is also paramount for success in one-off sprints and in stop-
and-go sports, and buffering capacities are generally very high in these athletes due
to a combination of genetic endowment and adaptation to sprint training (Bishop
et al. 2004). In most stop-and-go sports, sprints are usually kept short such that
increasing acidity is minimized and the PCr store is not completely exhausted.

It should not be forgotten that the production of aerobic ATP also turns on during
very intense exercise and 70–100% of the VO2 max can be reached in an all-out 30 s
sprint (Kowalchuk et al. 1988). However, the time for aerobic ATP contribution is
short, and while little is provided in the first 5–10 s, ~50% of the energy contribution
in the last 5 s of a 30 s sprint is aerobic (Parolin et al. 1999). If the exercise task lasts
beyond about 1 min, oxidative phosphorylation becomes the major ATP-generating
pathway (Medbø and Tabata, 1993). During the transition from rest to intense
exercise, the substrate for the increasing aerobic ATP production is from muscle
glycogen as a small amount of the produced pyruvate is transported into the
mitochondria to produce acetyl-CoA and the reducing equivalent NADH in the
pyruvate dehydrogenase reaction (Fig. 4.1). This enzyme is also under covalent
control existing in an inactive form at rest and moved to a fully active form by Ca2+

during exercise. The power of Ca2+, with assistance from pyruvate, keeps the
enzyme in the active form, despite increases in acetyl-CoA that would normally
inactivate the enzyme at rest (Howlett et al. (1998).

4.5 Intermittent High-Intensity Exercise

A number of laboratories have directly examined anaerobic energy provision during
repeated bouts of high-intensity exercise lasting 6–30 s (Trump et al. 1996; Spriet
et al. 1989; Gaitanos et al. 1993; Casey et al. 1996; Bogdanis et al. 1996; Parolin
et al. 1999). In one study, subjects performed ten maximal cycling sprints lasting 6 s
and separated by 30 s of rest (Gaitanos et al. 1993). Mean power output decreased by
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27% from sprint 1 to 10 (Figs. 4.4 and 4.5). Anaerobic energy production decreased
by 65% from bout 1 to 10, suggesting that aerobic ATP production played a larger
role in the later sprints (O2 uptake was not measured in this study). The contribution
from anaerobic glycolysis decreased by ~90%, and the PCr contribution decreased
by 55% of total energy production from bouts 1 to 10 (Figs. 4.4 and 4.5). The short
30 s recovery time was not enough time for the glycolytic pathway of PCr to recover
from the previous bout. In fact, it appeared that the glycolytic pathway could not be
reactivated in the final bout possibly due to the muscle acidosis, while PCr was
partially resynthesized in 30s, but more time was needed for full resynthesis
(Bogdanis et al. 1995).

A second study had subjects complete 3–30 s all-out cycling sprints with 4 min of
passive (recovery) between bouts (Parolin et al. 1999). Subjects cycled for 6, 15, or
30 s in bouts 1 and 3 with muscle biopsies at these time points over a number of days
to complete the study. Breath by breath O2 uptake measures were also made during
exercise. In the first 6 s of bout 1, equal contributions of anaerobic energy came from
PCr degradation and glycolysis (Fig. 4.3). In the 6–15 s period, the PCr contribution
waned, while the glycolytic contribution was maintained (and became the dominant
energy source), and the aerobic contribution increased. In the final 15 s of the first
sprint, PCr contribution was again low, the glycolytic contribution decreased, and
the aerobic contribution was ~50% of the total energy provision (Fig. 4.3). Muscle
PCr decreased from 88 to 8 mmol/kg dm, glycogen decreased from 480 to
400 mmol/kg dm, lactate increased from 5 to 60 mmol/kg dm, and pH decreased
from 7.05 to 6.74. Following 4 min of rest, a second 30 s sprint, and 4 additional min
(of) rest, PCr had recovered to 70 mmol/kg dm, glycogen was further reduced to
370 mmol/min, lactate remained very high at 95 mmol/kg dm, and muscle pH
remained low at 6.66. While the muscle acidosis severely slowed recovery of the
glycolytic processes, PCr was able to almost fully resynthesize in the 4 min between
bouts.

Sprint # 10 - 6 s

Anaerobic ATP provision

Glycolysis 5.1 mmol.kg/dm
PCr 25.3 mmol.kg/dm
ATP 1.2  mmol.kg/dm
Total 31.6 mmol.kg/dm

Glycolysis PCr ATP

Fig. 4.5 Anaerobic energy provision from phosphocreatine (PCr), anaerobic glycolysis, and the
ATP store in human skeletal muscle during the tenth all-out 6 s cycle sprint, where sprints were
separated by 30 s of recovery (Reproduced from Gaitanos et al. 1993)
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In the third bout, energy provision and power output from 0–6 s were ~ 70% of
the first bout values, largely on the back of PCr energy provision, as the glycolytic
contribution was very small and the aerobic contribution was also small but larger
than the first bout (Parolin et al. 1999). Force and anaerobic energy provision
dropped precipitously in the 6–15 and 15–30 s periods as the PCr store was depleted
and glycolysis simply could not be reactivated (Fig. 4.3). Aerobic energy provision
contributed most of the energy although force production in these time periods was
much lower than in bout 1. It appeared that the accumulating and extreme acidosis
that occurred during these sequential all-out 30 s sprints made it impossible to
reactivate the glycolytic pathway through inhibition of the key enzymes glycogen
phosphorylase and phosphofructokinase. On the other hand, PCr had time to
resynthesize during the 4 min rest periods and could contribute ATP again during
the subsequent sprints. Aerobic metabolism became more important as the sprints
progressed in large part because O2 uptake did not fully recover to resting values in
4 min and was therefore partially activated at the beginning of the next bout.

The findings from these repeated sprint studies have some practical applications.
First, it seems important to keep all-out sprints short (<6 s) such that muscle acidosis
is minimized. Second, sufficient time for the recovery between bouts would be
needed (~60–90 s) to ensure near or full resynthesis of PCr, and third, a high
VO2max is desirable in repeated sprint situations to contribute more aerobic energy
during the sprints, increasing amounts of energy in successive sprints, and provide
ATP for the resynthesis of PCr in the rest periods (and possibly contribute to the
oxidation of lactate if the rest period is long enough).

4.6 Other Methods to Estimate Anaerobic Energy
Contributions

Several other methods have been used over the years to estimate the importance of
anaerobic energy provision. While the results from these approaches will not be
discussed in detail in this chapter, the reader is directed to the studies listed below.
Nuclear magnetic resonance (NMR) or magnetic resonance spectroscopy (MRS) can
measure the content of 31P in human skeletal muscle, and estimates of PCr, the three
phosphates of ATP, and Pi can be obtained at rest and during exercise when subjects
are encased in a magnet (Burt et al. 1976; Miller et al. 1988; Wilson et al. 1988).
Studies have examined the kinetics of PCr pre- and post-training (Kent-Braun et al.
1990), the differences between sprinters and long-distance runners (McCully 1993),
and in single fibers during recovery from contractions (Walter et al. 1997). Simul-
taneous MRS and biochemical measurements of PCr and Pi have been comparable,
but MRS estimates of ATP, H+, and lactate concentrations during exercise have
overestimated the biochemical findings (Bangsbo et al. 1993; Constantin-Teodosiu
et al. 1997).
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Medbø et al. (1988) described a method to indirectly estimate the contribution of
anaerobic energy at the onset of exercise by essentially determining how much
whole-body O2-derived energy was missing to account for the work done—the
“maximum accumulated oxygen deficit (MAOD).” This requires the ability to
measure O2 uptake in a breath-by breath manner to accurately follow the O2 kinetics
during the transition from rest to a steady-state level during submaximal exercise or
VO2max in supramaximal exercise. The amount of energy that cannot be provided
through aerobic means at the onset of exercise is called the O2 deficit (Fig. 4.6). The
O2 deficit is larger as the power output increases and the contracting muscles require
larger amounts of anaerobic energy from PCr and anaerobic glycolysis (Fig. 4.2).
The study of O2 kinetics measured at the mouth and what limits the rate of O2 uptake
at the onset of exercise is a major field of study on its own and will not be examined
in detail here. However, studies have shown that speeding of the exercise onset O2

kinetics occurs with training in men and women (Murias et al. 2011; Grey et al.
1985), which means the O2 deficit decreases as does the need for anaerobic energy.
Discussion of the best way to collect and interpret the O2 kinetics data also continues
(Benson et al. 2017). The relationships between measurements of O2 kinetics, O2

delivery to the contracting muscles, and actual O2 utilization continue to be an active
research area (Grassi et al. 2021; Korzeniewski and Rossiter 2021).

Medbø and Tabata (1989) estimated that the anaerobic energy contribution to the
total energy production during exercise designed to exhaust the subjects in ~30 s,
60 s, and 2–3 min was ~60, 50, and 35%, respectively. They also reported that the
anaerobic capacity was 30% higher in male sprinters compared to male distance
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Fig. 4.6 Schematic diagram showing the oxygen (O2) uptake kinetics (VO2) during the transition
from rest to a submaximal power output and the requirement for anaerobic provision during this
transition (O2 deficit)
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runners or untrained subjects and that 6 weeks of training increased the anaerobic
capacity by 10% in a group of men and women (Medbø and Burgers 1990). Lastly,
they reported that 2 min of exhausting exercise was needed to maximize anaerobic
energy release and, importantly, that there was a close relationship between the
estimated whole body O2 deficit and direct muscle biopsy measurements of anaer-
obic energy release (Medbø and Tabata 1993). The MAOD technique continues to
be used to estimate the anaerobic contribution to total energy production in in many
sporting situations (Spencer and Gastin 2001; Andrade et al. 2021; Campos et al.
2017).

Other indirect attempts to estimate anaerobic power and capacity and the contri-
butions of PCr and anaerobic glycolysis to the total anaerobic energy release in
human subjects have been made during sprint tests (Serresse et al. 1988; Smith and
Hill 1991). These assessments require several assumptions which in many cases
have been shown to be incorrect—for example, the suggestion that only PCr
contributes anaerobic energy in the first 10 s of an all-out sprint test (Gaitanos
et al. 1993; Parolin et al. 1999).

4.7 Sprint Training and Creatine Supplementation

Not all the Cr in skeletal muscle is phosphorylated as the total Cr content is
~120–130 mmol/kg dm, and ~ 60–70% (of) the Cr is phosphorylated at rest. A
major unanswered question in physiology and sports science is what determines the
amount of total creatine (TCr), free Cr, and PCr that is stored in human skeletal
muscle? In most cases, we want to know why it is not higher and how can we
augment it to hopefully enhance high-intensity exercise performance. There is
natural variation in the muscle content between people ranging from ~100 to
150 mmol/kg dm, possibly predisposing people with high levels to greater success
in sports requiring high-energy provision in sprint-like activities. Remarkably, the
contents of Cr and PCr in muscle do not increase following short- or long-term
aerobic (Chesley et al. 1996; Talanian et al. 2007; Perry et al. 2008), sprint training
(Cheetham et al. 1986; Nevill et al. 1989), or resistance training (MacDougall et al.
1977) in men or women. This (contrasts) with a 10–20% increase in the glycolytic
capacity to produce anaerobic energy following sprint training (Cheetham et al.
1986; Nevill et al. 1989). Cr does turnover in the muscle, and ~ half of the Cr is
provided from the diet and half from Cr synthesis in the body (Negro et al. 2019). In
a landmark study by Harris et al. in 1992, the authors suggested that the delivery of
Cr to the muscle may limit the ability of Cr transporters in the cell membrane to take
up additional Cr and increase the muscle Cr store. They demonstrated that ingesting
a large quantity of Cr (~5 g) could increase the plasma [Cr] several fold and maintain
these increases for 4–6 hours. This resulted in ~20% increases in the total Cr content
in muscle and smaller but significant increases in PCr content (Harris et al. 1992). Of
course, this amount of Cr could not be ingested in actual food, but single and
multiple ingestions of this large amount of Cr presented the body with an
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unphysiological increase in plasma Cr for many hours. They also reported that the
increases in muscle Cr with supplementation were largest in people with the lowest
muscle Cr content and that people who already had high total Cr muscle contents of
~140–150 mmol/kg dm responded very little or not at all.

Additional work by the same group identified what are now termed the “rapid”
and “slow” Cr loading regimens (Hultman et al. 1996). The “rapid” loading regimen
involves ingesting 5 g of creatine monohydrate every 4–5 hours coinciding with
breakfast, lunch, dinner, and an evening snack. This ensures that the plasma [Cr] will
be high for ~16 hours/day or more, and in this situation, Cr is taken up by the
muscles with most occurring in the first 2–3 days, based on the excretion of Cr in the
urine (Harris et al. 1992). The authors also showed that ingesting 2 g/day following
the rapid loading phase maintained the new higher total Cr content. If no additional
Cr was ingested beyond the rapid loading phase muscle [Cr] returned to baseline in
about 28 days. The “slow” loading regimen simply required the ingestion of 3 g
Cr/day for ~30 days and the same increase in muscle [Cr] as the rapid loading phase
was achieved (Hultman et al. 1996).

The ultimate goal of Cr supplementation is to increase the resting [PCr] and
therefore the capacity of this system to provide ATP during intense sprint-like
activities. Many studies have since examined whether increased performance results
from Cr supplementation in appropriate forms of exercise, and many studies, but not
all, have confirmed this (Antonio et al. 2021). Numerous research papers and review
articles now exist summarizing the methods to enhance Cr uptake by the muscles,
the performance effects of supplementation, and the safety concerns related to long-
term supplementation, among many other topics (Green et al. 1996; Steenge et al.
2000; Negro et al. 2019; Antonio et al. 2021).

4.8 Summary

Aerobic metabolism is the dominant pathway for ATP production in human skeletal
muscle in many movement, exercise, and sport situations. However, anaerobic ATP
production also plays an important role to supplement or buffer the need for ATP
when aerobic metabolism cannot meet the ATP demands. These situations include
the transitions from rest to exercise and from one power output to a higher one, high-
intensity exercise that demands ATP provision rates above what can be provided
aerobically, and in situations of suboptimal oxygen supply. Anaerobic energy is
provided from phosphocreatine and muscle glycogen breakdown (anaerobic glycol-
ysis). These systems can provide energy very quickly and at very high rates but are
limited to short periods of time during high-intensity exercise due to substrate
depletion and increasing muscle acidosis. This is especially important as the amount
of energy stored in muscle is low and would be consumed in just a few seconds of
high-intensity exercise. The capacity of the PCr store is about 3 times the amount of
energy stored in the muscle as ATP and can be depleted in ~10–15 s of intense
exercise. The capacity of glycolysis to produce anaerobic energy is about 3 times
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that of PCr but needs ~90–120 s for this contribution. After long sprints, PCr can be
rapidly resynthesized in a few minutes, whereas anaerobic glycolysis needs 30–-
60 minutes to remove the accumulated acidosis. Sprint training can increase the
capacity of anaerobic glycolysis by 10–20% while the PCr store in muscle is
unchanged. Supplementation with creatine can increase the skeletal muscle total
creatine and PCr stores in most individuals. Importantly, energy provision is
maintained by contributions from both the aerobic and anaerobic sources to ensure
that ATP resynthesis closely matches the exercise ATP demand in most exercise and
sporting situations. Anaerobic ATP provision makes its mark during very intense
bursts of activity requiring ballistic and powerful sprint-like movements.
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Chapter 5
Exercise and Muscle Glycogen Metabolism

Niels Ørtenblad, Joachim Nielsen, James P. Morton, and José L. Areta

Abstract Muscle glycogen is an important fuel source for contracting skeletal
muscle, and it is well documented that exercise performance is impaired when the
muscle’s stores of glycogen are exhausted. The role of carbohydrate (CHO) avail-
ability on exercise performance has been known for more than a century, while the
specific role of muscle glycogen for muscle function has been known for half a
century. Nonetheless, the precise cellular and molecular mechanisms by which
glycogen availability regulates cell function and contractile-induced fatigue are
unresolved. Alterations of pre-exercise muscle glycogen reserves by dietary and
exercise manipulations or modifying the degree of dependency on endogenous
glycogen during exercise have collectively established a close relationship between
muscle glycogen and the resistance to fatigue. It is also apparent that glycogen
availability regulates rates of muscle glycogenolysis and resynthesis, muscle glucose
uptake, key steps in excitation-contraction coupling, and exercise-induced cell
signaling regulating training adaptation. The present review provides both a histor-
ical and contemporary overview of the effects of exercise on muscle glycogen
metabolism, addressing factors affecting glycogen use during exercise as well as
the evolving concepts of how glycogen and glycolysis are integrated with cell
function, skeletal muscle fatigue, and training adaptation.
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5.1 Introduction

It is remarkable how skeletal muscle fibers can adapt acutely to provide the neces-
sary production of energy during exercise, where a several-fold elevated energy
turnover can be sustained for hours or a more than a hundred-fold increase can be
executed for minutes. This ability to balance the energy turnover during various
types of exercise is achieved by an integration of different energy pathways and by
an efficient regulatory system, ensuring that ATP resynthesis is closely matched to
the ATP demand of exercise. By the end of the 1930s, it had already been established
that both fat and carbohydrate (CHO) could be used as fuel sources for aerobic
metabolism during exercise and that fuel used during exercise can be modified by
dietary manipulation (Zuntz 1896; Frentzel and Reach 1901; Krogh and Lindhard
1920; Edwards et al. 1934; Christensen and Hansen 1939). It was also understood
that CHO was the predominant metabolic substrate when exercising at high inten-
sities and that a relation existed between increasing CHO utilization with increased
intensity. Although these early studies had documented that CHO is a major
substrate during exercise and that the diet plays an important role in endurance
capacity, it was the introduction of the needle biopsy technique in the 1960s that
initially demonstrated that work time to exhaustion is highly correlated with muscle
glycogen concentration (Bergström et al. 1967). Furthermore, it was also established
that muscle glycogen content can be easily altered by isocaloric diets with varied
CHO content and that at exhaustion there was a near depletion of muscle glycogen.
These seminal studies on the important role of muscle glycogen on prolonged
submaximal exercise performance have since been confirmed and extended numer-
ous times. It is also well established that endurance training increases the basal stores
of muscle glycogen, as demonstrated in rodent muscle already in the 1930s (Palladin
1945) and later in humans (Taylor et al. 1992; Gollnick et al. 1974). Additionally,
trained humans have higher muscle glycogen content and a lower carbohydrate
utilization for a given absolute submaximal exercise intensity when compared to
untrained subjects (Karlsson et al. 1974; Saltin et al. 1976).

Based on the fundamental findings that carbohydrate combustion is more efficient
than fat combustion (~6.2 ATP per O2 and ~ 5.6 ATP per O2, respectively) (Krogh
and Lindhard 1920; McGilvery 1975) and that the degradation of glycogen to lactate
or CO2 and H2O in muscles provides a more rapid energy production than that
provided by the utilization of fatty acids (~1, 0.5 and 0.24 μmoles ATP g�1 s�1,
respectively) (Margaria et al. 1964), a large body of studies have been undertaken
from around the mid-1960s to today to investigate which factors influence glycogen
utilization during exercise and how this affects the function of skeletal muscle fibers
and athletic performance. As discussed above, a fundamental observation is that
exercise performance is impaired when the muscle’s stores of glycogen are
exhausted. During exercise, glycogen is utilized and can be depleted to very low
levels often reaching one-fifth to one-sixth of the pre-exercise level (Gollnick et al.
1974). This is observed in humans, who are unable to withstand exercise at or above
moderate intensity for a prolonged time when the stores are depleted to very low
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levels (<150mmol kg�1 dw) compared to pre-exercise levels of 500–900mmol kg�1

dw (Bergström et al. 1967; Hermansen et al. 1967) even with carbohydrate supple-
mentation during the exercise (Coyle et al. 1986; Rauch et al. 1995). Therefore, the
understanding of factors affecting the graded utilization of glycogen during exercise
is key to avoid unforeseen glycogen-dependent muscle fatigue. Indeed, the precise
mechanisms underpinning the role of glycogen in muscle function and performance
are far from understood.

With this in mind, the present chapter provides both a historical and contempo-
rary overview of the regulation of muscle glycogen metabolism during exercise in
humans. After an initial discussion of glycogen storage and regulatory processes of
glycogenolysis, a critical review of the factors that modulate glycogen utilization
during exercise (i.e., intensity, duration, training status, modality, fiber type, sex,
subcellular location, and environmental factors) is then presented. Subsequently, the
evolving concepts of how glycogen and glycolysis are integrated with cell function
and skeletal muscle fatigue are discussed from both a biochemical and physiological
context. Finally, we close by outlining how glycogen utilization may serve as a
signal to regulate cell signaling processes associated with modulating the endurance
phenotype (i.e., training adaptations).

5.2 Glycogen Storage and Regulation

5.2.1 Biochemistry of the Glycogen Particle and Its Turnover

Glycogen is a unique molecule among several glucose polymers found in nature
with structural and energy storage functions. Polymers of glucose with structural
function include chitin (polymer of n-acetylglucosamine, a derivative of glucose),
predominantly in arthropods and fungi, and cellulose in plants, algae, and
oomycetes, which represents the most abundant polymer on earth (Klemm et al.
2005). For energy storage, the main polymers of glucose are starch in plants and
glycogen which is by far the most widespread form of storage, found in archaea,
bacteria, and eukaryotes (from protozoa and fungi to mammals) (Ball et al. 2011).
Synthesis of glycogen through digestion of other glucose polymers is possible in
humans for which starch represents a digestible form, while other mammals (e.g.,
ruminants and ungulates) can also digest cellulose by endosymbiont bacteria in the
gut. In this context, two facts make glycogen standout: (1) it is a highly evolution-
arily conserved molecule in prokaryotes and from unicellular eukaryotes to mam-
mals, and (2) it represents the largest storage form of energy for high metabolic
power output processes in mammalian cells, for which different mechanisms have
evolved to maximize its synthesis and storage. These facts attest its key role in
energy storage and place it in the centerstage of cellular energy production in skeletal
muscle for exercise.

The glycogen polysaccharide is termed as a glycogen molecule, granule, or
particle (Fig. 5.1). Due to its physical association with several proteins, it has also
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been termed glycosome to indicate its more organelle-like structure (Rybicka 1996).
When glucose enters the cell, it is phosphorylated to glucose 6-phosphate by
hexokinase I and can either be metabolized in the glycolytic pathway or be added
to existing glycogen particles by the action of phosphoglucomutase, UDP-glucose
pyrophosphorylase, glycogen synthase, and branching enzyme (Roach et al. 2012).
While the first two steps activate the glucose, the glycogen synthase catalyzes the
reaction, where a ɑ-1,4-glycosidic linkage connects the new glycosyl units with the
nonreducing end of a chain of glycosyl units. The chain grows to a size of 11–13
glycosyl units. The branching enzyme transfers a set of glycosyl units from a chain
to another position of a chain by creating ɑ-1,6-glycosidic linkages. Since each chain
branches out two times with new chains organized in concentric tiers, the number of
glycosyl units in the glycogen particle increases exponentially from around 200 in a
small particle of 4 tiers (diameter of 11 nm) to around 55,000 in the largest particle of
12 tiers (diameter of 42 nm). In resting skeletal muscles, the typical (around 80% of
all particles observed) diameter of glycogen particles is 20–32 nm (Marchand et al.
2002; Nielsen et al. 2010; Hokken et al. 2020), corresponding to 1000 to 9000
glycosyl units per particle (Melendez-Hevia et al. 1993). This structure of the
glycogen particle is probably optimized by evolution to increase solubility and
decrease the osmotic effect (Melendez-Hevia et al. 1993). Despite this, the relatively
high numerical density of glycogen particles equals an osmotic effect of around
3 grams of water per 1 gram of glycogen (Olsson and Saltin 1970), which can

Fig. 5.1 Schematic diagram of a glycogen particle (with four concentric tiers of chains of glycosyl
units) and the turnover of glycosyl units to lactate generating a high metabolic power or to CO2 and
H2O ensuring a high metabolic capacity. G glycogenin, GP glycogen phosphorylase, G1P glucose-
1-phosphate, G6P glucose-6-phosphate, TCA tricarboxylic acid cycle, ETC electron transport chain
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accumulate up to 2 kilograms of glycogen-dependent stored water in humans during
glycogen-loaded conditions (Olsson and Saltin 1970; Shiose et al. 2016).

Although the true numerical density of glycogen particles cannot be investigated
with the currently available techniques, measures of the size of the observable
glycogen particles indicate that the utilization of glycogen during exercise is mainly
attributable to a decrease in the average particle size (Marchand et al. 2007; Gejl
et al. 2017a, b; Hokken et al. 2020); on the other hand, with training and diet
interventions, the increase in resting glycogen content is ascribed to an increase in
particle number (Nielsen et al. 2010; Jensen et al. 2021). Thus, in resting muscles,
there may be a preferable size of particles, which could be the result of a trade-off
between storage efficiency (larger particles store more glycosyl units per volume)
and metabolic power (smaller particles possess a higher glycogenolytic rate) as also
suggested by Shearer and Graham (2004). An increase in glycogen particle number
has been recognized to require a de novo synthesis of the self-glycosylating protein
backbone glycogenin (Roach et al. 2012), but recent studies have suggested an
increase in glycogen particle number based on a mechanism, which is independent
on glycogenin (Testoni et al. 2017; Visuttijai et al. 2020).

The degradation of glycogen is conducted by the action of glycogen phosphor-
ylase, which cuts the ɑ-1,4-glycosidic linkages and liberates the glycosyl units to the
glycolytic pathway. Interestingly, given the branched structure of the glycogen
particle, around one third of the glycosyl units are in the outermost tier (Melendez-
Hevia et al. 1993) and readily available for glycogen phosphorylase securing a fast
mobilization of energy. A more pronounced degradation of the particle requires a
coordinated action of glycogen debranching enzyme cutting the ɑ-1,6-glycosidic
linkages. As discussed, the breakdown of muscle glycogen to produce glucose
1-phosphate is thus under the control of glycogen phosphorylase, and this reaction
requires both glycogen and Pi as substrates. Phosphorylase, in turn, exists as a more
active a form (which is under the control of phosphorylation by phosphorylase
kinase) and also as a more inactive b form (which exists in a dephosphorylated
form due to the action of protein phosphatase 1). Phosphorylase can be transformed
via covalent modification (i.e., phosphorylation by phosphorylase kinase) as medi-
ated through epinephrine (Roach et al. 2012). Additionally, Ca2+ is a potent positive
allosteric regulator of phosphorylase kinase through binding to the calmodulin
subunit (Jensen and Richter 2012), though glycolytic flux is not controlled by
Ca2+ directly, but by factors related to energy state (Ørtenblad et al. 2009). During
contractile activity, the increased accumulation of Pi as a result of increased ATP
hydrolysis can increase the rate of glycogenolysis as it provides increased substrate
required for the reaction. Furthermore, greater accumulations of free ADP and AMP
can also subsequently fine-tune the activity of phosphorylase a through allosteric
regulation (Howlett et al. 1998). When taken collectively, the regulation of glycogen
phosphorylase is dependent on hormonal control, substrate availability, and local
allosteric regulation, the precise contribution of which is dependent on the specific
exercise challenge.
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5.2.2 Measurement of Muscle Glycogen

The golden standard for determination of muscle glycogen is the biochemical
technique where the glycosyl units are liberated by acid hydrolysis and the amount
determined spectrophotometrically (Passonneau and Lowry 1993). This is
performed in skeletal muscle biopsies in small specimens of ~10 mg (wet weight),
and with small adjustments can also be applied to single fibers (Hintz et al. 1982).
The latter approach makes it possible to directly combine glycogen content with
other biochemical or physiological measures and to distinguish between different
fiber types. Noninvasively, nuclear magnetic resonance (NMR) has been optimized
to detect muscle glycogen signals (Taylor et al. 1992) and can serve as an alternative
to the biochemical assessment when biopsies are unsuitable for the target group.

To investigate fiber-type-specific glycogen, a semi-quantitative histochemical
periodic acid-Schiff (PAS) staining has been employed in a large body of studies.
Here, the glycogen content is assessed by staining intensity from empty to full using
a scale of 4–5 steps and compared with the myosin ATPase characteristics (Pearse
1961). The PAS staining is based on a reaction of periodic acid with all sugars in the
muscle, and it is therefore not specific for glycogen. It has been suggested to be
replaced by an antibody-based technique (Nakamura-Tsuruta et al. 2012; Skurat
et al. 2017), which can also be used by dot blotting (Albers et al. 2015).

With the binding properties of glycogen particles to a reduced form of osmium, a
protocol for staining glycogen in transmission electron microscopy has also been
developed (de Bruijn 1973; Marchand et al. 2002). With this approach, the subcel-
lular distribution of glycogen can be envisaged along with information on fiber types
(based on Z-discs and M-band appearances) and other ultrastructural parameters
(Sjöström et al. 1982b).

5.2.3 Inter-fiber Variability and Subcellular Differences

While most studies on glycogen content are conducted using homogenates of small
pieces of muscle, a string of studies have shown large inter-fiber variability ranging
from around 100 to 1000 mmol kg�1 dw (Essén and Henriksson 1974). With
discrimination between fiber types based on myosin ATPase activity, it has repeat-
edly been shown that type 2 fibers contain about 10–30% more glycogen than type
1 fibers in human skeletal muscles (e.g., Essén and Henriksson 1974; Ball-Burnett
et al. 1991; Greenhaff et al. 1993). At the subcellular level, glycogen particles are
dispersed heterogeneously throughout the myoplasm with one large pool located in
the intermyofibrillar space close to sarcoplasmic reticulum and mitochondria and
two small pools located in the intramyofibrillar and subsarcolemmal spaces, respec-
tively (Sjöström et al. 1982a; Fridén et al. 1985, 1989; Marchand et al. 2002, see
Fig. 5.4, Sect. 5.3). Although all the pools are utilized during exercise taxing the
endogenous glycogen stores (see later), their content seems not to be related in
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resting muscles (Nielsen et al. 2010), suggesting that local independent factors are
involved in their regulation.

5.3 Utilization of Glycogen During Exercise

As alluded to earlier, a series of studies from Scandinavian researchers during the
late 1960s and early 1970s collectively demonstrated the role of skeletal muscle
glycogen as a key fuel source for prolonged exercise capacity, particularly when
completed at higher exercise intensities (Bergström and Hultman 1966a, b;
Bergström et al. 1967; Saltin and Karlsson 1971). For example, pioneering work
from Bergström et al. (1967) highlighted the role of dietary carbohydrate in elevating
muscle glycogen reserves and subsequently demonstrated that high pre-exercise
muscle glycogen concentration (~890 mmol.kg�1 dw) extends exercise capacity at
75% of VO2max by a remarkable 320% (from 59 to 189 min) when compared to low
(~170 mmol.kg�1 dw) muscle glycogen stores. It was later demonstrated that
increasing exercise intensity results in an exponential increase in the rate of muscle
glycogen utilization (Saltin and Karlsson 1971).

Further association between starting skeletal muscle glycogen and prolonged
aerobic exercise performance (Karlsson and Saltin 1971) solidified the central role
of skeletal muscle glycogen as key substrate for intense exercise of prolonged
duration. These seminal studies paved the way for the next 50 years of research
examining the dietary and exercise-related factors that can subsequently affect the
pattern of glycogen utilization during exercise. Such factors have been the subject of
a recent meta-analysis (Areta and Hopkins 2018) and are portrayed conceptually in
Fig. 5.2. The text to follow provides a critical overview of factors that can affect
glycogen utilization during exercise.

5.3.1 Duration and Intensity

Although the duration of exercise that can be maintained is inevitably dependent on
exercise intensity, the effect of intensity and duration on muscle glycogen utilization
can be analyzed independently. Glycogen utilization increases in accordance with
increased exercise duration though it is noteworthy that the rates of utilization vary at
different stages during exercise. For example, during the first ~20 min of exercise,
the rates of glycogen utilization seem to be the highest, a factor that is likely related
to higher activity of glycogenolytic enzymes and lower availability of other meta-
bolic substrates (Green et al. 1995; Chesley et al. 1996; Dyck et al. 1996; Graham
et al. 2001), over and above the fact that higher glycogen concentration per se is
associated with increased glycogen utilization (see below substrate availability and
glycogen utilization). Thereafter, rates of utilization during prolonged exercise seem
to be rather constant until they reach low levels (~200 mmol. kg�1 dw) at which
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point the rates are then reduced significantly (Coyle et al. 1986; Bosch et al. 1993,
1996). Fatigue during prolonged submaximal exercise (i.e., 60–70% of VO2max)
typically occurs after a duration of 2 h with glycogen at exhaustion within the range
of ~100 to 200 mmol.kg�1 dw (Areta and Hopkins 2018). Indeed, early studies on
muscle glycogen and athletic performance suggested that the inability to maintain
high rates of work would coincide with theoretical muscle glycogen content of
70–120 mmol.kg�1 dw during an endurance competition of ~135 min (Karlsson
and Saltin 1971). With this in mind, it is most likely that only competitive events
lasting >90 min would benefit from CHO loading strategies that aim to super
compensate pre-exercise muscle glycogen stores, where performance has been
suggested to improve by ~2–3% (Hawley et al. 1997a, b).

During intense exercise, ATP provision is achieved principally by the oxidation
of carbohydrate, and muscle glycogen utilization increases exponentially with exer-
cise intensity. At intensities ranging from 75% VO2max to near maximal workloads,
glycogen is the main energy substrate (Saltin 1973; Gaitanos et al. 1993; Hultman
and Greenhaff 1999). Thus, even a single 6 s or 30 s all-out sprint can reduce muscle
glycogen by15 or 20–30%, respectively (Gaitanos et al. 1993; Bogdanis et al. 1996;
Parolin et al. 1999). Such high glycogen utilization is achieved by estimated
glycogenolytic rates of around 4.5 mmol glucosyl units.kg-1.dw.s�1 (Gaitanos
et al. 1993; Parolin et al. 1999). During longer durations of high-intensity exercise,
the glycogenolytic rate is known to decreases though it is noteworthy that muscle

Fig. 5.2 Conceptual representation of skeletal muscle glycogen utilization dynamics at different
intensities and durations, based on mathematical modelling of data extracted from a large sample of
published literature (Areta and Hopkins 2018). Note that the starting muscle glycogen has been set
constant at 600 mmol. kg�1 dw for exercise of intensities ranging from equivalent to 40 to 120% of
VO2max, ranging from 5 to 120 min duration
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glycogen stores in both arms and legs are reduced by 20–25% during 4 min of high-
intensity all-out cross-country sprint skiing (Gejl et al. 2014).

The first study to systematically investigate the effect of intensity demonstrated a
clear exponential increase in muscle glycogen use (Fig. 5.3), with a disproportionate
increase in rates at intensities close to VO2max and above (Saltin and Karlsson 1971).
More recent studies addressing the contribution of different energy substrates using
metabolic tracers show a clear disproportionate increase in reliance on skeletal
muscle glycogen with increasing intensities when compared to all other fuel sources
including intracellular lipids and plasma lipids and glucose (Romijn et al. 1993; van
Loon et al. 2001). Corroborating these findings, a meta-analytic evaluation of the
effect of exercise intensity on muscle glycogen use demonstrates moderate and large
effects with increasing exercise intensity, albeit with substantial variation between
studies (Areta and Hopkins 2018). The variation in glycogen use observed in
different studies and individuals at the same intensity may be related to the fact
that % VO2max is typically used as the “default” intensity parameter, and this
parameter may not necessarily match the metabolic and substrate demands of the
effort at the muscular level. Indeed, muscular oxidative capacity can vary greatly
between individuals with the same VO2max (Holloszy 1973; Holloszy and Coyle
1984), and lactate threshold represents a more suitable method for which to match
intensity within and between studies (Coyle et al. 1988; Poole et al. 2020).

Given that phosphorylase can be transformed via covalent modification (i.e.,
phosphorylation by phosphorylase kinase) mediated through epinephrine, it would
be reasonable to expect that greater phosphorylase transformation from b to amay be
one mechanism to explain increased glycogenolysis that is evident with increasing
exercise intensity. This would also be logical given that sarcoplasmic Ca2+ levels
would be increased with high-intensity exercise (given the need for more rapid cross-
bridge cycling) and that Ca2+ is a potent positive allosteric regulator of phosphory-
lase kinase through binding to the calmodulin subunit. However, the percentage of
phosphorylase in the more active a form does not appear to be increased with
exercise intensity and in actual fact is decreased after only 10 min of high-intensity
exercise, which may be related to the reduced pH associated with intense exercise
(Howlett et al. 1998). Whereas this mechanism of transformation (mediated by Ca2+

signaling) may be in operation within seconds of the onset of contraction (Parolin
et al. 1999), it appears that post-transformational mechanisms are in operation during
more prolonged periods of high-intensity exercise given that glycogenolysis still
occurs despite reduced transformation. In this regard, vital signals related to the
energy status of the cell play a more prominent role. Indeed, as exercise intensity
progresses from moderate- to high-intensity exercise, the rate of ATP hydrolysis
increases so much so that there is a greater accumulation of ADP, AMP, and Pi, thus
providing allosteric and substrate level control (Howlett et al. 1998).

One final consideration is that the rapid decrease in muscle glycogen at intensities
close to and above VO2max most likely represents mere glycogenolysis, rather than
oxidation of its glucose units. For example, all-out exercise of ~2 min at an intensity
well above the VO2max decreases muscle glycogen by about 25% (Medbø 1993;
Medbø et al. 2006), but the net oxidation of the glycogen utilized is estimated to be
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~4–13% (Medbø 1993). In this scenario, most of it ends as lactate, of which half is
released to the bloodstream and the other half is utilized for rapid muscle glycogen
resynthesis within the muscle (Medbø et al. 2006). Bangsbo et al. (1991) estimated
that between 13 and 27% of lactate released from high-intensity exercise was
converted back to glycogen (Bangsbo et al. 1991). From a practical perspective, it
is worth noting that despite the disproportionate increase of skeletal muscle glycogen
with increased intensity, prolonged steady-state exercise results in increased abso-
lute muscle glycogen utilization when compared with shorter high-intensity intervals
(Impey et al. 2020).

5.3.2 Substrate Availability

Although exercise intensity and duration are key drivers of glycogen use, high or
low glycogen availability can result in higher or lower glycogenolysis, respectively,
despite divergent exercise intensities (Arkinstall et al. 2004). Due to the significant
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effects of nutrient availability on glycogen utilization dynamics and exercise perfor-
mance, manipulation of substrate availability and skeletal muscle glycogen has
therefore been a major area of focus in research. Indeed, given the relationship
between high muscle glycogen and increased work capacity, a number of dietary
practices manipulating substrate availability have been tested to maximize muscle
glycogen stores or to minimize its use during exercise in order to further increase
work capacity. The most noteworthy practices manipulating substrate availability
are the increase of muscle glycogen itself, the increase in availability and oxidative
capacity of lipids (through diet and intravenous provision of lipids or lipolytic
agents), and the ingestion of glucose during exercise.

5.3.2.1 Increased Muscle Glycogen Stores and Glycogen Use

Skeletal muscle glycogen content is directly related to dietary carbohydrate as shown
by seminal studies (Bergström et al. 1967; Gollnick et al. 1972), a finding that has
systematically been corroborated in the literature (Areta and Hopkins 2018). Deplet-
ing muscle glycogen through exhaustive exercise followed by high carbohydrate
intake has been shown to subsequently overshoot skeletal muscle glycogen reserves
above normal resting values in the previously contracted muscle (Bergström and
Hultman 1966a, b), a phenomenon that was termed as “glycogen
supercompensation.” The precise molecular mechanisms underpinning the
supercompensation effect remain an active area of research (Hingst et al. 2018).
Since the original work documenting this effect, it is now accepted that prior
depletion of muscle glycogen is not necessary for individuals who regularly practice
aerobic-type exercise and that a taper of training load in conjunction with elevated
dietary carbohydrate intake of ~10–12 g/kg of body mass/day can maximize skeletal
muscle glycogen concentration within 24–48 h (Burke et al. 2017). Regardless,
higher resting muscle glycogen leads to higher rates of muscle glycogen use during
exercise, likely a reflection of substrate regulation of glycogen phosphorylase
(Hargreaves et al. 1995). Indeed, when intensity and duration of exercise are kept
constant, commencing exercise with high muscle glycogen (e.g., > 600 mmol.kg�1

dw) leads to higher muscle glycogen use compared to normal (e.g., ~450 mmol.kg�1

dw) or low (e.g., <300 mmol.kg�1 dw) starting muscle glycogen (Galbo et al. 1979;
Hargreaves et al. 1995; Areta and Hopkins 2018). Accordingly, when examining
performance testing data of prolonged endurance exercise of a set distance and
workload, exercise is often finished with similar muscle glycogen levels despite
significant differences in starting muscle glycogen (Karlsson and Saltin 1971;
Sherman et al. 1981; Rauch et al. 1995; Tomcik et al. 2018).

5.3.2.2 Increased Lipid Availability and Glycogen Sparing

Given the comparatively unlimited storage of energy in the form of fat, increasing
the use of lipids as a fuel source during exercise to “spare”muscle glycogen with the
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goal of improving physical performance has been a topic of intense research.
Intravenous lipid infusion, lipolytic agents, high-fat meals, and high-fat diets have
been all been used to test this hypothesis. Interventions using intralipid infusion and
heparin have been consistently shown to spare muscle glycogen between ~15 and
45% at moderate and high intensities lasting 15–60 min (Vukovich et al. 1993; Dyck
et al. 1993, 1996; Odland et al. 1998; Hawley 2002). The effects of a high-fat meal
consumed prior to exercise, however, have been less consistent with studies ranging
from 40% glycogen sparing to no glycogen sparing at all (Costill et al. 1977;
Vukovich et al. 1993; Hawley 2002;). The possibility of sparing skeletal muscle
glycogen via dietary fat intake has been expanded through the use of high-fat diets
during days and weeks.

The use of high-fat diets consumed over durations greater than 3 days has been
termed “fat adaptation” and is effective in increasing circulating free fatty acids
(FFA), FFA uptake by muscle, and increased fat oxidation during exercise
(Stellingwerff et al. 2006). The increased rates of fat oxidation, however, occur in
parallel with decreased skeletal muscle glycogen due to reduced dietary carbohy-
drate intake (Hammond et al. 2019; Areta et al. 2020) and hence, as detailed in the
previous section, lower muscle glycogen results in lower glycogen utilization.
Nonetheless, 24 h of restoration of carbohydrate intake after days of fat adaptation
permits skeletal muscle glycogen storage while still retaining the increased capacity
to utilize higher amounts of fat during exercise and spare glycogen to some extent
(Burke et al. 2000; Stellingwerff et al. 2006). However, fat adaptation protocols also
decrease pyruvate dehydrogenase (PDH) activity (Stellingwerff et al. 2006), the
enzyme that represents a rate-limiting step in the flux of glucose into mitochondrial
ATP, and thereby this condition impairs the capacity of generating metabolic power
through the oxidation of glycogen. Therefore, in the majority of the studies to date,
fat adaptation has not been able to enhance physical performance in endurance
exercise, likely due to impairment of the capacity for high-intensity exercise
(Burke 2006). However, over prolonged exercise (>5 h), fat adaptation with carbo-
hydrate restoration is potentially beneficial for performance (Rowlands and Hopkins
2002). In conclusion, increasing fat availability acutely and chronically has the
capacity to reduce muscle glycogen use during exercise, likely due to the indepen-
dent and combined effects of increasing fat utilization and decreasing the capacity to
oxidize glucose. Nonetheless, these strategies do not seem conducive to promoting
exercise performance.

5.3.2.3 CHO Supplementation During Exercise and Glycogen Sparing

The fact that carbohydrate consumption during exercise increases carbohydrate
oxidation led to the idea that muscle glycogen would be spared as a fuel source at
its expense (Coyle et al. 1986). This intuitive idea, however, has not been supported
by research findings. When considering whole skeletal muscle glycogen, a meta-
analytic evaluation of CHO supplementation during exercise (n ¼ 24 studies)
determined there was no glycogen-sparing effect (Areta and Hopkins 2018). It is
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important to highlight that this meta-analysis only evaluated the presence or absence
of CHO consumption. Indeed, although the effects of consuming 0, 15, 30, and 60 g/
h of CHO showed no differences in glycogen use during exercise (Smith et al. 2010),
a more nuanced analysis should perhaps determine whether low, medium, and high
amounts of carbohydrate (e.g.,<30, ~60, and� 90 g/h respectively) across different
exercise durations can affect glycogen utilization. No unequivocal evidence exists to
support sparing with specific fibers, with reports of no sparing in either fiber type
(Coyle et al. 1986; Mitchell et al. 1989), sparing in type 2a fibers (De Bock et al.
2006), and sparing in type 1 fibers (Yaspelkis et al. 1993; Tsintzas et al. 1995, 1996;
Tsintzas et al. 2001). Such differences between studies may be related to differences
in CHO availability prior to exercise, the CHO feeding strategy, and contrasting
exercise protocols related to duration, modality, and intensity. In a recent study, Fell
et al. (2021) demonstrated that consuming 45 or 90 g/h of CHO (in the form of
solids, gels, and fluids) does not spare glycogen use in type 1 or 2 fibers when
compared with no CHO ingestion, as assessed during 3 h of steady-state cycling
conducted at lactate threshold. Importantly, exercise was commenced after a 36 h
CHO loading protocol of 12 g/kg as well as consumption of a pre-exercise meal of
2 g/kg, thus replicating nutritional practices of elite road cyclists. Despite the
apparent consensus that CHO feeding does not exert glycogen sparing, future studies
should also examine the effects of CHO feeding on utilization within the subcellular
glycogen storage pools of both type 1 and 2 fibers.

5.3.3 Training Status

For a given absolute exercise intensity, longitudinal studies demonstrate that glyco-
gen utilization is reduced with exercise training (Karlsson et al. 1974), an effect that
is confined locally to the actual muscles that were trained (Saltin et al. 1976). The
reduced glycogenolysis observed after training is not due to any change in phos-
phorylation transformation but rather allosteric mechanisms (Chesley et al. 1996).
Indeed, exercise in the trained state is associated with reduced content of ADP,
AMP, and Pi thereby providing a mechanism leading to reduced phosphorylase
activity. Importantly, the reduced rates of glycogenolysis that are evident with
training are also apparent despite the fact that training induces elevations in resting
glycogen stores and that higher basal glycogen is normally associated with increased
glycogen utilization. As such, local allosteric control exerts a more pronounced
regulatory role than substrate-level regulation. On this basis, it is now accepted
that glycogen utilization during exercise is inversely related to training status and
that exercise in the trained state, at same absolute intensity, requires comparatively
less muscle glycogen. However, despite this well-documented finding, a meta-
analytic evaluation of the effects of training status on glycogen utilization has
shown only a trivial or small effect in relation to increases of VO2max of 10 ml/kg/
BM (Areta and Hopkins 2018).
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This latter finding may be attributable to the fact that VO2max is not an ideal
parameter of training status when assessing changes in local muscle metabolism,
despite it being considered as the main parameter for maximal aerobic capacity.
Rather, a parameter of training status (and indeed exercise intensity) that is more
reflective of skeletal muscle oxidative capacity is likely a more suitable approach to
assessing the changes in glycogen utilization associated with training. For example,
as little as 3 days of prolonged (2 h) aerobic-type training induces glycogen sparing
by ~60% when assessed during exercise undertaken at 65% VO2peak in healthy
individuals (Green et al. 1995). As such, parameters of training status that are more
indicative of the oxidative capacity of skeletal muscle (i.e., lactate threshold) are
likely a better parameter for classification of status when determining the effects of
training on skeletal muscle glycogen utilization. Indeed, individuals with compara-
ble VO2max but who possess a “high” or “low” lactate threshold present with distinct
differences in glycogen utilization when cycling for 30 min at 80% VO2max, i.e.,
subjects with a low threshold utilize more than twice as much muscle glycogen
during 30 min exercise (Coyle et al. 1988).

In summary, substantial evidence demonstrate that a more trained skeletal muscle
(i.e., with higher oxidative capacity) is less reliant on skeletal muscle glycogen use
during exercise. However, there is a large variation in rates of muscle glycogen use
in individuals when exercising at a percentage of their VO2max. The use of a
parameter of intensity and training status representative of skeletal muscle oxidative
capacity will be important to further characterize the estimation of muscle glycogen
use during exercise.

5.3.4 Exercise Mode

5.3.4.1 Running vs. Cycling

When comparing glycogen utilization within the vastus lateralis muscle, it has been
consistently demonstrated that cycling induces greater absolute utilization than when
running at a matched relative exercise intensity and duration. For example,
Arkinstall et al. (2004) compared glycogen utilization in the vastus lateralis of
moderately trained males during 60 minutes of cycling and running at lactate
threshold and observed an absolute utilization of approximately 220 and
120 mmol.kg�1 dw, respectively. Accordingly, a recent meta-analysis demonstrated
that absolute glycogen utilization is “small but very likely” reduced during matched
protocols of running versus cycling (i.e., relative exercise intensity and duration),
where the expected reduction in running equates to 70 mmol.kg�1 dw (Areta and
Hopkins 2018). Such differences between modalities are, of course, reflective of
greater recruitment of the vastus lateralis muscle during cycling when compared with
running. The role of muscle recruitment in modulating glycogen utilization is also
evident during running where both the absolute and rate of glycogen utilization are
higher in the gastrocnemius muscle when compared with the vastus lateralis (Costill
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et al. 1974). This pattern of greater glycogen utilization within the gastrocnemius
versus vastus lateralis when running is evident in both males and females during
moderate- and high-intensity exercise protocols (Impey et al. 2020).

5.3.4.2 Resistance Exercise

Resistance exercise sessions typically consist of several sets (interspaced by pauses
of 1–4 min) of repeated near maximal force productions. Here, the short duration and
the high intensity of each force production necessitate a predominant use of the rapid
energy systems taxing glycogen and creatine phosphate as substrates. During recov-
ery periods between sets, however, other substrates such as intramuscular triglycer-
ides can also contribute to the overall energy provision (Koopman et al. 2006). The
most important factor for the utilization of glycogen during resistance exercise seems
to be the total work performed rather than the exercise intensity (Robergs et al.
1991). Typical high-volume resistance exercise sessions decrease skeletal muscle
glycogen by about 20–40% (100–250 mmol.kg�1 dw) (Tesch et al. 1986; Essén-
Gustavsson and Tesch 1990; Robergs et al. 1991; Pascoe et al. 1993; MacDougal
et al. 1999; Haff et al. 2003; Harber et al. 2010; Samuelson et al. 2016), but, in
contrast to endurance exercise, the decrease is larger in type 2 fibers than in type
1 fibers (Tesch et al. 1998; Koopman et al. 2006; Morton et al. 2019).

5.3.5 Lower vs Upper Body

Vastus lateralis of the quadriceps has been the muscle predominantly sampled in
research on skeletal muscle glycogen and used as a model that is normally extrap-
olated to all other muscles. However, several lines of evidence point to different
intrinsic regulations of metabolism in the upper and lower body. These differences
include a higher relative fat oxidation in the leg compared with arm exercise (Helge
et al. 2008; Larsen et al. 2009), and a higher mitochondrial oxygen flux is present in
the vastus lateralis compared to the arm (deltoid) muscle measured by high-
resolution respirometry (Larsen et al. 2009). Further, it is well recognized that lactate
release is higher during arm compared with leg exercise of comparable intensity
(Jensen-Urstad and Ahlborg 1992; Jensen-Urstad et al. 1993). Thus, Ahlborg and
Jensen-Urstad (1991) had two groups performing arm cranking and leg cycling,
respectively, and demonstrated a higher relative carbohydrate utilization during arm
cranking due to both a higher muscle glycogenolysis and a higher glucose uptake,
while arms also had a higher lactate release (Ahlborg and Jensen-Urstad 1991). In a
later study, the glucose uptake was not different between limbs when expressed per
muscle volume, whereas the lactate release was noticeably higher in the arm than in
the leg (Jensen-Urstad et al. 1993). Overall, this suggests that exercising arm muscle
displays a different metabolic response compared with leg muscle, with a higher
glycogen utilization and lactate release compared to leg muscle during same relative
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exercise intensity, implying a possible qualitative difference between muscles from
the arm vs. the leg. However, another explanation for the differences described
above may simply be that the upper body musculature, including the arm muscle,
resides in less trained musculature than that of the lower body, as in the leg muscles
(see Sect. 5.3.3). Still, when arm-trained athletes are exercising with either arm or leg
exercise at the same relative intensity, there was a markedly higher lactate release
during arm exercise (Jensen-Urstad and Ahlborg 1992). Also, in highly trained
cross-country skiers, a net lactate release from arms and uptake by legs has been
demonstrated during exercise involving both the upper and lower body (van Hall
et al. 2003). In line with this, direct comparisons of the highly trained arm and leg
muscles of elite cross-country skiers reveal that despite same mitochondrial volume
percentage and citrate synthase activity in the legs and arms, the muscles exhibited
clear difference in their enzyme-linked ability to oxidize fatty acids (HAD capacity)
and a fourfold higher intramyocellular lipid volume contents in leg muscles
(Ørtenblad et al. 2018; Koh et al. 2018). These data point to a clear limb difference
in metabolism between the leg and the arm, which cannot be explained by training
status or different fiber-type distributions. Taken together, the current data suggests
that when exercising at the same relative intensity, arm muscle has a higher muscle
glycogen use and lactate release as compared to the leg. This is also apparent in
subjects with trained both upper and lower body.

5.3.6 Temperature

Exercise in the heat results in exaggerated fatigue concomitant with major alterations
in several physiological and metabolic factors. The majority of the research
conducted on the effects of heat stress on energy metabolism during exercise has
demonstrated a shift toward increased carbohydrate use. During exercise in the heat,
the rate of muscle glycogen degradation is significantly increased (Fink et al. 1975;
Febbraio et al. 1994) with an increase in both carbohydrate oxidation and lactate
accumulation at a given exercise intensity, while the muscle glucose uptake and
utilization appear to be unaltered during exercise in the heat, despite hyperglycemia
and an augmented liver glucose output. Thus, the increase in carbohydrate utilization
is largely explained by an increased muscle glycogenolysis observed via both
aerobic and anaerobic energy turnover. The mechanisms thought to be responsible
for the enhanced muscle glycogenolysis likely are due to increased sympatho-
adrenal response and increased muscle temperature (Hargreaves et al. 1996).
Although exercise in the heat increases the intramuscular glycogen utilization
(Fink et al. 1975; Febbraio et al. 1994; Hargreaves et al. 1996), depletion seems
not to be the cause of fatigue during exercise in the heat. Thus, a general observation
is that muscle glycogen stores are not critically low at fatigue and exhaustion, i.e.,
<250–300 mmol.kg�1 dw, suggesting that exercise in the heat is terminated before
available glycogen stores have been limiting. Further, the total amount of carbohy-
drate oxidized during exercise in the heat is relatively low as exercise time is shorter
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than exercising in moderate or low temperatures (Fink et al. 1975; Febbraio et al.
1994; Galloway and Maughan 1997). Still, diet-induced increase in muscle glycogen
before exercise is associated with enhanced exercise capacity in the heat, and
carbohydrate ingestion during exercise increases exercise capacity in the heat
(Pitsiladis and Maughan 1999; Carter et al. 2003). These outcomes cannot be
explained by direct effects on either hyperthermia or substrate depletion but may
exert an ergogenic effect related to factors peripheral to the muscle. Taken together,
exercising in the heat results in an increase in intramuscular glycogen utilization;
however, fatigue in these circumstances appears to be related to factors other than
muscle glycogen per se.

5.3.7 Altitude

As the contribution of carbohydrate is determined by the exercise intensity, the
hypoxic exposure experienced at altitude causes, in most studies, an increase in
relative carbohydrate utilization, when exercising at the same absolute intensity as at
sea level (Young et al. 1991; Brooks et al. 1991; Brooks 1992; Roberts et al.
1996a, b; Lundby et al. 2004; Katayama et al. 2009), but not all (Braun et al.
2000; O'Hara et al. 2017; Matu et al. 2018). A more direct comparison of possible
effects on substrate utilization during exercise at hypoxic conditions can be gained
by comparing exercise at sea level and at altitude, matched for the same relative
intensities. A meta-analysis of the effects of exposure to hypoxia during exercise
matched for relative intensities, compared with normoxia, demonstrated no consis-
tent change in the relative contribution of carbohydrate to the total energy yield
(Griffiths et al. 2019). This has been evidently demonstrated in a study where
subjects exercised at both the same absolute and relative intensity as at sea level
and under acute hypoxia, before and after 4 weeks exposure to 4100 m altitude
(Lundby and Van Hall 2002). Submaximal substrate utilization was unchanged with
acute and chronic hypoxia when exercising at the same relative intensity, while the
carbohydrate utilization was increased when exercising at the same absolute inten-
sity. Further, 4 weeks of acclimatization to altitude did not affect substrate utiliza-
tion, also confirming data from rodents (McClelland et al. 1998). Overall, these
studies demonstrate that relative work intensity is the main factor determining fuel
selection during exercise and prolonged hypoxia does not cause a significant shift in
fuel selection. However, little is known about the relative contributions of muscle
glycogen during hypoxia.

5.3.8 Sex Differences

Sex-based differences in substrate metabolism during endurance exercise are well
documented in that it is now recognized that females have reduced reliance on
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whole-body CHO metabolism (typically reflective of reduced liver glycogen metab-
olism) to support energy production (Devries 2016). Although not always consistent,
there is also some evidence that females use less glycogen than males. For example,
when assessed during the luteal phase, females use less glycogen in the vastus
lateralis muscle (25%) compared with males, as assessed during 90 minutes of
cycling at 65% VO2peak (Devries et al. 2006). When tested in the mid-follicular
phase, it has also been reported that females use less glycogen (25%) in the vastus
lateralis muscle than males when running a set distance of 15.5 km on a treadmill at
65% VO2peak (Tarnopolsky et al. 1990). When completing a 16 km road run
undertaken at lactate threshold in the mid-follicular phase, we also recently reported
that females use less glycogen in both the vastus lateralis (30%) and gastrocnemius
muscles (20%) when compared with males (Impey et al. 2020). It is, of course,
difficult to offer definitive mechanisms underpinning such differences in local
muscle metabolism owing to the challenge of matching resting glycogen concentra-
tion, training status, total work done, or distance covered between sexes (i.e., thus
reflective of exercise intensity and duration). Additionally, variations in phase of the
menstrual cycle studied as well as the use of contraceptives also make it difficult to
compare between studies. On the basis that studies examining the impacts of sex
hormones (e.g., estrogen and progesterone) have generally indicated they exert
minimal regulatory effects on muscle glycogen utilization (Devries 2016), it is
possible that the aforementioned factors may indeed play a more subtle but influen-
tial role. A recent meta-analysis demonstrated that sex-based differences in glycogen
utilization are indicative of a “likely small” reduction on absolute glycogen utiliza-
tion of approximately 30 mmol.kg�1 dw (Areta and Hopkins 2018). From a practical
perspective, we therefore suggest that such magnitudes of differences in glycogen
utilization are unlikely to require sex-specific nutritional strategies and that both
males and females should simply ensure they commence their training or compet-
itive scenario with sufficient glycogen stores to meet the subsequent metabolic
demand.

5.3.9 Subcellular Compartmentalization

In the above sections, the utilization of glycogen has been described based on mixed
muscle homogenates or histochemical-defined specific fiber types. This view
assumes a uniform utilization of glycogen within the muscle fibers, i.e., with no
spatial compartmentalization of metabolic reactions and no existence of local gra-
dients of ions and metabolites. A wealth of studies have shown that this assumption
is not valid and, in contrast, demonstrated that the muscle fibers’ interior is extremely
crowded (high concentrations of, e.g., proteins, metabolites, and ions) with limited
free diffusion, but with a highly developed compartmentalized network of enzymatic
reactions (e.g., Srere 1967; Sear 2019). Within this crowded interior, glycogen
particles are dispersed in distinct compartments. The definition of these compart-
ments is man-made and may be limited by the typical 2D portray of a muscle fiber.
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However, the studies from independent research groups (Sjöström et al. 1982a;
Marchand et al. 2002; Nielsen et al. 2011) have all defined three clearly separated
compartments (Fig. 5.4): (1) the intermyofibrillar space (between the myofibrils);
(2) the intramyofibrillar space (within the myofibrils); and (3) the subsarcolemmal
space (just beneath the surface membrane). In addition, some studies have addressed
glycogen particles in physical interaction with the sarcoplasmic reticulum (Wanson
and Drochmans 1968; Goldstein et al. 1985; Tammineni et al. 2020) or have
discriminated between intramyofibrillar glycogen located either in the I- or A-band
of the sarcomere (Fridén et al. 1985, 1989). In the subsarcolemmal space, glycogen
particles have been described as perinuclear (Caulfield and Klionsky 1959), nuclear
(Sun et al. 2019), or lysosomal (Viragh et al. 1982). Since quantitative data is
available only for the three clearly separated compartments, this will form the
basis for the discussion below.

Of the three compartments, intramyofibrillar glycogen are utilized relatively most
during various types of exercise (Marchand et al. 2007; Nielsen et al. 2011; Gejl
et al. 2017a, b, c; Jensen et al. 2020b; Hokken et al. 2020, Fig. 5.4). In a recent study
where participants cycled at 75% of  VO2max, exhaustion was associated with mixed
muscle homogenate glycogen concentration well above zero (120 mmol kg dw), but
with intramyofibrillar glycogen levels close to zero in about 60% of the type 1 fibers
(Jensen et al. 2020b). In comparison, subsarcolemmal and intermyofibrillar glyco-
gen levels were close to zero in only 40 and 10% of the type 1 fibers, respectively,
clearly suggesting a link between the depletion of intramyofibrillar glycogen and
exhaustion. However, in a few exceptions, intramyofibrillar glycogen was not found

Fig. 5.4 Representative transmission electron micrographs showing the typical pattern of glycogen
storage (glycogen particles are the black dots) at pre- (a) and post-prolonged exhaustive exercise
(b). Mi, mitochondria. The glycogen particles located within the sarcomere often close to the Z-disc
and as strings between the filaments are termed intramyofibrillar glycogen (thick arrow). The
particles located close to mitochondria (Mi) between the myofibrils are termed intermyofibrillar
glycogen (thin arrows). The images are collected as a part of the project described in Nielsen et al.
2011

5 Exercise and Muscle Glycogen Metabolism 89



to be preferentially utilized, which forms some basis for the understanding of
compartmentalized glycogen utilization. Firstly, with repeated high-intensity exer-
cise (4 � 4 min sprint skiing), only intermyofibrillar glycogen was utilized during
the fourth exercise bout (Gejl et al. 2017a, b, c), indicating that the energy production
by degradation of intramyofibrillar glycogen can be replaced by another energy
source if the exercise is repeated. This could be from intermyofibrillar glycogen
degradation, which in absolute terms was utilized more during the fourth exercise
bout, or from phosphocreatine, which is also localized within the myofibrils
(Wallimann and Eppenberger 1985) and known to super-compensate in response
to repeated exercise (Sahlin et al. 1997). Secondly, if subsarcolemmal glycogen is
super-compensated, its utilization rate is increased concomitant with a reduced
utilization of intramyofibrillar glycogen (Jensen et al. 2020b). This implies the
existence of a mechanism linking subsarcolemmal glycogen with intramyofibrillar
glycogen utilization. Thirdly, after resistance exercise, intermyofibrillar glycogen
was preferentially utilized in type 1 fibers, which contrasts to type 2 fibers, where
glycogen was utilized from all compartments (Hokken et al. 2020). The resistance
exercise was characterized by work periods interspaced by 2–4 min pauses, which
may facilitate some resynthesis of glycogen. With a low rate of glycogen utilization
in type 1 fibers, a small preferential resynthesis of intramyofibrillar glycogen during
rest periods may almost equal the degradation during work, which underscores that
net results (pre-post) from intermittent exercises should be carefully interpreted.

5.4 Glycogen Depletion and Fatigue

Most of the studies investigating the role of glycogen in muscle fatigue are based on
associations or correlational findings, but the causative effect and mechanisms
explaining glycogen depletion-induced fatigue are not clear. To definitively address
this experimentally, these human studies with correlative findings should be com-
bined with mechanistic in vitro studies, but while glycogen can be removed enzy-
matically by amylase, it cannot be instantly added exogenously. Due to these
inherent limitations in research designs, our understanding of the role of glycogen
in muscle fatigue must include careful interpretations of the available data.

5.4.1 Correlations with Performance

Pioneering research by A.V. Hill suggested that glycogen was the sole fuel for
muscle work and that lactate was necessary to activate the muscle (e.g., Hill 1913).
Today, it is widely known that ATP generated through several metabolic pathways is
the fuel for muscle work and that Ca2+ ions ultimately mediate switching off the
brake on actin filaments and facilitate cross-bridge formation, which is the main feat
of ATP consumption of contracting skeletal muscle. Although Hill unintendedly
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exaggerated the role of glycogen in skeletal muscle, much evidence still points
toward glycogen as a key fuel source mediating these processes. In the following
sections, we review the literature examining the role of glycogen for performance
during prolonged, short-term, and resistance exercise.

5.4.1.1 Prolonged Exercise (60–180 Min)

When performance is evaluated as maximal work conducted at a fixed protocol of
working intensity (time to exhaustion), most (Bergström et al. 1967; Galbo et al.
1979; Lamb et al. 1994; Walker et al. 2000; McInerney et al. 2005; Duhamel et al.
2006c; Alghannam et al. 2016; Jensen et al. 2020b), but not all (Madsen et al. 1990),
studies demonstrate improved performance with high pre-exercise glycogen stores.
Closed-end tests (e.g., time trials) show small effects (Karlsson and Saltin 1971;
Widrick et al. 1993; Rauch et al. 1995) or no effect (Sherman et al. 1981; Hawley
et al. 1997a, b; Burke et al. 2000; Tomcik et al. 2018) of high pre-exercise glycogen
stores on performance. Independent of test protocol, the characteristics of the studies
showing a positive effect of elevated glycogen levels are that the participants either
worked for 90–180 min and/or had large differences (>50%) in pre-exercise glyco-
gen levels between the experimental conditions.

5.4.1.2 Short-Term Exercise (<15 Min)

If the pre-exercise glycogen level is well above the utilization level, the current
consensus is that there are no effects of above-normal levels of glycogen on short-
term exercise performance. This is based on tests of time to exhaustion at 125%
(Vandenberghe et al. 1995) and 85% (Lambert et al. 1994) of VO2max as well as a
75 sec all-out time trial (Hargreaves et al. 1997). However, if the pre-exercise
glycogen level is very low, both repeated 6 sec all-out sprint (Balsom et al. 1999)
and repeated one-legged intense exercise (Bangsbo et al. 1992) performance are
impaired. Collectively, muscle glycogen seems to be important for both continuous
high-intensity exercise tolerance (>60 s duration) and single or repeated sprint
performance (<60 s duration), only if a substantial degree of depletion is achieved,
whereas loading the stores above normal levels imposes no consistent additional
benefit (Vigh-Larsen et al. 2021).

5.4.1.3 Resistance Exercise

Several studies have found that a carbohydrate-restricted diet is not associated with
reduced strength and power output (i.e., Mitchell et al. 1997; Sawyer et al. 2013),
suggesting that resistance exercise performance is not related to the muscle glycogen
levels. This is in accordance with one study, where a very low pre-exercise glycogen
level did not affect maximal voluntary isometric contraction or peak force during
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50 repetitions (Symons and Jacobs 1989). While this is corroborated by the finding
that only around 40% of the glycogen stores in the active muscles are utilized during
typical resistance exercise protocols (Tesch et al. 1986; Essén-Gustavsson and Tesch
1990; Robergs et al. 1991; MacDougal et al. 1999), a recent study demonstrated,
however, that a local pool (intramyofibrillar) of glycogen in type 2 fibers is very low
after resistance exercise (Hokken et al. 2020), suggesting that fatigue development
of some type 2 fibers may limit resistance exercise performance.

5.4.2 A Causal Link to Fatigue?

The causal link between glycogen depletion and impaired performance is most likely
multifactorial, but studies on isolated muscles from rodents (Chin and Allen 1997)
and amphibians (Stephenson et al. 1999) clearly suggest a local factor within the
muscles. To our knowledge, till date, only one paper has questioned this finding.
Here, mice were lacking glycogen due to a whole-body gys1 (glycogen synthase)
deletion and showed surprisingly normal exercise capacity (Pederson et al. 2005).
However, only around 10% of the mice survived birth suggesting a survival pheno-
type, which may not be comparable to a wild-type phenotype, and a later study using
inducible skeletal muscle-specific gys1 deletion showed considerable reduced exer-
cise capacity (Xirouchaki et al. 2016). Thus, the lack of glycogen inevitable leads to
diminished muscle function. Nonetheless, the mechanisms explaining why and how
glycogen and glycolytic rate are integrated with cell function are far from
understood.

According to one’s intuition and the recognized “energy crisis” theory, the
association between low muscle glycogen levels and impaired contractile function
is that low glycogen causes a slowed glycogenolytic and glycolytic flux, compromis-
ing the required rate of ATP regeneration for the sustained muscle function during a
given intensity (Green 1991; Sahlin et al. 1998). Consequently, the muscle is unable
to maintain an adequate ATP supply to one or more of the processes involved in E-C
coupling, leading to impaired muscle function, i.e., fatigue. This is supported by
observations of whole muscle cell PCr decreases along with an increase in free ADP
and IMP following prolonged glycogen depleting exercise (Norman et al. 1988;
Sahlin et al. 1997). However, this theory is challenged by both in vitro and in vivo
studies demonstrating a strong association between low glycogen and decreased
muscle function even after recovery periods, where ATP levels would be normal
(Bangsbo et al. 1992; Chin and Allen 1997). Moreover, muscular fatigue is also
observed even when glycogen is far from depleted in different conditions where
glycogen is decreased prior to the start of exercise (Duhamel et al. 2006a, b;
Ørtenblad et al. 2011). Also, low glycogen affects muscle function under experi-
mental circumstances in vitro where global ATP and PCr levels can be maintained at
near resting levels (Kabbara et al. 2000; Helander et al. 2002; Nielsen et al. 2009).
Together, these series of experiments do not provide experimental support for the
energy crisis hypothesis.

92 N. Ørtenblad et al.



It is noteworthy, however, that the ATP concentration inside cells may not be
uniform at a subcellular level (Jones 1986). The highly organized muscle cell forms
many compartments and hence microenvironments with high ATPase activity, and
restricted diffusional access of metabolites and observations on whole muscle
experiments or fiber preparations does not rule out a role of glycogen in maintaining
a subcellular compartment energy status. Such a functional compartmentalization of
glycolytic metabolism is known in a variety of tissues, including skeletal muscle. In
this way, the model that has evolved is that glycolytic-derived ATP regulates key
steps in the muscle excitation-contraction (E-C) coupling by delivering ATP in the
microenvironment of the triad junction (Han et al. 1992; Korge and Campbell 1995).
This is particularly significant in the muscle triad junction between the transverse
tubular system and the sarcoplasmic reticulum (SR), with a diffusional restricted
space around 12 nm wide and with a high metabolic activity (Dulhunty 1984).
Consistent with the notion of compartmentalized glycolysis, most of the glycolytic
enzymes are associated with membranes of intracellular compartments such as the
SR (Wanson and Drochmans 1972; Entman et al. 1980; Xu and Becker 1998).
Furthermore, glycogen is stored in particles located in specific regions of the muscle
fiber, and variable utilization of these depots occurs during exercise, with the depot
localized near the triad region being repeatedly associated with muscle function and
whole-body exhaustion (see Sect. 5.3.9). Physiologically, this organization places
muscular energy stores in close proximity to their site of utilization and provides
support for the emerging concept for functionally compartmentalized energetic
networks, ensuring an efficient energy transfer and signal transduction between
energy production and utilization in different cellular compartments (Korge and
Campbell 1995; Saks et al. 2008; Nielsen and Ørtenblad 2013). The following
sections will focus on the experimental evidence of how glycogenolytically/
glycolytically derived products preferentially regulate key steps in the muscle E-C
coupling, i.e., SR Ca2+ regulation and muscle excitability, thus providing an expla-
nation of the observed association between muscle glycogen contents and fatigue.

5.4.2.1 SR Ca2+ Regulation

Contraction of skeletal muscle is governed by the series of events in the E-C
coupling, in which the Ca2+ release and uptake from the sarcoplasmic reticulum
(SR) are an integral part through initiation and termination of the cross-bridge
cycling. The SR Ca2+ release is triggered through an action potential
(AP) activation of the voltage-sensor molecules in the t-system membrane, which
open the SR Ca2+ release channels (RyR), leading to a rise in intracellular free
concentration ([Ca2+]i) and generation of force by the contractile apparatus (Melzer
et al. 1995; Stephenson 1996).

Both direct and indirect evidence point to a modulating role of glycogen avail-
ability on SR Ca2+ handling, as demonstrated in animal (Chin and Allen 1997;
Stephenson et al. 1999; Kabbara et al. 2000; Barnes et al. 2001; Helander et al. 2002;
Nielsen et al. 2009) and human models (Gejl et al. 2014; Duhamel et al. 2006b;
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Ørtenblad et al. 2011). Using both single fibers and muscle bundles, Chin and Allen
(1997) elegantly demonstrated that muscle force and [Ca2+]i are associated with
muscle glycogen content. Thus, through the manipulation of glucose availability in
the recovery phase after fatiguing contractions, it was shown that a reduced resting
level of glycogen was associated with a faster decrease in tetanic [Ca2+]i and force
during subsequent contractions. These results have subsequently been confirmed
(Kabbara et al. 2000; Helander et al. 2002; Nielsen et al. 2014), and together,
experiments on rodent muscle suggest that the change in tetanic [Ca2+]i associated
with fatigue and recovery has a component that is glycogen dependent.

The mechanisms linking low muscle glycogen with decreased [Ca2+]i has further
been elucidated by direct measures of SR vesicle Ca2+ release rate (Duhamel et al.
2006a, b, c; Ørtenblad et al. 2011). These studies on SR vesicles from the human
muscle, where glycogen levels have been modulated by the diet either before or
during the recovery phase after exercise, demonstrate a clear association between the
SR vesicle Ca2+ release rate and muscle glycogen levels (Duhamel et al. 2006a, b;
Ørtenblad et al. 2011; Gejl et al. 2014; Watanabe and Wada 2019). Importantly,
there seems to be a critical level of muscle glycogen at around 250–300 mmol.kg�1

dw below which the SR Ca2+ release rate is impaired (Duhamel et al. 2006a;
Ørtenblad et al. 2011; Gejl et al. 2014). Such data explain why minor decreases in
muscle glycogen do not cause significant impairments in SR Ca2+ release rate and
why exhaustive exercise starting with a low or high muscle glycogen store decreases
or improves the endurance performance, respectively, possibly affected by SR Ca2+

regulation (Ørtenblad and Nielsen 2015; Ørtenblad et al. 2013).
The use of the mechanically skinned fiber preparation has provided a unique

means to investigate the possible interactions between glycogen and basic muscle
function (Lamb and Stephenson 2018). Indeed, the selective removal of the sarco-
lemma allows for the study of muscle function and the effects of glycogen content
per se while maintaining the cellular architecture and control of the intracellular
milieu, i.e., keeping PCr and ATP high and constant. Studies using the mechanically
skinned fiber have provided experimental evidence that low glycogen content in the
muscle fiber is associated with force depression during repeated voltage sensor
activated contractions in most studies (Stephenson et al. 1999; Barnes et al. 2001;
Watanabe andWada 2019), but not all (Goodman et al. 2005), as well as AP-induced
contractions (Nielsen et al. 2009: Jensen et al. 2020a).

Taken together, emerging evidence suggests that low muscle glycogen affects the
SR Ca2+ release and in turn [Ca2+]i and muscle function despite global ATP being
held constant. This conclusion supports the concept of a functionally compartmen-
talized energetic network regulating key steps in the muscle E-C coupling. In support
hereof are the observations (from both mechanically skinned fiber preparation, intact
mouse fibers, and human SR vesicles) that the specific pool of intramyofibrillar
glycogen within the myofibrils is associated with SR Ca2+ release and [Ca2+]i
(Nielsen et al. 2009; Ørtenblad et al. 2011; Nielsen et al. 2014). At present, little is
known about the precise mechanism(s) which links glycogen levels in the muscle
with SR Ca2+ release rate.
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In skeletal muscle, Ca2+ is released from the SR Ca2+ stores via the specific Ca2+

channels (RyR1), located at the junctional SR of the triad, which ensures efficient
Ca2+ release to the contractile proteins. In relation to the role of glycogen affecting
the SR Ca2+ release, low glycogen may in the compartmentalized cell lead to
changes in metabolic status, especially in triad region with the RyR localization.
This may lead to increase in free [Mg2+] and decrease in free [ATP], which are
strong regulators of the RyR1, also in the physiological range of changes (Lamb and
Stephenson 1994; Blazev and Lamb 1999). Furthermore, glycolytic intermediates as
fructose 1,6-bisphosphate have been demonstrated to increase the open probability
of the RyR channels (Han et al. 1992). However, low glycogen has also been
demonstrated to modulate the Ca2+ release rate in isolated vesicles without restricted
metabolic space and during resting metabolic conditions. This may indicate a crucial
role of the metabolic machinery associated with the SR. Also, the RyR protein
contains numerous phosphorylation sites, which may be affected by PKA and
Ca2+-calmodulin-dependent kinase II in fast twitch fibers (Fill and Copello 2002).
However, the impact of phosphorylation and/or dephosphorylation on single RyR
channel behavior and the role of glycogen and energy status are at present not fully
unraveled.

5.4.2.2 Muscle Excitability and Na, K-Pump

With repeated intense activation, a change in the electrochemical gradients for K+

can cause a substantial membrane depolarization leading to failure of excitation and
SR Ca2+ release and an ensuing decrease in force responses (Sejersted and Sjøgaard
2000; Clausen and Nielsen 2007), although several mechanisms interact during
exercise to counteract the depressive effects of elevated extracellular levels of K+

(Pedersen et al. 2003; de Paoli et al. 2007, 2010). There is a reasonably well-
established relationship between glycolytic-derived ATP and Na, K-pump activity,
and evidence exists supporting that glycolysis and the Na, K-pump are functionally
coupled. This seems to be an evolutionary conserved metabolic coupling and has
been observed in several tissue types, including the mammalian erythrocytes
(Schrier 1966; Mercer and Dunham 1981; Kennedy et al. 1986), axons (Caldwell
et al. 1960), cardiac myocytes (Philipson and Nishimoto 1983; Hasin and Barry
1984; MacLeod 1989), and skeletal muscle (Clausen 1965; James et al. 1999;
Okamoto et al. 2001; Jensen et al. 2020a). In line with this, many tissues generate
pyruvate and lactate under aerobic conditions (aerobic glycolysis) in a process
linking glycolytic ATP supply to the activity of the Na, K-pump (Brooks 1986;
Dhar-Chowdhury et al. 2007). Indeed, aerobic glycolysis and glycogenolysis occur
in resting, well-oxygenated skeletal muscles and is closely linked to stimulation of
active membrane Na, K-pump transport due to epinephrine release (James et al.
1996, 1999a, b; Bundgaard et al. 2003; Levy et al. 2005). The role of glycolysis and
oxidative phosphorylation in providing fuel to the Na, K-pump in the skeletal muscle
was investigated using the Na, K-pump inhibitor ouabain in resting rat extensor
digitorum longus muscles, demonstrating that Na, K-pump activity is only impaired
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when the glycolysis is inhibited (Okamoto et al. 2001). A tight coupling between the
glycogenolytic rate and Na, K-pump activity is further demonstrated by the obser-
vation that intracellular Na+ decreases if glycogen breakdown is stimulated with
epinephrine at rest, while ouabain significantly attenuates glycogen utilization
(James et al. 1999b). The data suggest that in the skeletal muscle, glycolysis is the
predominant source of the fuel for the Na, K-pump. Further, a direct link between
muscle glycogenolysis and Na, K-pump activity was demonstrated by the observa-
tion of decreased glycogen utilization in resting muscle when the muscle Na,
K-pump activity was blocked with ouabain (Clausen 1965). Moreover, lactic acid
production was increased in proportion to activation of the Na, K-pump. Taken
together, these data indicate a clear association of glycogenolytic/glycolytically
derived ATP on active cation transport across the muscle membranes. Indeed, a
direct link between energy state and excitability of the muscle was demonstrated by
blocking cross-bridge cycling and SR Ca2+ release with the cross-bridge cycling
blocker BTS (N-benzyl-p-toluene sulphonamide) and dantrolene, respectively,
thereby conserving energy during repeated electrical stimulations, which in turn
improved the ability of muscles to maintain excitability during high-frequency
stimulation (Macdonald et al. 2007).

The effects of glycogenolytically derived ATP on muscle excitability are further
substantiated in mechanically skinned fibers with a high and constant global ATP,
demonstrating that glycogenolytically derived energy is associated with fiber con-
tractile endurance irrespective of global ATP levels. Thus, enzymatically lowering
glycogen by 70% led to a reduction in both voltage sensors-activated and
AP-induced forces in the skinned fibers, with a larger decrease in the AP force by
the glycogen lowering. These data suggest that low glycogen and glycogenolytic
rate affects t-system polarization and excitability, as the voltage sensor inactivation
is displaced to markedly more positive Vm values compared with the AP inactivation
(Ørtenblad and Stephenson 2003; Nielsen et al. 2004) and thereby force production
will be less affected by voltage sensor compared to AP activation. For a more direct
estimate of the Na, K-pump function, one can quantify the membrane ability to
respond to two closely spaced AP. The repriming time until the second pulse
generates an AP is in turn dependent on the Na, K-pump function. A depolarization
of the t-system increases the repriming time as expected; however, the addition of
phosphoenolpyruvate, which increases glycolytic ATP resynthesis, decreases
t-system repriming period (Dutka and Lamb 2007a, b). Also, when glycogen is
enzymatically lowered by glucoamylase treatment, the repriming period increases
(Watanabe and Wada 2019; Jensen et al. 2020a). This was confirmed by the use of
glycogen phosphorylase inhibitors and glycogen lowering treatment in mechanically
skinned fibers, which invariably prolonged repriming time, strongly indicating an
attenuated Na, K-pump activity (Jensen et al. 2020a). Collectively, substantial
evidence indicates a tight coupling between glycogenolytic-glycolytic-derived
ATP production on Na-K-pump function, with low glycogen or inhibited GP in
turn leading to an attenuated t-system excitability and ultimately force production.
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5.4.2.3 Insights from McArdle Patients

Insights into the role and importance of muscle glycogen can be gained from
McArdle patients (glycogen storage disease type V) who lack glycogen phosphor-
ylase and thereby not able to catalyze the breakdown of glycogen into glucose-1-
phosphate in muscle fibers (McArdle 1951; Santalla et al. 2014). McArdle patients’
have low peak work capacities and exercise intolerance and a suppressed plasma
lactate concentration during exercise (De Stefano et al. 1996; Ørngreen et al. 2015).
The exercise intolerance is especially evident during the onset of exercise, during
high-intensity exercise and high force output contractions with smaller muscle
groups (Lucia et al. 2008; Santalla et al. 2014). These patients may provide a unique
paradigm to gain insight to the role of muscle glycogen per se in muscle function and
exercise tolerance. Interestingly, a higher surface electromyography signal is mea-
sured during submaximal contractions in McArdle patients, which is indicative of a
need to activate larger muscle mass for a given force output, suggesting reduced
muscle excitability (Santalla et al. 2014). Interestingly, McArdle patients have less
Na+-K+-ATPases as compared to controls (Haller et al. 1998). Taken together,
insights from McArdle patients are in line with the idea of glycolytic/glycogeno-
lytic-derived ATP as required for muscle E-C coupling, possibly by a tight coupling
between glycogenolytic/glycolytic rate and Na+-K+-ATPase activity.

5.5 Muscle Glycogen as a Regulator of Skeletal Muscle
Training Adaptations

In addition to the well-documented role as a metabolic substrate for ATP provision,
it is becoming increasingly accepted that the glycogen granule can also act as a
regulator of training adaptations (Impey et al. 2018; Impey et al. 2016). Accordingly,
the concept of deliberately training with reduced pre-exercise muscle glycogen
availability in an attempt to enhance the activation of the molecular signaling
pathways that regulate mitochondrial biogenesis (the so-called train low paradigm)
has received significant research in the previous decade (Burke et al. 2018). In this
regard, findings from acute exercise studies demonstrate that commencing exercise
with “reduced” pre-exercise muscle glycogen concentration upregulates cell signal-
ing pathways with putative roles in the regulation of both the nuclear and mitochon-
drial genomes (Pilegaard et al. 2002; Wojtaszewski et al. 2003; Yeo et al. 2010;
Bartlett et al. 2013; Psilander et al. 2013). Furthermore, repeated bouts of train-low
exercise can subsequently augment many hallmark muscle adaptations inherent to
the endurance phenotype (as reviewed in Impey et al. 2018). For example, the
strategic periodization of dietary CHO in order to commence exercise with low
muscle glycogen (during 3–10 weeks of training) enhances mitochondrial enzyme
activity and protein content (Hansen et al. 2005; Morton et al. 2009; Yeo et al. 2008)
and whole body and intra-muscular lipid metabolism (Hulston et al. 2010) and in
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some instances improves exercise capacity (Hansen et al. 2005) and performance
(Marquet et al. 2016a, b), though performance enhancing effects are not always
evident (Yeo et al. 2008; Hulston et al. 2010; Burke et al. 2017; Gejl et al. 2017a, b;
2018). As such, the train-low paradigm and wider CHO periodization strategies
have subsequently gained increased recognition among athletic populations
(Stellingwerff 2012; Burke et al. 2018; Impey et al. 2018). It should also be noted
that some of the enhanced adaptations associated with “train-low” (at least in the
twice per day training model) may be due to performing two consecutive training
sessions in close proximity to one another, as opposed to the effects of low
pre-exercise muscle glycogen per se (Andrade-Souza et al. 2020).

Skeletal muscle glycogen may exert its regulatory effects upon training adapta-
tion through modulation of the AMP-activated protein kinase (AMPK)-peroxisome
proliferator-activated receptor γ coactivator 1α (PGC- 1α) signaling axis. For exam-
ple, exercise-induced AMPKα2 activity (Wojtaszewski et al. 2003), phosphorylation
(Yeo et al. 2010), and nuclear abundance (Steinberg et al. 2006) are all augmented
under conditions of reduced pre-exercise muscle glycogen. These effects may be
partly mediated through the glycogen-binding domain present on the β-subunit of
AMPK (McBride and Hardie 2009; McBride et al. 2009). Commencing acute
exercise with reduced muscle glycogen also potentiates the phosphorylation of the
tumor suppressor protein, p53 (Bartlett et al. 2013), that in turn may coordinate
regulation of the mitochondrial genome, through modulation of mitochondrial
transcription factor A (Tfam). It is noteworthy that training with low muscle
glycogen also increases epinephrine, stimulates lipolysis, increases circulating free
fatty acids (FFAs), and therefore augments both whole-body and intramuscular lipid
oxidation (Hearris et al. 2018, 2020; Maunder et al. 2021). In this way, it is possible
that FFAs may also regulate the enhanced adaptations associated with training low
through acting as stimulatory signaling molecules for PPARδ signaling.

Given that the enhanced training response associated with train-low is potentially
mediated by muscle glycogen availability, it is pertinent to consider the absolute
glycogen concentrations required to facilitate the response. In relation to research
design, high glycogen trials are commonly commenced with muscle glycogen
concentrations between 400 and 600 mmol.kg�1 dw and remain above
300 mmol.kg�1 dw after exercise (Wojtaszewski et al. 2003; Roepstorff et al.
2005; Bartlett et al. 2013). In such instances, these researchers observed attenuated
(Wojtaszewski et al. 2003) or abolished (Roepstorff et al. 2005; Bartlett et al. 2013)
activation of cell signaling pathways. For example, we have previously observed
that both AMPK and p53-related signaling is reduced when exercise is commenced
and finished with high (reducing from ~500 to ~300 mmol.kg�1 dw, respectively)
versus low (reducing from ~150 to ~50 mmol.kg�1 dw, respectively) muscle
glycogen (Bartlett et al. 2013). A detailed examination of available train low studies
(see Impey et al. 2018) indeed demonstrates that adaptations associated with CHO
restriction are particularly evident when the absolute pre-exercise muscle glycogen
concentration permits exercise-induced depletion to post-exercise concentrations
that are �200–300 mmol.kg�1 dw. Accordingly, we also observed that comparable
cell signaling responses occur if exhaustive (Hearris et al. 2019) and non-exhaustive
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(Hearris et al. 2020) exercise is finished with similar absolute post-exercise muscle
glycogen concentrations (i.e., 100–300 mmol.kg�1 dw), despite commencing exer-
cise with graded levels of muscle glycogen concentration (i.e., 300–600 mmol.kg�1

dw). On this basis, it was suggested that the absolute post-exercise muscle glycogen
concentration may be a more influential factor than pre-exercise muscle glycogen
concentration in relation to modulation of exercise-induced cell signaling. In keep-
ing with this hypothesis, CHO feeding during exercise attenuates AMPK-mediated
signaling but only when glycogen sparing occurs (Akerstrom et al. 2006). Further-
more, restoring post-exercise glycogen levels to >500 mmol.kg�1 dw attenuates
exercise-induced changes in gene expression (Pilegaard et al. 2005). From a prac-
tical perspective, such data collectively suggest that distinct differences in post-
exercise muscle glycogen concentration would likely be required between low (e.g.,
<200 mmol.kg�1 dw) and high (> 300 mmol.kg�1 dw) glycogen conditions in order
to achieve any potential physiological advantage of reduced muscle glycogen
availability in relation to augmenting training adaptation. While the optimal
approach to CHO periodization remains to be determined, further research is also
required to examine the role of the specific subcellular storage pools of glycogen as a
regulator of skeletal muscle cell signaling pathways. Moreover, despite the theoret-
ical rationale for carefully scheduled periods of “training-low,” it is noteworthy that
definitive evidence supporting that this approach to training induces superior
improvements in performance is currently limiting. In this regard, there is also a
requirement to utilize experimental testing protocols (e.g., exercise durations of
3–6 h) in which the physiological adaptations associated with training low (i.e.,
increased oxidative capacity and lipid oxidation) may actually manifest as improved
exercise performance.

5.6 Concluding Remarks and Future Directions

Glycogen is an important fuel source for contracting skeletal muscle to sustain high
metabolic power output during exercise, and modern research has also shown it to be
far more than just an inert energy source. Early research determined a clear direct
association between the capacity to withstand intense exercise for prolonged periods
and starting muscle glycogen, showing that the onset of fatigue coincides with the
depletion of glycogen to very low levels, even with exogenous carbohydrate sup-
plementation. In addition to exercise intensity and duration, baseline muscle glyco-
gen and training status have also been identified as important factors in determining
its rate of use, with other factors such as sex substrate availability and environment
also having some impact. Glycogen use has shown to be divergent in different fiber
types, and more recent research has identified specific subcellular loci of glycogen
(namely, intramyofibrillar, intermyofibrillar, and subsarcolemmal), with possible
diverse utilization and metabolic function depending on their localization. The
mechanisms explaining how glycogen and glycolytic rate are integrated with muscle
function are far from understood; however, emerging evidence link glycogen
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availability with key steps in the excitation-contraction coupling. In addition, it is
also apparent that glycogen availability can exert important effects on metabolic
regulation and exercise-induced cell signaling, regulating training adaptation. Thus,
glycogen has a far more diverse function than just being an energy storage. Despite
over 100 years of research in carbohydrate metabolism, fundamental aspects of
muscle glycogen metabolism and regulation continue to challenge the scientific
community and remain an evergreen area of exciting research. At several levels,
we appear to have a complete understanding of the physiology of muscle glycogen,
and yet at others, we know very little. Indeed, many aspects of muscle glycogen
metabolism in exercise and cell function warrant further knowledge. Table 5.1 lists

Table 5.1 Possible future directions in the study of muscle glycogen metabolism

Topic Comment

Factors affecting glycogen utilization
Skeletal muscle glycogen loading and
performance

Currently unclear effect of placebo in events
�90 min or with >25% differences in glycogen
content

Identification of glycogen utilization at inten-
sities relative to “lactate threshold”

Glycogen utilization typically characterized rel-
ative to VO2max, provides large inter-individual
variation on prediction of glycogenolysis

Repeated glycogen supercompensation and
resynthesis and performance

Unclear current capacity to resynthesize depleted
glycogen stores within 24 h and enhance per-
formance repetitively

Glycogen metabolism in female’s vs males Currently gender effect is unclear

Effect of different muscles on glycogen
utilization

Majority of current evidence based on vastus
lateralis

Skeletal glycogen sparing with increasing
doses of carbohydrate ingestion during
exercise

Unclear effect on mixed muscle, fiber types, and
subcellular localization

Exercise task dependency of glycogen pool
metabolism

Little is known about the glycogen pool-specific
utilization with exercise intensity and duration
and during intermittent exercise

Effects of glycogen on training adaptations
Ketogenic high-fat diets and glycogen
dynamics

Unclear effect of “keto-adapted” state on use and
resynthesis of glycogen

Effect of chronically training with low skele-
tal muscle glycogen on selected session on
performance

Currently early adaptive responses show prom-
ising results, but longer interventions show
mostly no improvement in performance

Role and effects of glycogen on muscle function and fatigue
Fiber-type-specific glycogen-dependent
fatigue mechanisms during exercise

If a mechanism of fatigue sets in in only one
specific fiber type, it can be difficult to detect and
probably completely overlooked in a mixed
muscle sample

Role of specific glycogen pools on muscle
E-C coupling and fatigue

It is not known if pools are used by specific
ATPases and/or ion channels

(continued)
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possible future studies further generating our understanding of muscle glycogen
metabolism and regulation, as well as the causal link underlying the association
between glycogen availability in the etiology of muscle fatigue and key steps in
muscle function and regulator of training adaptations.
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Chapter 6
Exercise-Regulated Skeletal Muscle Glucose
Uptake

Thomas E. Jensen, Jonas R. Knudsen, Carlos Henriquez-Olguin,
Lykke Sylow, Glenn McConell, and Erik A. Richter

Abstract Muscle glucose uptake during exercise is regulated by a coordinated
increase in glucose delivery (via increased blood flow and glucose moving out of
the capillaries into the interstitial space), by facilitated glucose transport into the
myocytes and by intramyocellular metabolism. The facilitative glucose transporter
GLUT4 is translocated to the sarcolemma and the t-tubules, and GLUT4 transloca-
tion is essential for glucose transport into the myocytes during exercise. Several
molecular mechanisms have been proposed to regulate insulin-independent GLUT4
translocation during in vivo conditions, but the regulation of both exercise-
stimulated GLUT4 translocation and the integrative glucose uptake process by
exercise remains incompletely understood. GLUT4 intrinsic transporter activity
may also be regulated during exercise although there is no firm evidence for this.
The multitude of mechanisms involved in muscle glucose uptake stimulation during
exercise ensure the delivery of easily combustible fuel to the working muscles.

Keywords Exercise · Glucose uptake · Human · Skeletal muscle · GLUT-4 ·
Metabolism
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6.1 Muscle Glucose Uptake During Exercise

Exercise is a powerful stimulator of glucose uptake in the working muscles. In
humans, physiological experiments in the 1960s and 1970s showed that, as a general
rule, muscle glucose uptake during exercise is a function of exercise duration and
intensity (Fig. 6.1). This was demonstrated in studies of muscle glucose uptake in
humans utilizing radiolabelled glucose tracers or arteriovenous glucose difference
and blood flow measurements across active forearm and leg muscles (Ahlborg et al.
1974; Reichard et al. 1961; Sanders et al. 1964; Wahren et al. 1971; Whichelow et al.
1968; Havel et al. 1967). These studies were performed in males, but subsequent
studies comparing females and males have shown no major sex difference in leg
glucose uptake during exercise at the same relative intensity (Lundsgaard and Kiens
2014).

How big a contribution to energy expenditure during exercise does glucose
uptake make? Studies measuring substrate turnover in endurance trained cyclists
demonstrated that glucose utilization contributed between 10 and 18% of whole-
body energy turnover during increasing exercise intensities (Romijn et al. 1993; Van
Loon et al. 2001). However, in prolonged exercise, blood glucose could account for

Fig. 6.1 Human glucose uptake regulation during exercise. Skeletal muscle glucose uptake results
from four tightly coupled steps including (1) glucose delivery to the capillaries, (2) diffusion from
the capillary to the interstitium, (3) transport across the muscle fiber surface (sarcolemma and
t-tubules), and (4) intramyocellular phosphorylation of glucose and subsequent metabolism or
storage. At rest (left half), the muscle glucose uptake is low due to low leg blood flow rates (0.3
to 0.4 l/min in overnight fasted humans), a low amount of muscle-fiber surface inserted GLUT4,
and a net conversion of glucose to glycogen. Contractile activity (right half) increases the muscle
glucose uptake in proportion to the exercise intensity and duration. This increase results from
increased bulk leg blood flow (up to 7–10 l/min), increased capillary recruitment, and a greater
amount of muscle fiber surface inserted GLUT4. During exercise, a switch occurs from net
glycogen synthesis to glycogen breakdown. These processes provide substrate for ATP production
by glycolysis and mitochondrial oxidative phosphorylation
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up to 40% of oxidative metabolism once muscle glycogen was depleted (Ahlborg
et al. 1974; Wahren et al. 1971; Coyle et al. 1983). In contrast, during short-term
high-intensity exercise, utilization of blood glucose is quantitatively unimportant,
and glycogen is the major fuel (Katz et al. 1986a).

Mechanistically, glucose uptake in muscle during exercise depends upon at least
four factors: Glucose delivery to the muscle capillaries, glucose transport out of the
capillaries into the interstitial space, glucose transport across the sarcolemma and
t-tubules into the cytoplasm, and glucose phosphorylation and subsequent further
metabolism in the cell (Richter and Hargreaves 2013). It is noteworthy that three of
these factors do not depend on GLUT4 translocation.

Glucose delivery, glucose transport out of the capillaries, transport across the
muscle cell membrane, and glucose phosphorylation and subsequent further metab-
olism are increased markedly from rest to exercise, and therefore it is often difficult
to determine the rate-limiting step for glucose utilization during any given exercise.
The combined increase in these regulatory factors results in huge increases in muscle
glucose uptake. In an overnight fasted individual, leg glucose uptake is very low at
rest as reflected by the small femoral arterio-venous (A-V) glucose difference in the
order of 0.05–0.1 mmol/l and the leg blood flow around 300–400 ml/min (Capaldo
et al. 1999; DeFronzo et al. 1981; Kjaer et al. 1991; Kristiansen et al. 1996c;
Roepstorff et al. 2005; Sjøberg et al. 2017). This comes to an uptake of
15–40 μmol/min/leg. Leg blood flow can reach 7–10 l/min per leg (Katz et al.
1986a; Calbet et al. 2007; Mortensen et al. 2005), and A-V difference may increase
to 0.3 to 0.4 mmol/l during intense exercise (Katz et al. 1986a). Thus, leg glucose
uptake may increase to 2100–4000 μmol/min/leg, in other words, up to an approx-
imate 100-fold increase from resting values. During moderate exercise of 50–60% of
maximal oxygen uptake, leg blood flow is around 5–6 l/min and the A-V difference
for glucose 0.2 to 0.3 mM (Katz et al. 1986a; Roepstorff et al. 2005; Katz et al. 1991;
Roepstorff et al. 2002). In this situation, the increase in leg glucose uptake is 25–50-
fold, still a substantial increase. Leg glucose uptake has also been measured by
positron emission tomography scanning. In one such experiment, leg glucose uptake
was found to increase by approximately 20-fold from rest to exercise at 75% of VO2
max (Kemppainen et al. 2002). However, measurements were performed after
exercise, and exercise intensity was not maximal. Therefore, since it is well-
known that muscle glucose uptake decreases rapidly upon exercise cessation
(Bangsbo et al. 1997), a 20-fold increase in leg glucose uptake after submaximal
exercise does seem to confirm the large fold increase in leg glucose uptake during
intense exercise.

6.2 Glucose Delivery

Glucose delivery to the muscle is increased by the marked increase in muscle blood
flow during exercise (Joyner and Casey 2015). In addition, increased hepatic glucose
production serves to replace the glucose taken up by the muscle and thereby
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maintains plasma glucose concentration. During exercise, the large increase in leg
blood flow leads to increased capillary perfusion. In humans, this has been demon-
strated by experiments with contrast-enhanced ultrasound which directly have
shown large increases in muscle capillary volume and perfusion during exercise
compared to rest (Sjøberg et al. 2011; Dawson et al. 2002). This increase in capillary
perfusion is well matched to the increase in uptake of glucose by the muscle cells
because it has been demonstrated that the interstitial muscle glucose concentration is
maintained close to the plasma glucose concentration during exercise (MacLean
et al. 1999) indicating that the rate of delivery of glucose into the interstitial space
matches the rate of uptake into the myocytes. Direct evidence of the importance of
muscle perfusion has been obtained in isolated perfused rat hindlimbs where glucose
uptake during muscle contractions was dependent upon the perfusion rate (Schultz
et al. 1977; Hespel et al. 1995).

Another aspect of glucose delivery is the plasma glucose concentration. Muscle
glucose uptake follows Michaelis-Menten saturation kinetics with Km values
reported to be 5 mM in dogs (Zinker et al. 1993) and 11 mM in humans (Richter
1996). Since plasma glucose concentration in heathy individuals is usually around
5 mM, it follows that changes in plasma glucose concentration will almost propor-
tionally lead to changes in glucose uptake in turn indicating that at a fixed exercise
intensity glucose supply is an important rate-limiting step in glucose uptake during
exercise. This has been directly demonstrated in experiments when glucose was
ingested during exercise resulting in higher plasma glucose concentration and higher
glucose disposal (McConell et al. 1994). However, since plasma insulin concentra-
tions are also increased with glucose ingestion, this will also tend to add to the effect
of the increase in plasma glucose concentrations per se. Therefore, experiments with
glucose ingestion show the combined effect of increasing plasma glucose and
insulin. Furthermore, increased plasma insulin will also decrease plasma fatty acid
concentrations which also tends to increase glucose uptake during exercise
(Hargreaves et al. 1991).

6.3 Glucose Transport Out of the Capillaries

Glucose transport out of the muscle capillaries is thought to occur through the pores
or slits between the endothelial cells without involvement of transport molecules.
Experiments in the 1950s by Pappenheimer and co-workers indicated that escape
from the capillaries is dependent upon the size of the molecules (Pappenheimer et al.
1951). Small molecules like glucose or urea can easily escape through the capillary
pores, while large molecules like albumin cannot (Pappenheimer et al. 1951). This is
different from the brain where the GLUT1 transporter is important for transcapillary
glucose transport (Yazdani et al. 2019). GLUT1 is also expressed as the dominant
endothelial glucose transporter in muscle capillaries (Rohlenova et al. 2018), and it is
possible that these glucose transporters could contribute to transcapillary glucose
transport also in the muscle. However, this remains to be studied. During exercise,
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the enlargement of capillary volume and perfusion markedly increases the surface
available for glucose escape from the capillary into the interstitial space. Measure-
ments of interstitial glucose concentration during exercise indicate that the interstitial
glucose concentration is maintained at values similar to or even higher than at rest
(MacLean et al. 1999) which in turn indicates that transport of glucose out of the
capillaries is unlikely to be a major limitation for glucose uptake in muscle during
exercise.

6.4 Glucose Transport into the Muscle Fibers

Once glucose has entered the interstitial space, glucose entry into the myocytes
during exercise is dependent upon translocation of GLUT4 glucose transporters
from an intracellular storage site to the sarcolemma and t-tubular membrane. This
is supported by studies in GLUT4 knockout mice where exercise and insulin do not
lead to increased glucose uptake in muscle (Fueger et al. 2007; Howlett et al. 2013;
Ryder et al. 1999a; Zisman et al. 2000). In humans, attempts to quantify GLUT4
translocation in muscle during exercise have used membrane fractionation tech-
niques or purified sarcolemmal vesicles (Kennedy et al. 1999; Kristiansen et al.
1996a, 1997). These studies have generally shown a twofold increase in sarcolem-
mal content of GLUT4 from rest to strenuous submaximal exercise which is far less
than the 25–50-fold and up to 100-fold increase in glucose uptake during
submaximal and maximal exercise, respectively (Roepstorff et al. 2002; Katz et al.
1986b; Katz et al. 1991). It would therefore seem that either the methodology to
assess GLUT4 translocation in human muscle is vastly underestimating the true
translocation or that there is a marked increase in GLUT4 intrinsic activity, as
discussed recently (Richter 2020). Surface labelling to measure the presence of
GLUT4 in the sarcolemmal surface membrane in intact muscle showed a fourfold
increase in ex vivo incubated rat soleus muscle following maximal electrical stim-
ulation which fully accounted for the similar fourfold increase in muscle glucose
transport (Lund et al. 1995). Furthermore, using transmission electron microscopy in
the rat muscle, ninefold and 23–29-fold increases in sarcolemmal and t-tubule
GLUT4 translocation were demonstrated in response to in situ contraction (Ploug
et al. 1998). Thus, some rodent studies showed a significantly higher GLUT4
translocation with electrically stimulated muscle contractions than studies in
human muscle although only a doubling of GLUT4 at the sarcolemmal surface
membrane was found in mouse muscle after submaximal but strenuous treadmill
running (Sylow et al. 2016). Nevertheless, the translocation and perhaps increase in
the ability of each GLUT4 transporter to transport glucose (intrinsic activity of
GLUT4) result in a marked increase in muscle surface membrane permeability to
glucose. This is in fact possible to estimate using published data of the interstitial
muscle glucose concentration. Given that the interstitial glucose concentration does
not change appreciably from rest to graded exercise in man (MacLean et al. 1999), it
follows that influx and efflux to and from the interstitial space are of equal size. Since
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glucose efflux from the interstitial space during exercise is transported into the
myocytes, it follows that the average permeability of the muscle membrane to
glucose increases to a similar extent as the leg glucose uptake. Whether changes in
GLUT4 intrinsic transporter activity contribute to increased glucose transport is far
less studied compared to the number of studies of GLUT4 translocation. Still, there
are studies that indicate that GLUT4 transport activity can be altered, for instance, by
unmasking a GLUT4 epitope (Wang et al. 1996) or by binding of enzymes (Zaid
et al. 2009) or glucose analogues (Shamni et al. 2017) or by vanadate (Kristiansen
et al. 1996b). However, at this point, there is no clear concept of how and when
GLUT4 transporter activity may change with insulin or with exercise/muscle
contraction.

Another factor that might influence intrinsic activity of the GLUT4 transporter is
temperature. Muscle temperature at rest depends on the external temperature and is
typically 2–3 degrees centigrade below core temperature so often 34–35 degrees
centigrade (González-Alonso et al. 1999a, b). During exercise, muscle temperature
increases and may increase to approximately 40–41 degrees during intense exercise
(González-Alonso et al. 1999a, b). This is a potential increase in muscle temperature
of up to 6–7 degrees centigrade. It is likely that such a temperature increase may
increase the transporter activity, but detailed investigations of temperature effects on
GLUT4 transporter activity have not been performed. In addition, during muscle
contraction and relaxation, the mechanical deformation of the muscle tissue may
cause increased GLUT4 transporter activity. In fact, passive leg movement increases
muscle glucose uptake (Mortensen et al. 2012), and stretch of mouse muscle also
increases glucose uptake (Jensen et al. 2014a; Sylow et al. 2015). Together, these
two stimuli may increase GLUT4 intrinsic activity during exercise.

6.5 Glucose Metabolism

Glucose metabolism is the fourth step in glucose utilization during exercise. Obvi-
ously, glucose metabolism is accelerated during the transition from rest to exercise,
and as previously noted, the regulated steps in glucose utilization during exercise are
mostly matched closely. This is shown by measurements of free glucose and
glucose-6-phosphate in the muscle, both of which do not change appreciably from
rest to moderate exercise (Katz et al. 1991), indicating that glucose metabolic flux is
keeping up with glucose influx to the myocytes in moderate exercise. However,
during intense exercise (Katz et al. 1986b) or when pre-exercise, muscle glycogen
levels are high (Hespel and Richter 1990), glucose-6-phosphate concentrations may
increase, and the ensuing inhibition of hexokinase II may lead to accumulation of
free glucose inside the cell (Hespel and Richter 1990). This decrease in glucose
gradient across the muscle cell then leads to decreased glucose uptake as shown in
perfused rat muscle (Hespel and Richter 1990).
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6.6 Evidence Linking Glucose Transport to GLUT4
in Transgenic Mice

In human skeletal muscle, GLUT4 mRNA and protein are highly expressed (Gaster
et al. 2004; Gaster et al. 2000; Huang and Czech 2007). The observation that
cytochalasin B, a non-specific direct inhibitor of GLUT transporter function, abol-
ishes glucose uptake in skeletal muscle demonstrates the necessity of GLUTs for
glucose uptake into muscle (Ryder et al. 1999a; Lawrence et al. 1992).

GLUT4 is considered the major GLUT isoform regulating glucose uptake into
healthy adult skeletal muscle. The most compelling evidence for this comes from
muscle-specific skeletal muscle GLUT4 KO mice (referred to as G4mKO#1 here-
after (Abel et al. 1999)). These mice display an ~80% reduced unstimulated glucose
uptake into ex vivo incubated soleus and EDL muscles due to a ~ 95% reduction in
GLUT4 content (Zisman et al. 2000). Furthermore, contraction-stimulated glucose
uptake in both soleus and EDL muscles was nearly prevented in G4mKO#1 mice
(Zisman et al. 2000). Similarly, whole-body GLUT4 KO mice exhibited ~20–40%
lower basal glucose uptake and abrogated glucose uptake response to ex vivo
electrically induced contraction (Katz et al. 1995), swimming exercise (Ryder
et al. 1999a, b; Katz et al. 1995; Zierath et al. 1998; Stenbit et al. 1996), and
treadmill running (Fueger et al. 2007). Additional evidence for GLUT4’s essential
role comes from another independently generated muscle-specific GLUT4 mouse
model (referred to as G4mKO #2 hereafter (Kaczmarczyk et al. 2003)) with a
85–95% reduction in muscle GLUT4 protein displaying no increase in glucose
uptake during moderate-high-intensity treadmill exercise (Howlett et al. 2013).

Whole-body GLUT4 heterozygous (+/�) (Fueger et al. 2004b) mice, with
40–70% reduction in GLUT4 protein expression, have been used to investigate the
relative role of GLUT4-dependent glucose transport vs. hexokinase II (HKII)-
dependent phosphorylation in exercise-stimulated glucose uptake. HKII
overexpression augmented treadmill exercise-stimulated glucose uptake in WT
mice but not in whole-body GLUT4+/� mice (Fueger et al. 2004b), suggesting that
exercise-stimulated muscle glucose uptake by GLUT4 is also dependent on glucose
phosphorylation capacity in the working muscle. The glucose uptake response was
even higher in mice overexpressing both GLUT4 and HKII but not in mice
overexpressing GLUT4 alone (Fueger et al. 2004a), suggesting that GLUT4-
dependent glucose transport is only limiting exercise-stimulated glucose uptake
when the HKII-dependent glucose phosphorylation capacity is elevated.

Yet, GLUT4 deficient mouse models show a variable glucose uptake dependence
on GLUT4 which might suggest compensation by other GLUTs (Katz et al. 1995;
Stenbit et al. 1996; Kaczmarczyk et al. 2003; Fam et al. 2012; McMillin et al. 2017).
For example, in G4mKO#1 mice (Abel et al. 1999), the stimulation of glucose
uptake into plantaris muscle by 5 days of synergist-ablation overload was unaffected
by the absence of GLUT4, while GLUT1, GLUT3, GLUT6, and GLUT10 protein
levels increased (McMillin et al. 2017). Thus, other GLUT isoforms in skeletal
muscle could facilitate glucose transport in the partial or complete absence of
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GLUT4. Another example suggesting a potential contribution of other GLUT
isoforms is the whole-body GLUT4 hypomorphic (Howlett et al. 2013) or hetero-
zygous (+/�) (Fueger et al. 2004b) mouse models that display 40–70% reduction in
GLUT4 protein expression, yet show normal or even elevated treadmill-exercise-
stimulated glucose uptake in most muscles (Howlett et al. 2013; Fueger et al. 2004b).
However, the lack of glucose uptake phenotype with partial reductions in muscle
GLUT4 content could also reflect a large spare capacity of GLUT4 under normal
conditions. The extent to which other GLUTs contribute to physiological glucose
uptake in the presence of GLUT4 is uncertain but is likely of quantitatively minor—
if any—significance. Overall, these studies suggest a clear and major dependence of
skeletal muscle glucose uptake on the GLUT4 isoform during contraction-stimulated
conditions.

6.7 Exercise-Activated Signals Regulating Glucose Uptake

Although it is one of multiple processes contributing to in vivo glucose uptake,
GLUT4 translocation is mechanistically the most studied process in relation to
muscle glucose uptake in response to both insulin and exercise. Contracting muscle
activates abundant and complex signaling cascades, many of which could potentially
stimulate the redistribution of GLUT4 to the muscle cell surface to promote glucose
uptake. The cell signaling is likely cell autonomous since contraction-stimulated
glucose uptake is confined to the actively contracting musculature in vivo and can be
potently increased in muscles isolated from the body, although a contribution from
local auto/paracrine signaling has been suggested. The three stimuli that have
historically received the most attention are Ca2+, mechanical, and metabolic stress.
These stimuli and some potential mediators are discussed below with a graphical
summary of the discussed mechanisms in Fig. 6.2. For discussion of the regulation
of exercise-stimulated muscle blood flow and metabolism, see (Sylow et al. 2017a).
For more in-depth glucose uptake cell signaling reviews, see (Sylow et al. 2017a;
Jensen et al. 2014; Sylow et al. 2014; Hong et al. 2014).

6.8 Ca2+ Signaling

Ca2+ regulates many aspects of vesicle trafficking in non-muscle cells and remains a
candidate to regulate exercise/contraction-stimulated GLUT4 translocation. The
most obvious Ca2+ source during contraction is ryanodine receptor (RyR)1 channel
Ca2+ release from terminal cisternae of the sarcoplasmic reticulum (SR) during
excitation-contraction coupling. However, dissociations have been reported in incu-
bated mouse muscles between glucose transport stimulation by contractions, AMPK
activators and/or passive stretch, and phosphorylation of the RyR1-dependent
(dantrolene-blockable) Ca2+ readout eEF2 Thr57 (Jensen et al. 2014, c; Sylow
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et al. 2017b), suggesting that RyR1 Ca2+ release is neither necessary nor sufficient
for muscle glucose uptake. Consistent with these observations, a series of articles in
incubated rat muscles systematically varied tetanic stimulation frequency and force
development and concluded glucose uptake stimulation to correlate with events
secondary to contraction (tension and metabolic perturbance) rather than electrical
stimulation frequency (with each electrically induced depolarization eliciting SR
Ca2+ release) (Ihlemann et al. 1999, 2000, 2001). However, there are other potential
sources of Ca2+ during muscle contraction. Among these, Ca2+ entry from the
extracellular space is a known requirement for vesicle exocytosis in many cell

Fig. 6.2 Potential stimuli and mediators regulating exercise-stimulated glucose uptake in the
skeletal muscle. (a) depolarization of the muscle fiber induces Ca2+ release from the sarcoplasmic
reticulum to stimulate cross-bridge cycling and force production. Ca2+ may stem from other
compartments as well. The Ca2+/calmodulin-dependent kinase, CaMKII, in particular is activated
by exercise in contracting muscle fibers and linked by multiple independent studies to glucose
transport stimulation. CaMKII activation may be regulated by mechanisms other than Ca2+,
particularly NOX2-dependent ROS production. (b) Mechanical stress during muscle contraction
activates stretch-responsive proteins including the small GTPase, Rac1, which is required for
NOX2-dependent ROS generation and exercise-simulated GLUT4 translocation and glucose
uptake. (c) Exercise-induced ATP hydrolysis increases the AMP/ATP and AMP/ADP ratio thereby
activating the AMP-activated kinase, AMPK, to stimulate muscle glucose transport. (d) Rodent
studies have implicated mTORC2 as a requirement for exercise-induced glucose uptake, but the
underlying up- and downstream mechanisms are yet to be resolved. SR sarcoplasmic reticulum;
CaMKII Ca2+/calmodulin-dependent protein kinase II; RYR ryanodine receptor; nNOS nitric oxide
synthase; NO nitric oxide; NOX2NADPH oxidase 2; Rac1 p21-Rac1; ROS reactive oxygen species;
TBC1D1 TBC1 domain family member 1; AMPK AMP-activated protein kinase; AMP adenosine
monophosphate; ATP adenosine triphosphate; LKB1, liver kinase B1; GP glycogen phosphorylase;
GS glycogen synthase; HK II hexokinase II; mTORC2 mammalian target of rapamycin complex 2
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types and therefore might regulate GLUT4 exocytosis. Indeed, near-surface-mem-
brane Ca2+ in adult mouse muscle increases with insulin, presumably via transient
receptor potential channel (TRPC)3 Ca2+ channels, and TRPC3 co-localizes with
GLUT4 along t-tubuli (Bruton et al. 1999; Lanner et al. 2006, 2009). However,
pharmacological stimulation or inhibition of extracellular Ca2+ influx was neither
sufficient nor necessary to stimulate glucose uptake or for contraction and hypoxia-
stimulated glucose uptake in isolated rodent muscles (Lanner et al. 2006). This
suggests that cell surface Ca2+ entry is specific to insulin-stimulated glucose uptake
in the skeletal muscle. One study suggested cyclic ADP-ribose and nicotinic acid
adenine dinucleotide phosphate-regulated Ca2+ release, presumably from the sarco-
plasmic reticulum, to be required for exercise-stimulated glucose uptake in isolated
mouse gastrocnemius muscle fibers (Park et al. 2015). More studies into these
alternative Ca2+ sources are required.

Regardless of the Ca2+ source, the hetero-multimeric kinase Ca2+/calmodulin-
activated protein kinase II (CaMKII) is activated by human (Rose et al. 2006) and
rodent adult muscle exercise/contraction (Rose et al. 2007) and by mild mechanical
stress ex vivo and may, based on pharmacological inhibitor studies, be required for
mouse adult muscle glucose uptake in response to contraction but not insulin (Park
et al. 2015; Wright et al. 2004; Jensen et al. 2007; Witczak et al. 2010). However,
mechanical stress could also increase Ca2+-independent CaMKII activity via NOX2-
dependent methionine oxidation (Wang et al. 2018; Erickson et al. 2008; Luczak and
Anderson 2014). For discussion of other Ca2+ regulated proteins, see (Jensen et al.
2014; Sylow et al. 2017a). Overall, the role of various Ca2+ sources and potential
mediators in stimulating muscle glucose uptake is not entirely clear and has not been
studied during physiological exercise conditions.

6.9 Mechanical Stress

Mechanical stress elicited by passive stretching of incubated rodent muscles is suffi-
cient to stimulate muscle glucose uptake (Jensen et al. 2014c; Ihlemann et al. 1999;
Sakamoto et al. 2003; Chambers et al. 2009), and studies using myosin ATPase
inhibitors that prevent cross-bridge cycling (Jensen et al. 2014c; Blair et al. 2009),
or adjusting resting length to abolish force development during contraction (Ihlemann
et al. 1999), suggest that mechanical stress is one of several necessary signals activated
following contractile activity to stimulate glucose uptake.

The small rho family GTPase Rac1 is emerging as a mechanical stress-sensitive
necessary signaling component regulating exercise/contraction-stimulated glucose
uptake. Rac1 is activated by muscle contraction and exercise in both rodent and
human skeletal muscle and by passive stretch in incubated mouse muscles (Sylow
et al. 2013a, 2015). Studies in Rac1 knockout mice show that Rac1 is required for
insulin, contraction, and passive stretch-stimulated glucose uptake ex vivo (Sylow
et al. 2013a, b, 2015), in vivo insulin-stimulated GLUT4 translocation (Ueda et al.
2010) and glucose uptake (Raun et al. 2018), and in vivo treadmill exercise-

124 T. E. Jensen et al.



stimulated GLUT4 translocation and glucose uptake (Sylow et al. 2017b, 2016). In
L6 muscle cells, insulin stimulates GLUT4 translocation via Rac1-dependent corti-
cal actin remodeling (Khayat et al. 2000). However, deletion of the two muscle
isoforms of the Rac1-activated putative actin regulator p21-activated kinase (PAK)1
and 2 did not inhibit contraction-stimulated glucose transport (Møller et al. 2020),
suggesting that PAK1 and PAK2 are not important downstream mediators of Rac1's
stimulating effect on muscle glucose uptake during contractions.

Another recently proposed distinct mechanism involves Rac1-dependent activa-
tion of the superoxide-producing enzyme NADPH oxidase 2 (NOX2), found in the
sarcolemma and t-tubules (Henríquez-Olguín et al. 2019). Combining redox histol-
ogy and biosensors, NOX2 activation during moderate-intensity treadmill exercise
was found to require Rac1 in mouse skeletal muscle (Henríquez-Olguin et al. 2019),
consistent with NOX2 regulation in other cell types (refs in (Henríquez-Olguín et al.
2019)). Mice lacking another regulatory NOX2 subunit p47phox had no detectable
increase in cytosolic H2O2 and displayed large reductions in exercise-stimulated
sarcolemmal GLUT4 translocation and glucose uptake (Henríquez-Olguin et al.
2019) similar to Rac1 KO mice (Sylow et al. 2015, 2017b), suggesting that Rac1
regulates GLUT4 translocation via NOX2. Whether t-tubular GLUT4 translocation
is equally affected by NOX2 inhibition is unknown. The potential downstream
mediators of NOX2-stimulated GLUT4 translocation are unclear but presumably
reside close to NOX2 at the cell surface.

Our NOX2-based working model seems to fit with previous observations that
passive stretch and contraction-stimulated glucose uptake in incubated mouse muscles
are sensitive to the exogenous antioxidants N-Acetylcysteine (NAC) and ebselen
(Chambers et al. 2009; Merry et al. 2010b; Sandström et al. 2006). Worth noting,
millimolar exogenous H2O2 stimulation of incubated rodent muscles is also sufficient
to stimulate adult muscle glucose uptake (Cartee and Holloszy 1990) but unlike
contraction appears to work via a PI3K-dependent mechanism (Higaki et al. 2008).
In contrast, NAC infusion does not appear to affect exercise/contraction-stimulated
glucose uptake in perfused rat hindlimb (Merry et al. 2010a) or bicycling humans
(Merry et al. 2010d) except after blood flow-restricted exercise training that increased
GLUT4 and NOS protein content in muscle (Christiansen et al. 2020). It remains
unclear if NAC prevented the relevant localized redox signaling in vivo, and it seems
reasonable to assume that the inhibition ex vivo was more complete. Thus, the
interaction of general antioxidants with training mode and status in humans seems
quite complex, making firm conclusions difficult regarding the role of exercise-
stimulated cytosolic H2O2 production as a regulator of glucose uptake in humans.

6.10 Metabolic Stress and AMPK

Like tension development, the degree of metabolic stress correlated with muscle
glucose uptake in incubated rodent muscles (Jensen et al. 2014c; Ihlemann et al.
1999, 2001; Blair et al. 2009). Furthermore, isolated metabolic stress induced by
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hypoxia (Mu et al. 2001) and mitochondrial poisoning (Fujii et al. 2005) is sufficient
to increase sarcolemmal GLUT4 and glucose uptake into incubated mouse EDL
muscle via a process fully dependent on AMP-activated protein kinase (AMPK)
which has long been a candidate to mediate metabolic stress-stimulated glucose
uptake during contraction.

As its name implies, AMPK is activated allosterically by increased ATP turnover
increasing AMP/ATP and ADP/ATP ratios, which also promote its covalent activa-
tion by LKB1 and perhaps CaMKK-dependent phosphorylation and reduce its
inactivation by phosphatases (Kjøbsted et al. 2018). Regardless of the mechanism,
AMPK is intensely and time-dependently activated in skeletal muscle by human
exercise (Wojtaszewski et al. 2000; Birk and Wojtaszewski 2006; Treebak et al.
2007; Chen et al. 2003). AMPK is a hetero-trimeric protein complex consisting of a
catalytic α-subunit (α1 or 2) bound to regulatory β (β1 or 2) and γ-subunits (γ1, 2 or
3). In human skeletal muscle, there are three major complexes, α2β2γ1, α1β2γ1, and
α2β2γ3, estimated to contribute ~ 65, 20%, and 15% of total AMPK complexes,
among which α2β2γ3 is the only complex activated by short-term intense exercise,
whereas the γ1 associated complexes are only activated during prolonged exercise
(Birk and Wojtaszewski 2006).

Pharmacological AMPK activation is sufficient to stimulate muscle glucose
uptake (Mu et al. 2001; Rhein et al. 2021; Jørgensen et al. 2021) and augments
submaximal but not maximal contraction stimulated glucose uptake in incubated
mouse EDL muscle (Bultot et al. 2016), arguing that AMPK activation mobilizes
part of the contraction-regulated GLUT4 pool to increase glucose uptake. However,
it is also increasingly clear that AMPK is not necessary during exercise/contraction
to increase glucose uptake in AMPK-deficient mouse models (Sylow et al. 2017b;
Maarbjerg et al. 2009; Kjøbsted et al. 2019; Hingst et al. 2020), except perhaps at the
onset of contraction before reaching steady state (Abbott et al. 2011). Rather, AMPK
is required to maintain elevated glucose uptake after cessation of exercise/contrac-
tion in mice (Kjøbsted et al. 2019) and to increase fat oxidation, thereby redirecting
glucose away from oxidation and promoting glycogen synthesis in the recovery after
exercise (Fritzen et al. 2015). Furthermore, human studies suggest that low-intensity
exercise (Wojtaszewski et al. 2000; Chen et al. 2003; Jensen et al. 2012) or
moderate-high-intensity exercise in exercise-trained individuals does not activate
AMPK but does increase glucose uptake (Wahren et al. 1971; McConell et al. 2005;
McConell et al. 2020). However, a limitation of these studies is that AMPK α2β2γ3
activity cannot be estimated from measuring AMPK Thr172 or α2 AMPK activity
(Birk andWojtaszewski 2006) and exercise/contraction-stimulated ACC2 phosphor-
ylation is probably shared by multiple kinases (Dzamko et al. 2008), making the
activity of the major human exercise-responsive AMPK trimer unknown. Still, as
recently highlighted elsewhere (McConell 2020), the collective evidence in trans-
genic mice and humans clearly shows that AMPK is not necessary for steady-state
exercise-stimulated glucose uptake. However, since pharmacological activation of
AMPK is sufficient to stimulate muscle glucose uptake, AMPK probably contributes
to human muscle glucose uptake when activated.
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6.11 Nitric Oxide

There is some evidence, especially in humans, that nitric oxide (NO) may regulate
skeletal muscle glucose uptake during contraction and exercise. Nitric oxide
synthase (NOS) is expressed in the endothelium of skeletal muscle with the alterna-
tively spliced isoform of nNOS, nNOSμ, being the primary source of skeletal muscle
NO during contraction in mouse muscle (Lau et al. 2000) and in contracting muscle
cells (Hirschfield et al. 2000; Patwell et al. 2004). Skeletal muscle NOS activity
increases during ex vivo contractions in mouse muscle (Merry et al. 2010b), during
in situ contractions in rats (Ross et al. 2007), and during in vivo exercise in humans
(Linden et al. 2011).

In humans, local infusion of the NOS inhibitor L-NMMA into the femoral artery
during cycling exercise substantially attenuated the increase in leg glucose uptake in
healthy individuals (~30%) and in people with T2D (up to 75%) without affect-
ing total leg blood flow (Bradley et al. 1999; Kingwell et al. 2002). In a study by
Mortenson et al. (Mortensen et al. 2009) involving moderate one-legged knee
extension exercise, it was possible to calculate that L-NMMA attenuated increases
in leg glucose uptake during exercise using the presented leg blood flow and leg
femoral arterial and venous blood glucose values. Another study found no effect of
NOS inhibition on muscle glucose uptake during relatively low-intensity one-legged
knee extension exercise (Heinonen et al. 2013). This may have been because the
exercise intensity was insufficient to activate NOS (Silveira et al. 2003; Lee-Young
et al. 2009) or because of an order effect given participants always performed a
saline infusion trial before the NOS inhibition trial (Heinonen et al. 2013).

Rodent studies have yielded conflicting results with NOS inhibition attenuating
skeletal muscle glucose uptake in some (Merry et al. 2010b, c; Ross et al. 2007;
Roberts et al. 1997; Balon and Nadler 1997) but not all (Etgen et al. 1997; Higaki
et al. 2001; Hong et al. 2015a, b, 2016) studies. In addition, lack of NOS (either
nNOSμ KO or eNOS KO) does not attenuate glucose uptake during contraction or
exercise (Hong et al. 2015b; Hong et al. 2016; Lee-Young et al. 2010). This is
baffling given that studies in humans using NOS inhibitors are generally supportive
of a role of NO in glucose uptake during exercise. It is possible that L-NMMA is
having non-specific effects given that glucose uptake during ex vivo contraction is
normal in nNOSμ KO muscles, but L-NMMA attenuates the increase in glucose
uptake during contraction of these muscles (Hong et al. 2015b). Taken together, the
overall contribution of NO and NOS enzymes to exercise-stimulated glucose uptake
remains somewhat unclear.
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6.12 Mechanistic Target of Rapamycin Complex 2

mTORC2 comprises the catalytic mTOR kinase in complex with the core regulatory
subunit Rictor and a number of other proteins (Knudsen et al. 2020). mTORC2 has
been suggested to reside in multiple subcellular compartments including most of the
endomembrane system, the cytosol, nucleus, endoplasmic reticulum, and mitochon-
dria (Knudsen et al. 2020), but mTORC2 localization has not been investigated in
adult skeletal muscle. Based on the phosphorylation of the indirect mTORC2-
substrate NDRG1 downstream of serum and glucocorticoid-responsive kinase
1 (SGK1), mTORC2 may be activated by exercise/contraction (Kleinert et al.
2017). However, given that Rictor muscle KO mice displayed increased resting
NDRG1 phosphorylation (Kleinert et al. 2017) and SGK1 activation seems to
require other cell signaling pathways and is also regulated by acute changes in
SGK1 expression (Lang et al. 2009), the validity of NDRG1 phosphorylation as a
mTORC2 activity measure is uncertain.

Regardless of the mTORC2 activation status, glucose uptake during treadmill
exercise is reduced in mice lacking the Rictor subunit in skeletal muscle (Kleinert
et al. 2017), suggesting that mTORC2 is required for this process. It is unclear which
step of the muscle glucose uptake process is affected in the absence of Rictor.
However, Rictor mKO likely affects GLUT4 translocation since exercise capacity,
exercise-stimulated glycogen breakdown, lactate production, and expression of
GLUT4 and hexokinase were not affected in the Rictor mKO mice compared to
wild type (Kleinert et al. 2017).

In summary, exercise/contraction-stimulated GLUT4 translocation appears to be
primarily stimulated by factors secondary to contraction itself, such as mechanical
and metabolic stress, rather than to depolarization-related events such as SR Ca2+

release. In vivo, exercise-stimulated GLUT4 translocation may require input from
NOX2 downstream of Rac1 and potentially also from mTORC2 activity and
CaMKII. The requirement for nitric oxide is not clear based on the current evidence.
AMPK is not necessary for exercise-stimulated steady-state GLUT4 translocation or
glucose uptake, but since AMPK is a sufficient signal to increase glucose uptake,
AMPK likely augments exercise-stimulated glucose uptake when activated.

6.13 Conclusion

The mechanisms regulating exercise/contraction-stimulated adult skeletal muscle
glucose uptake remain somewhat unclear. The muscle glucose uptake response to
exercise is determined by a coordinated increase in glucose delivery, facilitated
glucose transport in the myocytes, and intramyocellular metabolism which may
increase glucose uptake across the working leg by up to 100-fold during maximal
exercise in humans. The lack of accumulation of interstitial and intramyocellular
glucose in humans during exercise, except during very intense exercise, suggests
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that the increases in glucose transport and phosphorylation are well coordinated to
the increase in glucose delivery and do not impose significant barriers to glucose
uptake in vivo.

GLUT4 is the main transporter facilitating muscle glucose uptake during exercise
in healthy adult skeletal muscle. Exercise-stimulated GLUT4 translocation does not
require proximal insulin signaling and appears to be stimulated by distinct aspects of
intracellular GLUT4 trafficking compared to insulin. Studies in isolated adult rodent
muscles suggest that glucose transport is mainly stimulated by stress signals pro-
duced secondary to actual contraction including mechanical and metabolic stress.
Stimulation of the transporter activity of individual GLUT4 proteins by environ-
mental factors such as increased temperature, mechanical stress, or post-translational
modifications remains a possibility that deserves further scrutiny.

Ultimately, progress in the field is limited by the fact that most mechanistic
insight currently comes from rodent muscle studies which may not faithfully mirror
the mechanistic “wiring” of exercising human muscle. A much cited example of this
is clathrin heavy chain (CHC)22, a GLUT4 regulating protein in human skeletal
muscle which is not expressed in mice (Vassilopoulos et al. 2009). To overcome this
limitation, better models of human skeletal muscle must be developed, be it more
metabolically mature human in vitro myotube models, isolated adult muscle strips or
fibers from humans, or more human-like large animal models.
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Chapter 7
Adipose Tissue Lipid Metabolism During
Exercise

Jeffrey F. Horowitz

Abstract Adipose tissue-derived fatty acids are the primary source of energy during
low-intensity exercise. Although the relative contribution of fat to energy production
during exercise decreases with increasing exercise intensity, fatty acids still contrib-
ute meaningfully to energy production even during vigorous exercise. How exercise
triggers the liberation of fatty acids from this “remote” energy storage site for
subsequent oxidation in the exercising muscle is complex, with multiple integrated
steps and some seemingly paradoxical regulation. Adipose tissue metabolic function
and composition differ considerably in subcutaneous vs. visceral adipose tissue
beds, and there are also sizable differences between subcutaneous adipose tissue in
different regions of the human body (e.g., subcutaneous abdominal vs. subcutaneous
femoral/gluteal), whereas most of the fatty acids used for energy during exercise are
derived from triacylglycerol stored in subcutaneous abdominal white adipose tissue.
This chapter will focus primarily on changes in subcutaneous white adipose tissue
that occur during and right after a session of endurance exercise.

Keywords Lipolysis · Fat oxidation · White adipose tissue · Adipocytes ·
Endurance exercise

7.1 Introduction

Adipose tissue is an extraordinarily complex tissue, comprised of several different
cell types, including adipocytes, preadipocytes, monocytes, endothelial cells, mac-
rophages, adipose tissue-derived stem cells, and pericytes, many of which are in
constant flux. The complexity of adipose tissue is extended by the fact that there are
distinct types of adipose tissue (i.e., white, brown, beige/brite) that have somewhat
opposing properties, white adipose tissue being the body’s most important site for
energy storage and brown and beige/brite adipose tissue involved in energy
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expenditure for heat generation. In this chapter, we will focus almost exclusively on
the metabolic effects that occur in white adipose tissue during a session of endurance
exercise, and the terms “white adipose tissue” and “adipose tissue” will be used
interchangeably. Despite high interest in the expanding knowledge regarding the
endocrine-like function of adipose tissue, it is important to recall that the primary
role of white adipose tissue is still to store and release energy in the form of
non-esterified fatty acids [NEFA] (referred to in this chapter simply as “fatty
acids”). The storage and delivery of this endogenous energy source are particularly
important when fasting (or even just between meals)—and it is a very important
energy source during endurance/aerobic exercise. Even lean adults have enough
energy stored as triacylglycerol in their adipose tissue to complete more than
25 marathon races. Although adipose tissue provides a very rich resource of potential
energy, there are many regulated steps the fat stored within white adipose tissue must
navigate before being able to be used during exercise in the exercising skeletal
muscle. For example, to use adipose tissue-derived fat during exercise requires the
coordination of many processes including lipolytic regulation, trafficking the liber-
ated fatty acids within the circulation to the exercising muscle, as well as transport
across both the sarcolemma and mitochondrial membranes of the working muscle.
The vast majority of this chapter will focus on metabolic regulation within adipose
tissue during exercise and some of the key factors that can modulate this regulation
(e.g., fasted vs fed, training status, anatomical site, sex). In addition, this chapter
will also briefly address the contribution of different fat sources to energy expendi-
ture during exercise, as well as provide a brief discussion about responses in
adipose tissue after each session of exercise that may underlie some of the important
health benefits of exercising regularly.

7.2 Contribution of Fat to Energy Expenditure During
Exercise

The contribution of fat to total energy expenditure during exercise depends on
several factors, including exercise intensity, timing of last meal before exercise,
and training status. In the overnight fasted condition, fat is the primary source of
energy at rest and during low-intensity exercise (Romijn et al. 1993; Romijn et al.
2000), like walking. As the intensity of exercise increases, the relative contribution
of fat decreases as the contribution of carbohydrate increases (Romijn et al. 1993).
During high-intensity exercise (e.g., ~85% maximal oxygen consumption
[VO2max]), typically <20% of energy is derived from fat (Romijn et al. 1993;
Romijn et al. 2000). Interestingly, artificially elevating circulating fatty acid avail-
ability via intravenous infusion of lipid and heparin during high-intensity exercise
increased the rate of fat oxidation (Romijn et al. 1995), suggesting that a limitation in
the availability of circulating fatty acids (derived from adipose tissue) is partly
responsible for the relatively low rate of fat oxidation observed during high-intensity
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exercise. However, an overabundance of circulating fatty acids provided via the lipid
and heparin infusion increases the rate of fat oxidation only very modestly (Romijn
et al. 1995), suggesting alternative mechanisms beyond substrate availability also
contribute to the relatively low rates of fat oxidation during high-intensity exercise.
A candidate mechanism within the skeletal muscle that may contribute to the low
rate of fat oxidation during high-intensity exercise is an inhibition of fatty acid entry
into the mitochondria, perhaps through inhibition of carnitine palmitoyl transferase I
(CPT-I) by malonyl-CoA (Petrick and Holloway 2019; Holloway et al. 2006; Coyle
et al. 1997) and/or a reduction in free carnitine within the cytosol of the muscle cell
(Stephens and Galloway 2013). However, the contributions of these mechanisms to
the relatively low rates of fat oxidation during high-intensity exercise are controver-
sial—and these issues are addressed in greater detail in the next chapter of this book
(Fritzen, et al.—Chap. 8).

Eating meals or snacks in the few hours before exercise can also have a potent
influence on fat use during exercise (Horowitz et al. 1997; Horowitz and Coyle
1993). Even a very modest carbohydrate content in ingested food can inhibit fat
oxidation, largely through the effects of the insulin secreted in response to the
increase in blood glucose after the meal. Insulin is a very potent inhibitor of adipose
tissue lipolysis (Campbell et al. 1992; Nurjhan et al. 1986), and thereby elevated
insulin during a meal markedly lowers the availability of circulating fatty acids
(Horowitz et al. 1997; Horowitz and Coyle 1993). In addition to its anti-lipolytic
effects of insulin on adipose tissue, and the resultant lower availability of circulating
fatty acids available for oxidation during exercise, an insulin-induced increase in
glucose flux in skeletal muscle may also trigger counter-regulatory mechanisms
leading to the reduction in fat oxidation during exercise, which again is discussed
in greater detail in the next chapter of this book (Fritzen, et al.—Chap. 8). It has been
reported that eating meals even 4–6 hours before exercise lowered the rate of fat
oxidation during exercise compared with an overnight fast, even well after plasma
insulin concentration returned to pre-meal levels (Montain et al. 1991). The duration
of this effect certainly depends on the quantity and composition of the meal, but
because most people eat something at least every few hours throughout the day, it is
likely that the rate of fat oxidation is often “under the influence” of the persistent
effects stemming from the most recent meal or snack. Endurance training also
impacts fuel selection during exercise. An increase in the contribution of fat to
energy expenditure during exercise at the same absolute intensity (e.g., same tread-
mill speed and grade) is among the most classic responses to endurance exercise
training (Holloszy 1967; Holloszy and Coyle 1984; Holloszy and Booth 1976). This
training-induced increase in fat oxidation is proposed to be largely due to increased
capacity to oxidize available fatty acids via training-induced expansion of mitochon-
drial density in skeletal muscle (Holloszy 1967; Holloszy and Coyle 1984).
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7.3 Mobilization of Fatty Acids from Adipose Tissue During
Exercise

After an overnight fast (or at least several hours removed from the last meal or
snack), adipose tissue-derived fatty acids are the primary, and nearly the exclusive
source of fat to cover energy (and total energy) expenditure at rest and during
low-intensity exercise (Romijn et al. 1993, 2000). Even during moderate-to-vigor-
ous exercise, blood-borne fatty acids (liberated from white adipose tissue) still
contribute meaningfully to energy production (Romijn et al. 1993, 2000). The
reliance on circulating fatty acids as a key energy source during exercise is intriguing
considering the complex “journey” these fatty acids must make from their storage
site in adipose tissue to the exercising muscle. As depicted in Fig. 7.1, these fatty
acids must first be hydrolyzed from adipose tissue triacylglycerols before being

Fig. 7.1 Delivery of adipose tissue-derived fatty acids to skeletal muscle mitochondria for oxida-
tion during exercise. Adipose tissue triacylglycerols (TAGs) must be hydrolyzed to yield glycerol
and three fatty acids. Because fatty acids are hydrophobic, upon entry into the aqueous systemic
circulation, they must bind to a carrier protein (albumin is the primary fatty acid carrier protein).
These albumin-bound fatty acids then travel in the circulation for delivery to other tissues, such as
skeletal muscle. Fatty acid entry into the myocyte (i.e., muscle fiber) is facilitated by a transport
protein; cluster of differentiation 36 (CD36) is among the most prominent fatty acid transport
proteins in skeletal muscle. The fatty acids are then “activated” by the enzyme fatty acyl-CoA
synthetase (FACS) to form fatty acyl-CoA, which must again be escorted by carrier proteins to
traverse the aqueous cytosol of the myocyte. Before entry into the mitochondria for oxidation and
energy production, the fatty acyl-CoA must be converted to fatty acyl-carnitine by the enzyme
carnitine palmitoyl transferase-1 (CPT-1), which is often considered the rate-limiting step of fatty
acid oxidation
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released into the circulation. Due to their hydrophobicity, upon entry into the
bloodstream, fatty acids must bind to a carrier protein (i.e., albumin). Increased
blood flow to the exercising muscle enhances delivery of circulating fatty acids to
skeletal muscle—where they must be released from the carrier protein, pass through
the capillary wall, transverse through the aqueous interstitial space, and transport
through the muscle sarcolemma as well as through the mitochondrial membranes
before being metabolized for energy (which by itself is a tightly regulated process).
These wide-ranging regulatory steps required for adipose tissue-derived fatty acids
to be oxidized for energy ultimately begin with the hydrolysis of adipose tissue
triacylglycerol (i.e., lipolysis).

7.3.1 Lipolytic Rate During Exercise

During low-intensity exercise, such as walking, adipose tissue lipolysis is often
found to increase about two- to threefold above resting levels (Romijn et al. 1993;
Horowitz et al. 1997). Simultaneously, the rate of re-esterification of these liberated
fatty acids to reform triacylglycerol decreases, resulting in a greater proportion of
released fatty acids being delivered to skeletal muscle for oxidation (Wolfe et al.
1990). With prolonged exercise, lipolytic rate and fatty acid mobilization from
adipose tissue increase progressively with exercise duration (Romijn et al. 1993;
Wolfe et al. 1990) accompanying the increased contribution of fat to energy pro-
duction during prolonged exercise (especially important as endogenous carbohy-
drate stores diminish). Interestingly, higher exercise intensities typically do not
increase lipolytic rate much/any further than that found at low intensity (Romijn
et al. 1993). However, despite consistent rates of lipolysis at low-, moderate-, and
high-intensity exercise, fatty acid mobilization from adipose tissue is lower during
vigorous exercise intensities compared with that found at lower intensities (Romijn
et al. 1993, 2000) likely due in large part to a redistribution of blood flow away from
adipose tissue at high intensity (Hodgetts et al. 1991). Although this reduction in this
energy-rich source of fuel when energy demands are reaching their maximum may
seem like a disadvantage, exercising muscles increase their reliance on readily
available local intramuscular stores of carbohydrate and fat during very vigorous
exercise (Romijn et al. 1993, 2000). In fact, as noted above, an artificial increase in
circulating fatty acid availability to 1–2 mM via infusion of lipid and heparin during
high-intensity exercise increases the rate of fat oxidation only very modestly
(Romijn et al. 1995).
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7.3.2 Regulation of Lipolysis

7.3.2.1 Lipolytic Proteins

Adipose tissue triacylglycerol lipolysis is regulated by enzymes (lipases) that ulti-
mately yield the three resident fatty acids and glycerol. The main lipases involved in
this process are adipose triglyceride lipase (ATGL) and hormone sensitive lipase
(HSL). ATGL has very high specificity for the sn-2 position of the triacylglycerol, to
yield 1 fatty acid and a diacylglycerol with fatty acids still bound in the sn-1 and sn-3
positions (Eichmann et al. 2012). ATGL appears to have limited affinity to hydro-
lyze diacylglycerols (Eichmann et al. 2012; Schweiger et al. 2006). Diacylglycerol is
then largely hydrolyzed by HSL, resulting in the complete hydrolysis of the
triacylglycerol into three fatty acids and glycerol (Eichmann et al. 2012; Schweiger
et al. 2006). A third lipase, monoglycerol lipase (MGL), can also catalyze the
hydrolysis of the remaining fatty acid and glycerol, but MGL is responsible for
only a very small fraction (~5%) of total lipolytic rate (Schweiger et al. 2006). The
activities of ATGL and HSL are highly regulated (Fig. 7.2), requiring the phosphor-
ylation on specific amino acid residues on these proteins (e.g., ATGL, Ser404 and
Thr372; HSL, Ser552, Ser649, Ser650, Ser554, and Ser589) in humans (Watt and
Steinberg 2008), as well as interactions with other regulatory proteins. For example,
phosphorylation of the perilipin 1 (PLIN1) on the lipid droplet appears to be essential
for HSL translocation from the cytosol to the lipid droplet for its lipolytic activity
(Sztalryd et al. 2003). The regulation of ATGL involves its interaction with even
more regulatory proteins to modify its activity. Comparative gene identification
58 (CGI-58; also known as alpha/beta-hydrolase domain-containing protein
5 [ABHD5]) is a key co-activator for ATGL lipolytic activity. In vitro analysis
indicates that adding CGI-58 to cell extracts containing ATGL increased lipolytic
activity ~20-fold (Lass et al. 2006). Under basal/resting conditions, CGI-58 is found
largely bound to PLIN 1, which prevents ATGL-CGI-58 binding (Subramanian et al.
2004). With the onset of exercise, PLIN 1 is phosphorylated leading to its release of
CGI-58 (Ogasawara et al. 2010)—at the same time, phosphorylation of ATGL leads
to its translocation to the lipid droplet (Xie et al. 2014), where it binds to CGI-58 and
initiates lipolysis of triacylglycerol within the lipid droplet (Schweiger et al. 2006;
Lass et al. 2006). These activation steps of the lipolytic cascade are largely initiated
via adrenergic stimulation (discussed below—and Fig. 7.2). ATGL is also regulated
via inhibition when bound to the protein G0/G1 switch 2 (G0S2), which both inhibits
ATGL enzyme activity and attenuates its translocation to the lipid droplet
(Schweiger et al. 2012; Yang et al. 2010). Other proteins are also known to regulate
ATGL activity (e.g., fat-specific protein 27 (FSP27) (Grahn et al. 2014), hypoxia-
inducible lipid droplet-associated protein (HILPA)) (Kulminskaya and Oberer
2020).
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7.3.2.2 Adrenergic Regulation of Lipolysis During Exercise

Most reports suggest the adrenergic-mediated increase in lipolytic rate during
exercise is primarily due to increased epinephrine (Epi) release from the adrenal
cortex into the systemic circulation combined with norepinephrine (NE) spillover

Fig. 7.2 Adrenergic regulation of lipolysis during exercise. The increase in lipolytic rate during
exercise is primarily due to the increase in circulating epinephrine from the adrenal cortex and
SNS-derived norepinephrine. These catecholamines bind to β-adrenoceptors on the plasma mem-
brane of adipocytes resulting in a cascade of reactions that ultimately phosphorylate/activate the key
lipase enzymes ATGL and HSL and also facilitate the translocation of these enzymes to the lipid
droplet where the triacylglycerol and diacylglyerol are hydrolyzed. Insulin is a potent inhibitor of
lipolysis, and the reduction in plasma insulin concentration that occurs during exercise facilitates the
lipolytic activity during the exercise session. ATGL adipose triglyceride lipase; cAMP, ATP
adenosine triphosphate, cyclic adenosine monophosphate; CGI-58 comparative gene identification
58; Gi inhibitory G-protein; Gs stimulatory G-protein; PDE-3B phosphodiesterase; PLIN1
perilipin 1
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from the sympathetic nervous system (SNS) into the circulation (Arner 2005).
However, direct SNS innervation of white adipose tissue can also play a role in
lipolytic regulation (Youngstrom and Bartness 1995; Dodt et al. 1999; Bartness et al.
2014), but the contribution of direct neural stimulation on the increase in adipose
tissue lipolysis during exercise in humans remains unclear. Regardless of their
origin, catecholamines stimulate lipolysis by binding to β-adrenoceptors on the
plasma membrane of adipocytes, which then interact with membrane-bound stimu-
latory GTP-binding regulatory proteins (Gs) leading to the activation of the enzyme
adenylate cyclase. Activation of adenylate cyclase catalyzes the conversion of ATP
to cAMP, which in turn activates cAMP-dependent protein kinase A leading to the
phosphorylation and subsequent activation of ATGL, HSL, and PLIN1 proteins
(Schweiger et al. 2006; Lass et al. 2006; Tansey et al. 2004) (Fig. 7.2). Interestingly,
catecholamines can also inhibit lipolysis via binding to membrane-bound α2-
adrenoceptors, which couple with inhibitory G proteins (Gi) to inhibit the activation
cascade described above (Fig. 7.2). The seemingly paradoxical effects of catechol-
amines as both activators and inhibitors of lipolysis (through β- and α-receptors,
respectively) depend in large part on their concentration in plasma and their receptor-
binding affinity (Arner et al. 1990; Galitzky et al. 1993). Resting plasma catechol-
amine concentration is low (150–500 pmol/L), and the lipolytic rate appears to be
largely regulated through the inhibitory action of high-affinity α2-adrenoreceptors
(Arner et al. 1990), which keep circulating fatty acid availability relatively low when
energy expenditure is low at rest. During exercise, however, the increase in circu-
lating Epi and NE, as well as NE derived from direct SNS innervation, activates
β-adrenoceptors, which override the α2-mediated inhibition, and lipolytic rate
increases (Arner et al. 1990) to accommodate the increased energy expenditure
during exercise.

7.3.2.3 Insulin Regulation of Lipolysis

Adipose tissue lipolysis is also very sensitive to the anti-lipolytic effects of insulin
(Campbell et al. 1992; Nurjhan et al. 1986). For example, an increase in plasma
insulin concentration to ~30 μU/ml (insulin levels that a healthy adult might reach
after eating a single slice of bread) can suppress lipolysis 50% below basal/overnight
fasted levels (Campbell et al. 1992). Therefore, even small meals or snacks eaten in
the hour or so before exercise will markedly suppress lipolytic rate during the
subsequent exercise session, which in turn can be great enough to lower the rate of
fat oxidation during exercise (Horowitz et al. 1997). Even though pancreatic insulin
secretion is inhibited with the onset of exercise (Hirsch et al. 1991) and the elevated
plasma insulin concentration from a pre-exercise meal often returns to basal levels
within the first 20–30 min, there remains a persistent effect of this prior exposure to
insulin that results in a suppressed lipolytic rate for at least 1 hour of moderate-to-
vigorous exercise (Horowitz et al. 1997). Conversely, when exercising at least a few
hours after a meal or snack, the exercise-induced reduction in plasma insulin
concentration below basal levels contributes to the increase in lipolysis during
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exercise (Wasserman et al. 1989). Most of the inhibitory action of insulin on
lipolysis has been attributed to the phosphorylation and resultant activation of
phosphodiesterase (Makino et al. 1992; Lonnroth and Smith 1986), which degrades
cAMP, thereby reducing the signaling cascade responsible for activating lipase
activity. The anti-lipolytic activity of insulin also depends on the protein alpha-/
beta-hydrolase domain-containing protein 15 (ABDH15) to help stabilize intracel-
lular phosphodiesterase (Xia et al. 2018; Stöckli et al. 2019). Insulin phosphorylates
phosphodiesterase via phosphatidylinositol 3-kinase (PI3-K) (Rahn et al. 1994),
which also plays a key role in mediating insulin-stimulated glucose uptake. There-
fore, much of insulin’s impact on substrate metabolism (i.e., increase in carbohy-
drate metabolism and decrease in fat metabolism) is largely through activation of
PI3-K. It is important to note that although insulin often evokes a very robust
inhibitory effect on adipose tissue lipolysis and a resultant reduction in circulating
fatty acid availability, the anti-lipolytic effect of insulin can be considerably blunted
in adults with abdominal obesity (Nellemann et al. 2012). Additionally, it has been
recently reported that not all subpopulations of adipocytes respond similarly to
insulin (Bäckdahl et al. 2021).

7.3.2.4 Alternative Lipolytic Regulators

Several other hormones, peptides, and metabolites can also influence lipolytic rate
(e.g., growth hormone, cortisol, interleukin 6 (IL6), natriuretic peptides, leptin, and
growth differentiation factor 15 (GDF 15)). In general, the effects of these alternative
lipolytic regulators are more modest and/or slower in regulating lipolysis compared
with the effects of catecholamines and insulin. In addition, like catecholamines and
insulin, in most cases, these factors also modify lipolytic rate through modulating
intracellular cAMP levels. Here, we will briefly discuss a few of these alternative
lipolytic regulators that demonstrate some intriguing tissue cross-talk during
exercise.

Arterial and B-type natriuretic peptides (ANP and BNP, respectively) are primar-
ily secreted from cardiac myocytes in response to stretch of atria and ventricle,
respectively. In contrast to the effects of most lipolytic agents that act though
elevation of intracellular cAMP levels, ANP and BNP stimulate lipolysis through
modulation of intracellular cyclic guanosine monophosphate (cGMP), indepen-
dently of cAMP (Moro et al. 2007; Sengenès et al. 2003). In a process closely
resembling catecholamine-stimulated lipolysis, cGMP activates cGMP-dependent
protein kinase (cGK-I, also referred to as “protein kinase G” (PKG)), which in turn
phosphorylates the lipases and PLIN1 (Sengenès et al. 2003). Interestingly, the
natriuretic peptide lipolytic pathway appears to be resistant to insulin-mediated
inhibition (Moro et al. 2004a, b), which may contribute to the modest increase in
lipolytic rate above pre-exercise levels observed after a pre-exercise meal, despite
insulin’s potent suppression of adrenergic-mediated lipolysis. Because these pep-
tides are released into the circulation from cardiac muscle in response to a stretch
stimulus (as occurs during exercise)—lipolytic activation stemming from increased
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circulating ANP and BNP may represent a communication link between the exercis-
ing heart and adipose tissue, to mobilize more energy to help fuel the body during
exercise. However, circulating ANP concentrations are often found to only increase
rather modestly during exercise in healthy subjects (Verboven et al. 2018; Steele
et al. 1997), and BNP concentration is often found to increase even less or not at all
during exercise (Steele et al. 1997; Huang et al. 2002). As such, the true contribution
of these natriuretic peptides to the lipolytic response to exercise remains unclear.

Circulating IL-6 has also been found to increase adipose tissue lipolysis (van Hall
et al. 2003; Petersen et al. 2005). Several tissues produce and release IL-6, but during
exercise, IL-6 is released from exercising skeletal muscle generally in proportion to
the decline in muscle glycogen (Chan et al. 2004; Pedersen et al. 2003). Therefore,
the IL-6-mediated increase in lipolysis represents a potentially important cross-talk
between skeletal muscle that is facing diminished energy reserves (in the form of
glycogen) to adipose tissue, triggering the mobilization of more energy in the form
of fatty acids that can be used by the exercising muscle.

GDF15 has also recently received attention for its potential to increase lipolytic
rate during exercise (Laurens et al. 2020b). GDF15 is predominantly expressed in
the liver, kidney, and lung (Ding et al. 2009), but also found in adipose tissue and
skeletal muscle (Laurens et al. 2020b; Ding et al. 2009). Plasma GDF15 concentra-
tion increases during exercise (Laurens et al. 2020b; Kleinert et al. 2018; Galliera
et al. 2014), but whether GDF15 is a “myokine” released by the exercising muscle is
debated (Kleinert et al. 2018; Laurens et al. 2020a, b). Moreover, although GDF15
has been found to increase lipolytic rate in isolated adipocytes, the mechanism of
lipolytic action remains unclear, and the presence of the GDF15 receptor (glial cell
line-derived neurotropic factor receptor α-like; GFRAL) in adipose tissue is contro-
versial (Laurens et al. 2020b; Tsai et al. 2014).

Identification and characterization of alternative lipolytic agents help complete
our understanding about the regulation of lipolytic activity during exercise, but
quantitatively these factors are likely relatively minor contributors to the overall
lipolytic rate during exercise in healthy persons compared with the effects of
increased catecholamines (both circulating and direct SNS innervation of adipose
tissue) and the reduction in plasma insulin concentration.

7.4 Regional Differences in Adipose Tissue Metabolism
and Fat Mobilization

It has been known for decades that lipolytic activity varies in different adipose tissue
depots (Martin and Jensen 1991; Jensen et al. 1989). Adipocytes from intra-
abdominal (i.e., visceral) adipose tissue are often reported to be more lipolytically
active than adipocytes from subcutaneous adipose tissue (Mauriege et al. 1987).
However, despite the high lipolytic activity of intra-abdominal adipocytes, intra-
abdominal adipose tissue constitutes only a small proportion of total body fat mass—
even in obese adults—and fatty acids derived from the splanchnic region contribute
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very little to the pool of fatty acids in the systemic circulation (Martin and Jensen
1991; Nielsen et al. 2004; Nguyen et al. 1996). In contrast, nearly 90% of circulating
fatty acids are derived from subcutaneous adipose tissue (Nguyen et al. 1996, 2004).
Therefore, most of the fatty acids that skeletal muscle is exposed to during exercise
are derived from subcutaneous adipose tissue. Lipolytic activity is also heteroge-
neous in different subcutaneous adipose tissue beds. Although clearly an oversim-
plification, subcutaneous adipose tissue is commonly subdivided into two broad
categories: upper-body/abdominal subcutaneous and lower-body/femoral+gluteal
subcutaneous adipose tissue. During exercise, lipolytic rate is much greater in
upper-body compared with lower-body subcutaneous adipose tissue, with lower-
body adipose tissue typically contributing very little to whole-body lipolysis and
systemic fatty acid delivery during exercise (Arner et al. 1990; Horowitz et al. 2000).
Differences in local adipose tissue α2- and β-adrenoceptor affinity, density, and
function (Wahrenberg et al. 1991) likely underlie much of the regional heterogeneity
in exercise-induced lipolytic rate between abdominal and lower-body adipose tissue
beds (Frühbeck et al. 2014).

7.5 Alternative Sources of Fat Used During Exercise

In addition to the fat stored in adipose tissue—many studies indicate that fatty acids
derived from lipid droplets stored within muscle cells (“intramyocellular
triacylglycerol” (IMTG)) are also an important energy source during exercise
(Romijn et al. 1993; Romijn et al. 2000; Loon et al. 2001). Because the fatty acids
stored as IMTGs are already inside the myocyte, their ready availability and close
proximity to the mitochondria (Samjoo et al. 2013; Devries et al. 2013; Shaw et al.
2008) make them a potentially effective energy source during exercise, and their
contribution depends largely on the intensity of exercise (it generally increases with
intensity) and training status. Endurance training has been found to increase the
abundance and contribution of IMTG to energy production. In fact, much of the
training-induced increase in fat oxidation commonly found after endurance training
has been attributed to increased IMTG contribution (Horowitz et al. 2000; Martin
et al. 1993). Lipids can also accumulate between muscle fibers, which is often
associated with muscle injury, mobility impairment, aging, or disuse (Delmonico
et al. 2009; Buford et al. 2012; Correa-de-Araujo et al. 2017; Song et al. 2004) and
the contribution of these extramyocellular lipids to energy production during exer-
cise is largely unknown (Sachs et al. 2019; Konopka et al. 2018; Durheim et al.
2008). Circulating triacylglycerols are another potential fat source for energy during
exercise, but plasma triacylglycerols are typically not considered to be an important
fuel source during exercise (Turcotte et al. 1992; Kiens and Lithell 1989;
Sondergaard et al. 2011; Morio et al. 2004), although the importance of circulating
triacylglycerols appears to be helpful during recovery after exercise (Morio et al.
2004; Lundsgaard et al. 2020). The next chapter in this book (Fritzen
et al.—Chap. 8) provides an expanded discussion of these and other alternative
sources of energy during exercise.
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7.6 Endurance Training Effects on Fat Metabolism

As noted above, an increase in the relative contribution of fat to total energy
expenditure during submaximal exercise at same absolute intensity is among the
most robust responses to endurance exercise training (Holloszy and Coyle 1984).
Interestingly, however, the primary source of this greater amount of fat used during
exercise after training is not derived from adipose tissue (Horowitz et al. 2000;
Martin et al. 1993). Adipose tissue lipolytic rates measured in vivo are found to be
similar in endurance-trained athletes and untrained volunteers during exercise
performed at the same absolute intensity (Klein et al. 1994). Additionally, in
longitudinal studies, adipose tissue-derived systemic fatty acid availability during
exercise does not increase (Horowitz et al. 2000) and can even decrease (Martin et al.
1993) after several weeks of endurance training, perhaps in consequence of a lower
catecholamine response during exercise at the same intensity after training (Phillips
et al. 1996). But even with similar catecholamine responses, lipolytic rate is often not
found to be elevated after training (van Aggel-Leijssen et al. 2001; Horowitz et al.
1999). The likely source of the additional fat oxidized after training appears to be
largely from IMTG (Horowitz et al. 2000; Martin et al. 1993). There is often some
confusion regarding the effects of endurance training on adipose tissue lipolytic rate,
perhaps in part because several classic studies demonstrated that maximal lipolytic
rates in response to supraphysiological doses of catecholamines (10�6 to 10�4 mol/
L) were greater in adipocytes from endurance-training vs. untrained subjects
(Crampes et al. 1989; Riviere et al. 1989). But at physiological Epi concentrations
(10�10 and 10�8 mol/L), lipolytic activity was the same or even slightly lower in
adipocytes obtained from endurance-trained compared with untrained subjects
(Crampes et al. 1989). Studies performed in situ (using microdialysis) also demon-
strated no effect of training on adipose tissue Epi sensitivity (Richterova et al. 2004).
So, while endurance exercise training increases maximal lipolytic capacity of adi-
pose tissue, it does not appear to influence lipolytic sensitivity to adrenergic stimu-
lation (Stinkens et al. 2018). Differences or changes in adiposity with exercise
training can also contribute some to the confusion regarding the effects of training
on lipolytic rate. The magnitude of fat mass has an important impact on lipolytic rate
(Mittendorfer et al. 2009), so if exercise training is accompanied by a loss (or gain) in
fat mass, lipolytic rate would indeed be affected (i.e., sustained weight loss results in
lower lipolytic rate)—but this is an indirect effect of exercise training.

7.7 Sex Differences in Adipose Metabolism During Exercise

Sexual dimorphism in the proportion and distribution of adiposity in humans is well-
known. The proportion of body fat mass is typically greater in women than men, and
women often store more of their body fat in their lower body (femoral+gluteal),
while men typically store more of their fat mass in the upper body/abdominal region.
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Factors underlying these differences in body fat distribution may be related, at least
in part, to differences in the abundance and response to sex steroid hormones (i.e.,
testosterone, estrogen) and their receptors, as well as differences in mechanisms
associated with storage of dietary fat (Karastergiou et al. 2012; Karastergiou et al.
2013; Santosa et al. 2008; Santosa and Jensen 2012). Specifics regarding the putative
mechanism responsible for sex differences in body fat distribution are beyond the
scope of this review—this is addressed in Chap. 15 in this book (Lundsgaard, et al).
Sex-related differences in adipose tissue lipolysis and fat oxidation during exercise
have been widely reported, often indicating exercise lipolysis and relative contribu-
tion of fat oxidation are greater in women than men (Tarnopolsky et al. 1995;
Froberg and Pedersen 1984; Friedlander et al. 1998; Chenevire et al. 2011). Because
lipolytic rate is proportional to body fat mass (Mittendorfer et al. 2009), some of the
higher lipolytic rate in women vs. men can be attributed to their higher proportion of
body fat mass, but lipolytic rate is still elevated in women vs. men after normalizing
for fat mass (Mittendorfer et al. 2002), suggesting other mechanisms underlie this
difference. Interestingly, this sex difference in lipolytic rate appears to be absent in
well-trained female and male endurance athletes (Roepstorff et al. 2002). Because
lipolytic rate during exercise is largely driven by adrenergic regulation, sex differ-
ences in adipose tissue sensitivity to β-adrenergic stimulation or α-adrenergic inhi-
bition of lipolysis are logical candidates. Several studies have reported that lipolytic
sensitivity to physiologic concentrations of catecholamines was similar in adipo-
cytes extracted from male and female subjects (Wahrenberg et al. 1991; Crampes
et al. 1989; Mauriège et al. 1999) as well as in situ (Millet et al. 1998). Conversely,
locally delivered α-adrenergic receptor blockade via microdialysis was reported to
increase lipolysis during exercise in men but not women (Hellström et al. 1996),
suggesting that differences in lipolytic inhibition through α-adrenergic receptor
activity may contribute to sex differences in lipolytic rate during exercise.

7.8 Adipose Tissue-Derived “Adipokines”

Clearly, the primary role of adipose tissue is to store and mobilize available energy
when exogenous energy availability is scarce or non-existent, but adipose tissue also
acts as an endocrine organ. Adipose tissue produces several bioactive proteins and
peptides, such as leptin, adiponectin, IL6, resistin, tumor necrosis factor-alpha
(TNFα), retinol-binding protein 4 (RBP-4), and apelin. These adipose-derived
factors, often referred to as “adipokines,” can be released into the systemic circula-
tion, delivered to other tissues (e.g., skeletal muscle, liver, heart) where they may
have important biological impact. Much of the work examining the effects of
exercise on adipokine release has been focused on adaptations to chronic exercise
training—with specific interest on the potential impact of these adipokines on
obesity-related cardiometabolic disease (Takahashi et al. 2019; Stanford et al.
2018; Lee et al. 2019). In contrast, the production, release, and impact of these
adipokines during a session of exercise are far less clear. Leptin and adiponectin are
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the most well-characterized adipokines, yet the effects of acute exercise on adipose
tissue leptin and adiponectin production are equivocal. Various reports indicate
leptin and adiponectin mRNA expression and/or plasma concentrations remain
unchanged (Ferguson et al. 2004; Varady et al. 2010; Keller et al. 2005; Bobbert
et al. 2007), decrease (Højbjerre et al. 2007), or even increase modestly (Højbjerre
et al. 2007; Christiansen et al. 2013; Saunders et al. 2012) during or immediately
after exercise. As noted above, IL-6 release from the skeletal muscle appears to
“communicate” with adipose tissue to release more fatty acids, as muscle glycogen
reserves decline (Chan et al. 2004; Pedersen et al. 2003). But IL-6 is also produced in
adipose tissue, and IL6 mRNA expression has been found to increase during
exercise (Christiansen et al. 2013) and thereby may contribute to the circulating
pool of IL-6 (but likely a relatively small contributor compared with skeletal
muscle).

There now is also considerable interest in the metabolic impact of extracellular
vesicles (EVs) that are released into the circulation, and the cargo within these EVs
(e.g., microRNA [miRNA], nucleic acids, proteins, metabolites) can act on target
tissues remote from the tissue of origin (Whitham et al. 2018; Nederveen et al. 2021).
For example, EVs released during exercise have been found to have potential long-
term health benefits in remote tissue, such as the liver (Whitham et al. 2018) and
vascular endothelium (Wilhelm et al. 2016). There is little available evidence
regarding the release of EVs from adipose tissue during exercise. Rigamonti et al.
(Rigamonti et al. 2020) used fatty acid-binding protein (FABP) as a marker for
adipose tissue-derived EVs in the circulation, and they reported these EVs did not
increase significantly after 30 min of moderate-intensity exercise (60% VO2max).
There is also limited evidence regarding the effects of EVs released from other
tissues on adipose tissue metabolism during exercise. In contrast, cargo delivered by
EVs released from other tissues (e.g., skeletal muscle) during exercise, after exercise,
or in response to chronic exercise training may have an important impact on adaptive
changes in adipose tissue in response to regular exercise (Safdar et al. 2016; Safdar
and Tarnopolsky 2018).

While the scope of this chapter is rooted on the effects of exercise on adipose
metabolism during an exercise session, it is important to briefly touch on the
responses that occur during or just after a session of exercise—that may have
important impact on a wide array of longer-term fitness and/or health-related adap-
tations. There has been considerable interest in the possibility that exercise increases
the abundance of the highly thermogenic brown/beige adipose tissue. It has been
proposed that this may occur through a process initiated in the exercising muscle,
where a PGC-1α-mediated increase in the membrane protein FNDC5 and the
subsequent release of the cleaved protein product irisin can be taken up by white
adipose tissue where it can lead to development of properties resembling highly
thermogenic brown fat (i.e., “beiging”) (Boström et al. 2012). The prospect of this
muscle-adipose tissue cross-talk leading to adipose tissue reprograming and the
subsequent health impact of this is of keen interest, but findings regarding the role
of irisin are not universal, especially in human subjects (Norheim et al. 2014;
Albrecht et al. 2015; Timmons et al. 2012). Other intriguing findings suggest that
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exercise responses in adipose tissue may lead to systemic improvements in meta-
bolic health (Takahashi et al. 2019; Stanford et al. 2018; Stanford and Goodyear
2017). Work from Laurie Goodyear and Kristin Stanford report that exercise
increased expression of over 1500 genes in white adipose tissue (Stanford et al.
2015), and studies from these researchers together, as well as in their respective
laboratories, support the prospect that exercise-induced production and release of
several factors from white adipose tissue, including transforming growth factor β2
(TGF-β2) and 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME), may have
important impact on metabolic health in other tissues, such as the skeletal muscle
and liver (Takahashi et al. 2019; Stanford et al. 2018; Stanford et al. 2015). Exercise
training has also been reported to modify the structure and metabolic function of
adipose tissue, even in the absence of weight loss. For example, adipose tissue
capillarization has been found to increase after 3 months of exercise training (Walton
et al. 2015). In general, adaptations to prolonged exercise training are largely due to
the cumulative responses that occur with each exercise session, and work from our
lab indicated the expression of vascular endothelial growth factor (VEGF; the
primary transcription factor regulating angiogenesis) expression significantly
increases in subcutaneous white adipose tissue in the few hours after each session
of exercise (Pelt et al. 2017; Ludzki et al. 2018), which may underlie the observed
increase in adipose tissue capillarization after training. Recent work from our lab
also suggests that a single session of exercise rapidly modified the population of
adipose tissue progenitor cells—leading to a reduction in the abundance of
preadipocytes that yield adipocytes with relatively high lipolytic rates, which may
in turn have important metabolic benefits in the context of obesity-related insulin
resistance (Ludzki et al. 2020). Finally, a persistent elevation in fatty acid mobiliza-
tion from white adipose tissue after a session of exercise not only provides an
important fuel source during recovery, allowing for much of the available glucose
to be resynthesized to glycogen in the skeletal muscle and liver, but the increased
fatty acid availability also triggers classic adaptations to increase oxidative capacity
through also signaling events initiated by fatty acids binding to transcription factors,
such as peroxisome proliferator-activated receptor α (PPARα) (Lundsgaard et al.
2020).

7.9 Summary and Conclusions

Fatty acids derived from triacylglycerol stored in white adipose tissue are an
essential fuel source during endurance exercise. The use of this abundant source of
energy during exercise involves the complex integration of humeral, neural, and
intracellular regulation to liberate the fatty acids from triacylglycerol within the
adipose tissue—and is also impacted by changes in blood flow distribution during
exercise to deliver the mobilized fatty acids to the exercising muscle. This process
begins with the complex activation of the key lipases, ATGL and HSL, and their
interaction with regulating proteins within the adipose tissue (e.g., CGI-58, PLIN,
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G0S2). Lipolytic rates and regulation differ somewhat in different adipose tissue
beds of the body, but the vast majority of circulating fatty acids used during exercise
are derived from subcutaneous abdominal adipose tissue. Adipose tissue metabolism
during exercise is affected by many factors, including exercise intensity, ingestion of
meals of snacks before exercise, training status, and sex. In addition to being an
abundant endogenous energy store to help fuel prolonged exercise (or other
prolonged physical exertion), adipose tissue responses during and/or soon after
each exercise session also underlie adaptive responses to training in the adipose
tissue itself, as well as in other tissues, such as skeletal muscle and liver. There is a
prevalent misconception that elevated lipolytic rate (and elevated fatty acid oxida-
tion) can facilitate body fat loss—but in general, weight loss and fat loss cannot
occur in absence of an energy deficit. However, exercise-induced modifications in
adipose tissue stemming from each exercise session can lead to very meaningful
improvements in metabolic health even in absence of weight loss. These beneficial
health effects may be in consequence of an exercise-induced release of adipokines
and/or EVs, or perhaps through exercise-mediated modifications to adipose tissue
structure and function that stem from responses to each exercise session. Moving
forward, exciting new research will not only continue to expand our understanding
about the effects of exercise on adipose tissue metabolism for enhanced delivery of
energy during prolonged physical activities but also provide advanced insights on
exercise-induced change in adipose tissue that may improve and/or help prevent the
development of many health complications.
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Chapter 8
Regulation of Fatty Acid Oxidation
in Skeletal Muscle During Exercise: Effect
of Obesity

Andreas Mæchel Fritzen, Nicholas T. Broskey, Anne Marie Lundsgaard,
G. Lynis Dohm, Joseph A. Houmard, and Bente Kiens

Abstract This chapter summarizes how fatty acid (FA) oxidation is regulated in
skeletal muscle during exercise and the role of obesity in regulation of FA oxidation
in skeletal muscle. The substrates fueling increased FA oxidation in skeletal muscle
during exercise are mainly circulating FAs, although hydrolysis of circulating
triacylglycerol (TG) in very-low-density lipoproteins (VLDL-TG) and especially
lipolysis of intramuscular TG (IMTG) also appear to contribute to some extent.
Several steps are involved in FA uptake and oxidation in skeletal muscle and could
all be of importance in the regulation of FA oxidation during exercise. Besides trans-
sarcolemmal FA uptake via fatty acid transporters, it appears that intramyocellular
carnitine content plays an important regulatory step in regulation of substrate
selection during exercise. Interestingly, individuals with obesity exhibit a
compromised ability to oxidize FAs and to increase FA oxidation in response to
lipid exposure (reduced metabolic flexibility). Skeletal muscle mitochondrial func-
tion appears to be related to this defect. It remains controversial whether this
impaired FA oxidative capacity in obesity diminishes the ability to increase and
properly regulate FA oxidation during an acute, single exercise bout. However,
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despite these initial impairments in FA oxidation capacity in the obese situation,
endurance exercise training can rescue the capacity for FA oxidation and the
metabolic flexibility in the skeletal muscle of individuals with obesity at least to
equivalent levels of their lean counterparts.

Keywords Fatty acid oxidation · Exercise · Skeletal muscle · Mitochondria ·
Obesity · Exercise training · Lipid metabolism

8.1 Introduction

The work by Krogh and Lindhard and by Christensen and Hansen in the 1920s and
1930s demonstrated from measurements of the non-protein respiratory exchange
ratio (RER) that fatty acid (FA) oxidation increased five- to tenfold above resting
levels during mild-to-moderate exercise and decreased with increasing exercise
intensities (Krogh and Lindhard 1920; Christensen and Hansen 1939). Today, it is
well recognized that FA oxidation reaches its maximum at moderate intensities
between 55 and 65% of maximal oxygen uptake (VO2peak) (Lundsgaard et al.
2018; Romijn et al. 1993). Beyond this level, a shift in fuel selection appears toward
an increase in carbohydrate and a decrease in FA utilization (Lundsgaard et al. 2018;
Romijn et al. 1993). Furthermore, the FA oxidation rate during mild-to-moderate
exercise remains generally unchanged for about 60–90 min of exercise, but when
exercise continues beyond this time point, a gradual increase in FA oxidation is
induced at the expense of carbohydrate oxidation as fuel for energy (Romijn et al.
1993).

8.2 Fatty Acids as Energy Fuel in Skeletal Muscle

FAs as fuel for energy during exercise originate from three different sources: 1)
Albumin-bound long-chain FAs liberated from lipolysis of triacylglycerol
(TG) located in adipose tissue, 2) plasma FAs liberated from lipoprotein lipase
(LPL)-dependent hydrolysis of TG situated in very-low density lipoprotein
(VLDL-TG), and 3) FAs liberated by lipolysis of TG situated in lipid droplets in
skeletal muscle (IMTG) (Fig. 8.1). The extent to which the different energy sources
contribute during exercise is dependent on exercise intensity, duration, mode, and
sex.

Findings indicate that approximately 55–65% of total whole-body FA utilization
during moderate-intensity exercise, where FA oxidation is at its highest level, is
derived from plasma FAs (Romijn et al. 1993; Friedlander et al. 1999; Helge et al.
2001; Roepstorff et al. 2002; van Loon et al. 2001) and that the contribution from
plasma FAs to energy provision increases with time (van Loon et al. 2003).
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8.2.1 Albumin-Bound Plasma FA

Plasma FA uptake into skeletal muscle is the product of blood flow and the
arteriovenous FA concentration difference. The increase in blood flow during
exercise, which increases up to 20-fold from rest to intense, dynamic exercise
(Calbet and Lundby 2012; Radegran and Saltin 1998), is a main driver of the
exercise-induced increased FA uptake. The other important determinant of FA
uptake during exercise is the arterial FA concentration. At onset of exercise, a
transient decrease in plasma FA concentration may appear followed by a slow
increase (Roepstorff et al. 2002). If exercise is prolonged, the arterial concentration
of FA may increase to levels approximately sixfold higher than resting levels
(Romijn et al. 1993; Kiens and Richter 1998; Wolfe et al. 1990; van Hall et al.
2002; Bahr et al. 1991; Hagenfeldt and Wahren 1975). The initial drop in arterial FA
concentration is caused by an imbalance between slow mobilization of FAs from the
adipose tissue and a rapidly increased extraction of FAs in skeletal muscle. The
following increase in plasma FA concentration during exercise is mainly caused by

Fig. 8.1 Proposed regulation of fatty acid oxidation in skeletal muscle during exercise. This figure
illustrates how we propose that fatty acid (FA) oxidation is regulated in skeletal muscle during
exercise. FA oxidation during exercise is mainly covered by uptake of circulating FAs, although
hydrolysis of circulating triacylglycerol (TG) in very-low-density lipoproteins (VLDL-TG) and
especially lipolysis of intramuscular TG (IMTG) also appears to contribute to some extent. Several
steps are involved in FA oxidation and could all be of importance in the regulation of FA oxidation
during exercise. Besides trans-sarcolemmal FA uptake via fatty acid transporters, it appears that
intramyocellular carnitine content plays an important regulatory step in the mitochondrial import
and hence FA oxidation during exercise
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an increased release of FAs liberated from adipose tissue by lipolysis of
TG. Accordingly, the whole-body lipolytic rate can be increased by up to fourfold
compared with resting values during submaximal moderate-intensity exercise
(Wolfe et al. 1990; Romijn et al. 2000). This exercise-induced increase in adipose
tissue lipolysis is mediated by altered adrenergic stimulation of adipose tissue
evidenced by a shift from predominant α-adrenergic suppression during rest toward
predominant β-adrenergic stimulation during exercise (Arner et al. 1990). The
primary adrenergic stimulus of adipose tissue during exercise originates from circu-
lating adrenaline with only a minor contribution from noradrenaline released from
sympathetic neurons (Stallknecht et al. 2001; de Glisezinski et al. 2009). Moreover,
the natriuretic peptides appear to play an additional role in exercise-induced lipolysis
in humans (Moro et al. 2004; de Glisezinski et al. 2009) and have been suggested to
account for most of the non-adrenergic lipolytic signaling in adipose tissue during
exercise (Moro et al. 2006; Lafontan et al. 2008). The regulation of adipose tissue
lipolysis during exercise is described in more detail in another chapter of this eBook.

It appears that 60 to 76% in females and males, respectively, of the exercise-
induced increase in whole-body FA removal from the circulation can be accounted
for by uptake into working skeletal muscles (Kiens 2006). The question is how much
of the FAs taken up by the working muscle is then directly oxidized? When FA
uptake into skeletal muscle during exercise was directly measured, it was found that
up to 100% and 84% of tracer-derived FA uptake were directly oxidized in trained
females and males, respectively (Roepstorff et al. 2002; Hagenfeldt and Wahren
1968; Turcotte et al. 1992).

Another fat source generating energy during exercise may be hydrolysis of
circulating TG. The liver is secreting endogenous TG enfolded into VLDL particles
directly into the circulation. VLDLs are the main carriers of TG in the post-
absorptive state. Hydrolysis of core TG in VLDL is mediated by the enzyme
lipoprotein lipase (LPL), which in its active form is located at the luminal site of
the endothelial cells in the capillary bed of various tissues such as skeletal muscle,
heart, and adipose tissue (Fig. 8.1). By hydrolysis, FAs are liberated and taken up by
the surrounding tissues. Oxidation of FAs from VLDL-TG may contribute to the
total FA oxidation both at rest and during moderate-intensity exercise, though its
relative contribution during exercise is less than albumin-bound FA oxidation.
Hence, when VLDL-TG content was measured in the femoral artery and vein during
knee-extensor exercise, a total net degradation of VLDL-TG was found during the
2 hours of exercise (Kiens et al. 1993), suggesting that circulating VLDL-TG
contributes to the total FA oxidation during moderate exercise. Supporting these
findings are recent elegant studies using infusion of labeled VLDL-TG in healthy,
young humans. Data showed that FAs from labeled VLDL-TG comprised 3–6% of
total energy utilization (Sondergaard et al. 2011) or 3–13% of total FA oxidation
during moderate-intensity exercise in untrained and moderately trained men
(Nellemann et al. 2014; Morio et al. 2004). Increased VLDL-TG hydrolysis during
exercise is likely explained by the findings of increased activity of LPL in skeletal
muscle in most (Kiens and Richter 1998; Perreault et al. 2004; Taskinen and Nikkila
1980), but not all, human studies (Lithell et al. 1979; Kiens et al. 1989; Søndergaard
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et al. 2017). The mechanisms driving translocation of newly synthesized LPL in the
myocyte to the luminal side of the endothelial cells in the capillary bed during
exercise remain to be elucidated. However, exercise-induced muscle LPL activity
has been correlated to the IMTG and muscle glycogen concentrations (Kiens 2006),
suggesting that the energy status of the myocyte might signal to LPL synthesis and
translocation to the capillary to facilitate VLDL-TG hydrolysis during exercise.
Importantly, LPL-derived VLDL-TG hydrolysis might be a greater contributor as
substrate to cover the high FA oxidation during recovery from exercise (Kiens and
Richter 1998; Morio et al. 2004; Lundsgaard et al. 2020).

8.2.2 Regulation of Fatty Acid Uptake into Skeletal Muscle

The increase in uptake of plasma FAs into skeletal muscle during exercise is
regulated at several steps including transmembrane transport, cytosolic handling,
mitochondrial membrane transport, and intra-mitochondrial FA oxidation (Fig. 8.1).
Transport of plasma FAs across sarcolemma serves as the first step in myocellular
FA uptake. Despite the fact that FAs can diffuse within biological membranes,
membrane-bound lipid-binding proteins have been identified in human skeletal
muscle, and evidence show that these proteins either individually or in complexes
act as regulators of FA transmembrane transport (Fig. 8.1). The first suggestion for
FA transporter limited FA uptake came from both human (Kiens et al. 1993) and rat
studies (Turcotte et al. 1992) indicating that FA uptake is a saturable process. The
FA translocase cluster of differentiation 36 (CD36) are most extensively studied for
its importance in FA uptake during exercise. In the basal resting state, a large part of
total muscle CD36 is stored in intramyocellular compartments (endosomes),
whereas a small part is present at the sarcolemma, the outer membrane of the muscle
cell, to mediate basal FA uptake (Chabowski et al. 2007). During exercise, CD36
reversibly translocates to sarcolemma (Jeppesen et al. 2011) shown in human
skeletal muscle by a 75% higher sarcolemmal content of CD36 after prolonged
submaximal exercise compared with rest (Bradley et al. 2012). In rat skeletal muscle,
FA transport was 75% higher in contracted compared with rested rat skeletal muscle,
which correlated with CD36 translocation to sarcolemma (Bonen et al. 2000). In
addition, mice lacking CD36 exhibited lower FA oxidation compared with control
mice during treadmill exercise at the same relative workload (McFarlan et al. 2012),
whereas mice overexpressing CD36 protein exhibited greater contraction-stimulated
FA oxidation than control mice (Ibrahimi et al. 1999). Together findings in both
rodent and human skeletal muscle clearly show that translocation of CD36 seems
vital in FA uptake in skeletal muscle during exercise.

Skeletal muscle contractions also induce translocation of other FA transporters,
such as FA-binding protein at the plasma membrane (FABPpm) and FA transport
1 and 4 (FATP1/4), to the plasma membrane in human skeletal muscle (Bradley et al.
2012; Jain et al. 2009) (Fig. 8.1). Overexpression or inhibition of these proteins in
rodent skeletal muscle has been shown to increase or decrease FA uptake,
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respectively, during resting conditions (Holloway et al. 2007b; Clarke et al. 2004;
Turcotte et al. 2000). However, the role of these proteins in FA oxidation during
acute exercise remains to be established.

The signaling mechanism(s) governing sarcolemmal FA transporter translocation
during exercise are not clarified. Activation of various intracellular signaling path-
ways related to the energy status (e.g., AMP-activated protein kinase (AMPK))
(Jeppesen et al. 2011; Bonen et al. 2007), mechanical stress (e.g., extracellular
signal-regulated kinase (ERK) 1/2 and p38 mitogen-activated protein (MAP) kinase
signaling) (Raney and Turcotte 2006), ionic homeostasis (e.g., Ca2+/calmodulin-
dependent protein kinases (CaMK)) (Lally et al. 2012; McFarlan et al. 2012), and
other signaling molecules such as the Rab-GTPase activating proteins TBC1 domain
family member 1 and 4 (TBC1D1 and -4) (Chadt et al. 2008; Benninghoff et al.
2020; Samovski et al. 2012) have all been proposed as regulators of FA uptake via
CD36 translocation to sarcolemma during resting conditions. However, exercise-
stimulated CD36 translocation, FA uptake, and/or FA oxidation in skeletal muscle
were not impaired, when AMPK (Jeppesen et al. 2011; Dzamko et al. 2008; Hingst
et al. 2020) and TBC1D1 (Whitfield et al. 2017) were genetically deleted in rodent
muscles. Besides, contraction-induced CD36 translocation occurred prior to changes
in phosphorylation of ERK1/2 and other major MAP kinases in mouse muscle
(Jeppesen et al. 2011). Thus, it is presently unknown what signal that stimulates
CD36 and other lipid-binding proteins to translocate to sarcolemma and hereby
increase FA uptake in skeletal muscle during exercise. Systemic signaling molecules
from outside the muscle cells could likely also contribute, e.g., circulating levels of
the lipid 12,13-dihydroxy-9Zoctadecenoic acid (12,13-diHOME) originating from
brown adipose tissue (BAT) increases during exercise and are shown to be able to
induce skeletal muscle FA uptake and oxidation (Stanford et al. 2018). This empha-
sizes that not only intracellular mechanisms but likely also systemic signals could
possibly together orchestrate the increased uptake of circulating FAs into skeletal
muscle during exercise.

8.3 The Intracellular FA Source

Circulating FAs taken up into skeletal muscle can either be oxidized or stored in
intramyocellular lipid droplets (IMTG) and add to the plasma-delivered FAs as a
potential energy source during exercise (Fig. 8.1). To what degree IMTG is used
during exercise is discussed heavily in the literature for several decades, and
different methodologies have contributed to evaluate the contribution of IMTG as
fuel for FA oxidation during exercise. Early studies with the muscle biopsy tech-
nique found a 25–30% IMTG reduction after 99–147 min submaximal exercise in
men (Costill et al. 1979; Carlson et al. 1971), and such exercise-induced decrease in
IMTG in men was later supported by more sophisticated freeze-dried dissection of
muscle tissue after exercise protocols of �2 h (Essén 1978; Hurley et al. 1986;
Phillips et al. 1996). However, other studies did not find detectable changes in IMTG
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during exercise in mainly shorter 60–120 min exercise protocols (Helge et al. 2001;
Roepstorff et al. 2002; Kiens and Richter 1998; Kiens et al. 1993; Bergman et al.
1999; Starling et al. 1997; Steffensen et al. 2002). Lack of breakdown of IMTG was
also shown indirectly by microdialysis during knee-extensor exercise at submaximal
exercise in men (Stallknecht et al. 2004). This could emphasize that exercise needs to
be prolonged—likely above 90 min to acquire IMTG as a major substrate to fuel FA
oxidation during exercise.

From studies, where the 1H-MRS technique was applied, treadmill running at
50–70% of VO2peak for 2 h or until exhaustion decreased IMTG signal (IMCL in
MRS terminology) by 22–33% in men and women (Krssak et al. 2000; Larson-
Meyer et al. 2002; Decombaz et al. 2001). However, it is hard to exclude from those
studies, where it takes considerable time to be positioned in the scanner and perform
the measurements, whether the lower IMCL signal is due to use of IMTG in the early
recovery period rather than during exercise.

Importantly, it seems that women of widely differing training backgrounds in
contrast to matched men utilize a significant greater amount of IMTG in the vastus
lateralis during prolonged bicycle exercise (Steffensen et al. 2002). The role of sex in
regulation of lipid metabolism during exercise is described in more detail in a
separate chapter in this eBook.

Estimations from tracer-infusion studies suggest that oxidation of FAs from
plasma versus IMTG and other lipid sources such as VLDL-TG and TG between
fibers comprise �60% and 30% of FA oxidation, respectively, during 2 h of
moderate-intensity exercise (Romijn et al. 1993; van Loon et al. 2003). These
findings support the notion that IMTG lipolysis is not likely to limit FA availability
to oxidation in skeletal muscle during exercise.

Summarizing data which seems as quantitative importance of IMTG as an energy
source during exercise depends on several factors as duration and intensity of
exercise, exercise mode, and sex (Kiens 2006). Overall, it appears that FAs derived
from hydrolysis of IMTG may contribute as energy fuel especially when exercise is
prolonged—beyond 90 min, mainly when exercise is performed in the fasted state
and to a larger extent in women than in men (Kiens 2006).

Interestingly, another key aspect in the necessity of IMTG as substrate for FA
oxidation during exercise is a potential interdependency with the circulating FA
availability. If circulating levels of FAs become limited, it could be speculated that
there is an inverse interaction between plasma-derived FAs and those generated from
IMTG lipolysis during exercise. Thus, when adipose tissue lipolysis was pharma-
cologically inhibited by nicotinic acid or acipimox prior to prolonged submaximal
exercise in healthy individuals, the exercise-induced increase in plasma FA concen-
tration was completely suppressed, while IMTG utilization was increased during
exercise compared with when plasma FA availability was not limited (Watt et al.
2004b; van Loon et al. 2005). Therefore, the uptake of circulating FAs may interact
with the regulation of IMTG lipolysis during exercise.

Another consideration about the importance of IMTG for FA oxidation during
exercise is the fact that most investigations have focused on measuring net IMTG
breakdown during exercise. From studies during resting conditions using pulse-
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chase methods by intravenous infusions of two distinct isotopically labelled FAs
combined with mass spectrometry measurements of intramuscular lipids, it was
shown that plasma FAs taken up by the muscle were not directly oxidized, but
traversed the IMTG pool prior to oxidation in the resting state (Kanaley et al. 2009).
At very-low-intensity exercise loads, a similar fate of circulating FA uptake under-
going esterification and then subsequent hydrolysis prior to mitochondrial entry may
appear. Also, when the exercise load is low and only few muscle fibers are recruited,
it could be speculated that FAs taken up into skeletal muscle are esterified and stored
as IMTG in the non-recruited muscle fibers. Under such circumstances, it is difficult
to evaluate IMTG breakdown during exercise with the available methods.

In terms of the molecular regulation of IMTG lipolysis during exercise and
muscle contractions, this is orchestrated primarily by activation of the two lipases
adipose triglyceride lipase (ATGL) (Alsted et al. 2013) and hormone-sensitive lipase
(HSL) in skeletal muscle (Langfort et al. 2000; Watt et al. 2004a), which are
catalyzing the conversion of TG to diacylglycerol and further to monoacylglycerol,
respectively (Fig. 8.1). The signals regulating ATGL and HSL activity during
exercise are complex and only scarcely understood in skeletal muscle. In this regard,
ex vivo contractions in isolated skeletal muscle resulted in HSL translocation to lipid
droplets (Prats et al. 2006). The translocation of HSL appears accredited to an
intrinsic activation of HSL at different serine residues within the protein achieved
by catecholamine-induced protein kinase A (PKA) activation (Talanian et al. 2006).
The resultant translocation of HSL to the lipid droplet initiates lipolysis. In contrast,
activation of ATGL does not seem to be PKA-dependent, but rather is requiring
co-activation by comparative gene identification-58 (CGI-58) to achieve maximal
hydrolase activity (Zechner et al. 2012) (Fig. 8.1).

The lipid droplet associated perilipins (PLINs) are also part of the lipolytic
machinery in skeletal muscle, and PLIN3 and PLIN5 physically interact with HSL
and ATGL (MacPherson et al. 2013; Smirnova et al. 2006) (Fig. 8.1). It remains to
be further elucidated how the lipolytic regulation and/or intracellular trafficking of
IMTG lipid droplets determine its quantitative importance for the FA oxidative rate
in skeletal muscle during exercise.

8.4 Mitochondrial Regulation of FA Oxidation During
Exercise

Plasma FAs taken into the cell or liberated from intracellular lipolysis must be
activated in the cytosol to fatty acyl-CoAs by a family of acyl-CoA synthetases
(ACSs) (Fig. 8.1). The active site of the ACSs has been located to the plasma
membrane and mitochondria and in close proximity to lipid droplets. The isoform
ACSL1 seems particularly important for partitioning FAs toward oxidation in
skeletal muscle, which is emphasized by the findings in mice with muscle-specific
ACSL1 deficiency exhibiting lower FA utilization during submaximal exercise

168 A. M. Fritzen et al.



compared with control mice (Li et al. 2015). To enter the mitochondria for
β-oxidation, long-chain fatty acyl-CoAs (the primary FAs in humans) are converted
to their fatty acyl carnitine derivatives, a reaction that requires carnitine. This
reaction is catalyzed by the enzyme carnitine palmitoyl transferase 1 (CPT1), located
at the outer mitochondrial membrane (Bonnefont et al. 2004) (Fig. 8.1). The
importance of CPT1 for FA uptake into mitochondria during exercise is evidenced
by reduced FA oxidation and increased lipid accumulation in mice with muscle-
specific deletion of CPT1 (Wicks et al. 2015) and 50–90% decreased FA oxidation
during ex vivo muscle contractions with concomitant pharmacological CPT1 inhi-
bition (Dzamko et al. 2008). A role of CPT1 for regulation of long-chain FA
oxidation is also displayed in humans, since oxidation of the medium-chain FA
octanoate (C8), which is able to bypass CPT1, did not change when exercise
intensity was shifted from 40 to 80% of VO2peak, as was the case for oleate, a
CPT1-dependent long-chain FA (Sidossis et al. 1997).

CPT1 might not be the only step in mitochondrial import of FAs. CD36 was
found to be located at the outer mitochondrial membrane in some (Campbell et al.
2004), but not all studies (Jeppesen et al. 2010). Exercise has been further demon-
strated to induce CD36 translocation from intracellular depots to the mitochondrial
membrane in rodent and human muscle (Monaco et al. 2015; Holloway et al. 2006),
and it was suggested that mitochondrial CD36 interacts with ACSs and hereby
regulates fatty acyl-CoA availability to CPT1 (Smith et al. 2011). The regulatory
role of CD36 in mitochondrial FA import and oxidation during exercise needs to be
further investigated.

8.4.1 CPT, Carnitine, and Mitochondrial Fatty Acid Import
During Exercise

Since carnitine is substrate in the CPT1 reaction, changes in the free carnitine content
in skeletal muscle during exercise could contribute to the regulation of mitochondrial
transmembrane FA transport and hereby FA oxidation. Acetyl-CoAs are produced
both from β-oxidation of FAs and from glycolysis-derived pyruvate by pyruvate
dehydrogenase complex (PDC) (Harris et al. 2002) (Fig. 8.1). Free carnitine can
buffer acetyl-CoA by forming acetyl-carnitine and free CoA (Friedman and Fraenkel
1955), a reaction catalyzed by the enzyme carnitine acetyltransferase (CAT)
(Fig. 8.1). This entrapment of carnitine increases, when acetyl-CoA is generated in
excess of its metabolism in the Krebs cycle. Consequently, lowered amount of free
carnitine to the CPT1 reaction would be expected to diminish the supply of fatty
acyl-CoA for β-oxidation and hence FA oxidation.

Such mechanism could play a role in regulation of substrate selection during
exercise especially at increasing exercise intensities where an increasing carbohy-
drate oxidation in replacement for FA oxidation takes place.
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It is well established that skeletal muscle PDC activity increases rapidly during
exercise in an intensity-dependent manner (Constantin-Teodosiu et al. 1991), but
decreases gradually when exercise is prolonged (Watt et al. 2002). To alleviate
allosteric product inhibition of PDC activity by acetyl-CoA formed in the glycolysis
during increasing exercise intensities, the CAT enzyme buffers excess acetyl-CoA
into acetyl-L-carnitine. This CAT-mediated acetyl-CoA buffering will reduce cellu-
lar free carnitine content and thereby limits mitochondrial FA import and hence FA
oxidation allowing for a high rate of pyruvate oxidation. In agreement, in mice with a
muscle-specific deletion of CAT, a higher whole-body FA oxidation rate was
demonstrated during graded submaximal treadmill running (Seiler et al. 2015). As
the PDC reaction rate and the concomitant CAT activity regulate mitochondrial FA
import and hence substrate availability to β-oxidation, this could point to lowering of
FA oxidation during increasing exercise intensities as a secondary result of increased
glucose flux and accelerated glycolysis rather than due to an initial lowering of FA
oxidation within lipid metabolic machinery.

This notion is supported by the findings of a one- to threefold increase in muscle
acetyl-CoA and acetyl-L-carnitine content at higher exercise intensities compared
with rest or low-intensity exercise in untrained individuals (Sahlin 1990; Constantin-
Teodosiu et al. 1991; Harris et al. 1987). This resulted in a decreased free carnitine
content from comprising ~75% of muscle total carnitine at rest to ~20% at an
exercise intensity of 90–100% of VO2peak (Sahlin 1990; Constantin-Teodosiu
et al. 1991; Harris et al. 1987). Moreover, an association between lowering of free
carnitine levels and increased acetyl-L-carnitine entrapment during exercise with
increasing intensities is evident from several studies (van Loon et al. 2001; Odland
et al. 1998; Ren et al. 2013). Importantly, when muscle carnitine content was
enhanced by oral carnitine supplementation in healthy, young men, this enabled an
increased use of acetyl-CoA from β-oxidation evidenced by a lower glycogen
utilization and PDC activation during moderate-intensity exercise in the carnitine-
supplemented state compared with the control (Wall et al. 2011). Recently, these
findings were reproduced in older men, in which 25 weeks of carnitine supplemen-
tation resulted in a 20% increase in both muscle total carnitine content in total FA
oxidation during a 1 h submaximal exercise bout at 50% of VO2peak (Chee et al.
2021).

A final line of evidence highlighting carnitine availability as a regulatory mech-
anism for FA oxidation is derived from studies where muscle glycogen content was
manipulated to be either high or low prior to a moderate-intensity exercise bout in
humans. During exercise with initially high glycogen stores, RER during exercise
was high indicating a high carbohydrate oxidation. In contrast, when glycogen stores
were low prior to exercise, FA oxidation was high during exercise. Accordingly,
when carbohydrate oxidation was high during exercise, a 49% higher muscle acetyl-
CoA content, 37% higher acetyl-carnitine levels, and 55% lower free carnitine
content were observed, while muscle content of acetyl-CoA, free carnitine, and
acetyl-carnitine remained unchanged, when FA oxidation rate was enhanced during
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exercise with a low initial muscle glycogen content (Roepstorff et al. 2005). A 20%
increase in muscle free carnitine content was also observed during 10 min of high-
intensity exercise in a glycogen-depleted state, whereas this free-carnitine decreased
60% during exercise in the high-glycogen conditions (Constantin-Teodosiu et al.
2004).

Collectively, there is a great body of evidence suggesting carnitine as an impor-
tant regulatory step in regulation of substrate selection during exercise—especially
during exercise with increasing intensities. Importantly, since exercise-induced PDC
activation and hereby glycolysis-derived acetyl-CoA production are lowered during
prolonged exercise (Watt et al. 2002), and carnitine entrapment into acetyl-carnitine
is lowered during exercise with low muscle glycogen (Roepstorff et al. 2005;
Constantin-Teodosiu et al. 2004), increased amounts of free carnitine to the CPT1
reaction, in turn increasing the supply of fatty acyl-CoA for FA oxidation, could
likely be a regulatory mechanism responsible for the established gradual increase in
FA oxidation during prolonged exercise above ∼60–90 minutes, when muscle
glycogen levels are being emptied.

In addition to carnitine availability, other contributing steps regulating FA oxi-
dation in skeletal muscle during exercise must also be considered. Carnitine-
independent regulation of CPT1 could likely be an additional regulatory step for
muscle FA import into the mitochondria. Activation of the cellular energy sensor,
AMPK, during exercise (Wojtaszewski et al. 2000)—previously proposed to
increase FA oxidation via regulation of malonyl-CoA-mediated inhibition of CPT1
(McGarry et al. 1983; Smith et al. 2012; Rasmussen and Winder 1997)—has in
recent years from observations in humans (Odland et al. 1996; Odland et al. 1998;
Dean et al. 2000; McConell et al. 2020) and transgenic mouse models (Dzamko et al.
2008; Hingst et al. 2020; Miura et al. 2009; Lee-Young et al. 2009; Fritzen et al.
2015; O'Neill et al. 2015) been shown not to be essential for regulation of FA
oxidation in skeletal muscle during exercise (Lundsgaard et al. 2018; McConell
2020). However, fatty acyl-CoA/malonyl-CoA ratio appears to be important for
CPT1 catalytic activity and FA oxidation, rather than the total malonyl-CoA content
per se (Smith et al. 2012), potentially by decreasing the affinity of CPT1 for malonyl-
CoA binding (Kolodziej and Zammit 1990). Moreover, malonyl-CoA inhibition
kinetics of CPT1 seems modulated by interaction between the cytoskeleton and
mitochondria during exercise (Miotto et al. 2017). CPT1 activity could be regulated
in also malonyl-CoA-independent mechanism during exercise by a reduction in
muscle pH during intense exercise (Starritt et al. 2000). Lastly, ex vivo findings
suggest that the reaction rate of β-oxidative enzymes, such as the β-ketoacyl-CoA
thiolase, the enzyme catalyzing the final step in the β-oxidation, is feedback regu-
lated by mitochondrial acetyl-CoA content (Eaton 2002) and enzymes in the
β-oxidation could hence also be a contributing factor in fine-tuning regulation of
FA oxidation during exercise.
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8.5 Summarizing Remarks on the Regulation of FA
Oxidation in Skeletal Muscle During Exercise

Whole-body FA oxidation is increased several fold during prolonged moderate
exercise, but a shift in substrate selection toward increased carbohydrate and
decreased relative FA oxidation takes place when exercise intensity is increased
beyond 55–65%. Uptake of FAs from the circulation into the skeletal muscle is a
major contributing substrate to FA oxidation during submaximal exercise and
mostly derived from adipose tissue lipolysis liberated FAs. However,
LPL-hydrolysis of circulating VLDL-TG and lipolysis of IMTG also seem to
contribute as substrate to fueling the increased FA oxidation in skeletal muscle
during exercise.

The increased oxidation of plasma FAs into skeletal muscle during exercise is
regulated at several steps, and regulation of FA oxidation in skeletal muscle is not
allocated to one single mechanism or signaling pathway, but is apparently orches-
trated by a symphony of tightly coordinated molecular events reliant on the meta-
bolic fluxes.

The increase in FA oxidation from rest to submaximal exercise is reliant on an
increased transmembrane transport of FA, in which CD36 translocation to the
sarcolemma has emerged to serve a pivotal role (Fig. 8.1). The fine-tuning of FA
oxidation during exercise appears allocated to the regulation within the mitochon-
dria, where the FA import into the mitochondrial matrix, via formation of fatty acyl
carnitine by CPT1, appears to be a central regulatory stage in exercise FA oxidation.
This process seems regulated by the intramitochondrial acetyl-CoA homeostasis in
response to exercise duration and intensity, as the acetyl-CoA content determines the
free carnitine availability for CPT1 during exercise (Fig. 8.1). In this process, the rate
of glycolysis appears to be a central tenet for mitochondrial acetyl-CoA availability
and hence regulation of FA oxidation. Accordingly, regulation of FA oxidation in
skeletal muscle includes a chain of interdependent processes, and dysfunction in any
of these can lead to metabolic impairment.

8.6 Are There Impairments in Fatty Acid Oxidation
in Skeletal Muscle with Obesity?

In individuals with obesity, an impairment FA oxidation is observed at least during
resting conditions. In a seminal study in Pima Indians examining 24-hour whole-
body RER while consuming a eucaloric diet, the incidence of weight gain (>5 kg)
over a subsequent 3-year period was higher in individuals with elevated 24-hour
RERs, indicative of a preference for carbohydrate over FA oxidation (Zurlo et al.
1990). Similarly, other studies have reported that a higher RER is linked with
subsequent weight gain (Marra et al. 2004; Seidell et al. 1992; Rogge 2009), while
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tracer methodology has revealed a decreased utilization of lipid at rest in individuals
with severe obesity (Thyfault et al. 2004).

A possible mechanism explaining this inability to oxidize lipid may involve
skeletal muscle. We have reported an �50% reduction in FA oxidation in two
distinct muscle groups (rectus abdominus and vastus lateralis) in individuals with
severe obesity (Hulver et al. 2003; Kim et al. 2000); these findings suggest that
reductions in the capacity for FA oxidation with obesity could be evident in
numerous muscle groups, which could in turn affect whole-body metabolism. Others
have also reported a reduction in FA oxidation in human skeletal muscle in individ-
uals with obesity but not severe obesity (Holloway et al. 2007a). A� 50% reduction
in FA oxidation in primary skeletal muscle cell cultures (myotubes) derived from
individuals with obesity has also been observed (Consitt et al. 2010; Hulver et al.
2005; Maples et al. 2015b; Gaster 2009; Bell et al. 2010) as well as an increased
proportion of incomplete FA oxidation (Løvsletten et al. 2020). These findings in
cell cultures are indicative of a persistent and perhaps inherent defect, as the muscle
cells proliferate (myoblasts) and differentiate into myotubes in the absence of factors
which may affect FA oxidation in vivo such as the hormonal milieu and/or differ-
ences in contractile activity. An elevated RER with obesity was also reported in vivo
across a muscle bed (Kelley et al. 1999).

Deficits in the activity and/or expression of enzymes involved in FA oxidation
likely contribute to this impairment in FA oxidation with obesity during resting
conditions; the roles of specific proteins involved with lipid transport and oxidation
are discussed in review papers (Rogge 2009; Houmard 2008; Houmard et al. 2012;
Fritzen et al. 2020; Houmard et al. 2011; Holloway et al. 2009). On the organelle
scale, mitochondrial mass appears to be compromised with obesity as proteins
indicative of mitochondrial mass are decreased at both moderate (Simoneau et al.
1999; Kriketos et al. 1996; Kelley et al. 2002) and higher ranges (Kim et al. 2000;
Holloway et al. 2007a) of obesity. Holloway et al. (Holloway et al. 2007a; Holloway
et al. 2009) reported a decline in skeletal muscle FA oxidation in muscle homoge-
nates of subjects with obesity. However, when mitochondria were isolated, FA
oxidation was equivalent between lean and obese individuals, indicating that the
decline at the tissue level was due to compromised mitochondrial mass. Similarly, in
primary myotubes, indices of mitochondrial content and FA oxidation were reduced
with obesity, but when FA oxidation was normalized to mitochondrial content
(mitochondrial DNA (mtDNA), cytochrome c oxidase subunit 4 (COXIV)), there
were no differences between groups suggesting that mitochondrial volume may be
the driving factor in the metabolic impairments seen with obesity (Consitt et al.
2010). There is also an increased percentage of glycolytic, low mitochondrial
content Type IIb fibers in the skeletal muscle of severely obese subjects (Tanner
et al. 2002). The mechanism(s) responsible for the reductions in mitochondrial mass
with obesity are not readily evident; it was recently reported that mitochondrial
network quality and morphology were altered in primary myotubes derived from
individuals with severe obesity (Gundersen et al. 2020).

There is also evidence that the mitochondrial processes involved with FA oxida-
tion are compromised with obesity. Indeed, both FA and glucose oxidation are
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reduced in the skeletal muscle of obese individuals (Jones et al. 2019). The conflu-
ence of FA and glucose oxidation is the TCA cycle, and flux through the TCA cycle
is impaired in skeletal muscle both with obesity (Zou et al. 2019) and type 2 diabetes
(Gaster 2012). A mechanism for this reduction in TCA cycle activity could involve
posttranslational modifications (i.e., phosphorylation, acetylation) which would in
turn impair flux (Gaster 2012; Gaster et al. 2012; Boyle et al. 2012). In agreement,
there is an increase in blood lactate concentration with obesity which would result
from a reduction in the partitioning of substrate to oxidative pathways via the TCA
cycle in skeletal muscle (Jones et al. 2019; Broskey et al. 2020). Together, these and
other findings (Dahlmans et al. 2016; Diaz-Vegas et al. 2020) indicate that mito-
chondrial dysfunction and a reduction in mitochondrial mass both contribute to the
dampened ability to oxidize lipid in the skeletal muscle of individuals with obesity.

Impaired FA oxidation in individuals with obesity has not only been observed
during resting, fasted conditions. An inability to increase FA oxidation in response to
increased lipid availability has also been reported with obesity under a variety of
conditions (e.g., high-fat feedings, fasting, lipid incubations of primary myotubes,
lipid infusion), and findings are summarized in more detail elsewhere (Galgani et al.
2008; Storlien et al. 2004; Goodpaster and Sparks 2017). In reference to obesity, an
inability to increase FA oxidation (24 hour RER) in response to a high-fat diet was
predictive of greater weight gain in the subsequent year even in lean individuals
(Begaye et al. 2020). A dampened ability to increase FA oxidation in individuals
with obesity is evident after as little as 2 days of a high-fat diet and subsequently
contributes to positive lipid balance (Galgani et al. 2008). Thus, an inability to
appropriately increase FA oxidation, or lack of metabolic flexibility, is evident
with obesity and individuals prone to obesity under a variety of free-living situations.

One of the mechanisms involved with this lack of metabolic flexibility may be an
impaired ability to increase the oxidative machinery of skeletal muscle upon lipid
exposure. In response to lipid incubation, primary myotubes from lean individuals
increased mitochondrial DNA copy number and mRNA content of genes that
upregulate FA oxidation (nuclear respiratory factor (NRF)-1, NRF-2, peroxisome
proliferator-activated receptor (PPAR)α, PPARδ, and pyruvate dehydrogenase
kinase 4 (PDK4, CPT1); in contrast, cells derived from individuals with obesity
did not alter or actually decreased the expression of these genes (Maples et al. 2015b;
Boyle et al. 2012; Maples et al. 2015a). Similarly, a 5-day high-fat diet elicited
increases in the mRNA content of key genes involved in oxidative pathways such as
peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α), PDK4,
mitochondrial uncoupling protein (UCP)3, and PPARα. Moreover, a single high-fat
feeding increased PPARα mRNA in skeletal muscle biopsies from lean individuals,
while there were no changes in subjects with obesity (Boyle et al. 2011). These
findings indicate a multifaceted lack of metabolic flexibility in terms of appropriately
increasing FA oxidation in the skeletal muscle of individuals with obesity.
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8.7 Exercise: Do the Alterations in Fatty Acid Oxidation
in Skeletal Muscle with Obesity Alter Substrate
Utilization During Exercise?

A bout of mild-to-moderate endurance exercise increases the rates of both carbohy-
drate and FA oxidation in order to meet the energy demands of increased contractile
activity in skeletal muscle. This ability to increase oxidation in response to exercise
is another index of metabolic flexibility (Galgani et al. 2008; Goodpaster and Sparks
2017). As indicated in previous sections, mitochondrial content and function are
compromised in the skeletal muscle of individuals with obesity, which contributes to
a dampened ability to oxidize lipid as well as an impairment in metabolic flexibility.
However, in spite of these mitochondrial defects, acute exercise increases the rate of
FA oxidation over resting conditions both during and after the exercise bout
regardless of obesity status (Thyfault et al. 2004; Fritzen et al. 2020; Arad et al.
2020; Guesbeck et al. 2001; Hansen et al. 2005). This adjustment is critical, as
exercise can subsequently contribute to a state of negative lipid balance which in turn
can aid in minimizing ectopic lipid accumulation. However, it is not apparent if the
lack of metabolic flexibility with obesity compromises the magnitude of the increase
in FA oxidation compared to lean individuals, thus resulting in a lower absolute rate
of FA oxidation during exercise.

Several studies have reported an impaired ability to appropriately increase FA
oxidation in response to endurance exercise with obesity. Thyfault et al. (Thyfault
et al. 2004) compared FA oxidation (infused [14C] palmitate and [14C] acetate)
during 60 minutes of cycling exercise at 50% VO2peak in lean patients, patients
with severe obesity, and patients who were previously severely obese and had lost
>45 kg (bariatric surgery). FA oxidation was significantly lower in the subjects with
obesity. Surprisingly, FA oxidation was also depressed during exercise in previously
severely obese individuals even after profound weight loss (Thyfault et al. 2004).
Similar findings were obtained in response to 10 minutes of exercise at either the
same absolute (15 Watts) or relative (65% VO2peak) exercise intensities, as FA
oxidation (via indirect calorimetry) was depressed in previously severely obese
women at >1 year after bariatric surgery (gastric bypass) compared to age and
BMI-matched controls. Eaves et al. (Eaves et al. 2012) examined pre-pubescent
(�11 years old) children of parents that were either lean or severely obese. FA
oxidation/metabolic flexibility was determined during 10 minutes of mild-intensity
cycle exercise. The children with a parent with severe obesity displayed a reduced
rate of FA oxidation at the same absolute exercise workload of 15 watts (�40%
VO2peak). There were, however, no differences at the higher exercise intensity (65%
VO2peak) between the two groups.

Other findings provide a more equivocal view of whether substrate utilization is
altered during exercise in individuals with obesity. A comprehensive systematic
review (Arad et al. 2020) concluded that majority of evidence indicated that indi-
viduals with obesity rely on the oxidation of lipid to a similar extent as lean subjects
during exercise. This conclusion (Arad et al. 2020) was based upon analyses of
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24 papers (out of 729 identified papers on the topic) which met rigorous inclusion
criteria that included eliminating studies of older adults, individuals with chronic
diseases, and/or subjects with exercise limitations. Upon further examination, ten of
these 24 papers utilized incremental exercise bouts with relatively short (3–-
6 minutes) stages compared to those with longer stages where steady-state levels
of substrate oxidation are more likely to be achieved. One study (Balcı 2012) also
placed overweight and obese individuals into a single group rather than studying the
effects of obesity alone. In the remaining studies, there were reduced (Mittendorfer
et al. 2004), equivalent (Colberg et al. 1996; Devries et al. 2013; Ezell et al. 1999;
Kanaley et al. 1993; Kanaley et al. 2001; Santiworakul et al. 2014; Slusher et al.
2015; Steffan et al. 1999), and even increased (Kanaley et al. 2001; Goodpaster et al.
2002; Horowitz and Klein 2000) rates of FA oxidation in obese compared to lean
individuals, which prompted the conclusion that FA oxidation is not compromised in
response to exercise with obesity.

It is difficult to determine why such disparate findings have been obtained.
Factors such as duration of the exercise bout, exercise mode, exercise intensity,
body fat distribution, time of day of testing, pre-exercise diet, method by which FA
oxidation is determined (e.g., indirect calorimetry or tracer), comparison to appro-
priate control group, and numerous other factors could explain the conflicting
results. There may also be racial differences as Caucasian women with obesity
exhibited a reduction in FA oxidation during exercise at 65% VO2peak compared
to their lean counterparts, while there were no differences in FA oxidation between
African American women with normal BMI or obesity (Hickner et al. 2001).
Another confounding variable may be the degree of obesity. A decline in FA
oxidation during exercise has been reported in subjects with severe (BMI� 40 kg/m2)
obesity, subjects with severe obesity after weight loss, and the offspring of individ-
uals with severe obesity (Thyfault et al. 2004; Guesbeck et al. 2001; Eaves et al.
2012). Studies indicating no differences (Colberg et al. 1996; Devries et al. 2013;
Ezell et al. 1999; Kanaley et al. 1993, 2001; Santiworakul et al. 2014; Slusher et al.
2015; Steffan et al. 1999) or increases (Kanaley et al. 2001; Goodpaster et al. 2002;
Horowitz and Klein 2000) in FA oxidation studied obese (BMI ranges of 30 to
39.9 kg/m2) but not individuals with severe obesity. Regardless, although FA
oxidation consistently increases in response to exercise, it remains to be defined if
the response is compromised in individuals with obesity.

8.8 Exercise Training: An Effective Intervention
for the Reduction in Fatty Acid Oxidation
in the Skeletal Muscle of Individuals with Obesity?

Endurance exercise training (e.g., repeated days of aerobic exercise) classically
increases the ability of skeletal muscle to oxidize lipid, primarily by increasing
mitochondrial function, but also by induction of several lipid metabolic proteins
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related to uptake, handling, and breakdown of FAs within the myocyte (Fritzen et al.
2020). However, it is important to realize there is heterogeneity in the responses to
exercise training, with some individuals displaying little to no changes in health-
related variables such as VO2peak, fasting insulin, or insulin sensitivity (Bouchard
and Rankinen 2001; Bouchard et al. 2012; Stephens and Sparks 2015; Sparks 2017).
In addition, individuals with obesity, particularly severe (BMI �40 kg/m2) obesity,
exhibit compromised cardiorespiratory fitness which results in low absolute exercise
workloads and may not optimally stimulate adaptations to training. Supporting the
concept of “exercise resistance” (Sparks 2017) with obesity, the overexpression of
PGC1α, a global regulator of exercise-training mediated adaptations, did not
increase FA oxidation in primary myotubes from individuals with severe obesity
to the same extent as in lean subjects (Consitt et al. 2010). There are also findings
suggesting that the lesions in FA oxidation and metabolic flexibility with obesity are
inherent (Hulver et al. 2005; Gaster 2009; Tanner et al. 2002; Zou et al. 2019; Boyle
et al. 2012) which may minimize the impact of any interventions. In support,
substantive (i.e., > 50 kg) weight loss did not alter FA oxidation in skeletal muscle
(Berggren et al. 2004) at rest or during exercise (Thyfault et al. 2004; Guesbeck et al.
2001) in subjects with severe obesity. A smaller magnitude of weight loss (�14 kg)
in individuals with Class I obesity (BMI of 34 kg/m2) also did not alter resting FA
oxidation determined in vivo across a muscle bed (Kelley et al. 1999). These
findings suggest that the positive effects of exercise training on FA oxidation in
the skeletal muscle of individuals with obesity cannot be assumed and warrant
investigation.

In an attempt to minimize the confounding effects of concurrent weight loss,
studies have implemented a short period (7–10 days) of exercise training (60 min/d,
50–75% VO2peak) where the energy deficit induced by exercise is minimal and no
weight loss is evident. One such study examined subjects with severe obesity and
subjects that were previously severely obese who had undergone bariatric surgery
(1–2 y post-surgery). The 10-day training stimulus was sufficient to increase FA
oxidation in the obese groups to the same rates as in lean subjects after 10 days of
exercise (Berggren et al. 2004). A similar training regimen increased FA oxidation in
skeletal muscle in Caucasian and African American women with severe obesity to
the same levels as lean subjects (Cortright et al. 2006). Other longer-duration studies
have reported equivalent increases in the expression or activity of proteins involved
with FA oxidation in the skeletal muscle of lean subjects and individuals with
obesity (Devries et al. 2013; Gillen et al. 2013; de Matos et al. 2018).

In contrast, 24 hours of contractile stimuli (electrical pulse stimulation, EPS)
increased FA oxidation in primary human myotubes derived from lean subjects but
not in myotubes from individuals with obesity or type 2 diabetes (Løvsletten et al.
2020). The cells from the subjects with obesity initially had higher rates of incom-
plete oxidation and reduced expression of complexes II, III, and IV of the respiratory
chain (Løvsletten et al. 2020). A comparison of these in vivo (see preceding
paragraph) and in vitro (Løvsletten et al. 2020) findings suggests that factors present
during whole-body exercise (i.e., hormones, myokines, neural signaling, etc.) could
be important in inducing the increases in FA oxidation seen with exercise training in
individuals with obesity.
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In relation to metabolic flexibility, the skeletal muscle of lean individuals
increased FA oxidation, but there was no change in the muscle of obese subjects
in response to a 3-day eucaloric high-fat diet (Battaglia et al. 2012). Both groups then
exercised for 10 consecutive days (1 hour/day, 70% of VO2peak) and on the final
3 days of training consumed the same high-fat diet. The initial 7 days of exercise
training was sufficient to increase FA oxidation in the skeletal muscle of both groups
to the same extent, and both groups responded to the 3 day high-fat diet in a similar
manner (Battaglia et al. 2012). Endurance exercise training also increased FA
oxidation during exercise (an index of metabolic flexibility) in individuals with
obesity (Fritzen et al. 2020; Devries et al. 2013; Goodpaster et al. 2003). Eaves
et al. (Eaves et al. 2012) examined the effects of exercise training (4 weeks at �65%
VO2peak, 3 days/week for 30 minutes for week 1 progressing to 60 minutes/day for
weeks 2–4), and even with this relatively mild stimulus, there were trends (P¼ 0.06)
for FA oxidation to increase during exercise to an equivalent degree in children of
either lean parents or parents with obesity. These findings indicate that endurance
exercise training increases metabolic flexibility to a similar extent in individuals with
obesity compared to their lean counterparts.

8.9 Summarizing Remarks on the Role of Obesity
in Regulation of FA Oxidation During Rest
and Exercise and the Counter-regulatory Effect
of Exercise Training

In summary, individuals with obesity display an impaired ability to oxidize lipid and
to increase FA oxidation in the face of increased lipid exposure (metabolic flexibil-
ity). At the cellular level, these defects are evident in skeletal muscle mitochondria
and likely contribute, at least in part, to positive lipid balance and ectopic lipid
deposition. It is equivocal if these deficits impair the ability to increase FA oxidation
in response to a single exercise bout. However, despite these initial impairments,
endurance exercise training can rescue FA oxidation and metabolic flexibility in the
skeletal muscle of individuals with obesity at least to equivalent levels of their lean
counterparts. These findings indicate the efficacy of exercise training in treating the
metabolic inflexibility in human skeletal muscle metabolism evident with obesity.
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Chapter 9
Skeletal Muscle Protein Metabolism During
Exercise

Sophie Joanisse, James McKendry, Everson A. Nunes, Aaron C. Q. Thomas,
and Stuart M. Phillips

Abstract Skeletal muscle is essential in locomotion and plays a role in whole-body
metabolism, particularly during exercise. Skeletal muscle is the largest ‘reservoir’ of
amino acids, which can be released for fuel and as a precursor for gluconeogenesis.
During exercise, whole-body, and more specifically skeletal muscle, protein catab-
olism is increased, but protein synthesis is suppressed. Metabolism of skeletal
muscle proteins can support energy demands during exercise, and persistent exercise
(i.e. training) results in skeletal muscle protein remodelling. Exercise is generally
classified as being either ‘strength’ or ‘aerobic/endurance’ in nature, and the type of
exercise will reflect the phenotypic and metabolic adaptations of the muscle. In this
chapter, we describe the impact of various exercise modes on protein metabolism
during and following exercise.

Keywords Amino acid · Protein turnover · Branched-chain amino acid ·
Proteolysis · Protein synthesis

9.1 General Introduction

Skeletal muscle is a highly ‘plastic’ tissue that adapts its phenotype with increased
use or disuse. Constituting up to ~40% of total body mass and containing 60–75% of
all body proteins, skeletal muscle is one the largest contributors to basal metabolic
rate; it enables locomotion and is critical for sporting performance endeavours. By
converting chemical to mechanical energy, skeletal muscle is a substantial metabolic
sink for storage and oxidation (when active) of substrates such as glucose and lipids
(Frontera and Ochala 2015). Given that there is no place of dedicated storage for
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amino acids in the body, excluding fully functional bodily proteins (e.g. within the
skeletal muscle as part of the contractile machinery), the role of skeletal muscle also
has an important protective role by providing a crucial reserve of amino acids. Thus,
through proteolysis, muscle-bound amino acids can be liberated to provide sub-
strates for energy provision or provide precursors for gluconeogenesis in situations
of catabolism (Biolo et al. 2002; Felig et al. 1969; Wolfe 2006). The aim of this
chapter is to discuss muscle protein (amino acid) metabolism during exercise
performance and highlight the influence that different exercise modalities—aerobic
and strength—have on amino acid metabolism.

9.2 Muscle Protein Synthesis and Breakdown

Numerous exogenous stimuli can modify the muscle proteome and affect muscle
protein metabolism. Two widely investigated stimuli that influence muscle mass and
protein metabolism are physical activity (exercise) and food intake (nutrition). The
total amount of skeletal muscle mass is dictated by the balance between two
processes: muscle protein synthesis (MPS) and muscle protein breakdown (MPB)
(Phillips et al. 1997). Both MPS and MPB occur continuously and simultaneously,
exchanging amino acids between bound protein and the free amino acid pool;
however, it is the net balance between the two (MPS minus MPB), which changes
in response to exercise and nutrition, ultimately determining whether muscle protein
is accrued or lost over time. For example, strength-based exercise (SE), which
typically describes high(er) contractile forces working against an increased external
load, is most commonly associated with muscle size and strength increases. In
contrast, aerobic exercise (AE), typically characterized by low(er) contractile forces
and repetitive/cyclical contractions, elicits non-hypertrophic remodelling of skeletal
muscle and instead promotes an enhanced oxidative capacity. Exercise, whether
aerobic or strength-based, has been shown to augment mixed-MPS and MPB in the
post-exercise period (Harber et al. 2010; Phillips et al. 1997), an effect that can
persist for up to 24–48 h (Burd et al. 2010; Phillips et al. 1997). However, in the
absence of protein ingestion and the ensuing hyperaminoacidemia, the balance
between MPS and MPB remains negative (MPB > MPS) (Biolo et al. 1995).
Hyperaminoacidemia exerts a direct stimulatory effect on MPS (Moore et al.
2009), and net muscle protein balance becomes, transiently, positive (MPS >MPB)
(Atherton et al. 2010a). When prior exercise and protein nutrition are combined, they
exert a synergistic effect on MPS and result in a small suppression of MPB, and
muscle protein balance is even more positive (MPS > > MPB) (Biolo et al. 1997),
which underpins a longer (versus feeding alone) period of positive net protein
balance (Biolo et al. 1997; Greenhaff et al. 2008). The combination of exercise
and protein ingestion practiced over time would drive the net accrual of proteins
specific to the exercise modality.
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9.3 The Influence of Exercise

Exercise results in the remodelling of skeletal muscle, and this occurs in an exercise
mode-specific manner. Expectedly, the amino acid utilization for both AE and SE
differs substantially. Unlike AE, SE leads to minimal amino acid oxidation during
exercise; however, amino acid provision following exercise supports an elevated
synthetic rate of the myofibrillar protein fraction and hypertrophic muscle
remodelling. Conversely, AE results in a greater rate of amino acid oxidation during
and after the bout of exercise compared to SE. Importantly, amino acid provision
following AE primarily facilitates the mitochondrial protein fraction remodelling to
enhance muscle oxidative capacity (Churchward-Venne et al. 2020). Repeated
engagement in AE or SE for an extended period (e.g. exercise training) can also
alter the protein synthetic response of the skeletal muscle to an acute bout of
exercise. The skeletal muscle protein synthetic response to an exercise stimulus
becomes ‘refined’ over time, however, and this specificity dictates phenotypic
adaptation (Damas et al. 2019; Wilkinson et al. 2008). These specific signalling
events will be discussed in greater detail in subsequent sections of the chapter.

9.4 The Influence of Nutrition

Protein is an essential component of any healthy diet providing amino acid pre-
cursors for protein synthesis and other metabolic fates. However, MPB can provide
~80–90% of amino acids to maintain the intramuscular amino acid pool for muscle
protein resynthesis/remodelling and the formation of other important metabolic
intermediates; thus, protein turnover in a day is 3–4 times the total loss of amino
acids. Therefore, the discrepancy of amino acid supply hinges on sufficient dietary
protein intake to replenish the intramuscular amino acid pool. Currently, the
recommended dietary allowance (RDA) for the daily intake of protein for adults is
0.8 g/kg of body mass (Institute of Medicine (US) and Institute of Medicine
(US) 2005). However, this recommendation is a minimum protein intake and is
based on achieving nitrogen (protein) balance in a relatively small cohort of indi-
viduals and is not a target for optimal intake (Rand et al. 2003). While the daily
relative protein intake in Irish adults aged 18–35 years has recently been reported to
be greater than the RDA (~1.3 g/kg/d), this declines with advancing age (Hone et al.
2020). Given that older adults often display reduced responsiveness of MPS to
protein nutrition, termed ‘anabolic resistance’, and highly active individuals who
require a greater abundance of amino acids to support training adaptations
(e.g. increased muscle mass), skeletal muscle remodelling, and, in many cases,
fuel provision, the protein requirements for these cohorts have been repeatedly
shown to be significantly greater than the RDA (Bauer et al. 2013; Deutz et al.
2014; Mazzulla et al. 2019; Morton et al. 2018).
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9.4.1 Amino Acids

Following the consumption of protein-containing food sources, proteins are
hydrolysed into smaller peptides and constituent amino acids. In addition to the
dietary provision of amino acids, tissue (e.g. skeletal muscle) degradation of existing
protein structures occurs via the ubiquitin-proteasomal system, lysosomal
autophagy, calpain Ca2 +-dependent or caspase-mediated degradation. Amino acid
synthesis, of non-essential amino acids (NEAA), in the liver can also provide amino
acids as the necessary substrates to support the synthesis of body proteins and other
important amino-containing biological compounds (Blanco and Blanco 2017).

Under normal physiological conditions, amino acids are either retained in the
desired tissue or enter the systemic circulation and transported to the cells and tissues
that require them. Amino acids have one of four metabolic fates within the body (see
Fig. 9.1) (Papachristodoulou et al. 2018). First, and most commonly, amino acids
remain unmodified and are utilized to synthesize new proteins (e.g. contractile, struc-
tural, plasma proteins, enzymes, or haem proteins). Second, amino acids can produce
non-protein nitrogen-containing compounds such as hormones, neurotransmitters, and

Fig. 9.1 Simplified schematic representing amino acid metabolism in the human body
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catecholamines. Third, amino acids undergo transamination/deamination to separate the
amino group from the carbon skeleton and form non-nitrogen-containing organic acids.
The organic acid carbon skeleton that remains following transamination can then be
used in gluconeogenesis to form glucose or form a metabolic intermediate for the citric
acid cycle. Certain amino acids (isoleucine) can be lipogenic or ketogenic (e.g. acetyl-
CoA) metabolic intermediate for oxidation in the mitochondria and subsequent energy
provision. Finally, it needs to be emphasized that amino acids provided over the
immediate requirements for protein synthesis and other amino acid-utilizing pathways
invariably undergo deamination to produce ammonia and urea for removal by excretion
(Blanco and Blanco 2017).

When considering skeletal muscle protein (amino acid) metabolism, not all amino
acids are created equal. Broadly, amino acids can be subdivided into two categories:
essential (indispensable) amino acids (EAA) and non-essential (dispensable) amino
acids (NEAA). The main distinguishing feature between the two groups of amino
acids is that EAA cannot be synthesized endogenously and therefore must be
obtained from protein nutrition or, in some rare cases, endogenous protein break-
down. In contrast, NEAA can be synthesized endogenously. Skeletal muscle con-
tains the full complement of EAA, and the myofibrillar proteins actin and myosin are
the primary components of muscle protein, making up ~65% of skeletal muscle
protein. Myofibrillar proteins contain a significantly higher than expected proportion
of the branched-chain amino acids (BCAA), a subgroup of EAA that includes
leucine, isoleucine, and valine. BCAA, in particular leucine, plays a pivotal role in
the regulation of muscle protein metabolism.

At rest, skeletal muscle can metabolize six of the twenty amino acids, the BCAA:
leucine, isoleucine, valine, asparagine, aspartate, and glutamate. These six amino
acids provide the amino groups and carbon skeletons to synthesize TCA-cycle
intermediates, glutamine, and alanine (Wagenmakers 1998a). However, only leucine
and part of the isoleucine molecule can undergo complete degradation by transam-
ination and decarboxylation, acetyl-CoA, and subsequently be oxidized, contribut-
ing a small amount to energy production. In addition, leucine is the primary amino
acid responsible for stimulating an increase in MPS (Atherton et al. 2010b).

9.5 The Measurement of Protein Turnover

The assessment of protein metabolism at rest, during, and after exercise has been a
topic of intense scientific inquiry. From a methodological standpoint, the assessment
tools used to assess protein metabolism have significantly improved (Wilkinson
2018; Wilkinson et al. 2017). Early studies of protein requirements employed the
nitrogen balance technique, which involves quantifying all of the ingested protein
(nitrogen) and all of the nitrogen that is removed from the body (via urine, faeces,
sweat, and various minor routes: hair, skin, nails, menstrual loss) and the use of

9 Skeletal Muscle Protein Metabolism During Exercise 193



3-methylhistidine (3-MH) as an assessment of myofibrillar proteolysis. However,
both the nitrogen balance and 3-MH techniques have several limitations, and
therefore, stable isotope tracers have been the preferred technique for studying
amino acid metabolism for several decades (Wilkinson 2018; Wilkinson et al.
2017). Since the inception of stable isotopes in metabolic research, and as a result
of the significant advances in the field (Brook et al. 2017), the knowledge of protein
metabolism has significantly improved, including, but not limited to, protein require-
ments (Bauer et al. 2013; Deutz et al. 2014; Moore 2019; Moore et al. 2015), optimal
protein dose/timing/distribution to maximize MPS (Areta et al. 2013; Moore et al.
2015; Moore 2019), and amino acid oxidation (Mazzulla et al. 2019). Importantly,
skeletal muscle protein metabolism is a modifiable process and one on which
exercise exerts a substantial influence.

9.6 The Concept of Exercise Specificity

It is well-known that AE can stimulate mitochondrial protein synthesis within
skeletal muscle, a contributor to mitochondrial biogenesis (Joyner and Coyle
2008; Wilkinson et al. 2008). In comparison, the myofibrillar fraction of muscle
protein is stimulated preferentially and synthesized following SE, promoting mus-
cular hypertrophy and strength gains (Mitchell et al. 2013; Murphy et al. 2018;
Wilkinson et al. 2008). Phenotypic adaptations to training are directly related to the
action, frequency, and intensity of the exercise performed (Hawley 2002), com-
monly referred to as the ‘exercise specificity principle’. It is relatively well
established that the divergent phenotypes characterizing strength and aerobic train-
ing are due to stimulation of the distinct muscle fractions—either myofibrillar or
mitochondrial protein synthesis (Wilkinson et al. 2008).

Regular SE, or skeletal muscle overload, induces a signalling cascade that
converges on the mammalian or main target of rapamycin (mTORC), resulting in
its phosphorylation and ultimately activating the muscle protein synthetic response
(Hawley 2002). Contrarily, AE elicits a molecular response upregulating adenosine
monophosphate-activated protein kinase (AMPK) activity converging on peroxi-
some proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and sig-
nalling for muscle oxidative adaptation (Baar 2014). However, despite the dogma of
preferential exercise adaption in response to contrasting training modalities, it has
been observed in training-naïve individuals that the post-translational signalling
response to an acute bout of exercise is rather non-specific when comparisons of
SE and AE have been made (Di Donato et al. 2014; Wilkinson et al. 2008). These
findings (Di Donato et al. 2014; Wilkinson et al. 2008) have led to a hypothesis that
proposes an initially non-specific exercise stimulus that is, with repeated exposures,
‘fine-tuned’ with refinements of the muscle transcriptome, and subsequently the
proteome, in response to either chronic AE or SE stimuli (Coffey and Hawley 2017;
Hoffman et al. 2015; Wilkinson et al. 2008). The hypothesis generally suggests that
the muscle protein synthetic response following exercise is specific to the modality
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of exercise performed, allowing for recovery and adaptation to structural and
metabolic stress; additionally, the specificity of de novo proteins following regular
exercise is calibrated to respond and adapt when subjected to a familiar exercise
stimulus (Hawley 2002; Wilkinson et al. 2008). An illustration of this hypothesis is
clear when observing well-trained or master athletes who have trained either an
aerobic or strength-type discipline for a substantial period (years), demonstrating
enhanced myofibrillar protein synthesis (MyoPS) and mitochondrial content (Coffey
et al. 2006; McKendry et al. 2019; Tang et al. 2008). Therefore, the phenotypic
outcomes arising from the practice of aerobic and strength training are divergent
from one another. In the following sections, we discuss the effects of AE, SE, and
concurrent exercise on muscle protein metabolism.

9.6.1 Aerobic Exercise

It is widely accepted that energy provision during a bout of AE comes predominantly
from carbohydrates and lipids, whereas the oxidation of amino acids provides a
minimal contribution. Although the overall provision of energy stemming from
amino acid oxidation is minimal during AE, the oxidation of amino acids increases
significantly during exercise versus resting levels (Gibala 2007). The BCAA, such as
leucine and isoleucine, can be metabolized to acetyl-CoA and ultimately provide
ATP to the working muscle (Newsholme et al. 2019). Amino acids ‘indirectly’
provide energy to the skeletal muscle as precursors for the synthesis of intermediates
of the TCA-cycle, a major energy-providing pathway during AE, in addition to
providing the carbon skeleton necessary for the synthesis of glutamine and alanine
(Wagenmakers 1998a, b). For instance, the transamination of alanine to
α-ketoglutarate via alanine aminotransferase results in pyruvate and glutamate
formation. This reaction is an equilibrium reaction that, during AE, contributes to
maintaining the concentration of TCA intermediates (e.g. α-ketoglutarate)
(Newsholme et al. 2019).

Glutamine is the most abundant amino acid in the free amino acid pool within
skeletal muscle and blood. Glutamine is important to the metabolic function of
tissues throughout the body and, along with alanine, transfers amino-derived nitro-
gen from the muscle to the liver (Wagenmakers 1998b). Glutamine can be converted
to glutamate in a reaction catalysed by the enzyme glutamine synthase in the skeletal
muscle (Wagenmakers 1998b). There is a significant reduction in glutamate con-
centration in the skeletal muscle’s free amino acid pool within the first 10 mins of the
onset of AE (cycling 75% VO2 max or 90 min of knee extension at an intensity of
60–65%max power). Such a reduction in skeletal muscle glutamate persists for up to
90 mins and is mirrored by an increase in glutamate uptake from systemic circulation
(van Hall et al. 1995; Sahlin et al. 1990). In contrast, alanine concentration in skeletal
muscle is increased in the first 10 min of AE and gradually decreases, returning to
basal concentrations by 90 min (van Hall et al. 1995; Sahlin et al. 1990), with a
concomitant increase in alanine release into the circulation. The rapid increase in
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TCA-cycle intermediates at the onset of exercise is believed to be due to the alanine-
aminotransferase reaction consuming alanine and providing α-ketoglutarate
(Wagenmakers 1998b). Due to increased glycolysis, there is a marked rise in muscle
pyruvate content at the immediate onset of exercise, which increases α-ketoglutarate
and alanine (Wagenmakers 1998b). However, in an energy-depleted state, the
deamination of BCAA provides the skeletal muscle with TCA-cycle intermediates
to allow continued flux through the cycle, but this is reduced compared to a
non-depleted state (Wagenmakers 1998a).

Amino acid utilization during AE was first described using nitrogen balance
studies; however, results from such studies provided equivocal evidence due to
high variability (Millward 2001). More recently, researchers have described the
effect of exercise on protein metabolism by determining amino acid oxidation during
various AE interventions via the use of isotopically labelled amino acids. Common
practice involves the infusion of 13C-labelled leucine to determine leucine flux,
oxidation, and indirect synthesis estimates (Wolfe et al. 1982). Leucine oxidation
is determined using the labelled enrichment in expired CO2 and the plasma enrich-
ment of α-ketoisocaproic acid (α-KIC), the ketoacid of leucine formed following
transamination, as a more accurate representation of the precursor pool leucine
enrichment (Wolfe et al. 1982). Also, estimates of protein breakdown, measured
as the rate of appearance (Ra) of leucine into the bloodstream from intact proteins
(Wolfe et al. 1982) and synthesis (by difference), via the nonoxidative portion of
leucine disposal (NOLD) (Wolfe et al. 1984), can be calculated. The use of the
so-called leucine reciprocal pool method has consistently demonstrated an increase
in leucine oxidation during endurance exercise of various duration and intensity
(Lamont et al. 1999, 1995; McKenzie et al. 2000; Phillips et al. 1993; Rennie et al.
1981; Wolfe et al. 1982), indicating an increase in the use of this amino acid as a fuel
source during endurance exercise (Gibala 2007). Notably, we have no direct esti-
mates of amino acid oxidation of other BCAA (isoleucine and valine); however,
lysine oxidation, in contrast to leucine, is not oxidized to an appreciable extent
during exercise (Wolfe et al. 1984). The BCAA are likely the only amino acids
oxidized, to an appreciable extent, during exercise, which is likely because their
oxidation readily yields acetyl units. The highly regulated enzyme controlling
BCAA oxidation, branched-chain ketoacid dehydrogenase (BCKAD), has a Km
for each ketoacid by which would dictate that leucine and its ketoacid, α-KIC, would
be oxidized over the other BCAA (Wagenmakers et al. 1990). AE has also been
shown to increase the indirect measure of protein breakdown (leucine Ra) (Phillips
et al. 1993; Rennie et al. 1981; Wolfe et al. 1982) and either suppresses (Mazzulla
et al. 2017; McKenzie et al. 2000; Wolfe et al. 1984) or does not affect (Phillips et al.
1993) the indirect measure of protein synthesis (NOLD). These results suggest that
AE results in a negative protein balance predominantly via an increase in amino acid
flux toward deamination, amino acid oxidation, and a suppression of protein syn-
thesis. Importantly, the reciprocal pool model of leucine oxidation (Lamont et al.
1999, 1995; McKenzie et al. 2000; Phillips et al. 1993; Rennie et al. 1981; Wolfe
et al. 1982) can only assess whole-body protein turnover and cannot delineate
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between different tissue sites of metabolism (e.g. muscle and liver amino acid
oxidation) without biopsies.

A central regulator of BCAA oxidation is the BCKAD, considered the rate-
limiting step in BCAA oxidation. Analogous in structure to pyruvate dehydroge-
nase, BCKAD activity is increased following an acute bout of moderate-intensity
(60–75%) continuous exercise lasting from 50 to 90 min (Howarth et al. 2007;
Jackman et al. 1997; McKenzie et al. 2000). It has been postulated that BCKAD
enzyme activity may be related to glycogen content (van Hall et al. 1996;
Wagenmakers et al. 1990). The extent of BCKAD activity is associated with
‘lower’ muscle glycogen (Jackman et al. 1997), such that lower glycogen availabil-
ity for use as fuel increases BCAA oxidation via elevations in BCKAD activity.
Accordingly, BCKAD activation is correlated with leucine oxidation during endur-
ance exercise (McKenzie et al. 2000). These findings could have important impli-
cations for leucine oxidation and the training-induced reduction in amino acid
oxidation as is discussed below.

9.6.1.1 The Effect of Aerobic Training Status on Skeletal Muscle Protein
Metabolism During Exercise

Skeletal muscle has the remarkable ability to adapt and remodel following different
types of stimuli, such as exercise training. It should, therefore, come as no surprise
that exercise training modifies the acute responses to exercise. Lamont et al. (1999)
originally reported that AE at 50% VO2 max for 60 min resulted in greater leucine
oxidation and a reduced Ra of leucine (an indirect measure of protein breakdown) in
trained compared to untrained individuals (Lamont et al. 1999). However, when
values were expressed relative to fat-free mass, no differences were observed
between trained and untrained individuals (Lamont et al. 1999). Conversely,
McKenzie et al. (2000) showed that leucine oxidation was increased following a
bout of exercise at 60% VO2 max for 90 min in untrained participants; however,
following 38 days of endurance exercise training, this increase was no longer
apparent (McKenzie et al. 2000). Leucine flux and NOLD were reduced during
exercise, which was not affected by training status (McKenzie et al. 2000), which is
somewhat congruent with observations in highly trained individuals (Mazzulla et al.
2017; Phillips et al. 1993). Nonetheless, NOLD has been reported to remain
unchanged (Phillips et al. 1993) or be suppressed (Mazzulla et al. 2017) with
endurance training. Although not conclusive, there may be fundamental differences
in muscle metabolism in highly trained versus untrained individuals even when
trained, particularly with respect to amino acid oxidation. The absence of an increase
in leucine oxidation following AE training may explain the extent of activation of
BCKAD activity (Howarth et al. 2007). Training with AE results in an attenuation of
the degree of activation of BCKAD with exercise (Howarth et al. 2007; McKenzie
et al. 2000), which was associated with a reduction in leucine oxidation (McKenzie
et al. 2000). AE training also increases BCKAD kinase content (Howarth et al.
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2007), which can phosphorylate BCKAD, rendering it inactive and, in theory, also
reducing leucine oxidation.

9.6.1.2 Aerobic Exercise and Muscle Protein Turnover

Although understanding the oxidation of amino acids during exercise is essential to
understand muscle metabolism, researchers have also focused on AE training on
basal muscle protein synthesis. Four weeks of AE training (3–5d/wk., 30–45 min/
session, 65–85% HRmax) resulted in an increase in muscle fractional synthesis rate
(FSR) in a fasted state (Pikosky et al. 2006). Short et al. (2004) also report an
increase in basal mixed MPS following 16 weeks of AE training (Short et al. 2004).
Although AE training is not routinely associated with increases in muscle size,
which is associated with increases in MyoPS, it does elicit remodelling of the
skeletal muscle proteome. Such AE training proteome remodelling is characterized
by increases in mitochondrial volume and increased capillarization, postulated as the
main reasons behind post-exercise elevations in MPS (Burd et al. 2019). In recent
years, researchers have also sought to describe the acute protein synthetic response
following AE in hopes of maximizing the effects of exercise and ensuring sufficient
protein is consumed in proximity to exercise to support increased metabolic
demands (Churchward-Venne et al. 2020; Lin et al. 2020). The next section of this
chapter will summarize these data.

Using stable isotopically labelled tracers, initial studies demonstrated acute
increases in mixed muscle MPS following low-intensity exercise of 40% of VO2

max for short (45 min) (Sheffield-Moore et al. 2004) and long (4 h) (Carraro et al.
1990) durations in untrained young and older adults. However, in highly trained
female swimmers, deltoid muscle MPS was not increased following a high-intensity
swimming session (Tipton et al. 1996). The discrepancy in results is likely due to
several reasons, including the muscle studied, exercise type, and the individuals’
training status. The swimmers studied by Tipton et al. (Tipton et al. 1996) were well
trained and thus likely already adapted to the intensity of the AE training session,
which may not have been true of other subjects. Some differences also exist in the
duration of the increased muscle protein synthetic response following exercise.
Lower-intensity exercise, 40% VO2 max for 45 min, resulted in an increase in
MPS in the first hour after exercise followed by a decline in the following 2 h
(Sheffield-Moore et al. 2004); however, more intense exercise >65% VO2 max for
60 min resulted in an increase of FSR from 90 to 180 min (Mascher et al. 2011) and
up to 6 h (Harber et al. 2010) following exercise. In untrained individuals, AE
stimulates mixed MPS (Carraro et al. 1990; Harber et al. 2010; Mascher et al. 2011;
Sheffield-Moore et al. 2004), and more intense exercise results in a sustained MPS
response (Harber et al. 2010; Mascher et al. 2011).

Researchers have investigated the synthetic rate of different pools of proteins
such as myofibrillar, sarcoplasmic, and mitochondrial fractions. Of particular interest
is mitochondrial protein synthesis following AE as this is the main site of fuel
metabolism within muscle cells, and AE training commonly elicits increases in
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mitochondrial pool size. Following AE (45 min at 75% of VO2 max), MyoPS was
not increased compared to rest, but mitochondrial protein synthesis increased in both
the trained and untrained states from 0 to 4 h post-exercise (Wilkinson et al. 2008).
This concept was extended to untrained middle-aged men who completed 40 min of
AE at 55% of peak aerobic power output, where both MyoPS and mitochondrial
protein synthesis were increased 1 to 5 h after exercise (Donges et al. 2012). As such,
age may modify the influence of AE on MPS in a protein subfraction-specific
manner. The intensity of AE can also influence the skeletal muscle protein synthetic
response. A bout of low (60 min at 30% watt max) or high (30 min at 60% watt max)
intensity AE results in increased MyoPS immediately (0.5–4.5 h) after exercise and
remains elevated only following high-intensity exercise 24–28 h post-exercise
(Di Donato et al. 2014). Mitochondrial protein synthesis was only increased follow-
ing high-intensity exercise 24–28 h after exercise (Di Donato et al. 2014). These
studies have provided valuable insight into the effects of different types of endurance
exercise on skeletal muscle protein synthesis and, more recently, the specific
subfractions of skeletal muscle.

The molecular regulation of protein metabolism following AE has again not been
as extensively studied as in SE. However, similar to SE, following acute AE, there is
an increase in mTOR phosphorylation (Benziane et al. 2008; Camera et al. 2010; Di
Donato et al. 2014; Mascher et al. 2011, 2007; Wilkinson et al. 2008). Further to this,
the familiar downstream target of mTORC1, the ribosomal protein of 70 kDa S6
kinase 1 (p70S6K1) is also reported to be phosphorylated following AE (Benziane
et al. 2008; Mascher et al. 2011, 2007; Wilkinson et al. 2008), although this finding
is not consistent (Camera et al. 2010; Coffey et al. 2006; Di Donato et al. 2014).
Additionally, AE stimulates AMPK phosphorylation, which can inhibit mTORC1
activity. How the activation of divergent signalling pathways may impact MPS is
discussed in the following sections (see Fig. 9.2). Although not commonly associ-
ated with increases in muscle size, endurance exercise in untrained individuals does
stimulate MyoPS, and more intense exercise results in a stimulation of mitochondrial
protein synthesis. These increases likely occur to support remodelling and organelle
biogenesis rather than increased muscle fibre size associated with AE. Although not
the focus of this chapter, it is also important to consider nutritional and feeding
strategies when exploring skeletal muscle protein turnover following AE (Moore
2015).

9.6.2 Strength Exercise

SE is a known strategy to increase muscle mass and improve function (McGlory
et al. 2017). The current knowledge on this field points to the direction that skeletal
muscle hypertrophy induced by RE results from repeated intermittent increases in
MPS, especially of the myofibrillar protein pool (Brook et al. 2015). Increasing the
myofibrillar content in skeletal muscle cells is a relatively slow process demanding
approximately 6 weeks of training to reflect any detectable changes in muscle fibre
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cross-sectional area (fCSA) (Goreham et al. 1999; McGlory et al. 2017). Short-term
changes in muscle mass resulting from muscle swelling are not due to the increase of
contractile elements in skeletal muscle cells and are poorly correlated with the
increment in MPS (Damas et al. 2016a, b). However, factors such as protein
ingestion, an individual’s genetic predisposition to muscle hypertrophy, and training
status can change the magnitude and the time course of adaptations to SE
(Churchward-Venne et al. 2015, 2012; Damas et al. 2019; Pescatello et al. 2006;
Riechman et al. 2004).

Phillips et al. (1997) showed that SE increased mixed MPS for up to 48 h after the
exercise bout (Phillips et al. 1997). Nevertheless, MPB was also significantly
increased post-SE, resulting in an increased (less negative) muscle but no net protein
incorporation when subjects were kept in fasting conditions (Phillips et al. 1997).
The increment in the MPB response seems to be a physiological response to SE that
may be underpinned by a need to degrade proteins exposed to mechanical, oxidative,

Fig. 9.2 A simplified schematic of the molecular pathways in response to exercise training.
Strength exercise leads to mechanical and metabolic perturbations that stimulate the mTORC1
signalling cascade and increased myofibrillar protein synthesis. Endurance exercise modifies the
cellular energy status and stimulates AMPK and PGC1α and predominately leads to mitochondrial
biogenesis. Concurrent training stimulates both pathways and may produce an interference effect,
whereby the AMPK pathway inhibits the activation of the mTORC1 pathway. Here, simplified
linear pathways are shown, but these pathways undoubtedly display a large degree of dependence,
crosstalk, interference, and redundancy. ADP adenosine diphosphate; ATP adenosine triphosphate;
Akt protein kinase B; AMPK 50 adenosine monophosphate-activated protein kinase; mTORC1
mammalian target of rapamycin complex 1; FOXO forkhead box-containing subfamily; PGC1 α
peroxisome proliferator-activated receptor gamma coactivator 1-alpha; p70S6K ribosomal protein
70-kDa S6 kinase 1; 4EBP1 4E-binding protein-1; MaFBx muscle atrophy F-box; MuRF1 muscle
ring finger-1; eEF2 eukaryotic elongation factor 2; RPS6 ribosomal protein S6

200 S. Joanisse et al.



or misfolding due to the SE bout. Furthermore, most amino acids released from the
breakdown of damaged proteins can be recycled and used to synthesize new proteins
(Moore et al. 2007). Because MPB can counterbalance MPS after RE, nutrition
(e.g. protein ingestion) seems to be a pivotal factor in the long-term response to SE,
as explored by other sections and chapters in this book. When a protein-containing
meal is ingested in close temporal proximity to a SE bout, there is an expressive
increment in MPS, leading to a positive balance and the increment of the protein
pool (Phillips et al. 1997). Because the increments in MPS are 4–6-fold higher than
the changes in MPB (Biolo et al. 1995; Wilkinson et al. 2007), MPS is the most
relevant aspect to account for when focusing on skeletal muscle hypertrophy in
healthy subjects.

9.6.2.1 The Effect of Strength Exercise Training Status on Skeletal
Muscle Protein Metabolism

Interestingly, the acute increase in MPS caused by SE seems to change over time
according to the subject’s training state (Damas et al. 2015; Morton et al. 2015). In
SE-untrained subjects, mixed MPS response is at least 50% above baseline levels for
more than 40 h after the SE bout. Conversely, in SE-trained subjects, mixed MPS
response is shorter, with the values returning to ~40–50% above baseline values 10 h
after the exercise bout (Damas et al. 2015). MyoPS seems to be higher in untrained
subjects, reaching 60% above baseline values at 4 h, during the acute response over
the first 16 h after the SE bout (Damas et al. 2015; Kim et al. 2005). However, the
current data indicate that after SE bouts performed during the first few weeks of
training, the MPS response leads to skeletal muscle remodelling without significant
changes in fCSA (Damas et al. 2015). On this topic, Damas et al. (2016a) investi-
gated the time course of MyoPS and muscle damage response during 10 weeks of SE
(Damas et al. 2016a). The authors showed that MyoPS was ‘refined’ and correlated
to muscle hypertrophy after the first 3 weeks of a continuous SE training programme.
The mechanism involved in SE-induced increment in MPS involves activating
several intracellular pathways related to the regulation of protein synthesis at the
transcriptional and translational levels. Furthermore, several cell growth-related
pathways seem to contribute to the regulation of MPS during the response to SE.

9.6.2.2 Molecular Regulation of Skeletal Muscle Protein Synthesis
in Response to Strength Exercise

Several different signalling pathways regulate protein synthesis within the muscle
cell. Overall, MPS rates depend on the activation of the translational machinery and
transcriptional templates that are translated. An increase in ribosomal content and
other necessary protein translation molecules are also involved in the regulation of
MPS (Brook et al. 2019; Chaillou 2019; Figueiredo and McCarthy 2019; McGlory
et al. 2017). SE can drive MPS mainly by two distinct mechanisms (Goodman 2019;
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McGlory et al. 2017). The first mechanism involves the signalling response to the
mechanotransductive signal in the myofibre caused by muscle contraction
(Drummond et al. 2009; You et al. 2012). A second relevant mechanism seems to
be linked to the increased concentration of growth factors in the muscle due to
skeletal muscle contraction. Insulin growth factor 1 (IGF-1), or its various splice
isoforms, is an important growth factor that would further contribute to the activation
of membrane receptors in skeletal muscle cells and, as a result, increase the MPS
response (Drummond et al. 2009; Figueiredo and McCarthy 2019).

Both growth factors and mechanical stimulation can activate mTOR, one of the
main regulatory proteins activated by SE, to stimulate MPS (Goodman 2019; You
et al. 2019). The mTORC1 protein complex, consisting of mTOR and four other
proteins, is the primary regulator of the muscle protein synthetic response to an acute
SE bout. The five constituent proteins of the mTORC1 are mTOR, the regulatory
protein associated with mTOR (Raptor), mammalian lethal with Sec13 protein
8 (mLST8, also known as GβL), DEP domain-containing mTOR interacting protein
(DEPTOR), and proline-rich Akt substrate of 40 kDa (PRAS40) (Goodman 2019).
mTORC1 activation increases MPS by enhancing the activity of downstream
kinases such as the p70S6K1 and 4E-binding protein-1 (4EBP1), leading to ribosomal
binding to mRNA enhancing protein synthesis (Goodman 2019). It has been shown
that mTORC1 activation by SE upregulates transcription of other components
involved in translational machinery itself (e.g. mRNA, ribosomes) (Figueiredo and
McCarthy 2019), thus increasing the translational capacity of the skeletal muscle
cells over time (Brook et al. 2019; Figueiredo and McCarthy 2019).

The signalling mediated by the mTORC1 complex has been an intense field of
study in the past 20 years, and it has been identified as one of the major pathways
regulating cell growth and metabolism. The mTORC1 complex is commonly found
in the skeletal muscle cell cytoplasm. It has been shown that mTORC1 complex
activation is mandatory to maintain skeletal muscle mass (Goodman 2019). How-
ever, there is a necessary interaction between mTORC1 and the lysosome membrane
in order for mTORC1 to be activated. Therefore, the translocation of the mTORC1
complex to the lysosome and the interaction with other proteins are necessary. A
protein called small guanosine triphosphatase (GTPase) Ras homolog enriched in
brain (Rheb) is a crucial component in the mTORC1 activation due to the interaction
with the lysosome. Rheb-mediated activation of mTORC1 is orchestrated by an
upstream GTPase activating protein named tuberous sclerosis complex 2 (TSC2).
TSC2 is a central protein in the regulation of mTORC1 activation since it can be
phosphorylated by distinct proteins such as protein kinase b (PKB or Akt), the
mitogen-activated protein kinase (MAPK), also called extracellular signal-regulated
kinase (ERK). When Akt- or ERK-related pathways phosphorylate TSC2, there is a
reduction of the inhibitory effect that TSC2 exerts over mTORC1 (Saxton and
Sabatini 2017).

Akt is a classic member of the growth factor-related signalling pathways. Akt
exists in three distinct isoforms (Akt1, Akt2, and Akt3), while Akt2 seems to be the
main isoform expressed in the human skeletal muscle (Matheny et al. 2018). SE
induces local production of IGF-1 and other growth factors in the muscle. Local
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IGF-1 production, acting in an autocrine fashion in the muscle tissue, but not
systemically, is linked to the SE-induced MPS (Ahtiainen et al. 2016; Psilander
et al. 2003). This hypothesis has been reinforced since systemic levels of several
hormones are uncorrelated with skeletal muscle hypertrophy and strength gains
(Morton et al. 2016; West et al. 2009, p. 200). Locally produced IGF-1 has been
shown to act as a potent activator of protein synthesis by activating the
Akt/mTORC1 pathway. When IGF-1 binds to its receptor on the muscle cell
membrane, it activates phosphoinositide 3-kinase (PI3-K) to generate
phosphatidylinositol (4,5)-bisphosphate. The result is an increased concentration
of phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 binds to
phosphoinositide-dependent kinase-1 (PDK1), which activates Akt by the phosphor-
ylation on threonine 308 residue. When active, Akt phosphorylates other targets,
including TSC2, leading to mTORC1 activation (Saxton and Sabatini 2017).

Mechanical stimuli (e.g. skeletal muscle contraction during SE) have repeatedly
been shown to increase mTORC1 activity resulting in activation of MPS
(Drummond et al. 2009; Goodman 2019). Cell signalling mediated by mechano-
transduction in the muscle has been an intense field of investigation. However, the
complete series of events involved in this process is not known. Focal adhesion
kinase (FAK) is an integrin. Integrins are involved in several processes regarding the
communication and signalling between the extracellular matrix, cell membrane, and
cytoskeleton. It has been shown that FAK is mechanically sensitive and activates
mTORC1 complex through a TSC2-dependent mechanism (Camera et al. 2016).
Another molecule involved in the mechano-activation of mTORC1 is phosphatidic
acid (PA), a lipid signalling molecule that binds to the FKBP-rapamycin-binding-
domain of mTORC1, leading to its activation (Yoon et al. 2011). An enzyme named
diacylglycerol kinase-ζ (DGK ζ) transforms diacylglycerol (DAG) into phosphatidic
acid (PA) in response to muscle contraction. Therefore, the accumulation of PA in
the cytosol and mTORC1 activation increases MPS (You et al. 2012); however, the
exact chain of events involved in this process are unknown and requires further
investigation.

Several proteins have been identified as downstream targets of mTORC1 and are
involved in different steps regulating MPS. Some relevant proteins in the pathway
regulating protein synthesis are p70S6K1 and 4E-BP1, both mTORC1 complex direct
targets. 4E-BP1 and p70S6K1 are essential regulators of the translation initiation and
elongation processes and are commonly applied as proxies for mTORC1 activity
(Drummond et al. 2009; Wang and Proud 2006). p70S6K1 is phosphorylated on
Thr389 once mTORC1 is activated. Then, p70S6K1 phosphorylates further down-
stream effectors, including eukaryotic elongation factor 2 kinase (eEF2k) and
ribosomal protein S6 (RPS6), which facilitate the elongation process and ribosomal
biogenesis (Wang and Proud 2006). 4E-BP1 is also phosphorylated by mTORC1 on
Thr37 and Thr46, causing its dissociation from the eukaryotic initiation factor 4E
(eIF4E) complex facilitating translation initiation.

Therefore, the regulation of MPS by SE seems to involve several different
components having mTORC1 complex activation as a common convergency
point. mTORC1 activation facilitates the initiation and elongation phases of the
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translation. Ribosome biogenesis is increased by mTORC1 activation, increasing
translational capacity over time. Still, it is essential to mention that research applying
SE in rodent models while inhibiting mTORC1 activity shows significant muscle
hypertrophic responses over time, revealing that other mTORC1 independent sig-
nalling pathways also contribute to the stimulation of MPS resulting in muscle
hypertrophy (Goodman 2019) (see Fig. 9.2).

9.6.3 Concurrent Exercise and Muscle Protein Metabolism

Concurrent exercise can be defined as utilizing both aspects of SE and AE in the
same training regime (Baar 2014). To our knowledge, only two studies have directly
compared the muscle protein synthetic response of concurrent to SE or AE
(Carrithers et al. 2007; Donges et al. 2012). Examining the acute response following
SE and concurrent exercise demonstrated no significant differences in mixed MPS or
MyoPS, suggesting an equivocal response between the two exercise stimuli
(Carrithers et al. 2007; Donges et al. 2012). These findings demonstrate that an
acute bout of concurrent exercise is sufficient and capable of inducing a post-
exercise rise in MPS comparable to SE alone. Consistent in highly trained female
swimmers, an exercise session consisting of intense swimming followed by SE
increased MPS 5 h afterwards (Tipton et al. 1996). As previously stated, a concurrent
exercise design incorporates an aerobic and strength stimulus into the same training
regime (Murach and Bagley 2016); beyond this common feature, there is a high
degree of heterogeneity in study design, chiefly due to the additional number of
exercise-related variables that could be manipulated (Eddens 2019). A study exam-
ining the anabolic response to concurrent exercise in mice manipulated whether AE
was performed before or after SE (Ogasawara et al. 2014). The research team
demonstrated a post-exercise stimulation of MPS following both concurrent exercise
modalities; however, MPS was significantly greater in the group that performed AE
before SE (Ogasawara et al. 2014). The researchers concluded that ‘anabolic signal-
ling stimulated via resistance exercise is susceptible to interference from a subse-
quent bout of endurance exercise and metabolic stress’ (Ogasawara et al. 2014).

9.6.3.1 Concurrent Exercise Training and Potential Interference

The demands of many sports require an athlete’s physiology be optimized for both
endurance, strength, and power to be successful (Moore et al. 2014). Accordingly,
many athletes incorporate AE and SE concomitantly in their training regime (con-
current training), aiming to maximize their muscular endurance, strength, and power
(Baar 2014). Early studies of AE and SE performed concomitantly suggested a
dampening of muscular hypertrophy with high volume training, which was dubbed
the interference effect (Dudley and Djamil 1985; Hickson 1980). However, since
those early studies, multiple randomized control trials have examined the effects of
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concurrent exercise training and shown that frequency, intensity, volume, timing,
modality, and nutritional variables used in study design profoundly influence out-
comes (Baar 2014; Coffey and Hawley 2017). Utilization of both AE and SE
training in the same training regime was first examined in 1980 by Hickson et al.,
who, through personal anecdotal evidence, first described and further demonstrated
the attenuation of strength development with concurrent exercise training (Hickson
1980). Subsequent studies appeared to confirm and expand upon these initial
findings (Hickson 1980), in which combined SE and AE training elicited similar
attenuation of strength development and the hypertrophic response (Dudley and
Djamil 1985; Kraemer et al. 1995). However, more recently, a review by Murach
and Bagley (2016) concluded that, in ideal circumstances involving adequate recov-
ery, concurrent exercise does not interfere with adaptation to SE and may even
facilitate the hypertrophic response at least in short-term training periods.

Concurrent exercise interference is characterized by attenuation in strength and
hypertrophic gains when SE is completed alongside AE in the same training regime.
Contrarily, concurrent exercise is not thought to substantially interfere with
AE-induced adaptations, e.g. mitochondrial biogenesis, angiogenesis, and myofibre
oxidative capacity (Baar 2014). It is well established that SE is typically followed by
a pronounced stimulation of MyoPS (MacDougall et al. 1995), culminating in the
accumulation of contractile protein and inducing muscular hypertrophy. Thus, the
efficacy of concurrent exercise to elicit an equivalent hypertrophic response may be
evaluated by comparing the acute rise in MyoPS during or immediately following
exercise. There is, however, scant evidence from studies contrasting the muscle
protein synthetic response and much less the myofibrillar fraction following con-
current exercise to other modalities such as AE or SE. Furthermore, a major barrier
noted by researchers while studying the outcomes of concurrent exercise training is
the overwhelming number of novel variables introduced. The addition of a second
training modality into a study design means having to consider the sequence of the
exercises, the timing between unique exercise stimuli, the modality of exercise
chosen, and the feeding or fasting pattern of the study subjects (Wilkinson et al.
2008). Despite these complicating design considerations, it appears that a significant
increase in mixed muscle MPS and MyoPS does occur following an acute bout of
concurrent exercise training (Churchward-Venne et al. 2019; Donges et al. 2012;
Parr et al. 2014), suggesting that in the acute hours following concurrent exercise,
hypertrophic signalling is sufficient to induce a robust protein synthetic response.

9.6.3.2 Molecular Regulation of Skeletal Muscle Protein Synthesis
in Response to Concurrent Exercise

Multiple stimuli are associated with both AE and SE, eliciting complex downstream
signalling mechanisms targeted towards optimal cellular adaptation (Egan et al.
2016). Anabolic signalling is primarily mediated through the IGF-1Akt-mTORC1
axis as described in detail above (Yoon 2017). Contrarily, AE depletes cellular
energy stores, stimulating AMPK and downstream effectors known to be largely
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involved in AE-induced adaptation (Baar 2014; Ogasawara et al. 2014). Activation
of AMPK is a known inhibitor of mTORC1 activity via RAPTOR suppression,
negatively affecting MyoPS (Lantier et al. 2010; Mounier et al. 2011). This mech-
anism is hypothesized to be why AE performed after SE may suppress mTORC1
activity from maximally stimulating MyoPS (see Fig. 9.2). The proximity of the AE
before the performance of SE may be best determined by the duration of activation
of AMPK following an acute session of AE, which could be for up to 3 h post-
exercise (Wojtaszewski et al. 2000). Nonetheless, the initial observations of multi-
modal close-proximity exercise in human muscle demonstrated no meaningful
differences in myogenic signalling pathway activation regardless of exercise order
(Coffey et al. 2009a, b). More recently, researchers have confirmed that when a
‘control’ (SE only) group was included, no differences existed between the acute
signalling response of either alternate concurrent exercise order and SE (Jones et al.
2016). Furthermore, some have hypothesized that the molecular response following
combined AE and SE training is augmented compared to unimodal exercise (Kazior
et al. 2016; Lundberg et al. 2014; Lundberg et al. 2012).

Although the variables regulating concurrent exercise protein synthesis are still
mostly unknown, practical training recommendations that consider current molecu-
lar data for individuals hoping to maximize their muscular adaptation are directed to
read reviews on concurrent exercise training (Baar 2014). The molecular basis of
training adaptation is unique to each exercise modality and dynamic in response to
chronic stimuli. Characterization of how the muscle proteome alters in response to
prolonged AE, SE, and concurrent exercise training is necessary to elucidate the
optimal stimuli for muscle adaptation to exercise.

9.7 Conclusion

Exercise is one of the main contributors to acute and long-term changes in protein
metabolism. The research established in the past 30 years has focused on under-
standing several intrinsic complex layers within the field. The MPS response seems
to be the main relevant component of protein metabolism affected by exercise in
healthy subjects. Besides some expected generic changes in individuals initiating
exercise training, most long-term adaptations in protein metabolism seem to involve
changes specific to the training programme. AE induces an initial remodelling phase
that includes contractile elements. However, AE induces increased expression of
proteins handling energy production processes and mitochondrial proteins. In con-
trast, SE induces skeletal muscle remodelling, emphasizing the synthesis of new
contractile elements. While the response to an exercise bout is attenuated in trained
subjects, it prioritized MyoPS. Concurrent training induces both AE and SE pheno-
typic MPS characteristics. Still, the overlapping intracellular signalling responses
due to concurrent exercise training show two-way inhibitory signalling, therefore
limiting, at some point, the achievement of the full potential of specific phenotypical
MPS responses.
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Chapter 10
The Effect of Training on Skeletal Muscle
and Exercise Metabolism

Martin J. MacInnis, Brendan Egan, and Martin J. Gibala

Abstract This chapter reviews the molecular and metabolic responses in human
skeletal muscle to exercise training. Acute changes in various stimuli that trigger
adaptations largely depend on the type of exercise performed and particularly the
intensity and duration of discrete sessions. These stimuli are linked to the activation
and/or repression of an array of intracellular signal transduction pathways, pre- and
posttranscriptional processes, and the regulation of protein translation. Given the
considerable overlap in these underlying molecular processes, the mechanistic basis
for how repeated, acute changes are translated into specific training responses
remains a topic of much investigation. Endurance training is primarily associated
with an enhanced capacity for oxidative energy provision and a shift in substrate
utilization, from carbohydrate to lipid, at a given absolute exercise intensity.
Strength training mainly results in increased muscle size, force-generating capacity,
and enhanced capacity for non-oxidative energy provision. Sprint training also
increases the capacity for non-oxidative energy provision, but can elicit a range of
responses, including some that resemble endurance or strength training. Training
generally enhances fatigue resistance and performance in a manner that is specific,
but not exclusive, to the type of exercise performed. These improvements are owed,
in part to training-induced changes in both the maximal capacity for, and the specific
utilization of, various substrates during exercise.
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10.1 Introduction

Training refers to repeated sessions of exercise that are maintained from as little as a
few days to many years. This process elicits physiological remodeling that is shaped
by many factors, including the type of exercise performed, the intensity and duration
of discrete sessions, and the total number of sessions performed. Multiple physio-
logical systems interact to determine the holistic response to training, including those
that regulate whole-body oxygen transport and substrate metabolism, neurohumoral
control, acid-base balance, and thermoregulation (Hawley et al. 2014). This chapter
focuses on the metabolic and molecular responses in human skeletal muscle to
exercise training. Three distinct types of exercise are considered: endurance,
strength, and sprint training. After characterizing each type, the chapter provides
an overview of metabolic regulation during exercise, and the molecular basis of
training-induced changes. It then considers the major metabolic responses to each
type of exercise, characteristics of the trained state, molecular basis of training
adaptations, and changes in exercise metabolism after training. The present review
is informed by many previous works that have comprehensively examined the effect
of training on skeletal muscle (Booth and Thomason 1991; Saltin and Gollnick
1983) or characterized responses to specific types of training (Abernethy et al. 1994;
Holloszy and Coyle 1984; Ross and Leveritt 2001).

10.2 The Nature of the Exercise Stimulus: Endurance,
Strength, and Sprint Training

In their seminal review on skeletal muscle adaptability, Saltin and Gollnick (1983)
categorized exercise as being one of three basic types: (1) “endurance training”;
(2) “strength training”; and (3) “varying intermediate combinations (e.g., sprint
training).” Endurance and strength training are often conceptualized as falling on
the two ends of a spectrum in terms of relative contractile force versus contractile
duration (Fig. 10.1), with the molecular processes that are triggered in response to
these two stimuli also being conceptualized as distinct and specific (Egan and
Zierath 2013; Hawley et al. 2014). However, there is also a large degree of overlap
in the molecular and adaptive responses, as evidenced by the that fact that sprint
training—which is generally recognized as brief but intense exercise, with the goal
to develop speed and power—can elicit a broad range of muscle adaptations,
including some that resemble traditional endurance or strength training (Ross and
Leveritt 2001), as discussed further below.

Endurance training is primarily associated with an enhanced capacity for oxida-
tive energy provision in skeletal muscle and a shift toward increased contribution
from lipid oxidation—and decreased carbohydrate oxidation—at the same absolute
exercise intensity as before training (Holloszy and Coyle 1984). Training intensity is
often expressed relative to maximal oxygen uptake (V  O2max) or the power output
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(Wmax) or velocity (vV  O2max) that corresponds to this parameter. Training prescrip-
tion is also commonly anchored to measurements of lactate threshold (LT) and
critical power (CP) and based on the three recognized intensity domains: moderate
(below LT), heavy (between LT and CP), and severe (above CP) (Poole and Jones

Fig. 10.1 The general process through which exercise training induces skeletal muscle adaptation.
Panel A illustrates the dramatic differences in the duration and force of endurance and strength
exercise and the positioning of sprint exercise somewhere between these two types of training.
Panel B illustrates the molecular process through which exercise-induced cellular stress activates
signal transduction pathways to alter mRNA expression and rates of protein synthesis. With
repeated bouts of exercise (i.e., training), changes in protein content or enzymatic activity yield
cellular adaptations that blunt cellular stress during future exercise sessions and improve exercise
performance. Created with BioRender.com
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2012). Endurance training can be continuous (i.e., moderate intensity continuous
training, MICT) or intermittent in nature (i.e., “interval training”). A high overall
volume of training, mainly at low- to-moderate intensities but including ~15–20%
high-intensity intervals (�85% V O2max), is generally recommended to maximize
endurance performance in athletes (Seiler 2010).

Strength training is primarily associated with an enhanced force-generating
capacity, a greater capacity for non-oxidative energy provision, and an increase in
skeletal muscle size resulting from an increase in muscle fiber cross-sectional area
(Abernethy et al. 1994). Neural adaptations, including the activation, synchroniza-
tion, and maintenance of muscle fiber recruitment, are also particularly important for
the enhanced force-generating capacity of skeletal muscle after strength training
(Ross et al. 2001; Sale 1988). Training intensity and prescription is typically
expressed relative to one repetition maximum (1-RM), the highest load than can
be lifted or moved once. Repeated sets performed to volitional failure at ~80% 1-RM
are generally recommended to increase muscle mass, as typically practiced by
bodybuilders (Hackett et al. 2013). Training using relatively low loads (~30%
1-RM) is also effective to stimulate growth provided that volitional failure is
achieved, at least in less-trained individuals (McGlory et al. 2017).

Sprint training is mainly associated with an enhanced capacity for non-oxidative
energy provision, but skeletal muscle responses are highly dependent on the duration
of sprint bouts, recovery between bouts, and total volume within sessions (Ross and
Leveritt 2001). Sprint training involves a wide range of exercise modes, including
those used for endurance (e.g., running) and strength training (e.g., plyometrics), as
well as novel combinations (e.g., resisted sled sprint training) (Petrakos et al. 2016).
Sprint training for performance enhancement often simulates the demands of com-
petition (e.g., track and field events or “stop-and-go” team sports), in which most
efforts last for only a few seconds or involve short distances (Rumpf et al. 2016). The
capacity to maintain maximal velocity or a high power output for a longer duration
(speed endurance) or perform multiple short sprints with brief recovery periods
(repeated sprint ability) is also important for many athletes (Rumpf et al. 2016;
Bishop et al. 2011).

10.3 Overview of Skeletal Muscle Metabolic Regulation
During Exercise

Skeletal muscle stores relatively small amounts of ATP, yet [ATP] is remarkably
steady during most forms of exercise, decreasing by only ~20–40% during intense
exercise (Parolin et al. 1999; Black et al. 2017; Sahlin et al. 1989). These findings are
striking, as maximal in vivo rates of ATP hydrolysis could theoretically deplete total
muscle ATP stores within ~2 s (Parolin et al. 1999). Underpinning the ability of
skeletal muscle to withstand large declines in [ATP] is a complex, interacting set of
metabolic pathways that resynthesize ATP quickly, robustly, and proportionally in
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response to the metabolic demand placed on the muscle (Brooks 2012; Hargreaves
and Spriet 2020). Although exercise training does not affect resting skeletal muscle
[ATP] (Green et al. 1991; Leblanc et al. 2004), the activation of these pathways and
their contributions to the overall ATP resynthesis rate during exercise are heavily
dependent on the biochemical composition of the contracting skeletal muscle fibers,
which is largely a product of an individual’s fitness and training status (Holloszy and
Coyle 1984; Booth and Thomason 1991; Saltin and Gollnick 1983). Importantly,
there are also differences in the human skeletal muscle fiber-type specific response to
acute exercise, which may be masked when responses are assessed based on mixed
skeletal muscle biopsy samples (Ball-Burnett et al. 1991; Greenhaff et al. 1994;
Hultman et al. 1991); however, that topic is beyond the scope of this chapter.

Collectively, metabolic, neural, and hormonal signals coordinate the resynthesis
of ATP via various pathways in an attempt to match ATP demand. Among the many
factors that regulate ATP resynthesis are calcium (Ca2+); ADP, AMP, creatine, and
Pi concentrations; epinephrine; ratios of oxidized to reduced coenzymes (e.g.,
[NAD+]/[NADH] and [FAD]/[FADH2]); and substrate/product concentrations (Har-
greaves and Spriet 2020; Brooks 2012). In general, Ca2+, a feedforward signal of
muscle contraction, provides gross control of metabolic regulation, and feedback
related to ATP demand provides fine-tuning (Hargreaves and Spriet 2020).

Through ATP hydrolysis and the adenylate kinase (ADK) reaction, [ADP],
[AMP], and [Pi] increase in proportion to the relative exercise intensity (Sahlin
et al. 1987; Black et al. 2017; Howlett et al. 1998). Catalyzed by the near-equilibrium
creatine kinase (CK) reaction, phosphocreatine (PCr) provides an immediate supply
of ATP by transferring a phosphate to ADP as [ADP] increases. Accordingly, [PCr]
declines in proportion to relative exercise intensity (Howlett et al. 1998; Sahlin et al.
1987). For moderate and heavy intensity exercise, [PCr] stabilizes (Black et al. 2017;
Howlett et al. 1998), as the aerobic ATP resynthesis rate eventually increases to
reach an equilibrium with the rate of PCr hydrolysis. Yet, [PCr] continually
decreases if the exercise intensity is severe (Sahlin et al. 1989; Howlett et al. 1998).

Glycogenolysis and glycolysis increase during the initial seconds of exercise
(Parolin et al. 1999; Hultman et al. 1991), yielding ATP through substrate phos-
phorylation and resulting in lactate production, again in proportion to the relative
exercise intensity (Howlett et al. 1998; Sahlin et al. 1987). Briefly, the activation of
glycogen phosphorylase (PHOS) and phosphofructokinase (PFK) collectively
increases glycolytic flux, the (reversible) lactate dehydrogenase (LDH) enzyme
converts pyruvate to lactate, and pyruvate dehydrogenase (PDH), which regulates
the entry of pyruvate into the mitochondria for oxidation, converts pyruvate to acetyl
CoA (the regulation of these enzymes is reviewed in detail by Hargreaves and Spriet
2020). Accordingly, muscle lactate concentrations increase when the rate of glycol-
ysis exceeds the rate of PDH flux. Lactate, if not converted back to pyruvate for
oxidation, can be shuttled out of the muscle cell via monocarboxylate transporters in
the plasma membrane to undergo oxidation in a variety of other cells, including
skeletal muscle, or to undergo gluconeogenesis in the liver (Brooks 2018).

Inside the mitochondria, some of the acetyl CoA generated by PDH enters the
tricarboxylic acid (TCA) cycle, with the remainder shunted to acetylcarnitine
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(Constantin-Teodosiu et al. 1991). Direct ATP production from the TCA cycle is
minimal, but the reduction of NAD+ and FAD molecules—forming NADH and
FADH2—and subsequent passage of electrons to oxygen via the electron transport
chain are the main driver of ATP resynthesis through oxidative phosphorylation.
Key enzymes of the TCA cycle are activated by Ca2+, linking the TCA cycle to
muscle contraction, and inhibited by NADH, preventing flux through the TCA cycle
when demand for electrons is low (reviewed in Hargreaves and Spriet 2020). The
control of oxidative phosphorylation is complex but largely dependent on [ADP] at
rest. During exercise, the phosphorylation potential, ([ATP] / [ADP][Pi]), and the
mitochondrial redox potential ([NADH] / [NAD+]), which decline in proportion to
relative exercise intensity (Sahlin et al. 1987), facilitate the matching of ATP
resynthesis and ATP hydrolysis rates.

Free fatty acids (FFAs) derived from triglycerides stored in adipose tissue and
skeletal muscle are the other main sources of fuel for oxidative metabolism. After
undergoing lipolysis in adipose tissue, fatty acids transported in plasma bound to
albumin are taken up into skeletal muscle via fatty acid transporters, e.g., CD36 and
fatty acid binding protein (FABPpm), or through diffusion. Alternatively, intramus-
cular triglyceride (IMTG) lipolysis, controlled by the integrated actions of adipose
triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), and several other
proteins, including the perilipin (PLIN) family, releases FFAs in the sarcoplasm
(Watt and Cheng 2017). Regardless of source, FFAs, chaperoned by FABPc, are
converted to fatty acyl CoA molecules via acyl-CoA synthetase (ACS) and
transported into the mitochondria via carnitine palmitoyltransferase 1 and
2 (CPT1/CPT2), subject to the availability of free carnitine (as described later).
Here, the beta-oxidation pathway yields acetyl CoA, NADH, and FADH2, which
contribute to ATP resynthesis via oxidative phosphorylation, as described above for
carbohydrate.

Contributions from the three energy systems encompassed by the pathways
described above (i.e., ATP-PCr, glycolytic, and aerobic) depend on multiple factors,
including the intensity and duration of exercise (Howlett et al. 1998; Romijn et al.
1993; van Loon et al. 2001). In general, the anaerobic processes have small capac-
ities for ATP resynthesis but can yield ATP at high rates, whereas the aerobic system
resynthesizes ATP at a lower rate but with a much larger capacity. Anaerobic
pathways are an important source of ATP for transitions to higher endurance
exercise intensities (including from rest) and for severe intensities of exercise (i.e.,
endurance exercise above CP as well as strength training and sprinting); however,
net ATP resynthesis is almost entirely supported by aerobic metabolism during
steady-state exercise. Although this simplified framework of metabolic regulation
is described independent of skeletal muscle fitness, exercise training leads to whole-
body and intramuscular adaptations that alter the dynamics of these pathways,
leading to changes in substrate utilization during exercise (Fig. 10.2).
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Fig. 10.2 The effects of endurance training on skeletal muscle metabolism. Panel A reports
V O2max and the V O2 elicited by exercise at the same power output (i.e., 150 W) before and after
prolonged endurance training. In this example, V O2max increased with training, but the absolute
V O2 at 150 W was essentially unchanged, meaning that this power output elicited 65% of the
pre-training V  O2max but only 55% of the post-training V  O2max. Panel B illustrates the key metabolic
changes that occur in exercising skeletal muscle at this fixed power output. Arrows indicate changes
relative to the pre-training state. Panel C illustrates the changes in lipid oxidation rates, carbohydrate
(CHO) oxidation rates, and lactate concentration during exercise at this fixed power output. Created
with BioRender.com
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10.4 Molecular Basis of Training-Induced Changes
in Skeletal Muscle

At the onset of exercise, a myriad of acute responses occur at multiple systemic and
cellular levels, many of which are related to the supply of blood, oxygen, and
nutrients to the exercising muscle and to the resynthesis of ATP within that muscle.
These responses are, in turn, intrinsically linked to the activation and/or repression of
an array of intracellular signal transduction pathways, pre- and posttranscriptional
processes, and the regulation of protein translation, which together underpin the
molecular basis of adaptations in skeletal muscle to exercise training (Egan and
Zierath 2013; Hoppeler et al. 2011; McGee and Hargreaves 2020; Seaborne and
Sharples 2020).

The adaptive responses to exercise training take many forms, including the
increased abundance and/or maximal activity of key proteins with roles in energy
provision, remodeling of cellular components such as contractile proteins and the
extracellular matrix, and biogenesis of organelles such as ribosomes and mitochon-
dria (Egan and Zierath 2013; Hoppeler et al. 2011; Brook et al. 2019; Hood et al.
2016). The teleological understanding of these coordinated changes is that they
occur in order to minimize perturbations to cellular homeostasis, with this better
maintenance of cellular homeostasis likely contributing to improved fatigue resis-
tance in response to future bouts of exercise (Booth and Thomason 1991; Holloszy
and Coyle 1984). While there is little doubt about the effects of exercise training to
produce wide-ranging adaptations within skeletal muscle, the mechanistic basis for
how these changes occur remains a topic of much investigation. The most widely
accepted explanation for such changes has been termed “the signal transduction
hypothesis of adaptation” (Burniston et al. 2014). This model has been described in
detail elsewhere (Egan and Zierath 2013; Hoppeler et al. 2011; McGee and Har-
greaves 2020) and is briefly described here (Fig. 10.1).

First, the onset and continuation of exercise result in responses both intrinsic and
extrinsic to the active skeletal muscle that act as important stimuli initiating the
molecular response to exercise. These include regulators of the various energy-
producing pathways as mentioned above, such as calcium release, metabolites
related to the cytoplasmic phosphorylation potential ([ATP]/[ADP][Pi]), and the
mitochondrial reduction/oxidation (redox) state ([NADH]/[NAD+]), the prevailing
hormonal and substrate milieu, electrolyte imbalances across cell membranes,
declining pH, reduced partial pressure of oxygen, and elevations in oxygen free
radical production, muscle temperature, mechanical load, and sarcolemmal disrup-
tion (Fig. 10.1). These exercise-induced responses represent some, but unlikely all,
of the responses that constitute perturbations to cellular homeostasis and the initia-
tion of signal transduction pathways.

Next, these stimuli and consequent perturbations activate and/or repress a variety
of cellular sensors capable of amplifying this initial signal through the activation
and/or repression of signal transduction pathways (Fig. 10.1). For example, the
protein deacetylase, sirtuin 1 (SIRT1), and the heterotrimeric serine/threonine
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kinase, AMP-activated protein kinase (AMPK), are sensors of acute exercise-
induced changes in redox state ([NADH]/[NAD+]) and ATP turnover ([ATP]/
[ADP][Pi] and [AMP]), respectively; calmodulin is a sensor of Ca2+ release in the
sarcoplasmic reticulum during muscle contraction and leads to the activation of
Ca2+/calmodulin-dependent protein kinases (CaMKs); and mechanosensors, such as
focal adhesion kinase (FAK) proteins, are sensors that detect alterations mechanical
load and force transduction, which converge on the activation of the mechanistic
target of rapamycin complexes (mTORC) (Ogasawara et al. 2019; Egan and Zierath
2013; McGee and Hargreaves 2020). Of the many sensors, AMPK is the best-
studied target linking cellular metabolism to adaptive changes in skeletal muscle.
Through its action as a kinase, AMPK modulates cellular metabolism—through
phosphorylation of metabolic enzymes—and transcription and translation, through
phosphorylation of transcription factors and other signaling proteins (Kjøbsted et al.
2018). Increased AMPK phosphorylation and enzymatic activity after acute exercise
often occurs in an intensity-dependent manner, probably reflecting intensity-
dependent effects of exercise on ATP turnover, [ADP] and [AMP], and depletion
of muscle glycogen (Howlett et al. 1998; Sahlin et al. 1987). Acute AMPK activation
acts to mitigate a decline in [ATP] by stimulating catabolic pathways to restore
cellular energy stores while simultaneously inhibiting biosynthetic pathways and
anabolic pathways (Kjøbsted et al. 2018). Conversely, in experimental models that
utilize the repeated and chronic activation of AMPK (acting as a surrogate for
exercise training), adaptive changes are observed in skeletal muscle that are similar
to those seen with endurance training, such as an increase number and size of
mitochondria and improved exercise capacity (Bergeron et al. 2001; Garcia-Roves
et al. 2008).

Much of the focus in skeletal muscle has been on “classical” signal transduction
(i.e., protein-protein interactions, posttranslational modifications such as phosphor-
ylation and acetylation, and protein translocation), particularly as it relates to the
activities of transcriptional and translational regulators (Egan and Zierath 2013;
Hoppeler et al. 2011; Burniston et al. 2014). Thus, downstream of the activation
and/or repression of various kinases, phosphatases, deactylases, and other enzymes
that catalyze posttranslational modifications is a gamut of regulators, or effector
proteins, and their associated processes (Fig. 10.1). Historically, the activity of
transcription factors, co-activators, and repressors were the subject of much interest.
This interest was driven by the observation that changes in tissue form and function
as an adaptive process are driven by transcript-level adjustments prior to changes in
proteins that provoke gradual structural remodeling and long-term functional adjust-
ments (Hoppeler et al. 2011). While transcription of exercise-responsive genes
remains central to the model of exercise-induced adaptations in skeletal muscle
(Pillon et al. 2020), in the last decade, the discovery of novel roles for pre- and
posttranscriptional processes particularly as they relate to epigenetics, namely,
histone deacetylation (McGee and Hargreaves 2020), DNA methylation (Seaborne
and Sharples 2020), and miRNA (Massart et al. 2016), has added further and
intriguing complexity to the model (Fig. 10.1). Specifically, transient changes in
histone modifications (McGee et al. 2009), and gene-specific changes in DNA
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methylation status (Barres et al. 2012), are induced by acute exercise and precede
changes in gene expression in the post-exercise period (McGee et al. 2009; Barres
et al. 2012). For example, exercise can produce an increase in histone acetylation by
inhibition of the activity of histone deacetylases (HDACs) (McGee et al. 2009),
which typically results in increased accessibility of chromatin and activation of
transcription. Similarly, increased accessibility of chromatin and activation of tran-
scription occurs with hypomethylation of GC-rich consensus binding sequences of
DNA in specific genes and has been observed for various exercise-responsive genes
(Barres et al. 2012).

The molecular networks that link exercise to epigenetic regulation are presently a
matter of intense research interest, with a large number of enzymes regulating
acetylation/deacetylation and methylation/demethylation. Many of these enzymes
are linked to metabolic pathways and signal transduction pathways that are
established as being exercise-responsive (e.g., AMPK, CaMK). This suggests the
model for exercise-induced signal transduction in skeletal muscle should be updated
to include regulators of epigenetic modifications (McGee and Hargreaves 2020;
Seaborne and Sharples 2020). Lastly, the regulation of protein translation, the
biogenesis and activity of organelles including ribosomes and lysosomes, and the
importance of skeletal muscle satellite cells for adaptation are some of the new vistas
in the field (Brook et al. 2019).

The processes described above occur in a temporal manner, such that homeostatic
perturbations, signal transduction, and pre-transcriptional regulation occur during
exercise and the early phase of recovery (minutes to hours), whereas alterations in
mRNA and protein abundance occur in the hours and day that follow. As shown in
Fig. 10.1, changes that ultimately result in functional improvements in exercise
capacity and performance occur in the following days, weeks, and months conse-
quent to cumulative effect of frequent, repeated bouts of exercise (Egan and Zierath
2013; Hoppeler et al. 2011). Notably, the effect of training status or a period of
exercise training on the molecular responses to acute exercise suggests that the
magnitude of activation of signal transduction pathways or changes in mRNA
abundance are attenuated in moderate to well-trained individuals (Coffey et al.
2006; McConell et al. 2020), or during and after exercise training interventions
(Benziane et al. 2008; Mallinson et al. 2020). In studies investigating the timecourse
of training adaptations, the molecular response assessed by acute changes in mRNA
abundance is also dampened by interventions with both high-intensity interval
training (Perry et al. 2010) and strength training (Mallinson et al. 2020).

Using endurance and strength training as conceptual extremes on the exercise
continuum, there are stimuli, signaling molecules, and downstream pathways, tar-
gets, and processes that exhibit differential responses to these divergent types of
exercise (Coffey and Hawley 2017). Central to the signal transduction hypothesis of
adaptation is that the type of exercise stimulus is reflected in the specificity of the
molecular networks that are activated, which in turn explain the divergent adapta-
tions to exercise training manifested, for example, by the vastly different phenotyp-
ical appearance, muscle morphology, and performance parameters of well-trained
marathon runners compared to elite power athletes. The specifics of the molecular
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response to the different types of exercise are considered in later sections. However,
the agreement between the specifics of an exercise bout and the elicited molecular
responses is not absolute, and the molecular responses, as presently understood, fail
to fully explain divergent outcomes in response to training (Coffey and Hawley
2017). For example, as described above SIT, despite consisting of a small number of
repeated, intermittent sets of high (force) power output, all-out sprint activity
demonstrates a remarkable capacity to produce an endurance phenotype in skeletal
muscle and improve endurance performance (MacInnis and Gibala 2017), which is
consequent to SIT eliciting molecular responses similar to those associated with
endurance exercise (Gibala et al. 2009; Granata et al. 2017; Little et al. 2011).

These points highlight that a simplified view of exercise training adaptations
being drawn along extremes of the exercise continuum as a result of discrete and
specific signaling pathways is erroneous. In fact, these pathways demonstrate some
degree of dependence, cross talk, interference, and redundancy in their regulation,
making the exact contribution of each signaling pathway to measured changes in
gene expression difficult to isolate. A multiple signal transduction-to-transcription-
coupled control system with inherent redundancy allows for fine-tuning of the
adaptive responses to exercise training dependent on the exercise mode, nutrition
status, and trained state, among many other factors.

10.5 Skeletal Muscle Responses to Training

The effect of training on exercise metabolism is most often inferred by comparing
responses between groups of trained and untrained individuals, or by studying the
same group of individuals before and after a defined intervention. Responses are
commonly based on comparisons made at the same absolute power output, such that
exercise is performed at a lower relative intensity in the trained state, e.g., as a
percentage of V  O2max or another measure of maximal exercise capacity (Fig. 10.2).
This approach provides insight into how training alters the regulation of metabolic
pathways that attempt to match ATP supply with ATP demand, and assumes there is
little to no change in energetic efficiency, i.e., the rate of ATP hydrolysis required for
a given amount of contractile work. Comparisons are sometimes made at the same
relative intensity, which informs whether the proportional contribution of various
metabolic fuels is changed at a given percentage of maximal capacity in the trained
versus untrained state. This chapter will mainly consider the results from longitudi-
nal training studies, in which comparisons were made in the same group of individ-
uals at the same absolute power output, before and after an intervention that typically
lasted from a few weeks to up to several months (Fig. 10.2). The following sections
summarize the major metabolic and molecular responses to endurance, strength, and
sprint training.
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10.6 Endurance Training

10.6.1 Acute Metabolic Response

The metabolic demands of endurance exercise are sustained by aerobic ATP
resynthesis, which primarily involves the oxidation of carbohydrates and lipids.
The seminal studies of Romijn et al. (1993) and van Loon et al. (2001) indicate
that increases in exercise intensity led to increased carbohydrate utilization and
dependence on intramuscular fuel sources, notably glycogen. In contrast, increases
in exercise duration at a fixed intensity led to increased lipid oxidation and depen-
dence on extramuscular fuel sources, mainly free fatty acids derived from adipose
tissue (Romijn et al. 1993; van Loon et al. 2001).

The “choice” of substrate is complex, and multiple hypotheses have been pro-
posed to explain the regulation of substrate utilization. As reviewed by Lundsgaard
et al. (2018), glycolysis may regulate free fatty acid oxidation by dictating the
availability of free carnitine to transport fatty acyl CoA into the mitochondria.
Briefly, at high exercise intensities, increased glycolysis elevates acetyl-CoA con-
centrations in the mitochondria, leading initially to inhibition of PDH flux; however,
the conversion of excess acetyl-CoA to acetylcarnitine by carnitine-acetyl transfer-
ase facilitates increased pyruvate oxidation while simultaneously reducing concen-
trations of free carnitine, limiting fatty acyl CoA uptake into the mitochondria.
Alternative explanations for reduced lipid oxidation at higher intensities include
decreased blood flow to adipose tissue; decreased release of free fatty acids into
plasma; decreased delivery to skeletal muscle; decreased transport into skeletal
muscle; decreased IMTG breakdown; and decreased delivery to mitochondria
(Spriet 2014).

10.6.2 Molecular Basis of Adaptations

An increasingly well-defined network of signaling pathways, transcription factors,
and co-regulator proteins has emerged as important regulators of the skeletal muscle
phenotype in response to endurance training. Unsurprisingly, there are complex
interactions between various kinases/phosphatases/acetylases/deacetylases and tran-
scription factors and transcriptional coactivators that mediate exercise effects on
gene expression. The activity of these factors and coactivators can be modified by
their expression, their phosphorylation, and/or acetylation status and by their intra-
cellular localization. For example, the peroxisome proliferator-activated receptor γ
coactivator 1α (PGC-1α) acts as a transcriptional coactivator through recruitment
and co-regulation of multiple transcription factors including nuclear respiratory
factor 1 (NRF-1), NRF-2, estrogen-related receptor α (ERRα), and mitochondrial
transcription factor A (Tfam), which regulate skeletal muscle gene expression,
particularly the expression of metabolic and mitochondrial genes. PGC-1α activity
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is highly regulated by numerous posttranslational modifications, including phos-
phorylation and deacetylation (Martínez-Redondo et al. 2015). Key upstream
kinases and deacetylases regulating these modifications—including AMPK, p38
MAPK, and SIRT1—are activated by acute exercise, coincident with alterations in
protein stability, functional activity, and subcellular localization of PGC-1α. In this
manner, the convergence of signal transduction pathways upon the regulation of
PGC-1α and the consequent regulation of metabolic and mitochondrial gene expres-
sion programs is an illustration of the coupling of the exercise stimulus to changes in
skeletal muscle phenotype.

PGC-1α has garnered much attention over the past two decades because of
marked effects on skeletal muscle in murine models where PGC-1α knockout
disrupts basal mitochondrial content and function, and where PGC-1α
overexpression produces endurance-like outcomes such as angiogenesis, mitochon-
drial biogenesis, and improved metabolic flexibility (Martínez-Redondo et al. 2015).
In human skeletal muscle, a single bout of exercise reliably and robustly increases
PGC-1α mRNA abundance across various exercise protocols and increases in
PGC-1α protein occur with endurance training (see detailed review by Granata
et al. 2018). These points suggest that PGC-1α gene expression is responsive to
exercise, but additional evidence is suggestive of changes in PGC-1α activity in
response to exercise. For example, exercise results in translocation of PGC-1α to the
nucleus and mitochondria in skeletal muscle (Little et al. 2010; Little et al. 2011),
thereby promoting nuclear-mitochondrial communication and increasing nuclear
MEF2-PGC-1α association (McGee and Hargreaves 2004), which are key regula-
tory aspects of the activity of PGC-1α (Martínez-Redondo et al. 2015).

PGC-1α has often been considered a “master regulator” of mitochondrial bio-
genesis and central to exercise-induced adaptations in skeletal muscle (Martínez-
Redondo et al. 2015). However, both of these contentions have been challenged as
outlined in detail elsewhere (Islam et al. 2018; Hood et al. 2016). To briefly
summarize, firstly the observational nature of human exercise studies means that
no cause-and-effect relationship can be established for exercise-induced changes in
PGC-1α mRNA or protein with exercise-mediated changes in skeletal muscle
phenotype. Secondly, the observations in mice that either whole-body (Leick et al.
2008) or muscle-specific (Rowe et al. 2012) PGC-1α knockout does not impair
exercise training-induced changes in skeletal muscle indicate that PGC-1-
α-independent networks contribute to adaptive responses in skeletal muscle. Several
other molecular processes have also emerged as regulators of mitochondrial adap-
tation in skeletal muscle, including mitochondrial fission-fusion dynamics, the
mitochondrial unfolded protein response, and mitochondrial quality control through
mitophagy (Hood et al. 2016). Given that there are immediate and transient changes
in these processes in the post-exercise period, the current model suggests that this
response initiates turnover of the mitochondrial pool within skeletal muscle in a
coordinated process of removal of dysfunctional mitochondria, in collaboration with
the activation of biogenesis.
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10.6.3 Metabolic Characteristics and Responses
in the Trained State

The endurance-trained state is principally characterized by an increased maximal
capacity of skeletal muscle to oxidize carbohydrates and lipids and a shift in the
relative utilization of these two substrates that promotes the latter at a given
submaximal exercise intensity (Saltin and Gollnick 1983; Brooks 2012; Holloszy
and Coyle 1984). Endurance training can also increase the maximal capacity for
amino acid oxidation in skeletal muscle (McKenzie et al. 2000), but protein is a
minor fuel during most forms of exercise (Brooks 2012) and will not be further
considered here. The endurance training-induced increase in skeletal muscle oxida-
tive capacity is largely owed to an increase in mitochondria form and function, as
reflected by an increased volume density and respiratory capacity (Lundby and
Jacobs 2016; Hoppeler et al. 2011; Holloszy and Coyle 1984) as a consequence of
mitochondrial biogenesis (Hood et al. 2016). The increased mitochondrial volume
density involves both an increase in cross-sectional area and longitudinal growth
(Lundby and Jacobs 2016). Training-induced increases in total mitochondrial pro-
tein content include a higher maximal activity of the two enzyme complexes
regarded as rate-determining for skeletal muscle carbohydrate and lipid oxidation,
respectively: PDH (Leblanc et al. 2004) and CPT (Starritt et al. 2000). Endurance
training also increases the skeletal muscle content of proteins that facilitate the
sarcolemmal transport of glucose (Houmard et al. 1993) and fatty acids (Kiens
et al. 1997). These responses help facilitate a higher maximal capacity to take up
glucose (Kristiansen et al. 2000) and FFA (Kiens et al. 1993) from the circulation
during exercise. The changes also contribute to an enhanced capacity to store higher
amounts of intramuscular glycogen (Greiwe et al. 1999) and triglyceride (van Loon
and Goodpaster 2006), the extent of which is also influenced by nutrient intake
(Hawley et al. 2011). Endurance training also increases the skeletal muscle content
of membrane proteins involved in lactate transport and pH regulation (Juel 2006).
Training-induced increases in the maximal capacity for carbohydrate oxidation
primarily facilitate a higher power output during intense endurance exercise,
whereas the increased capacity for lipid oxidation largely facilitates the ability to
sustain power output during prolonged submaximal exercise.

In general, when exercise performed at the same absolute intensity is compared
before and after training, there is a decreased reliance on anaerobic pathways at the
onset of exercise and an increased reliance on lipid oxidation over carbohydrate
oxidation during steady-state conditions (Fig. 10.2). Indeed, greater rates of lipid
oxidation (and lower rates of carbohydrate oxidation) at the same absolute exercise
intensity, considered a hallmark adaptation to exercise training (Holloszy and Coyle
1984), have been reported by many studies, using a variety of techniques including
pulmonary gas exchange, metabolic tracers, skeletal muscle biopsies, and arterial
and venous catheterization (Henriksson 1977; Green et al. 1991; Kiens et al. 1993;
Martin 3rd et al. 1993; Bergman et al. 1999b). These changes in fuel selection are
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largely underpinned by cellular adaptations within skeletal muscle, as discussed
below.

After endurance exercise training, the net contribution of PCr hydrolysis to ATP
resynthesis at the onset of exercise is lower (Chesley et al. 1996; Green et al. 1991;
Leblanc et al. 2004) because oxidative phosphorylation increases more rapidly and is
more responsive to pulsatile increases in free AMP and ADP when mitochondrial
content is augmented (Phillips et al. 1995). Thus, because the rate of ATP
resynthesis via oxidative phosphorylation more quickly reaches equilibrium with
ATP hydrolysis to prevent further declines in [PCr], a higher [PCr] is maintained
during steady-state exercise post-training at the same absolute intensity (Chesley
et al. 1996; Green et al. 1991, 1995; Leblanc et al. 2004; Karlsson et al. 1972).
Similarly, the rate at which PCr is resynthesized following a bout of exercise or
between bouts of exercise (i.e., interval exercise) is largely dependent on the
oxidative capacity of the muscle (Paganini et al. 1997). Accordingly, PCr recovery
after exercise (or between bouts of exercise) is improved following exercise training
(Forbes et al. 2008).

Training-induced attenuations in metabolite perturbations have consequences for
the regulation of carbohydrate oxidation (Fig. 10.2). With a greater density of
mitochondria in trained skeletal muscle, the rate of aerobic ATP resynthesis in the
mitochondrial reticulum is greater for a given [ADP], resulting in smaller increases
in [ADP], [AMP], [Pi], and [IMP] for the same absolute intensity of exercise (Green
et al. 1991, 1995; Leblanc et al. 2004; Phillips et al. 1996). Although systemic
epinephrine concentrations are reduced following training (Phillips et al. 1996;
Chesley et al. 1996), exercise training does not seem to effect the transformation
of PHOS to its active form during exercise, indicating that it is the reduction in
metabolic perturbations (i.e., allosteric regulation) that reduces the activity of PHOS
and the rate of glycogenolysis post-training (Chesley et al. 1996). The sparing of
muscle glycogen is commonly reported post-training (Chesley et al. 1996; Leblanc
et al. 2004; Green et al. 1995; Karlsson et al. 1972) and is a hallmark adaptation of
endurance training (Holloszy and Coyle 1984). The reduction in glycolytic flux
during submaximal exercise at a given absolute intensity (i.e., moderate and heavy
intensity) after training results in reduced pyruvate production (Green et al. 1995;
Leblanc et al. 2004), which could be explained by an increased abundance or activity
of PDH kinase, which suppresses PDH, or reduced allosteric activation of PDH
(Leblanc et al. 2004). Regardless of mechanism, there is a better matching of
glycolytic flux and PDH flux at a given absolute intensity of exercise in trained
skeletal muscle, leading to reduced lactate production relative to untrained skeletal
muscle (Chesley et al. 1996; Leblanc et al. 2004; Karlsson et al. 1972; Saltin et al.
1976; Phillips et al. 1996). Consequently, exercise training blunts the rate of
appearance for lactate in the blood, but it also increases the metabolic clearance
rate for lactate when exercise is performed at the same absolute exercise intensity
(Bergman et al. 1999b). Cross-sectional data have also demonstrated greater capac-
ities for lactate production, disposal, and clearance in trained compared to untrained
cyclists exercising at their individual lactate thresholds (Messonnier et al. 2013).
Subsequently, as shown in Fig. 10.2, blood lactate concentrations are lower at the
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same absolute exercise intensity post-training (Karlsson et al. 1972; Saltin et al.
1976). Finally, glucose uptake by active skeletal muscle at a given intensity is
decreased with exercise training (Saltin et al. 1976; Bergman et al. 1999b; Coggan
et al. 1990), demonstrating that glucose uptake does not compensate for skeletal
muscle glycogen sparing. This reduction in glucose uptake may result from reduced
GLUT4 translocation to the plasma membrane at the same absolute exercise inten-
sity post-training (Richter et al. 1998). Maximal rates of glucose uptake, however,
are higher in trained versus untrained muscle when compared at 100% of thigh peak
relative power output and likely due to higher GLUT4 content in trained muscle
(Kristiansen et al. 2000). Collectively, this series of metabolic responses leads to a
reduction in the overall rate of carbohydrate oxidation at the same absolute exercise
intensity following a period of training (Fig. 10.2).

A reduction in the contribution of ATP resynthesis from carbohydrate oxidation
necessitates an increase in lipid oxidation at the same absolute submaximal intensity
of exercise (Fig. 10.2). As compared to carbohydrate and glycogen metabolism, less
is known about training-induced changes in the regulation of lipid and IMTG
catabolism, and results are mixed. Kiens et al. (1993) reported that, following
8 weeks of unilateral knee extensor training, respiratory quotient (RQ) over the
exercising thigh muscle was lower compared to the untrained leg when the limbs
were tested 1 week apart. The reduced carbohydrate oxidation rate was attributed to
lower muscle glycogenolysis since muscle glucose flux was not different during
exercise after training (Kiens et al. 1993). The increased lipid oxidation was attrib-
uted to an enhanced muscle FFA uptake, which was increased during exercise after
training. IMTG content was not different following exercise (Kiens et al. 1993), but
other studies have reported greater IMTG utilization during exercise after endurance
training (Hurley et al. 1986; Shepherd et al. 2013). In contrast, Bergman et al.
(1999a) reported similar RQ values measured over the thigh and unchanged leg
FFA uptake in males before and after 9 weeks of cycling; however, they also
reported a reduced respiratory exchange ratio (i.e., increased whole-body lipid
oxidation). Yet, the same group reported greater FFA oxidation post-training in
females (Friedlander et al. 1998). Although discrepancies in results are difficult to
reconcile, reduced glycolytic flux would be expected to better maintain free carnitine
concentrations, facilitating sustained mitochondrial lipid transport. CPT1 activity is
higher in trained compared to untrained individuals (Starritt et al. 2000), and ATGL
is increased in human skeletal muscle after endurance training (Watt and Cheng
2017). That trained individuals have a greater abundance of proteins involved in the
storage, mobilization, and oxidation of lipids can be explained largely by trained
individuals having a greater percentage of type I fibers, which have significantly
greater abundances of key lipid regulatory proteins, such as ATGL, HSL, PLIN2,
and PLIN5 (Shaw et al. 2020).
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10.7 Strength Training

10.7.1 Acute Metabolic Response

In contrast to the well-described metabolic response to endurance exercise, the
metabolic response to strength exercise is not as well-studied. Several studies have
examined changes in muscle metabolites (ATP, PCr) and substrates (glycogen,
intramuscular triglyceride) in response to an acute bout of strength exercise (Hokken
et al. 2020; MacDougall et al. 1999; Essen-Gustavsson and Tesch 1990; Koopman
et al. 2006). Declines in PCr concentrations are large (i.e., >60%) but dependent on
the intensity and volume of the exercises performed (MacDougall et al. 1999).
However in broad terms, there is a large reliance on glycolytic metabolism during
strength exercise, with as high as 80% of energy provision from these pathways
when single sets are performed to failure (MacDougall et al. 1999). Declines in
muscle glycogen concentration are typically in the range of 25 to 40% of resting
concentrations (MacDougall et al. 1999; Hokken et al. 2020; Essen-Gustavsson and
Tesch 1990; Koopman et al. 2006). On a fiber-type specific level, larger declines in
muscle glycogen are observed in type II muscle fibers (Koopman et al. 2006;
Hokken et al. 2020). Lastly, although data are limited, intramuscular triglyceride
declines by ~25 to 30% on average during strength exercise regardless of training
status (Essen-Gustavsson and Tesch 1990; Koopman et al. 2006). The source of
intramuscular triglyceride was primarily from type I muscle fibers (Koopman et al.
2006), but in both studies, large interindividual variation was noted in both resting
concentrations of intramuscular triglyceride and the declines observed during the
training session (Essen-Gustavsson and Tesch 1990; Koopman et al. 2006).

10.7.2 Molecular Basis of Adaptations

Strength training outcomes have tended to focus on the molecular regulation
of muscle hypertrophy as opposed to changes in substrate metabolism. The control
of muscle mass is proposed to be determined by the balance between processes of
muscle protein synthesis (MPS) and muscle protein breakdown/degradation (MPB),
with hypertrophy occurring when the former exceeds the latter for an extended
period of time (Figueiredo 2019). The regulation of MPB is primarily dependent
on the activity of the ubiquitin-proteasome pathway (Sandri 2008). MPB occurs via
two muscle-specific E3 ubiquitin ligases, muscle atrophy F-box (atrogin-1/MAFbx)
and muscle RING finger 1 (MuRF1), which are key regulators of skeletal muscle
proteolysis under catabolic conditions. MPB is challenging to measure and likely to
be less consequential to regulation of strength training-induced muscle hypertrophy,
which has resulted in the focus of molecular networks in this paradigm predomi-
nantly being on the activation of critical regulators of MPS, namely, mTORC,
ribosomal protein S6K (p70S6K), and several downstream targets (Figueiredo
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2019; Ogasawara et al. 2019). Despite the dominant focus on MPS and muscle
hypertrophy in response to strength training, it is worth noting that strength exercise
also has marked effects on the skeletal muscle transcriptome in both acute and
chronic contexts (Mallinson et al. 2020; Pillon et al. 2020).

High force contractions during strength exercise serve as the stimulus for the
activation of a network of signaling events that can be broadly considered as
mechanotransduction via a variety of mechanosensory regulators. These regulators
include increases in the concentration of the membrane phospholipid, phosphatidic
acid (PA) through activation of phospholipase D (PLD), and activation of FAK
proteins, a class of transmembrane receptors that act as protein tyrosine kinases.
Both PA and FAK can activate MPS through mTOR-dependent and mTOR-
independent mechanisms (Ogasawara et al. 2019).

An important point in the overall discussion of exercise adaptation is the delin-
eation of the term MPS. In the broadest sense, this term refers to mixed muscle
protein synthesis. While it is true that muscle hypertrophy will require a greater
volume of muscle protein per se, the process of adaptation to any kind of exercise
requires an increase in protein synthesis, i.e., the synthesis of new proteins. Thus,
focus on MPS as a process as being only relevant to strength training would be an
obvious misconception; for example, sprint interval training is a potent stimulus to
promote skeletal muscle anabolism in a general sense (Callahan et al. 2021). Rather,
the specificity of exercise adaptation to different modes of exercise resides at the
level of differential responses of different protein fractions (myofibrillar, sarcoplas-
mic, and mitochondrial) as well as individual proteins. Additionally, rates of protein
synthesis are primarily dependent on translational efficiency and capacity. Both
increased translational efficiency (protein synthesis per unit RNA) and elevated
translational capacity (total RNA content per unit tissue) as a consequence of
ribosome biogenesis have emerged as important regulators of the adaptive response
to exercise (Brook et al. 2019). While there has been little focus on these pathways in
the context of endurance exercise, a single bout of strength training increases
markers of ribosomal DNA transcription (Stec et al. 2016), whereas an increase in
RNA content is a rapid (Bickel et al. 2005) and sustained (Brook et al. 2015)
response to strength training. Moreover, “high responders” to strength training
have been demonstrated to exhibit greater increases in translational capacity com-
pared to low- and non-responders (Stec et al. 2016). A similar phenomenon has been
observed for skeletal muscle satellite cells such that large ranges of interindividual
variability in the magnitude of hypertrophic response to strength training are
explained by the relative ability to mobilize satellite cells and add myonuclei to
existing muscle fibers (Petrella et al. 2006; Petrella et al. 2008). However, whether
ribosomal biogenesis and myonuclear addition are obligatory for strength training-
induced muscle hypertrophy in humans remains an open question (Brook et al.
2019).
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10.7.3 Metabolic Characteristics and Exercise Responses
in the Trained State

The strength-trained state is principally characterized by skeletal muscle hypertro-
phy owing to an increased muscle fiber cross-sectional area (Abernethy et al. 1994;
Tesch 1988; McGlory et al. 2017). Longitudinal studies employing heavy strength
training protocols have generally reported either no change or a decrease in skeletal
muscle mitochondrial volume density and maximal activities of marker enzymes
such as citrate synthase (MacDougall et al. 1979; Tesch et al. 1987). For example,
Green et al. (1999) reported no effect of 12 weeks of strength training on succinate
dehydrogenase content in any fiber type. There are equivocal data regarding the
effect of resistance training on the maximal activities of enzymes involved in
non-oxidative energy provision such as PFK, CK, and myokinase (Abernethy
et al. 1994). It has been suggested that changes in enzyme density may depend on
the extent of skeletal muscle hypertrophy (Tesch 1988). Heavy strength training is
also associated with an increased intramuscular content of glycogen (MacDougall
et al. 1977; Tesch et al. 1987). There are limited data regarding the effect of strength
training on skeletal muscle metabolite transport proteins (Juel 2006).

Whether the acute metabolic response in skeletal muscle is altered after a period
of strength training is largely unexplored, with potential changes based on indirect
evidence. Despite equivocal data on adaptations in muscle fiber capillarization,
oxygen extraction, fiber conversion, enzyme activity, and substrate levels to strength
training, like endurance exercise training, an improvement in fatigue resistance is
often observed (Abernethy et al. 1994). For example, the maximum number of
repetitions of a bench press exercise performed at 70% 1RM before and after training
was increased by 31% after 3 to 4 months of training (Guezennec et al. 1986).
Likewise, there is some evidence of changes in substrate utilization after a period of
strength training, albeit measured during endurance exercise. Heavy lower limb
strength training altered the metabolic response to submaximal cycle exercise after
4 weeks (Goreham et al. 1999). The changes included reduced PCr and glycogen
degradation and an attenuated increase in muscle lactate. The latter changes are
consistent with a reduced accumulation of metabolites that would otherwise activate
PHOS and PFK, which thereby reduces reliance on glycolytic pathways (Holloszy
and Coyle 1984).

10.8 Sprint Training

10.8.1 Acute Metabolic Response

PCr hydrolysis and non-oxidative glycolysis provided the majority of ATP
resynthesis during brief, maximal sprint efforts lasting �10–15 s (Parolin et al.
1999; Hultman et al. 1991). The energy contribution from oxidative phosphorylation
increases during longer sprints with aerobic metabolism estimated to provide half of

10 The Effect of Training on Skeletal Muscle and Exercise Metabolism 233



the ATP resynthesized during the latter half of a single 30 s maximal effort
(Bogdanis et al. 1996; Parolin et al. 1999). The increased contribution from aerobic
metabolism during longer sprints comes at the expense of a lower power output, as
the contribution from non-oxidative ATP resynthesis declines due to reduced PCr
availability and impaired glycolysis (Bogdanis et al. 1996; Parolin et al. 1999).
Similar to heavy strength exercise, acute sprinting is characterized by marked
reductions in muscle PCr and glycogen, with decreases of >75% and > 20%
compared to rest, respectively, reported following a single 30 s all-out effort
(Bogdanis et al. 1996; Parolin et al. 1999). Energy provision during repeated sprint
efforts depends heavily on the duration individuals sprint and also the recovery
period in between. During multiple 30 s all-out sprints with ~4 min of recovery,
anaerobic energy provision is reduced owing to impaired glycogenolysis and incom-
plete recovery of PCr between bouts (Bogdanis et al. 1996; Parolin et al. 1999).
Although the relative contribution of aerobic pathways to the ATP turnover rate was
increased across multiple sprints, the absolute contribution was similar, leading to
lower total ATP turnover and reduced power output (Parolin et al. 1999).

10.8.2 Molecular Basis of Adaptations

In comparison to endurance and strength exercise, less is known regarding the acute
signaling events that mediate skeletal muscle remodeling in response to sprint
exercise. Acute sprint interval exercise can activate molecular signaling pathways
linked to mitochondrial biogenesis similar to endurance training (Gibala et al. 2009;
Granata et al. 2017; Little et al. 2011). Gibala et al. (2009) showed that a single
session involving four 30 s Wingate tests interspersed by 4 min of recovery
increased the phosphorylation of AMPK and CaMK following exercise and the
subsequent expression of PGC-1α. Like endurance exercise, expression of several
genes related to substrate metabolism and structural remodeling is changed after a
single session of sprint interval exercise (3x20 s sprints with 2 min recovery) (Skelly
et al. 2017), but notably almost 900 differentially expressed genes were identified
after a session involving three 30 s Wingate tests interspersed by 20 min of recovery
(Rundqvist et al. 2019). Additionally, increases in Akt/mTOR signaling have been
reported after a single session of the same effort (Esbjörnsson et al. 2012), which is
consistent with observations that sprint interval exercise produces an anabolic
response in skeletal muscle (Callahan et al. 2021).

10.8.3 Metabolic Characteristics and Exercise Responses
in the Trained State

The sprint-trained state is associated with an enhanced maximal capacity for
non-oxidative energy provision in skeletal muscle. This is most commonly reflected
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by an increased maximal activity of PFK, the rate-determining enzyme for glycolysis
(Jacobs et al. 1987; MacDougall et al. 1998). Other reported enzymatic changes
include increases in the maximal activities of CK, PHOS, and LDH, although data
are equivocal in this regard (Ross and Leveritt 2001). It has also long been recog-
nized that sprint interval training (e.g., repeated “all-out” 30 s Wingate tests inter-
spersed with a few minutes of recovery) is a potent stimulus to elicit increases in
skeletal muscle oxidative capacity, as indicated by the maximal activities and protein
content of various mitochondrial enzymes including citrate synthase, cytochrome
oxidase, and succinate dehydrogenase (Jacobs et al. 1987; MacDougall et al. 1998;
Saltin et al. 1976). Such changes can occur relatively quickly and with a surprisingly
small total volume of exercise (MacInnis and Gibala 2017). For example, as little as
six sessions of sprint interval training over 2 weeks, involving a total of ~2–3 min of
intense exercise per session, have been shown to increase the content of mitochon-
drial enzymes by ~30% (Burgomaster et al. 2005; Gibala et al. 2006). Sprint training
is also a potent stimulus to increase the skeletal muscle content of membrane
proteins involved in lactate and ion regulation (Juel 2006; McKenna et al. 1993;
Hostrup and Bangsbo 2017). While increased muscle fiber size is sometimes
observed after sprint training (Ross and Leveritt 2001), it is not generally associated
with marked skeletal muscle hypertrophy (McGlory et al. 2017). This may be owing
to the fact that the absolute load during sprinting is modest compared to heavy
strength training. For example, while direct comparisons are difficult, it has been
estimated that the maximal load during a Wingate test is ~10% of the 1RM during
leg press exercise (Baar 2009).

Sprint training increases non-oxidative energy provision calculated from changes
in muscle metabolites (e.g., glycogen, lactate) during brief “all-out” efforts lasting
�30 seconds (Nevill et al. 1989). This response in part is believed to facilitate
increased peak and mean power output during sprinting, in addition to changes in ion
handling and fatigue development (Hostrup and Bangsbo 2017). Sprint interval
training has also been shown to elicit metabolic adjustments during exercise that
resemble those associated with traditional endurance training (Burgomaster et al.
2006; Burgomaster et al. 2008). For example, glycogen and PCr utilization during a
60 minute bout of moderate-intensity exercise were reduced after 6 weeks of both
sprint interval and endurance training (Burgomaster et al. 2008). Burgomaster et al.
(2006) also reported a higher active fraction of PDH during submaximal exercise
and reduced muscle lactate accumulation, after 2 weeks of sprint interval training.
This finding suggests a closer matching between rates of pyruvate production and
oxidation, similar to the metabolic adjustments induced by endurance training and
described above. Six weeks of sprint interval training was also reported to increase
net IMTG breakdown during moderate-intensity cycling similar to moderate-
intensity continuous training (Shepherd et al. 2013). A greater concentration of the
lipid droplet-associated proteins, PLIN 2 and 5 was observed following both training
modes and suggested to contribute to the increases in net IMTG breakdown follow-
ing training.
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10.9 Conclusion

The effect of training on skeletal muscle and exercise metabolism is an enormous
topic, and the complex interplay of factors that determine responses cannot be
captured in a single chapter. The present review attempted to summarize major,
well-established responses to endurance, strength, and sprint training and highlight
areas of contemporary research focus. Our current understanding of the molecular
regulation of skeletal muscle remodeling is based mainly on studies involving either
endurance or strength training, with comparatively little examination of the response
to sprint training. With respect to the regulation of substrate metabolism during
exercise, studies have mainly focused on changes mediated by endurance training,
with a greater emphasis on the regulation of carbohydrate as compared to lipid
utilization. One important area of future investigation is further consideration of the
physiological diversity of exercise responses, including but not limited to the role of
biological sex in mediating training adaptations (Ansdell et al. 2020).
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Chapter 11
Role and Regulation of Hepatic Metabolism
During Exercise

Elijah Trefts and David H. Wasserman

Abstract The liver is a rechargeable battery. It releases stored energy at times of
high metabolic demand such as exercise and replenishes energy stores in response to
a meal. The liver is a recycler. It converts metabolites and amino acids into glucose.
The liver is a detoxifier. It removes nitrogenous molecules, hemoglobin, hormones,
foreign substances, immunoglobulin, and other compounds from the circulation. The
muscle contracts, the adipose tissue stores fat, and the heart pumps blood. The
functions of the liver are far too diverse to define by a single dominant process.
The underlying role of the functions of the liver is that they make broad contributions
to arterial homeostasis and thereby homeostasis of numerous cell types. Physical
exercise poses a unique challenge to the liver as metabolic demands of working
muscles require the liver to mobilize energy stores, recycle metabolites, and convert
compounds that are toxic in excess to innocuous forms. The focus of this review will
be on how the liver adapts to the metabolic demands of physical exercise.

Keywords Liver · Gluconeogenesis · Ketogenesis · Glucose · Amino acids

The liver supplies glucose to tissues, recycles carbons, and counters disequilibrium
by extracting metabolites and toxins from the blood. Blood flow to the liver and
splanchnic bed is reduced to allow for a greater fraction of the cardiac output to be
diverted to muscle. These functions of the liver are essential for sustained physical
activity. Moreover, regular physical activity causes adaptations at the liver that
improve metabolic health. There is a considerable amount known about the role
and regulation of nutrient fluxes during exercise. Despite the essential role of the
liver during exercise and the wealth of data demonstrating control of macronutrient
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flux during exercise, the liver does not receive commensurate attention. This is
largely due to the difficulty in performing well-controlled direct studies of the liver
in exercising humans. Studies in rodent models have been extremely valuable.
However, studies of the liver in rodent models have been largely limited to endpoint
measurements of excised liver and measurements of peripheral blood. Much of the
foundation of regulation of liver nutrient metabolism during exercise and in the post-
exercise state is based on experiments in large animals. Large animal models permit
implantation of catheters in the vessels that both perfuse (portal vein) and drain
(hepatic vein) the liver during exercise. The measurement of arteriovenous differ-
ences combined with isotopic techniques provides a powerful model system to gain a
comprehensive picture of the mechanisms that control liver nutrient fluxes during
exercise. A compilation of studies in humans, large animals, and rodents is necessary
for a more comprehensive understanding of regulation of liver metabolism during
exercise.

Here we focus on the integrated control of liver nutrient metabolism that is
essential to accommodate the accelerated metabolic demands of exercise. Important
advances have been made leading to a broader definition of an endocrine gland. This
has led to the recognition of new proteins released into the circulation that may have
actions at the liver. While much still remains to be learned, the major regulators of
liver metabolism in response to moderate sustained exercise will not likely change.
Changes in glucagon and insulin can quantitatively account for the increased hepatic
nutrient metabolism. These hormones are secreted from pancreatic islets into the
hepatic portal circulation which directly perfuses the liver. This is a highly efficient
anatomical arrangement. This chapter focuses on the diverse metabolic demands on
the liver during exercise, how liver metabolism is regulated during and after exer-
cise, and how the liver adapts to regular physical activity.

11.1 Metabolic Demands of Exercise on the Liver

Exercise results in elevated demand for metabolic substrates by working skeletal
muscle. This demand is primarily met by accelerated carbohydrate and lipid metab-
olism, with only a small contribution from branched chain amino acids. Specifically,
the utilization of intramuscular glycogen and triglycerides stores and the uptake of
glucose and lipids from the circulation are increased to meet muscle energy demands
during exercise (Hargreaves and Spriet 2020). The relative contribution of these
substrate pools to energy provision during exercise is dependent on the length,
modality, and intensity of exercise (Felig et al. 1982; Romijn et al. 1993). The
potential energy from circulating substrates and muscle glycogen stores is limited.
As such, mobilization of glucose and lipids from extra-myocellular sources is
required for sustained exercise. In contrast to mobilization of non-esterified fatty
acids (NEFAs) and triglycerides which can undergo large acute swings in circulating
concentrations, glucose homeostasis must be tightly maintained to preserve function
of the central nervous system. To preserve arterial glucose homeostasis the rate of
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glucose release from the liver into the blood must increase to match the increased
glucose uptake by working muscle (Wasserman 2009). With increasing exercise
intensity, muscle consumes more circulating glucose. This is matched by an increase
in the rate of glucose production by the liver.

Exercise-induced increases in hepatic glucose production require mobilization of
hepatic glycogen (glycogenolysis) and the de novo synthesis of glucose from
metabolic intermediates (gluconeogenesis). The fraction of glucose production
derived from liver glycogen increases with work intensity, while the rate that is
gluconeogenic increases with exercise duration. We developed a novel technique for
measuring hepatic metabolic fluxes over time in mice using venous infusions of
[13C3]propionate, [

2H2]water, and [6,6-2H2]glucose isotopes and arterial sampling
(Hasenour et al. 2015) before and during exercise (Hughey et al. 2017). GC-MS and
mass isotopomer distribution (MID) analysis of glucose was performed on arterial
glucose samples. Model-based regression of hepatic glucose production, gluconeo-
genesis, tricarboxylic acid (TCA) cycle, and anaplerosis-related fluxes was
performed using a comprehensive isotopomer model to measure reaction rates
within a defined metabolic network. This approach showed the coordination of
reactions that comprise hepatic metabolic fluxes during exercise (Hughey et al.
2017). Anaplerosis, TCA cycling, and pyruvate cycling in the liver were all
increased in synchrony with flux through the key gluconeogenic enzyme enolase
(Fig. 11.1). These data characterize how gluconeogenic precursors are scavenged
from the circulation and recycled to glucose via gluconeogenesis. The working
muscle and adipose tissue represent major sources for these gluconeogenic pre-
cursors (Ahlborg et al. 1974). Fascinatingly, lactate from non-working muscle
(Ahlborg and Felig 1982) and amino acids from the gastrointestinal tract
(Wasserman et al. 1991a; Williams et al. 1996) are also significant sources of
gluconeogenic substrates during exercise (Fig. 11.2).

The recycling of metabolites to glucose is evidence of the efficient mechanisms
that have evolved to maintain glucose homeostasis. Gluconeogenesis requires
energy. Oxidation of fatty acids supplies energy by providing reducing equivalents
and ATP for gluconeogenesis (Wahren et al. 1984; Wasserman et al. 1989a, b).
Ketone bodies (e.g., β-hydroxybutyrate and acetoacetate) are a by-product of accel-
erated fatty acid oxidation (Evans et al. 2017) and to a small extent from specific
amino acid oxidation (Thomas et al. 1982). Ketogenesis is liver-specific and an
increase in circulating ketones is a marker of elevated hepatic fat oxidation
(Wasserman et al. 1989b; Evans et al. 2017), such as during prolonged exercise or
poorly controlled diabetes. Ketones can be utilized for energy in oxidative tissues
such as the heart. Ketones produced by the liver during exercise are not typically a
primary energy source. However, the increasing consumption of diets with low
carbohydrate and high fat content, termed ketogenic diets, has led to increased
interest of the impact of ketone metabolism (Puchalska and Crawford 2017).

Increased amino acid metabolism and AMP deamination occur in working
muscle leading to increased formation of NH3 (Eriksson et al. 1985). Moreover,
increased skeletal muscle (Felig and Wahren 1971; Van Loon 2014) or gastrointes-
tinal tract (Wasserman et al. 1991a; Williams et al. 1996) protein breakdown results
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Fig. 11.1 Metabolic flux analysis during exercise in the mouse. Mice were infused with 13C-pro-
pionate, 2H2O, and 6.6-[2H]glucose and mass isotopomer labeling in plasma glucose was deter-
mined by gas chromatography mass spectrometry. Fluxes were calculated by the best fit of
regression analysis of mass balance equations using INCA software (Hasenour et al. 2015). HGP
is hepatic glucose production; VEnol is flux through enolase; VAldo is the flux through aldolase;
VPEPCK is flux though PEPCK; VLDH is the flux from lactate to pyruvate; VPC is flux through
pyruvate carboxylase; VPCC is flux through propionyl CoA carboxylase; VCS is flux through citrate
synthase; VSDH is flux through succinate dehydrogenase; and VPK+ME is combined flux through
pyruvate kinase and malic enzyme and is indicative of pyruvate cycling. Data are mean +/– SE. *
p < 0.05 compared to sedentary controls
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in the release of amino acids into the circulation. Alanine, glutamine, glutamate,
serine, threonine, and valine are delivered to the liver where the carbons can be
recycled into glucose. The scavenging of amino acid carbons in the liver requires the
disposal of nitrogen. This is accomplished in large part by accelerated urea formation
and release into the hepatic vein during exercise. Urea is filtered in the kidney and
excreted in the urine.

Glycogenolysis represents a relatively low energy barrier to the release of glucose
from the liver requiring 1 ATP per liberated glucose moiety. In contrast, gluconeo-
genesis requires six high-energy phosphate bonds (4 ATP, 2 GTP) per molecule of
glucose produced (Blackman 1982). In addition to the direct energy cost of gluco-
neogenesis, the metabolic processes that support gluconeogenesis (e.g., ureagenesis,
fatty acid activation) add to the energy demand. In this way increased energy
demands of exercise extend to the energy requirement of liver. This is reflected by
a 50% increase in liver O2 uptake of dogs after 2 h of exercise (Wasserman et al.
1992). Liver uptake and output of a circulating factor cannot be measured directly in

Fig. 11.2 Liver nutrient metabolism and gluconeogenesis are regulated by (1) substrate delivery to
the liver by the circulation; (2) extraction of nutrients by the liver; and (3) activation of metabolic
pathways that lead to formation of glucose in the liver. Modified from Trefts et al. (2015)
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humans. However, a greater than twofold increase in splanchnic O2 uptake has been
shown to occur after 90 min of exercise in humans (Ahlborg et al. 1974). The energy
demands of the liver are also evident from decreased adenosine triphosphate (ATP)
and increased adenosine monophosphate (AMP), which compound to decrease the
overall energy charge of the liver (Camacho et al. 2006; Berglund et al. 2009).
Further studies have utilized 5’-aminoimidazole-4-carboxamide-1-beta-D-
ribofuranoside (AICAR) to elucidate nucleotide-mediated mechanisms of metabolic
control in the liver. AICAR is converted intracellularly to the AMP analog ZMP.
Elevating hepatic ZMP concentrations to match exercise-mediated levels of AMP
using AICAR result in a robust glycogenolytic drive (Camacho et al. 2005; Pencek
et al. 2005). With altered hepatic energy being linked to a number of clinical
pathologies, understanding the nucleotide-mediated mechanisms regulating hepatic
metabolism in exercise can also offer therapeutic insights going forward.

AMP-activated protein kinase (AMPK) is a highly conserved regulator of cell
metabolism (Garcia and Shaw 2017). AMPK transduces cellular energy status to
downstream effects on macronutrient metabolism and mitochondrial function
(Herzig and Shaw 2018). During exercise AMPK is activated in a manner that
corresponds to decreased energy charge (Camacho et al. 2006). Given the energet-
ically intensive nature of hepatic gluconeogenesis, AMPK has been posited as a
critical regulator of this pathway. However, several recent studies have demonstrated
that mice lacking expression of AMPK catalytic subunits in hepatocytes maintain
gluconeogenesis and the supporting metabolic pathways (Hasenour et al. 2017). By
applying isotopic metabolic flux analysis to mice with a deletion of both AMPK
catalytic subunits, it was shown that this enzyme is not required for hepatic gluco-
neogenesis, TCA cycling, anaplerosis, and pyruvate cycling during exercise
(Hughey et al. 2017). In contrast to hepatic gluconeogenesis, loss of liver AMPK
impacts the capacity for glycogenolysis, the maintenance of hepatic energy charge,
and the maintenance of oxidative phosphorylation during exercise (Hasenour et al.
2014; Hughey et al. 2017). It is possible that AMPK is required for the support of
overall mitochondrial “tone” within the liver through turnover of dysfunctional
mitochondria by autophagy/mitophagy and stimulation of mitochondrial biogenesis
(Egan et al. 2011). Whether these roles of AMPK in mitochondrial regulation play a
direct role in exercise-mediated metabolic adaptations is an active area of research.

11.2 Endocrine Regulation of the Liver During Exercise

Exercise presents a challenge to the homeostasis of multiple systems including those
that regulate arterial pH, blood gases, core body temperature, and blood pressure, in
addition to blood glucose. A broad neuro-endocrine response counters challenges to
these homeostatic processes. The study of the processes that control liver glucose
production have been challenging as the liver is primarily perfused by the portal
vein, which is inaccessible in conscious humans (Fig. 11.3). On the other hand,
rodent models are not suited to abdominal catheterizations or the blood sample
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volume needed for sampling from multiple sites. This leads to a reliance on metab-
olite and hormone levels measured in the peripheral circulation to draw conclusions
on liver physiology in human subjects. As peripheral glucagon concentrations are
not particularly responsive to exercise a dogma of glucagon being “unimportant”
prevailed among a few clinical researchers. Since peripheral glucagon concentra-
tions have little to do with glucagon concentrations that enter and perfuse the liver,
large animal models have proven to be useful for gaining insights into liver function.
In these models, the portal vein, which drains the pancreas and perfuses the liver, and
the hepatic vein, which drains the liver, can be accessed using catheters implanted
weeks in advance of a study. Glucagon and insulin released from the pancreas first
perfuse the liver where extraction of these hormones dampens and delays their entry
into the peripheral circulation. This effect is readily apparent during exercise as a
robust decrease in portal vein insulin and an increase in glucagon occur, while
changes in systemic blood concentrations are dampened and delayed due to hepatic
extraction of these hormones (Wasserman et al. 1993; Coker et al. 1999b). This
contributes to an approximately tenfold increase in the gradient of glucagon con-
centrations between the portal vein and arterial circulation during exercise
(Wasserman et al. 1993; Coker et al. 1999b). The placement of the liver between
the pancreas and general circulation is efficient as it allows for increased glucagon in
the blood perfusing the liver without high glucagon secretion rates needed to rapidly
fill the general circulation.

There is overwhelming evidence showing the exquisite sensitivity of the liver to
glucagon in humans particularly in the presence of a small decline in insulin (Lins
et al. 1983). Studies conducted in exercising dogs and humans defined the specific
roles of insulin and glucagon in control of hepatic glucose output (Tuttle et al. 1988;

Fig. 11.3 Experiments in human subjects are unable to measure the glucagon and insulin levels at
the liver. The pancreas is directly upstream of the liver and the liver extracts a high percentage of
these hormones. The glucagon and insulin entering the vena cava from the hepatic vein have been
dampened and delayed in relation to the concentrations that enter the liver (Wasserman et al. 1993;
Coker et al. 1999b). Studies in exercising human subjects that have used arterial or peripheral blood
samples to describe the content of blood perfusing the liver grossly mischaracterized the concen-
tration of glucagon at the liver

11 Role and Regulation of Hepatic Metabolism During Exercise 249



Lavoie et al. 1997). Studies have shown that the rise in glucagon (Wasserman et al.
1989c; Lavoie et al. 1997) and the fall in insulin (Wasserman et al. 1989a, 1991b;
Lavoie et al. 1997) are major determinants of glucose production during moderate
exercise. The rise in glucagon is required for the full increment in hepatic glyco-
genolysis and gluconeogenesis (Wasserman et al. 1989c; Lavoie et al. 1997), while
the fall in insulin (Wasserman et al. 1989a; Lavoie et al. 1997) is necessary for
hepatic glycogenolysis. The role of the pancreatic hormones in control of glucose
production is further supported by demonstrations that changes in glucagon and
insulin, using the pancreatic clamp technique, result in hypoglycemia during mod-
erate exercise in humans (Wolfe et al. 1986; Kjaer et al. 1993).

The unanswered question is what causes the robust exercise-induced decrease in
insulin secretion and increase in glucagon secretion (Wasserman 2009). Afferent
nerves originating at the working limb, a deficit in fuel availability, and a neural
feed-forward mechanism have all been postulated to mediate the pancreatic hormone
response (Wasserman 2009). Afferent sensors in the carotid sinus area are required
for the full increases in glucagon and norepinephrine during exercise (Koyama et al.
2001). Surprisingly, denervation of the pancreas does not impair the glucagon and
insulin responses to exercise (Coker et al. 1999a). The myokine IL-6 is released in
response to physical exercise (Pedersen and Febbraio 2012) and has been shown to
stimulate glucagon release from the pancreatic alpha cell under stressful conditions
(Barnes et al. 2014). The pancreas is highly sensitive to small changes in blood
glucose during exercise (Wasserman et al. 1984, 1991b; Jenkins et al. 1985; Berger
et al. 1994). It is possible that small changes in glucose that are undetectable provide
feedback to the pancreas leading to changes in hormone secretion. This does not
appear to be the case as preventing the increase in working muscle glucose uptake by
deleting the glucose transporter, GLUT4, in mice does not prevent the glucagon and
insulin responses and increase in hepatic glucose production (Fig. 11.4) (Fueger
et al. 2007). The impediment in exercise-stimulated glucose uptake and the unin-
hibited increase in glucose production resulted in a marked hyperglycemia. This
suggests that exercise-induced changes in glucagon and insulin not only do not
require a small deficit in glycemia but occur in the presence of the inhibitory effects
of hyperglycemia. This study suggests that the endocrine and hepatic responses to
exercise are not due to a feedback signal from accelerated blood glucose removal by
muscle as once proposed.

An increase in glucagon during exercise is considerably more potent than the
equivalent increase under sedentary experimental conditions (Fig. 11.5). A twofold
increase in glucagon causes a fivefold greater increase in glucose production during
exercise than during rest (Wasserman 2009). Glucagon action is fully manifested
during exercise because the increased glucose utilization of working muscle prevents
hyperglycemia that would be expected to antagonize glucose production at the liver
and accompanies an experimental increase in glucagon. In addition, as mentioned
earlier prolonged exercise creates a physiological environment that supports gluco-
neogenesis by mobilizing gluconeogenic substrates from muscle, adipose, and
intestine (Wasserman et al. 1992). Finally, exercise causes a fall in insulin that
potently sensitizes the liver to glucagon (Wasserman 2009). Unger originally
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proposed and demonstrated experimentally that it is the interaction of glucagon and
insulin rather than the effect of either hormone individually that is most important to
control glucose production (Unger and Orci 1976).

As described previously, increased gluconeogenesis requires an integrated
response to metabolism. Figure 11.6 illustrates how a twofold increase in glucagon
stimulates hepatic gluconeogenesis from alanine (Wasserman et al. 1989c), fat
oxidation as reflected by ketone body production (Wasserman et al. 1989b), and
glutamine amide nitrogen incorporation into urea (Krishna et al. 2000). In addition,
glucagon plays a vital role in stimulating the hepatic extraction of gluconeogenic
precursors during exercise (Wasserman et al. 1988, 1989b; Krishna et al. 2000).
Glucagon stimulates the N (Nissim et al. 1999) and A (Cariappa and Kilberg 1992)
amino acid transport systems activating transport of amino acids into the liver.

A robust increase in circulating catecholamine concentrations occurs during
exercise. This led to the premise that norepinephrine and epinephrine participate in
control of hepatic glucose production (Christensen and Galbo 1983). It is now clear
that the increase in circulating catecholamines does not quantitatively translate to
changes in concentrations at the liver. Hepatic norepinephrine spillover (reflecting
sympathetic drive) is not increased during moderate exercise, and the portal vein

Fig. 11.4 Pancreatic and hepatic responses to exercise are not reliant on feedback resulting from
the increase in muscle glucose uptake. Studies show the response to exercise in mice with genetic
deletion of the GLUT4 transporter and wild-type littermates (Fueger et al. 2007). Mice with GLUT4
deletion exhibit a gradual increase in arterial glucose resulting from a dampened muscle glucose
uptake in the presence of a normal exercise-induced increase in glucose production. Consistent with
the increase in glucose production is the presence of the normal exercise-induced increase in
glucagon and fall in insulin
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epinephrine concentration at the liver is markedly attenuated as gastrointestinal tract
extraction is 50% (Coker et al. 1997b). In line with this, a broad range of experi-
mental approaches have failed to show an appreciable direct effect of either hepatic
sympathetic nerves or circulating epinephrine in direct stimulation of hepatic glu-
cose production during moderate exercise. There are instances such as high-intensity
exercise where the adrenergic response is unusually high (Sigal et al. 2004). Circu-
lating blood norepinephrine and epinephrine can increase by 10–20-fold (Marliss
et al. 1992), whereas the increase in the glucagon to insulin ratio in peripheral blood
is considerably less and in some cases undetectable (Kjaer et al. 1993). Moreover,
when high-intensity exercise is performed during a pancreatic clamp (peripheral
insulin and glucagon are fixed at basal), hepatic glucose output may still increase
(Sigal et al. 1996). Despite these observations, no direct role of the catecholamines in
control of hepatic glucose production has been demonstrated even during high-
intensity exercise. Studies that have assessed the role for catecholamines during
high-intensity exercise using adrenergic receptor blockade have uniformly been
without an effect on hepatic glucose production (Marliss et al. 1992; Kjaer et al.
1993; Sigal et al. 1994). Such studies are difficult to interpret due to the lack of tissue
specificity of these receptor blockers. Intraportal propranolol and phentolamine
infusion has been used in a dog model to create selective hepatic adrenergic blockade
(Coker et al. 1997a, 2000). This successfully causes hepatic adrenergic blockade
without extrahepatic effects. Hepatic adrenergic blockade did not impair the increase
in hepatic glucose production or affect glucose homeostasis during high-intensity
exercise (Coker et al. 1997a). Similar results are seen in dogs treated with the β-cell
toxin, alloxan (Coker et al. 2000). Alloxan-diabetic dogs in poor metabolic control

Fig. 11.5 A comparison of an experimental glucagon increase in the sedentary state to an exercise-
induced glucagon increase of similar magnitude. Exercise creates conditions that are conducive to
glucagon action at the liver. Glucagon is sensitized by a decrease in insulin during exercise. An
experimental glucagon increase is associated with an increase in glucose which antagonizes
glucagon action in the sedentary state. The glucose response is more effective due to an exercise-
induced increase in delivery of substrates for gluconeogenesis. Data derived primarily from
experiments in the conscious dog. Modified from Wasserman (2009)
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have sevenfold higher rates of hepatic norepinephrine spillover than non-diabetic
dogs during moderate exercise. Even then selective hepatic adrenergic receptor
blockade did not attenuate hepatic glucose production during exercise (Coker et al.
2000). Thus, hepatic glucose production in humans and the dog model is not reliant
on adrenergic receptor stimulation even during heavy exercise.

One can speculate that some myokines such as IL-6 (Febbraio et al. 2004), retinol
binding protein 4 (Besse-Patin et al. 2014), apelin (Besse-Patin et al. 2014), or
myonectin (Seldin et al. 2013) are required for the full actions of changes in
glucagon and insulin on the exercise-induced increment in hepatic glucose produc-
tion or during high-intensity exercise. At this point, there is little basis for this
speculation. To date a convincing role for other hormones, hepatic nerves, or
cytokines in direct control of glucose production during exercise have been
demonstrated.

Fig. 11.6 The increase in glucagon orchestrates liver nutrient metabolism and production. The
percent change in tracer-determined gluconeogenesis from alanine (Wasserman et al. 1989b), the
net hepatic balance of beta-hydroxybutyrate and acetoacetate (Wasserman et al. 1989a), and the
transfer of isotopic glutamine amide nitrogen to urea after 150 min of exercise (Krishna et al. 2000).
Somatostatin was infused to suppress endogenous pancreatic hormone release and portal vein
insulin replaced to simulate the insulin response to exercise and glucagon replaced to (a) fix at
basal levels during exercise and (b) increased to simulate the response to exercise at resting levels.
Experiments were performed in dogs with portal vein catheters implanted for hormone infusion and
to obtain inflowing blood to the liver and hepatic vein catheters were implanted to obtain samples of
outflowing blood. Data are mean +/– SE
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11.3 Liver Glycogen Repletion After Exercise

There is limited ability to measure liver glucose uptake in humans. Large animals
have been used to study the liver following exercise as it is possible to access blood
perfusing and draining the liver (Galassetti et al. 1999a). Prior glycogen-depleting
exercise causes a twofold increase in hepatic glucose uptake in response to a twofold
increase in hepatic glucose load and hyperinsulinemia load in the dog (Galassetti
et al. 1999a) (Fig. 11.7). These data show that the improved glucose tolerance in the
post-exercise state is due to adaptations at the liver as well as the muscle. Indirect
assessments in the anesthetized rabbit support findings in the dog, showing that liver
deposition of a glucose analog is increased after muscles are stimulated to contract
electrically (Matsuhisa et al. 1998). Studies using magnetic resonance spectroscopy
showed that ingestion of 13C-glucose immediately after completion of prolonged
moderate exercise in humans increased liver glycogen resynthesis by ~0.7 mg kg–
1 min–1 over a period of 4 h of post-exercise recovery (Casey et al. 2000).

An increase in liver insulin sensitivity contributes to the increased ability of the
liver to consume and store glucose after exercise. Insulin suppresses net hepatic
glucose output to a greater extent following prolonged exercise in humans (Koyama
et al. 2002). Moreover, the increase in net hepatic glucose uptake and fractional
glucose extraction in the presence of a simulated meal (portal vein glucose infusion)

Fig. 11.7 Prior exercise
increases the ability of the
liver to consume glucose in
response to a physiological
increase in portal venous
glucose and insulin
concentrations of twofold
and threefold, respectively,
in the conscious dog
(Galassetti et al. 1999a).
Mean +/– SE. *p < 0.05
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was ~50% greater in exercised compared to sedentary dogs in response to a
physiological increment in insulin (Pencek et al. 2003a). Findings show that a
greater fraction of the glucose taken up by the liver after exercise is metabolized
non-oxidatively (Hamilton et al. 1996). The response to exercise is similar to the
response to a prolonged, glycogen-depleting fast (Galassetti et al. 1999b). These
findings were supported by subsequent studies in mice showing that exercise
induced a rapid transcriptional effect in the liver, and increased expression of IRS
proteins leading to improved cellular insulin signaling (Hoene et al. 2009). These
studies provide yet another reason to recommend exercise for patients with
pre-diabetes.

As described previously changes in glucagon and decrease in insulin are the
major stimuli for the accelerated mobilization of glucose from the liver during
exercise. The role of exercise-induced changes in glucagon and insulin during
exercise to the adaptations of the liver after exercise was tested in a large animal
model. Somatostatin was used to suppress endogenous glucagon and insulin and
pancreatic hormones were either replaced (a) at basal rates or (b) exercise-simulated
rates (Pencek et al. 2004). Preventing the glucagon and insulin responses to exercise
prevented hepatic glucose output and glycogen breakdown during exercise as
expected, while simulation of the pancreatic hormone response to exercise restored
the increase in hepatic glucose production and glycogen breakdown. Despite the
distinct responses to exercise by the liver, it is remarkable that hepatic glucose
uptake is increased equally in response to a glucose load and hyperinsulinemia.
The fate of the glucose consumed by the liver is where a difference exists. When
pancreatic hormone responses were simulated a greater fraction of the glucose
consumed by the liver was directed to glycogen (Pencek et al. 2004). These
experiments showed that the replenishment of glycogen but not the increase in
hepatic glucose uptake is reliant on the pancreatic hormone response during
exercise.

Exercise also leads to a number of other endocrine changes. It is possible, for
example, that the exercise-stimulated glucocorticoid response may prime the liver to
take up more glucose since this hormone can stimulate hepatic glycogen deposition
(Long et al. 1940). Myokines, hepatokines, and adipokines may also have implica-
tions for the post-exercise increase in liver insulin sensitivity and glycogen repletion.
Adiponectin and irisin released from adipocytes (Bouassida et al. 2010) and
myocytes (Arias-Loste et al. 2014), respectively, have insulin-sensitizing effects at
the liver. It is notable that the effects of prior exercise cause persistent effects on
processes and enzymes involved in liver glucose metabolism that are sustained well
after the cessation of exercise (Dohm et al. 1985). Prior exercise also has effects on
the intestinal tract that may facilitate glycogen repletion. Prior exercise increases
intestinal absorption of intragastric or ingested glucose (Maehlum et al. 1978;
Hamilton et al. 1996; Pencek et al. 2003b) by passive absorption (Pencek et al.
2003b).
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11.4 Hepatic Adaptation to Exercise Training

Habitual exercise places chronic demand on the integrative metabolic functions of
the liver. As such, the liver responds through a host of adaptations to enhance
exercise capacity. Importantly, these hepatic adaptations can improve pathology-
associated metabolic indices such as hepatic lipid content, thereby reducing suscep-
tibility to nonalcoholic fatty liver disease (NAFLD) (Trefts et al. 2015; Thyfault and
Rector 2020). Clinical studies of hepatic responses to exercise have established
epidemiological associations between health outcomes, biochemical markers of
liver function, and hepatic lipid content with physical activity (Perseghin et al.
2007; Caldwell and Lazo 2009). These studies demonstrate correlations of regular
physical activity with decreased hepatic lipid content and decreased incidence of
NAFLD (Church et al. 2006; Zelber-Sagi et al. 2008). However, a more complete
understanding of the mechanistic underpinnings of these relationships is still needed.

As previously noted, studying hepatic metabolism and responses in humans is
generally limited by access to the organ and its circulatory components. Risks
associated with obtaining liver biopsy samples limit the opportunity for mechanistic
insights to effects of exercise in humans. As such, a variety of animal models have
proven valuable for defining hepatic adaptations to exercise and the implications of
these adaptations to clinically relevant pathologies such as NAFLD. Among these
models, the Otsuka Long-Evans Tokushima Fatty (OLETF) rat presents with char-
acteristics that mirror clinical progression of the metabolic syndrome from peripheral
insulin resistance to the loss of beta cell function (Kawano et al. 1992). Exercise
training has been applied to the OLETF rat as a preventative and interventional
strategy for metabolic dysfunction and progression of NAFLD relevant phenotypes.
Regardless of modality, exercise training of OLETF rats improves overall metabolic
health indicated by improved glucose tolerance and calculated insulin sensitivity.
Modified indicators of hepatic lipid and glucose metabolism represent potential
contributors to these shifts in overall metabolic health. Specifically, exercise-induced
reductions in steatosis are likely tied to a decrease in lipid synthesis coupled with
increased lipid oxidation (Rector et al. 2008, 2011; Borengasser et al. 2012; Linden
et al. 2014). Decreased levels of lipogenic enzymes such as fatty acid synthase (FAS)
and acetyl-CoA carboxylase (Acc) coupled with inhibitory phosphorylation of Acc
likely combine to limit contributions of lipid synthesis to steatosis. Exercise-induced
reduction of hepatic FAS protein was also observed in swim-trained C57Bl6/J mice
fed either a standard chow or a high-fat diet (Schultz et al. 2012). The conservation
of training-induced reductions in hepatic lipid synthesis enzymes across multiple
species and dietary regimens reinforces this effect as a primary metabolic adaptation
to exercise. Endurance exercise training also promotes hepatic lipid oxidation as
indicated by increased oxidation of palmitate to CO2 in the OLETF model and a
decrease in incomplete palmitate oxidation in livers of Sprague-Dawley rats on a
low-fat chow diet (Linden et al. 2014; Fletcher et al. 2014). Elevated mitochondrial
content and/or function may underlie these exercise-mediated improvements in
hepatic lipid oxidation. This is indicated by elevated hepatic mitochondrial
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respiratory function, cytochrome c oxidase levels, CPT-1 activity, β-HAD activity,
citrate synthase activity, and TR4 protein in response to training (Rector et al. 2008;
Haase et al. 2011; Borengasser et al. 2012; Lezi et al. 2013; Fletcher et al. 2014;
Linden et al. 2015). Interestingly, elevated indicators of hepatic lipid oxidation have
also been observed in rats bred for an intrinsically higher aerobic capacity (Morris
et al. 2014). Models of exercise training and increased intrinsic aerobic capacity are
linked by enhanced hepatic mitochondrial integrity during NAFLD progression
(Gonçalves et al. 2014a, b; Morris et al. 2017). Therefore, the importance of
mitochondrial quality control processes such as biogenesis, networking between
mitochondria, and turnover may represent targets to begin harnessing the therapeutic
efficacy of exercise in the liver.

Many training-mediated shifts in hepatic metabolism described occur in the
presence of weight loss or prevention of weight gain during obesogenic stimuli.
This makes it difficult to distinguish training-mediated from weight-mediated
effects. Several clinical studies have addressed this issue and demonstrated a weight
loss independent component of regular exercise that reduces hepatic lipid content
(Shojaee-Moradie et al. 2007; Johnson et al. 2009; van der Heijden et al. 2010;
Hallsworth et al. 2011; Sullivan et al. 2012). While the ability of exercise to reduce
circulating triglycerides and free fatty acids appears to be dependent on weight loss
(Tamura et al. 2005; Rector et al. 2008, 2011; Johnson et al. 2009; Marques et al.
2010; Hallsworth et al. 2011; Borengasser et al. 2012; Jenkins et al. 2012; Schultz
et al. 2012; Linden et al. 2014), weight loss independent shifts from visceral to
peripheral adipose depot fat storage have been reported (Johnson et al. 2009; van der
Heijden et al. 2010). This may indicate a dynamic shift in hepatic lipid fluxes with
decreased provision of lipids from visceral adipose depots directly to the portal vein
that perfuses the liver. Training-induced decreases in hepatic lipid content are not
accompanied by altered VLDL-TG or VLDL-ApoB100 secretion rates (Sullivan
et al. 2012). This would predictably cause a redistribution of lipid to peripheral
depots. Additionally, exercise training also seems to stimulate the use of lipid
substrates in humans (Hallsworth et al. 2011; Fealy et al. 2012). Whether these
increases in lipid metabolism are due, in part, to hepatic shifts in lipid oxidation, like
those observed in rodent models, is yet to be determined. Exercise also induces
weight loss independent improvements in hepatic insulin sensitivity, which has
implications for other obesity-related pathologies including the metabolic syndrome
and type 2 diabetes (Coker et al. 2009).
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Chapter 12
Influence of Exercise on Cardiac
Metabolism and Resilience

Andrew A. Gibb, Kyle Fulghum, Bradford G. Hill, John Quindry,
and Gary D. Lopaschuk

Abstract The numerous health benefits that derive from exercise are associated
with remarkable changes in metabolism. With respect to the heart, exercise acutely
increases cardiac energy demand, which, in concert with alterations in circulating
hormones and energy substrates, augments cardiac ATP production by increasing
the utilization of several substrates. However, reliance of the heart on different
energy substrates varies as a product of nutritional state as well as the type, intensity,
and duration of exercise. Chronic aerobic and resistance exercise training is associ-
ated with eccentric or concentric cardiac growth, metabolic adaptations such as
mitochondrial biogenesis, and enhanced hormonal signaling, which collectively
support a physiological state of adaptation. The exercise-adapted state is also
associated with significant protection of the heart from a range of biological
stressors, including myocardial ischemia-reperfusion injury. The cardioprotected
state of exercise is due in part to upregulation of antioxidant enzymes, preservation
of mitochondrial integrity, and metabolic resilience. Further understanding of how
exercise-mediated changes in metabolism orchestrate cardiac adaptation and protec-
tion could facilitate therapeutic strategies to maximize the benefits of exercise and
improve cardiac health.
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12.1 Introduction

Although physical inactivity is a health risk, it is a modifiable one. The first
documented study of the beneficial effects of an active lifestyle was in 1953. This
study showed that those in more physically active jobs had a lower incidence of
cardiovascular events and a lower early mortality rate than their sedentary counter-
parts (Morris et al. 1953). Along with this observation, the benefits of physical
activity have only become more noticeable over the years. Regular exercise has been
shown to promote cardiovascular health (Blair et al. 1996; Joyner and Green 2009;
Mora et al. 2007), augment skeletal muscle function (Egan and Zierath 2013), and
increase both health span (Egan and Zierath 2013; de Cabo et al. 2014; Mercken
et al. 2012) and life span (Blair et al. 1989, 1996; Myers et al. 2002; Paffenbarger Jr
et al. 1986). Physical fitness, commonly measured by exercise capacity, is a more
powerful predictor of mortality than other established cardiovascular risk factors
such as hypertension, blood lipids, and smoking (Myers et al. 2002). Exercise-
induced changes in the heart and vasculature are in part responsible for improve-
ments in health and in resilience to a range of stressors (Nystoriak and Bhatnagar
2018). Similar to its effects on skeletal muscle (Egan and Zierath 2013), exercise
alters metabolism in the heart and promotes structural and functional adaptations.
The adapted state following training is also associated with significant protection of
the heart from myocardial ischemia (Andrews Portes et al. 2009; Barboza et al.
2013), pressure overload (Xu et al. 2015), and diabetes (Stolen et al. 2009). In this
chapter, we discuss how exercise influences the heart, with particular focus on how
exercise influences cardiac metabolism and resilience.

12.2 Integrated Cardiac Responses to Exercise

12.2.1 Acute Changes in Cardiac Physiology

Acute changes in cardiac physiology during exercise coordinate with alterations in
several peripheral tissues. During exercise, increases in cardiac output, along with
physiological adjustments in both ventilation and vascular resistance, help to sustain
skeletal muscle work (Heinonen et al. 2014). Changes in cardiac function occur
immediately and commence with an increase in heart rate and stroke volume
(Weiner and Baggish 2012; No Authors 1967); however, after prolonged moderate-
to high-intensity aerobic exercise (e.g., >20 min), heart rate tends to increase further
and stroke volume begins to drop. This phenomenon, commonly termed cardiovas-
cular drift, helps to maintain cardiac output (Rowell et al. 1969; Rowell 1986; Coyle
and Gonzalez-Alonso 2001; Rowland 2008). These coordinated changes, along with
changes in vascular function, integrate to increase blood flow to skeletal muscle,
with cardiac output distribution to working muscle tracking with exercise intensity
(Plowman and Smith 2017; Fulghum and Hill 2018).
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Resistance exercise typically increases blood pressure, due in part to mechanical
restriction of blood flow during contraction. Compared with aerobic exercise, these
features of resistance exercise cause markedly different cardiac responses. For
example, the modest increase in cardiac output during resistance exercise is pre-
dominantly due to higher heart rate, with little change in stroke volume (Clausen
1976; Bezucha et al. 1982). Heart rate tends to increase with the number of
repetitions, leading to larger increases in cardiac output (Hill and Butler 1991).
During heavy weightlifting, the heart must also work against a much higher afterload
because spikes in blood pressure can transiently reach levels of 320/250 mmHg
(MacDougall et al. 1985) or higher. Overall, the degree to which blood pressure
increases during resistance exercise seems to be a function of physical effort, muscle
mass, and the Valsalva maneuver breathing pattern performed during strength
training (Hill and Butler 1991; MacDougall et al. 1992).

12.2.2 Cardiac Energy Metabolism During Exercise

Exercise increases cardiac contractile power and oxygen consumption up to tenfold
above resting rates (Lopaschuk et al. 2010; Olver et al. 2015; Lombardo et al. 1953).
This requires a rapid increase in energy substrate utilization and ATP production. Even
under resting conditions, the heart must produce high amounts of ATP to sustain
contractile function. Mitochondrial oxidative phosphorylation provides approximately
95% of the heart’s ATP requirements, with the remainder of the ATP production
originating from glycolysis. Even under resting conditions, mitochondria use a variety
of energy substrates to produce ATP, which include fatty acids, pyruvate originating
from glucose and lactate, ketone bodies, and amino acids (Fig. 12.1). The increase in
contractile power observed with exercise is accompanied by a dramatic increase in
ATP production from both mitochondrial oxidative metabolism and glycolysis (Oram
et al. 1973). Mitochondrial oxidative metabolism of all energy substrates may also
increase, although the relative contribution of the various energy substrates to ATP
production can vary quite dramatically (Fig. 12.1). It is also possible and important to
consider that although some substrates may increase in their uptake during exercise,
they are not destined for oxidation and their percent contribution to total ATP
production may change. As detailed below, this regulation of cardiac metabolism is
a product of changes in circulating energy substrates, circulating hormones, and the
molecular changes that control energy pathways.

Energy Substrate Availability With respect to metabolic substrate availability,
acute exercise increases the circulating levels of multiple substrates (Fig. 12.2)
(Gertz et al. 1988; Kaijser and Berglund 1992; Kemppainen et al. 2002; Lassers
et al. 1971; Goodwin and Taegtmeyer 2000; Goodwin et al. 1998a). Increases in
circulating free fatty acids (FFA) during exercise are caused primarily by activation
of lipolysis in adipose tissue, which can increase blood FFA concentrations up to
2.4 mM (Rodahl et al. 1964), thereby increasing their uptake and utilization (Lassers
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et al. 1972a, b; Wisneski et al. 1987). The increase in fatty acid oxidation rates seen
in the heart during exercise seem to primarily occur due to the increase in circulating
fatty acid levels and to mass-action effects of fatty acid oxidation accelerating due to
decreases in downstream fatty acid intermediates (Oram et al. 1973). Malonyl CoA,
a potent inhibitor of carnitine palmitoyltransferase 1, is an important regulator of
fatty acid oxidation in the heart (Lopaschuk et al. 2010). In skeletal muscle, a
decrease in malonyl CoA, due to an exercise-induced activation of AMP-activated
protein kinase (AMPK, which decreases malonyl CoA due to phosphorylation and
inhibition of acetyl CoA decarboxylase), can increase fatty acid oxidation rates
(Kuhl et al. 2006; Saha et al. 1995). However, while AMPK is activated in the
heart during exercise (Musi et al. 2005), this is not accompanied by a decrease in
malonyl CoA levels (Goodwin and Taegtmeyer 2000). As a result, it is unlikely that
the increase in cardiac fatty acid oxidation rates seen during exercise is due to
alterations in malonyl CoA control of mitochondrial fatty acid uptake. However,
higher circulating FFAs appear to only be partly responsible for increasing fatty acid
oxidation because higher cardiac workloads are sufficient to increase fatty acid
oxidation in the heart (Oram et al. 1973; Bergman et al. 2009a). Cardiac
triacylglycerol (TAG) utilization also increases with exercise (Lassers et al. 1971)
and is further stimulated by lactate availability (de Groot et al. 1993), highlighting
the importance of endogenous fatty acid stores of the heart. Interestingly, it seems

Fig. 12.1 Substrate contributions to cardiac ATP production during rest and exercise. Mitochon-
drial oxidative phosphorylation is responsible for meeting ~95% of the heart’s ATP demand. Under
normal resting conditions, the heart primarily oxidizes fatty acids and glucose to meet this energetic
demand, with the remaining contributions derived from lactate, pyruvate, ketone bodies, branched
chain amino acids (BCAAs), and other anaplerotic amino acids. During exercise, the heart’s
demand for ATP can increase tenfold, which is dependent upon the mode, duration, and intensity
of the exercise bout. This results in dramatic remodeling of substrate use for energy provisions,
specifically with an increase in lactate and fatty acid oxidation and an apparent decrease in glucose
oxidation
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that although cardiac TAG lipolysis increases with exercise, the synthesis of TAGs
also increases, which leads to a relatively rapid recovery of TAGs after an exercise
bout (Podbielski and Palmer 1989).

Although most studies suggest that circulating glucose levels are relatively stable
during exercise, some studies show that glucose levels decrease (Rodahl et al. 1964;
Coyle 2000) or increase during exercise (Fig. 12.2) (Kemppainen et al. 2002). Such
changes may depend on several factors including the intensity, duration, and mode
of exercise and the current nutritional state of the individual. Although increases in
cardiac workload and moderate exercise are associated with elevations in myocardial
glucose uptake and oxidation (Gertz et al. 1988; Kemppainen et al. 2002; Goodwin
and Taegtmeyer 2000; Goodwin et al. 1998a), elevations in competing substrates
(e.g., lactate, FFAs, ketone bodies) brought upon by exercise may in fact decrease
glucose catabolism (Kemppainen et al. 2002; Lassers et al. 1971; Goodwin and
Taegtmeyer 2000; Takala et al. 1983). Indeed, studies in humans and animal models
suggest that exercise lowers oxygen extraction ratios for glucose and decreases
myocardial glucose utilization (Lassers et al. 1971; Takala et al. 1983). Moreover,
recent findings suggest that relatively intense exercise decreases the activity of
phosphofructokinase, which could diminish glucose catabolism temporarily and
may be caused in part by elevations in competing substrates (Gibb et al. 2017a;
Brookes and Taegtmeyer 2017). A transient decrease in glycolysis during intense
exercise appears important for exercise-induced cardiac growth because low phos-
phofructokinase activity caused by expression of a cardiac-specific, kinase-deficient
6-phosphofructokinase/fructose-2,6-bisphosphatase transgene (GlycoLo mice) par-
tially phenocopies the exercise-adapted heart and regulates genes (e.g., Cebpb,
Cited4 (Bezzerides et al. 2016; Bostrom et al. 2010)) required for myocardial growth
(Gibb et al. 2017a). Moreover, the increase in cardiac glycogen levels after intense
exercise (Gibb et al. 2017a; Oliveira et al. 2018; Riehle et al. 2014; Segel et al. 1975)
seems to be caused by higher levels of circulating FFA, lower cardiac phosphofruc-
tokinase activity, and higher glycogen synthase activity (Gibb et al. 2017a; Conlee
et al. 1981; Conlee and Tipton 1977; Garcia et al. 2009; Segel and Mason 1978).

In mice, exercise promotes acute fission of cardiac mitochondria, the process by
which one mitochondrion separates into two, in a manner dependent on adrenergic
signaling, which appears to enhance mitochondrial function (Coronado et al. 2017).
Periodic mitochondrial fission may be important for regulating glucose and lipid
metabolism (Salabei and Hill 2013; Buck et al. 2016) as well as mitochondrial
quality control. For the latter, mitophagy appears to be increased in the heart during
and shortly after a bout of exercise (Ogura et al. 2011; Lee et al. 2016) and could cull
defective mitochondria via autophagy (Shirihai et al. 2015; Vasquez-Trincado et al.
2016; Hill et al. 2012), a process important for the enhanced oxidative metabolism

Fig. 12.2 (continued) physiological conditions (b), the concentrations of which are directly
influenced by exercise intensity (c). BCAAs, branched chain amino acids; CA, catecholamines;
Ca2+, calcium; FFA, free fatty acids; GCG, glucagon
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observed in the trained heart. Collectively, these findings suggest that exercise-
induced changes in glycolytic rate and mitochondrial metabolism may regulate the
cardiac growth program, changes that are likely dependent on the type, intensity, and
duration of exercise.

Circulating lactate levels can increase robustly with intense exercise, which is
significant because lactate extraction by the heart is dependent on arterial lactate
concentration (Gertz et al. 1980). Specifically, intense exercise (e.g., 60–80% of
VO2max) promotes large increases in arterial lactate (Stanley 1991), which can
increase five- to tenfold (to >10 mM) during the exercise bout. This increase in
lactate is due primarily to lactate extrusion by working skeletal muscle (Fig. 12.2),
although several other tissues can influence lactate levels (Jang et al. 2019; Hui et al.
2020). During exercise, lactate oxidation could account for up to 60–90% of
substrate utilization (Kaijser and Berglund 1992; Bertrand et al. 1977; Drake et al.
1980; Keul 1971). Although exercise at lower intensities, e.g., 40% of VO2 max,
does not increase circulating lactate remarkably (Gertz et al. 1988), the contribution
of lactate oxidation to myocardial oxidative metabolism appears higher than that
occurring in the sedentary state (Gertz et al. 1988). Interestingly, why the myocar-
dium has been shown itself to release lactate, net extraction still occurs (Gertz et al.
1981). Of note, lactate may enhance fatty acid oxidation in the heart (Goodwin and
Taegtmeyer 2000), which further increases ATP generation under high workloads.

Plasma metabolomic profiling studies show that other critical substrates such
as ketone bodies as well as many TCA cycle metabolites are influenced by exercise
(Lewis et al. 2010; Morville et al. 2020). Ketone bodies such as β-hydroxybutyrate
and acetoacetate are important sources of ATP production for the heart; in the
presence of high ketone body concentrations, ketone body oxidation can become
the major fuel for the heart (Ho et al. 2021). A critical determinant of cardiac ketone
body oxidation rates is their circulating levels (Ho et al. 2019, 2021). Blood ketone
body levels can increase with exercise, but less so in trained athletes or in individuals
who eat a high-carbohydrate meal before exercise (Koeslag et al. 1980). As keto-
genesis occurs in conditions of low glucose, it is possible that ketone body produc-
tion and utilization may occur following exercise exhaustion or in athletes
experiencing reactive hypoglycemia. The most significant exercise-induced rises in
circulating ketone body levels appear to occur shortly after a bout of exercise, with
400% higher levels of β-hydroxybutyrate reported to occur 1 h after exercise in
humans (Walsh et al. 1998). While some studies suggest that exercise training
prevents post-exercise ketosis, other studies indicate that exercise training augments
ketone body levels more in trained subjects than in untrained subjects (Koeslag
1982). Recent studies also indicate that β-hydroxybutyrate levels increase more after
endurance exercise than after resistance exercise (Morville et al. 2020). Therefore,
whether the contribution of cardiac ketone oxidation to ATP production increases
during or early after exercise may depend on nutritional state, the level of physical
fitness, and the type of exercise, with endurance exercise influencing ketone body
utilization more than resistance exercise.
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Hormonal Regulation of Cardiac Metabolism with Exercise In addition to circu-
lating substrates, cardiac metabolism is regulated by hormonal changes (Fig. 12.2).
For example, moderate acute exercise increases plasma catecholamine concentra-
tions two- to fourfold (Kreisman et al. 2000, 2001), whereas intense exercise can
increase plasma epinephrine and norepinephrine levels by 14- to 18-fold (Kjaer et al.
1986; Manzon et al. 1998; Marliss et al. 1991). A primary function of catechol-
amines in the heart is to increase contractility: catecholamines enhance cytosolic
calcium (Ca2+), which is required for excitation-contraction coupling. This increase
in cytosolic Ca2+ also increases mitochondrial Ca2+ uptake through the mitochon-
drial Ca2+ uniporter. Heightened levels of intramitochondrial Ca2+ enhance oxida-
tive phosphorylation via the activation of Ca2+-dependent dehydrogenases, which
helps match higher energetic demands with increased contractility (Glancy and
Balaban 2012; Kwong et al. 2015; Luongo et al. 2015). Exercise-induced increases
in catecholamines also stimulate adipose tissue lipolysis (Arner et al. 1990a;
Hellstrom et al. 1996), a response mitigated by local adipose tissue β-adrenergic
blockade (Arner et al. 1990b; Bulow 1981), and may also augment skeletal muscle
lactate production (Febbraio et al. 1998; Qvisth et al. 2008), thereby increasing
circulating fatty acid and lactate levels. In the isolated heart, catecholamines increase
glucose uptake, glycogenolysis, glycolysis, and glucose oxidation, increasing their
contributions to ATP production (Collins-Nakai et al. 1994; Goodwin et al. 1998b);
however, the in vivo response may differ because of the elevated levels of competing
substrates available to the heart during intense exercise (e.g. FFA, lactate).

Plasma insulin is perhaps the most potent regulator of systemic metabolism, as its
primary action is to increase glucose uptake through the activation of Akt2, which
promotes Glut4 translocation to the membrane (DeBosch and Muslin 2008). During
exercise, insulin levels decrease modestly (Kreisman et al. 2001; Kjaer et al. 1986), a
response that may prevent hypoglycemia as muscle glucose uptake positively
correlates with exercise intensity (Kjaer et al. 1986; Manzon et al. 1998; Marliss
et al. 1991) (see Fig. 12.2). The corresponding decrease in insulin receptor activation
may diminish cardiac uptake of glucose acutely; however, increased contraction,
such as occurs with exercise, has been shown to be sufficient to promote Glut4
translocation to the cardiomyocyte plasma membrane (Kolter et al. 1992; Till et al.
1997), which may involve both the AMPK- and PKC-mediated signaling (Luiken
et al. 2008, 2015). It is also possible that lower levels of insulin contribute to the
switch to utilization of fatty acids during exercise. Because insulin is a known
inhibitor of adipose tissue lipolysis (Degerman et al. 1998; Duncan et al. 2007),
exercise-induced decreases in insulin may prevent inhibition of lipolysis, thereby
increasing blood fatty acid levels.

Insulin-like growth factor 1 (IGF1) and its receptor (IGF1r) are well known to
regulate cardiac adaptation to exercise. During acute exercise, the anterior pituitary
gland promotes release of growth hormone (GH), which increases IGF1 production
in the liver (Schwarz et al. 1996; Sutton and Lazarus 1976). Additionally, exercise
increases local IGF1 production in several target tissues, including the heart, thereby
acting in an autocrine or paracrine fashion (Neri Serneri et al. 2001). Although IGF1
may activate AKT1 rather than AKT2 to control cardiac growth signaling (DeBosch
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et al. 2006a, b), it nevertheless increases the amplitude of cytosolic Ca2+ transients
and the peak free Ca2+ concentration (Freestone et al. 1996; Stromer et al. 1996)
leading to an increase in mitochondrial Ca2+ uptake and mitochondrial respiration
(Troncoso et al. 2012). Cardiac glucose metabolism also seems affected by IGF1
signaling because glucose uptake and PFK2 phosphorylation are enhanced in
response to IGF1 (Pentassuglia et al. 2016; Pozuelo Rubio et al. 2003). As IGF1 is
a critical growth factor, it is likely that the metabolic effects of IGF1 develop
post-exercise once liver IGF1 production has occurred and tissue protein synthesis
takes place.

Acute exercise also stimulates the release of a number of other hormones. This
includes stimulation of the renin–angiotensin–aldosterone axis, resulting in
increased circulating renin, aldosterone, angiotensin II, and ACTH (Luger et al.
1988; Maeda et al. 2005). Increases in the satiety hormones, peptide tyrosine,
glucagon-like peptide 1 (GLP-1), and pancreatic polypeptide are also seen with
exercise (although no change in leptin levels is observed) (Hulver and Houmard
2003), as well as a decrease in the oxerigenic hormone, acylated ghrelin (Dorling
et al. 2018). Moreover, exercise may also affect levels of thyroid hormones (Caralis
et al. 1977; Ciloglu et al. 2005; Deligiannis et al. 1993) and glucagon (Galbo et al.
1975; Gyntelberg et al. 1977). Glucagon is particularly interesting because, along
with insulin, it helps to maintain plasma glucose homeostasis (Trefts et al. 2015;
Wolfe et al. 1986) and can influence the heart via hormonal signaling (Charron and
Vuguin 2015; Petersen et al. 2018) and modulate cardiac function and metabolism
(Gonzalez-Munoz et al. 2008; Harney and Rodgers 2008; Karwi et al. 2019).
Glucagon also stimulates ketogenesis in diabetics (Liljenquist et al. 1974); however,
whether this occurs during exercise when insulin levels are modestly decreased is
unknown. Combined, these hormonal changes can contribute to an increase in
circulating fatty acids and an insulin-resistant effect at the muscle level (Dorling
et al. 2018; Ogihara et al. 2002; Taniyama et al. 2005). The many hormonal changes
seen during acute exercise appear to contribute to a rise in circulating fatty acids and
lactate, resulting in an increase in their use by the heart.

Direct Myocardial Control of Energy Metabolism During Exercise Increases in
contractile activity in the heart are accompanied by increases in glycolysis, mito-
chondrial TCA cycle activity, and oxidative phosphorylation (Oram et al. 1973).
Mitochondrial oxidative metabolism of all energy substrates also increases with
cardiac work, although the relative proportion of individual energy substrates can
change. Acute increases in contractile activity of the heart (such as seen with
exercise) result in a preferential increase in ATP production from glycolysis and
glucose oxidation (Goodwin et al. 1998a; Collins-Nakai et al. 1994; Williamson
1964). During exercise or atrial pacing, cardiac glucose uptake and glycolysis are
increased, accompanied by an increase in glucose oxidation and an increase in
lactate release from the heart (Gertz et al. 1988; Bergman et al. 2009b; Stanley
et al. 1988). The rise in glucose oxidation is probably the result of an increase in
mitochondrial Ca2+, which occurs during exercise (Dawn et al. 2004; Huang et al.
2007, 2009), resulting in an activation of pyruvate dehydrogenase (PDH) (Collins-
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Nakai et al. 1994), the rate-limiting enzyme for glucose oxidation. A rise in cyto-
plasmic Ca2+ may also contribute to the increase in glycolytic rates seen during
increased cardiac work (Collins-Nakai et al. 1994).

Despite the increased preference of the heart for glycolysis and glucose oxidation
during increases in cardiac work, a rise in circulating fatty acids and lactate can
switch cardiac energy substrate preference toward fatty acid oxidation and lactate
oxidation during acute exercise. In rat hearts exposed to the high fatty acids and
lactate levels seen during exercise, the relative contribution of lactate oxidation to O2

consumption at high workload increases from 4 to 21%, while fatty acid oxidation
increases from 35 to 44% of O2 consumption (Goodwin and Taegtmeyer 2000). An
increase in cardiac work by atrial pacing human subjects also results in an increase in
cardiac fatty acid uptake (Bergman et al. 2009a). An increase in myocardial
triacylglycerol turnover is also observed, further increasing the relative contribution
of fatty acid oxidation to ATP production (Goodwin and Taegtmeyer 2000; Saddik
and Lopaschuk 1991). In addition to the increase in circulating levels of lactate seen
during exercise, the activation of cardiac PDH due to increased mitochondrial Ca2+

levels could also contribute to increases in the contribution of lactate-derived
pyruvate for mitochondrial oxidative metabolism.

12.2.3 Chronic Effects of Exercise on the Heart

Exercise can promote mild cardiac hypertrophy or chamber enlargement (Weiner
and Baggish 2012; DeMaria et al. 1978; Maillet et al. 2013), which is reversible
upon prolonged exercise cessation (Maron et al. 1993; Olah et al. 2017; Waring et al.
2015) (Fig. 12.3a). Exercise intensity appears to determine the degree of physiolog-
ical cardiac remodeling, with exercise-induced hemodynamic changes providing a
stimulus for cardiac adaptation. Isometric or static exercises such as weightlifting
result in little change in cardiac output and are associated with mild concentric
hypertrophy and a normal to mildly enlarged left atrium. This increase in cardiac
wall thickness is caused by the parallel addition of sarcomeres within
cardiomyocytes. Prolonged isotonic or dynamic aerobic exercise, such as long-
distance running or swimming, requires sustained elevations in cardiac output and
promotes eccentric left ventricular hypertrophy, right ventricular dilation, and
biatrial enlargement (Weiner and Baggish 2012; Fulghum and Hill 2018;
Morganroth et al. 1975; Spence et al. 2011; Mihl et al. 2008). This form of cardiac
hypertrophy is associated with addition of cardiomyocyte sarcomeres in series.
Endurance training-induced cardiac remodeling has been suggested to be phasic in
nature, with one study suggesting initial concentric LV hypertrophy giving way to
later eccentric LV hypertrophy (Arbab-Zadeh et al. 2014) and another suggesting
increases in chamber size followed later by increases in wall thickness (Weiner et al.
2015).

Regular intense endurance exercise typically decreases resting and submaximal
heart rates (DeMaria et al. 1978; Utomi et al. 2013); however, the effects of exercise

272 A. A. Gibb et al.



F
ig
.
12

.3
S
tr
uc
tu
ra
l
an
d
m
et
ab
ol
ic

ca
rd
ia
c
ad
ap
ta
tio

ns
to

ex
er
ci
se

tr
ai
ni
ng

.
E
xe
rc
is
e-
in
du

ce
d
re
m
od

el
in
g
re
sp
on

se
s
in

th
e
he
ar
t
ar
e
de
pe
nd

en
t
up

on
th
e

in
te
ns
ity

,
du

ra
tio

n,
an
d
m
od

e
of

ex
er
ci
se

tr
ai
ni
ng

.
(a
)
P
ro
lo
ng

ed
ae
ro
bi
c
ex
er
ci
se

le
ad
s
to

se
ri
es

ad
di
tio

n
of

sa
rc
om

er
es

th
at

m
an
if
es
ts

as
an

ec
ce
nt
ri
c

hy
pe
rt
ro
ph

ic
re
sp
on

se
w
ith

pr
op

or
tio

na
l
in
cr
ea
se
s
in

L
V

ch
am

be
r
di
m
en
si
on

an
d
L
V
W
T
.
R
es
is
ta
nc
e
tr
ai
ni
ng

le
ad
s
to

a
pa
ra
lle
l
ad
di
tio

n
of

sa
rc
om

er
es

th
at

m
an
if
es
ts

as
a
co
nc
en
tr
ic

hy
pe
rt
ro
ph

ic
re
sp
on

se
w
ith

m
in
im

al
ch
an
ge
s
in

L
V

ch
am

be
r
di
m
en
si
on

,
bu

t
in
cr
ea
se
d
L
V
W
T
.
(b
)
E
xe
rc
is
e-
in
du

ce
d
m
et
ab
ol
ic

12 Influence of Exercise on Cardiac Metabolism and Resilience 273



on other indices of cardiac function such as systolic and diastolic heart function are
less noticeable. For example, a meta-analysis of athletes participating in endurance,
strength, or combined dynamic and static sports suggests little change in systolic or
diastolic function compared with control subjects (Pluim et al. 2000). Nevertheless,
several studies identified changes in diastolic function in exercise-adapted subjects.
Endurance exercise appears to enhance diastolic function modestly (Utomi et al.
2013; Baggish et al. 2010; Naylor et al. 2005; Caso et al. 2000; Prasad et al. 2007;
D’Andrea et al. 2010; Baggish et al. 2008a), and strength training may diminish
diastolic function, as suggested by studies showing impairment of left ventricular
relaxation in football players (Baggish et al. 2008a). In the rested state, regular
exercise does not remarkably change ejection fraction or fractional shortening
(Utomi et al. 2013; Bar-Shlomo et al. 1982; Bekaert et al. 1981; Douglas et al.
1986; Gilbert et al. 1977); however, subtle changes captured by tissue Doppler and
speckle-tracking echocardiography suggest modestly enhanced systolic function in
subjects adapted to exercise (Baggish et al. 2008b; Weiner et al. 2010; Simsek et al.
2013). In addition, exercise appears to promote modest cardiomyocyte proliferation
(Waring et al. 2014; Vujic et al. 2018).

12.2.3.1 Metabolic Adaptation of the Heart to Chronic Exercise
Regimens

A large body of evidence suggests that chronic exercise promotes adaptive metabolic
remodeling in the myocardium (Fig. 12.3b). Chronic exercise-induced cardiac
hypertrophy is accompanied by a modest increase in mitochondrial abundance,
which appears to be caused by increased eNOS-dependent mitochondrial biogenesis
(Vettor et al. 2014). This could result in an increased capacity for mitochondrial ATP
synthesis by oxidative phosphorylation (Beer et al. 2008; Bruning and Sturek 2015;
Gibb and Hill 2018; Kemi et al. 2007; Seo et al. 2016; Stolen et al. 2003).
Nevertheless, the extent to which metabolism changes and even the direction of
the changes remain unclear. Perfused mouse heart studies suggest that chronic
exercise increases baseline levels of glycolysis (Gibb et al. 2017a), glucose oxida-
tion, and fatty acid oxidation (Riehle et al. 2014). In contrast, basal cardiac glycol-
ysis has been suggested to be diminished in exercise-adapted rats compared with
hearts from sedentary controls, despite increases in myocardial glucose and palmi-
tate oxidation (Burelle et al. 2004). As a result, while studies are inconsistent as to

Fig. 12.3 (continued) remodeling in the heart includes mitochondrial biogenesis and overall
increases in oxidative metabolism (e.g., glucose and FFA oxidation). eNOS, endothelial nitric
oxide synthase; FAT/CD36, fatty-acid translocase; GLUT1/4, glucose transporter 1/4; LA, left
atrium; LV, left ventricle; LVWT, left ventricular wall thickness; NO, nitric oxide; PGC-1α,
peroxisome proliferator-activated receptor gamma coactivator 1-alpha; RA, right atrium; RV,
right ventricle

274 A. A. Gibb et al.



whether glycolysis increases or decreases with chronic exercise, they are consistent
in showing an increase in glucose oxidation. This may be explained in part by the
increased mitochondrial oxidative capacity following chronic exercise training. In
support of the increase in fatty acid oxidation, upon exercise adaptation, genes
responsible for fatty acid transport and catabolism are elevated, which integrate to
amplify cardiac fatty acid utilization (Strom et al. 2005; Bonen et al. 2000; Jeppesen
et al. 2009). These metabolic changes may depend on exercise intensity because a
moderate-intensity treadmill regimen showed no effect on myocardial glucose
oxidation, palmitate oxidation, or oxygen consumption, whereas a high-intensity,
interval style regimen increased glucose oxidation, diminished palmitate oxidation,
and decreased resting myocardial oxygen consumption (Hafstad et al. 2011). The
reasons for discrepancies are not known but may include the use of different rodent
strains or types of exercise, or differences in cardiac perfusion protocols.

Because rate-limiting steps of glycolysis have been suggested to modulate bio-
synthetic pathways (Gibb and Hill 2018), it is likely that periodic changes in
phosphofructokinase activity occurring during exercise regimens may be important
for modulating cardiac anabolism and growth. The phosphofructokinase step of
glycolysis could be particularly important for regulating the pentose phosphate
pathway (PPP), which is important for nucleotide synthesis and redox regulation
(Yamamoto et al. 2014; Yi et al. 2012; Boada et al. 2000; Blackmore and Shuman
1982). Indeed, modeling studies in the adult heart demonstrate that phosphofructo-
kinase activity is a key regulator of both the PPP and the polyol pathway (Cortassa
et al. 2015). In isolated cardiac myocytes, phosphofructokinase activity also modu-
lates the hexosamine biosynthetic pathway (HBP) and the glycerophospholipid
synthesis pathway (GLP), potentially by modulating glycolytic intermediate avail-
ability and by indirectly regulating mitochondria-derived molecules important for
building block synthesis (e.g., aspartate) (Gibb et al. 2017b). Metabolomic studies
indicate that phosphofructokinase activity also influences several amino acid and
lipid metabolites in the heart (Gibb et al. 2017a). Although it remains unclear how
exercise affects hexokinase and pyruvate kinase in the heart, pyruvate kinase activity
has been shown to be elevated in both the hearts of exercise-adapted rats (York et al.
1975) and dogs (Stuewe et al. 2000).

Role for Metabolite Signaling in Cardiac Adaptation Metabolite signaling could
also promote cardiac adaptation to exercise. Because glucose-derived metabolites
regulate prohypertrophic kinases, such as mammalian target of rapamycin (mTOR)
and AMPK (Maillet et al. 2013), it remains possible that exercise-induced changes in
glucose 6-phosphate (G6P) and 5-amino-4-imidazolecarboxamide ribonucleotide
(AICAR) (Hurlimann et al. 2011) could regulate mTOR and AMPK activity in the
heart (Sen et al. 2013; Kundu et al. 2015; Roberts et al. 2014; Sullivan et al. 1994).
Predictions from crossover theorem (Chance andWilliams 1955; Chance et al. 1955;
Chance and Williams 1956; Heinrich and Rapoport 1974) and modeling studies
(Cortassa et al. 2015) insinuate that acute decreases in phosphofructokinase activity,
such as occurs during exercise (Gibb and Hill 2018), may increase G6P, which may
not only activate mTOR but could augment PPP activity and nucleotide
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biosynthesis, an intermediate of which is AICAR. In addition, recent studies suggest
that phosphoglucose isomerase inhibition could also regulate G6P (Karlstaedt et al.
2020).

Circulating metabolites may also play a hormonal role in exercise-induced
cardiac growth. Hormone-mediated lipolysis during exercise liberates palmitoleate
(C16:1n7), which could stimulate cardiac growth by a receptor-mediated mechanism
(Foryst-Ludwig et al. 2015). This palmitoleate-induced hypertrophic effect is equiv-
alent to the fatty acid-induced cardiac hypertrophy observed in pythons (Riquelme
et al. 2011). It is interesting that FFAs such as palmitoleate increase not only with
acute exercise (Rodahl et al. 1964), but also remain elevated in the exercise-adapted
state (Papadopoulos et al. 1969; Monleon et al. 2014), which could indicate that they
are lasting metabolic signals that sustain cardiac adaptations. Because numerous
metabolites stimulate GPCRs (Husted et al. 2017), it is possible that other metabo-
lites elevated by exercise play important roles in cardiac adaptation. Indeed, recent
studies indicate that endurance and resistance exercise differentially influence the
levels of numerous circulating metabolites with cognate GPCRs, which could
influence tissue adaptation via receptor-mediated signaling (Morville et al. 2020).

12.2.4 Exercise-Induced Cardioprotection: A Clinical
Application of Metabolic Adaptations
in the Exercised Heart

Among the most dynamic features of metabolic control in the exercised heart is its
innate ability to become protected against a host of disease stressors. Clinically
relevant physiologic stressors include bioenergetic supply-demand mismatch which
occurs during ischemia-reperfusion injury, manifesting as exertional angina and
myocardial infarction. The metabolic and anatomical adaptations highlighted earlier
in this chapter underpin the metabolic resilience afforded to the exercised heart
during ischemic challenges. The term cardioprotection is born from both scientific
and clinical paradigms and includes attributes which cannot be separated from the
bioenergetic processes described within this chapter. Accordingly, cardioprotection
more broadly encompasses four key facets: (1) beneficial modification of cardiovas-
cular disease (CVD) risk factors, (2) anatomical modification of ventricular archi-
tecture, (3) revascularization of the myocardium, and (4) biochemical upregulation
(or allosteric activation) of endogenous mediators of biochemical protection
(Quindry 2017; Thijssen et al. 2018). The first three cardioprotective facets represent
chronic adaptive responses to exercise training and will be discussed later in this
chapter. In contrast, the latter factor, biochemical cardioprotection, reflects an acute
benefit of short-term (days to weeks) exposure to exercise, termed “exercise
preconditioning,” and directly relates to acute metabolic alterations central to this
chapter.
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To understand the role of metabolic control and exercise preconditioning against
CVD, one must first consider the experimental approaches which underpin this area
of research. Specifically, exercise preconditioning research studies are commonly
performed in rat and mouse exercise models that are designed to parallel human
exercise prescriptions in terms of the frequency, intensity, time, and type of exercise.
Summative descriptions of the experimental exercise training and ischemia reperfu-
sion surgical protocols are provided in Fig. 12.4. To this end, exercise prescriptions
are scaled to the animal model in order to parallel human exercise as defined in the
American College of Sports Medicine 10th edition of Guidelines for Exercise
Testing and Prescription (Riebe et al. 2018). Similarly, animal exercise is then
followed by experimental approaches to produce CVD, typically surgically induced
ischemia reperfusion in vivo, or global ischemia applied ex vivo, to mimic myocar-
dial infarction in clinical settings. Scientific validity of preclinical exercise
preconditioning studies depends upon the clinical relevance of both the infarct
challenge and the outcome measures of cardiac pathology which include electrocar-
diographic (ECG), measures of ventricular pump function (e.g., transthoracic echo-
cardiography), and postmortem markers of tissue death. In aggregate, these types of
studies continue to be recognized for the translative potential from animals to
humans (Quindry 2017; Thijssen et al. 2018).

Descriptive evidence from exercise preconditioning from the last 30 years indi-
cates that exercise equally protects both males and females against myocardial
infarction (Brown et al. 2005a; Chicco et al. 2007). Perhaps of equal importance,
given that CVD manifests as a function of advancing age, exercise preconditions the
hearts of both young and old animals (Quindry et al. 2005; Starnes et al. 2003). The
dose of exercise needed to precondition the heart in all of the aforementioned studies
is as little as 1–3 days of moderate-intensity exercise, of any modality (e.g., treadmill
running and swimming) performed for at least 30 min (Brown et al. 2005a; Demirel
et al. 2001). It is important to recognize that the exercise-preconditioned phenotype
is highly reproducible, and represents a threshold-dependent phenomenon, in that
both moderate- and high-intensity exercise are equally protective against experi-
mental infarction (Starnes et al. 2003; Lennon et al. 2004a; Miller et al. 2015;
Quindry et al. 2012). Moreover, the infarct-sparing effects of a 3-day regimen of
moderate-intensity exercise last for at least 9 days following the last bout of
structured physical activity (Lennon et al. 2004b).

Translating from animals to humans, these findings are important because they
suggest that the “dose” of exercise needed to evoke cardioprotection is relatively low
compared to maximal aerobic capacity. Stated differently, it appears that one does
not need to be highly exercise trained to have a cardioprotected heart. Indeed, the
short time course (days) needed to obtain clinically relevant protection underscores
the notion that primary mechanisms of exercise cardiac preconditioning are endog-
enous biochemical mediators, upregulated independent of cardiac remodeling. Rel-
ative to the topic of exercise and myocardial metabolism, this broad conclusion
about exercise dose indicates that the acute metabolic demands placed on the heart
during bouts of physical activity elicit metabolic alterations (described previously),
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and a parallel set of biochemical alterations that directly and indirectly protect the
heart’s ability to sustain bioenergetic production during a supply-demand mismatch.

The mechanisms responsible for exercise preconditioning are pleotropic
(Fig. 12.5), a fact that is necessary to counter the multifaceted pathology of
ischemia-reperfusion injury. Most prominently, exercise results in notable preserva-
tion of bioenergetic control during ischemia reperfusion (Bowles et al. 1992; Bowles
and Starnes 1994; Starnes et al. 2007). More specifically, the cellular pathology of
myocardial infarction includes cytosolic and mitochondrial Ca2+ dyshomeostasis, in
addition to free radical overload which results in oxidative stress. Ca2+ dysregulation
and oxidative stress occur in concert, both secondary to the bioenergetic supply-
demand mismatch of ischemia reperfusion (Bolli 1988; Bolli and Marban 1999).
Moreover, the aforementioned metabolic adaptations are thereby preserved in

Fig. 12.5 Upregulated mechanisms of exercise-induced cardioprotection against ischemia-
reperfusion injury. Exercise upregulates numerous endogenous mechanisms of protection against
ischemic injury. Protective factors directly and indirectly mitigate the stress imposed upon cardiac
metabolism during ischemia and reperfusion. Protective factors include the quenching of reactive
oxygen species (ROS) through the fortification of endogenous antioxidants (GR, glutathione
reductase; SOD2, manganese isoform of superoxide dismutase), mitochondrial and sarcolemmal
ATP-sensitive K+ channels (KATP), and preservation of Ca

2+ control through the protection of Ca2+

handling proteins of the mitochondria and sarcoplasmic reticulum. Exercise-induced
cardioprotection therefore appears to be due to blunted ROS production and improved Ca2+

handling, exerting synergistic protection to improve the energetic supply-demand mismatch occur-
ring during ischemia-reperfusion injury
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exercised hearts through separate groups of endogenous cardioprotective mediators.
While these protective factors are not necessarily related directly to metabolic
processes, they appear to prevent deleterious oxidative modifications and calcium-
mediated degradation of metabolic enzymes (Bowles et al. 1992; Bowles and
Starnes 1994; French et al. 2006, 2008; Hamilton et al. 2004). Accordingly, to
understand the preservation of exercise-mediated improvements in metabolic control
during an ischemic challenge, it is essential to also understand the protective
adaptations that either prevent or mitigate loss of bioenergetic control. In this regard,
the mechanisms responsible for preconditioning involve the upregulation of endog-
enous antioxidants and ionic regulation, the latter being important to preservation of
the bioenergetic processes in exercised hearts. Moreover, protection is partitioned in
ischemic cardiomyocytes to the extent that unique mediators of cardioprotection
appear to preserve cytosolic and mitochondrial metabolic pathways.

With respect to the preservation of mitochondrial metabolic processes, the
exercised heart upregulates endogenous antioxidants localized within the mitochon-
drial matrix. Specifically, as shown in Fig. 12.5, the endogenous antioxidant super-
oxide dismutase (SOD) serves as an essential cellular defense against free radical
accumulation during ischemia reperfusion, presumably preventing oxidative modi-
fication to components of electron transport (McCullough et al. 2020). Specifically,
SOD converts the free radical superoxide to hydrogen peroxide (H2O2) (Fridovich
1997). Isoforms of SOD include copper/zinc SOD, mitochondrial manganese SOD
(MnSOD or SOD2), and extracellular SOD (Fridovich 1997). SOD2 has been
confirmed as being essential to the exercise preconditioning phenotype (French
et al. 2008). Using a knockdown approach, via intraperitoneal injections of antisense
oligonucleotides directed against SOD2, it has been demonstrated that a modest
(20–50%) increase in SOD2 expression is protective against ventricular dysrhyth-
mias and tissue infarct. Interestingly, however SOD2 upregulation is not sufficient
for preventing deficits in ventricular pump function (Lennon et al. 2004a; Yamashita
et al. 1999; Hamilton et al. 2003). Because endogenous antioxidants typically
function as a network defense, SOD2 production of the radical species H2O2 must
subsequently be converted to H2O and O2 by downstream activity of the endogenous
enzyme catalase and enzymes of the glutathione system. Preliminary data indicate
that catalase, while specific to both mitochondrial and cytosolic spaces, is inconsis-
tently upregulated in exercised hearts (Lennon et al. 2004a, b; French et al. 2008;
Dao et al. 2011). These inconsistencies likely reflect the fact that organelle-affiliating
catalase has not been examined within the context of a divergent role for the enzyme
within. In addition, upregulation of the glutathione system has been found to be
essential to complement the effects of SOD2 within the mitochondria. As shown in
Fig. 12.5, myocardial glutathione reductase activity appears to be enhanced follow-
ing exercise and thereby serves as the essential second step for exercise-induced
cardioprotection against free radical generation (Frasier et al. 2011).

Preservation of metabolic function during ischemia reperfusion is fundamentally
dependent upon mitigation of cytosolic Ca2+ overload, which has been shown to
directly and indirectly limit glycolytic and mitochondrial bioenergetic energy pro-
duction (Omar et al. 2010; Tu et al. 2020). Accordingly, improved Ca2+ handling
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during ischemia reperfusion is also central to the exercise preconditioned phenotype
(Bowles et al. 1992). While some conflicts exist within published studies on the
topic, most evidence indicates that exercise training improves mitochondrial toler-
ance to Ca2+ overload, blunting mitochondrial permeability transition pore (MPTP)
opening (Starnes et al. 2007; Marcil et al. 2006; Magalhaes et al. 2014). Moreover,
increased mitochondrial antioxidant fortifications limit Ca2+ overload (Starnes et al.
2007; Buja 2005), protecting against oxidative modification of Ca2+ handling pro-
teins such as L-type Ca2+ channels, phospholamban, and sarcoplasmic/endoplasmic
reticulum Ca2+ ATPase (SERCA), and attenuation of calpain-mediated protein
degradation (French et al. 2006, 2008). In regard to the interrelated effects of
antioxidant quenching of free radicals and improved Ca2+ handling, as shown in
Fig. 12.5, it is currently unknown whether these effects are the result of direct
antioxidant events in the cytosol or due to upstream quenching of free radical
chain reactions (French et al. 2006, 2008). Moreover, to date, the specific role of
mitigating both mitochondrial and Ca2+ overload has not been directly linked to
preservation of cardiac metabolism and requires scientific confirmation.

As discussed previously, exercise preconditioning improves bioenergetic control
during ischemia reperfusion through the preservation of mitochondrial function in
addition to improved antioxidant fortification and Ca2+ regulation (Bowles et al.
1992; Starnes et al. 2007; French et al. 2006, 2008; Marcil et al. 2006; Magalhaes
et al. 2014). Adjuvant to these observations is the bolstering of mitochondrial
subpopulations within exercised hearts. Specifically, mitochondria subpopulations
located at the subsarcolemmal space and intermyofibrillar mitochondria provide
distinct, although incompletely understood, facets of protection to the exercised
heart (Kavazis et al. 2009). Presumably, subsarcolemmal mitochondria are essential
to preserving bioenergetic demand related to ionic regulation, while intermyofibrillar
mitochondria generally sustain the metabolic demands related to myocardial con-
traction. Nonetheless, it does appear that within exercised hearts exposed to ischemia
reperfusion, both mitochondrial subpopulations exhibit decreased MPTP opening
and preserved bioenergetic function (Kavazis et al. 2008; Lee et al. 2012). In
addition to elevated mitochondrial antioxidants such as SOD2, exercised hearts
also appear to be protected by downregulation of the enzyme monoamine oxidase
(MAO), which catalyzes amine oxidation reactions and the production of reactive
oxygen species (Kavazis et al. 2009; Deshwal et al. 2017).

Related to improvements in mitochondrial function, alterations in the expression
or activity of the ATP-sensitive potassium channels (KATP), located on the sarco-
lemma (sarc KATP) and inner mitochondrial membranes (mito KATP), are essential to
exercise preconditioning; however, the precise role of these putative mediators of
exercise preconditioning remains a topic of debate (Light et al. 2001; Gross and
Peart 2003) . Findings from exercised hearts indicated that both sarc KATP and mito
KATP are essential to the exercise preconditioned phenotype, as presented in
Fig. 12.5 (Chicco et al. 2007; Brown et al. 2005b; Johnson et al. 2006). Notably,
this mechanism is the only currently known example of sex-specific differences of
exercise preconditioning. Specifically, it was observed that as compared with male
counterparts, hearts from exercised females overexpress Kir6.2 (a subunit of KATP
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channels) (Chicco et al. 2007; Johnson et al. 2006). Importantly, however, hearts
from exercised males are nonetheless protected via KATP channel activation (Chicco
et al. 2007; Johnson et al. 2006). To this end, the mechanisms of exercise-induced
cardioprotection do not apply to all aspects of ischemia reperfusion injury. In this
instance, mito KATP channels are essential for preventing ventricular dysrhythmias,
while the sarc KATP channels are essential for preventing post-infarct tissue necrosis
and apoptotic processes (Quindry et al. 2010, 2012).

12.3 Summary

Exercise promotes acute and chronic changes in cardiac metabolism by altering the
levels of circulating hormones, substrates, and metabolic enzymes. These changes
are important not only for structural cardiac adaptation but also for protecting the
heart from injury (Fig. 12.6). Interestingly, different types of exercise have disparate
effects on cardiac metabolism, remodeling, and function. The goal of future studies
is to develop a more thorough understanding of how exercise-induced metabolic
changes integrate with the development of cardiac resilience and how metabolism
cues transcriptional changes that elicit structural changes and protect the heart from
injury.

Fig. 12.6 Summary of the cardiovascular benefits of exercise. Exercise elicits a myriad of
structural, functional, and metabolic adaptations which result in a cardioprotective state. SV, stroke
volume; CO, cardiac output
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Chapter 13
Metabolism in the Brain During Exercise
in Humans

Hannah G. Caldwell, Lasse Gliemann, and Philip N. Ainslie

Abstract This chapter discusses the regulation of cerebral metabolism and fuel
utilization at rest and during dynamic whole-body exercise in humans. The relative
contributions of cerebral metabolic rates of key substrates (oxygen, glucose, lactate,
ketone bodies) are outlined with respect to rest and exercise. A brief overview of the
current gold-standard techniques to assess cerebral metabolism during dynamic
exercise in humans is also provided, and future research areas are highlighted
throughout.

Keywords Cerebral metabolism · Cerebral blood flow · Exercise · Glucose ·
Lactate · Glycogen · Ketone bodies

13.1 Background

Regulation of the human circulation during exercise is astonishingly complex and is
dictated by a balance between systemic sympathetic vasoconstriction and localized
vasodilation. The tight regulation of blood flow and pressure prioritizes both (1) sys-
temic arterial blood pressure to provide adequate organ-specific perfusion pressure
and (2) sufficient delivery of oxygen and metabolic substrates to satisfy the increased
tissue metabolism and the subsequent removal of metabolic end-products. Although

H. G. Caldwell (*)
Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University
of British Columbia, Kelowna, BC, Canada

Department of Nutrition, Exercise and Sports, The August Krogh Section for Human
Physiology, University of Copenhagen, Copenhagen, Denmark
e-mail: hannah.caldwell@ubc.ca

L. Gliemann
Department of Nutrition, Exercise and Sports, The August Krogh Section for Human
Physiology, University of Copenhagen, Copenhagen, Denmark

P. N. Ainslie
Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University
of British Columbia, Kelowna, BC, Canada

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. McConell (ed.), Exercise Metabolism, Physiology in Health and Disease,
https://doi.org/10.1007/978-3-030-94305-9_13

295

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94305-9_13&domain=pdf
mailto:hannah.caldwell@ubc.ca
https://doi.org/10.1007/978-3-030-94305-9_13#DOI


the human brain is reflective of <1/50th of the body mass, it accounts for approx-
imately 15–20% of the available cardiac output, body glucose, and oxygen con-
sumption in the resting condition (Table 13.1). Cerebral oxygen consumption is
approximately 3.5 ml/100 g brain/min; therefore, an average-sized brain, weighing
approximately 1400 g, requires a rate of oxygen uptake (V  O2) of 49 ml O2/min
(Sokoloff 1960). As the majority of oxygen in the brain is utilized for carbohydrate
oxidation, the energy equivalent of the total cerebral metabolic rate is approximately
20 watts or 0.29 kcal/min. This high cerebral metabolic rate, paired with a remark-
ably restricted capacity for substrate storage (e.g., glycogen <10 μmol/g) and
inability to utilize fat as a fuel substrate, necessitates tight regulation of cerebral
blood flow. Loss of consciousness occurs within 10–20 seconds of cerebral ische-
mia, and brain death can ensue if adequate restoration of blood supply is not made.
As an example, if the supply of glucose to the brain were theoretically abolished, the
brain’s total substrate stores—from free glucose, lactate, and astrocytic glycogen—
would only sustain cerebral metabolism for approximately 12 min (Barros and
Deitmer 2010). As such, the interplay between cerebral substrate delivery (via
cerebral blood flow and arterial substrate content) and trans-cerebral exchange is
essential to support increases in fuel utilization in the brain during exercise.

13.2 Cerebral Metabolism and Fuel Utilization at Rest

Cerebral metabolism is regulated by blood flow and the arterial to venous trans-
cerebral exchange of primary substrates (i.e., oxygen, glucose, lactate, and ketones)
across the cerebral circulation. The cerebral storage capacity of oxygen is excep-
tionally small relative to its rate of utilization; therefore, continuous cerebral circu-
lation is essential to support oxidative metabolism. The regulation of cerebral
substrate delivery is achieved via the neurovascular unit, involving neurons, glial
cells, and cortical penetrating arterioles, which relays vascular signaling to tightly
regulate cerebral blood flow in response to alterations in local cerebral metabolism
(Fig. 13.1). Effective regional cerebral blood flow control is requisite for coordinated
substrate delivery and local paracrine regulation in response to alterations in cerebral

Table 13.1 Cerebral blood flow and global metabolic rate at rest and during exercise to exhaustion

Per 100 g
brain tissue

Per whole
brain (1400 g)

Relative to
whole body

Max increase from
rest with exercise

Cerebral blood flow
(ml/min)

57 798 15% cardiac
output

+15–25%

Cerebral O2 con-
sumption (ml/min)

3.5 49 20% total
V O2

+30–35%

Cerebral glucose utili-
zation (mg/min)

5.5 77 15% total
glucose

+35–40%

aReviewed in Clarke and Sokoloff (1999) with data derived from the literature published by
Sokoloff (1960). Relative increases during exercise reviewed by Smith and Ainslie (2017)
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metabolism. At least in pre-clinical models, novel in vivo evidence utilizing the
cranial window technique suggests that contractile pericytes may facilitate the
regulation of capillary blood flow (Gonzales et al. 2020); however, little is known
about whether this occurs during exercise.

At rest, the brain relies almost exclusively on oxygen and glucose. Although
lactate in the arterial blood is relatively low at rest (e.g., <1 mmol/l), lactate

Fig. 13.1 Regulation of cerebral blood flow by metabolism. The cerebral oxygen cascade high-
lights the necessity for tightly controlled cerebral blood flow regulation. Regulation of cerebral
blood flow is affected by changes in localized neuronal activity and metabolism. As an example, the
linear relationship between cerebral blood flow and CMRO2 is evidenced by very low to high levels
of nerve cell activity, e.g., coma/deep sleep/anesthesia (Madsen and Vorstrup 1991) and exercise/
seizure (Siesjö 1978). Figure adapted from (Bailey 2019). Created in BioRender.com
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utilization reportedly contributes to approximately 8% of cerebral metabolism (van
Hall et al. 2009). It is noteworthy that the brain does not rely on fatty acid oxidation
(Mitchell et al. 2011; Schönfeld and Reiser 2013). The reasons for this are likely
fourfold: (1) the rate-limiting passage of fatty acids across the blood-brain barrier;
(2) the rate of adenosine triphosphate (ATP) production derived from fatty acids that
is slower and less efficient than glucose utilization with respect to oxygen require-
ments; (3) relatively low enzymatic capacity of necessary fatty acid β-oxidation
enzymes (e.g., carnitine palmitolytransferase 1, 3-ketoacyl-CoA thiolase, acyl-CoA
dehydrogenase, enoyl-CoA hydratase); and (4) the β-oxidation of fatty acids that
generates superoxide which can contribute to severe oxidative stress. However,
while fatty acid oxidation does not contribute substantially to ATP production,
recent in vitro cultured cell work and in vivo PET imaging evidence support a role
for localized insulin-sensitive astrocytes in cerebral fatty acid uptake and metabolism
in humans (Rebelos et al. 2020; Heni et al. 2020).

At rest, trans-cerebral uptake of oxygen and glucose each contributes approxi-
mately 50% to cerebral metabolic rate (Fig. 13.2). The contribution of cerebral
lactate utilization to cerebral metabolism is less than 10% at rest. At rest, oxygen
is utilized in the brain almost exclusively for the oxidation of carbohydrates consis-
tent with the respiratory quotient of 0.97 (Nybo et al. 2003; Dalsgaard et al. 2004a).
The stable resting cerebral metabolic ratio for oxidative glucose metabolism (often
termed OGI) is approximately 5.7 (Dalsgaard et al. 2004b; Smith et al. 2014). This
value indicates near complete oxidation of glucose: 6 O2 + C6 H12O6 (glucose) ! 6
H2O + 6 CO2; approximately 5–10% of the glucose taken up undergoes glycolysis as
evidenced by a slight lactate efflux at rest (Dalsgaard et al. 2004b; van Hall et al.
2009). Energy-yielding substrates within the arterial blood enter the brain principally
via the blood-brain barrier (Fig. 13.3), albeit other less important pathways also
include extracellular fluid, choroid plexuses, and interstitial/cerebrospinal fluid
exchange. The blood-brain barrier consists of endothelial cells of the capillary
wall, astrocyte end-feet surrounding the capillary, and pericytes outside the capillary
basement membrane (Edvinsson and Krause 2002; Simard et al. 2003) (Fig. 13.4).
Gases like oxygen and carbon dioxide readily cross the blood-brain barrier via
passive diffusion. Larger molecules like glucose, however, cross the blood-brain
barrier via specialized transporters within the endothelial cells (e.g., glucose trans-
porter; GLUT- 1, 3, and 5). The glucose transporter GLUT1 is also found on
astrocytes and the choroid plexus (Simpson et al. 2007), GLUT3 is found on neurons
and to some extent the endothelium (Simpson et al. 2007), and GLUT5 is localized
to the microglia. The majority of glucose entering the brain is distributed via the
interstitial fluid where it is taken up via facilitated diffusion by neurons (GLUT3)
and astrocytes (GLUT1). The rate of glucose transport is higher in the neuron versus
astrocytes due to larger catalytic capacity of GLUT3 compared to GLUT1. The
regulation of glucose transport at the blood-brain barrier has been recently reviewed
in detail elsewhere (Patching 2017; Koepsell 2020).

At rest, circulating ketone bodies, principally acetoacetate and its reduced form
β-hydroxybutyrate (βHB), are <0.1 mmol/l, whereas, following prolonged aerobic
exercise in the glycogen depleted state, post-exercise ketosis can arise depending on
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the intensity and duration of exercise as well as aerobic fitness and nutritional status
in the range of 0.3–2.0 mmol/l (Evans et al. 2016). During conditions of hypogly-
cemia, e.g., fasting/starvation (Owen et al. 1967), post-exhaustive exercise (Askew
et al. 1975), and ketogenic diet (Yancy et al. 2004), increases in systemic ketone
bodies act as an alternative fuel source for cerebral metabolism. The human brain can
readily uptake and oxidize βHB linearly with increases in the systemic circulation
(Fig. 13.5) (Owen et al. 1967; Mikkelsen et al. 2015). Acute ketone infusion
increases cerebral blood flow by approximately 30–40% and reduces cerebral
metabolic rate of glucose by 30% with no change in oxygen utilization in humans
(Hasselbalch et al. 1996; Svart et al. 2018). These ketone-induced increases in
cerebral blood flow are perhaps in part due to changes in the brain cytosolic
NAD+/NADH ratio (Vlassenko et al. 2006; Xin et al. 2018), reductions in oxidative
stress (Shimazu et al. 2013), and/or direct effects of ketones on the vasculature

Fig. 13.2 Summary of the bioenergetic requirements of the human brain, emphasizing its severely
restricted energy stores of oxygen, glucose, and ATP, paired with high rates of metabolism.
Figure adapted from (Bailey 2019). The majority of signaling-related ATP costs involve the Na+/
K+ ATP pump to regulate synaptic ion fluxes and maintain the resting membrane potential as well as
conversion of glutamate into glutamine via astrocytes. Non-signaling “housekeeping” tasks include
ATP-dependent actin treadmilling, microtubule dynamic instability, protein synthesis, lipid turn-
over, microglial motility, mitochondrial proton transfer, and cytoskeletal rearrangements (Attwell
and Laughlin 2001; Engl and Attwell 2015). Created in BioRender.com
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(Kimura et al. 2011; Han et al. 2018; Wu et al. 2020). The majority of βHB oxidized
by the human brain is supplied by the liver via the arterial blood (Robinson and
Williamson 1980; Laffel 1999); however, βHB can be synthesized to a lesser extent
endogenously in astrocytes via fatty acid oxidation (Edmond et al. 1987). With
reductions in carbohydrate availability—and lower insulin levels—elevations in free
fatty acid release and utilization result in excess acetyl-CoA in hepatocytes, where it
will be converted to ketone bodies. Although, as discussed above, the brain does not
typically rely on fatty acid oxidation at rest, the dependency and utilization of ketone
bodies as a substrate during/following prolonged exercise is related to elevations in
acetyl-CoA and upregulated free fatty acid availability.

13.2.1 Summary

At rest, the brain relies almost exclusively on aerobic oxidative metabolism as
reflected by the large 50% contributions of oxygen and glucose trans-cerebral uptake
to the total cerebral metabolic rate. The effective localized control of cerebral blood
flow, in part achieved by the highly sensitive pial arteriolar capillary network and
tightly regulated blood-brain barrier, allows for coordinated cerebral substrate

Fig. 13.3 Brain substrate metabolism of glucose, glycogen, and lactate. (a) At rest, glucose is the
primary cerebral substrate as the uptake ratio O2/glucose is close to 6. (b) Additionally, glucose
fuels glycolysis in astrocytes producing lactate that is apparently oxidized by neurons. (c) Astro-
cytic breakdown of glycogen supports astrocyte metabolism, (d) particularly in astrocyte
enveloping end-feet of synaptic clefts that are devoid of mitochondria. The spatial arrangement of
the neurovascular unit may explain why lactate production from glycogen is separate from the
breakdown of blood glucose. (e) Increases in cerebral lactate uptake during exercise may contribute
to astrocytic glycogen-derived lactate oxidation during hypoglycemia experienced with exhaustive
exercise. Figure and caption adapted from (Dalsgaard 2006). Created in BioRender.com
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delivery. As discussed next, the regulation of cerebral blood flow and substrate
delivery is critically important to support increases in total cerebral metabolism
during exercise.

Fig. 13.4 Anatomy of the blood-brain barrier and cerebrovascular tree. At the brain surface, there
is a highly vascularized capillary network of pial arterioles that are responsive to vasoactive stimuli
(e.g., cerebral perfusion pressure, PO2/CaO2, PCO2/[H

+]). (a) Pial arterioles are surrounded by the
subarachnoid space and are innervated by perivascular nerves acting on vascular smooth muscle
cells (VSMC). (b) Pial arterioles penetrate the pia mater through the Virchow-Robin space where
they are encapsulated by astrocytic glial-like processes termed end-feet as well as perivascular
macrophages. (c) Intraparenchymal arterioles and branching capillaries are covered by neural
processes and pericytes within the basement membrane of the endothelium. Figure and caption
adapted from (Caldwell et al. 2021). Created in BioRender.com
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13.3 Regulation of Cerebral Metabolism During Exercise

At rest and during exercise, adequate cerebral oxygen delivery (CDO2) is necessary
to support an appropriate cerebral oxygen reserve (i.e., capillary oxygen volume
sufficient to match cerebral metabolic rate of oxygen; Fig. 13.6).

CDO2 ml=minð Þ ¼ CBF� CaO2 ð13:1Þ

The cerebral metabolic rate of oxygen (CMRO2) reflects the oxidative metabolic
rate of the brain and is derived from the product of oxygen delivery (i.e., cerebral
blood flow) and the cerebral oxygen extraction (i.e., arterial-venous oxygen content
difference; CaO2–CvO2).

CMRO2 ml=minð Þ ¼ CBF=100� CaO2 � CvO2 ð13:2Þ

Typically, the resting oxygen extraction fraction (OEF) of the brain is within
20–30% (Gjedde 2005; Ainslie et al. 2014) and is dictated by the fixed oxygen
conductivity of cerebral tissue (e.g., capillary surface area and distance for diffusion)
and tissue metabolism for a given PO2 gradient between the tissues and capillaries
(Gjedde 2005).

Fig. 13.5 Relationship between the arterial D-β-hydroxybutyrate concentration and cerebral and
leg skeletal muscle uptake rate per kg of tissue in healthy males. Brain ketone uptake and
subsequent oxidation was linearly related to the arterial ketone concentration. Resting skeletal
muscle ketone uptake was markedly less and showed saturation kinetics. These findings substan-
tiate the selective utilization of ketone bodies as a fuel for cerebral metabolism with increased
systemic availability. It is noteworthy that the brain readily uptakes D-β-hydroxybutyrate approx-
imately tenfold higher than skeletal muscle at rest. Figure redrawn from (Mikkelsen et al. 2015)
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Fig. 13.6 Relationship between arterial-venous oxygen difference (AVDO2) and cerebral blood
flow (CBF) at rest. (a) If a coupled change in cerebral metabolic rate of oxygen (CMRO2) and CBF
occurs, then AVDO2 remains unchanged, and the relationship between CBF and AVDO2 shifts to a
new CMRO2 curve (horizontal arrows). If CMRO2 remains constant, then changes in AVDO2

reflect uncoupled changes in CBF (curved arrows). (b) Model diagramming the relationship
between CBF and cerebral metabolism in comatose patients. In the absence of cerebral ischemia,
the AVDO2 and CBF have the relationship illustrated by the solid curve, with CMRO2 averaging
0.9 μmol/g/min. In the presence of cerebral ischemia/infarction (open arrows), AVDO2 and CBF
have an unpredictable relationship. Figure and caption adapted from (Robertson et al. 1989)
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OEF %ð Þ ¼ CaO2 � CvO2=CaO2 � 100% ð13:3Þ

It is noteworthy that the brain (e.g., unlike the muscle) does not increase capillary
recruitment and, therefore, the diffusive surface area for oxygen does not change
(Kuschinsky and Paulson 1992; Williams et al. 1993), necessitating large increases
in cerebral blood flow and/or oxygen extraction to maintain or elevate CMRO2

(Buxton and Frank 1997; Mintun et al. 2001). As such, increases in cerebral oxygen
delivery and metabolism may be described by an exponential relationship with
increases in cerebral blood flow in excess of relative increases in CMRO2 (Buxton
and Frank 1997). In support of this, the cerebral oxygen extraction is inversely
proportional to cerebral blood flow when metabolism is unaltered and directly
proportional to metabolism when cerebral blood flow is unaltered. However,
although the brain has the capacity to somewhat alter cerebral extraction throughout
submaximal cycling exercise to exhaustion, e.g., <5% change in fractional O2

extraction (Fig. 13.7), it is noteworthy that this response is markedly less than
other organs such as the heart or skeletal muscle where oxygen extractions up to
80–90% have been reported (Proctor et al. 1998; Calbet et al. 2004; Lundby et al.
2006). As such, the brain requires sufficient increases in cerebral oxygen delivery
(cerebral blood flow � CaO2) to support elevated CMRO2 at maximal exercise.

With progressive increases in exercise intensity up to approximately 60–70%,
maximal oxygen uptake (V  O2max), cerebral blood flow increases steadily
(+10–20%) (Sato and Sadamoto 2010) to regulate cerebral substrate delivery (Ide
and Secher 2000; Fisher et al. 2013) (Fig. 13.8). The increases in cerebral blood flow
during submaximal exercise are mediated via relative alveolar hypoventilation (i.e.,
small elevations in arterial PCO2) and increases in cerebral oxidative metabolism
(CMRO2) (Nybo et al. 2002; Smith et al. 2014). With heavy exercise intensity (e.g.,
>70% V O2max), cerebral blood flow is attenuated via hyperventilatory-induced
reductions in arterial PCO2 and resultant cerebral vasoconstriction (Larsen et al.
2008; Smith et al. 2014). Relative increases in arterial oxygen content (CaO2) during
progressive exercise (Ekblom et al. 1975; Smith et al. 2014) likely offset
countervailing reductions in cerebral blood flow to stabilize cerebral oxygen delivery
at maximal exercise intensities. Throughout various exercise intensities, the CMRO2

response is coupled to cerebral oxygen delivery (cerebral blood flow � CaO2) and
oxygen extraction (CaO2–CvO2) rather than cerebral blood flow per se. This is
further supported by the nonlinear relationship between cerebral blood flow/oxygen
delivery and CMRO2 (Fox and Raichle 1986; Fox et al. 1988).

13.3.1 Summary

The brain’s inability to increase capillary recruitment and relatively small capacity to
increase oxygen extraction necessitates large increases in blood flow to support
elevations in CMRO2. The increases in cerebral blood flow during submaximal
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Fig. 13.7 Alterations in cerebral and systemic oxygen extraction during aerobic exercise to
exhaustion. (a) The relationship between cerebral oxygen extraction—via arterial-jugular venous
O2 difference—throughout incremental cycling exercise to exhaustion (expressed as % maximal
workload; %Wmax). Each symbol represents individual data from n¼ 9 with data from (Smith et al.
2014) with permission. Note the relatively small change in O2 extraction across a large range of
exercise intensities, e.g., <5% change in fractional O2 extraction (%). (b) The relationship between
systemic oxygen extraction (calculated via the Fick equation) and the respective pulmonary
maximal oxygen uptake; note the very high attainable systemic O2 extraction values at maximal
exercise. Data are individual values from n ¼ 115 healthy young men at whole-body maximal
exercise across 17 studies summarized by (Skattebo et al. 2020). Figure redrawn from (Skattebo
et al. 2020)
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exercise are principally attributed to temporal changes in arterial PCO2 and CMRO2.
With maximal exercise, the CMRO2 response is closely related to cerebral oxygen
delivery (cerebral blood flow � CaO2) and oxygen extraction (CaO2–CvO2) rather
than cerebral blood flow per se.

13.3.2 Techniques to Assess Cerebral Metabolism During
Dynamic Exercise in Humans

The first experiments to accurately measure cerebral blood flow and metabolism
during exercise in humans utilized the nitrous oxide dilution technique developed
by Seymour Kety and Carl Schmidt in 1945 (Kety and Schmidt 1945; Kety and
Schmidt 1948). With this approach, inhalation/intravenous infusion of a freely
diffusible tracer (e.g., nitrous oxide, xenon, hydrogen) and serial arterial and internal
jugular venous blood sampling (i.e., Fick Principle) allows for calculation of abso-
lute cerebral blood flow. The cerebral arterial-venous difference of inert tracer
indicates the rate of appearance and clearance of the tracer from the cerebral
circulation, respectively, and is used to calculate cerebral blood flow. Cerebral
substrate metabolism can thus be calculated as cerebral metabolic rate (CMR)¼ cere-
bral blood flow � arterial-venous content difference of oxygen/glucose/lactate/

Fig. 13.8 Systemic and cerebrovascular variables affecting cerebral blood flow regulation during
aerobic exercise to exhaustion. Generalized relative changes in arterial oxygen content (CaO2) and
cerebral oxygen delivery (CDO2) (top), cerebral metabolic rate of oxygen (CMRO2) and oxygen
extraction fraction (O2EF) (middle), and global cerebral blood flow (gCBF) and partial pressure of
arterial carbon dioxide (PaCO2) (bottom) responses to incremental exercise. The vertical dotted line
indicates the point at which ventilatory threshold is typically achieved during exercise. Note the
related temporal responses of CBF and PaCO2 during exercise. Figure adapted from (Smith and
Ainslie 2017)

306 H. G. Caldwell et al.



ketones (Eq. 13.2). Throughout the 1950s, this reliable and robust technique was
recognized as the gold-standard method of quantifying cerebral blood flow; how-
ever, notably, there are three key considerations: (1) the Kety-Schmidt technique has
poor temporal resolution as each steady-state measurement requires serial blood
sampling across 10 minutes; (2) there is no indication of regional contributions to
total cerebral blood flow; and (3) this technique assumes that venous outflow is
symmetrical between both jugular veins, although this assumption is likely inappro-
priate (Lichtenstein et al. 2001). Within the last decade, Duplex ultrasound has been
utilized to quantify regional volumetric blood flow in the extracranial circulation
(e.g., carotid and vertebral arteries). Duplex ultrasound has excellent temporal
resolution and facilitates synchronized beat-by-beat arterial diameter and pulse-
wave blood velocity measurements to calculate volumetric blood flow in the anterior
and posterior cerebral circulations, responsible for approximately 70% and 30% of
total cerebral blood flow, respectively (Thomas et al. 2015). To address the previ-
ously described drawbacks of the Kety-Schmidt technique, cerebral metabolic rate of
substrates can be calculated with this noninvasive ultrasound-derived cerebral blood
flow—now inclusive of regional differences in flow—paired with direct arterial-
venous blood sampling (via the Fick Principle). Table 13.2 outlines the strengths,
limitations, and utility of various techniques for the measurement of cerebral metab-
olism in humans. It is important to note that the Kety-Schmidt technique and the Fick
Principle paired with Duplex ultrasound-derived cerebral blood flow are the only
techniques available to quantify cerebral substrate metabolism during whole-body
exercise involving large muscle mass.

13.4 Cerebral Substrate Oxidation During Exercise

The absolute change in cerebral metabolic rate and relative changes in oxidative
cerebral fuel utilization during incremental exercise have been elegantly reviewed by
Smith and Ainslie (2017) and are summarized in Fig. 13.9. With incremental
exercise to exhaustion, the cerebral metabolic ratios for oxidative glucose and
oxidative carbohydrate metabolism (i.e., OGI and OCI, respectively) are progres-
sively attenuated from their stable resting values of approximately 5.7 by up to
40–50% (Dalsgaard et al. 2004b; Smith et al. 2014).

OGI ¼ CaO2 � CvO2ð Þ= Glua � Gluvð Þ ð13:4Þ

OCI ¼ CaO2 � CvO2ð Þ= Glua � Gluvð Þ þ 1
2

Laca � Lacvð Þ ð13:5Þ

The reduction in OGI and OCI indicates part of the glucose/lactate was not fully
oxidized suggesting an increase in anaerobic non-oxidative metabolism, i.e., larger
increases in the respective glucose and carbohydrate (glucose + ½ lactate) uptakes
relative to oxygen (Dalsgaard et al. 2004b). This reduction in OGI and OCI during
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exercise appears to be unaffected by changes in arterial lactate availability
(Volianitis et al. 2011); however, both OGI and OCI are reportedly altered with
severe high-altitude hypoxia (e.g., 5050 m) (Smith et al. 2014). Collectively, these

Table 13.2 Strengths, limitations, and utility of various techniques for the measurement of cerebral
metabolism in humans

Method Strengths Limitations Utility Exercise?

Kety-
Schmidt

1. Good reli-
ability
2. Robust tech-
nique
3. Volumetric
flow
measurement

1. Poor temporal
resolution (requires
steady-state)
2. Invasive
3. Requires highly
trained personnel

Measure arterial-venous
cerebral metabolism and
global CBF at rest and
during steady-state whole-
body exercise

Yes

Fick princi-
ple with
Duplex
ultrasound

1. Excellent
temporal reso-
lution
2. High spatial
resolution
3. Volumetric
flow
measurement

1. Reliability
largely based on
sonography experi-
ence
2. Difficulty get-
ting ultrasound
measures at higher
exercise intensities
3. Extracranial
assessment
4. Invasive
catheterizations

Measure arterial-venous
cerebral metabolism and
regional dynamic CBF
responses at rest and during
whole-body exercise

Yes

MRI 1. Excellent
reliability
2. High spatial
resolution
2. Noninvasive

1. Fair temporal
resolution
2. Influenced by
changes in CMRO2

3. No volumetric
flow measurement

High-quality dynamic
(BOLD) and steady-state
(ASL) volumetric,
regional, and global CBF at
rest

No

PET 1. Excellent
reliability
2. High-quality
images

1. Poor temporal
resolution
2. Invasive
3. Unable to mea-
sure during whole-
body dynamic
exercise

Optimum technique for
regional changes in CBF
and cerebral metabolism at
rest

No

NMR
spectroscopy

1. Very high
reproducibility
2. Wide appli-
cation for clini-
cal diagnosis
3. Noninvasive

1. Low sensitivity Measure rates of substrate
transport and metabolism
in the brain

No

Microdialysis 1. Direct cere-
bral metabo-
lism within the
interstitial
space

1. Highly invasive Only applicable in critical
care patients (e.g., stroke,
TBI)

No
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data indicate that the contribution of oxidative carbohydrate metabolism to cerebral
substrate utilization is influenced by the balance between exercise intensity and
arterial lactate availability (Smith and Ainslie 2017). With very intensive rowing
exercise, elevated arterial levels of lactate (e.g., >15 mmol/l) contribute upward of
30–40% of total cerebral metabolism (Ide and Secher 2000; Volianitis et al. 2008).
Pre-clinical studies indicate astrocytic glycogen-derived lactate may contribute to
cerebral metabolism via lactate oxidation during hypoglycemia experienced with

Fig. 13.9 Average cerebral metabolic rate and oxidative cerebral fuel utilization during incremen-
tal exercise. (a) The cumulative oxidative (CMRglu + ½ CMRlac) and non-oxidative (1/6 CMRO2–

(CMRglu + ½ CMRlac) cerebral metabolic ratio (CMR; oxidative plus non-oxidative in glucose
equivalent units) and cerebral oxidative carbohydrate ratio (OCI) during rest, light (20–40%Wmax),
moderate (40–60% Wmax), and maximal (100% Wmax) cycling exercise. An increase in CMR
indicates an increase in global cerebral metabolism, whereas a reduction in OCI indicates a
reduction in oxidative metabolism. (b) The percentage contribution of oxygen, glucose, and lactate
trans-cerebral uptake to the CMR. Sizes of the circles are proportional to the percentage difference
in CMR from rest. All values are means and SDs calculated from the eight studies quantifying CMR
during incremental exercise (Ide et al. 2000; Nybo et al. 2003; Larsen et al. 2008; Rasmussen et al.
2010b; Brassard et al. 2010; Rasmussen et al. 2010a; Fisher et al. 2013; Trangmar et al. 2014).
Figure and caption from (Smith and Ainslie 2017)
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exhaustive exercise (Brown and Ransom 2007; Matsui et al. 2017). To date, unlike
at rest (Fig. 13.5 above), no in vivo study in humans has investigated the role of
ketone bodies as a substrate for cerebral metabolism during exercise.

13.4.1 Incremental Versus Steady-State Exercise
and Cerebral Metabolism

The cerebral metabolic ratio (O2 uptake/glucose + ½ lactate) decreases during
prolonged exhaustive exercise where arterial lactate remains low; however, progres-
sive vigorous exercise above lactate threshold facilitates higher cerebral lactate
uptake and oxidation due to increases in systemic lactate availability. Glucose is
the preferential substrate at rest; yet, oxidation of monocarboxylic acids such as
lactate, pyruvate, and ketone bodies can contribute to cerebral metabolism when
glucose utilization is restricted and/or when these substrates become available during
exhaustive exercise. For example, as shown by Nybo et al. (2003), exercise-induced
hypoglycemia during prolonged submaximal exercise (via 3 hours of cycling at 60%
VO2max with and without glucose supplementation) reduces cerebral glucose uptake
and CMRO2 with increases in cerebral β-hydroxybutyrate uptake (Fig. 13.10). It is
noteworthy that systemic free fatty acids increased by up to threefold after 3 hours of
cycling exercise without glucose supplementation; however, this did not result in an
increase in cerebral arterial-venous free fatty acid exchange (Nybo et al. 2003).
These results substantiate that the brain does not rely on fatty acid oxidation to
contribute substantially to ATP production (Mitchell et al. 2011; Schönfeld and

Fig. 13.10 The influence of carbohydrate availability on cerebral substrate utilization during
prolonged submaximal cycling exercise. (a) Cerebral glucose uptake is reduced with exercise-
induced hypoglycemia during prolonged submaximal cycling exercise at 60% VO2max. (b) At the
same time, cerebral ketone uptake is markedly increased during exercise with restricted carbohy-
drate availability. βHB, β-hydroxybutyrate. *P < 0.05 versus resting value; +P < 0.05 versus
carbohydrate trial. Figure redrawn with data from (Nybo et al. 2003)
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Reiser 2013). Overall, the relative contribution of cerebral substrates to fuel utiliza-
tion during progressive versus steady-state exercise is markedly affected by systemic
carbohydrate availability, exercise intensity, and nutritional status. The majority of
studies to date have investigated trans-cerebral metabolism during acute (15–-
30 minutes) incremental/steady-state exercise; therefore, it is difficult to extrapolate
these findings to prolonged continuous exercise where marked changes in systemic
fuel utilization occur.

13.4.2 Cerebral Metabolic Rate of Oxygen During Exercise

Collectively, progressive relative increases in CMRO2 throughout various exercise
intensities occur in parallel with elevated cerebral oxygen delivery (i.e., blood flow
� CaO2) and cerebral O2 extraction (Smith and Ainslie 2017). At maximal exercise
intensities, CMRO2 is linearly increased by approximately 30%—albeit with con-
siderable reported variability—to prioritize substrate utilization in the face of reduc-
tions in cerebral blood flow. This relates to an increase in CMRO2 in excess of
cerebral blood flow and emphasizes the importance of adequate cerebral oxygen
delivery and extraction at maximal exercise intensities. It is noteworthy that the
relative increases in CMRO2 are reflective of the total increase in cerebral metabo-
lism during exercise. The contribution of trans-cerebral oxygen uptake to total
cerebral metabolism is reduced by 30% at maximal exercise versus rest, thus
emphasizing the increased contribution of anaerobic non-oxidative substrate utiliza-
tion and a promising role for partial compensation via ketone body oxidation when
carbohydrates are restricted.

13.4.3 Cerebral Metabolic Rate of Glucose During Exercise

Taken together, in concert with the elevated oxidative metabolism (CMRO2)
described above, the cerebral metabolic rate of glucose (CMRglu) is markedly
increased from rest to maximal exercise (Fig. 13.9). Importantly, the relative
increase in glucose utilization is a result of increases in total cerebral metabolism,
whereas the relative contribution of glucose to trans-cerebral uptake and total fuel
oxidation is reduced with progressive exercise to exhaustion. The data presented in
Fig. 13.9 summarize eight studies utilizing trans-cerebral arterial venous glucose
values (Ide et al. 2000; Nybo et al. 2003; Larsen et al. 2008; Rasmussen et al. 2010b;
Brassard et al. 2010; Rasmussen et al. 2010a; Fisher et al. 2013; Trangmar et al.
2014) as well as calculated cerebral blood flow (via Duplex vascular ultrasound)
and/or the relative change in cerebral blood velocity-derived estimates of blood flow
during incremental exercise. It is noteworthy that the elevated CMRglu from rest to
maximal exercise was principally attributable to an increased trans-cerebral
exchange of glucose (i.e., higher glucose extraction) as these changes were unrelated
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to the cerebral glucose delivery (Dalsgaard et al. 2004a; Rasmussen et al. 2011).
Indeed, previous studies consistently report glucose delivery at rest and during
various exercise intensities (submaximal to exhaustion) to be in excess of cerebral
glucose demand (Rasmussen et al. 2011; Fisher et al. 2013; Trangmar et al. 2014;
Smith et al. 2014); therefore, quite unlike lactate availability, these data indicate that
glucose uptake does not depend on arterial glucose levels.

13.4.4 Cerebral Metabolic Rate of Lactate During Exercise

At rest, the <10% utilization of lactate does not appreciably contribute to cerebral
metabolism; however, cerebral lactate uptake can increase almost tenfold during
progressive exercise to exhaustion (Dalsgaard et al. 2004b; Smith et al. 2014). This
exponential rise in cerebral lactate uptake during incremental exercise is closely
related to the elevated systemic arterial concentration (Larsen et al. 2008; Fisher
et al. 2013). In support of this, van Hall et al. (2009) reported a highly significant
relationship between arterial lactate availability and lactate extraction at rest and
during 30 minutes of cycling at 75% maximal exercise intensity when systemic
lactate was previously elevated via intravenous infusion (<1 mmol/l vs. 7 mmol/l).
The arterial-venous lactate gradient changes from a small net “release” at rest to a
10 and 17% “uptake” during exercise and recovery, respectively. These increases in
cerebral lactate uptake/oxidation occur with corresponding reductions in cerebral
glucose uptake, thereby acting to maintain total carbohydrate oxidation (van Hall
et al. 2009).

Although lactate uptake is related to systemic lactate availability, previous studies
show that total cerebral lactate uptake is not affected by the maximal arterial lactate
value achieved during exhaustive exercise. Smith et al. (2014) showed that arterial
lactate availability was approximately 50% higher at high altitude versus sea level
for a given absolute exercise intensity; however, cerebral lactate metabolism was not
different at matched absolute workloads throughout progressive submaximal cycling
exercise to exhaustion. These findings are further substantiated by Volianitis et al.
(2011) who reported that total lactate uptake is not altered when both arterial pH and
lactate values (approx. +10 mmol/l) were elevated (via intravenous sodium bicar-
bonate infusion) during a 2000-meter maximal rowing time trial. Lastly, pre-clinical
evidence shows that exercise induces cerebral-specific vascular endothelial growth
factor (VEGF) via lactate signaling with direct relevance to exercise-mediated
neovascularization in the brain (Morland et al. 2017).

13.4.5 Ketone Utilization During Exercise?

Ketone body utilization as an alternative substrate for cerebral metabolism during
exercise has received little attention with no in vivo human study to date
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investigating the relative contribution of cerebral metabolic rate of ketones during
exercise. Influential work by Cahill and colleagues have established that at rest over
60% of the metabolic energy needs of the brain can be supplied by ketone bodies
rather than glucose with situations of carbohydrate restriction (Owen et al. 1967;
Cahill 1976); these results are further substantiated by the observation that ketone
infusion during acute controlled experimental hypoglycemia (<6 hours) lowers
counter-regulatory hormone responses and neuroglycopenic symptoms (Amiel
et al. 1991; Veneman et al. 1994). As such, ketones may also contribute as a key
alternative fuel substrate to glucose during prolonged exhaustive exercise alongside
progressive reductions in cerebral glucose oxidation. As previously described,
circulating ketones can reach 1–3 mmol/l during 3–6 days fasting (Owen et al.
1969; Garber et al. 1974; Haymond et al. 1982), prolonged exercise (Johnson et al.
1969; Volek et al. 2016), and very high fat ketogenic diet (Langfort et al. 1996;
Johnston et al. 2006). Within these conditions of ketosis, ketones can supply
between 50 and 80% of brain energy requirements (Hasselbalch et al. 1994;
Hasselbalch et al. 1995; Blomqvist et al. 1995; Hasselbalch et al. 1996; Pan et al.
2000). Nevertheless, the existing literature on fuel utilization during exercise has
focused almost exclusively on skeletal muscle, which can resynthesize ATP from
ketone bodies, and shows that ketone body disposal in skeletal muscle is elevated up
to fivefold during exercise (Hagenfeldt and Wahren 1968; Hagenfeldt and Wahren
1971; Balasse et al. 1978; Féry and Balasse 1983; Wahren et al. 1984; Féry and
Balasse 1986; Féry and Balasse 1988). The ketogenic response to fasting prioritizes
skeletal muscle protein, which would otherwise be catabolized via gluconeogenesis
to produce glucose for cerebral substrate utilization (Veech 2004); this glycogen-
sparing effect of ketone metabolism is also advantageous following exhaustive
exercise. Lastly, exercise-induced βHB oxidation reportedly improves brain-derived
neurotropic factor expression (Sleiman et al. 2016; Marosi et al. 2016); therefore,
ketone body utilization may contribute to the therapeutic/neuroprotective effects of
exercise (Nay et al. 2021).

13.4.6 Summary

The cerebral metabolic ratios for oxidative glucose and oxidative carbohydrate
metabolism (i.e., OGI and OCI, respectively) are progressively attenuated from
their stable resting values of approximately 5.7 by up to 40–50% with incremental
exercise to exhaustion; such changes indicate an increase in anaerobic non-oxidative
metabolism. As a compensatory action, increases in cerebral lactate uptake/oxidation
occur with corresponding reductions in cerebral glucose uptake, thereby acting to
maintain total carbohydrate oxidation. At rest, cerebral ketone body utilization
increases with situations of carbohydrate restriction and/or increases in systemic
ketone levels; therefore, it is likely that ketones may also contribute as a key
alternative fuel substrate to glucose during prolonged exhaustive exercise alongside
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progressive reductions in cerebral glucose oxidation; however, this has yet to be
experimentally tested in vivo in humans.

13.5 Summary

The interaction between cerebral substrate delivery (via cerebral blood flow and
arterial substrate content) and trans-cerebral exchange is essential to support fuel
utilization in the brain during exercise. The high cerebral metabolic rate, paired with
a remarkably restricted capacity for substrate storage (e.g., glycogen <10 μmol/g),
insufficient ability to increase oxygen extraction, and inability to utilize fat as
substrate, necessitates tight regulation of cerebral blood flow to support oxidative
metabolism. Future work is needed to ascertain the relative contribution of ketone
utilization and/or astrocytic glycogen-derived lactate oxidation during hypoglyce-
mia experienced with exhaustive exercise in vivo in humans.
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Chapter 14
Effects of Age on Exercise Metabolism

J. Matthew Hinkley, Paul M. Coen, and Bret H. Goodpaster

Abstract Exercise training is an important intervention to improve metabolic health
in older adults. The phenotypic adaptations provoked by chronic training are initi-
ated by the metabolic response to an acute bout of exercise; however, how aging
affects this initial response is unclear. In this chapter, we discuss the effects of aging
on the metabolic response to acute bouts of resistance and endurance exercise and
how age-related diseased conditions may further impair this process. Additionally,
we describe various lifestyle interventions that improve the metabolic response to
exercise.

Keywords Aging · Resistance exercise · Endurance exercise · Diabetes ·
Cardiovascular disease · Heart failure

14.1 Introduction

It is projected that by 2030, more than 20% of the population in the United States
will be over 65 years of age (Ortman et al. 2014). This represents a major healthcare
challenge as aging is the strongest risk factor for many common diseases, including
cardiovascular disease and type 2 diabetes. Maladaptations in metabolism greatly
contribute to the increased risk of cardiometabolic disease in older adults and are
caused to a large degree by reduced exercise and physical activity behaviors. For
example, cardiorespiratory fitness (VO2peak) decreases with age (Fleg et al. 2005)
and is associated with an increased risk of cardiometabolic diseases and all-cause
mortality (Kodama et al. 2009). Older adults are also susceptible to developing
impaired glucose tolerance and insulin resistance (Kalyani and Egan 2013) which
underly the development of type 2 diabetes. There is a higher prevalence of
cardiovascular mortality in older adults with impaired glucose tolerance compared
to those with normal glucose tolerance (Kokkinos et al. 2009). Furthermore, the
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age-related loss of muscle mass and function (i.e., sarcopenia) leads to an increased
risk of falls, fractures, mobility disability, and loss of functional independence. The
healthcare burden that the aging population presents elevates the significance of
developing effective therapeutic strategies for common diseases and disorders asso-
ciated with aging.

Exercise is a powerful way to improve metabolic health, muscle mass, and
strength. However, evidence suggests that aging can impact the metabolic response
to acute and chronic exercise, an important consideration if exercise is to be utilized
as a frontline strategy to promote healthy aging. In this chapter, we will discuss how
sedentary aging affects the metabolic response to an acute bout of exercise and how
this may relate to the impaired adaptive response to chronic exercise training.
Specifically, we will consider the metabolic response to resistance and endurance
exercise and how it differs between young and older sedentary adults and discuss
potential strategies that may improve the metabolic effect of exercise in older adults.
Additionally, we will consider how cardiometabolic diseases (diabetes, cardiovas-
cular disease, and heart failure) and commonly prescribed drugs also impact exercise
metabolism in older adults. Finally, we will make the argument that lifelong exercise
may represent the most potent strategy for extending health span and negating the
impact of aging on the metabolic response to exercise.

14.2 Metabolic Response to Resistance Exercise

Skeletal muscle plays an important role in physical and metabolic function, and the
loss of muscle mass and strength contributes to various chronic conditions associated
with aging, including frailty, sarcopenia, insulin resistance, and osteoporosis (Wolfe
2006). Progressive resistance exercise training is a valuable intervention to maintain
or increase muscle mass and function. Older adults well into their 90s appear to
greatly benefit from resistance exercise (Fiatarone et al. 1994); short-term training
interventions increase muscle size and strength in elderly men and women (Stec et al.
2017; Taaffe et al. 1996; Trappe et al. 2001; Trappe et al. 2000). However, the
benefits of resistance exercise training appear to be attenuated with advanced age in
comparison to younger counterparts (Greig et al. 2011; Rivas et al. 2014). Specif-
ically, improvements in whole-muscle mass and function were blunted in both men
and women >80 years of age following 12 weeks of progressive resistance exercise
training (Raue et al. 2009; Slivka et al. 2008). A recent meta-analysis concluded that
older age was associated with a smaller increase in type 1 and 2 myofiber size
following resistance exercise training in both men and women (Straight et al. 2020).
Those in the ninth decade of life (80–89 years of age) had the lowest effect size for
myofiber hypertrophy. In addition to size, single muscle fiber contractile function is
not improved in both type 1 and 2 myofibers in men and women >80 years of age
following resistance exercise training (Raue et al. 2009; Slivka et al. 2008).

Resistance exercise induced improvements in muscle mass and strength are
associated with an accrual of muscle protein, most notably an increase in
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myofibrillar proteins. With each acute bout of resistance exercise, there is an increase
in protein turnover (i.e., protein synthesis and degradation) in muscle. In young
adults, muscle protein synthesis rates increase within the first hour following exer-
cise and remains elevated up to 48 hours after the acute bout of exercise (Dreyer et al.
2006; Phillips et al. 1997; Walker et al. 2011). The increase in protein synthesis
appears to stem from enhanced mRNA translation through activation of the mam-
malian/mechanistic target of rapamycin complex (mTORC1) (Walker et al. 2011).
While the importance of mTORC1 on muscle hypertrophy was first described in
rodents (Bodine et al. 2001), human clinical trials have shown that pharmacological
inhibition of mTORC1 by rapamycin can reduce protein synthetic rates in young
adults following a bout of resistance exercise (Drummond et al. 2009). Interestingly,
protein degradation rates also increase following acute resistance exercise in young
adults (Phillips et al. 1997). However, net protein balance becomes less negative
following resistance exercise, suggesting a greater protein synthetic response fol-
lowing exercise in young adults (Phillips et al. 1997). Over time, the greater balance
toward protein synthesis leads to an accumulation of new myofibrillar proteins,
eventually resulting in a larger muscle mass (Terzis et al. 2008).

The attenuated hypertrophic response to resistance exercise training may stem
from an inability to adapt to an acute stimulus. Following an acute bout of resistance
exercise, older adults appear to have a blunted anabolic response in comparison to
younger counterparts (Kumar et al. 2009; Walker et al. 2011; Welle et al. 1995). The
differences in anabolic sensitivity are evident across a spectrum of exercise intensi-
ties in older adults (Kumar et al. 2009). Further, the protein synthetic response
appears to be delayed in older adults, peaking at 3–6 hours post-exercise in com-
parison to young adults, which occurs 1–3 hours following exercise (Drummond
et al. 2008). In line with the impaired protein synthetic response, older adults present
a blunted anabolic signaling response, as evident by lower mTORC1 activation (Fry
et al. 2011; Kumar et al. 2009). Interestingly, Kumar et al. have shown that doubling
of exercise volume (3 sets vs. 6 sets) increased protein synthesis rates and down-
stream signaling targets of mTORC1 (p70S6K phosphorylation) in older adults
(Kumar et al. 2012). When comparing young and older adults that completed an
acute bout of resistance exercise at 75% of 1-RM, doubling of exercise volume led to
a similar anabolic response between groups (Kumar et al. 2012), suggesting that an
increase in exercise volume may negate the age-related anabolic resistance.

Along with exercise volume, other strategies have been implemented to improve
anabolic sensitivity to resistance exercise in older adults. Ingestion of protein
supplementation stimulates skeletal muscle protein synthesis and can exacerbate
that anabolic effect of resistance exercise in young adults (Walker et al. 2011).
Similar to resistance exercise, supplemental protein, particularly essential amino
acids (EAA) like leucine, appear to stimulate protein synthesis via activation of
mTORC1 (Dreyer et al. 2008). With feeding alone, protein supplemental can
increase skeletal muscle protein synthetic rates in older adults to a similar level as
young counterparts when levels of EAA are sufficient (leucine content ~3 g)
(Katsanos et al. 2006). When combined with resistance exercise, protein
supplementation can also act synergistically to increase protein synthesis rates in
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aged-skeletal muscle when total protein content exceeds 20 grams, with a plateau at
~40 grams of protein (Drummond et al. 2008; Symons et al. 2011; Yang et al. 2012).
This is significantly more than young adults, who only need ~10 grams of protein to
stimulate protein synthesis rates following resistance exercise, with a plateau
response occurring at ~20 grams of protein (Moore et al. 2009; Tang et al. 2007).
Delivery of amino acids is reduced in older adults, providing a possible explanation
for larger bolus of protein that is needed to stimulate skeletal muscle protein
synthesis (Dillon et al. 2011; Moro et al. 2016; Timmerman et al. 2010). However,
despite this impairment, these findings suggest the combination of resistance exer-
cise and protein supplementation may be sufficient to improve anabolic sensitivity in
skeletal muscle of older adults (Breen and Phillips 2011).

Low-load blood flow restriction (BFR) has been suggested to be an important tool
to induce muscle hypertrophy (Loenneke et al. 2012). The advantages of this type of
training include reduced mechanical stress on joints and bones, which is particularly
beneficial for an older adult population that suffers from osteoarthritis and osteopo-
rosis (Centner et al. 2019). Previous work in young adults revealed that low-load
BFR can increase the protein synthetic response in skeletal muscle (Fujita et al.
2007). Interestingly, while previous studies have shown a reduced anabolic response
to low-load resistance exercise (Kumar et al. 2009), protein synthesis rates and
mTORC1 signaling are enhanced in skeletal muscle of older adults following
resistance exercise combined with BFR (Fry et al. 2010). The acute effects on
protein metabolism appear to lead to increased muscle quality, as older adults
engaged in chronic low-load BFR training present increase in muscle mass and
strength (Centner et al. 2019; Karabulut et al. 2010). These data suggest low-load
BFR training may enhance both the acute and chronic effects of resistance exercise
on skeletal muscle protein metabolism.

14.3 Metabolic Response to Endurance Exercise

Endurance-type exercise interventions have been shown to improve multiple
endurance-related endpoints in older adults, including faster 400 m walk time,
reduced fatigue, and elevated aerobic capacity (American College of Sports Medi-
cine C-Z et al. 2009; Santanasto et al. 2017). In general, endurance exercise training
results in 1–2 metabolic equivalent (MET) increase in VO2peak. This improvement
is significant, as a 1 metabolic equivalent (MET) increase in VO2peak reduces the
risk of mortality by ~25% (Kodama et al. 2009). Elevated cardiovascular fitness
results in a greater physiological reserve above the frailty threshold (~5 METs) in
older active adults, which may be beneficial when acute and chronic illnesses later in
life further reduce fitness; this reduced fitness and physiological reserve puts these
adults on the precipice of frailty (Myers et al. 2002). Additionally, and contrary to
common dogma, structured endurance exercise interventions may improve myofiber
size and strength in older adults, which translates to elevated muscle mass and
physical function (Harber et al. 2012).
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The high-frequency, low-load muscle contractions provoked by endurance exer-
cise can increase the rate of both fat and glucose oxidation by nearly tenfold to meet
the increased energetic demands of prolonged exercise (Goodpaster and Sparks
2017; Klein et al. 1994; Mittendorfer and Klein 2001). Substrate availability is
dependent on delivery both from the plasma and from intracellular stores. Once
inside the cell, glucose can be converted to ATP through either anaerobic or aerobic
metabolism, while fat is primarily converted to ATP by aerobic metabolism. Oxi-
dative metabolism within the mitochondria provides the majority of energy during
prolonged moderate-intensity exercise (25–60% VO2peak) (Klein et al. 1994;
Mittendorfer and Klein 2001). Chronic endurance exercise improves the ability to
convert carbohydrate and lipid fuels to energy, which appears to be mediated by an
increase in mitochondrial content and function in skeletal muscle (Oliveira et al.
2021).

Measuring gas exchange during exercise (i.e., volume of oxygen consumed
(VO2) and volume of carbon dioxide expelled (VCO2) via indirect calorimetry
provides rates of fat and glucose oxidation. With an increase in exercise intensity,
the respiratory exchange ratio (RER; VCO2/VO2) is gradually increased, suggesting
a greater reliance of carbohydrate oxidation. Interestingly, for a given absolute
exercise intensity, RER is higher in older adults, suggesting a greater reliance on
carbohydrate oxidation (and less reliance on fat) during endurance exercise (Julius
et al. 1967; Montoye 1982; Sial et al. 1998). In addition to gas exchange measures,
the use of isotopically labeled substrates can aid to identify and quantify the
contribution of exogenous and endogenous sources of substrate oxidation. At a
similar absolute exercise intensity, the contribution of fat and carbohydrates on
total energy expenditure in young adults was ~50% each, while the majority
(two-thirds) of total energy came from carbohydrate sources in older adults, with a
greater reliance of muscle glycogen stores (Sial et al. 1998). As muscle glycogen
levels are reduced with age (Meredith et al. 1989), a greater reliance of muscle
glycogen levels can lead to an impaired ability to continue exercise in older adults,
i.e., can lead to fatigue. The lower fat oxidation does not appear to be related to
reduced substrate availability, as the rate of fatty acid appearance during exercise is
greater in older adults than younger counterparts (Sial et al. 1998). Additionally, it
has been shown that the increased appearance of plasma free fatty acids observed in
older adults reduces the reliance on intracellular fat stores during exercise (Boon
et al. 2007; Chee et al. 2016), leading to increased accumulation of lipids within the
subsarcolemmal regions of muscle (Chee et al. 2016). This can have severe impli-
cations beyond exercise capacity, as elevated subsarcolemmal lipids are associated
with insulin resistance (Chee et al. 2016).

Cardiorespiratory fitness (VO2peak) starts to decline 3–6% each decade starting
at the fourth decade of life, with greater loss (>20% per decade) after the age of
70 years (Fleg et al. 2005). Thus, the greater reliance of carbohydrate oxidation when
exercising at a similar absolute exercise intensity may simply be due to older adults
exercising at a greater percentage of their VO2peak. When utilizing a similar relative
exercise intensity (i.e., percent of VO2peak), findings are conflicting, with results
showing older adults had higher (Sial et al. 1998; Silverman and Mazzeo 1996),
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lower (Hagberg et al. 1988), or no difference (Tankersley et al. 1991) in RER in
comparison to younger counterparts. The discrepancy between studies may be due to
phenotypic characteristics of the participants, including physical activity levels
(discussed later in this chapter). When phenotypically similar young and older adults
exercised at a similar relative intensity (i.e., 50% of VO2peak), the age-related
suppression of fat oxidation remains (Sial et al. 1998). In contrast to exercise at a
similar absolute exercise intensity, reduction in fat oxidation in older adults when
exercising at a similar relative exercise intensity may potentially be due to an
inability to stimulate lipolysis, as indicated by a suppression in the rate of free
fatty acid appearance during exercise (Sial et al. 1998).

Along with a reduction in fat oxidation, carbohydrate oxidation was also
suppressed in older adults when exercising at a similar relative exercise intensity
as younger adults (Sial et al. 1998). This would suggest the oxidative capacity of
skeletal muscle is lower in older adults. Indeed, mitochondrial enzyme activity is
lower in skeletal muscle of older adults (Coggan et al. 1992). The reduction in
mitochondrial enzyme activity is a product of a lower mitochondrial number and
impairments in mitochondrial function in older adults (Mittendorfer and Klein
2001). Mitochondrial function can be assessed in vivo using magnetic resonance
spectroscopy (31P-MRS) which measures changes in phosphocreatine levels fol-
lowing an acute bout of muscle contractions. In response to contractile activity, the
ability to resynthesize phosphocreatine is lower in sedentary older adults (Braganza
et al. 2019; Conley et al. 2000). Additionally, the balance between ATP hydrolysis
and ATP generation with acute exercise is greater in older adults, suggesting an
impaired ability of the mitochondria to resynthesis ATP in response to contractile
activity (Coggan et al. 1993). Along with in vivo measures, mitochondrial function
can be assessed ex vivo using muscle biopsy and isolated blood cells obtained from
participants using high-resolution respirometry. In line with in vivo assessments,
skeletal muscle and blood-based mitochondrial energetics is impaired in older adults
(Braganza et al. 2019; Short et al. 2005). The changes in mitochondrial function can
impact whole-body oxidative capacity, with lower mitochondrial energetics associ-
ated with reduced VO2peak and higher levels of fatigue.

As mitochondria play an important role in facilitating substrate utilization during
exercise, various therapies have been suggested to improve mitochondrial function.
Most notably, carnitine and nitrates have been purported to improve fat metabolism
and mitochondrial energetics, respectively, and may improve substrate metabolism
during exercise (Chee et al. 2021; Larsen et al. 2011). Fat oxidation is facilitated by
the ability of fatty acids to enter the mitochondria via the rate limiting enzyme
carnitine palmitoyltransferase 1 (CPT1) (Fritz and McEwen 1959). Carnitine is
critical to facilitate fatty acid flux into the mitochondria, and previous work in
young adults has shown that carnitine supplementation increases fat oxidation
during exercise at a relative intensity (50% VO2peak), as well as a reduction in
glycogen utilization during exercise (Stephens et al. 2013; Wall et al. 2011). Similar
findings have been shown in older adults, as 25 weeks of carnitine supplementation,
which increased muscle carnitine levels by 20%, led to an increase in fat oxidation
during exercise at 50% VO2peak (Chee et al. 2021). Along with carnitine, dietary
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inorganic nitrate supplementation has recently been identified to improve endurance
performance (Jones 2014). Specifically, as little as 3 days of nitrate supplementation
has been shown to reduce oxygen consumption and increase exercise efficiency
(wattage/oxygen consumed) during an acute bout of endurance exercise (50%
VO2peak) (Larsen et al. 2011). Mechanistically, dietary nitrates improve energy
transfer and efficiency in skeletal muscle mitochondria (Larsen et al. 2011). The
improvements in mitochondrial efficiency have implications for exercise, as the
improvement in mitochondrial efficiency is associated with lower oxygen consump-
tion during an acute bout of endurance exercise, as well as related to a higher
exercise efficiency during the bout (Larsen et al. 2011). While the role of dietary
nitrates has not been explored in older adults, these data suggest dietary nitrates may
be able to improve the capacity of skeletal muscle mitochondria to increase ATP
production during energetic stress (i.e., exercise).

14.4 Considerations for Understanding the Effect of Age
on Exercise Metabolism

14.4.1 Impact of Cardiometabolic Disease and Age
on Exercise Metabolism

Along with the negative impact of aging on the body, older adults also need to
contend with an increased risk of chronic diseases. In the United States, nearly 85%
of older adults have at least one chronic disease condition and 60% having at least
two conditions (Fong 2019). Most notably, non-communicable cardiometabolic
disorders (i.e., cardiovascular disease, heart failure, and type 2 diabetes) are the
leading cause of disability and death in the older adult population in the United
States (Lopez et al. 2014). The presence of chronic disease conditions can severely
impact quality of life in older adults, causing an earlier and steeper decline in
functional capacity (Fong 2019). While higher levels of physical activity levels
appear to protect against functional or mobility limitations seen in sedentary older
adults (Brach et al. 2004), exercise training interventions reveal patients with chronic
disease conditions may not respond as well or as completely. Specifically, there may
be less improvement in mitochondrial energetics and insulin sensitivity following an
endurance exercise training intervention in individuals with impaired glucose toler-
ance or type 2 diabetes (Kacerovsky-Bielesz et al. 2009; Malin and Kirwan 2012;
Solomon et al. 2013). Further, older adults with heart failure are exercise intolerant,
as indicated by a decrease in VO2peak, and do not appear to respond favorably to
exercise training interventions (Coats et al. 2017; Kitzman et al. 2002; Tucker et al.
2018).

While the acute effects of exercise on metabolism have not been examined fully
in older adults with chronic disorders, possible physiological adaptations provoked
by cardiometabolic diseases may lead to a reduced capacity to perform exercise in
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older adults. Of note, a reduction in cardiorespiratory fitness (VO2peak) is associated
with the development of many cardiometabolic disorders and remains lower when
diagnosed with the condition (Kitzman et al. 2002; Kokkinos et al. 2009). Previous
work has shown that a reduction in VO2peak may explain the reduction in fat
oxidation in older sedentary adults (Sial et al. 1998). In line with this, it has been
shown that older obese adults, who are at a higher risk of cardiometabolic disorders,
have a reduction in fat oxidation in response to acute endurance exercise in com-
parison to lean counterparts (Chee et al. 2016). The impairments in cardiorespiratory
fitness and fat oxidation may stem from disease-associated reductions in mitochon-
drial density and function in comparison to sedentary yet healthy counterparts
(Chomentowski et al. 2011; Drexler et al. 1992; Ritov et al. 2010; Ritov et al.
2005; Tucker et al. 2018). In addition to a reduction in cardiorespiratory fitness,
older adults with cardiometabolic disorders present a reduction in skeletal muscle
mass and strength in comparison to sedentary but otherwise healthy counterparts
(Cicoira et al. 2001; Mancini et al. 1992; Minotti et al. 1991; Park et al. 2009; Park
et al. 2006). Collectively, reduced cardiorespiratory fitness and muscle quality
provoked by cardiometabolic diseases may impair the ability to perform exercise
in these individuals, leading to an aberrant metabolic response to exercise and
reduced adaptive ability to respond to chronic exercise training. More research is
needed to examine the acute response to resistance and endurance exercise to
determine how exercise metabolism is altered in a growing demographic of older
adults with cardiometabolic diseases.

14.4.2 Exercise-Drug Interaction

Many older adults take at least one prescribed drug to treat various disease condi-
tions, including diabetes and cardiovascular disease. In fact, more individuals take a
prescribed drug (44% of population) than those who exercise (16.4% of adults
>65 years of age) (Miller and Thyfault 2020). With many physicians recommending
exercise in addition to drug treatment, it is important to understand exercise-
pharmacological interactions to determine how commonly prescribed drugs may
benefit or deter the positive adaptations to exercise. Two drugs that have recently
been scrutinized for their role on exercise adaptations in older adults are metformin
and statins (Miller and Thyfault 2020). Metformin is the fourth most commonly
prescribed drug in the United States and is a first-line defense against type 2 diabetes
(American Diabetes Association 2018). While metformin has been proposed to treat
other diseased states associated with aging (i.e., cancer, cognitive decline, and
cardiovascular), recent clinical trials have been implemented to test whether the
drug can prevent the onset of many age-related diseases (Barzilai et al. 2016). In the
case of type 2 diabetes, metformin and exercise are commonly prescribed together;
yet recent evidence has shown that drug treatment may attenuate the positive benefits
to exercise. In insulin-resistant individuals, metformin has been shown to abolish the
acute effects of endurance exercise on muscle insulin sensitivity (Sharoff et al.
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2010), as well blunting the chronic effects of endurance exercise training on insulin
sensitivity, cardiovascular risk, and VO2max (Braun et al. 2008; Malin and Braun
2013; Malin et al. 2013). The negative effects of metformin on endurance exercise
training have been extended to healthy older adults, as it has recently been shown
that a combination of 12 weeks of endurance exercise with metformin attenuated
exercise-induced increases in whole-body and skeletal muscle oxidative capacity, as
well as insulin sensitivity (Konopka et al. 2019). In addition to endurance exercise,
metformin has been shown to attenuate exercise-induced increases in skeletal muscle
mass following 14 weeks of progressive exercise training in older healthy adults
(Walton et al. 2019), which may stem from blunting of transcript pathway-associated
muscle hypertrophy (Kulkarni et al. 2020). Together, these findings suggest metfor-
min may mitigate the positive benefits of both endurance and resistance exercise
training in older adults.

Statins are a potent cholesterol-lowering drug, with nearly 40 million adults in the
United States prescribed the drug to reduce the risk of cardiovascular disease (Salami
et al. 2017). While beneficial toward cholesterol lowering, statins appear to induce
several negative side effects, including impaired insulin sensitivity and muscle pain
(myalgia) (Larsen et al. 2018; Morville et al. 2019). Similar to metformin, many
physicians recommend exercise along with statins to treat hypercholesterolemia.
Interestingly, middle-aged individuals with high fitness taking statins lowers mor-
tality risk by 34%, which is greater than each treatment alone (Kokkinos et al. 2014).
Further, when comparing statin users only, those with a higher exercise capacity
(>8.5 METs) was associated with 52% lower mortality (Kokkinos et al. 2014). This
would suggest that improvements in fitness through exercise training in conjunction
with statin treatment may reduce mortality risk in older adults. However, recent work
has suggested that, similar to metformin, statin treatment may blunt the positive
effects of exercise. In a recent review (Miller and Thyfault 2020), the authors
described a preliminary study that examined the effects of 12 weeks of statin
treatment with moderate-intensity endurance exercise (60–75% heart rate reserve,
45 minutes/day, 5 days/week) on aerobic capacity and muscle mitochondrial content
in overweight/obese adults. The study revealed that statin treatment abolished
exercise-induced increases in VO2max and muscle citrate synthase activity. A
possible explanation for impaired response to exercise may be due to an increased
prevalence of muscle pain (i.e., myalgia) in individuals treated with statins which
may augment muscle strength, endurance, and overall performance (Noyes and
Thompson 2017). Unlike metformin, how the combined effects of aging and statin
treatment affect exercise-induced adaptations have not been clearly defined. How-
ever, based on the negative adaptations of statins alone, as well as emerging data
combining drug and exercise treatment in obese adults, it appears that statins may
lead to negative adaptations at the whole-body and individual tissue level.
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14.4.3 Healthy Aging

While aging is typically associated with a sedentary lifestyle, cardiometabolic
disease, and frailty, recent evidence has suggested that lifelong exercise training
may negate many detrimental effects of aging. The late 1960s triggered the begin-
ning of the exercise boom in the United States, in which men and women began
engaging in lifelong structured physical activity, including recreational activities as
well as training for competition, to maintain physical health. Many of these individ-
uals have maintained their active lifestyle through the eighth decade of life, provid-
ing a unique group to examine whether exercise can negate the detrimental effects of
age on whole-body health. Previous work has shown that cardiorespiratory fitness in
male and female lifelong exercisers is elevated when compared to older healthy but
sedentary counterparts (Gries et al. 2018; Heath et al. 1981; Pollock et al. 1997;
Trappe et al. 2013). Using data required from the Fitness Registry and the Impor-
tance of Exercise Database (FRIEND) (Kaminsky et al. 2017), recent work has
shown that VO2peak values for lifelong exercisers were the equivalent to individuals
15–35 years younger (Gries et al. 2018). Vigorous training leads to further improve-
ments in cardiorespiratory fitness, with older men who exercise for performance (i.e.,
master athletes) having a nearly 40% greater relative VO2peak in comparison to
those who exercise for fitness and health (Gries et al. 2018). Lifelong exercisers have
increased left ventricular mass and diastolic filling, which equates to increased
oxygen pulse, a surrogate for stroke volume, as well as increased muscle
capillarization (Gries et al. 2018). Additionally, older adults engaged in >5 years
of endurance exercise (swimming, running, and cycling) have elevated in vivo and
ex vivo mitochondrial energetics (Distefano et al. 2018; Lanza et al. 2008). Along
with improved endurance parameters, lifelong exercise training can improve skeletal
muscle mass and function (Chambers et al. 2020; Distefano et al. 2018; Gries et al.
2019). While the effects of lifelong exercise on the acute metabolic response to
exercise have not been fully explored, these data suggest that chronic physical
activity attenuates the age-related declines in cardiorespiratory fitness and muscle
quality. As both these parameters aid in exercise responsiveness, it is possible that
the aging athlete may respond positively to acute exercise in comparison to seden-
tary counterparts.

14.5 Conclusion

While the effects of exercise training on improving many age-related complications
have been well described, the impact of aging on the acute metabolic response to a
single bout of exercise has not been thoroughly discussed. In this chapter, we
provide evidence that aging appears to negatively impact the acute metabolic
responses to both resistance and endurance exercise (Fig. 14.1), potentially leading
to an impaired ability to positively respond to exercise training interventions. The
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majority of studies that have studied the impact of aging on exercise metabolism
have compared older sedentary adults to younger individuals. However, aging
should be considered along a spectrum rather than a singular event, spanning older
sedentary adults suffering from cardiometabolic diseases (unhealthy aging) to master
athletes competing at a high level (healthy aging). It is important for future work to
understand how these different aging phenotypes can affect exercise metabolism

Fig. 14.1 Overview of the metabolic response to an acute bout of exercise in older adults.
Sedentary older adults (>65 years old) participating in a single bout of either resistance or
endurance exercise have an impaired metabolic response in comparison to younger counterparts.
Specifically, following a bout of resistance exercise, the anabolic response (i.e., protein synthetic
rate) is lower in aged skeletal muscle. Further, the anabolic response is delayed when compared to
younger adults completing a similar relative intensity bout. Following endurance exercise, older
adults have an altered substrate utilization profile than young adults. This includes (1) higher
respiratory quotient ratio (RER) when performing exercise at similar absolute and relative intensi-
ties, (2) lower fatty acid oxidation in skeletal muscle when performing exercise at similar absolute
and relative intensities, and (3) lower lipolytic rate in adipose tissue when performing exercise at a
similar relative intensity
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and, importantly, the phenotypic characteristics that either impair or improve the
ability to respond to an acute bout of exercise. Further, the use of multi-omics
platforms (i.e., transcriptomics, proteomics, phospho-proteomics, metabolomics,
lipidomics, etc.) could yield important information about the molecular mediators
that define the impaired metabolic response to acute exercise in older adults.
Regardless, despite the impaired response to acute bouts of exercise, chronic exer-
cise training is still sufficient to improve the negative aspects of aging (i.e., lower
cardiorespiratory fitness, reduced muscle mass/function) and is an important inter-
vention to improve the quality of life in the growing older adult population.
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Chapter 15
Sex-Specific Effects on Exercise Metabolism

Anne-Marie Lundsgaard, Andreas M. Fritzen, and Bente Kiens

Abstract Women and men exhibit different anthropometric and physiologic char-
acteristics, along with a sex-specific morphologic and metabolic imprint of skeletal
muscle. These sex differences integrate to impact on metabolism during exercise.
Men have a greater maximal exercise capacity than equally trained women. Besides
this, a remarkable sex difference is a greater fatty acid oxidation in women than men
at the same relative exercise intensity. The greater fatty acid oxidation may lead to
less amino acid oxidation during exercise and potentially muscle glycogen sparing in
women compared with men. Several sex-specific morphologic and molecular fea-
tures of skeletal muscle appear to explain the differences in substrate utilization
during exercise in women and men. Here, factors such as muscle fiber type compo-
sition, capillarization, and substrate availability within skeletal muscle will be
discussed in a sex-comparative manner. The influence of sex on mitochondria—
specifically, the energy generating pathways as beta-oxidation and glycolysis, the
tricarboxylic acid cycle (TCA) cycle, and electron transport chain capacities—will
also be reviewed.

Keywords Fat oxidation · Muscle-triacylglycerol · Muscle lipolysis · Muscle fiber
types

15.1 Introduction

Women and men exhibit sex-specific anthropometric, physiologic, morphologic,
and metabolic skeletal muscle characteristics, which together integrate to impact
on substrate metabolism during physical activity. The marked differences in skeletal
muscle metabolism between sexes are emphasized by metabolomics analysis show-
ing that in serum, obtained in the fasting state from ~1800 men and women,
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one-third of the metabolites showed sex-specific expression, with pathway analysis
revealing strong differences within glucose, fatty acid, as well as amino acid
metabolism (Krumsiek et al. 2015). Evidence from gene microarray analysis sug-
gests a distinct sexual dimorphism in the metabolic machinery in human skeletal
muscle. In biopsies from the vastus lateralis muscle obtained in the resting, fasting
state from 45 men and women, sex differences were observed for one-fourth of the
identified genes (Lindholm et al. 2014), and sex was reported to have a stronger
influence on gene expression in skeletal muscle than training status (Roth et al.
2002). More specifically, gene microarray analyses have revealed enrichment of
genes in fatty acid metabolism in female muscle and in genes associated with
pathways related to protein catabolism in male muscle (Chapman et al. 2020;
Lindholm et al. 2014).

Sex differences in exercise metabolism are ascribed to both sex chromosomes and
sex hormones. Sex-dependent differences in chromosomes and hormones result in
differences in physiological variables, as body fat content and distribution, as well as
skeletal muscle characteristics, in turn exerting an impact on sex-specific exercise
metabolism. To accurately investigate the effect of sex on metabolism during
exercise, proper matching of men and women at the level of exercise capacity,
habitual physical activity, and training history is essential. The sexes must also be
compared at exercise eliciting a similar intensity in workload. In many
sex-comparative studies, it has become the norm that women are subjected to
experiments in the follicular phase, a time point where differences between sexes
in circulating levels of sex hormones as estrogen and progesterone are minimized.
Menstrual cycle phase and the use of oral contraceptives have been taken into
account in some—but not all studies comparing exercise metabolism between
sexes. These two factors can have a role in substrate metabolism during exercise
in women and need to be taken into account when designing and interpreting
scientific studies within this area (Sims and Heather 2018).

In this chapter, sex differences in body composition and the capacity for oxygen
uptake will be introduced first, followed by the role of sex on substrate metabolism
during acute aerobic exercise. The most remarkable sex-dependent exercise pheno-
type appears to be the greater oxidation of fatty acids during aerobic exercise in
women compared with men. The plethora of potential mechanisms involved in the
greater fat oxidative capacity in women will be discussed, with specific consider-
ation given to the role of skeletal muscle composition and the mitochondrial
machinery. At the end of the chapter, an overview of anaerobic capacity and
sex-specific regulation of glycolytic capacity will be included. The evidence
presented herein is derived from studies in premenopausal women and men, unless
otherwise stated.
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15.2 Body Composition and Maximal Oxygen Uptake

After adjustment for body weight, women have approximately two-thirds the skel-
etal muscle mass of their male counterparts, as measured by magnetic resonance
imaging (MRI) scanning of ~470 men and women (Janssen et al. 2000). This sex
difference in skeletal muscle mass is attributed to the male-specific Y chromosome
(i.e., genetics), hormonal differences (e.g., testosterone levels), and differences in
physical activity patterns in men and women (i.e., environment), which over time
jointly contribute to sex differences in muscle mass (Fig. 15.1).

Women generally have a greater body fat mass than men, independently of
training status, and the mass of adipose tissue in women is typically equal to or
even greater than their skeletal muscle mass. Varying within age (but not taking
physical activity into consideration), 6–12% higher body fat mass was observed in
women, when a large cohort of 16,000 12 to 80-year-old men and women were
analyzed by bioelectrical impedance (Chumlea et al. 2002). One of the most
important sex-specific features is the different body fat distribution, known as the
android and gynoid distribution pattern. Men have a higher amount of visceral
adipose tissue, whereas women have more subcutaneous fat, in particular in the
gluteo-femoral region, as measured by computed tomography (CT) scanning and
MRI (Kvist et al. 1988; Lemieux et al. 1993). Independent of sex, the subcutaneous
fat depot comprises the majority (~80%) of total body fat.

Fig. 15.1 Sex-dependent variables impacting exercise metabolism. Summary of the sex-dependent
variables at whole-body and skeletal muscle level, which in the main text are discussed to have
impact on exercise substrate metabolism
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The maximal oxygen uptake (VO2peak) is determined by the maximal cardiac
output and the maximal peripheral (mainly skeletal muscle) oxygen extraction.
When VO2peak is expressed as liters per min, a ~ 30–40% higher VO2peak is
typically observed in trained men compared with equally trained women (based on
training history), but when expressed relative to absolute body mass, VO2peak is
still ~ 10–20% higher in men than women matched for training status and history
(Charkoudian and Joyner 2004). This sex difference is ascribed mainly to different
dimensions of the cardiovascular oxygen transport systems and inherent differences
muscle mass between women and men. Regarding the cardiovascular contribution to
sex differences in VO2peak, a lower maximal cardiac output is present in women
compared with men. The maximal heart rate is either similar (Joyner and Casey
2015) or slightly higher in men than in women (Loe et al. 2013; Sydó et al. 2014),
while the maximal stroke volume is approximately 30% lower in women (Joyner and
Casey 2015), primarily due to a lower left ventricular mass of the female heart (even
after correction for body size). Together with a 20–30% lower total blood volume
and the ~10–15% lower blood hemoglobin concentration in women than in men
(Murphy 2014), these physiological factors contribute to a skeletal muscle lower
oxygen delivery in women than in men. It appears, however, that the cardiovascular
sex differences may be compensated to some extent by increased peripheral oxygen
extraction in female skeletal muscle (Beltrame et al. 2017), as discussed in a
subsequent paragraphs.

In addition to lower oxygen delivery in women than men, the lower total muscle
mass in women than men also plays an important role in the sex difference in
maximal oxygen uptake. This is illustrated by the findings that when women and
men are carefully matched at training status, with similar maximal oxygen uptake
expressed relative to lean body mass, the sex difference in VO2peak became
non-significant (Steffensen et al. 2002). Matching women and men at VO2peak
per lean body mass is thus required to investigate the impact of sex per se and in
particular when sex-specific metabolism in skeletal muscle is investigated.

15.3 Greater Contribution of Fatty Acids to Oxidation
During Aerobic Exercise in Women

It is well documented that women have a greater resting, fasting plasma fatty acid
concentration than men (Høeg et al. 2009; Karpe et al. 2011; Koutsari et al. 2011).
Tracer studies have shown that this results from a greater fasting plasma fatty acid
rate of appearance in women compared with men, which seems to be due to a greater
fat mass rather than a greater lipolytic activity per unit of fat mass (Mittendorfer et al.
2009). Despite the greater circulating fatty acid availability in women than men, the
whole-body fatty acid oxidation rate has been shown to be similar during resting,
fasting conditions between sexes in the majority of studies (Carter et al. 2001a; Høeg
et al. 2011; Horton et al. 1998; McKenzie et al. 2000; Roepstorff et al. 2006a).
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However, a greater resting fatty oxidation in women than in men was found in one
study (Høeg et al. 2009). The greater circulating fatty acid concentrations in women
may lead to the greater intramyocellular triacylglycerol (IMTG) content that has
consistently been found in female compared with male skeletal muscle, as a positive
association has been found between circulating fatty acid concentrations and IMTG
content across sexes (Haugaard et al. 2009). In contrast to resting, fasting conditions,
a greater relative contribution of fatty acids to energy metabolism in women is well-
documented during submaximal aerobic exercise. Accordingly, during prolonged
submaximal aerobic exercise at the same relative workload, a greater fatty acid
oxidation was obtained in women compared with matched men (Roepstorff et al.
2006a). These findings are supported by indirect calorimetry data from 25 studies,
where the respiratory exchange ratio (RER) consistently indicated a greater fatty acid
oxidation in women than in men during submaximal aerobic exercise performed for
60–120 min at an intensity in the range of 35–75% of VO2peak (Tarnopolsky 2008).
The lower RER values during exercise in women than in men are observed for both
untrained and trained individuals and are maintained when untrained women and
men complete a similar training intervention (Carter et al. 2001a; Friedlander et al.
1998).

The absolute fatty acid oxidation rate can be calculated from indirect calorimetry
measures. During exercise, the fatty acid oxidation rate increases from low to
moderate intensities, from where the rate decreases slightly with increasing exercise
intensities. When the maximal rate of fatty acid oxidation was calculated from
indirect calorimetry during submaximal, moderate intensity incremental exercise in
300 women and men, it was demonstrated to be higher in women than in men
(Venables et al. 2005). Interestingly, maximal rate of fatty acid oxidation is also
elicited at a greater relative intensity of VO2peak in women than in men (52% of
VO2peak for women compared with 45% of VO2peak in men) (Venables et al.
2005). This indicates that women are able to maintain the favoring of fatty acid
oxidation at a higher exercise intensity than men, whereas men shift to predomi-
nantly glucose oxidation at lower levels of submaximal exercise intensity than
women.

Despite the greater use of fatty acids as substrate during aerobic exercise in
women, glucose disposal during exercise appears to be similar in women and men.
Hence, removal of glucose from the circulation, representing uptake mainly in
skeletal muscle, was found to be similar in untrained men and women during
moderate-intensity exercise, both before and after a training period (Carter et al.
2001a). Likewise, using a unilateral leg extension exercise model, no sex difference
in glucose uptake across the exercising leg was observed during moderate-intensity
exercise in untrained men and women when expressed per unit of lean leg mass
(Mittendorfer et al. 2002). Even during more intense whole-body exercise
(14–15 min at 88% of VO2peak), glucose removal from the blood expressed relative
to lean body mass was found to be similar between trained women and men (Marliss
et al. 2000). Friedlander et al. (1998) studied glucose kinetics in matched, trained
men and women and showed similar whole-body glucose rate of removal relative to
body mass during moderate-intensity exercise, despite lower RER values in women,
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which gave rise to the hypothesis that there is greater muscle glycogen-sparing
during exercise in women than men (Friedlander et al. 1998). Future studies needs
to further clarify whether glycogen breakdown is actually lower in women than men
during a matched exercise bout.

15.4 A Role of Muscle Fiber Type Composition
in the Greater Exercise Fatty Acid Oxidation
in Women

When biopsies from the vastus lateralis muscle were obtained before and after
moderate intensity aerobic exercise, it was shown that, concomitantly with the
higher fatty acid oxidation in women than men, the content of free AMP and the
activation of the energy sensor, AMP- activated protein kinase (AMPK), were less in
female than male skeletal muscle (Roepstorff et al. 2006a). This could indicate a
better maintenance of intramyocellular energy balance during submaximal exercise
in skeletal muscle of women compared with men, suggesting an increased potential
for oxidative (fatty acid) metabolism in women.

The morphologic and enzymatic properties of the individual muscle fibers depend
on the myosin heavy chain (MHC) expression, which in humans comprises primar-
ily type I and IIA, and some IIX. Sex differences in muscle fiber type composition
have mainly been investigated in the vastus lateralis muscle. When investigated by
gene microarray in recreationally active women and men, female muscle (vastus
lateralis) expressed 35% more MHCI mRNA and 30% and 15% less MHCIIA and
MHCIIX mRNA, respectively, than male muscle (Welle et al. 2008). There is thus a
greater encoding of type I muscle fibers in female muscle. By histochemical tech-
niques like the myosin ATPase-, silver-, or immuno-staining, the fiber composition
can be expressed relative to the muscle biopsy area. By histochemical analysis, the
area proportion of type I fibers has been described to be 22–35% greater in women,
while a corresponding greater area proportion of type IIA fibers has been observed in
men (Carter et al. 2001a; Høeg et al. 2009; Roepstorff et al. 2006a; Staron et al.
2000; Steffensen et al. 2002; Esbjörnsson-Liljedahl et al. 1999; Yasuda et al. 2005).
A smaller individual cross-sectional area of type II fibers (Carter et al. 2001a;
Esbjörnsson-Liljedahl et al. 1999; Høeg et al. 2009; Miller et al. 1993; Roepstorff
et al. 2006a; Simoneau and Bouchard 1989; Staron et al. 2000; Yasuda et al. 2005),
and in some cases type I fibers (Simoneau and Bouchard 1989; Staron et al. 2000),
has been observed in women compared with men. Also, a smaller cross-sectional
area of both type I and IIA have been found when investigated in isolated single
fibers (Jeon et al. 2019; Trappe et al. 2003). Thus, there is a greater total muscle area
covered by type I fibers in women, and this is independent of training status (Carter
et al. 2001a; Steffensen et al. 2002). Interestingly, the content of satellite cells, the
precursor stem cells of skeletal muscle, is greater in type I than type II fibers in
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female muscle while being greater in type II fibers of men (Horwath et al. 2020).
This could also contribute to the sex-specific muscle fiber type composition.

The number of capillaries surrounding each type I or II muscle fiber is reported to
be similar in women and men, but due to a smaller individual fiber area (in particular,
in type II fibers), a greater capillary density per given muscle area is observed in
women (Høeg et al. 2009; Roepstorff et al. 2006a). This influences the perfusion of
the muscle while reducing oxygen and substrate diffusion distances to individual
muscle fibers. This may contribute to explain observations of more efficient skeletal
muscle oxygen extraction during submaximal exercise in women compared with
men (Beltrame et al. 2017). Notably, a positive correlation has been found between
fatty acid oxidation during exercise and both the proportion of type I fibers and
capillary density (Roepstorff et al. 2006a). This indicates that sex-specific differ-
ences in muscle morphology in women may indeed contribute to the observation of
higher fatty acid oxidation during submaximal exercise.

15.5 Sex Differences in Mitochondrial Capacity
and Function

To understand the greater capacity for fatty acid oxidation in female skeletal
muscles, it is worth considering the potential contribution of sex-specific regulation
of mitochondrial capacity and function, in addition to the effects of sex on muscle
fiber type and capillarization. When examining sex differences in exercise metabo-
lism, the aerobic fitness of women and men must be carefully matched, as mito-
chondrial quantity and the mitochondrial capacities for beta-oxidation, TCA cycle,
and oxidative phosphorylation in the electron transport chain all correlate highly
with VO2peak (Jacobs and Lundby 2013). Therefore, VO2peak/kg lean body mass
should be similar between sexes for proper muscle mitochondrial comparisons.

When assessed by electron microscopy, muscle mitochondrial density was sim-
ilar in recreationally active women compared with men matched at VO2peak/kg lean
body mass (Tarnopolsky et al. 2007) or matched at weekly physical activity level
(Crane et al. 2010; Hoppeler et al. 1985). In addition, a similar increase in muscle
mitochondrial density was found in women and men following 6 and 7 weeks of
aerobic exercise training (Hoppeler et al. 1985; Tarnopolsky et al. 2007). One study
showed greater mitochondrial density in moderately trained women than men
(Montero et al. 2018). However, in this study the sexes were matched at VO2peak/
kg body mass, and hence the women might have been more highly trained at the
level of skeletal muscle than the men. It seems thus likely that the volume of
mitochondria in skeletal muscle is not influenced by sex, despite well-established
differences of muscle fiber type composition.

Along with this, measurement of mitochondrial respiration capacities in muscle
samples from women and men have also shown no sex differences (Karakelides
et al. 2010; Miotto et al. 2018; Thompson et al. 2013). More specifically, maximal
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ATP production rates measured in isolated mitochondria from recreationally active
women and men were similar (Karakelides et al. 2010). Similar maximal mitochon-
drial respiration rates were also measured in muscle bundles or permeabilized
muscle fibers from sedentary overweight women and men (Thompson et al. 2013)
and from moderately trained women and men (Miotto et al. 2018), respectively. In
these studies of mitochondrial respiration, different substrates as pyruvate,
palmitoyl-carnitine, or different TCA metabolites were applied to provide fuel for
the mitochondrial respiration, and respiration was related to measures of mitochon-
drial protein content. Thus, no sex differences seem to be apparent for the intrinsic
mitochondrial oxidative capacity.

The overall capacity to generate ATP from glucose- or fatty acid-derived sub-
strates in mitochondria is likely similar in female and male skeletal muscle. When
the beta-oxidation, TCA cycle, and electron transport chain are investigated at the
enzyme or protein level, sex differences seem limited to the proximal part of the
beta-oxidation (Fig. 15.2).

Carnitine palmitoyl-transferase 1 (CPT1) is a key regulator of mitochondrial fatty
acid import and hence fatty acid oxidation in skeletal muscle. Fatty acyl-CoAs must
be converted to acyl-carnitine to cross the outer mitochondrial membrane, and this
reaction is catalyzed by CPT1. CPT1 protein content and maximal activity, mea-
sured in isolated mitochondria from muscle biopsies of both untrained and trained
women and men, were found to be similar (Berthon et al. 1998; Costill et al. 1979;
Miotto et al. 2018). This suggests that it is not a greater capacity for CTP1 flux in
female muscle that contributes to the sex differences in fatty acid oxidation during
exercise.

Within the mitochondria, fatty acyl-CoA enters beta-oxidation. In this pathway,
very long- and medium-chain acyl-CoA dehydrogenase (VLCAD and MCAD)
protein contents are higher in muscle of moderately trained women than in men
(Fu et al. 2009; Maher et al. 2010). This is also the case for the content of
trifunctional protein α (TFPα) (Fu et al. 2009; Maher et al. 2009, 2010), which
catalyzes the second and third beta-oxidation reaction. The hydroxy acyl-CoA
dehydrogenase (HAD) enzyme forms part of TFPα and catalyzes the third reaction,
which leads to NADH. Contrary to the sex difference in TFPα, the maximal activity
of HAD has been shown to be similar in untrained and trained women and men
(Carter et al. 2001a; Roepstorff et al. 2005). Women and men thus have a similar
capacity for mitochondrial fatty acid import, and while women may express some of
the proximal beta-oxidation enzymes to a greater extent, the studies which have
assessed respiration with palmitoyl-carnitine as substrate suggest a similar overall
beta-oxidation capacity in women and men.

Acetyl-CoAs from beta-oxidation as well as from glycolysis enter the TCA cycle,
which produces NADH and FADH2 coenzymes for the electron transport chain. The
maximal activity of citrate synthase (CS) is similar in skeletal muscle from both
untrained and trained women and men (Chapman et al. 2020; Høeg et al. 2009;
Roepstorff et al. 2005; Thompson et al. 2013; McKenzie et al. 2000). Moreover,
maximal CS activity increased to a similar extent in women and men after 7 weeks of
aerobic training (Carter et al. 2001a), further supporting a similar metabolic capacity
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Fig. 15.2 Sex-dependent molecular imprint involved in substrate metabolism in skeletal muscle
during exercise. Illustration of proteins and enzymes involved in substrate metabolism in skeletal
muscle, of which the protein expression or maximal activity are investigated in gender-comparative
muscle biopsy studies. Red color illustrates a higher expression in female compared with male
muscle; blue color illustrates a higher expression in male than female muscle. Proteins or enzymes
shown to be similar in expression are depicted in orange. Lipoprotein lipase is shown as pink due to
findings of higher LPL mRNA in female compared with male muscle, with no available data on
protein expression. In women, lipid metabolic proteins related to uptake of fatty acids from the
circulation, intramyocellular release of fatty acids from triacylglycerol, and the proximal
β-oxidation are more abundant in women. Resting skeletal muscle intramyocellular triacylglycerol
(IMTG) content are shown to be higher in women, while resting glycogen content are shown to be
similar in female and male muscle. Mitochondrial proteins in the TCA cycle and electron transport
chain are equally expressed in skeletal muscle of women and men and hence not likely to explain
differences in substrate metabolism. In male skeletal muscle, a greater molecular capacity for
glycolysis and glycogen breakdown is obtained. Abbreviations: ATGL adipose triglyceride lipase,
CI-V electron transport chain complex I–V, CD36 cluster of differentiation 36 or SR/B3, CS citrate
synthase, FA fatty acid, GP glycogen phosphorylase, GLUT4 glucose transporter 4, HAD beta-
hydroxyacyl-CoA dehydrogenase, HK2 hexokinase 2, HSL hormone sensitive lipase, LPL lipopro-
tein lipase, MCAD medium-chain acyl-CoA dehydrogenase, PLIN3 and –5 perilipin 3 and 5, PDC
pyruvate dehydrogenase complex, PFK phosphofructokinase, PK pyruvate kinase, TCA tricarbox-
ylic acid cycle, TFPα trifunctional protein α, VLCAD very long chain acyl-CoA dehydrogenase
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at the level of CS between sexes. At the electron transport chain complexes, the
maximal activity of enzymes at the level of complex I to V is reported to be similar
between in muscle from moderately trained women and men (Carter et al. 2001a;
Crane et al. 2010; McKenzie et al. 2000). In support, protein contents of electron
transport chain complex I to V were similar in moderately trained women and men
(Miotto et al. 2018).

The summarized findings of similar capacities for acetyl-CoA flux through TCA
and ATP production in the electron transport chain suggest that the higher fatty acid
oxidation in women during exercise potentially may be regulated at the proximal
part of the beta-oxidation, but it is more likely to be regulated by the availability of
intramuscular fatty acid substrates.

15.6 The Sources of the Greater Fraction of Fatty Acids
Oxidized During Exercise in Women

The fatty acids oxidized in skeletal muscle during exercise can originate from the
circulation, as either adipose tissue-derived fatty acids or fatty acids liberated from
hydrolysis of circulating triacylglycerol, or they can be derived from intramuscular
sources as IMTGs.

15.6.1 Plasma Free Fatty Acids and Fatty Acids Derived from
VLDL-TG

During exercise, there is an increase in circulating catecholamines, which is one of
the major mechanisms stimulating lipolysis in adipose tissue via adrenoreceptors.
The whole-body lipolytic rate can be determined following labeled glycerol infu-
sion, and from such studies, it has been shown that plasma glycerol rate of appear-
ance can be increased by up to four fold compared with resting values during
submaximal moderate-intensity exercise (Romijn et al. 2000; Wolfe et al. 1990).
When compared during exercise at the same relative moderate exercise intensity, a
higher plasma glycerol and fatty acid concentration have been observed in untrained
and moderately trained women compared with matched men (Carter et al. 2001a;
Davis et al. 2000; Roepstorff et al. 2006b). This could indicate that in individuals
that are not endurance trained, a greater plasma fatty acid availability in women than
men could contribute to the higher fatty acid oxidation. On the other hand, in
endurance trained women and men, a number of studies have shown similar plasma
glycerol and fatty acid concentration between sexes, as well as a similar entry rate of
fatty acids in the bloodstream during exercise (Burguera et al. 2000; Roepstorff et al.
2002). Thus, in the highly trained state, the liberation of fatty acids from adipose
tissue lipolysis appears to be the same. Accordingly, when uptake and oxidation of
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plasma fatty acids were measured across the exercising leg in endurance trained
individuals, no sex differences in the uptake and oxidation of plasma fatty acids were
obtained irrespective of whether the exercise was performed at low, moderate, or
high intensities (Burguera et al. 2000; Roepstorff et al. 2002; Romijn et al. 2000;
Steffensen et al. 2002). While untrained to moderately trained women may achieve
greater free fatty acid availability in the circulation during submaximal exercise, the
availability and utilization of free fatty acids from the circulation are not likely to be
a main factor in the sex difference in exercise fatty acid oxidation observed in more
highly trained men and women.

Plasma VLDL-TG-derived fatty acids may also contribute to fatty acid utilization
during exercise, though the relative contribution of this substrate has been consid-
ered minor. Muscle lipoprotein lipase (LPL) is important for hydrolysis of circulat-
ing (VLDL)-TG. There is no sex difference in LPL activity in skeletal muscle
(mLPL activity) in the resting, fasted state (Kiens et al. 2004). It has been shown
that following moderate-intensity exercise, mLPL activity was similar to
pre-exercise values in women, while it increased 56% compared with resting levels
in men (Perreault et al. 2004). Some studies thus suggest that VLDL-TG might
comprise a more significant energy substrate in men rather than women during
exercise (Roepstorff et al. 2002); however, tracer studies have revealed similar
VLDL-TG clearance and oxidation rates in recreationally active women and men
during 90 min exercise at 50% of VO2peak (Sondergaard et al. 2011).

Altogether, these data indicate that VLDL-TG derived fatty acids are not oxidized
to a greater extent in women than men during exercise. Together with the data
showing similar oxidation of fatty acids from adipose tissue lipolysis, at least in the
more trained state, these findings point to a sex-specific utilization of
intramyocellular fatty acids.

15.6.2 Intramyocellular Triacylglycerol Utilization

It has consistently been demonstrated that IMTG content is higher in women
compared with men, by either biochemical analysis, histochemical staining, or
noninvasively by 1H-MRS (Devries et al. 2007; Høeg et al. 2009; Miller et al.
1993; Moro et al. 2009; Roepstorff et al. 2002; Roepstorff et al. 2006a; Steffensen
et al. 2002; Tarnopolsky et al. 2007). As type I muscle fibers contain more IMTG
than type II fibers (Essén et al. 1975), the greater proportion of type I fibers in female
muscle could contribute to explaining these sex difference in IMTG content.

A higher skeletal muscle protein content of the fatty acid translocase cluster of
differentiation 36/SR-B2 (CD36) has been documented in both untrained and trained
women compared with men (Kiens et al. 2004; Miotto et al. 2018). The greater
IMTG content in female muscle may be associated with their greater capacity for
CD36-mediated FA uptake, in combination with the higher basal fasting plasma
fatty acid concentration in women than in men. The amount of body fat (which
seems to contribute to sex differences in resting fasting plasma fatty acid
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concentrations) has been shown to be an important predictor of IMTG content (Moro
et al. 2009).

During moderate-intensity exercise, women utilized IMTG to a greater extent
than men, irrespective of training status, as IMTG were reduced by ~25–35% in
women following exercise, with a non-significant reduction of IMTG in men
(Roepstorff et al. 2002; Roepstorff et al. 2006b; Steffensen et al. 2002). The decline
in IMTG during exercise also correlates positively with the basal IMTG content, as
shown across sexes (Roepstorff et al. 2006b). Electron microscopy has revealed that
IMTGs in female muscle are comprised of a high number of smaller lipid droplets
compared with men (Tarnopolsky et al. 2007), which may increase the potential for
IMTG hydrolysis by lipases and other proteins involved in the regulation of lipid
droplet lipolysis. To this end, lipid droplets in skeletal muscle of women are found to
be located closer to mitochondria after an exercise bout (Devries et al. 2007), a
location which may increase the potential for IMTG-derived fatty acid oxidation.

A higher TG hydrolase activity by adipose triglyceride lipase (ATGL), the first
enzyme in IMTG lipolysis, has been shown in the vastus lateralis muscle of
untrained women compared with men (Moro et al. 2009). On the other hand,
DAG hydrolase activity, primarily mediated by hormone sensitive lipase (HSL), is
not different between sexes, even though both HSL mRNA expression and protein
content are higher in skeletal muscle of women than men (Roepstorff et al. 2006b).
The expressions of the lipid-droplet coating proteins perilipin 2, 3, 4, and 5 were all
1.5- to 2-fold higher in untrained women than in men (Peters et al. 2012). This could
also contribute to a greater female skeletal muscle capacity for lipid droplet lipolysis
and interaction between lipid droplets and mitochondria during exercise (Covington
et al. 2014; Granneman et al. 2011; Wang et al. 2011).

The greater contribution of IMTG as energy source during exercise in women
may thus be associated with greater stores, smaller and more abundant lipid droplets
in proximity to mitochondria, and an increased lipolytic capacity for TG hydrolysis
compared with men.

The greater fatty acid oxidation during exercise in women may primarily result
from differences in IMTG-derived fatty acid oxidation.

15.7 Protein Catabolism and Anabolism During
and Following Exercise

When the rates of muscle protein synthesis and breakdown were investigated by
labeled amino acid infusion and subsequent measurement of tracer incorporation
into muscle proteins in samples from medial vastus lateralis biopsies, men and
women showed similar resting muscle protein fractional synthesis and breakdown
rate in the overnight-fasted state (Dreyer et al. 2010; Fujita et al. 2007; Markofski
and Volpi 2011), suggesting no apparent sex differences in basal protein turnover in
skeletal muscle.
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Urea excretion can be used as a marker of whole-body protein breakdown. It has
been shown that urinary urea excretion is lower in women than men on a day with
90 min moderate-intensity exercise at 60% of VO2peak, when a similar diet was
ingested (McKenzie et al. 2000). This was found to be concomitant with leucine
oxidation being 118% greater in men than in women during submaximal exercise,
when measured by infusion of labeled amino acids (McKenzie et al. 2000). Likewise
in other studies, leucine oxidation during aerobic exercise at moderate intensity was
also ~70% greater in trained men compared with women (Lamont et al. 2001;
Phillips et al. 1993). Lower amino acid oxidation in women seems to coincide
with higher fatty acid oxidation.

Following acute resistance exercise, the increase in post-exercise muscle protein
synthesis was similar between women and men, when investigated in either the
fasted or fed state (Areta et al. 2014; Dreyer et al. 2010; West et al. 2012). However,
when the response to acute sprint interval exercise was evaluated in recreationally
active men and women using deuterium oxide, mixed muscle protein synthesis was
shown to be ~35% lower in women than men at 48 h post-exercise (Scalzo et al.
2014). This discrepancy could relate to the longer study period in the latter study. It
remains to be established whether a lower total muscle mass and the lower amino
acid utilization during exercise contribute to lower protein requirements in female
compared with male athletes. However, the sum of existing studies suggests that
protein requirements of female athletes (when expressed per kg body mass) are in the
similar range as those in males (Mercer et al. 2020).

15.8 Capacity for Glucose Metabolism and Glycolysis

During muscle contractions, intracellular signaling leads to translocation of glucose
transporter 4 (GLUT4) to the plasma membrane leading to increased glucose uptake.
GLUT4 protein content is similar in skeletal muscle of moderately trained women
and men (Høeg et al. 2009). Also important for glucose uptake into skeletal muscle is
the hexokinase II (HKII) protein, which facilitates the gradient for glucose transport
into muscle by intracellular phosphorylation of glucose to glucose-6-phosphate
(G6P). For HKII, a 56% higher protein content has been demonstrated in women
compared with men (Høeg et al. 2011). Via this increased capacity for intracellular
phosphorylation of glucose, women seem to have a greater potential for glucose
uptake, which, however, does not appear to come in play during submaximal aerobic
exercise (Carter et al. 2001b; Friedlander et al. 1998; Marliss et al. 2000;
Mittendorfer et al. 2002).

In the resting, fasted state, skeletal muscle glycogen content is not different
between untrained or trained women and men during conditions of controlled diet
and optimal energy intake (Roepstorff et al. 2002; Roepstorff et al. 2006a;
Tarnopolsky et al. 1990). During submaximal exercise (treadmill running for
90 min at 63% of VO2peak), a lower glycogen breakdown was observed in well-
trained women compared with men (Tarnopolsky et al. 1990), while, in endurance
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trained female and male athletes, 90 min of bicycle exercise at 58% of VO2peak
induced a similar glycogen breakdown in men and women (Roepstorff et al. 2002).
The discrepancy between findings may be due to the different exercise modalities
and intensities. When it comes to more intense exercise, like 30 s bicycle sprinting,
glycogen depletion was described to be 42% less in type I muscle fibers in women
than in men, with similar glycogen depletion in type II fibers (Esbjörnsson-Liljedahl
et al. 1999). There may thus be a sex difference in glycogen utilization during more
intense exercise.

In support of a greater capacity for glycogenolysis in men, a higher maximal
activity of glycogen phosphorylase (GP) has been reported in muscle homogenates
from untrained men compared with women (Green et al. 1984). In skeletal muscle,
G6P derived from either glycogen breakdown or glucose taken up from plasma is
substrate for glycolysis. In the glycolysis, there are several reports of higher maximal
activity of glycolytic enzymes in male compared with female muscle. Higher
activities of phosphofructokinase (PFK), pyruvate kinase (PK), lactate dehydroge-
nase (LDH), and malate dehydrogenase (MDH) have been demonstrated in skeletal
muscle from recreationally active men compared with women (Green et al. 1984;
Jaworowski et al. 2002; Simoneau and Bouchard 1989). These findings clearly
indicate that men have a higher capacity for glycogenolysis and glycolytic flux,
which might make them superior compared with women, when it comes to
supporting the energy demands of intense exercise. Indicative of a higher potential
for glycolysis rather than beta-oxidation in muscle from males, a lower ratio between
HAD activity and glycolytic enzyme activity in skeletal muscle was observed in men
compared with women (Green et al. 1984). Considering that type II fibers have a
higher glycolytic potential compared with type I fibers (Borges and Essén-
gustavsson 1989), the sex difference in glycolytic capacity could, at least in part,
be related to the greater contribution of type II fibers to muscle mass in men.

15.9 Greater Anaerobic Capacity in Men than Women

Along with the higher capacity for glycolysis in skeletal muscle of men, several
indices point toward men demonstrating a more pronounced anaerobic component
during high-intensity exercise. Such measures must be performed and interpreted
carefully with regard to the amount of work performed and the anaerobic work
capacity of the two sexes. Besides, the work performed must be related to body
weight and/or even better active muscle mass. During a single 30 s sprint with
gender-adjusted resistance, leading to 30% lower total work in women than men
(0.086 and 0.095 kg/kg body mass), it has been shown that there is a 35% lower
anaerobic contribution in women when corrected for body mass (Hill and Smith
1993). The anaerobic performance during high-intensity exercise in men has been
associated with the greater glycolytic activity in muscle and is correlated with the
higher proportion of type II fibers (Esbjörnsson et al. 1993).
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Greater post-exercise disturbances of the blood lactate concentrations have
accordingly been observed in men compared with equally trained women after
several 30 s sprints on a cycle ergometer performed at 0.075 kp/kg body mass
(Esbjörnsson-Liljedahl et al. 2002). It has also been shown that intramuscular lactate
accumulation was greater in men than women during both 10 and 30 s sprint exercise
performed at 4.9 J/kg body mass (Jacobs et al. 1983). However, this study did find
that muscle lactate accumulation was similar, when adjusted for the greater work in
men. Finally, one study applied 31P-MRS to skeletal muscle of women and men
during intense, maximal 60s contractions and demonstrated higher glycolytic flux in
male compared with female muscle despite similar oxidative energy contribution
during this period (Russ et al. 2005). Again, men also produced more power during
these intense contractions making it difficult to interpret whether men had a higher
anaerobic component relative to the power produced. Together, this clearly illus-
trates the potential bias of the greater muscular work in men and emphasizes the
difficulties in comparing women and men at high-intensity anaerobic exercise pro-
tocols, due to differences in both muscle mass and strength/anaerobic capacity. A
recent study indicated that women and men fatigued and recruited anaerobic energy
to a similar extent during repeated supramaximal exercise bouts at 120% of VO2peak
until exhaustion interspaced by 20 sec recovery periods, when differences in muscle
mass were considered (Martin-Rincon et al. 2021). Men, however, demonstrated
higher anaerobic capacity than women, even after normalization to the lower
extremities lean mass, but this advantage was only manifested during the first bout
of supramaximal exercise (Martin-Rincon et al. 2021).

Future studies carefully matching men and women and also the work performed
need to further clarify potential sex differences in anaerobic exercise metabolism
during high-intense exercise.

15.10 Concluding Remarks: Summarizing Sex Differences

When women and men are matched carefully on aerobic training status, women have
lower absolute maximal oxygen uptake than men, which relates to their smaller
muscle mass, lower maximal cardiac output, and lower hemoglobin concentration.

It remains unequivocal that there is a greater fatty acid oxidation in women than
men at the same relative exercise intensity and that the maximal fatty acid oxidation
rate is higher in women. Several important sex differences at the level of the
morphological and molecular imprint of skeletal muscle contribute to explain this.
There is a greater proportion of type I fibers per given muscle area in women, and a
smaller fiber size is also reported, which leads to a greater capillary density per given
muscle area in women. There is generally a greater total IMTG content in skeletal
muscle of women, and lipid droplet morphology favors oxidation via smaller lipid
droplets which are in closer association with mitochondria, as well as greater content
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of lipid droplet-associated proteins involved in lipolysis. Altogether, this likely leads
to a greater contribution of IMTG-derived fatty acids to fatty acid oxidation during
exercise in women compared with men. Concomitant with the greater fatty acid
oxidation in women than men, a similar uptake of glucose into muscle is observed
between sexes. It might therefore seems intuitive that muscle glycogen use during
exercise would be less in female muscle, but that needs to be determined. As
compensation for the lower contribution of fat to energy metabolism, men exhibit
a greater amino acid oxidation during exercise than women.

At the mitochondrial level, TCA and electron transport chain capacities appear to
be similar in women and men. This is why the greater fatty acid oxidation during
exercise takes its basis in the substrate (fatty acid) delivery to muscle mitochondria in
women and potentially also in a greater capacity of the proximal part of the beta-
oxidation pathway in female muscle. There is solid evidence showing a greater
molecular capacity for glycolysis in male than female muscle, and hence there are
several indications of a greater exercise capacity and anaerobic component at
supramaximal exercise intensities in men.
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Chapter 16
Circadian Rhythms and Exercise
Metabolism

Christopher A. Wolff, Stuart J. Hesketh, and Karyn A. Esser

Abstract The goal of this chapter is to review the current state of the emerging field
of circadian rhythms and exercise metabolism. Since this area of research is fairly
new, we have broken up this chapter into the following sections. (1) The role of
circadian rhythms and in maintaining homeostasis; (2) introduction to the circadian
clock mechanism and clock output; (3) the role of the circadian clock in regulation of
resting fat and carbohydrate metabolism in the skeletal muscle; and (4) interactions
between exercise and circadian rhythms. We hope that this chapter can serve as a
reference and/or entry point for scientists wanting to integrate circadian concepts in
their understanding or research design of exercise metabolism.

Keywords Circadian biology · Exercise physiology · Skeletal muscle ·
Chronotherapy · Homeostasis · Predictive homeostasis

16.1 Circadian Rhythms Underlie Predictive Homeostasis
in Physiology

One of the most common questions we are asked about circadian rhythms and
physiology is about how or whether this concept of daily variation has implications
for our understanding of exercise and metabolism. Our simple answer is that yes,
because circadian rhythms are a fundamental and essential mechanism of cell
homeostasis. To help frame the role of circadian clocks in maintaining homeostasis,
we provide a historical perspective of the interaction between circadian biology,
physiology, and homeostasis. Walter Cannon defined homeostasis as the property of
a system in which a variable, such as blood glucose, is actively regulated to remain
very nearly constant (Moore-Ede 1986). For many years, the majority of mecha-
nisms in place to support homeostasis were reactive processes. For example, after a
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meal increased blood glucose is sensed, the pancreas releases insulin which func-
tions to facilitate glucose uptake into tissues and bringing blood glucose levels back
down. However, in 1986, Dr. Martin Moore-Ede presented the Bowditch Lecture at
the American Physiological Society meeting and discussed the concept of “predic-
tive homeostasis” based on several physiological parameters, such as heart rate and
cortisol, that were known to change prior to a predictable event such as awakening
(Moore-Ede 1986). Dr. Moore-Ede proposed that our systems evolved in an envi-
ronment with very predictable environmental changes, such as light-dark, and as
such there were intrinsic mechanisms in place that anticipate these changes. These
predictive homeostatic mechanisms allowed for more rapid adjustments with bene-
fits for survival. It is now clear that the circadian timing mechanism is found in
virtually all cells within the body which are critical for predictive homeostasis.
Consistent with the physiological benefits of this predictive system, it is now clear
that disruption to the circadian timing mechanism, or predictive homeostasis, leads
to diminished ability of the system to maintain homeostasis with negative health
outcomes. Thus, it is critical to understand that circadian rhythms and the clocks
responsible are a fundamental part of daily cell and systems physiology. Addition-
ally, the fact that circadian rhythms have been demonstrated at the subcellular level
(e.g., chromatin availability) at the cell and tissue levels (e.g., insulin sensitivity) and
systems level (e.g., heart rate and behavior) serves as a reminder that our resting cell,
tissue, and system physiology is constantly oscillating. Thus, when we introduce
exercise or exercise training, we do so on a moving physiology and metabolic
baseline.

16.1.1 A Brief History of Circadian Biology and Exercise
Physiology

Exercise physiology and circadian biology are well-established fields with rich
histories. The history of exercise physiology is often traced to the musings of ancient
Greek physicians (Tipton 2003), while circadian biology can trace roots back around
400 B.C. when Androsthenes, a scribe for Alexander the Great, noted that the leaves
of certain plants displayed opening and closing patterns coincident with sunrise and
sunset (Persson and Bondke Persson 2019). Despite these histories, integration of
these fundamental concepts has been relatively recent, seemingly starting in the late
1940s, but expanding rapidly in the last 10 years.

One of the first circadian and exercise studies looked at time of day as a variable
for human physical work capacity (reviewed in: Kleitman 1949). Subsequent studies
examined athletic performance at a few times of day (Wahlberg and Astrand 1973;
Conroy and O’Brien 1974), while the first experiments to explore circadian variation
in exercise tolerance were completed in the late 1960s (Voigt et al. 1968; Crockford
and Davies 1969). Contrary to our current understanding, the initial work did not
identify circadian variation in exercise performance, though the authors point out
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this could have been due to the repeated bouts of exercise across the day or large
interindividual variability. However, similar to the initial work in chronobiology, the
initial integration of circadian concepts into exercise physiology were more systemic
(e.g., exercise capacity or heart rate) and not on the molecular scale. Only with the
discovery of the molecular components of the circadian timing mechanism has the
interest in how exercise and circadian biology work together been identified and
explored. For those interested in additional and/or more detailed training in circadian
biology, there are numerous online resources, including a digital course directed by
Drs. Martha Merrow and Till Roenneberg (https://www.coursera.org/learn/
circadian-clocks).

16.2 The Core Molecular Clock Mechanism

Daily rhythms in physiology and metabolism can be considered in a framework of
predictive homeostasis, and it is now clear that these daily rhythms are driven by the
circadian clock mechanism. In this section we provide an overview of the clock to
provide critical framework for integration into exercise metabolism studies. The core
molecular clock is a timing mechanism that exists in virtually all cells in the body
and is highly conserved across mammals. The basis of the clock is a transcription/
translation feedback loop that maintains an approximately 24 h period independent
of external inputs (time cues: zeitgebers). The clock is comprised of a set of
molecules that form the positive limb (considered transcriptional activators) and a
different set of molecules that form the negative limb (considered transcriptional
repressors). The components and function of the molecular clock have been
presented in significant detail, and reviews of the state of knowledge of the clock
mechanism can be found here (Mohawk et al. 2012; Takahashi 2017).

16.2.1 The Components of the Molecular Clock

The Positive Arm of theMolecular Clock In mammalian tissues, the positive limb
of the molecular clock is driven by two transcription factors. Brain and muscle
ARNT-like 1 (BMAL1, also known as ARNTL) and CLOCK, these are basic helix-
loop-helix Per-Arnt-Sim (bHLH-PAS) transcription factors. These transcription
factors form a heterodimer and bind to E-box sequences (5’-CANNTG-30, and
5’-CACGTG-30 most often) across the genome to activate transcription. Importantly,
BMAL1/CLOCK bind the promoters of the core circadian genes Period (Pers) and
cryptochrome (Crys), transcriptionally activating expression of these negative arm
genes (Fig. 16.1). Seminal work from the Takahashi lab revealed more than 5000
binding sites for both CLOCK and BMAL1 across the liver genome over a 24 h
period and over 75% of those targeted genes were transcriptionally active (Koike
et al. 2012). These findings highlight two key points in molecular clock function.
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First, that BMAL1 and CLOCK directly regulate the Per/Cry genes as a key part of
the molecular clock. Second, BMAL1 and CLOCK bind in a time of day-dependent
manner to 1000s of sites across the genome, demonstrating that in addition to
keeping a 24 h cycle of the Per/Cry families, the core molecular clock is contribut-
ing, in a time of day manner, to a diverse transcriptional network within the cell
(Takahashi 2017).

The Negative Arm of the Molecular Clock The negative arm of the core clock is
comprised of the period (Per1, Per2, and Per3) and cryptochrome (Cry1 and Cry2)
gene families. Studies have shown that, the Per and Cry families of genes are
transcribed by BMAL1 and CLOCK in the middle of the rest phase (e.g., afternoon
for nocturnal rodents), leading to their protein expression levels peaking in the late
rest phase. Upon translation, the PER and CRY proteins interact with each other, as
well as with kinases, such as casein kinase 1δ and 1ε (CK1 δ/ε). These protein
complexes translocate to the nucleus where they inhibit BMAL1/CLOCK transcrip-
tional activity and thereby decrease their own transcription. As PER/CRY/CK1
represses BMAL1/CLOCK transcription, the abundance of repressive transcripts
declines, as does the relative content of the repressor complex proteins, as they have
short half-lives due to proteasomal degradation. Once the transcriptional repression
subsides, BMAL1/CLOCK transcription increases, beginning the next circadian
transcriptional cycle.

Similar to the widespread genomic localization observed for BMAL/CLOCK, the
PER/CRY proteins also bind at 1000s of sites across the genome (Koike et al. 2012).

E-box

Per Genes

Cry Genes

CKδ/ε

nucleus

Repression

Translocation

Complex Formation

Transcription
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CKδ/ε

Fig. 16.1 A simplified core circadian clock. A simplified schematic that depicts the core circadian
transcription factors BMAL1 and CLOCK which heterodimerize and transcribe the circadian
repressors Period (Pers) and Cryptochrome (Crys) families of genes. The Pers and Crys mRNAs
are translated in the cytoplasm where they form a multimers with casein kinase (CK delta and
epsilon). This repressor complex translocates into the nucleus to repress the transcriptional activity
of the BMAL1:CLOCK heterodimer. This process takes roughly 24 hours to complete a cycle
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While some of the genomic sites are overlapping between the positive and negative
arm, indicative of the expected transcription repression by the negative arm on the
positive arm, several hundred sites are not shared between positive and negative arm
proteins. The specific role of the PER/CRY families binding to other sites of the
genome is currently underexplored, though some data suggest the negative arm
proteins serve as mediators of metabolic input into circadian timing (Lamia et al.
2009; Schmutz et al. 2010). Additional work exploring the potential functions of the
negative arm proteins independent of the circadian time keeping mechanism is
warranted. Together, however, the core molecular clock mechanism is responsible
for the daily transcriptional program contributing to the cellular capacity to maintain
homeostasis.

16.2.2 Clock Output: The Daily Program of Transcription
Underlying the “Moving Baseline” in Cell Physiology

The daily pattern of gene expression outside of the core clock is referred to as the
circadian clock output (Fig. 16.2). The most common approach to define the
circadian clock output for a tissue is to assess the total number of oscillating
mRNAs over a 24 h–48 h time course. To date, numerous studies have explored
the circadian clock output in muscle as well as other tissues and found the number of

nucleus

Daily Gene Expression

Metabolic Factors

Transcription Factors

Others

E-box
Tissue specific

cis elements

Circadian Clock 

Output

BMAL1 Transcription

factors

Fig. 16.2 Output from the core circadian clock. The BMAL1:CLOCK heterodimer also contrib-
utes to a daily program of gene expression in all cells, and this is called the circadian clock output.
The circadian clock output is specific to each tissue and is important for a number of different
cellular functions, including transcriptional regulation, metabolism, and homeostasis
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oscillating genes represent up to 50% of known protein coding genes (Miller et al.
2007; McCarthy et al. 2007; Pizarro et al. 2012; Zhang et al. 2014; Mure et al. 2018).
Restated, the circadian clock output comprises a significant portion of the daily
transcriptional program within a tissue, including contributing to daily oscillations in
mRNAs associated with metabolism, and general cellular functions. Importantly, the
daily variation of metabolic gene expression is not random, but serves to temporally
align cellular metabolic gene expression with both rest and active behavior as well as
patterns of food availability and intake. In a simple sense, the clock mechanism in
muscle functions to temporally segregate periods of fuel oxidation vs. storage. For
the purpose of this chapter, the metabolic clusters of genes regulated by the circadian
clock in muscle provide the framework for our understanding of intersection of
circadian biology with exercise metabolism.

16.2.3 Environmental Inputs Adjust the Timing of the Clock
and Clock Output

A fundamental principle of the circadian clock is that the period length is set at
~24 h, but cues from the environment can modify or alter the timing or phase of the
clock. The ability to move the phase of the clock allows the timing system and its
output to adapt to changes in light/dark cycles. The ability to modulate phase means
that the clock and clock output can adjust to the environmental changes and supports
the function of predictive homeostasis. To date, a majority of the work exploring the
mechanisms through which the molecular clock senses and responds to environ-
mental inputs have focused on how the circadian system responds to the timing of
light cues. Research in this area has demonstrated that the clock mechanism is
differentially sensitive to the environmental time cue (Aschoff 1965; Pittendrigh
and Daan 1976). This means that the exact same cue can induce one of three
predictable outcomes, (1) a phase advance, (2) a phase delay, and (3) no change;
the outcomes depend on the status of the clock mechanism at the time at which the
zeitgeber is received/sensed. The importance of this aspect of circadian biology in
relationship to exercise and metabolism is that time of exercise can result in changes
in phase of peripheral tissue clocks which then modifies the metabolic factors that
are part of clock output.

We now know that both feeding and exercise provide environmental cues that
impact the phase settings of clocks in peripheral tissues. In particular, current data
have demonstrated that one acute exercise bout is sufficient to alter the phase of
peripheral circadian clocks in human (Youngstedt et al. 2019) as well as rodent
(Gannon and Rea 1995; Schroeder et al. 2012; Kemler et al. 2020) models. Most
recently, studies have shown that exercise, like light, can induce a predictable phase
response. This means that if one exercises earlier than when they are normally active
the phase of the muscle clock will advance and in contrast, if one exercises later than
when they are normally active, the phase of the muscle clock will delay. If one
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exercises around their normal active period we predict that there would be no shift in
the phase of the muscle clock. These predictions are primarily based on the effects of
an acute bout of exercise. And as a reminder, if the clock shifts in phase, then this
will also shift the clock output (Youngstedt et al. 2019; Kemler et al. 2020).
Therefore, it is not surprising that there are time of day specific effects of exercise
on transcriptomic and metabolomic responses to the exercise bout (Ezagouri et al.
2019; Sato et al. 2019). The known mechanisms through which exercise influences
the timing of the molecular clock output are discussed in Sect. 16.4.1. Since this field
has only matured in the last 2 years, the profound diversity of exercise interventions,
such as resistance vs. endurance, as well as exercise bout duration and intensity
represent a wide range of important new areas of research.

16.3 The Role of the Molecular Clock in Daily Patterns
of Muscle Metabolism

The ultimate focus of this chapter is on the intersection of circadian rhythms and
exercise metabolism. However to extract exercise-specific effects, one first has to
have an understanding of the daily changes in metabolism that occur downstream of
the circadian clock at rest. Thus, this section reviews the current understanding of
substrate metabolism changes downstream of the circadian clock in the skeletal
muscle. In particular, we highlight the interplay between circadian control, glucose,
and lipid metabolism during steady-state conditions.

16.3.1 Circadian Control of Glucose Metabolism

Skeletal muscle is the largest insulin sensitive organ in the body, and it plays an
essential role in whole-body glucose homeostasis being responsible for ~85% of
insulin-stimulated glucose uptake (DeFronzo and Tripathy 2009). Insulin sensitivity
in the skeletal muscle also displays robust circadian variations in mice (Dyar et al.
2014; Aras et al. 2019) and humans (de Goede et al. 2018). The circadian variation in
skeletal muscle insulin sensitivity, peaking during the beginning of the active/
feeding phase, stimulates a rise in tissue glucose uptake and oxidation in anticipation
of increased locomotor activity. In contrast, during the resting/fasting phase, the
muscle displays reduced insulin sensitivity leading to a decrease in glucose uptake
and glycolytic flux in muscle cells. Disruption of the intrinsic muscle clock causes
muscle insulin resistance and altered muscle glucose metabolism, showing insulin-
dependent glucose uptake in skeletal muscle reduced by muscle-specific inactivation
of Bmal1 (Dyar et al. 2014). One potential explanation for the daily change in muscle
insulin sensitivity is the daily oscillation of the muscle glucose transporter GLUT4
displaying highest expression during active/feeding phase (Harfmann et al. 2016).
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The circadian control of GLUT4 has been clearly demonstrated as loss of Bmal1 in
skeletal muscle leads to a significant reduction (~45%) in GLUT4 protein levels
across the diurnal cycle compared to control (Dyar et al. 2014; Harfmann et al.
2016).

In addition to the circadian variation in insulin sensitivity and glucose uptake,
studies have shown that the muscle clock contributes to variation in pyruvate
dehydrogenase, PDH activity, as well as the two rate limiting enzymes in glucose
metabolism: hexokinase and phosphofructokinase (Dyar et al. 2014). Pizarro and
colleagues (2013) report hexokinase-2 expression displays a circadian rhythm that
peaks in at the beginning of the active/feeding phase, as well as the genes responsible
for phosphofructokinase expression (Pfkfb 1/3/4) which also display circadian
rhythmicity and peak in expression during the mid-late resting/fasting phase in
humans (Pizarro et al. 2012). However, in muscle in which the circadian clock is
stopped (i.e., muscle-specific Bmal1 knockout mice), the expression of these
enzymes (i.e., PDH, Hk2, Pfkfb) is dampened resulting in a reduced protein expres-
sion and diminished enzyme activity, indicating impaired glycolytic flux (Dyar et al.
2014; Hodge et al. 2015; Harfmann et al. 2016). Together these data illustrate that
the muscle clock modulates both glucose uptake and utilization over time of day in
skeletal muscle.

Excess carbohydrate is stored as glycogen in skeletal muscle which accounts for
approximately 70–80% of whole-body stores (Ivy et al. 1988; Jensen et al. 2011).
Unlike the liver, skeletal muscle glycogen content is not responsible for maintaining
blood glucose concentrations, rather it is a rapidly accessible energy store utilized
during active contractions (Jensen et al. 2011), with glycogenesis regulated by the
enzymatic activity of both glucose-6-phosphate and glycogen synthase (Viijlar-
Palasí and Guinovart 1997) and glycogen breakdown regulated by phosphorylase
(Howlett et al. 1998; Jensen and Richter 2012). Previous studies have reported that
there is a diurnal rhythm of glycogen content in skeletal muscle, displaying highest
values during the mid-active/feeding phase (Leighton et al. 1988). Interestingly,
muscle-specific knockout of the clock gene, Bmal1, is associated with significant
increases in muscle glycogen content. Whether this clock-dependent change in
muscle glycogen is due to diminished glycolytic flux or alteration in glycogenolysis
is not yet know (Harfmann et al. 2016).

In summary, the circadian clock in muscle is important for regulating pathways
involved in glucose uptake/insulin sensitivity, glucose utilization, and glucose
storage. Thus, independent of exercise there are time of day differences in these
important muscle metabolic parameters. A key job of the muscle clock is to prepare
the tissue for the activity onset following a fast upon awakening and for changes in
substrate availability associated with feeding. These temporal patterns likely have
consequences for exercise outcome measures. For example, if the phase of the
muscle clock is disrupted, such as during shift work or jet lag, it would be predicted
that this would result in impaired exercise performance, in part, through a reduction
in glucose uptake and expression of key glycolytic enzymes.
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16.3.2 Circadian Control of Lipid Metabolism

The muscle clock also has been shown to contribute to the regulation of skeletal
muscle lipid oxidation over time of day. Genes that regulate each step of lipid
metabolism, from fatty acid transport to oxidation and back to storage, are known
to exhibit circadian rhythms (Zhang et al. 2014; Hodge et al. 2015; Dyar et al.
2018a). Fatty acid transfer into the inner mitochondrial matrix occurs in a time of day
manner, peaking in the early to mid-active phase, to support oxidative metabolism
with energy availability. Analysis of microarray datasets from circadian time course
studies reveals that the gene encoding for acyl-carnitine translocase, Slc25a20,
reaches peak expression in the middle of the resting/fasting period (Indiveri et al.
2011; Zhang et al. 2014). Further, two genes that encode for lipid transport are fatty
acid binding proteins Fabp3 and 4, which are also expressed in a circadian manner,
showing highest mRNA expression levels in the early and mid-resting/fasting
periods (Syamsunarno et al. 2013; Hodge et al. 2015; Dyar et al. 2018a). Consistent
with these data, multiple genes that encode for β-oxidation, such as enoyl CoA
hydratase, tri-functional enzyme subunits Hadh α/β, and the acetyl-CoA
acyltransferase, have also been identified to be circadian, reaching peak expression
around the mid-resting/fasting phase (Zhang et al. 2014). These observations are
consistent with predictive homeostasis with important enzymes for oxidative metab-
olism increasing prior to waking and activity onset. In addition, these observations
illustrate that the muscle clock can regulate with malonyl-CoA, known to promote
β-oxidation reaching peak expression during similar rest period as that of the
circadian β-oxidation genes, aligning lipid metabolism to fit a circadian profile in
skeletal muscle (Schmidt and Herpin 1998; Saggerson 2008). In contrast to increases
in fat oxidation patterns during rest, the lipogenic genes Acly, Acaca, and Fasn all
peak expression at the end of the active/feeding phase (Funai and Semenkovich
2011; Ameer et al. 2014) Thus, the muscle clock contributes to a baseline pattern that
temporally segregates fat oxidation versus fat storage over time of day.

Analysis of the circadian time course from metabolomic and lipidomic data from
mice in which the core clock gene, Bmal1, is knocked out was performed in 2018 by
Dyar et al., The major findings were that loss of muscle clock function led to
significant perturbations in fatty acid, triglyceride, and phospholipid metabolism.
For example, Bmal1 KO mice displayed reduced levels of muscle triglycerides, and
this was associated with significant downregulation of Dgat2 gene expression.
Dgat2 is implicated in fat storage and known to encode for the enzyme responsible
for the conversion of diacylglycerols to triglycerides. Interestingly, this finding was
concomitant with the upregulation of genes known to be involved in fatty acid
synthesis (Dyar et al. 2018b), thus serving to effectively flip the temporal periods of
lipid storage and utilization in animals without a functional muscle clock. Since
these mice maintain a normal central clock and their activity and feeding patterns are
normal, this flipping of substrate storage and utilization in Bmal1 KOmice illustrates
the significant contribution that the circadian clock makes to substrate metabolism
under resting conditions.
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16.4 Exercise, Circadian Rhythms, and Metabolism

The temporal gating of substrate metabolism by circadian clocks is an important
component of homeostasis, highlighted by studies in which circadian rhythms are
disrupted being linked to a variety of metabolic diseases (Masri and Sassone-Corsi
2018). The majority of daily physiological processes, including many aspects of
metabolism, undergo changes about the relative time of day. Many of these meta-
bolic variations, which we refer to as the “moving baseline,” are downstream of the
circadian clock within each tissue, including skeletal muscle. In this section, we
discuss two topics; (1) what is understood about the integration of exercise metab-
olism and circadian rhythms in skeletal muscle and (2) what happens when we
exercise at different times of the day.

It has been recognized for over 10 years that exercise at different times of the day
leads to distinct performance outcomes. For example, daily variations in resistance
and endurance exercise peak performance have been reported to fluctuate when
studied during the active/feeding phase in humans (Souissi et al. 2004; Ab Malik
et al. 2020; Mirizio et al. 2020) and rodents (Ezagouri et al. 2019). As such,
consistently, studies across species have revealed that variables such as skeletal
muscle strength and oxidative capacity demonstrate significant differences in per-
formance outcomes over time of day (Atkinson and Reilly 1996; van Moorsel et al.
2016; de Goede et al. 2018). For example, numerous studies have demonstrated
increased maximal isometric strength in the later afternoon versus morning (Douglas
et al. 2021), while oxidative capacity peaks in the late evening (Reilly and
Waterhouse 2009; van Moorsel et al. 2016). Thus, these exercise performance
outcomes provide evidence that the circadian timing of our metabolism throughout
the day (i.e., morning vs. afternoon) likely impacts exercise response and in turn
performance outcomes such as endurance capacity and maximal strength (Ezagouri
et al. 2019; Douglas et al. 2021).

16.4.1 The Influence of Circadian Rhythms on Acute
Exercise Responses

Daily variations in exercise capacity likely stem from differences in metabolic
starting points derived from the daily changes in the metabolic status that differs
between early and late exercisers. For example, exercise during the early active/
feeding phase, when hepatic glycogen content is reduced, rather than exercise at the
late active/feeding phase, when hepatic glycogen content is increased, results in the
rapid depletion of carbohydrate energy stores in skeletal muscle and a shift toward
utilization of fatty acid metabolism thereby favoring endurance type exercise.
Ezagouri et al. (2019) investigated this concept by assigning animals to sedentary
and exercise groups during either the early (ZT14) or late (ZT22) active period,
subjecting both wild-type and double Per1/2 knockout mice to moderate-intensity
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exercise (reported ~55% VO2max). Interestingly, wild-type mice ran ~67% longer
at ZT22 than ZT13, whereas the time of day effect on endurance capacity was
abolished in the Per1/2 knockouts. These results were also corroborated in healthy,
young humans who were subjected to a submaximal constant-load exercise protocol,
equivalent to the moderate-intensity exercise protocol of the mice. Each participant
performed the exercise protocol on two occasions (0800 and 1800), separated by
appropriate wash out period. Strikingly, maximal oxygen consumption (VO2max)
was significantly lower at 1800 than 0800, but the respiratory exchange ratio (RER)
was significantly higher at 1800 than 0800, indicating greater use of carbohydrate
metabolism in the later exercisers. However, blood glucose levels were reported to
be higher at exercise performed at 0800 in comparison to 1800. Previous studies
have shown a greater aerobic capacity in the evening compared to the morning hours
in humans, with improved capacity associated with a greater reliance on carbohy-
drates (higher RER) (Drust et al. 2005; Reilly and Waterhouse 2009; Küüsmaa et al.
2016; Thosar et al. 2018). These findings are consistent with the rodent data
described above (Ezagouri et al. 2019) and thus suggest that the time of day
differences in aerobic capacity are likely orchestrated through the circadian clock
impact on substrate metabolism in muscle and likely other metabolic tissues.

Another important question that arises from the “moving baseline concept” is
whether the time of exercise elicits a differential molecular response. Analysis of
clock output data from rodents and humans provides perspective on the underlying
variation of gene expression over time of day (McCarthy et al. 2007; Andrews et al.
2010; Zhang et al. 2014; Perrin et al. 2018). Now, when the exact same bout of
exercise is performed at two distinctly different times of day, Sato et al. and Ezagouri
et al. (2019) found that the exercise-induced gene expression changes were signif-
icantly different. While this may be surprising, when you consider that the exercise
intervention is occurring on a moving, and not flat, transcriptomic baseline, this
outcome is actually expected (Fig. 16.3). Work from two different labs over the last
2+ years highlights the impact of time of day to an acute response to treadmill
exercise. In the study by Ezagouri et al., (2019) they analyzed skeletal muscle gene
expression and the metabolite profile from two different exercised groups of mice
during the early active vs. late active phase and found that a greater number of
significantly regulated transcripts were unique to exercise at the early active phase,
ZT14 (343 genes), rather than those unique to the late active phase, ZT22
(125 genes), with a there was a modest overlap of 160 genes (Ezagouri et al.
2019). Functional cluster analysis of the differentially regulated RNAseq data
found that genes associated with insulin signaling and glucose metabolism were
upregulated when exercise was performed at early active phase, ZT14, but not with
later exercise at ZT22. In contrast, genes linked to the FoxO signaling pathway were
the more enriched category in the late exercise, ZT22 group. Functional analysis of
the genes that changed in common between groups was many nuclear encoded
mitochondrial genes.

A similar study was reported in Sato et al. (2019), in which they subjected mice to
a 1 h acute bout of treadmill exercise at the early resting/fasting phase (ZT3) or
during the early active/feeding phase (ZT15) with respective control groups (Sato
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et al. 2019). For reference, both the Sato et al. and Ezagouri et al. studies have one
group of mice that exercise in the later active phase (ZT14 or ZT15). However, the
Sato et al. (2019) paper had their second group of mice run at ZT3 which is running
at 3 hours in the light/rest phase. Transcriptomic analysis of gastrocnemius muscle
revealed that both times of exercise demonstrated a significant change in gene
expression. However, there was only a small overlap between the number of
exercise-responsive transcripts that were upregulated (12%) and downregulated
(5%) when comparing the exercise response at ZT3 to ZT15, confirming a large
time of day specificity. Moreover, gene ontology clustering of exercise-responsive
genes at different times of day also highlighted the transcriptional response to
exercise is time of day specific. This was consistent with metabolomic analysis,
which showed upregulated and downregulated metabolites also have little overlap,
13% and 1%, respectively, between exercise at different time points. While this does
not address potential changes with long-term training, it does highlight the interac-
tion of exercise and the circadian clock, providing evidence that clock output is
different over time of day even in response to an acute exercise intervention.

Exercise outcomes within important signaling pathways for metabolism have also
been reported to be affected by circadian timing in a time of day-specific manner. For
example, the mechanistic target of rapamycin complex 1 (mTORC1) and peroxi-
some proliferator activated receptor gamma coactivator 1 alpha (PGC1α) are two
pathways that have been widely reported in the exercise physiology literature.

Inactive/Fasting phase Active/Feeding phase

ZT12 ZT24ZT0

ZT3 ZT14/15 ZT22

ZT3: rest phase exercise

208 genes increased (P<0.05) post exercise
e.g., Mitogen-activated protein kinase

ZT14/15: early active phase exercise

248/ 998 genes increased (P<0.05) post exercise
e.g., Insulin signaling

ZT22: late active phase exercise

178 genes increased (P<0.05) post exercise
e.g., Foxo signaling

1171
(75%)

180
(12%)

199
(13%)

107
(37%)

160
(20%)

247
(49%)

ZT3 ZT14/15 ZT22

Fig. 16.3 Distinct time of day gene expression responses to treadmill exercise. Treadmill running
exercise at the early inactive phase (ZT3) versus the early active phase (ZT15) or at the early active
phase (ZT14) compared to the late active phase (ZT22) produces different transcriptional responses.
Examples of functional enrichment pathways are provided to demonstrate differential responses
based on time of day. The venn diagrams display the upregulated genes only as a percentage of
significantly regulated genes, unique to each exercise period: ZT3 vs. ZT15 (blue and green) and
ZT14 vs. ZT22 (green and red). All data adapted from Sato et al. (2019) and Ezagouri et al. (2019).
Running mouse images were downloaded from BioRender.com

368 C. A. Wolff et al.

http://biorender.com


However, these exercise stimulated signaling pathways have also been identified as
being downstream of the molecular clock, thus providing a mechanism by which
circadian timing may modulate exercise responses (Um et al. 2011; Ramanathan
et al. 2018). Further, there is evidence to suggest that the core components of the
molecular clock can interact with some of these pathways. For example, PER2,
which peaks at the end of the resting/fasting phase, reduces mTORC1 activity in the
liver (Wu et al. 2019). However, it is not yet clear whether the interaction of clock
components and such pathways are conserved across tissues, e.g., skeletal muscle.
Nevertheless, the molecular responses of exercise in skeletal muscle exhibit a clear
time-dependent effect for acute exercise. For example, resistance exercise performed
in humans at the early active/feeding phase leads to acute mTORC1 activation in
skeletal muscle, whereas the same exercise in the late active/feeding phase has been
documented to produce a more blunted signaling response (Sedliak et al. 2009).
Despite this influence of acute resistance exercise bout performed at different times
on hypertrophic signaling, training studies have found that when the resistance
exercise is performed at different times of day, there is no difference in the magni-
tude of skeletal muscle hypertrophy (Küüsmaa et al. 2016; Sedliak et al. 2018).
However, it is important to note that training (regularly repeated exercise bouts) at
either morning or afternoon/evening will lead to shifting of the muscle clock and
clock output in phase. Thus, these findings to not rule out that time of exercise does
not matter for muscle growth, but rather they reinforce that maintaining a regular
exercise training schedule is important. This is a very new area of research, and thus,
there is still very much to be learned.

16.4.2 Exercise Can Target the Molecular Clock and Modify
the Moving Baseline

Exercise and scheduled physical activity have been established to be environmental
time cues, or zeitgeber, that can modify the phase of the muscle clock. The evidence
in support of this has been accumulating since the late 1980s and early 1990s when
novel wheel access at different times of day was found to be sufficient to shift the
phase of circadian behavioral rhythms in mice and hamsters (Edgar et al. 1991;
Edgar and Dement 1991). In follow-up work to these original studies, forced
treadmill exercise training in rodents (Wolff and Esser 2012; Schroeder et al.
2012) and humans (Youngstedt et al. 2019) further confirmed exercise serves as a
zeitgeber. Specifically, depending on the time of exercise, the muscle clock, and its
output, will shift in phase in a predictable manner.

The mechanisms through which exercise modifies the phase of the molecular
clock and subsequently the clock output are incompletely understood, but have been
the target of numerous recent investigations. Emerging data demonstrate that muscle
contractions, as a component of exercise, can directly modulate the expression of
core clock components in a time of day-dependent manner. Kemler et al. (et al. 2020)
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subjected PER2::LUC circadian reporter mice to an acute bout of 60 min treadmill
exercise at three different times of day (Kemler et al. 2020). Exercise at ZT5 induced
a phase advance of the clock, whereas exercise at ZT11 induced a phase delay of the
clock. However, exercise in the middle of the active phase, at ZT17, did not alter the
muscle clock phase. These time of day-specific responses mirror the anticipated
phase response curves. Ex vivo muscle contraction studies showed that the expres-
sion of Per2 is modified acutely, and this results in an altered phase (Small et al.
2020). Small et al. (2020) provided more mechanistic data finding that calcium
influx stimulated by contraction leads to the binding of the phosphorylated form of
cAMP response element-binding protein (CREB) to the Per2 promoter. Together,
these experiments point to CREB activation as a key mechanism, whereby exercise
can alter the phase of the circadian clock in muscle.

While exercise seems to directly affect the expression levels of the core clock
genes, well-known exercise-induced kinases have been also shown to modify the
phase of the circadian clock. While still early, these associations suggest the
potential for these kinases to also contribute to the muscle clock and clock output.
For the purpose of this chapter, we will discuss four well-known exercise-induced
factors that have been reported to interact with the clock mechanism (Fig. 16.4).
Specifically, exercise induces activation of the cAMP response element binding
protein (CREB), 5’ AMP-activated protein kinase (AMPK), hypoxia inducible
factor 1 alpha (HIF-1α), and sirtuin 1 (SIRT1). We review the current understanding
of these four exercise and circadian factors in the following paragraphs.

Exercise increases CREB phosphorylation, and CREB plays a role in changing
circadian phase in other tissues. Recent data in skeletal muscle following acute
exercise or electrical pulse stimulated contractions indicate that there are also
CREB-induced increases in Per2 expression (Small et al. 2020). CREB is activated
by increases in cAMP levels and protein kinase A signaling and calcium-specific
signaling, as well as through activation of the MAP kinase pathways. It is currently
unclear if exercise activates CREB through one or a combination of all of these
pathways. Additionally, the time of day-specific effects of exercise on core clock
gene expression (Ezagouri et al. 2019; Sato et al. 2019; Kemler et al. 2020) suggest
that either (1) exercise-induced CREB activity is different over time of day or (2) the
effect of CREB of core clock gene expression varies over time of day. Further work
is needed to explore these potential differences and inform the mechanism of CREB-
induced changes in core clock gene expression and the subsequent changes in the
timing of the circadian phase and output.

AMPK is a well-known exercise-responsive protein (Richter and Ruderman
2009). AMPK is often studied in its context as an energy sensor and thereby
metabolic regulator. Therefore the interaction between AMPK and the molecular
clock potentially represents the primary interface linking changes in metabolism to
change in circadian timing. Current data indicate that AMPK affects the timing of the
circadian clock through altering the stability of CRY1 proteins through phosphory-
lation and subsequent targeted degradation of CRY1 by the proteasome (Lamia et al.
2009). While the endurance exercise-induced activation of AMPK was not different
at different times of day (Ezagouri et al. 2019), the AMPK-induced reduction in
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CRY1 content is beneficial for the upregulation of fatty acid oxidation genes (Jordan
et al. 2017). Further, the CRY proteins have a strong repressive effect on these lipid
metabolism genes, reiterating the daily variation in metabolic gene expression is
influenced directly by the core clock machinery.

Endurance exercise also increases the expression of HIF-1α, a protein with a
structure similar to Bmal1 (Wu et al. 2017). And HIF-1α may contribute to the
exercise-induced transcription of core clock genes (Adamovich et al. 2014; Peek
et al. 2017). Importantly, loss of HIF-1α was required for the molecular clock
adaptation to an experimental jet-lag paradigm, suggesting a role of HIF-1α in
phase changes, which is specifically remodeling the timing of the molecular clock
output. Moreover, there was a time of day-specific effect of an acute exercise bout on
both the induction of HIF-1α and the corresponding increase in HIF-1α gene targets
(Peek et al. 2017). Recent data also indicate that HIF-1α binds to the Per2 promoter

AMPKSIRT1

CRY Ubiquitination and

Proteasomal Degradation

HIF-1α pCREB

Per2 mRNA

Changes in Skeletal Muscle 

Circadian Clock Phase

Per2 mRNA PER2 Acetylation CRY1 Phosphorylation

ACUTE EXERCISE

Fig. 16.4 Exercise as an input to the core circadian clock. Exercise is an effector of the core skeletal
muscle circadian clock. Bouts of acute exercise increase the phosphorylation of CRE binding
protein 1 (CREB) and AMP-activated protein kinase (AMPK) and upregulate hypoxia-inducible
factor 1 alpha (HIF-1α) and the NAD-dependent deacetylase sirtuin 1 (SIRT1). Individually, each
of these exercise responsive targets has been linked to changes in core clock gene expression or
protein levels. The anticipated effect of these changes in core clock gene/protein expression is
changes in the timing of the circadian system. Solid lines represent direct experimental evidence,
while dotted lines represent anticipated exercise-induced effects. Running mouse images were
downloaded from BioRender.com
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and increases its expression, potentially explaining its role in changing circadian
phase (Wu et al. 2017).

Finally, current data suggest that SIRT1, the NAD+ dependent deacetylase, can
target both the positive and negative arms of the molecular clock. SIRT1 not only
binds to BMAL1:CLOCK to increase amplitude of circadian transcription, but it also
deacetylates PER2, increasing its degradation (i.e., repressing the repressor) (Asher
et al. 2008; Foteinou et al. 2018). The SIRT1-induced increase in circadian output
amplitude may represent a mechanism through which exercise training enhances the
function of the circadian clock, though data are needed to support this postulation.
Additionally, because SIRT1 contributes to changes in histone acetylation, SIRT1-
induced changes in chromatin structure may influence the exercise-induced circa-
dian output, but more data are still needed.

While we have highlighted the interaction between exercise-inducible factors and
the molecular clock, additional targets likely exist that will further explain how
exercise modifies the timing of the circadian clock and its output. Moreover these
data have focused on skeletal muscle, and the exercise effect on the molecular clock
in other peripheral tissues remains largely unexplored. Regardless of the mechanism
through which exercise is modifying the timing of the core circadian clock, there are
clear exercise-induced changes in the timing of the core circadian clock with
implications for the timing of its output (e.g., lipid oxidation genes). These
exercise-induced changes in circadian clock output timing therefore likely result in
differences in daily substrate metabolism, insulin sensitivity, and other processes
that contribute to maintaining homeostasis within tissues and across the organism.
Finally, most of the data discussed in the context of exercise and the circadian clock
are from acute exercise studies. The effect of exercise training on the circadian clock
and clock output remains significantly understudied and represents an exciting future
direction of the circadian exercise metabolism field.

16.5 Conclusions

In summary, circadian rhythms and the circadian clock are fundamental parts of our
cell and systems biology. The circadian clocks function to support homeostatis
through their role regulating gene expression in anticipation of predictable changes
in the environment and behavior. It is well established that the circadian clock in
muscle and other tissues function to regulate gene expression and the tissue
metabolome in a time of day manner. A significant component of clock output is
genes that are important for substrate metabolism including pathways for fuel
oxidation as well as storage. These findings are supported by studies in both humans
and rodents and highlight that the metabolic response to an acute bout of exercise
will differ based on time of day. While these findings are quite clear, there are still
many large gaps in the field. For example, the majority of exercise studies are done
with more endurance exercise with very limited data on resistance exercise. We also
know very little about how exercise intensity or duration impacts aspects of circadian
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clock output. The issue of the impact of training, and not just acute exercise, is also
not well studied. These large gaps represent exciting new opportunities for both
basic exercise science and applied and clinical interventions. In particular there is
growing interest in whether time of day exercise strategies could be helpful with
preventing or delaying the development of metabolic diseases. Lastly, we want to
note that moving forward, future exercise studies in both human and rodent inter-
ventions must take care to provide transparent reporting of circadian conditions (e.g.,
light/dark cycles, feeding status, and habitual activity), as well as robust time of day
sampling rates with appropriate controls in order to draw meaningful comparisons
and interpretations from the data.
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Chapter 17
Metabolic Factors in Skeletal Muscle
Fatigue

Nicolas Place and Håkan Westerblad

Abstract We here discuss metabolic causes of skeletal muscle fatigue with focus
on peripheral fatigue, that is, negative transient effects on muscle contractility
manifested as decreased force production, reduced shortening speed and/or slowed
relaxation. We specifically address the following fatigue-related metabolic changes:
(1) [ATP] normally remains almost constant but might decrease to critically low
levels in severe fatigue where the accompanying transient increase in [ADP] would
reduce shortening speed and hence power output. (2) The increase in inorganic
phosphate ions (Pi) during intense exercise has a central role in fatigue by reducing
the myofibrillar force generating capacity and Ca2+ sensitivity and by attenuating
sarcoplasmic reticulum (SR) Ca2+ release. (3) Acidosis occurs during intense exer-
cise and may depress myofibrillar contractile function; its importance is currently
debated. (4) Increases in reactive oxygen/nitrogen species during intense exercise
can induce long-lasting protein modifications that delay the recovery after exercise.
(5) The depletion of intramyofibrillar glycogen during prolonged exercise is well
correlated with decreased force due to impaired SR Ca2+ release. Thus, several
metabolic alterations contribute to skeletal muscle fatigue, and the relative impor-
tance of these depends on factors such as the type of exercise, muscle fibre compo-
sition and the training status of the exercising individual.

Keywords Skeletal muscle fatigue · Inorganic phosphate ions · Lactic acidosis ·
Reactive oxygen/nitrogen species · Glycogen

Skeletal muscle fatigue develops rather slowly when submaximal muscle contrac-
tions are repeated over a long period (e.g. marathon running) or more rapidly during
high-intensity efforts (e.g. sprint running). Due to its multifaceted nature, muscle
fatigue is difficult to define. The topic has been discussed over decades and the
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debate continues as evidenced, for instance, by the rather recent proposal to distin-
guish between fatigue and fatigability (Kluger et al. 2013). From a general perspec-
tive, muscle fatigue can be divided into central fatigue defined as a ‘progressive
reduction in voluntary activation of muscle during exercise’ (Gandevia 2001) and
peripheral fatigue caused by functional impairments within the muscle fibres (Allen
et al. 2008). Importantly, central and peripheral fatigue should not be considered as
independent entities because there are intricate, mutual interactions between the
central nervous system and muscles during exercise (for recent reviews, see Taylor
et al. 2016; Amann et al. 2020; Brownstein et al. 2021). These interactions can be
illustrated by a study where individuals performed 5 km cycling time trials with and
without pharmacological inhibition of the neural afferent feedback from exercising
muscles (Blain et al. 2016). Without afferent feedback, the power output during the
first half of the cycling trial was higher, indicative of non-optimal voluntary activa-
tion of the exercising muscles. However, the initial higher power output resulted in
exaggerated fatigue, inducing metabolic changes in exercising muscles and declin-
ing power output during the second half of the exercise resulting in similar finishing
time with and without afferent feedback. In the present review, we will focus on
metabolic causes of peripheral fatigue; that is, changes in metabolites, which are
caused by the high energy demand during intense or prolonged exercise and which
may have negative effects on muscle contractility manifested as decreased force
production, reduced shortening speed and/or slowed relaxation. In particular, we will
address the effects of increases in the metabolic by-products such as inorganic
phosphate ions (Pi), H

+, and reactive oxygen/nitrogen species (ROS/RNS) as well
as depletion of intramuscular glycogen stores.

17.1 Skeletal Muscle Activation

Well-controlled skeletal muscle contractions form the basis for all types of physical
exercise. In the central nervous system, action potentials are generated at the cortical
level and travel to the spinal cord where α-motoneurons connect to their defined set
of muscle fibres, that is, the motor units, which constitute the basic entities activated
by the central nervous system. Note that all muscle fibres within a specific motor unit
are of the same type, i.e. express the same myosin heavy chain (MyHC; see below).
Precise activation of motor units is important during most types of physical exercise.
Highly accurate muscle activation is, for instance, an absolute requirement from the
start and throughout exercise with progressively developing fatigue in a great variety
of sports such as soccer, figure skating, and downhill skiing, to give a few examples.

At the muscle fibre level, activation starts with the generation of action potentials
at the neuromuscular junction (Dulhunty 2006; Stephenson et al. 1998). Action
potentials propagate along the muscle fibre surface membrane and into the
t-tubular system, where they activate the t-tubular voltage sensor, the
dihydropyridine receptor (DHPR). The DHPR is located close to the sarcoplasmic
reticulum (SR) Ca2+ channel, the ryanodine receptor 1 (RyR1), and the action
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potential-mediated DHPR conformation change mechanically triggers the opening
of RyR1, and Ca2+ is released to the cytosol. Ca2+ then binds to and changes the
configuration of myofibrillar regulatory proteins, the troponin-tropomyosin protein
complex, which allows the myosin heads, the adenosine triphosphate (ATP)-driven
cross-bridges, to attach to the actin filament and contraction starts. Ca2+ is constantly
pumped back into the SR by the SR Ca2+-ATPase (SERCA), and when action
potentials cease, cytosolic free Ca2+ concentration ([Ca2+]i) rapidly declines, and
the muscle fibre relaxes. All these steps of the so-called excitation-contraction
coupling might be affected during fatiguing exercise.

17.2 Energy Turnover During Exercise

17.2.1 Energy Consumption

Energy consumption in skeletal muscle can increase by up to 100-fold when going
from resting condition to intense exercise (Sahlin et al. 1998), and the metabolic
consequences of this dramatically increased energy demand are intimately linked to
the development of peripheral muscle fatigue. The energy is mainly consumed by
the two major ATPases in muscle fibres, i.e. the force producing cross-bridge and the
Ca2+ pumping by SERCA (Homsher 1987). Within muscle fibres, both ATPases are
constantly active during prolonged contractions, whereas only SERCA is active in
the breaks between the repeated short contractions of normal locomotion. This
illustrates that the energy utilized by cross-bridges vs. SERCAs varies with the
type of exercise, and their relative importance for the total energy consumption is
currently debated (Barclay et al. 2007; Szentesi et al. 2001; Zhang et al. 2006a). A
recent study on isolated mouse muscle fibres and rat muscles in situ demonstrates the
importance of SERCA energy utilization for the total energy consumption (Cheng
et al. 2019). By using a pharmacological troponin activator to increase the myofi-
brillar Ca2+ sensitivity, the authors showed that when the same submaximal force
could be produced at a lower [Ca2+]i and hence with a decreased requirement for SR
Ca2+ pumping, the energy consumption during repeated contractions was markedly
reduced, and fatigue was delayed.

17.2.2 Energy Sources

The immediate energy required to drive cross-bridges and ion pumps comes from:

ATP ¼> ADPþ Pi þ energy

ADP ¼ adenosine diphosphate; Pi ¼ inorganic phosphateð Þ:
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The intracellular store of ATP is small (5–6 mM) and would be depleted within
~2 s in a fully activated muscle fibre (Sahlin et al. 1998). Thus, ADP must be rapidly
re-phosphorylated by other metabolic pathways to avoid ATP depletion. These can
be divided into anaerobic pathways, which are fast and dominate during high-
intensity physical activity, and the slower aerobic pathways that dominate during
prolonged submaximal exercise (Sahlin et al. 1998). Peripheral fatigue develops
rapidly during high-intensity exercise when a large proportion of the energy demand
must be covered by anaerobic metabolism. On the other hand, peripheral fatigue is
largely prevented during low-intensity exercise where aerobic metabolism domi-
nates with glucose/glycogen and fat being fully metabolized to CO2 and H2O. In this
latter case, severe peripheral fatigue will basically not occur until the glycogen stores
in muscle are becoming depleted (Coyle et al. 1986; Hermansen et al. 1967).

The dominating anaerobic pathways to regenerate ATP are degradation of phos-
phocreatine (PCr) and breakdown of muscle glycogen to lactate and hydrogen ions
(H+), although a minor contribution can also come from myokinase, which is
considered to be a near-equilibrium reaction in vivo (2 ADP < ¼> ATP + AMP).
Adenosine monophosphate (AMP) will subsequently be deaminated to inositol
monophosphate (IMP) and NH4

+.
The PCr store in muscle fibres is ~30–40 mM. PCr can donate its phosphate

group to ADP via a reaction catalysed by creatine kinase (CK):

PCr þ ADP <¼> Cr þ ATP Cr ¼ creatineð Þ

During intense exercise with high ATP consumption, the reaction is driven to the
right with the net effects being a reduction in [PCr] and increases in [Cr] and [Pi],
whereas [ATP] remains almost constant (Fig. 17.1a):

PCr þ ADP ¼> Cr þ ATP ¼> Cr þ ADPþ Pi þ energy

When [PCr] reaches low levels, [ATP] starts to fall, and [ADP] and [AMP] show
transient increases, while inositol monophosphate (IMP) accumulates; thus, IMP can
be measured to assess whether transient increases in ADP and AMP occurred during
the exercise bout (Zhang et al. 2008). The PCr store is regenerated when exercise
becomes less intense or during the recovery period after exercise by energy gener-
ated through aerobic metabolism, i.e. the reaction is driven to the left.

17.2.3 Muscle Fibre Types

Our muscles are composed of muscle cells with large differences in metabolic
profile, contractile speed, and cellular Ca2+ handling properties in order to cope
with broadly different challenges, e.g. from long-term upright standing to quick
high-power movements during explosive sport activities (Bottinelli and Reggiani
2000; Spangenburg and Booth 2003). The presently dominating classification
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system for mammalian skeletal muscle is based on the expression of MyHC isoforms
and type I, IIa and IIx MyHC are expressed in human muscles. The rate of cross-
bridge cycling is determined by the MyHC isoform with type I being the slowest,
type IIa intermediate and IIx the fastest. Numerous other protein isoforms also differ
between muscle fibres, and their gene expression is controlled by multiple
interacting mechanisms (Spangenburg and Booth 2003). Sometimes a pattern of
gene co-expression exists in that the slow MyHC type I is co-expressed with ‘slow’
isoforms of other proteins, but this is not always the case. From a metabolic
perspective, the MyHC-based fibre typing is relevant because the cross-bridges of
a fast MyHC isoform consume ATP more rapidly than a slow isoform. The other
major ATP-consuming protein in skeletal muscles, the SERCAs, also exists in two
isoforms, SERCA1 mainly in fast type II fibres and SERCA2 mainly in slow type I
fibres, and the density of pumps is much higher in fast than in slow fibres (Bottinelli
and Reggiani 2000; Periasamy and Kalyanasundaram 2007). Moreover, fast type II
fibres generally have a lower oxidative capacity than slow type I fibres, although this
is not always the case (Baldwin et al. 1972). Thus, to sum up:

• Type I fibres have slow MyHC, relatively few SERCAs and a high aerobic
capacity and are therefore highly fatigue resistant.

• Type IIa fibres have fast MyHC, many SERCAs and a generally lower aerobic
capacity than type I fibres, although this is highly training-dependent, and they
fatigue more rapidly than type I fibres.
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Fig. 17.1 (a) Schematic illustration of how the decrease in [PCr] is mirrored by an increase in [Pi],
while [ATP] remains virtually constant in skeletal muscle during intense exercise. (b) Schematic
illustration of the progressing involvement of metabolic pathways to regenerate ATP and activation
of the different fibre types during exercise of increasing intensity. Note that the resulting muscle
fatigue develops slowly when the energy requirement can be met by aerobic metabolism and much
faster when anaerobic metabolism must be added. PCr ¼ phosphocreatine; Pi ¼ inorganic phos-
phate; CHO ¼ carbohydrate
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• Type IIx fibres have the fastest MyHC, many SERCAs, low aerobic capacity and
fatigue rapidly.

Motor units are activated according to their size (Henneman and Olson 1965), and
this relates to the physiological properties of their respective muscle fibres. Thus,
motoneurons activating type I fibres are recruited at low exercise intensity, followed
by type IIa fibres and finally type IIx fibres. Figure 17.1b presents a simplified
overview of how the major energy metabolic systems are used during locomotion of
increasing intensities and how this relates to the activation of motor units with
different fibre types and fatigue development.

17.2.4 Metabolic Changes in Various Sport Events

PCr is a primary fuel for the most intense exercise forms lasting a few seconds, such
as 60–100 m sprint running and weightlifting. Anaerobic glycogen breakdown
contributes substantially to the energy supply for intense efforts lasting ~1–3 min,
such as 800 m track and field running and 200 m freestyle swimming (Spriet 1992).
On the other end of the spectrum, aerobic degradation of glycogen or triglycerides is
the dominating energy source during prolonged endurance exercise, such as mara-
thon running and the increasingly popular ultra-endurance events like mountain
running, triathlon and swim-run (Tiller et al. 2021). Furthermore, the fast and slow
energy systems alternate over time in many sports, such as during a 90 min soccer
match where repeated short sprints requiring anaerobic energy sources are combined
with walking/slow running allowing the immediate consequences of anaerobic
metabolism to be recovered (i.e. restoration of muscle fibre PCr stores and transport
of lactate ions and H+ out of the cells). Note also that the slower aerobic energy
systems are generally activated from the start of any physical activity; for instance, a
significant (~40%) contribution of aerobic metabolism was observed during a
30 ‘all-out’ bicycle exercise (Medbø and Tabata 1989). Thus, the metabolic cause
(s) of peripheral muscle fatigue varies considerably between different sports, and
more than one cause may be of significant importance within a given sport; for
instance, a fatigue-induced decrease in muscle force during a soccer match might be
related to accumulated effects of the repeated sprints (e.g. transient increases in [Pi]
due to PCr usage as an energy source) or glycogen depletion due the long duration
(90 min) of the event as such.

17.2.5 Force and [Ca2+]i During Induction of Fatigue

Cellular causes underlying the impaired contractile function in fatigued muscles
have been thoroughly studied in experiments performed on single intact mammalian
muscle fibres (Cheng and Westerblad 2017). Such experiments with simultaneous
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measurements of force and [Ca2+]i during fatigue induced by repeated tetanic
stimulation in easily fatigued mouse, rat and human muscle fibres have revealed
three phases of fatigue development: (1) an initial phase where force is reduced
while tetanic [Ca2+]i increases; (2) a second phase with relatively stable tetanic
[Ca2+]i and force; and (3) a final fast decline in both tetanic [Ca2+]i and force
(Westerblad and Allen 1991; Lunde et al. 2001; Olsson et al. 2020). The last
phase with rapidly decreasing tetanic [Ca2+]i can be seen as a safety mechanism to
prevent [ATP] to fall to critically low levels where cross-bridges would enter rigour
states and SR Ca2+ uptake fails (Cheng et al. 2018). Notably, force is much better
maintained during repeated tetanic stimulation of isolated fatigue-resistant muscle
fibres, and the three phases of fatigue development observed in easily fatigued fibres
are not readily distinguishable or absent in highly fatigue resistant fibres (Olsson
et al. 2020; Lunde et al. 2006; Zhang et al. 2006b).

17.2.6 Methods to Measure Exercise-Induced Changes
in Muscle Metabolites in Humans

The assessment of the metabolic responses to exercise in humans can be performed
non-invasively through 31phosphorus magnetic resonance spectroscopy (31P-MRS)
or through biochemical measurements on muscle biopsies. A major advantage with
31P-MRS is that metabolites can be quantified with reasonable time resolution
throughout the course of an exercise bout and the following recovery period.
However, measurements require extensive infrastructure facilities, they are limited
to phosphagens (e.g. ATP, PCr, Pi, monophosphoric sugars) and intracellular pH,
and global, whole-body exercises cannot be performed since subjects have to lie on a
bed in close proximity to the electromagnetic coil (Liu et al. 2017). Due to these
practical limitations of the 31P-MRS technique, the vast majority of studies
addressing metabolic changes in muscle fatigue use muscle biopsies. There are
several drawbacks also with this technique: it is invasive, and individuals may be
reluctant to allow several biopsies to be taken; it provides a snapshot of the situation
at the time the biopsy was obtained, and therefore the time course of metabolic
changes cannot be followed in great detail, and transient metabolic changes can
remain undetected; there will be some delay between the end of exercise and the time
when the biopsy is taken, and hence rapidly recovering metabolic changes will be
missed. Thus, present methods do not allow detailed metabolite measurements at
high time resolution throughout an exercise bout and the subsequent recovery
period. Nevertheless, available data are of high enough quality to make it possible
to correlate metabolic changes to the impaired contractile function. In the following
paragraph, we give two examples of sport activities where the energy demand is high
and acute peripheral fatigue develops due to a large dependency on anaerobic
metabolism.
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17.2.7 Exercise with Quasi-isometric
Contractions vs. Dynamic Contractions

In alpine skiing, high levels of force are produced, mostly under isometric or
eccentric conditions, for 90–120 s (Ferguson 2010). Thus, there is a high proportion
of active motor units within the leg muscles, as evidenced by high electromyo-
graphic activity levels (Hintermeister et al. 1997), which combined with a limited
blood flow due to high intramuscular pressure would lead to a major decrease in
[PCr] (Krustrup et al. 2009), and the concomitant increase in [Pi] likely has a central
role in the development of peripheral fatigue during the race. Other sports, such as
flatwater kayaking, require high-power dynamic contractions mainly in the upper
body. Limited blood flow due to prolonged high intramuscular pressure would be
less of a problem with dynamic contractions, but acute fatigue-inducing anaerobic
metabolism still largely contributes to energy required during 500–1000 m
(~2–4 min duration) kayak performance (Bishop 2000; Tesch 1983). Interestingly,
muscle biopsies collected in the deltoid muscle before and after simulated 500 m and
10,000 m (~45 min duration) kayak races indicate that glycogen depletion occurred
after both types of exercise, while reduced [PCr], and hence a large proportion of
anaerobic metabolism, was observed only after the shorter, more intense exercise;
notably, [ATP] was unchanged after both exercises (Tesch and Karlsson 1984).

17.3 Effects of Specific Exercise-Induced Changes
in Muscle Metabolites on Peripheral Fatigue

17.3.1 Decreased [ATP]/Increased [ADP]

31P-NMR studies generally show well-maintained [ATP] during exercise (Newham
and Cady 1990; Miller et al. 1988) unless the exercise is severe and PCr stores
become very low (Taylor et al. 1986). In the latter case, biochemical analysis of
muscle biopsies shows that large changes can occur in individual muscle fibres. For
instance, after maximal cycling exercise, [ATP] was reduced to ~20% of the resting
value in fast type IIx fibres, and [IMP] increased from undetectable levels to ~5 mM,
which indicates that transient increases in [ADP] and [AMP] had occurred
(Karatzaferi et al. 2001).

SR Ca2+ release via RyR1 is facilitated by ATP, while ADP and AMP act as weak
competitive agonists. In cells, ATP generally exists as MgATP, which means that a
decrease in [ATP] is accompanied by an increase in the free cytosolic [Mg2+]
([Mg2+]i), and Mg2+ inhibits RyR1 opening (Lamb and Stephenson 1994; Meissner
et al. 1986). However, larger changes in [ATP] and [Mg2+]i than those generally
observed during fatiguing contractions are required to induce a substantial inhibition
of voltage-activated RyR1 Ca2+ release (Westerblad and Allen 1992); hence this
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mechanism would only affect SR Ca2+ release during very intense physical activities
(Dahlstedt et al. 2000).

The power output during physical exercise depends both on the muscle capacity
to generate force and to shorten (power ¼ force � velocity). Increased [ADP] is
known to decrease the shortening velocity of muscle fibres (Cooke and Pate 1985;
Metzger 1996). In severe fatigue with depleted PCr stores, [ADP] transients during
contractions can reach high enough levels to impose a physiologically significant
inhibition of shortening velocity (Westerblad et al. 1998), which adds to the
decreased force production to further decrease power output.

17.3.2 Increased [Pi]

In human, it is possible to monitor [Pi] during isometric, single-joint exercise using
31P-MRS, and [Pi] can increase from ~5 mM to ~30 mM during severe exercise
(Newham and Cady 1990; Cady et al. 1989; Sundberg et al. 2019). Noteworthy,
large interindividual variation in Pi accumulation has been reported; for instance,
repeated 30 s maximal voluntary plantar flexions lead to 75% decrease in [PCr] in
sprinters, while it was only 40% in endurance-trained runners; thus, the resulting
increase in Pi was ~3 times larger in the sprinters (Johansen and Quistorff 2003). It is
also interesting to note that the increase in [Pi] is not specific to high intensity
exercise as comparable increases were observed at the end of a series of repeated
knee extensions performed either as (1) maximum voluntary contractions (MVCs)
until reaching a stable low force level or (2) at ~55% MVC torque until task failure
(Burnley et al. 2010). However, Pi may not accumulate during repeated contractions
performed at low force (e.g. 20%MVC force) unless blood flow is restricted (Sugaya
et al. 2011); this enhanced metabolic disturbance is thought to be a trigger for the
hypertrophic effects observed with resistance training under blood flow restriction
(Pearson and Hussain 2015).

The quantification of phosphagens with 31P-MRS can be used to increase the
physiological understanding of issues related to fatigue. For instance, a greater
fatigability during dynamic exercise performed by old vs. young adults is a well-
described feature, but the underlying mechanisms are not fully understood. A recent
31P-MRS study showed a good correlation between a faster decline in mechanical
power and a larger increase in [Pi] (~32 vs. 23 mM) during repeated voluntary knee
extensions in old (mean age 76 years) than in young (mean age 23 years) adults
(Sundberg et al. 2019), as illustrated in Fig. 17.2a. This was not accompanied by any
difference in the [PCr] recovery kinetics between the two groups, which indicates no
notable difference in muscle oxidative capacity mitochondrial function (Sundberg
et al. 2019). Thus, from an energy metabolism perspective, the superior fatigue
resistance in young individuals would be due to energetically more efficient con-
tractions (i.e. less energy consumed) than in old individuals.

Measurements of phosphagens with 31P-MRS have also been used to compare the
metabolic response to repeated tetanic contractions induced by neuromuscular
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electrical stimulation (NMES) vs. voluntary contractions. An early study showed
higher [Pi]/[PCr] ratio and lower pH during NMES than during load-matched
voluntary contractions of the knee extensors (Vanderthommen et al. 1999). These
data were confirmed in a subsequent study that also showed splitting of the Pi peak in
the 31P-MRS spectra with NMES, which was interpreted as activation of two

Fig. 17.2 (a) Linear relationship (R2 ¼ 0.84) between [Pi] and the reduction in muscle power
induced by repeated maximal dynamic knee extensions in young and older individuals (adapted
from (Sundberg et al. 2019)). The red crosses correspond to the mean for each group. (b) Peak
twitch amplitude (mean � SD) from two human muscles (left, triceps brachii; right, triceps surae)
obtained before (pre) and after (post) repeated electrically induced tetanic contractions performed
with supplementation of 0.3 g kg�1 NaHCO3 or placebo (CTRL) (figure made from data presented
in Siegler et al. 2016)
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populations of muscle fibres (oxidative vs. glycolytic) during this exercise modality
(Jubeau et al. 2015). Thus, 31P-MRS quantification of [Pi] during fatiguing contrac-
tions revealed that motor units are recruited in a non-selective manner (i.e. not
following the size principle) with NMES (Bickel et al. 2011).

Experiments on skinned muscle fibres show inhibitory effects of increased [Pi] on
myofibrillar function, decreasing both the force generating capacity and myofibrillar
Ca2+ sensitivity (Cooke et al. 1988; Godt and Nosek 1989; Debold et al. 2006).
Skinned fibre experiments also show that increased [Pi] might inhibit depolarization-
induced SR Ca2+ release by acting on the RyR1 (Steele and Duke 2003; Duke and
Steele 2001). In addition, Pi might enter the SR during fatigue, which can result in
the Ca2+-Pi solubility product being exceeded, precipitation of CaPi and decreased
free Ca2+ available for release (Duke and Steele 2001; Fryer et al. 1995; Dutka et al.
2005; Westerblad and Allen 1996; Ferreira et al. 2021). Accordingly, the [Ca2+]i
increase obtained with high doses of caffeine or 4-chloro-m-cresol, which directly
stimulate Ca2+ release via RyR1, was reduced in fatigued muscle fibres indicating
decreased Ca2+ available for rapid release (Westerblad and Allen 1991; Kabbara and
Allen 1999), and measurements of the SR free [Ca2+] showed a decline during
fatiguing stimulation in both isolated toad muscle fibres and mouse muscle studied in
situ (Kabbara and Allen 2001; Allen et al. 2011).

Experiments on CK-deficient mouse muscle fibres, which cannot break down
PCr, illustrate the important role of PCr energy buffering in high-intensity exercise
as well as the inhibitory effect of increased [Pi] during more prolonged fatiguing
stimulation (Dahlstedt et al. 2000). These fibres displayed impaired contractile
function at the onset of high-intensity stimulation, where PCr breakdown functions
as an important energy buffering system, whereas during more prolonged stimula-
tion, they showed neither decreased cross-bridge force production, reduced myofi-
brillar Ca2+ sensitivity, nor decreased SR Ca2+ release. Notably all these features
partially returned towards the wild-type phenotype after injecting CK into these
CK-deficient cells, which allowed PCr breakdown to occur (Dahlstedt et al. 2003).

17.3.3 Acidosis

Physical exercise at an intensity requiring a large proportion of anaerobic metabo-
lism will result in marked accumulation of lactate and hydrogen ions (Ferguson et al.
2018). The resulting acidosis in muscle fibres has classically been viewed as an
integral causative factor in peripheral muscle fatigue. In resting human skeletal
muscle fibres, intracellular pH (pHi) at rest is �7.1. During exhaustive exercise,
pHi has been shown to decrease to as low as �6.5 (Spriet et al. 1989; Sahlin et al.
1976), whereas in other studies pHi was only reduced to �6.8 or 6.9 at exhaustion
(Bangsbo et al. 1996; Hogan et al. 1999). This shows that severe fatigue can occur at
markedly different degrees of acidosis, and as discussed in this chapter, important
roles of several other metabolic alterations in fatigued muscle fibres have been
identified. Thus, the importance of acidosis in peripheral muscle fatigue is currently
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debated (Ferguson et al. 2018). Nevertheless, lactate and hydrogen ions are effec-
tively transported out of muscle fibres (Juel 1997), and the resulting increase in
blood lactate is easy to measure and constitutes a good indicator of the usage of
anaerobic metabolism by muscles during exercise.

One way to study the importance of acidosis as a cause of fatigue during physical
exercise is to apply pH buffering agents, such as sodium bicarbonate (NaHCO3). The
results of studies investigating effects of NaHCO3 ingestion on exercise performance
generally show minor improvements or no effect, and the effect depends on many
factors, such as the type of exercise, dose and duration of supplementation, training
status and gender (Saunders et al. 2021). For instance, a meta-analysis showed
slightly increased mean power (~2%) during high-intensity races of short duration
with NaHCO3 supplementation, but the underlying mechanisms remained unclear
(Carr et al. 2011). Conversely, the authors of a recent systematic review concluded
that it is unclear whether supplementation with NaHCO3 enhances performance or
simply balances deficits in buffering capacity between athletes (Hadzic et al. 2019).
The evidence for a role of NaHCO3 supplementation on peripheral fatigue is scarce.
In a recent study, repeated electrically induced tetanic contractions of two muscle
groups (triceps surae and triceps brachii with predominately slow- and fast-twitch
fibres, respectively) did not reveal any difference in central or peripheral fatigue after
NaHCO3 intake vs. placebo despite slightly higher blood pH (7.48 vs. 7.42) before
exercise in the NaHCO3 group (Siegler et al. 2016), as illustrated in Fig. 17.2b.

Low pH has been shown to inhibit the activation of isolated RyR1 incorporated in
planar lipid bilayers (Laver et al. 2000; Ma et al. 1988). However, the physiological
action potential-induced SR Ca2+ release via RyR1 is little affected by low pH
(Lamb and Stephenson 1994; Lamb et al. 1992), and increased tetanic [Ca2+]i has
been observed in acidified mouse and human muscle fibres (Olsson et al. 2020;
Westerblad and Allen 1993). Thus, current evidence implies that acidosis does not
impair muscle function during fatiguing exercise by inhibiting SR Ca2+ release.

Studies on skinned fibre experiments performed at room temperature (~20 �C)
showed that a reduction in pH resulted in marked decreases in cross-bridge force
generating capacity, myofibrillar force production and shortening velocity (Fabiato
and Fabiato 1978; Metzger and Moss 1987). On the other hand, experiments
conducted at more physiological temperatures (~30 �C) showed little effect of
acidosis on maximum force production and shortening velocity in skinned rabbit
muscle fibres (Pate et al. 1995; Chase and Kushmerick 1988), intact mouse muscle
fibres (Westerblad et al. 1997), whole mouse muscles (Wiseman et al. 1996) and
intact human muscle fibres (Olsson et al. 2020). Furthermore, acidification induced
by elevating the bath CO2 concentration prior to fatigue induced by repeated tetanic
contractions had little or no effect on the rate of fatigue development in either
isolated intact mouse or human muscle fibres (Olsson et al. 2020; Bruton et al.
1998). Nevertheless, recent experiments on mammalian skinned muscle fibres
showed that the combination of acidosis and increased [Pi] can induce large inhib-
itory effects on myofibrillar force production, Ca2+ sensitivity and shortening veloc-
ity even at physiological temperatures (Debold et al. 2016). Thus, experiments on
skinned and intact muscle fibres provide apparently conflicting results regarding the

388 N. Place and H. Westerblad



importance of acidosis on myofibrillar function at physiological temperatures; hence
the causative role of acidosis in mammalian muscle fatigue is still debated (Fitts
2016; Westerblad 2016).

17.3.4 Reactive Oxygen/Nitrogen Species

Another consequence of the increased energy consumption during fatiguing stimu-
lation is accelerated ROS/RNS production (Powers and Jackson 2008). The domi-
nant ROS in cells is superoxide (O2

•�) and its downstream derivatives, such as
hydrogen peroxide (H2O2). Classically, mitochondria have been considered as the
major site for O2

•� production in muscle fibres during repeated contractions, and
there are recent studies supporting this notion (Wei et al. 2011; Cheng et al. 2015).
On the other hand, recent studies indicate that the enzyme NADPH oxidase
2 (NOX2) might be the major source for contraction-mediated O2

•� (Michaelson
et al. 2010; Pal et al. 2013; Sakellariou et al. 2013). Thus, the importance of different
sources of O2

•� in contracting muscle is still uncertain.
As it is relatively difficult to quantify ROS production in response to exercise in

humans and most studies only show modest increases in ROS/RNS in muscle during
exercise (Cheng et al. 2016), many studies have focused on the potential efficacy of
antioxidant treatment on muscle fatigue and recovery. Almost 30 years ago, Reid
et al. published a pioneer human study showing that prior infusion N-acetylcysteine
(NAC, a thiol donor with antioxidant properties) improved force production of the
tibialis anterior muscle by ~15% during repeated tetanic contractions (Reid et al.
1994). Interestingly, the beneficial effect of NAC was observed when submaximal
forces (10 Hz) were evoked, while there was no influence when fatigue was evoked
at near maximal (40 Hz) contractions. Later studies suggest that NAC is effective at
improving exercise performance at unsaturated [Ca2+]i levels during single-joint
(Matuszczak et al. 2005) and whole-body (Medved et al. 2004; McKenna et al.
2006; Slattery et al. 2014) exercise.

While prolonged increases in ROS have multiple have adverse effects on muscle
function and contribute to muscle dysfunction in several pathological conditions,
such as rheumatoid arthritis and cancer (Yamada et al. 2017; Abrigo et al. 2018),
transient increases in ROS production have important roles in normal cellular
signalling, and effective antioxidant treatment can blunt positive training-induced
muscle adaptations (Ristow et al. 2009; Paulsen et al. 2014; Gomez-Cabrera et al.
2008; Strobel et al. 2011). Our own studies focusing on fatigue-induced effects of
increased ROS in muscle fibres generally show little effect during the actual induc-
tion of fatigue, whereas large ROS-mediated effects are seen during the subsequent
recovery period (Cheng et al. 2016; Place et al. 2009). Fatigued muscle frequently
enters a prolonged state of severely depressed submaximal force, i.e. prolonged
low-frequency force depression (PLFFD) (Allen et al. 2008; Skurvydas et al. 2016);
note that the effects of antioxidants during human exercise are also preferentially
seen with submaximal contractions (see above). At the muscle fibre level, depressed
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submaximal force can be due to decreased SR Ca2+ release and/or reduced myofi-
brillar Ca2+ sensitivity. Antioxidants do not prevent PLFFD, but they can change the
dominant underlying mechanism from decreased SR Ca2+ release to reduced myo-
fibrillar Ca2+ sensitivity (Cheng et al. 2015; Bruton et al. 2008), which may have
implications on the response to endurance training. Impaired SR Ca2+ release caused
by redox modifications of RyR1 is associated with increased SR Ca2+ leak at rest,
and the resulting increase in resting [Ca2+]i can stimulate mitochondrial biogenesis
and thereby improve muscle endurance (Wright et al. 2007; Bruton et al. 2010;
Ivarsson et al. 2019; Zanou et al. 2021). Conversely, decreased myofibrillar Ca2+

sensitivity is unlikely to induced major adaptations. Thus, ROS-induced changes in
RyR1 structure and function likely play a central role in the triggering of beneficial
muscular adaptations in response to endurance training, and prevention of these
RyR1 modifications with effective antioxidant treatment would then hamper these
beneficial effects.

The central RNS in cells is nitric oxide (NO•). NO• is generated via enzymatic
reactions of nitric oxide synthases (NOS), and the rate at which it is produced in
muscle fibres increases during repeated contractions (Cheng et al. 2015; Pye et al.
2007). NO• can also be formed from the inorganic anions nitrate (NO3

�) and nitrite
(NO2

�), and the NO• produced in this manner might increase in the hypoxic and
acidic conditions of muscles during intense exercise (Larsen et al. 2010). Human and
mouse exercise performance can be improved by dietary NO3

� supplementation
(Larsen et al. 2010; Jones et al. 2018; Ivarsson et al. 2017; Larsen et al. 2007). A
functionally effective extra intake of NO3

� can be achieved by increasing the
amount of green leafy vegetables or beetroot in the diet (Hord et al. 2009). Briefly,
NO3

� can be reduced to NO2
� in the mouth, which then enhances NO• bioavail-

ability. This nitrate-nitrite-NO• pathway has been shown to affect many physiolog-
ical functions that can improve exercise performance (Lundberg et al. 2018; Jones
et al. 2021), as well as attenuate fatigue development in isolated mouse muscle fibres
(Bailey et al. 2019). Interestingly, NO3

� supplementation for 7 consecutive days in
humans resulted in improved muscle function similar to that observed with acute
exposure to NAC, i.e. increase in knee extensor electrically evoked force at low (�
20 Hz) stimulation frequencies (Whitfield et al. 2017; Haider and Folland 2014).
Thus, in simplified terms, increasing the bioactivity of the RNS NO• induces changes
in muscle function similar to those obtained by decreasing ROS with antioxidant
treatment, which highlights the multifaceted and incompletely understood effects of
ROS/RNS in muscle during physical exercise.

17.3.5 Glycogen

Seminal human studies performed more than 50 years ago reported that muscle
glycogen stores are depleted during endurance exercise and a good correlation
between muscle glycogen content and endurance performance was observed
(Hermansen et al. 1967; Bergström et al. 1967). It is now clearly established that
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carbohydrate supplementation before/during endurance exercise improves perfor-
mance (Vandenbogaerde and Hopkins 2011). Recent studies also show that carbo-
hydrate ingestion between consecutive bouts of exercise performed with short
recovery periods (2–4 hours) improves performance due to increased muscle glyco-
gen repletion (Alghannam et al. 2016; McCarthy and Spriet 2020; Cheng et al.
2017). Altogether, these results confirm that muscle glycogen stores influence the
extent and kinetics of muscle fatigue.

Within muscle fibres, glycogen is preferentially located in three distinct subcel-
lular compartments: subsarcolemmal, intermyofibrillar (i.e. between myofibrils and
close to the mitochondria and SR) and intramyofibrillar (i.e. within the contracting
myofibrils) (Marchand et al. 2002; Nielsen et al. 2009; Ørtenblad et al. 2013).
Studies using electron microscopy show a preferential depletion of intramyofibrillar
glycogen in fatigued muscle fibres from humans (Marchand et al. 2007; Ørtenblad
et al. 2011; Nielsen et al. 2011; Jensen et al. 2020) and rodents (Nielsen et al. 2009;
Nielsen et al. 2014). Moreover, a good correlation between reduced SR Ca2+ release
and depletion in intramyofibrillar glycogen was observed in mouse muscle fibres
fatigued by repeated tetanic contractions (Nielsen et al. 2014). Interestingly, despite
being fatigued to 30% of the original force and showing similar decline in
intramyofibrillar glycogen content, reduced tetanic [Ca2+]i could explain all of the
force decrease when fibres were submitted to repeated 350 ms tetanic stimulations at
long (10 s) intervals, whereas decreased myofibrillar Ca2+ sensitivity contributed to
the force decrease at short (2 s) intervals (Nielsen et al. 2014). This difference might
be taken as evidence for metabolic microenvironments within muscle fibres where
the low-intensity stimulation resulted in metabolic disturbance in regions important
for SR Ca2+ release, while myofibrils were little affected, whereas metabolic distur-
bances occurred at both sites with the high-intensity stimulation.

17.4 Conclusion

The importance and complexity of energy metabolism in muscle make it highly
unlikely that fatigue would depend on a single metabolic mechanism (Booth and
Laye 2009). Accordingly, in this chapter we describe mechanisms by which changes
in several metabolites can contribute to the decline in contractile function in fatigued
muscle as summarized in Fig. 17.3. The relative importance of different metabolites
is multifaceted and depends on several factors, such as the type of exercise and the
age and training status of the exercising individual. Nevertheless, the balance
between the intensity of exercise and the aerobic capacity of the exercising individ-
ual has a key role in muscle fatigue, which inevitably occurs at faster rate when a
large extent of anaerobic metabolism is required.
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