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Abstract. In the theory of automatic control of complex dynamic objects, the
necessary conditions for optimality of control are widely used on the basis of the
method of L.S. Pontryagin, necessary and sufficient conditions for optimality of
control based on the method of R. Bellman and sufficient conditions for optimal-
ity of control based on the method of V.F. Krotova. To date, control objects are
becoming more complex and the development of optimal control methods them-
selves continues. Of particular interest for complex objects is the development of
control synthesis methods based on sufficient optimality conditions. A modifica-
tion of V.F. Krotova-M.M. Khrustaleva method, which consists in a conditional
change in the characteristics of the object under study. This technique makes it
possible, with minor changes, to apply the already known technique for synthesiz-
ing the suboptimal launch trajectory, obtaining better estimates of the final mass
in comparison with the known method. In this article, this approach is used to
construct an optimal launch-acceleration trajectory of an aircraft under the influ-
ence of gravity, aerodynamic forces, and engine thrust that is optimal in terms of
fuel consumption. Using the method of mathematical modeling, numerical results
have been obtained that confirm the efficiency of the proposed modification of the
V.F. Krotova-M.M. Khrustalev method.

Keywords: Optimal control · Sufficient conditions of optimal · Launch
trajectory · Minimum fuel consumption · Angle of attack

1 Introduction

In the modern theory of automatic control, fundamental results are actively used, such as
the necessary conditions for optimality of control based on themethod of L.S. Pontryagin
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[1], necessary and sufficient conditions for optimality of control based on the method
of R. Bellman [2], as well as sufficient conditions for optimality of control based on
the method of V.F. Krotov [3, 4, 5]. The development of these methods is reflected
in the works of many domestic and foreign authors [6–15]. All existing methods for
solving optimal problems are focused on certain classes of problems in a formulation
that presupposes certain assumptions.

One of the successful options for the development of control theory with the help
of sufficient optimality conditions of V.F. Krotov [1, 2, 3] is the method of V.F. Krotov-
M.M. Khrustalev [4, 5]. It allows you to find the optimal ascent-acceleration trajectory
V (h) in terms of minimum fuel consumption, as well as an estimate of the upper limit
of the final mass of the aircraft. By virtue of the latter property, the found trajectory is
called estimated. In [4], it was proved that when flying along an optimal trajectory, the
final mass turns out to be no more than the estimated one. For some cases of the problem
([4] problem A′), the found estimate corresponds to the exact solution of the boundary
value problem.

Method V.F. Krotov-M.M. Khrustaleva has its own limitations. In particular, when
substantiating the method [4], the differential connection by the angle of inclination
of the trajectory is excluded θ and further θ acts as a control. The dependencies with
which the estimated trajectory can be found does not take into account the feasibility of
the processes, which, for the known ones h,V ,m, β, is determined by the relationship
between α and θ. Although, in the same work of V.F. Krotov and M.M. Khrustalev, a
possible method for determining α and θ is proposed, which allows one to realize the
found optimal trajectory. But at the same time, the search for the very trajectory V (h)
to be implemented is based on the dependencies that assume α = θ. That is, first a
trajectory close enough to the optimal one is synthesized, and then it is refined.

The undoubted advantage of the method lies in the possibility of obtaining solutions
that meet the requirements of design calculations in terms of accuracy with a relatively
low cost of computer time,which is especially importantwhen forming the appearance of
a future object at the preliminary design stage. It is this quality that prompts researchers
[14, 15] to turn to the method of V.F. Krotov-M.M. Khrustaleva. The breadth of appli-
cation of the method largely depends on the degree of closeness of the results of the
synthesis of the estimated trajectory and the exact solution of the boundary value prob-
lem. Therefore, it is understandable to strive to refine the results obtained with low
additional costs of computer time.

In the proposed work:

– an attempt was made to refine the method of V.F. Krotov-M.M. Khrustalev by
introducing into the calculation formulas the reference values of the angle of attack.

αo� = αmin at the stage of trajectory synthesis; at the same time, additional costs
of processor time are no more than 0.1%;

– an iterative algorithm for the synthesis of a realizable injection trajectory based on the
method of V.F. Krotov-M.M. Khrustalev, which allows one to approach the solution of
longitudinal and spatial problems of injection from a single point of view, is proposed.
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2 Application of the V.F. Krotov-M.M. Khrustalev Method
for Finding the Estimated Launch Trajectory

Let us clarify the problem statement [5]. The longitudinal motion of the center of mass
of an aircraft in a vertical plane passing through the center of the Earth is considered.

In accordancewith the differential equations ofmotion (1–3), the object is acted upon
by the force of gravity, aerodynamic forces and engine thrust. It is necessary to find an
ascent-acceleration trajectory that is optimal in terms of the minimum fuel consumption.
Initial conditions:

t = 0; V0 = V (0); θ0 = θ(0); h0 = h(0); L0 = L(0); m0 = m(0).

End conditions:
time t1 is not fixed; V1 = V (t1); θ1 = θ(t1); h1 = h(t1).
Constraints on control α, β and phase coordinates h, V , θ, m, L:

0 < Vmin(h) ≤ V ≤ Vmax(h), where h ≥ 0;

0 < βmin(h,V ) ≤ β ≤ βmax(h,V ), where 0 < βmax(V , h) < ∞; (1)

αmin(h,V ) ≤ α ≤ αmax(h,V ), where αmin ≤ 0; αmax ≥ 0.

The functions amin, amax, βmin, βmax are continuously differentiable. Also assume that

0 ≤ θ ≤ π. (2)

The need for this requirement near the Earth’s surface is obvious [5], and for many
types of aircraft this condition must be fulfilled throughout the entire lift-acceleration
section. The research carried out by the author of the thesis on the synthesis of optimal
launch trajectories shows that the need to violate the requirement (2) is most likely at
transonic speeds in the process of breaking the sound barrier, which is caused by a sharp
increase in the profile resistance coefficient of the valueP ·cosα−X (α). In the remaining
sections of the trajectory, the need to violate the requirement (2) is less likely, but may be
due to a sharp change in the traction characteristics or the operating mode of the aircraft
power plant. In the overwhelming part of the extraction stage, the optimal trajectory
satisfies condition (2). Consequently, this assumption does not lead to significant errors
in the synthesis of the optimal launch trajectory.

The functions g = g(h); P = P(V , h, β); X = X (V , h, α); Y = Y (V , h, α)

are defined and continuously differentiable on the set of admissible values �h,V ,α,β for
all time values. The physical meaning of the problem implies the properties of the listed
functions

P(V , h, 0) = 0; ∂P

∂β
≥ 0; ∂Y

∂α
> 0; ∂X

∂V
> 0;

X (V ,∞, α) = 0; X0(V , h) = X (V , h, 0) ≤ X (V , h, α).

(3)
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For existing aircraft, the following conditions are characteristic

∂

∂h
G(V , h) > 0; 0 >

∂

∂V
G(V , h) > −C. (4)

where C = const for all (h,V ) ∈ �V ,h satisfying

G(V , h) = P(V , h, βmax(V , h)) − X0(V , h) ≥ 0 (5)

The boundary conditions satisfy the inequalities

G(V , h) > 0;G(V1, h1) > 0. (6)

Inequalities (6) are certainly valid when the engine thrust does not depend on V and h.
Trajectories satisfying the above conditions will be called admissible, and the set of

elements z = (t1, x(t), u(t)), corresponding to these trajectories will be denoted D.
The vector function of the phase coordinates x(t) = (V (t), θ(t), h(t), L(t), m(t))
is assumed to be continuous and piecewise differentiable, and the control u(t) =
(α(t), β(t)) is piecewise continuous. Both functions are defined on the segment [0, t1].
It is required from the number of admissible injection trajectories to choose the one on
which the mass of the consumed fuel is minimal, i.e., the functional

J (z) = −m(t1)

takes the smallest value on the set of valid elements D. To solve the problem of finding
an estimate for the maximum finite mass, we define on the set D the set of triples of
arguments D0 satisfying the inequality

P(V , h, β) − X0(V , h) > 0. (7)

Let us make some remarks about the physical meaning of inequality (7). For this,
we write down the expression for the derivative of the energy height with respect to time

dhε

dt
= Vnx =

V
(
P(V , h, β) cos α −

(
X0(V , h) + ACα2

y qSα2
))

mg
(8)

The energy altitude is the reduced total energy of the aircraft

hε = E

m
= h + V 2

2g
,

that is expression (8) characterizes the rate of energy growth. It is easy to see that the
extremum (8) with respect to the angle of attack is attained at α = 0. Moreover, the vari-
ables V , m, g are nonnegative. Consequently, condition (7) indicates the requirement
that the sign of the derivative (8) be positive, that is, the need for a constant increase
in energy in the case of a zero angle of attack. Simulation shows. That condition (7)
is satisfied for the optimal trajectory of extraction, as well as for the set of trajectories
lying in some of its neighborhood.
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Let us define on the set additional functions of the form [5]

Q(V , h, β) = β

P(V , h, β) − X0(V , h)
(9)

Q(V , h) = min
β

Q(V , h, β) (10)

S(V , h) =
V∫

V ∗

∂

∂h
· Qmin(V , h) · dV − g

V
· Qmin(V , h) (11)

γ(h) = Qmin
(
V ∗(h), h

)dV ∗(h)
dh

. (12)

Here V ∗(h) is a function satisfying (7), continuously differentiable. In addition, we
require that for all (h, V ) satisfying the set D0, the function Qmin(V , h) is continuously
differentiable. This requirement is being met. P(V , h, β) = C(V , h)β where C is the
outflow rate. In other cases, as a rule, a slight change in the dependencyP(V , h, β) allows
you to achieve its implementation.

An expression similar to (9) for the dynamic relations of the mechanical energy of
the aircraft has the following form:

Qε(V , h, α, β) = −V (P cos α − X (α))

β
= dE

dm
− ghε .

Taking into account (9), we can write

Qε(V , h, β) = −V

Qε(V , h, α = 0, β)
.

The extremum of the function Qε with respect to α is achieved at α = 0, therefore,
expression (9) can be interpreted as an indirect indicator of the efficiency of motion in
the case when one of the controls α is equal to its optimal value α = 0.

According to Theorem 2 from [5], for any admissible trajectory, the optimal value
of the final mass m(t1) does not exceed the estimated value

m∗ = m0 exp

⎡
⎢⎣

h1∫

h0

max
V

S(V , h) · dh −
V1∫

V0

Qmin(V , h) · dV
⎤
⎥⎦ . (13)

There, it is also proved that the optimal values satisfy G(V , h, t) for all t ∈ [0, t1],
if the condition is satisfied G(V0, h0) > 0, and it is also shown that it is necessary to
consider only the trajectories lying in the domain G(V , h) > 0.

In [5], an estimate of the optimal value of the final mass was obtained in a refined
form

m∗ = m0 exp

h1∫

h0

[
max
V

S(V , h) − γ(h)

]
dh . (14)
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If we assume that V ∗(h0) = V0, V ∗(h1) = V1, by substituting expression (12)
for γ(h), dependence (14) can be easily transformed to form (13). Consequently, in
the analytical sense, dependencies (13) and (14) are similar, however, the numerical
implementation of (14) is much simpler, since it requires fewer calls to the subroutine
for finding the mass estimate. In the absence of aerodynamic and gravity forces (14)
takes the form of K.E. Tsiolkovsky’s formula

m∗ = m0 exp

[
− 1

C
(V1 − V0)

]
. (15)

A special case of the formula is also possible, which does not take into account
aerodynamic forces, but makes it possible to take into account the energy costs for
overcoming gravitational forces

m∗ = m0 exp

[
− 1

C

(
g(h1 − h0)

V1
+ (V1 − V0)

)]
. (16)

Dependences (14–16) were used to synthesize the lift-acceleration trajectory and
estimate the final mass of specific aircraft. Note that the above-described method of
V.F.Krotov and M.M. Khrustalev [3], as well as a refined version of the method (14) can
be used to search not only the final mass, but also the mass of the aircraft at all current
points of the trajectory. To do this, it is enough to take the current one (V , h) as the final
values in the above dependencies (V1, h1).

3 Modeling the Method of V.F. Krotov-M.M. Khrustalev
for the Synthesis of the Estimated Launch-Acceleration
Trajectory

In the works of V.F. Krotov-M.M. Khrustalev [4– 7], two problems of launching an
aircraft in a longitudinal channel are considered: A and A′. The problem A′ differs
from the A fact that it accepts the assumptions cos α = 1 and Cxi = 0 (equality to
zero inductive resistance). To perform a modification of the method of V.F. Krotov-
M.M. Khrustalev in order to improve its accuracy, we defined the problem A′′. To do
this, on the considered flight segment, from the set of admissible angles of attack�α, we
select the set of angles that make it possible to realize trajectories belonging to a certain
neighborhood of the optimal trajectory. Let’s call such values α ∈ �α realizable.

Analysis of the behavior of α for a trajectory lying in some neighborhood of the
optimal trajectory V ∗(h) shows that on most sections of the launch trajectory there is
some αmin such that for all h ∈ �h

0 < αmin < αo�T < αo�T . (17)

If in our formulation of the problem it was necessary to accept constraint (2), then
for steady flight modes it is possible to limit the possible values of the angles of attack
from below

αP < α�� < αmin . (18)
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where α�� is the angle of attack required for the implementation of steady horizontal
flight

α�� = mg

P + Cα
y qS

[
1 − V 2

rg

]
. (19)

In the case of a choice of altitude or a positive change in the angle of inclination of the
trajectory, the angle of attack αP will be greater than αGP. Violation of conditions (18)
is possible only in cases of a sharp decrease in the angle of inclination of the trajectory
or an arbitrary decrease θ less than a certain one θmin < 0, which is unacceptable in the
presence of constraint (2). Note that in the injection site, the modes associated with a
sharp change θ are extremely rare and short-lived. Thus, with an insignificant distortion
of the physical meaning and insignificant errors in the estimate of the mass, it is possible
to determine some according αmin to the formula (19) (or another similar dependence)
that satisfies the conditions (17, 18). If the specified αmin exists, then it is possible to
define the task A′′, which differs from the task A by the presence of an assumption
α = αmin = const. Let us systematize the signs of tasks A, A′, A′′ in Table 1.

Table 1. The systematize the signs of tasks A, A′, A′′

Task Attack angle Longitudinal overload

A α = αP = vαr (P cos α − X (α))/mg

A′ α = 0 (P − X0)/mg

A′′ α = αmin = const
(
P′ − X ′

0

)
/mg

The problem A′′ easily turns into A′ if, instead of the original object, we consider an
object with new traction and aerodynamic characteristics found from the relations

P′ = P cos αmin, X ′
0 = X0 + C=1(αmin)qS (20)

where αmin = const.
In this case, all conclusions that are correct for the problem A′ will also be true for

A′′.
In [5], an exact solution A′ to the problem was obtained. In this case, the solution to

the problem A′ can be considered as an approximate solution to the problem A [5]. Due
to the fact that αmin it is closer to αo�� = αP than α = 0, the solution to the problem
A′′ will be closer to the solution to the problem A than the solution A′. Of all α ∈ �α,

the minimum fuel consumption of the task would be achieved at α = 0, if such a regime
were possible. However, in real flight during the launching phase α > 0.

The proposed modification makes it possible to reduce the difference between the
problem A′ and the solution of the problem A by passing to the problem A′′. The αmin
can be determined directly at each step of the trajectory synthesis V ∗(h). In general,
the methodology for finding the optimal estimated trajectory and searching for the mass
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estimate remains the same. Constraints and boundary conditions are also unchanged.
Let us note the existing differences in the form of the used dependences (5), (7)

G(V , h) = P(V , h, βmax(V , h)) cos αmin − X (V , h, αmin) ≥ 0 , (21)

where X (V , h, αmin) = X0(V , h) + ACα2

y qSα2min .

The set D0 is defined as the set of arguments satisfying

P(V , h, β) cos αmin − X (V , h, αmin) > 0 . (22)

Function (9) is defined as

Q(V , h, β) = β

P(V , h, β) cos αmin − X (V , h, αmin)
. (23)

The modified method retains the ability to find the mass estimate at the final and
intermediate points. In addition, the described modification can be used to organize an
iterative search for a realized suboptimal trajectory and the correspondingmass estimate.

The presented procedure is repeated for each current height value. For the task A′′ it
is supposed to αmin = αo�. For each controversial value αo� ∈ �α, the optimal values
of speed Vo�T and fuel consumption per second are found βo�T. From the differential
equations written in finite differences, θ and αP, are found, which make it possible to
realize the transition of the aircraft to a new point from the previous one.

We are interested in such values Vo�T, αP for which the reference value α is simul-
taneously realizable αp = αo�, that is, when the dependence graph αp(αo�) intersects
with the bisector of the angle formed by the coordinate axes.

If there are several intersection points, then we are interested in the one in which the
value of α is minimal. It is possible that there is no intersection of the curve αp(αo�)

with the bisector of the angle. In this case, it is necessary to go back one step in height,
exclude the value found at the previous step VoT� from the number of possible solutions,
and repeat the search procedure.

The trajectory synthesis problem can be divided into the following stages:

1. analysis of the feasibility of a particular launching task;
2. synthesis of the implementation trajectory of launch;
3. synthesis of control for the flight of wills of the found reference trajectory.

If at the first stage it turns out that among the admissible trajectories there is no one
that will allow the inference task to be completed, then it makes no sense to proceed
to stages 2, 3. At the first stage, as a rule, the problem is considered in a somewhat
simplified form, but the more accurately the problem is solved on at this stage, the easier
it is to perform items 2, 3. The feasibility of the lifting-acceleration task is defined as
the ability of an object to bring the payload to a given point in space no less than a given
one.

In our case, at the first stage, the method of V.F. Krotova-M.M. Khrustalev or one
of its modifications that give an estimate by mass (which makes it possible to judge
the feasibility of the injection task) and an optimal trajectory V (h) synthesized without
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taking into account its feasibility. Refinement of the initial trajectory V (h) in the course
of bringing it to a realizable form simultaneously with refining the estimate is carried
out at the second stage. Modifications of the V.F. Krotova-M.M. Khrustaleva allows:

1. to clarify the solution sought at the first stage (task A′′);
2. choose a compromise between the real and joint solution of the tasks of stages 1

and 2 by establishing the degree of proximity αP and αo�, and, consequently, the number
of necessary iterations, depending on the formulation of the research problem.

The validity of the theoretical studies described is confirmed by the results of numer-
ical modeling. The synthesis of the estimated launch trajectory was performed with dif-
ferent reference values αmin = const, αmin ∈ [0◦, 10◦] for an aircraft with a turbojet
engine in the altitude range from 0 to 19 km.

Let us dwell on individual results and features of the algorithm.
Beginning with αmin = 7◦, a range of heights appears (Table 2) within which the set

turns out to be empty, ie, there are no such V for which condition (22) would remain
valid.

Table 2. The range of heights appears with different reference values αmin

αmin The h range in which Do = 0

7◦ 4–8 km

10◦ 1–13 km

This indicates that the use of the same αmin at different heights is not always accept-
able and gives obviously worse results than the flexible change algorithm αmin as the
altitude changes. In the latter case, there is a real opportunity to obtain an estimate of the
mass that completely coincides or is close enough to the exact solution of the boundary
value problem. As a result of calculations, a functional dependence of the relative mass
on the height and the reference value of the angle of attack μ(h, αo�) was found.

The magnitude of the improvement in the weight estimate compared to the
unmodified method was also determined

�μ(h, αo�) = μ(h, 0) − μ(h, αo�) (24)

The studies indicate that in the considered range of heights h ∈ [0, 19] KM , the
realizable value of the angle of attack in the vicinity of the optimal trajectory is not
less 3°–4°. If we focus on such a minimum possible value αmin, then the degree of
improvement of the estimate in comparison with the base version of the V.F. Krotova-
M.M. Khrustalev method fluctuates in a range�μ = 0,1−0,2% that corresponds to the
absolute mass �m = 300−1200 K� for objects with a starting mass of 300 to 600 tons.
When the reference value of αOP is varied within the limits 3◦−5◦, an improvement in
the estimate for the final mass at an altitude of 19 km can reach, respectively, the values

�μ = 0,1−0,4%, �m = 300−2400 kg

When driving to high altitudes, the difference �μ will be significant and can reach
a few percent of the relative mass.
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It is easy to see that �μ(h, αo�) it changes non-monotonically for all values αon =
const. In addition, for different αo� types of dependence�μ(h, αo�), the quality is also
different. In a local sense, the reasons for this phenomenon lie in the imperfection of the
interpolation of the original data arrays during printing. In a global sense, the general
view of the dependency �μ(h, αo�) is inextricably linked with the type of dependency
V (h) corresponding to the value used αo�.

dμ

dh
= dμ

dt

dhθ

dh

[
dhθ

dt

]−1

=
−β

[
1 + V

g
dV
dh

]

m0 V nx
=

−β μ g
[
1 + V

g
dV
dh

]

V [P cos αo� − X (αo�)]
(25)

The change causes a change in the type of dependence, which, in accordance with
(24), (25), leads to the non-monotonicity of the dependence �μ(h, αo�) .

4 Conclusion

1. The proposedmodification of themethods ofV.F.Krotova-M.M.Khrustalev consists
in a conditional change in the characteristics of the object under study,whichmakes it
possible,withminor changes, to apply the already known [5]method for synthesizing
the suboptimal launch trajectory, while obtaining better estimates of the final mass in
comparisonwith the knownmethod.To apply themodification, information is needed
on the possible realizable angles of attack when withdrawing along a trajectory
belonging to a certain neighborhood of the optimal one. Based on conditions (17),
(18), the dependences for the smallest realizable values of the angle of attack were
found by numerical methods on the basis of dependence (19).

2. Based on the modification of the method of V.F. Krotova-M.M. Khrustalev devel-
oped an iterative algorithm for synthesizing a realizable injection trajectory, which
allows one to approach the solution of the longitudinal and spatial injection problem
from one point of view. In addition, the algorithm provides the ability to choose a
compromise solution between the accuracy and speed of the algorithm, depending
on the formulation of the research problem.

3. At the smallest realizable angles of attack of the aircraft α = 3◦−4◦ (which cor-
responds to reality), the refinement of the estimate for the relative final mass at an
altitude of 19 km varies within the limits �μ = 0,1−0,2%, which corresponds
to the absolute mass �m = 300−1200 kg for objects with a launch mass of 300
to 600 tons. By varying the smallest realizable angles of attack within the limits
α = 3◦−5◦, an improvement in the estimate for the final mass at an altitude of
19 km, respectively, can reach �μ = 0,1−0,4%, �m = 300−2400 kg.

4. When fixed αo� = const, the dependence �μ(h) has a non-monotonic character,
which is explained by a change in the slope of the dependenceV (h), the type ofwhich
depends on the method of redistribution of the energy entering the system between
the kinetic potential components, as well as on the indicators of the efficiency of the
excretion process.

5. The change in the qualitative and quantitative characteristics of the dependence
�μ(h) when changing αo� = const is associated with a change in the type of
trajectory V (h) when changing αo�. The impact V (h) on efficiency indicators is
described above.
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6. For the object under study, there is some αmin, starting from which the set D0 = 0
turns out to be empty (Table 1). Consequently, for a more complete study with
a more accurate estimate of the mass, it is necessary to connect the apparatus of
flexible change αo� when changing h.
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